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Abstract 

3D thermal models are associated with building inspection and energy efficiency evaluation. Fusing Thermal infrared 
(TIR) images with MLS (Mobile Laser scanning) point clouds enables the generation of thermal point clouds, which 
combine detailed geometric data with thermal attributes at each 3D point. RGB images are typically used to recon-
struct a 3D point cloud and apply thermal textures to the model. Therefore, the generated thermal point cloud heavily 
relies on accurate RGB reconstruction and scale estimation. In this contribution, we introduce a novel image-feature 
alignment method to directly co-register TIR images with MLS point clouds. The intensity images are generated 
from the point clouds, and corresponding feature points are matched with the TIR images. With the estimated cor-
responding points, the pose can be calculated, and the thermal textures are projected onto the MLS point clouds 
for thermal point cloud generation. Our method achieves results comparable to manual labeling with a projection 
error of RMSE 3.4 pixels, offering an efficient and reliable solution to generate 3D thermal models for building energy 
evaluations.
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1  Introduction
Monitoring building energy efficiency is essential for pro-
moting urban sustainability, reducing energy consump-
tion, and enhancing indoor thermal comfort. Among 
the various energy demands of a building, heating and 
cooling systems typically dominate overall usage. Con-
sequently, evaluating thermal insulation performance, 
detecting anomalies, and identifying potential energy 
leakages have emerged as key priorities for governments, 
industry stakeholders, and researchers  (Renganayagalu 
et al., 2024).

Infrared Thermography (IRT) imaging, a non-invasive 
and cost-effective sensing technology, has been widely 
used to capture surface temperature distributions. Unlike 

point-based thermometers, a thermal camera records 
thermal radiation across entire surfaces, enabling rapid 
detection of thermal anomalies such as heat loss, insula-
tion failure, or water intrusion. However, Thermal Infra-
Red (TIR) images are inherently 2D and have limited 
spatial resolution, narrow Field of View (FoV), and poor 
geometric fidelity, making it difficult to interpret thermal 
data in complex urban environments.

To overcome these limitations, recent studies (Macher 
& Landes, 2022) have explored the integration of TIR 
images with Light Detection and Ranging (LiDAR) point 
clouds, which provide accurate 3D geometric informa-
tion through dense spatial sampling. The fusion of ther-
mal texture and geometric data enables the construction 
of 3D thermal point clouds, where each point in space 
is associated with a temperature value. These enriched 
point clouds facilitate a more intuitive and comprehen-
sive understanding of building thermal behavior as the 
high-resolution three-dimensional thermal informa-
tion allows precise localization of heat loss on building 
envelopes.
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Despite its potential, generating accurate thermal point 
clouds from TIR and mobile laser scanning (MLS) data 
remains a non-trivial challenge. The two modalities differ 
in resolution, dimensionality, and sensing mechanisms: 
TIR captures radiance in the 7–15 µm range with blurry 
textures and structural detail, while MLS point cloud 
provides precise, basically 3D geometry. Aligning these 
heterogeneous datasets requires robust cross-modal co-
registration, which is still an open problem. Registering 
images to point clouds is typically performed between 
RGB images and LiDAR point clouds, by estimating the 
corresponding 2D-3D features or the image pose with 
respect to the point cloud using deep-learning meth-
ods  (Wang et al., 2025; Kang et al., 2024), which require 
large annotated datasets. However, direct registration 
of TIR images with point clouds for thermal point cloud 
generation is rarely reported.

In this paper, we address this challenge by proposing an 
automatic image-based pipeline for generating thermal 
point clouds by fusion of TIR image sequences and MLS 
point clouds. The proposed method utilizes projected 
intensity images derived from the point cloud to establish 
reliable 2D correspondences with the thermal images, 
enabling direct association of thermal textures with the 
original 3D points. The resulting thermal point clouds 
provide enhanced spatial context and valuable tempera-
ture insights for building energy diagnostics.

The main contributions of this research are:

•	 We propose an image-based algorithm for corre-
sponding point detection of TIR images and MLS 
point clouds.

