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Kurzfassung

Die zunehmende Integration erneuerbarer Energiequellen und die Elektrifizierung des Verkehrs
haben die Nachfrage nach effizienten und zuverlissigen Energiespeichersystemen deutlich erhoht.
Unter den verfiigbaren Technologien haben sich Lithium-Ionen Batteriespeichersysteme (BESS)
aufgrund ihrer hohen Energiedichte und ausgereiften Technologie als die am weitesten verbreitete
Losung etabliert. Allerdings stolen BESS in Anwendungen, die schnelle Leistungsfluktuatio-
nen, hochfrequentes Laden/Entladen und hiufige Ladezyklen erfordern, an ihre Grenzen. Diese
Betriebsbedingungen beschleunigen die Alterung der Batterien, verkiirzen die Lebensdauer und
erhohen die tiber die Zeit gemittelten Speicherkosten. Diese Einschrinkungen haben die En-
twicklung alternativer Systemarchitekturen motiviert, die darauf abzielen, die hochfrequenten
und transienten Leistungsanforderungen vom Akku auf ein erginzendes Speicherelement zu ver-
lagern.

Ein vielversprechender Ansatz zur Uberwindung dieser Einschrinkungen ist der Einsatz von Hy-
briden Energiespeichersystemen (HESS), die komplementére Speichertechnologien kombinieren,
typischerweise einen Energiereich-Batteriespeicher (BESS) mit einem leistungsstarken Spe-
icherelement wie einem Superkondensator Energiespeichersystem (SCES) oder einem Schwun-
grad Energiespeichersystem (FESS). Die HESS-Konfiguration ermdglicht eine Aufteilung der
Leistungsanforderungen: Langsam verlaufende, energieintensive Komponenten werden dem
Akku zugeordnet, wihrend das Hilfsspeicherelement schnelle Transienten und hohe Rampenan-
forderungen tibernimmt. Diese Entkopplung verbessert nicht nur die Leistungsfihigkeit und
Reaktionsgeschwindigkeit des Speichersystems, sondern verringert auch die Alterungsmechanis-
men der Batterie, indem die Belastung durch schnelle Leistungsidnderungen reduziert wird.

Obwohl die HESS-Architektur klare Vorteile gegeniiber eigenstéindigen Batteriesystemen bi-
etet, erfordert ihr effektiver Betrieb ausgekliigelte Steuerungsstrategien. Die grundlegende Her-
ausforderung besteht darin, zwei oder mehr Speicherkomponenten mit stark unterschiedlichen
Eigenschaften wie Reaktionszeit, Energiekapazitit, Wirkungsgrad und Alterungsverhalten unter
hochvariablen Leistungsanforderungen dynamisch zu koordinieren. Dabei muss sichergestellt

il
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werden, dass jede Komponente innerhalb ihrer sicheren Betriebsgrenzen arbeitet, wihrend gle-
ichzeitig systemweite Leistungsziele (z.B. Minimierung von Verlusten, Verldngerung der Lebens-
dauer und Aufrechterhaltung der Leistungsqualitit) erfiillt werden was Echtzeit-Kontrolle und
intelligente Managementsysteme erfordert.

Insbesondere muss die Leistungsaufteilung zwischen BESS und Hilfsspeicher nicht nur auf das
aktuelle Leistungsprofil reagieren, sondern auch langfristige Zustandsgroflen beriicksichtigen,
wie den Ladezustand (SoC) jeder Einheit und die Rampenbegrenzungen der Batterie. Tradi-
tionelle regelbasierte Methoden oder Tiefpassfilter stoen unter dynamischen Bedingungen oft
an ihre Grenzen. Die Steuerung von HESS ist daher nicht nur technisch anspruchsvoll, sondern
entscheidend, um das volle Potenzial hybrider Speichersysteme auszuschopfen.

Diese Arbeit widmet sich diesen Herausforderungen und entwickelt fortschrittliche Steuerungs-
und Schitzmethoden fiir hybride Energiespeichersysteme. Im Besonderen werden Ansitze fiir
eine effektive Leistungsaufteilung, eine prizise SoC-Schitzung und die Reduzierung der Bat-
terielast unter dynamischen Betriebsbedingungen untersucht. Die Arbeit zeigt, dass durch eine
gezielte Steuerung der verschiedenen Speicherkomponenten die Effizienz und Lebensdauer des
Gesamtsystems verbessert werden kann. Die Ergebnisse tragen zu einem besseren Verstindnis des
praktischen Verhaltens von HESS bei und liefern niitzliche Hinweise fiir die Gestaltung hybrider
Speichersysteme, die in der Praxis zuverldssig und leistungsfihig arbeiten.

v



Abstract

The increasing integration of renewable energy sources and the electrification of transportation
have significantly raised the demand for efficient and reliable energy storage systems. Among the
various technologies available, Lithium-ion Battery Energy Storage Systems (BESS) have become
the most widely adopted solution due to their high energy density and maturity. However,
BESS alone faces several challenges when subjected to applications that involve rapid power
fluctuations, high-frequency cycling, and frequent charge/discharge events. These operational
conditions accelerate battery aging, reduce cycle life, and increase the levelized cost of storage
over time. This limitation has motivated the development of alternative system architectures,
which aim to offload the high-frequency and transient power demands from the battery to a
complementary storage device.

A promising approach to overcome these limitations is the use of Hybrid Energy Storage Systems
(HESS), which combine complementary storage technologies, typically a high-energy BESS
with a high-power storage element such as a Supercapacitor Energy Storage System (SCES) or
a Flywheel Energy Storage System (FESS). The HESS configuration enables the power demand
to be split: slow, energy-intensive components are allocated to the battery, while the auxiliary
storage handles fast transients and high ramp-rate events. This decoupling not only enhances the
performance and responsiveness of the storage system but also mitigates the aging mechanisms
of the battery by reducing the stress caused by rapid power variations.

While the HESS architecture offers clear advantages over standalone battery systems, its effective
operation requires sophisticated control and power management strategies. The fundamental
challenge lies in dynamically coordinating two or more storage components with vastly different
characteristics, such as response time, energy capacity, efficiency, and degradation behavior, under
highly variable power demands. Ensuring that each component operates within its safe limits,
while jointly fulfilling system-level performance objectives (e.g., minimizing losses, extending
lifespan, and maintaining power quality), requires real-time, intelligent control and management
systems.

In particular, the power-splitting strategy between the BESS and the auxiliary storage must not
only respond to the instantaneous power profile but also consider long-term state variables, such
as the State of Charge (SoC) of each unit and the battery’s ramp rate limitations. Traditional



Abstract

rule-based or low-pass filter methods often fail to provide adequate flexibility or adaptability
under dynamic conditions. Therefore, control of HESS is not just technically challenging; it is
essential for unlocking the full potential of hybrid storage systems.

This thesis addresses these challenges by proposing advanced control and estimation strategies for
hybrid energy storage systems. In particular, it explores methods for effective power management,
accurate SoC estimation, and mitigation of battery aging under dynamic operating conditions.
The work examines how HESSs can be controlled more effectively and demonstrates that carefully
managing the various storage components can enhance the system’s efficiency and longevity. The
findings help to better understand how HESS behaves in practice and provide useful guidance for
designing hybrid storage systems that perform effectively in real-world applications.

vi
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1 Introduction, Motivation and Scope
of Work

1.1 Motivation

The accelerating integration of Renewable Energy Sources (RES) into modern power systems
is a key element of the global energy transition. However, their variability and intermittency
introduce significant challenges to grid stability, power quality, and reliability. Energy storage
systems (ESSs) are increasingly recognized as essential enablers for addressing these issues.
Among the various technologies, Battery Energy Storage Systems (BESSs) are the most widely
deployed due to their high energy density and flexibility. Nevertheless, BESS alone cannot fully
meet the demands of future grids, as they suffer from limited lifetime, high degradation under
frequent cycling, and significant replacement costs.

Hybrid Energy Storage Systems (HESSs), which combine complementary storage technologies,
have emerged as a promising solution. By coupling high-energy devices (such as batteries) with
high-power devices, such as Flywheel Energy Storage System (FESS) and Supercapacitor Energy
Storage System (SCES), HESS leverages the strengths of both technologies while mitigating their
weaknesses. This approach enables more efficient power management, an extended lifetime for
the battery subsystem, and an overall reduction in storage costs over long operational horizons.
Despite these advantages, HESS also presents new challenges, particularly regarding control,
optimal sizing, and system-level justification of its added investment.

1.2 PhD Research Questions

The work presented in this thesis is guided by three central research questions:

1. The HESS concept as a solution to high RES integration: How can hybridization of
storage technologies contribute to the reliable integration of renewable energy sources,
particularly in mitigating intermittency and reducing stress on batteries?
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2. Control and power management of HESS: What are the main technical challenges of op-
erating a HESS, and how can control strategies be designed and validated to ensure efficient
power sharing, state-of-charge (SoC) management, and improved system performance?

3. Techno-economic assessment and lifetime evaluation of HESS: Can the benefits of
HESS be quantitatively demonstrated by extending battery lifetime, reducing degradation,
and lowering the overall Levelized Cost of Storage (LCOS) compared to standalone BESS?

1.3 Scope of Work and Thesis Structure

To address these questions, this thesis combines theoretical modeling, control development, ex-
perimental validation, and techno-economic assessment. The scope covers both the fundamental
principles of HESS and their application in realistic operating conditions. The main contributions
are organized into the following chapters, illustrated in Figure 1.1.

