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Abstract

evaluations.

3D thermal models are associated with building inspection and energy efficiency evaluation. Fusing Thermal infrared
(TIR) images with MLS (Mobile Laser scanning) point clouds enables the generation of thermal point clouds, which
combine detailed geometric data with thermal attributes at each 3D point. RGB images are typically used to recon-
struct a 3D point cloud and apply thermal textures to the model. Therefore, the generated thermal point cloud heavily
relies on accurate RGB reconstruction and scale estimation. In this contribution, we introduce a novel image-feature
alignment method to directly co-register TIR images with MLS point clouds. The intensity images are generated

from the point clouds, and corresponding feature points are matched with the TIR images. With the estimated cor-
responding points, the pose can be calculated, and the thermal textures are projected onto the MLS point clouds

for thermal point cloud generation. Our method achieves results comparable to manual labeling with a projection
error of RMSE 3.4 pixels, offering an efficient and reliable solution to generate 3D thermal models for building energy

Keywords Point clouds, Co-registration, Image matching, TIR images, Thermal point cloud

1 Introduction
Monitoring building energy efficiency is essential for pro-
moting urban sustainability, reducing energy consump-
tion, and enhancing indoor thermal comfort. Among
the various energy demands of a building, heating and
cooling systems typically dominate overall usage. Con-
sequently, evaluating thermal insulation performance,
detecting anomalies, and identifying potential energy
leakages have emerged as key priorities for governments,
industry stakeholders, and researchers (Renganayagalu
et al.,, 2024).

Infrared Thermography (IRT) imaging, a non-invasive
and cost-effective sensing technology, has been widely
used to capture surface temperature distributions. Unlike
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point-based thermometers, a thermal camera records
thermal radiation across entire surfaces, enabling rapid
detection of thermal anomalies such as heat loss, insula-
tion failure, or water intrusion. However, Thermal Infra-
Red (TIR) images are inherently 2D and have limited
spatial resolution, narrow Field of View (FoV), and poor
geometric fidelity, making it difficult to interpret thermal
data in complex urban environments.

To overcome these limitations, recent studies (Macher
& Landes, 2022) have explored the integration of TIR
images with Light Detection and Ranging (LiDAR) point
clouds, which provide accurate 3D geometric informa-
tion through dense spatial sampling. The fusion of ther-
mal texture and geometric data enables the construction
of 3D thermal point clouds, where each point in space
is associated with a temperature value. These enriched
point clouds facilitate a more intuitive and comprehen-
sive understanding of building thermal behavior as the
high-resolution three-dimensional thermal informa-
tion allows precise localization of heat loss on building
envelopes.
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Despite its potential, generating accurate thermal point
clouds from TIR and mobile laser scanning (MLS) data
remains a non-trivial challenge. The two modalities differ
in resolution, dimensionality, and sensing mechanisms:
TIR captures radiance in the 7-15 pum range with blurry
textures and structural detail, while MLS point cloud
provides precise, basically 3D geometry. Aligning these
heterogeneous datasets requires robust cross-modal co-
registration, which is still an open problem. Registering
images to point clouds is typically performed between
RGB images and LiDAR point clouds, by estimating the
corresponding 2D-3D features or the image pose with
respect to the point cloud using deep-learning meth-
ods (Wang et al.,, 2025; Kang et al., 2024), which require
large annotated datasets. However, direct registration
of TIR images with point clouds for thermal point cloud
generation is rarely reported.

In this paper, we address this challenge by proposing an
automatic image-based pipeline for generating thermal
point clouds by fusion of TIR image sequences and MLS
point clouds. The proposed method utilizes projected
intensity images derived from the point cloud to establish
reliable 2D correspondences with the thermal images,
enabling direct association of thermal textures with the
original 3D points. The resulting thermal point clouds
provide enhanced spatial context and valuable tempera-
ture insights for building energy diagnostics.