•	 We propose a feasible workflow to automatically co-
register the TIR images to the MLS point clouds.

•	 Our experiments validate the results of co-registra-
tion and compare them with the manual results.

The structure of this contribution is organized as follows: 
In Sect. 2, we summarize the related work, and our pro-
posed method is presented in detail in Sect. 3. The data 
and experiments are described in Sect.  4, and then the 
results are shown and discussed in Sects. 5 and 6. Finally, 
some conclusions are drawn in Sect. 7.

2 � Related work
Generating 3D thermal models typically involves map-
ping 2D thermal textures from TIR images onto 3D geo-
metric models. Model-based methods use preexisting 
or reconstructed 3D models and project thermal texture 
with known camera orientations (Hoegner & Stilla, 2018; 
Weinmann et al., 2012; Marie et al., 2024). Such models 
are often limited in representing complex surfaces and 
structures, and precise camera orientations are required 

for mapping. A widely adopted approach to generate 
thermal point clouds involves combining photogram-
metric techniques with thermal imaging using structure 
from motion (SfM) (Schonberger & Frahm, 2016). Due 
to the blurry features and low texture in thermal images, 
RGB images are often used to support 3D reconstruction 
and improve image registration  (Lin et  al., 2025; López 
et  al., 2021). Since thermal and RGB cameras typically 
operate at different resolutions and fields of view, scale 
alignment often requires manual estimation or external 
geo-referencing to ensure consistency with real-world 
coordinates. Despite point cloud co-registration, inte-
grated systems are widely used, where only the relative 
pose between sensors needs to be estimated (Brea et al., 
2024; Schichler et  al., 2025; Qiu et  al., 2025). In these 
approaches, the RGB imagery serves as a link between 
the TIR image and the high-quality 3D geometry, facili-
tating indirect alignment of the TIR to the point point 
cloud. However, the overall quality of the thermal point 
cloud is still highly dependent on proper illumination in 
the RGB images, the fidelity of the 3D reconstruction, 
and accurate scale alignment between modalities.

Beyond RGB-involved methods, some studies have 
explored direct registration between TIR images and 
LiDAR point clouds  (Zhu et  al., 2021), attempting to 
extract and match cross-modal features without relying 
on RGB intermediates. However, the robustness of these 
methods remains limited due to significant modality dif-
ferences and weak feature correspondence. Furthermore, 
their scalability to large-scale datasets requires further 
investigation (Elias et al., 2023).

While recent research has increasingly applied deep 
learning techniques to cross-modal registration, par-
ticularly in RGB-LiDAR scenarios  (Li & Lee, 2021; Yew 
& Lee, 2022; Hao et  al., 2024), their adaptation to TIR-
LiDAR alignment remains underdeveloped. This is 
largely due to the scarcity of large-scale annotated data-
sets and the inherent modality gap between thermal and 
geometric information.

To address these limitations, we propose a fully image-
based method that automatically estimates the relative 
pose between TIR images and LiDAR point clouds, with-
out relying on RGB assistance or pre-calibrated setups. 
Our approach leverages geometric priors and structure-
aware constraints to enable robust thermal point-cloud 
generation, bridging the gap between 2D thermal obser-
vations and 3D spatial understanding.

3 � Method
To bridge the dimensional gap between 2D thermal 
images and 3D LiDAR point clouds, we propose a image-
based framework that maps 3D spatial data into a 2D 
domain. Instead of reconstructing 3D geometry from 2D 
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images, which is computationally intensive and under-
constrained, we project the 3D point cloud onto the 
image plane with a virtual camera for a virtual image 
simulation. This dimensional reduction preserves rele-
vant spatial information while facilitating efficient feature 
matching and transformation estimation.

Figure  1 shows the overall workflow. The MLS point 
cloud is projected to (A) first generate the virtual image 
by intensity of the 3D points with the coarse vehicle pose, 
together with a 3D point matrix embedding the point 
coordinates. Multimodal feature correspondences are (B) 
matched between the TIR image and the intensity image. 
These correspondences are used to estimate the precise 
image pose (C) via a EPnP (Lepetit et al., 2009). The ther-
mal texture from the TIR image is mapped onto the MLS 
point cloud to (D) generate a thermal point cloud.