* Chapter 2 provides an overview of energy storage technologies, their characteristics, and
limitations, with a focus on the motivation for hybridization. The chapter positions HESS
in the context of RES integration.

e Chapter 3 introduces the Power Hardware-in-the-Loop (PHIL) methodology used in this
thesis. It describes the experimental setup, including the integration of commercial FESS
and SCES, and explains how PHIL enables realistic emulation of grid conditions for HESS
validation.

e Chapter 4 reviews existing approaches to control and power management of HESS found in
the literature. It discusses the main strategies developed so far, highlights their advantages
and limitations, and identifies the key control parameters, such as SoC and ramp rate (RR),
that must be addressed for effective hybrid operation. This chapter provides the conceptual
foundation for the control methods developed later in the thesis.

e Chapter 5 develops and experimentally validates a control strategy for HESS, including
moving average and fuzzy logic approaches. This strategy is designed to optimize power
sharing, preserve SoC balance of FESS, and reduce RR imposed on the BESS.

e Chapter 6 presents a SoC estimation approach for supercapacitors using the Adaptive
Square-Root Unscented Kalman Filter (ASR-UKF). The method is tailored to the nonlinear
dynamics of supercapacitors and validated experimentally.

» Chapter 7 reports on accelerated aging experiments that quantify the impact of hybridiza-
tion on battery degradation. Results demonstrate slower capacity fade and extended lifetime
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for BESS when operated in hybrid configurations. This chapter also provides a techno-
economic analysis, comparing standalone BESS and HESS configurations. The LCOS is
evaluated over a 20-year horizon, showing the economic viability of HESS despite higher
initial costs.

* Chapter 8 concludes the thesis by summarizing the key findings, highlighting their impli-
cations for future power systems, and providing an outlook on future research directions.
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2 Energy Storage Technologies and
the Role of Hybrid Energy Storage
Systems

To address the challenges associated with the variability of renewable energy sources, Energy
Storage Systems (ESSs) have emerged as essential components of resilient, flexible, and sustain-
able power systems. This chapter provides a comprehensive overview of key ESS technologies,
outlining their operational principles, advantages, and limitations. Particular attention is given to
aspects such as energy density, cycle life, cost, and suitability for various grid applications.

Furthermore, the chapter introduces the concept of Hybrid Energy Storage Systems (HESS) as a
promising solution to overcome the individual shortcomings of standalone storage technologies.
It also explores different HESS topologies, real-world applications, and notable projects that
demonstrate their practical relevance.

2.1 Energy Storage System Technologies

A wide range of ESS technologies have been developed to meet the diverse demands of power
systems operation, especially under high integration of renewable generation. Each technology
offers unique characteristics in terms of performance metrics such as energy and power density,
response time, efficiency, and lifecycle, which determine their suitability for specific use cases.

The following subsections provide an overview of selected ESS technologies, including battery
energy storage systems (BESS), supercapacitor energy storage systems (SCES), flywheel energy
storage systems (FESS), Superconducting Magnetic Energy Storage (SMES), hydrogen energy
storage systems, and Pumped Hydro Energy Storage systems (PHES). For each, the operating
principles, grid applications, and market considerations are discussed.
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2.1.1 Battery Energy Storage Systems (BESS)

Among the various energy storage technologies, batteries, particularly Lithium-ion (Li-ion), have
become the dominant solution due to their high energy density, scalability, and technological
maturity. This subsection introduces the operating principles of batteries and highlights key
technologies relevant to stationary and grid-scale applications.

2.1.1.1 Operating Principles and Technologies

Batteries are electrochemical devices composed of a cathode (positive electrode) and an anode
(negative electrode), separated by a porous membrane that allows ionic transport while blocking
electron flow. The electrolyte wets all internal components, enabling the movement of ions
between electrodes during charge and discharge [1,2]. In Li-ion batteries, this process is called
the rocking-chair or shuttle mechanism: lithium ions intercalate and deintercalate between the
electrodes through the electrolyte while electrons flow through the external circuit. During
discharge, lithium ions migrate from the anode to the cathode, generating electrical energy, and
the process is reversed during charging. The essential design of Li-ion cells has remained largely
unchanged since their commercial introduction by Sony, though materials have evolved [3,4].

The energy stored or delivered by a BESS is calculated based on the product of voltage, current,
and time [5, 6]. It can be expressed as:

Eppss =V -1 -t @2.1)

Alternatively, if the charge () is known:

Eggss =V - Q (2.2)

Where: FEggss is Energy stored [J or Wh], V' is Terminal voltage [V], I is Current [A], ¢ is Time
[s or h], and @ is Electric charge [C or Ah].

The SoC indicates the remaining charge in the battery as a percentage of its total capacity. It
evolves over time depending on the charging or discharging current:

t
SoC(t) = SoC(tg) — Cless /t I(nT)dT (2.3)
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Where: SoC(t) is the state of charge at time ¢, Cggss is the battery capacity [Ah], I(7) is the
current as a function of time (positive for discharge), 7 is charging/discharging efficiency, and ¢,
is initial time.

Batteries are constructed based on different electrochemical principles and chemistries. The
most common types used in grid applications include Li-ion, Na-ion, NaS, NiCd, NiMH, and
lead-acid batteries. Li-ion batteries dominate many applications due to their high energy density
and favorable cycle life, but emerging chemistries such as sodium-ion and solid-state batteries are
gaining attention. While Li-ion, NiCd, Na-ion, and NiMH batteries are usually built from small
cells connected in series and parallel to achieve the desired voltage and current, other types, such
as lead-acid, NaS, and solid-state batteries, are often produced as larger monolithic units. For
modular cell-based batteries, cell balancing technologies are critical to ensure uniform charging
and discharging across cells. Passive balancing is widely used due to its simplicity and low cost;
however, it is inefficient and can accelerate degradation, particularly in aged batteries. Active
balancing improves efficiency but increases complexity and cost, and can still be susceptible to
safety issues, such as thermal runaway [7]. Fully power electronics-based Battery Management
Systems (BMS) with the ability to dynamically insert or bypass cells offer higher modularity and
safety. They can be applied across first-, second-, and third-life battery applications. Table 2.1
provides an overview of key BESS types based on their chemical composition, advantages, and

disadvantages.
Table 2.1: Comparison of Battery Energy Storage System (BESS) Types
Battery Type Chemistry Key Advantage Disadvantage
L1-1o[r§,g]LFP) Lithium Iron High safety, thermal stability, long Lower energy density compared to
Phosphate cycle life other Li-ion chemistries
LI-IOII[](()I]\IMC) Nickel Manganese ~ High energy density, good overall ~ Degrades faster at high
Cobalt performance temperatures; costly materials
Lead-acid . . . .
[11,12] Lead-Acid Low cost, mature and widely Short cycle life, low energy density,
available technology Heavy weight
[11\112’11S3] Sodium-Sulfur Fast response, long lifespan, high ~ High operating temperature
energy density (~300°C), safety concerns, high
cost
Flovrlf?st]t ery Vanadium Redox,  Scalable capacity, long cycle life, =~ Low energy density, complex
Zn-Br low degradation system design
NIC?] éllil]MH Nickel-Cadmium /  Robust performance in extreme High cost, high self-discharge rate,
Hydride temperatures, long life cycle environmental issues (cadmium
toxicity)
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2.1.1.2 Grid Applications

Battery energy storage systems are deployed across a wide range of scales. Residential BESS
typically range from 1 kWh to 20 kWh and focus on cost savings and self-consumption. Industrial
and commercial BESS generally range from 20 kWh to a few MWh and are often used for grid
support, demand management, and backup power. Utility-scale BESSs for power management
frequently exceed several MWh and can even reach GWh capacities. Across these applications,
BESS can deliver services such as voltage support, frequency regulation, spinning and non-
spinning reserves, black start capability, energy arbitrage, power peak-shaving and shifting, and
oscillation damping [18,19]. Li-ion BESSs are especially well-suited to sustained energy delivery
thanks to their high energy density and improving cost structures. Still, they also require effective
thermal management to avoid overheating and performance degradation [20].

2.1.1.3 Market Perspective

Li-ion batteries are expected to maintain their dominant position in stationary energy storage,
driven by continuous cost reductions, advances in material development, and growing deployment.
The total annual demand for Li-ion BESS across residential, commercial, and utility sectors is
projected to increase from 35.7 GWh in 2022 to approximately 283.8 GWh by 2028, with about
90% of this demand attributed to utility-scale systems. Correspondingly, the annual market value
is forecast to grow from around 8.2 billion USD in 2022 to 40 billion USD in 2028 [21, 22].
The battery cell itself represents about 70% of the total battery pack cost. Cathode materials
containing cobalt, such as NMC or NCA, are among the most expensive components, but efforts
are underway to reduce reliance on critical and toxic materials through chemistries such as Lithium
Iron Phosphate (LFP) and sodium-ion alternatives [23].

Overall, several trends can be identified in the development of BESS. These include the continued
reduction of cell material costs through improved chemistries and manufacturing processes, as
well as the diversification beyond Li-ion toward sodium-ion, NaS, flow batteries, and solid-state
batteries [23]. There is also increasing adoption of larger cell formats to enhance energy density
and simplify system integration. In parallel, second-life battery applications are expanding as
used EV batteries are repurposed for stationary storage. The transition to higher-voltage battery
packs, reaching up to 1500 V DC, is underway to enable improved efficiency and faster charging
speeds [24]. Furthermore, BMS architectures are evolving from centralized configurations toward
more modular and distributed approaches [25], and safety systems are being enhanced, including
the replacement of traditional fuses with solid-state circuit breakers [26,27].
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2.1.1.4 Limitations

Despite their growing role in modern power systems, BESS face several key limitations that
hinder their long-term effectiveness and economic viability. One of the most critical issues is
battery degradation, which occurs due to both cycling and calendar aging [28,29]. Every charge
and discharge cycle gradually reduces a batterys usable capacity and efficiency. This degradation
accelerates with higher depth of discharge, rapid power changes, and extreme temperatures,
leading to shorter system lifespans and higher replacement costs [30].