The main contributions of this research are:

+ We propose an image-based algorithm for corre-
sponding point detection of TIR images and MLS
point clouds.

+ We propose a feasible workflow to automatically co-
register the TIR images to the MLS point clouds.

+ Our experiments validate the results of co-registra-
tion and compare them with the manual results.

The structure of this contribution is organized as follows:
In Sect. 2, we summarize the related work, and our pro-
posed method is presented in detail in Sect. 3. The data
and experiments are described in Sect. 4, and then the
results are shown and discussed in Sects. 5 and 6. Finally,
some conclusions are drawn in Sect. 7.

2 Related work

Generating 3D thermal models typically involves map-
ping 2D thermal textures from TIR images onto 3D geo-
metric models. Model-based methods use preexisting
or reconstructed 3D models and project thermal texture
with known camera orientations (Hoegner & Stilla, 2018;
Weinmann et al., 2012; Marie et al., 2024). Such models
are often limited in representing complex surfaces and
structures, and precise camera orientations are required
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for mapping. A widely adopted approach to generate
thermal point clouds involves combining photogram-
metric techniques with thermal imaging using structure
from motion (SfM) (Schonberger & Frahm, 2016). Due
to the blurry features and low texture in thermal images,
RGB images are often used to support 3D reconstruction
and improve image registration (Lin et al., 2025; Lépez
et al.,, 2021). Since thermal and RGB cameras typically
operate at different resolutions and fields of view, scale
alignment often requires manual estimation or external
geo-referencing to ensure consistency with real-world
coordinates. Despite point cloud co-registration, inte-
grated systems are widely used, where only the relative
pose between sensors needs to be estimated (Brea et al,,
2024; Schichler et al., 2025; Qiu et al., 2025). In these
approaches, the RGB imagery serves as a link between
the TIR image and the high-quality 3D geometry, facili-
tating indirect alignment of the TIR to the point point
cloud. However, the overall quality of the thermal point
cloud is still highly dependent on proper illumination in
the RGB images, the fidelity of the 3D reconstruction,
and accurate scale alignment between modalities.

Beyond RGB-involved methods, some studies have
explored direct registration between TIR images and
LiDAR point clouds (Zhu et al, 2021), attempting to
extract and match cross-modal features without relying
on RGB intermediates. However, the robustness of these
methods remains limited due to significant modality dif-
ferences and weak feature correspondence. Furthermore,
their scalability to large-scale datasets requires further
investigation (Elias et al., 2023).

While recent research has increasingly applied deep
learning techniques to cross-modal registration, par-
ticularly in RGB-LiDAR scenarios (Li & Lee, 2021; Yew
& Lee, 2022; Hao et al., 2024), their adaptation to TIR-
LiDAR alignment remains underdeveloped. This is
largely due to the scarcity of large-scale annotated data-
sets and the inherent modality gap between thermal and
geometric information.

To address these limitations, we propose a fully image-
based method that automatically estimates the relative
pose between TIR images and LiDAR point clouds, with-
out relying on RGB assistance or pre-calibrated setups.
Our approach leverages geometric priors and structure-
aware constraints to enable robust thermal point-cloud
generation, bridging the gap between 2D thermal obser-
vations and 3D spatial understanding.

3 Method

To bridge the dimensional gap between 2D thermal
images and 3D LiDAR point clouds, we propose a image-
based framework that maps 3D spatial data into a 2D
domain. Instead of reconstructing 3D geometry from 2D
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images, which is computationally intensive and under-
constrained, we project the 3D point cloud onto the
image plane with a virtual camera for a virtual image
simulation. This dimensional reduction preserves rele-
vant spatial information while facilitating efficient feature
matching and transformation estimation.