3.1 � Intensity images generation from MLS point clouds
To enable robust 2D-3D feature matching, the MLS 
point cloud is first converted into an intensity image. The 
intensity represents the surface reflectance measured 
by the laser scanner. Depending on the sensor’s wave-
length, different materials and textures exhibit distinct 
reflectance, so the intensity encodes textural and material 
contrasts that are not present in pure geometry, thereby 
enabling clearer object boundaries and more reliable fea-
ture detection. As shown in Fig. 2, while both the inten-
sity and range modalities capture geometric structure, 
the intensity image provides enhanced representation 

for reflective or fine-structured surfaces, such as nearby 
bicycles and building windows, where material reflec-
tivity highlights features that are less pronounced in the 
range image. Since we cannot directly produce such a 
geometry-based intensity map, we employ a virtual pin-
hole camera model similar to our thermal camera to 
simulate the imaging geometry. The MLS point cloud is 
projected onto an image plane using the collinearity (pro-
jection) equation (Eq. 1). Given an initial virtual camera 
pose close to the vehicle, each 3D point Xi is projected 
onto a 2D image coordinate ui using the intrinsic matrix 

Fig. 1  Overall workflow for thermal point cloud generation (A-D)

Fig. 2  Images generated from MLS point clouds: (I) Intensity image, 
(II) Range image, (III) Coordinate map
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of the camera K, rotation matrix R, and translation vector 
t:

To handle occlusions and ensure physically consistent ren-
dering, a buffer with 20cm is applied so that only the nearest 
point is retained for each pixel. In addition to the intensity 
image, the range image encodes, for each pixel, the shortest 3D 
distance from the camera center to the visible surface point, as 
well as a 3D coordinate map that records the corresponding 
3D position of that pixel are automatically generated.

3.2 � Multimodal feature matching
Due to the spectral and radiometric differences between 
TIR and MLS-derived images, classical descriptors 
(e.g., SIFT  (Lowe, 2004a)) are ineffective. We adopt the 
HAPCG descriptor  (Yao et  al., 2021), which leverages 
anisotropic diffusion and phase congruency  (Kovesi, 
1999) to extract robust features invariant to intensity and 
orientation changes. Feature detection is performed on 
both images using phase-based anisotropic filtering, and 
Harris corner detection (Harris & Stephens, 1988) is then 
constructed in polar coordinates using gradient orienta-
tion histograms. Descriptor similarity is measured via 
Euclidean distance, and false matches are filtered with 
Fast Sample Consensus (Wu et al., 2014), which requires 
that inlier correspondences satisfy an affine geometric 
consistency within local neighborhoods.

3.3 � Pose estimation via PnP
Given 2D-3D corresponding point pairs, the precise 
camera pose is estimated by solving the Perspective-n-
Point (PnP) problem. The objective is to minimize the 
reprojection error.

We employ the efficient PnP (EPnP) algorithm (Lepetit 
et  al., 2009) to estimate the 6-DoF pose between the 
thermal camera and the 3D LiDAR point cloud. EPnP 
formulates the 3D-to-2D correspondence problem by 
expressing all 3D points as a weighted combination of 
four virtual control points using barycentric coordi-
nates. This formulation transforms the problem into a 
linear system, which allows for an efficient initial pose 

(1)ui = K [R|t]Xi

(2)

K = s ·





f 0 cx
0 f cy
0 0 1



, R ∈ SO(3), t = [X0,Y0,Z0]
T

(3)Reprojection Error =

N

i=1

�ui −�(K ,R,T ,Xi)�
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estimation in O(n) time complexity, where n is the num-
ber of 2D-3D correspondences. Gauss-Newton itera-
tion is applied to minimize reprojection errors for pose 
refinement.