Another major constraint is the power density of BESS [31]. While they are excellent for energy
balancing, such as frequency regulation, they are less suitable for supplying sustained high-
power loads unless significantly oversized, an approach that is often costly [32]. Furthermore,
thermal management is essential, as batteries are susceptible to temperature fluctuations. Without
adequate cooling or heating systems, performance drops, and safety risks such as thermal runaway
increase [33,34].

Economic and environmental concerns also significantly limit BESS deployment. The upfront
investment remains relatively high, factoring in not just the battery cells but also power electronics,
safety systems, installation, and integration. Additionally, the environmental footprint of mining
and processing raw materials like lithium and cobalt, as well as limited recycling infrastructure,
raises sustainability concerns [35,36].

2.1.2 Supercapacitor Energy Storage Systems (SCES)

Supercapacitors represent a class of energy storage technologies that prioritize power density,
rapid response, and cycle life over energy capacity. Unlike batteries, which rely on chemical
energy conversion, supercapacitors operate based on electrostatic charge accumulation, enabling
ultra-fast charging and discharging [37]. This subsection provides an overview of their operating
principles, technology variants, and applications in power systems.

2.1.2.1 Operating Principles and Technology Variants

Supercapacitor energy storage systems, also known as ultracapacitors or Electrochemical Double-
Layer Capacitors (EDLC), store energy electrostatically by forming electric double layers at the
interface between porous electrodes and the electrolyte. Unlike batteries, which rely on chemical
reactions, supercapacitors accumulate charge through the separation of ions, allowing rapid
charging and discharging. Both electrodes are typically aluminum foils coated with activated
carbon-based compounds, offering a high surface area. A separator moistened with electrolyte
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provides electronic insulation while enabling ionic movement. The electric double layer consists
of the Helmholtz layer, a compact arrangement of ions directly adjacent to the electrode surface,
and a more diffuse layer beyond it. The Helmholtz layer plays a crucial role in determining the
capacitance and fast response characteristics of supercapacitors [38,39].

Compared to conventional electrolytic capacitors, supercapacitors achieve much higher energy
density, bridging the gap between traditional capacitors and batteries [40]. In a SCES, the
stored energy is a function of the capacitance and the square of the terminal voltage [41]. This
relationship is expressed below, where the energy Fscgs is given by (2.4):

1
Escgs = 50 v? 2.4

The charge stored in the supercapacitor is directly proportional to the voltage, as shown in (2.5):

Q=CV 2.5)

Furthermore, the voltage dynamics are governed by the current flow according to (2.6), which
relates the rate of change of voltage to the current:

dv
I=0— (2.6)

SCES technologies include pure supercapacitors and hybrid configurations. Hybrid supercapac-
itors are further divided into battery-supercapacitor designs, which combine electrostatic and
faradaic mechanisms to achieve energy densities over ten times higher than pure EDLCs and
pseudocapacitors, which rely on redox reactions to enhance capacitance beyond purely electro-
static storage [42]. Unlike EDLCs, which store energy through non-faradaic charge separation,
pseudocapacitors store energy via fast and reversible faradaic (redox) reactions occurring at or
near the surface of the electrode material. These reactions enable much higher specific capaci-
tance and energy density compared to EDLCs, while still allowing for rapid charge and discharge.
Common pseudocapacitor materials include metal oxides such as RuO, and MnQO,, as well as
conducting polymers like polyaniline [43-45]. While pseudocapacitors have primarily been ex-
plored in academic research, hybrid configurations, such as Li-ion capacitors, are commercially
available for applications that require higher energy density [46].

The optimal design of the SCES stack, particularly the selection of the discharge ratio, and suitable
power converter topologies to boost the output voltage can improve volumetric energy density by
up to 50% compared to conventional, non-optimized solutions [47]. To support safe operation and
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longevity, integrated balancing technologies are essential, ranging from simple passive balancing
to fully power-electronics-based active solutions [48].

2.1.2.2 Grid Applications

Supercapacitors are primarily valued for their high power density, rapid response, long cycle life,
and tolerance of wide temperature ranges. In grid applications, SCES are typically used to deliver
short-term energy support during transient events, such as voltage sags, faults, and peak power
demands. Due to their high-speed charging and discharging capabilities, supercapacitors are
commonly integrated with more energy-dense storage systems, such as Li-ion batteries [49, 50].

One widely adopted application is pitch control in wind turbines, where SCES ensure sufficient
energy for emergency blade adjustment to prevent mechanical damage during grid faults or
shutdowns [51]. Conversely, their deployment in photovoltaic systems remains limited due to
cost and lower energy storage capacity relative to batteries.

2.1.2.3 Market Perspective

The global market for supercapacitors approached one billion USD in 2021 and is projected to
reach between 3.5 and 6.5 billion USD by 2041, supported by substantial investments from large
manufacturers [52]. Grid-related applications are expected to account for nearly 15% of this
market.

2.1.2.4 Limitations

While SCES offers compelling advantages in power density and cycle life, adoption is still
constrained by challenges, including relatively low energy density and high self-discharge rates.
These limitations often necessitate larger systems equipped with dedicated power electronics to
ensure safe and efficient operation. Recent developments in balancing and power electronics
integration have improved performance, but reliability and cost remain key considerations for
broader deployment [53, 54].

2.1.3 Flywheel Energy Storage Systems (FESS)

FESS are mechanical storage devices that convert electrical energy into kinetic energy and vice
versa. Known for their high power density, fast response times, and long cycle life, flywheels are
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particularly suited for applications involving frequent charge/discharge cycles and short-duration
energy delivery [55,56]. This subsection outlines the underlying operating principles, key design
variants, and potential roles of FESS in power systems.

2.1.3.1 Operating Principles and Technology Variants

Flywheel energy storage systems store energy in the form of kinetic energy by rotating a cylindrical
mass. The stored energy is linearly proportional to the mass and quadratically proportional to the
rotational speed of the flywheel. During charging, electrical energy drives the rotor to accelerate,
and the energy is preserved as rotational motion. Discharging involves slowing the rotor and
converting kinetic energy back into electrical power through an electrical machine. The overall
energy capacity and power delivery characteristics can be adjusted by selecting the flywheels
mass, material, and rotational speed [57].

The common flywheel model is developed according to its governing laws [58]. A FESS can store
kinetic energy while rotating around its axis, and it is characterized by a fast response to energy
peak demands. Flywheel power P and shaft torque I" can be expressed by (2.7)-(2.8) [59]:

P =Tw + P 2.7

T = Ju 2.8)

where J denotes the rotational inertia, P, represents the total power losses due to factors such as
friction and aerodynamic drag, and w and w are the angular velocity and acceleration, respectively.

FESS designs vary widely depending on the construction, materials, and bearing technology
used. Flywheel disks are typically manufactured from steel for robust, low-speed applications
or composite materials for lighter, high-speed designs. For example, Siemens retrofits existing
synchronous machines with large steel flywheel masses to provide substantial inertia and grid
stability services. However, these systems require significant space and structural support [60].
Conversely, manufacturers such as Stornetic focus on lightweight, high-speed flywheels operating
above 45,000 rpm to achieve higher energy densities in more compact installations [61]. Different
machine and bearing types of FESS are explained in more detail below.

Classification and Main Components: Flywheel energy storage systems are broadly categorized
into two types: low-speed (below 10,000 rpm) and high-speed (10,000-100,000 rpm). Low-speed
systems are more cost-effective and suitable for short-duration applications, although they exhibit
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higher self-discharge [62]. High-speed flywheels, using magnetic bearings, composite rotors,
and vacuum enclosures, achieve greater speeds and lower losses but at higher costs [63, 64].
While low-speed designs are mature, high-speed variants have only recently reached the market
stage [65,66]. The main components of the flywheel are described below.

* Rotor: The energy stored in a FESS, denoted as Ergss, depends on the moment of inertia
of the rotor J and its rotational speed w,,, and is given by [63]:

1
Ergss = ilwmQ (2.9)

Increasing speed has a more significant effect than increasing mass, but the maximum
speed is limited by the rotors tensile strength. To maximize energy per unit mass, materials
must combine high tensile strength with low density [65,67]. These properties are found
in glass or carbon fiber composites commonly used in high-speed flywheels. In contrast,
low-speed systems use steel, increasing mass to store more energy [64,68]. The rotors
geometry, expressed via a shape factor, also affects energy density [67,69]. Hollow
cylinders are typically used for high-speed rotors, while solid ones are common for low-
speed designs [69]. The volumetric energy density e, and specific energy e,, of the
flywheel are calculated as:

ey = Ko (2.10)
K

em = =2 .11
p

where: K is a design-related constant, o is the tensile strength of the material, and p is the
material density.

¢ Electrical Machine: The rotor couples to an electrical machine for energy conversion.
Low-speed FESS often utilizes asynchronous machines due to their robustness, high torque,
and low cost. However, they cannot operate in a vacuum due to cooling limitations. High-
speed FESS typically uses Permanent Magnet Synchronous Machines (PMSM), offering
high efficiency, power density, and no rotor copper losses [70]. PMSMs are more expensive,
have lower tensile strength, and are sensitive to demagnetization at high temperatures [71].
Other machine types, such as switched reluctance, homopolar, and axial-flux machines [72—
74], have also been explored, though they are rarely used commercially.
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Table 2.2 compares different electrical machine types used in FESS and outlines the main
structural distinctions between low-speed and high-speed flywheel energy storage sys-
tems. Low-speed designs are a more cost-effective choice, suitable for applications where
short discharge durations and higher self-discharge are acceptable. In contrast, high-
speed systems incorporate magnetic bearings, composite rotors, and vacuum enclosures
to achieve much higher rotational speeds, greater energy capacity, and substantially lower
self-discharge rates.