Figure 1 shows the overall workflow. The MLS point
cloud is projected to (A) first generate the virtual image
by intensity of the 3D points with the coarse vehicle pose,
together with a 3D point matrix embedding the point
coordinates. Multimodal feature correspondences are (B)
matched between the TIR image and the intensity image.
These correspondences are used to estimate the precise
image pose (C) via a EPnP (Lepetit et al., 2009). The ther-
mal texture from the TIR image is mapped onto the MLS
point cloud to (D) generate a thermal point cloud.

3.1 Intensity images generation from MLS point clouds

To enable robust 2D-3D feature matching, the MLS
point cloud is first converted into an intensity image. The
intensity represents the surface reflectance measured
by the laser scanner. Depending on the sensor’s wave-
length, different materials and textures exhibit distinct
reflectance, so the intensity encodes textural and material
contrasts that are not present in pure geometry, thereby
enabling clearer object boundaries and more reliable fea-
ture detection. As shown in Fig. 2, while both the inten-
sity and range modalities capture geometric structure,
the intensity image provides enhanced representation

(D) Thermal point cloud
generation

Fig. 1 Overall workflow for thermal point cloud generation (A-D)
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Fig. 2 Images generated from MLS point clouds: () Intensity image,
(I Range image, (Ill) Coordinate map

for reflective or fine-structured surfaces, such as nearby
bicycles and building windows, where material reflec-
tivity highlights features that are less pronounced in the
range image. Since we cannot directly produce such a
geometry-based intensity map, we employ a virtual pin-
hole camera model similar to our thermal camera to
simulate the imaging geometry. The MLS point cloud is
projected onto an image plane using the collinearity (pro-
jection) equation (Eq. 1). Given an initial virtual camera
pose close to the vehicle, each 3D point X; is projected
onto a 2D image coordinate u; using the intrinsic matrix

R ——-_

S
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of the camera K, rotation matrix R, and translation vector
t:

u; = K[R|t]X; (1)
f0cy

K=s-10fc¢ |, ReSO®), t=I[Xo Yo Zl"
001

2)

To handle occlusions and ensure physically consistent ren-
dering, a buffer with 20cm is applied so that only the nearest
point is retained for each pixel. In addition to the intensity
image, the range image encodes, for each pixel, the shortest 3D
distance from the camera center to the visible surface point, as
well as a 3D coordinate map that records the corresponding
3D position of that pixel are automatically generated.

3.2 Multimodal feature matching

Due to the spectral and radiometric differences between
TIR and MLS-derived images, classical descriptors
(e.g., SIFT (Lowe, 2004a)) are ineffective. We adopt the
HAPCG descriptor (Yao et al., 2021), which leverages
anisotropic diffusion and phase congruency (Kovesi,
1999) to extract robust features invariant to intensity and
orientation changes. Feature detection is performed on
both images using phase-based anisotropic filtering, and
Harris corner detection (Harris & Stephens, 1988) is then
constructed in polar coordinates using gradient orienta-
tion histograms. Descriptor similarity is measured via
Euclidean distance, and false matches are filtered with
Fast Sample Consensus (Wu et al., 2014), which requires
that inlier correspondences satisfy an affine geometric
consistency within local neighborhoods.

3.3 Pose estimation via PnP

Given 2D-3D corresponding point pairs, the precise
camera pose is estimated by solving the Perspective-n-
Point (PnP) problem. The objective is to minimize the
reprojection error.

N
Reprojection Error = Z |lu; — TI(K,R, T, Xi)||2 (3)
i=1

We employ the efficient PnP (EPnP) algorithm (Lepetit
et al, 2009) to estimate the 6-DoF pose between the
thermal camera and the 3D LiDAR point cloud. EPnP
formulates the 3D-to-2D correspondence problem by
expressing all 3D points as a weighted combination of
four virtual control points using barycentric coordi-
nates. This formulation transforms the problem into a
linear system, which allows for an efficient initial pose
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estimation in O(n) time complexity, where n is the num-
ber of 2D-3D correspondences. Gauss-Newton itera-
tion is applied to minimize reprojection errors for pose
refinement.