3.4 � Thermal point cloud rendering
Once the TIR camera pose for each image is known, 
the thermal texture is mapped onto the point cloud. We 
adopt an indirect rendering strategy Fig.  3b: The point 
cloud is reprojected into the TIR image frame, and the 
thermal value of each point is obtained via bilinear inter-
polation  (Gonzales & Wintz, 1987) from the surround-
ing pixel intensities. This allows for sub-pixel sampling 
when a projected 3D point does not fall exactly on a 
pixel center, which is a standard and effective technique 
in image-to-point cloud fusion. Compared with a ray-
tracing strategy (Fig.  3a) that traces each image pixel 
into 3D and often yields sparse thermal coverage, the 
indirect approach assigns radiance to every visible 3D 
point and therefore produces a denser and more visually 
complete thermal point cloud, which is essential for our 
application.

To ensure occlusion-aware projection, we use the range 
image to filter out points beyond visible thresholds. Due 
to the limited field-of-view of 2D images, a sub ther-
mal cloud can be rendered from the corresponding TIR 
image. All the clouds are merged by averaging overlap-
ping values, resulting in a consistent and dense thermal 
point cloud for the whole area.

4 � Data and experiments
The test site is selected from TUM2TWIN  (Wysocki 
et  al., 2025) dataset (Fig.  4), measured using a mobile 
platform, which includes two laser scanners and an 
uncooled bolometer  (Zhu et  al., 2020). This area is 
around 140m× 200m , with 69,855,517 points. The 
uncooled thermal imaging camera is cross-mounted and 
looks backward toward the drive direction. TIR images 

Fig. 3  Thermal rendering strategies: a Ray tracing, b Indirect 
projection
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are provided as 16-bit-TIFFs with lossless compres-
sion (LZW) in the size of 640 pixel × 480 pixel. Addi-
tional information about the car’s position is provided by 
Global Positiioning System (GPS) and inertial measure-
ment units (IMU) mounted on the vehicle.

In order to estimate the pose calculated with the pro-
posed method, we select eight TIR images and manually 
label the corresponding image points and 3D points in 
the point clouds for evaluation. The selected images are 
presented in Fig. 5. Though only four points are required 
for pose estimation, we select more than 10 points each 
to increase the redundancy.

The processing and generation of thermal point clouds 
were done using c++ and pcl library(1.81) (Rusu & 
Cousins, 2011). The computer is with 32G RAM, and an 
i7-6000 @3.4 GHz CPU. The implementation is available 
in a public repository.1

5 � Results
This section presents the experimental results and evalu-
ates the performance of the proposed method. The TIR 
images were calibrated for the intrinsic parameters of 
the camera. MLS point clouds from two scanners were 
merged and processed to eliminate noise, redundancy, 
and outliers. As a result, the point count was reduced by 
over 50%, leaving 23.2 million points for processing.

Figure 6 shows the generated intensity image alongside 
its corresponding TIR image. The initial pose of the vir-
tual camera is initialized from the vehicle’s GPS position 
to ensure sufficient overlap with the TIR image. Despite 
the modality differences, objects such as buildings, vehi-
cles, and trees are recognizable in both representations. 
However, due to the varying radiance characteristics of 
different objects (e.g., cars appear bright in TIR but dark 
in intensity images, whereas trees exhibit the opposite 
pattern), the generated intensity image suffers from con-
trast variations and noise artifacts, such as salt-and-pep-
per noise. To mitigate these projection-induced artifacts, 

Fig. 4  Testing site selected from TUM2TWIN (Wysocki et al., 2025)

Fig. 5  Manually labeled corresponding points in TIR images with pseudo-color

1  https://​github.​com/​Jingw​eiFZ/​RegImg-​tir-​pcd

https://github.com/JingweiFZ/RegImg-tir-pcd
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a median filter with 3× 3 was applied as shown in Fig. 6c. 
This operation effectively replaces each pixel with the 
median of its neighborhood, removing these isolated 
spikes while preserving true edges and structural details 
for matching.

Figure  7 illustrates matched corresponding points 
across modalities. The red points are detected feature 
points in TIR images, and the green ones are those in the 
corresponding intensity images. Matches are spatially 
distributed, with clusters along windows and facades. 
Some outliers are present, but are mitigated through 
descriptor redundancy and consensus filtering.