Table 2.2: Comparison of different types of electrical machines used in FESS [62,75,76]

Machine Type / Permanent Magnet

Characteristic Asynchronous Reluctance Synchronous
Power High Medium & Low Medium & Low
Specific power Medium (0.7 kW/kg) Medium (0.7 kW/kg) High (1.2 kW/kg)
Rotor losses Copper & iron Iron (slots) None
Efficiency High (93.4%) High (93%) Very High (95.2%)
Cost Low Low High

* Power Converters: Power converters manage energy flow between the flywheel and
the grid, often through back-to-back voltage source converters (VSCs) with DC links [77].
These convert the machines variable-frequency output to grid-compatible AC. Conventional
two-level VSCs are widely used, but three-level (neutral-point clamped) converters have
been proposed to reduce harmonics and improve efficiency. Matrix converters, which omit
the DC link, can reduce volume but add control complexity and harmonic distortion [78,79].
Other configurations, such as Z-source converters, have demonstrated promising efficiency
improvements [80]. In high-speed FESS, low machine inductance requires LC filters to
limit current ripples and losses [81]. Silicon carbide MOSFETs are being increasingly
investigated for improved switching [82].

* Bearings: Bearings must support the rotor and minimize losses. Low-speed systems use
mechanical bearings, which are simple but suffer from friction, wear, and higher self-
discharge [62]. High-speed systems rely on magnetic bearings, which eliminate friction
but introduce eddy current, hysteresis, and stray flux losses [83]. Magnetic bearings can be
either active, utilizing controlled electromagnets for high stiffness and damping, or passive,
employing permanent magnets or HTS [62]. HTS bearings can achieve exceptionally low
intrinsic losses [84], though they require cryogenic cooling and have lower stiffness and
levitation force. Hybrid configurations combining HTS with active magnetic bearings have
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been successfully tested [85-87], although no commercial FESS currently utilizes HTS
bearings. Table 2.3 summarizes the advantages and drawbacks of bearing types.

Table 2.3: Comparison of different bearing technologies used in FESS [76]

Bearing Technology Advantages Disadvantages
Mechanical Mature, low cost, high levitation High friction losses, short lifetime,
force requires lubrication

Permanent Magnetic No power consumption, low losses Inherently unstable, risk of
demagnetization

Active Magnetic Controllable, high stiffness Complex, power consumption

HTS Magnetic Lowest losses, auto-stabilizing Requires cryogenics, low levitation
force

* Enclosure: The enclosure contains rotor fragments in case of failure and reduces aerody-
namic drag. Low-speed systems require heavy enclosures to contain large steel rotors [88].
High-speed composite rotors disintegrate into smaller pieces, allowing lighter containment.
For the same energy content, a high-speed FESS enclosure may weigh half as much as the
rotor, whereas low-speed enclosures can weigh twice as much. High-speed FESS enclosures
also provide a vacuum to minimize air friction [62].

2.1.3.2 Grid Applications

FESS occupies a unique position between battery and supercapacitor energy storage. Compared
to BESS, flywheels provide faster ramp rates and higher power output, typically ranging from
tens of kilowatts up to several megawatts, with virtually no degradation over tens of thousands
of cycles. Although they store less energy than batteries, they offer higher energy capacity than
supercapacitors. This combination makes them especially attractive for applications requiring
frequent charge/discharge cycles and rapid response, such as frequency regulation in microgrids,
voltage support, and power quality enhancement [89, 90].

FESS are commonly deployed to smooth output power fluctuations from variable renewable
energy sources such as wind turbines and photovoltaic systems [91-94]. They are also integrated
in hybrid energy storage systems together with high-energy-density batteries to combine fast
response with longer-duration energy delivery [95]. Beyond renewable integration, FESS are
used in uninterruptible power supplies, voltage sag compensation, and traction applications in
transportation systems [96,97].
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2.1.3.3 Market Perspective

Although recent advances in materials and engineering have enhanced performance and reduced
some costs, FESS still faces strong cost competition from Li-ion batteries. The upfront capital
expenditure for FESS remains significantly higher, sometimes up to ten times greater, than that
of Li-ion battery systems with comparable nominal energy capacity. This high initial cost
restricts their adoption, particularly in applications where energy capacity is prioritized over
power performance. However, due to their rapid response capability and minimal maintenance
requirements, FESS continues to attract interest in power-intensive applications requiring short-
duration storage [98,99].

2.1.3.4 Limitations

FESS faces several technical and structural limitations that constrain its broader adoption. The
presence of high-speed rotating components introduces mechanical complexity and necessitates
precision manufacturing, increasing both cost and maintenance requirements. Composite fly-
wheels, while offering higher energy density, are subject to unpredictable failure mechanisms and
catastrophic fracture risks under extreme tensile stress at high rotational speeds [100]. Further-
more, FESS is inherently more suitable for short-duration, high-power applications due to its low
energy-to-power ratio, making it less viable for long-duration energy storage. Installation can
also be complicated by the need for vibration isolation and robust containment structures, which
increase the required infrastructure and footprint [101].

2.1.4 Hydrogen-Based Energy Storage System

Hydrogen has emerged as a key energy carrier in the transition toward decarbonized power
systems, offering the potential for large-scale and long-duration energy storage [102]. This
subsection introduces the core principles of hydrogen production and utilization technologies,
followed by their role in grid applications and the trends in market development.

2.1.4.1 Operating Principles and Technology Variants

Hydrogen can be generated either by splitting water through electrolysis or by processing fossil
fuels, and it can be converted back into electricity using fuel cells [103]. Hydrogen storage sys-
tems involve producing, storing, and delivering hydrogen to end-users via pipelines, rather than
using conventional power lines or marine shipping [104, 105]. Once delivered, hydrogen can be
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reconverted into energy through fuel cells or combusted in gas turbines specifically adapted to
burn hydrogen. Hydrogen can be produced from a range of feedstocks using diverse manufactur-
ing and processing methods, including both fossil fuels and renewable energy sources [106, 107].
Currently, around 96% of global hydrogen production originates from fossil fuels [108]. Steam
Methane Reforming (SMR) is the most commonly applied technique, responsible for approxi-
mately 48% of worldwide hydrogen production [109]. Nevertheless, SMR generates substantial
amounts of carbon dioxide, contributing notably to climate change [110].

Among the available options, the most environmentally sustainable is the Power-to-Gas process,
which relies on water electrolysis powered by renewable energy such as geothermal, hydroelectric,
solar, or wave energy [109]. Hydrogen produced through renewable pathways can be stored and
transported as needed [111]. Owing to its low self-discharge characteristics and the flexibility to
independently scale energy and power capacities, electrolysis combined with hydrogen storage is
considered a promising solution for both short-term (lasting several days) and long-term electricity
storage applications [112].

Electrolyzers are distinguished by the type of electrolyte materials they use. The three main
electrolyzer technologies are Alkaline Electrolysis Cells (AEC), Proton Exchange Membrane
Electrolyzer Cells (PEMEC), which use a solid polymer electrolyte, and Solid Oxide Electrolysis
Cells (SOEC).

Fuel cells are classified into several types: Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel
Cells (PAFC), Molten Carbonate Fuel Cells (MCFC), Proton Exchange Membrane Fuel Cells
(PEMFC), and Solid Oxide Fuel Cells (SOFC). Notably, SOFCs operate in reverse as SOECs
during electrolysis. Compared to AEC and PEMEC, SOECs have advantages in efficiency,
producing hydrogen at higher yields up to twice as efficient as AEC and 1.5 times more efficient
than PEMEC systems [113]. The comparison of the fuel cells and electrolysers’ material and
technology is summarized in the Table 2.4.

2.1.4.2 Grid Applications

Hydrogen-based storage can deliver various ancillary services, including frequency regulation,
voltage support, black start capability, and congestion relief in power networks [114—116]. How-
ever, there remain open questions about how quickly hydrogen systems can respond dynamically
to provide fast services such as primary frequency control. More comprehensive modeling and
experimental studies are needed to better understand their impact on power system operations.
Hydrogen can also help stabilize grids with high renewable shares by supporting voltage and
frequency control and damping power oscillations [117]. Leveraging hydrogens dual role as a
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Table 2.4: Overview of Hydrogen Technologies, Production Pathways, and Fuel Cell/Electrolyzer Types

Category Technology Key Points
Electrolyzers Alkaline Electrolysis Cells (AEC) Conventional, matu're technology;
uses aqueous alkaline electrolyte
Electrolyzers Proton Exchange Membrane Electrolyzer Solid polymer electrolyte; faster
y Cells (PEMEC) response, compact design
Electrolyzers Solid Oxide Electrolysis Cells (SOEC) Operates at high temperatures;
higher efficiency
. Common low-temperature fuel cell
Fuel Cells Alkaline Fuel Cells (AFC) type
Fuel Cells Phosphoric Acid Fuel Cells (PAEC) Medium-temperature fuel cells,
suitable for stationary applications
Fuel Cells Molten Carbonate Fuel Cells (MCFC) ngh._ temperature, typically
stationary large-scale use
Proton Exchange Membrane Fuel Cells Low-temperature, fast start-up,
Fuel Cells . L
(PEMFC) common in transport applications

High-temperature, can operate in
Fuel Cells Solid Oxide Fuel Cells (SOFC) reverse as SOEC during
electrolysis; high efficiency

flexible load and energy source can reduce inefficiencies from transporting and converting energy
carriers.