3.4 Thermal point cloud rendering

Once the TIR camera pose for each image is known,
the thermal texture is mapped onto the point cloud. We
adopt an indirect rendering strategy Fig. 3b: The point
cloud is reprojected into the TIR image frame, and the
thermal value of each point is obtained via bilinear inter-
polation (Gonzales & Wintz, 1987) from the surround-
ing pixel intensities. This allows for sub-pixel sampling
when a projected 3D point does not fall exactly on a
pixel center, which is a standard and effective technique
in image-to-point cloud fusion. Compared with a ray-
tracing strategy (Fig. 3a) that traces each image pixel
into 3D and often yields sparse thermal coverage, the
indirect approach assigns radiance to every visible 3D
point and therefore produces a denser and more visually
complete thermal point cloud, which is essential for our
application.

To ensure occlusion-aware projection, we use the range
image to filter out points beyond visible thresholds. Due
to the limited field-of-view of 2D images, a sub ther-
mal cloud can be rendered from the corresponding TIR
image. All the clouds are merged by averaging overlap-
ping values, resulting in a consistent and dense thermal
point cloud for the whole area.

4 Data and experiments

The test site is selected from TUM2TWIN (Wysocki
et al, 2025) dataset (Fig. 4), measured using a mobile
platform, which includes two laser scanners and an
uncooled bolometer (Zhu et al., 2020). This area is
around 140m x 200m, with 69,855,517 points. The
uncooled thermal imaging camera is cross-mounted and
looks backward toward the drive direction. TIR images

a b
Fig. 3 Thermal rendering strategies: a Ray tracing, b Indirect
projection
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img_14600

Fig.5 Manually labeled corresponding points in TIR images with pseudo-color

are provided as 16-bit-TIFFs with lossless compres-
sion (LZW) in the size of 640 pixel x 480 pixel. Addi-
tional information about the car’s position is provided by
Global Positiioning System (GPS) and inertial measure-
ment units (IMU) mounted on the vehicle.

In order to estimate the pose calculated with the pro-
posed method, we select eight TIR images and manually
label the corresponding image points and 3D points in
the point clouds for evaluation. The selected images are
presented in Fig. 5. Though only four points are required
for pose estimation, we select more than 10 points each
to increase the redundancy.

The processing and generation of thermal point clouds
were done using c++ and pcl library(1.81) (Rusu &
Cousins, 2011). The computer is with 32G RAM, and an
i7-6000 @3.4 GHz CPU. The implementation is available
in a public repository.!

! https://github.com/JingweiFZ/Reglmg-tir-pcd

5 Results
This section presents the experimental results and evalu-
ates the performance of the proposed method. The TIR
images were calibrated for the intrinsic parameters of
the camera. MLS point clouds from two scanners were
merged and processed to eliminate noise, redundancy,
and outliers. As a result, the point count was reduced by
over 50%, leaving 23.2 million points for processing.
Figure 6 shows the generated intensity image alongside
its corresponding TIR image. The initial pose of the vir-
tual camera is initialized from the vehicle’s GPS position
to ensure sufficient overlap with the TIR image. Despite
the modality differences, objects such as buildings, vehi-
cles, and trees are recognizable in both representations.
However, due to the varying radiance characteristics of
different objects (e.g., cars appear bright in TIR but dark
in intensity images, whereas trees exhibit the opposite
pattern), the generated intensity image suffers from con-
trast variations and noise artifacts, such as salt-and-pep-
per noise. To mitigate these projection-induced artifacts,
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Fig. 6 Example of image 14729:aTIR image, b generated intensity image, ¢ intensity image after median filter

a median filter with 3 x 3 was applied as shown in Fig. 6c¢.
This operation effectively replaces each pixel with the
median of its neighborhood, removing these isolated
spikes while preserving true edges and structural details
for matching.