Using the HAPCG descriptor, corresponding point 
pairs are effectively detected through multimodal fea-
ture matching between TIR and intensity images. As 
shown in Fig.  8, an average of 254.00 corresponding 
points are identified per image, which significantly sur-
passes the number obtained through manual annotation 
(average: 28.13 points). This substantial improvement 
highlights the capability of HAPCG to capture rich and 
robust feature representations across modalities, even 
under challenging conditions such as contrast inversion 
and radiometric inconsistencies. The dense and consist-
ent detection of matched points not only reduces reliance 
on labor-intensive manual labeling but also ensures a 
more accurate and repeatable image registration process, 

which is critical for downstream tasks of 2D-3D fusion 
and scene reconstruction.

To evaluate camera pose accuracy, we projected labeled 
3D points into the 2D image plane using the estimated 
parameters and compared the results with ground truth 
(manually) and GPS pose of the vehicle for intial inten-
sity image generation. L1 (Eq.  4) measures the average 
distance from the projected points to the corresponding 
image points, while RMSE is the quadratic mean of the 
differences between the observed values and the pre-
dicted ones (Eq. 5). Table 1 shows the L1 and RMSE for 
each image. According to the result, our method achieves 
an average RMSE of 3.40 pixels, close to manual anno-
tation (2.53 pixels) and significantly better than GPS 
(24.13 pixels). Notably, for image 14628, a higher RMSE 
is observed due to limited scene contrast.

To visualize and compare the differences, sub thermal 
point clouds were generated for each image by projecting 

(4)L1(p, p̂) =
1

N

N−1
∑

i=0

|pi − p̂i|

(5)RMSE(p, p̂) =

√

√

√

√

1

N

N−1
∑

i=0

(pi − p̂i)2

Fig. 6  Example of image 14729: a TIR image, b generated intensity image, c intensity image after median filter

Fig. 7  Matched corresponding points between TIR (red) and intensity (green) images
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the 2D thermal texture onto the corresponding 3D point 
clouds (Fig.  9). While window and building boundaries 
align accurately with the geometric point cloud by manu-
ally results, distinct shifts attributable to the initial GPS 
solution are evident in the thermal point clouds, as high-
lighted by the red rectangular annotations. The image-
based method highly improved the initial pose from the 
GPS data, and the features are visually accessible. Com-
pared to GPS-based projections, which show visible mis-
alignment, our results closely match manually labeled 
outputs without requiring human annotation.

Finally, the fused thermal point cloud for the test site is 
presented in Fig. 10, providing a comprehensive 3D rep-
resentation of surface temperature distribution. Warmer 
regions are indicated by colors closer to red, while cooler 
areas shift towards yellow. Notably, the roads exhibit 
significantly higher temperatures than surrounding 

buildings, likely due to their heat-retaining asphalt mate-
rials and direct solar exposure. In addition, several linear 
vertical patterns of elevated temperature can be observed 
on the façades, particularly near window areas and build-
ing entrances. These thermal anomalies are aligned with 
the structural layout of the windows and doors, suggest-
ing the presence of heat leakage paths. Such patterns may 
correspond to internal heating elements, such as radia-
tors or pipelines, transferring thermal energy from the 
building interior to its external surfaces.

6 � Discussion
The proposed workflow is training-free and data-effi-
cient, offering strong cross-modal matching without the 
overhead of model training. By leveraging the proposed 
HAPCG descriptor, our method effectively captures 
modality-invariant features, enabling accurate and dense 