2.1.4.3 Market Perspective

Currently, alkaline electrolyzers account for approximately 75% of global production capacity,
while PEMEC systems make up roughly 25%. SOEC have a very small market share [115]. By
2050, green hydrogen is projected to supply 60%-80% of total production, equivalent to around
4500 GW of capacity, primarily targeting sectors such as steelmaking, transport, and electricity
generation and storage. The expansion of renewable energy is expected to be closely linked with
the scaling of green hydrogen production [118].

2.1.4.4 Limitations
Hydrogen-based energy storage systems face several challenges that limit their current widespread

adoption. The overall round-trip efficiency is relatively low due to energy losses during electrol-
ysis, compression or liquefaction, storage, and reconversion back to electricity, often reaching
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30-50% losses [119]. Additionally, high capital and operational costs, especially for green hy-
drogen production via electrolyzers, fuel cells, and storage infrastructure, pose economic barriers
that require further technological advances and policy support [120].

Furthermore, hydrogens low volumetric energy density necessitates complex and costly storage
and transportation solutions, such as high-pressure tanks or cryogenic liquefaction, which also
raise safety concerns due to hydrogens flammability and leakage risk. The relatively slow dynamic
response of hydrogen systems compared to batteries limits their effectiveness in providing fast
grid services like frequency regulations. Moreover, the hydrogen supply chain infrastructure
is still underdeveloped, restricting large-scale deployment and integration into existing energy
systems [121].

2.1.5 Superconducting Magnetic Energy Storage (SMES)

SMES systems are unique among energy storage technologies in that they store energy in the
magnetic field generated by a direct current flowing through a superconducting coil. This method
allows for extremely high efficiency, instantaneous power delivery, and minimal energy loss during
storage [122]. The following subsection outlines the fundamental operating principles of SMES
and the technological variants based on superconducting materials.

2.1.5.1 Operating Principles and Technology Variants

Superconducting Magnetic Energy Storage systems operate by storing energy in a magnetic field
created when a direct current flows through a superconducting coil cooled below its critical tem-
perature, allowing nearly lossless conduction. Niobium-titanium is a widely used superconducting
material with a critical temperature of 9.2 K [123, 124].

SMES systems employ two main categories of superconductors [125,126]: (i) Low-Temperature
Superconductors (LTS), which require cooling to low temperatures around 30 Kelvin; and (ii)
High-Temperature Superconductors (HTS), which can operate at higher temperatures near 77
Kelvin.

2.1.5.2 Grid Applications

Although early concepts envisioned SMES units providing bulk energy storage, charging during
off-peak hours, and discharging during peaks to support large power plants, practical deployment
has been constrained by high costs and material limitations. As a result, SMES has primarily
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been applied to improve power quality, such as stabilizing voltage and mitigating short-term
disturbances. Recent research continues to explore SMES as a short-duration storage solution
due to its very high efficiency (up to 95%) in large-scale systems [127—-129].

2.1.5.3 Market Perspective

While numerous successful SMES pilot projects and demonstrations have been conducted by
international organizations and government programs [130-133], the technologys adoption has
been limited primarily by the high cost. However, advances in high-temperature superconductors
(operating above 77 K) and second-generation superconducting wire hold promise for achieving
higher magnetic flux densities, up to 20 Tesla, while reducing costs.

Expanding the supply chain for superconducting coils and related components is also expected to
help lower manufacturing expenses [134,135]. At present, SMES system costs vary considerably
depending on design and materials, ranging from 700 $ to 10000 $ per kilowatt-hour of energy
capacity, and between $130 and $515 per kilowatt of power capacity [136, 137].

2.1.5.4 Limitations

Despite their excellent efficiency and fast response times, SMES systems face significant chal-
lenges that limit their widespread deployment. The requirement to maintain superconducting
coils at cryogenic temperatures necessitates complex and costly cooling infrastructure, which
increases both capital and operational expenses [122]. Moreover, the energy density of SMES
is relatively low compared to chemical batteries or other storage technologies, which restricts
their use to short-duration energy storage and power quality applications rather than bulk energy
storage [128].

In addition, the high upfront cost of superconducting materials, particularly high-temperature
superconductors, and the technical difficulty of manufacturing large-scale superconducting coils
remain major barriers [134, 136]. Safety concerns related to the strong magnetic fields and the
risk of quenching (loss of superconductivity) require robust engineering controls and monitoring
systems. These factors combined mean that SMES is currently best suited for specialized grid
services rather than general energy storage, with ongoing research focused on reducing costs and
improving scalability.
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2.1.6 Pumped Hydro Energy Storage (PHES)

PHES is the most mature and widely deployed form of large-scale energy storage. It provides
both energy shifting and grid stability services by leveraging gravitational potential energy in a
closed or open hydraulic cycle. PHES has been central to balancing power systems with variable
renewable energy and remains a benchmark technology for long-duration storage [138, 139]. The
following subsection introduces its operating principles, system configurations, and emerging
innovations.

2.1.6.1 Operating Principles and Technology Variants

Pumped hydro energy storage works by converting electricity into gravitational potential energy.
During periods of low electricity demand and lower prices, water is pumped from a lower
reservoir up to a higher one. When demand increases, the stored water is released back down
through turbines to generate power.

There are several configurations and variants of PHES systems. Open-loop systems are connected
to a natural body of water, such as a lake, river, or ocean, which serves as one of the reservoirs. In
contrast, closed-loop systems, also referred to as off-river systems, employ two artificial reservoirs
that are isolated from natural water bodies. This approach reduces environmental impact and
provides greater flexibility in site selection. While conventional PHES plants utilize fixed-speed
pump-turbines, modern installations are increasingly adopting variable-speed technology, which
enables enhanced operational flexibility, improved grid support through frequency and voltage
regulation, and smoother transitions between pumping and generating modes [140]. Additionally,
underground PHES concepts are emerging, utilizing underground caverns or decommissioned
mines as lower reservoirs. These designs create opportunities for deployment in regions that lack
suitable surface topography [141, 142].

2.1.6.2 Grid Applications

PHES is widely recognized as one of the most effective technologies for supporting the integration
of renewable energy, as it can perform peak shaving and provide dispatchable generation. With an
efficiency typically ranging between 70% and 80%, PHES systems can vary in size from several
hundred kilowatts to multi-gigawatt capacities [138, 143].

Advantages of pumped hydro include long operational lifespans, rapid response times, large
storage capacities, low running costs, and high round-trip efficiency [144—146]. However, their
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main limitation is the need for a substantial land area to build reservoirs, ideally near a reliable
water source.

2.1.6.3 Market Perspective

PHSE remain the most economically viable option for large-scale energy storage. Nonetheless,
they require significant capital investments and depend heavily on appropriate topographic and
geological conditions. Simply having enough water nearby does not guarantee that a site will be
suitable for development [147, 148].

2.1.6.4 Limitations

Despite its maturity and proven effectiveness, pumped hydro energy storage faces several inherent
constraints. The most significant limitation is the dependence on favorable geographic and
hydrological conditions, such as suitable elevation differences and abundant water resources,
which restrict site availability and limit scalability in many regions [147]. Additionally, the
construction of large reservoirs can have substantial environmental and social impacts, including
habitat disruption, land use conflicts, and potential displacement of communities.

Furthermore, PHES projects typically require very high upfront capital expenditures and long de-
velopment times, which can be exacerbated by complex permitting and regulatory processes [148].
While operational costs are low and lifespans are long, the inflexibility of reservoir sizing and
limited siting options make PHES less adaptable compared to emerging storage technologies. In-
novations such as underground or closed-loop systems aim to alleviate some of these limitations,
but these remain less commercially mature.

2.2 Comparison between energy storage
technologies

Figure 2.1 illustrates the technical maturity of various ESSs and their suitability for distributed
versus bulk energy services. The vertical axis represents the level of technical maturity, ranging
from developing technologies at the bottom to mature technologies at the top. The horizontal axis
indicates the suitability of each storage technology for distributed services on the left and bulk
services on the right.
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2.2 Comparison between energy storage technologies

Pumped hydro storage is depicted as a mature mechanical storage technology that is primarily
suited for bulk services, reflecting its century-long history of widespread deployment for grid-
scale energy management. BESS is classified as a developed, mature electrochemical technology
that covers a wide range of applications, from distributed services to bulk storage, indicating
its flexibility and growing role across various scales. FESS is also categorized as a developed
mechanical storage system, with a primary focus on distributed services that require fast cycling
and high power delivery [149, 150].

SCES and SMES are electrical storage technologies positioned within the developed category.
Both are more suitable for distributed services, emphasizing their rapid response characteristics
and relatively limited energy storage capacity. Finally, Power-to-Hydrogen is classified as a
developing mechanical storage approach, with its primary suitability oriented toward bulk services
due to its large-scale seasonal storage potential. However, it is not yet commercially mature [151—
153].

To gain a clearer understanding of the potential of power-intensive energy storage systems, it is
essential to distinguish them from energy-intensive counterparts. Figure 2.2 illustrates the ranges
of specific power (per unit mass), specific energy (per unit energy), and discharge time for various
energy storage technologies. Figure 2.3, on the other hand, shows various ESS technologies, their
grid applications, and their associated power ratings.