Figure 7 illustrates matched corresponding points
across modalities. The red points are detected feature
points in TIR images, and the green ones are those in the
corresponding intensity images. Matches are spatially
distributed, with clusters along windows and facades.
Some outliers are present, but are mitigated through
descriptor redundancy and consensus filtering.

Using the HAPCG descriptor, corresponding point
pairs are effectively detected through multimodal fea-
ture matching between TIR and intensity images. As
shown in Fig. 8, an average of 254.00 corresponding
points are identified per image, which significantly sur-
passes the number obtained through manual annotation
(average: 28.13 points). This substantial improvement
highlights the capability of HAPCG to capture rich and
robust feature representations across modalities, even
under challenging conditions such as contrast inversion
and radiometric inconsistencies. The dense and consist-
ent detection of matched points not only reduces reliance
on labor-intensive manual labeling but also ensures a
more accurate and repeatable image registration process,

img_14550

which is critical for downstream tasks of 2D-3D fusion
and scene reconstruction.

To evaluate camera pose accuracy, we projected labeled
3D points into the 2D image plane using the estimated
parameters and compared the results with ground truth
(manually) and GPS pose of the vehicle for intial inten-
sity image generation. L1 (Eq. 4) measures the average
distance from the projected points to the corresponding
image points, while RMSE is the quadratic mean of the
differences between the observed values and the pre-
dicted ones (Eq. 5). Table 1 shows the L1 and RMSE for
each image. According to the result, our method achieves
an average RMSE of 3.40 pixels, close to manual anno-
tation (2.53 pixels) and significantly better than GPS
(24.13 pixels). Notably, for image 14628, a higher RMSE
is observed due to limited scene contrast.

1 N-1
L@p) =+ > Ipi = b (4)
i=0

RMSE(p,p) =

To visualize and compare the differences, sub thermal
point clouds were generated for each image by projecting

img_ 14552

Fig. 7 Matched corresponding points between TIR (red) and intensity (green) images
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Fig. 8 Number of detected feature points: manual vs. image-based method
Table 1 Pose estimation accuracy comparison (L1 and RMSE in pixels)
GPS? Proposed Manual
Image L1 RMSE L1 RMSE L1 RMSE
14501 3771 2152 511 3.23 348 226
14537 42.76 24.82 5.67 347 4.16 2.74
14550 39.52 23.75 5.24 3.23 4.70 293
14575 43.85 25.96 3.98 2.56 3.18 1.98
14600 3848 22.81 6.70 3.97 443 2.65
14628 37.62 23.50 7.24 4.40 4.30 2.85
14552 41.66 25.15 529 3.23 4.10 2.50
14574 43.12 25.55 4.94 3.14 3.66 2.31
Average 40.59 24.13 552 340 4.00 2.53

? Result using initial vehicle GPS position data

the 2D thermal texture onto the corresponding 3D point
clouds (Fig. 9). While window and building boundaries
align accurately with the geometric point cloud by manu-
ally results, distinct shifts attributable to the initial GPS
solution are evident in the thermal point clouds, as high-
lighted by the red rectangular annotations. The image-
based method highly improved the initial pose from the
GPS data, and the features are visually accessible. Com-
pared to GPS-based projections, which show visible mis-
alignment, our results closely match manually labeled
outputs without requiring human annotation.

Finally, the fused thermal point cloud for the test site is
presented in Fig. 10, providing a comprehensive 3D rep-
resentation of surface temperature distribution. Warmer
regions are indicated by colors closer to red, while cooler
areas shift towards yellow. Notably, the roads exhibit
significantly higher temperatures than surrounding

buildings, likely due to their heat-retaining asphalt mate-
rials and direct solar exposure. In addition, several linear
vertical patterns of elevated temperature can be observed
on the facades, particularly near window areas and build-
ing entrances. These thermal anomalies are aligned with
the structural layout of the windows and doors, suggest-
ing the presence of heat leakage paths. Such patterns may
correspond to internal heating elements, such as radia-
tors or pipelines, transferring thermal energy from the
building interior to its external surfaces.