Fig. 8  Number of detected feature points: manual vs. image-based method

Table 1  Pose estimation accuracy comparison (L1 and RMSE in pixels)

a Result using initial vehicle GPS position data

GPSa Proposed Manual

Image L1 RMSE L1 RMSE L1 RMSE

14501 37.71 21.52 5.11 3.23 3.48 2.26

14537 42.76 24.82 5.67 3.47 4.16 2.74

14550 39.52 23.75 5.24 3.23 4.70 2.93

14575 43.85 25.96 3.98 2.56 3.18 1.98

14600 38.48 22.81 6.70 3.97 4.43 2.65

14628 37.62 23.50 7.24 4.40 4.30 2.85

14552 41.66 25.15 5.29 3.23 4.10 2.50

14574 43.12 25.55 4.94 3.14 3.66 2.31

Average 40.59 24.13 5.52 3.40 4.00 2.53
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correspondences between TIR and intensity images. This 
facilitates reliable camera-pose estimation and multi-
modal registration. Compared to manual annotation, 
the automatic feature-matching approach yields a sig-
nificantly greater number of correspondences, thereby 
improving registration completeness and reducing man-
ual effort.

To further position our approach with respect to 
common feature descriptors, we evaluated representa-
tive baselines including the classical hand-crafted 
SIFT  (Lowe, 2004b), the learning-based matcher Super-
Glue (Sarlin et al., 2020), and the cross-modality descrip-
tor MIRRIFT (Geng et al., 2025) on eight representative 
image pairs. SIFT and SuperGlue rarely produce more 
than a handful of geometrically verified matches and 

often fail to meet the minimum requirement for sta-
ble pose estimation, with visual inspection confirming 
many false matches. MIRRIFT achieves higher inlier 
counts than SIFT and SuperGlue but remains well below 
HAPCG. In contrast, HAPCG consistently detects one to 
two orders of magnitude more accurate correspondences 
in all pairs tested. This superior performance is mainly 
attributed to HAPCG’s ability to integrate cross-modal 
texture modeling with geometric constraints, allowing 
it to remain robust under strong spectral and structural 
discrepancies.

These results demonstrate that while classical or purely 
learning-based descriptors can be effective in single-
modality RGB scenarios, they are inadequate for the 
challenging thermal intensity cross-modality matching 

Fig. 9  Thermal point clouds by rendering thermal texture to the point cloud: a-c manually labeled result, d-f initial GPS pose, g-i image-based 
method

Fig. 10  Fused thermal point cloud of the test site
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required here. The superior and robust performance of 
HAPCG underscores the importance of incorporating 
domain-specific geometric constraints and cross-modal 
texture modeling for accurate and dense 2D correspond-
ence, which is critical for downstream camera pose esti-
mation and thermal point-cloud generation.

The resulting thermal point cloud captures fine-scale 
thermal variations across the urban scene, demonstrat-
ing both geometric precision and radiometric consist-
ency. Distinct thermal patterns associated with different 
objects such as roads, façades, and heating structures can 
be clearly visualized and analyzed. These results highlight 
the model’s capacity not only to reconstruct 3D geome-
try but also to provide interpretable thermal information 
linked to the underlying structural and functional charac-
teristics of the environment.

Despite these advantages, some limitations remain. 
First, feature matching performance may deteriorate 
in areas with low texture or homogeneous thermal 
responses, such as glass surfaces or occluded regions. 
Second, generating intensity images from point clouds 
inherently compresses the spatial richness of the 3D data, 
potentially leading to a loss of geometric detail. Future 
work could also explore hybrid strategies that com-
bine the adopted HAPCG descriptor with lightweight 
learning-based methods to reduce annotation require-
ments and further improve robustness in texture-poor or 
occluded areas.

7 � Conclusion
We presented an automatic image-based method for gen-
erating thermal point clouds by fusing TIR images with 
MLS point clouds. The key innovation lies in converting 
3D point cloud into 2D intensity images, enabling robust 
multimodal feature matching in the image domain. This 
dimensional alignment allows for accurate pose esti-
mation using HAPCG descriptors and EPnP optimiza-
tion, followed by thermal texture projection onto 3D 
geometry.

The proposed framework significantly improves pose 
accuracy compared to GPS-based initialization, achiev-
ing an average RMSE of 3.4 pixels, comparable to manu-
ally labeled ground truth but without labor-intensive 
annotation. The generated thermal point clouds effec-
tively visualize building-scale heat distributions and 
structural features such as pipelines and façade radiation, 
demonstrating their potential for energy diagnostics and 
infrastructure monitoring.
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