Figure 2.3 also illustrates the relationship between the time horizons of power system phenom-
ena and the typical discharge times of each storage technology in more detail, and Table 2.5
summarizes the ESS characteristics.
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Figure 2.1: Technical maturity of energy storage systems and their suitability
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2.3 Hybrid Energy Storage Systems (HESS)

No single energy storage system is without limitations; each technology comes with inherent
trade-offs in terms of power density, energy capacity, response time, cost, and lifecycle. To
overcome these shortcomings and capitalize on the strengths of different technologies, HESS
has been developed. HESS combines two or more types of storage devices with complementary
characteristics to enhance overall system performance. Typically, they integrate high power-
density technologies, such as FESS and SCES, with high energy-density solutions like Li-ion
batteries [166,167]. This configuration allows high-power devices to quickly respond to transient
events and peak loads, while high-energy devices provide sustained energy output for longer
durations [168].

The main advantage of HESS lies in its dual capability to offer quick power support and sustained
energy output. For instance, supercapacitors can effectively manage rapid, high-power events
lasting a few seconds to minutes, such as frequency control in power grids or acceleration in
electric vehicles [169, 170]. Meanwhile, batteries or similar long-duration storage technologies
ensure a stable energy supply during extended load variations [168]. This complementary
interaction enhances overall system performance, minimizes stress on individual components,
and extends the operational life of the entire storage system [171].

The operational lifetime of a BESS is a critical factor in determining its economic and technical
viability, especially in applications requiring frequent charge and discharge cycles [172, 173].
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Figure 2.2: Diagram of comparison between specific energy, specific power, and discharge time.
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Figure 2.3: Time horizon for power system phenomena and typical discharge times for energy storage systems and the
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Battery degradation over time is influenced by multiple stress factors, including high current rates,
deep cycling, high temperatures, and frequent power fluctuations. These factors lead to capacity
fade and increased internal resistance, ultimately shortening the batterys usable life [174,175]. As
such, battery lifetime is increasingly being treated as a performance characteristic for evaluating

energy storage strategies.

HESSs, which integrate batteries with fast-response storage technologies such as SCES or FESS,
offer a promising approach to mitigating the stress factors that degrade batteries. By assigning
rapid power fluctuations and high current transients to the high-power-density auxiliary storage,
the battery is effectively shielded from dynamic load conditions. This approach reduces the
depth of discharge (DoD), limits peak current loads, and lowers the overall cycling frequency
experienced by the battery [176, 177].

In practical applications, various HESS configurations have proven beneficial. For example, com-
bining batteries with supercapacitors in wind power systems has been shown to boost efficiency
and lower costs by prolonging battery life [178]. Research has further shown that integrating
both short and long-duration storage technologies improves the integration of renewable energy
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Table 2.5: Characteristics of some Energy Storage Systems [154]

BESS [155,156]
FESS SCEs [Ddrosen  qgyips  pHES
Technology Lead- [157,158] [159] (fuel cell) 13471631 [164,165]
X VRB  Li-ion  Na$S [160-162]
acid
Specific Energy (30-45)
(Wh/Kg) 25-50 10-30 75200 150-240 5-150  0.2-10 10 0.55 0.51.5
Specific Power 500- 180- 7000- 500- 0.01-
(W/Kg) 75-300 80150 5500 130-230 g0 18000 200 2000 0.12
Round-trip

. 75-85 75-90 85-97 75-90 85-95 80-95 33-42 95-98 70-87
efficiency (%)

Lifetime Cycles
(100% depth of
discharge)

200- < 1000-  2500- . . s 20000-
1000 13000 10000 4000 <100 <10 200000 < 10" “h000

Lifetime Cycles 5 ;¢ 5-10 5-15 515 1520 10-30 15-20 20-40  40-80

(year)
Self-discharge Low Very Medium Medium High High Very Low  Medium Very
Low Low
Discharge time s-h s-10h m-h s-h ms-15m <1 min s-24h <l min h-24h+
(ms-h)
Average Capital =5 0 5515 512 2054 867 229 3243 32 1413
Cost (USD/KW)?
Average Capital
Cost (USD/KWh) 437 54 546 343 4791 765 540 5350 58

2 The capital costs are calculated based on each technologys typical discharge time. Average values are medians of
published ranges adapted from [160].

sources into the grid [179]. In off-grid wind systems, SCES have demonstrated the ability to
enhance battery longevity, a trend supported by predictive models of battery lifespan in similar
studies [180,181]. Building on this, we demonstrate the improvement in battery life through HESS
by means of state-of-health (SoH) analysis, accompanied by a detailed economic assessment of
these benefits presented in Chapter 7.

Figure 2.4 presents the core idea behind the HESS approach for power smoothing and battery
life extension. The main principle involves decomposing the original power demand into low-
frequency and high-frequency components. The low-frequency portion, representing slower
dynamics, is allocated to the battery. At the same time, the high-frequency residual, responsible
for rapid power changes, is managed by a secondary storage device such as a supercapacitor or
flywheel. This power split reduces the cycling stress on the battery, mitigating degradation. As a
result, the battery operates under more favorable conditions, leading to improved SoH over time,
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as illustrated in the figure. The comparison demonstrates that integrating HESS significantly
enhances battery longevity compared to operating without it.
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Figure 2.4: HESS concept (a) Main power waveform (b) Smoothed waveform (c) High frequency waveform as residual
(d) Battery SoH over time, the cases of with and without HESS

2.3.1 Hybrid Energy Storage System Connections

Designing a HESS involves careful consideration of the energy flow during charging and discharg-
ing, as well as the efficient distribution between the different storage components. The goal is
to ensure seamless operation and optimize system performance. Since HESS typically integrates
two storage technologies with distinct voltage, current, and power characteristics, power electronic
converters play a crucial role.

These converters enable the integration of components with different electrical behaviors, whether
they act as voltage or current sources, and facilitate precise control of energy exchange. Several
connection topologies have been proposed in the literature [182, 183], differing by AC or DC
system configurations and the type of interconnection, such as series or multi-level arrangements.
Figure 2.5 illustrates four common HESS topologies, each designed to balance performance,
complexity, and application-specific requirements.
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Figure 2.5: HESS connections with Battery Energy Storage System (BESS) and Supercapacitor Energy Storage (SCES)
(a) Parallel AC connection, (b) Parallel DC connection, (c¢) Multi-Port Converter connection, (d) Modular
Multi-Level connection.

2.3.1.1 AC-Connected Hybrid Energy Storage Systems

The AC connection architecture is one of the most conventional and widely adopted methods
for integrating multiple energy storage systems. In this configuration, each energy storage unit,
such as batteries or supercapacitors, operates independently and connects separately to the AC
grid. Their coordination occurs purely at the control level through overarching power and energy
management strategies.

Although this approach typically involves multiple power conversion stages, most commonly a
DC/DC converter for internal power regulation and a DC/AC inverter for interfacing with the
grid, which offers substantial modularity. This architecture offers substantial modularity and
flexibility because each storage unit can be integrated independently using standardized inverters,
allowing for heterogeneous technologies, scalable deployment, and easy upgrades without major
system redesign [184]. One of its key advantages is that each storage component is a standard,
off-the-shelf product that can be integrated for tailored solutions. This makes the AC connection
architecture particularly attractive for scalable and flexible deployments.
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2.3.1.2 DC-Connected Hybrid Energy Storage Systems

Given that most energy storage technologies, such as batteries, supercapacitors, and fuel cells,
naturally operate on DC power, integrating them at the DC level presents a logical and efficient
system design. Connecting storage units directly to a common DC bus eliminates the need for one
stage of AC/DC conversion, thereby improving overall system efficiency up to 96% and lowering
both hardware complexity and cost [185-187].

DC connections in HESS can be configured in several ways [188—190]. These include:

* Passive connection: where storage devices are directly tied to the DC link without inter-
vening converters.

* Semi-active connection: where one energy storage unit is interfaced through a power
converter for control, while others remain directly connected.

e Active connection: in which all storage elements are interfaced via dedicated power
electronic converters, offering precise control over energy flow and system dynamics.

While active configurations provide superior control and flexibility, passive and semi-active setups
can reduce component count, simplify the architecture, and offer rapid access to stored energy,
which is particularly useful when capacitors are directly connected to the DC bus. Figure 2.6
illustrates the different DC-connected configurations of HESS with BESS and SCES.
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Figure 2.6: HESS DC-connections with Battery Energy Storage System (BESS) and Supercapacitor Energy Storage
(SCES) (a) Passive connection, (b) Semi-active connection, (c¢) Multi-Port Converter connection, (d) Active
connection.
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2.3.1.3 Multi-Port Converter Connection

An alternative to conventional AC or DC coupling of various energy storage systems, such
as batteries and supercapacitors, is the use of a single, integrated multi-port power converter.
These converters can be non-isolated, commonly applied in mobile or onboard systems where
compactness and weight are priorities [191], or isolated, which are better suited for stationary
applications where electrical isolation is required for safety and protection [192, 193]. This
approach offers a centralized and potentially more compact control structure for managing multiple
storage devices within a hybrid system.

2.3.1.4 Modular Multi-Level Connection

A promising recent development involves using Modular Multi-level Converters (MMCs) to in-
tegrate various energy storage technologies at the sub-module level. Initially applied in battery
energy storage systems [194], this architecture has also been extended to hybrid energy storage
configurations [195, 196]. This topology enables greater modularity in both power and energy
handling, while also enhancing the overall performance of the DC/AC conversion process. How-
ever, one notable limitation is the potential safety concern due to the absence of intermediate
power electronics stages. To mitigate risks such as short circuits at the energy storage unit level,
additional protective components, such as circuit breakers, are often necessary.