6 Discussion

The proposed workflow is training-free and data-effi-
cient, offering strong cross-modal matching without the
overhead of model training. By leveraging the proposed
HAPCG descriptor, our method effectively captures
modality-invariant features, enabling accurate and dense
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Fig. 9 Thermal point clouds by rendering thermal texture to the point cloud: a-c manually labeled result, d-f initial GPS pose, g-i image-based

method

Fig. 10 Fused thermal point cloud of the test site

correspondences between TIR and intensity images. This
facilitates reliable camera-pose estimation and multi-
modal registration. Compared to manual annotation,
the automatic feature-matching approach yields a sig-
nificantly greater number of correspondences, thereby
improving registration completeness and reducing man-
ual effort.

To further position our approach with respect to
common feature descriptors, we evaluated representa-
tive baselines including the classical hand-crafted
SIFT (Lowe, 2004b), the learning-based matcher Super-
Glue (Sarlin et al., 2020), and the cross-modality descrip-
tor MIRRIFT (Geng et al., 2025) on eight representative
image pairs. SIFT and SuperGlue rarely produce more
than a handful of geometrically verified matches and

often fail to meet the minimum requirement for sta-
ble pose estimation, with visual inspection confirming
many false matches. MIRRIFT achieves higher inlier
counts than SIFT and SuperGlue but remains well below
HAPCG. In contrast, HAPCG consistently detects one to
two orders of magnitude more accurate correspondences
in all pairs tested. This superior performance is mainly
attributed to HAPCG's ability to integrate cross-modal
texture modeling with geometric constraints, allowing
it to remain robust under strong spectral and structural
discrepancies.

These results demonstrate that while classical or purely
learning-based descriptors can be effective in single-
modality RGB scenarios, they are inadequate for the
challenging thermal intensity cross-modality matching
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required here. The superior and robust performance of
HAPCG underscores the importance of incorporating
domain-specific geometric constraints and cross-modal
texture modeling for accurate and dense 2D correspond-
ence, which is critical for downstream camera pose esti-
mation and thermal point-cloud generation.

The resulting thermal point cloud captures fine-scale
thermal variations across the urban scene, demonstrat-
ing both geometric precision and radiometric consist-
ency. Distinct thermal patterns associated with different
objects such as roads, facades, and heating structures can
be clearly visualized and analyzed. These results highlight
the model’s capacity not only to reconstruct 3D geome-
try but also to provide interpretable thermal information
linked to the underlying structural and functional charac-
teristics of the environment.

Despite these advantages, some limitations remain.
First, feature matching performance may deteriorate
in areas with low texture or homogeneous thermal
responses, such as glass surfaces or occluded regions.
Second, generating intensity images from point clouds
inherently compresses the spatial richness of the 3D data,
potentially leading to a loss of geometric detail. Future
work could also explore hybrid strategies that com-
bine the adopted HAPCG descriptor with lightweight
learning-based methods to reduce annotation require-
ments and further improve robustness in texture-poor or
occluded areas.

7 Conclusion

We presented an automatic image-based method for gen-
erating thermal point clouds by fusing TIR images with
MLS point clouds. The key innovation lies in converting
3D point cloud into 2D intensity images, enabling robust
multimodal feature matching in the image domain. This
dimensional alignment allows for accurate pose esti-
mation using HAPCG descriptors and EPnP optimiza-
tion, followed by thermal texture projection onto 3D
geometry.

The proposed framework significantly improves pose
accuracy compared to GPS-based initialization, achiev-
ing an average RMSE of 3.4 pixels, comparable to manu-
ally labeled ground truth but without labor-intensive
annotation. The generated thermal point clouds effec-
tively visualize building-scale heat distributions and
structural features such as pipelines and facade radiation,
demonstrating their potential for energy diagnostics and
infrastructure monitoring.
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