2.3.2 Services and Application of Hybrid Energy Storage
Systems:

This subchapter outlines the key services offered by HESS and highlights several recent industrial
projects that incorporate HESS technology.

2.3.2.1 Services provided by HESS

HESSs are uniquely suited to bridge the gap between power and energy demands across a
broad range of modern applications. By integrating complementary storage technologies, such
as batteries, supercapacitors, and flywheels, HESS can effectively manage short-term power
dynamics and long-term energy storage, thereby enhancing system performance, reliability, and
lifespan. The following sections elaborate on several high-impact sectors where HESS provides
a strategic advantage.
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* Renewable Energy Integration: One of the primary applications of HESS lies in sup-
porting the integration of variable renewable energy sources such as wind and solar power.
These resources are inherently intermittent, affected by meteorological conditions and di-
urnal cycles, leading to supply-demand imbalances and potential grid instability. HESS
mitigates these challenges by decoupling generation and consumption: energy-dense bat-
teries can store surplus energy during peak generation, while power-dense components
like SCES or FESS can deliver fast response to sudden load changes or frequency devia-
tions [197-200]. This dual-action capability enables grid operators to balance frequency,
mitigate voltage sags/swells, and ensure smoother renewable power dispatch.

¢ Electric Vehicles (EVs): In electric mobility, the deployment of HESS enhances both
driving performance and energy efficiency. Electric vehicles powered by battery-only
systems face limitations in delivering high power bursts required during acceleration or
regenerative braking due to thermal constraints and cycle life degradation. Integrating
SCES or FESS alongside batteries provides a dual-layer storage mechanism, supercapacitors
handle high current events while batteries ensure cruising-range energy provision. This
results in reduced stress on batteries, extended battery life, improved acceleration response,
and greater overall efficiency [201,202]. Such configurations are increasingly adopted in
hybrid electric vehicles (HEVs), plug-in hybrids (PHEVs), and fuel cell electric vehicles
(FCEVs), offering superior energy management under dynamic operating conditions.

 Electric Railways and Trains: Electrified railway systems demand robust, high-frequency
energy exchange for both traction and regenerative braking. Traditional energy storage
systems like batteries, though widespread, often fall short in terms of response speed and
cycle life. HESS enables the simultaneous accommodation of high regenerative braking
energy and steady traction demands. SCES or FESS can absorb energy peaks during braking
events and support traction acceleration, while batteries handle average load demands over
longer durations [168,203-205]. This combination improves energy utilization, reduces
peak power draw from substations, and leads to cost savings on rail infrastructure.

e Marine Transportation: The maritime sector is undergoing a paradigm shift toward de-
carbonization, with all-electric and hybrid-electric propulsion systems gaining traction as
alternatives to diesel-driven ships. These vessels require reliable and resilient onboard
energy storage solutions. However, conventional battery systems alone are vulnerable to
rapid current surges, which can accelerate degradation and compromise operational reliabil-
ity. HESS solutions, combining Li-ion batteries with SCES, offer a more resilient system.
Supercapacitors buffer high-power transients from propeller load changes or maneuvering
operations, while batteries provide the baseline energy [206,207]. This reduces the total
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cost of ownership, enhances safety, and aligns with environmental compliance targets by
reducing Nitrogen oxides (NOx) and Sulfur oxides (SOX) emissions.

2.3.2.2 Existing Projects with HESS

Real-world implementations of HESS are gaining momentum as the energy industry increasingly

prioritizes systems capable of managing both energy density and power delivery. The following

projects underscore the diverse applicability and technical sophistication of HESS across different

domains.
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* Duke Energy HESS, Rankin Substation, Gaston County: This pilot project demon-

strates the viability of HESS for renewable integration and load shifting at the substation
level. The system combines 100 kW/300 kWh Aqueous Hybrid Ion batteries from Aquion
Energy with ultracapacitors from Maxwell Technologies. The dual-storage configuration
improves response speed and energy throughput, reducing the reliance on peaker plants and
enhancing solar smoothing capabilities [208]. It stands as a benchmark for substation-level
hybrid deployments tailored for distributed solar PV environments.

Skeleton Technologies SuperBattery HESS: Skeleton Technologies has introduced a
hybrid energy solution that combines the high power density of ultracapacitors with the
energy density of conventional batteries. Known as the SuperBattery, this technology offers
rapid charge/discharge capability, operational durability in harsh climates, and excellent
cycle lifemaking it highly suitable for grid applications, electric buses, and industrial use
cases [209]. The innovation lies in the custom electrode design that enhances conductivity
and thermal stability, addressing critical limitations of standard Li-ion systems.

Beyonder & ABB Li-ion Capacitor HESS: In a strategic partnership, Beyonder and
ABB are commercializing Li-ion capacitors for large-scale grid integration. By leveraging
ABBs power electronics and Beyonders advanced capacitor technology, the project aims
to deploy modular, sustainable, and fast-responding HESS units. These are envisioned for
use in grid edge applications, including zero-emission airport logistics, electric port cranes,
heavy-duty EV charging, and fast frequency regulation [210]. The system is designed to
minimize total harmonic distortion and provide ancillary grid services such as synthetic
inertia and short-circuit support.

V-ACCESS (Vessel Advanced Clustered and Coordinated Energy Storage Systems):
Funded under the European Union framework, V-ACCESS exemplifies the state-of-the-art
in marine hybrid storage. The project integrates a coordinated cluster of 100 kW battery,
SCES, and SMES units aboard electric vessels to optimize energy flow in real-time based
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on operational profiles. The inclusion of superconducting storage offers ultra-fast response
for critical maritime maneuvers. The project not only targets emission reduction but also
improves onboard power system stability. It incorporates advanced power flow control
strategies, DC bus integration techniques, and rigorous safety and marinization standards
to ensure the robustness of hybrid systems in harsh marine conditions [211].

 Calistoga Resiliency Center Hydrogen+BESS: It is a long-duration energy storage and
generation facility that combines Li-ion battery storage with a hydrogen fuel cell power
plant. This hybrid setup delivers a total peak power of 8.5 MW and stores up to 293 MWh
of energy. Under typical load conditions, the system can supply uninterrupted power to
the city for up to 48 hours. The facility operates using green hydrogen produced through
electrolysis, meeting Californias Renewable Portfolio Standard. Once fully commissioned,
it is expected to become the largest green hydrogen-based long-duration energy storage
project in the U.S [212].

* Pyhisalmi mine Hybrid PHES-BESS in Finland: Developed by Sustainable Energy
Solutions Sweden Holding (SENS), is a fully established HESS that integrates a 7SMW
underground PHES storage facility with a 170 MW Li-ion BESS. Originally designed with
an 85 MW battery component, the systems storage capacity was doubled in early 2025
thanks to advances in battery technology. This HESS setup combines the long-duration
capabilities of PHES with the fast response and flexibility of battery storage, enabling
the system to participate effectively in both frequency regulation and energy arbitrage
markets [213].

The summary of the existing HESS project is also presented in Table 2.6.

Table 2.6: Overview of selected real-world HESS projects

Project Technology Mix Key Features

Duke Energy HESS (2016, USA) 100 ng]??aiz;’sh AHI + Substation-level ss(;lie}rtiir;loothmg and load

Skeleton SuperBattery (2023, EU) Li-ion + Ultracaps High power density, fast charging, long

cycle life
Beyonder & ABB (2024) Li-ion Capacitors Grid-edge support_, fast. response, synthetic
nertia
V-ACCESS (2023, EU) BESS + SCES + SMES Marine HESS with real-time coordination

and ultra-fast response
Calistoga Resiliency (2025, USA) 8.5 MW BESS + Hj Fuel Cell 293 MWh long-duration backup, green H,

75 MW PHES + 170 MW Long-duration and fast-response hybrid;

Pyhisalmi Mine HESS (2025, Finland) BESS market-ready
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24 Summary

This chapter provides an overview of energy storage technologies and the rationale for integrating
them into Hybrid Energy Storage Systems (HESS). First, it surveys the characteristics, strengths,
and limitations of energy storage technologies, such as BESS and FESS. It then provides a
comprehensive comparison of the Energy Storage Systems (ESS), including their characteristics,
applications, and costs. Next, the chapter introduces HESSs, which combine complementary
technologies to balance energy capacity and power capability by assigning high-power transients
to fast-response devices and sustained loads to high-energy devices. Several power electronics
integration topologies for HESS are detailed, which enable precise control and efficient energy
flow between diverse storage technologies.

The chapter further outlines key applications and services provided by HESS, emphasizing
their role in renewable energy integration, electric vehicles, electrified railways, and marine
transport. Several real-world projects demonstrate the deployment of HESS across various sectors,
showcasing technological maturity and practical benefits.
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Power Hardware-in-the-Loop (PHIL) testing has become a powerful methodology to bridge the
gap between simulation and field deployment. By combining real-time numerical simulation of
grid and system dynamics with physical power exchange, PHIL allows researchers and engineers
to assess hardware components and controllers under controlled, repeatable, and highly dynamic
scenarios.

At the Karlsruhe Institute of Technology (KIT), the EnergyLab facility offers a state-of-the-art
PHIL environment that can simulate complex low-voltage distribution grids, renewable energy
generation profiles, and demanding load conditions. The platform integrates a high-performance
real-time simulator, power amplifiers, and comprehensive monitoring and safety infrastructure.
This chapter describes the experimental environments used to evaluate the Flywheel Energy
Storage System (FESS) and Supercapacitor Energy Storage (SCES) as the main Devices Under
Test (DUT) within PHIL-based studies.

3.1 Power Hardware-in-the-Loop (PHIL) Concept
and Architecture

PHIL is a real-time simulation technique that enables the interaction between simulated models
and physical hardware components. Unlike purely software-based simulations or traditional
Hardware-in-the-Loop (HIL) setups, PHIL incorporates actual power exchange, allowing the
real-world testing of power equipment under controlled and repeatable scenarios [214,215].
This methodology is especially valuable for the development, validation, and testing of power
electronics, control strategies, and complex systems such as Hybrid Energy Storage Systems
(HESS).

PHIL setups as shown in Figure 3.1 consist of three main components: (1) a Real-Time Digital
Simulator (RTDS), (2) a Power Interface, and (3) the Device Under Test (DUT). At the core of
PHIL is the real-time simulator, which plays a pivotal role in replicating the dynamic behavior
of electrical systems. Real-time simulation is a critical methodology in modern power system

35



3 Experimental Setup

2(8(2|8| (8|8

0 =
i [ i /\,g:a
ElEEIEIRIE]E] O O

= D mm 0 (EE
@_ ( :I[j:)

Hardware under Test

Figure 3.1: Power Hardware In the Loop concept

analysis and testing. By definition, real-time simulations require that the computational model
representing the physical system be updated at every fixed, small time step, enabling the simulation
to reflect the real-world behavior of the system with high fidelity [216]. Unlike traditional (offline)
simulations, which may take minutes or hours to simulate a few seconds of system behavior, real-
time simulations must operate synchronously with actual time, meaning that one second of
simulation time must be computed within one second of wall-clock time.

At the heart of real-time simulation lies the hard real-time constraint: all mathematical calcula-
tions and I/O communications, often involving large sets of differential and algebraic equations,
especially in Electromagnetic Transient (EMT) models, must be completed within a predefined
simulation time step. In power system simulations, especially those dealing with transient events,
this time step can be as small as 10 to 50 microseconds, depending on the system dynamics and
the required resolution [217].

To satisfy the hard real-time constraint, fixed-step solvers are employed. Unlike variable-step
solvers used in offline simulations, which adjust the time step based on the complexity of system
dynamics at a given moment, fixed-step solvers maintain a constant step throughout. This ensures
deterministic timing but significantly increases the computational burden. Any violation of this
time constraint is referred to as an overrun. This condition occurs when the simulation takes
longer than the available time step to complete a cycle [218]. Overruns lead to incorrect or
unstable simulation results and must be strictly avoided [219].

To ensure real-time capability in PHIL setups, particularly those modeling detailed EMT phe-
nomena, the simulator must solve large sets of differential equations efficiently. This becomes
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especially challenging in low-voltage distribution networks with high levels of converter-interfaced
Distributed Energy Resources (DERs) [76]. These systems:

e Lack long transmission lines that could provide natural propagation delays for model
decoupling, as used in transmission system simulations [220],

* Often requires detailed models of inverters, power electronic interfaces, and control systems,
which significantly increase the computational load,

e Must maintain accuracy despite limited time for computation.

3.1.1 PHIL Test Case Development

Before conducting PHIL testing, it is essential to prepare the necessary models and define appro-
priate test cases. This process involves several key steps to ensure the hardware is thoroughly
understood, the simulation environment is suitably configured, and the test scenarios accurately
reflect real-world conditions. The main stages of test case development are summarized below:

¢ Initial Modeling and Simulation: Model and simulate the hardware under test to un-
derstand its behavior before conducting physical experiments. This step helps prevent
unexpected issues during testing and supports the design of safe and effective test cases.
The required modeling detail depends on the study objectives. Although offline simulations
are helpful, real-time simulations allow direct integration with the grid model used later
in actual tests. Developed models should be validated with measurements from the real
hardware whenever possible.

e Grid Modeling in Real-Time Simulation: Implementing the grid where the hardware will
be tested within a real-time simulation environment. Ensure the model detail and simulation
step size are appropriate to accurately represent the real power system. The simulation
sampling rate should be at least 10-20 times higher than the highest dynamic of transients
requiring accurate representation (model bandwidth) [221]. The model bandwidth also
determines the minimum amplifier bandwidth needed, helping select a suitable power
amplifier for the PHIL setup.

* Defining Test Scenarios: Develop and define scenarios for PHIL testing. Simulate these
scenarios using the hardware and grid models, preferably in a real-time simulation envi-
ronment. This provides an accurate prediction of hardware behavior for each scenario.
Incorporate PHIL-related delays and latencies into the simulation to improve accuracy.
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Once the real-time simulation models and test scenarios have been prepared and the stability
and accuracy of the PHIL setup have been thoroughly assessed, the hardware under test can be
connected using the selected interfacing algorithm.

Although theoretical stability analysis offers helpful insights into the expected stability margins,
it is important to recognize that unforeseen instabilities may still arise during experiments,
potentially damaging the hardware or the PHIL installation itself [222]. Inaccurate modeling or
parameter settings can compromise the reliability of the stability assessment. For example, as
demonstrated in [223], total loop delays within the PHIL system can fluctuate over time due to
the interactions among discrete system components. To address these risks, both hardware and
software safety mechanisms must be in place to immediately disconnect the system if excessive
voltages, currents, or instability are detected.

When executing the PHIL tests, the grid simulation should be started in real time first. It is
advisable to close the feedback loop only when there is no or minimal power exchange between
the hardware and the amplifiers. This precaution helps prevent potential damage caused by
incorrect configurations or instability. Once the loop has been safely closed and stable operation
is confirmed, the predefined test scenarios can be carried out. In the following sections, the two
main PHIL setups in KIT EnergyLab are discussed in detail, and the ESS is explained as the DUT
for each PHIL setup.

3.2 KIT 1-MW Power Hardware in the Loop Setup
with Egston Amplifier

An illustration of this PHIL configuration is provided in Figure 3.2. At the heart of the system
is an Opal-RT 5700 real-time digital simulator, which features eight Intel Xeon processor cores
alongside an Xilinx Virtex-7 FPGA mounted on a VC707 board. The simulator integrates multiple
analog and digital input/output boards. It is equipped with 16 high-speed fiber-optic Small Form-
factor Pluggable (SFP) ports capable of data rates up to 5 GBps. These interfaces enable direct
connections both to the power amplifiers and to several OP4520 Kintex7 FPGA and I/O expansion
modules through Opal-RTs Multi-System Expansion (MUSE) link.

Model compilation, deployment, and execution on the real-time target are managed using RT-
LAB software, which generates C code from simulation models. RT-LAB further supports
real-time monitoring of model execution, identification of overruns, mapping of I/O signals to
model variables, and adjustment of model parameters during runtime.
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Figure 3.2: Overview of the 1-MW PHIL setup at KITs EnergyLab.

Voltage reference signals generated by the simulated grid are transmitted digitally to five 200
kVA switched-mode power amplifiers via the Aurora communication protocol developed by
Xilinx. This high-speed digital link minimizes latency by removing the need for digital-to-analog
conversion stages and their anti-aliasing filters, while also mitigating issues related to signal noise
and grounding. The amplifiers employed are the COMPISO System Unit (CSU) GAMP6 units
from Egston Power, each rated at 200 kVA. Their technical specifications are summarized in
Table 3.1. Each amplifier cabinet contains six COMPISO Digital Amplifiers (CDAs), which
can be flexibly configured. For emulating a 4-wire three-phase network typical of European
low-voltage grids, the system is set up in a three-phase plus neutral mode, where each phase uses
a single CDA, and the neutral connection uses three CDAs to handle higher neutral currents.

The five CSU amplifiers, depicted in Figure 3.3, can be operated in series or parallel configurations
to achieve higher voltage or current capacities, supporting up to 1 MW of total output power. In
such configurations, set points are routed first through an Egston control unit before distribution
to each amplifier.

To complete the PHIL feedback loop, voltage and current signals from the hardware under test
are captured and routed to two OP4520 Kintex7 I/O expansion units equipped with 16-channel,
16-bit analog input cards with a 2.5 1 s conversion time. These measurements are relayed via
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Figure 3.3: Five 200 kVA GAMP6 Egston switched-mode power amplifiers (1 MVA in total).

high-speed fiber-optic connections back to the simulator. Current sensing is carried out using
Danisense current transducers capable of measuring up to 640 A, 2 kA, and 5 kA, depending on
the channel.

Additionally, the PHIL setup incorporates a comprehensive emergency shutdown system that can
trip amplifier output breakers and isolate the equipment when needed. Besides hardware-level
protections, software-based safeguards run on the real-time simulator to detect unstable conditions
or abnormal voltages and currents, initiate protective trips to the amplifiers and the hardware under
test, open the simulation loop, and reset set points to zero to prevent damage.

3.2.1 DUT Example Installation: FESS at KIT EnergyLab

The principles, market perspective, and grid applications of Flywheel Energy Storage Systems
(FESS) have already been discussed in Chapter 2 alongside other energy storage technologies. In
this subsection, the FESS is described in greater detail because this thesis involves experiments

Table 3.1: The characteristics of each Egston amplifier at KIT EnergyLab.

Parameter Value
Nominal apparent power 200 kVA
Nominal AC Voltage (phase to phase) 450 Vrrrs
Amplifier bandwidth 5kHz
Maximum AC current 252 Arms
Maximum DC voltage 725V
Maximum DC current (unipolar operation) 900 A
Controller time step 4 ps
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3.2 KIT 1-MW Power Hardware in the Loop Setup with Egston Amplifier

with a real high-speed flywheel system. The focus here is on the installed high-speed FESS in
KIT EnergyLab.

The FESS installed at the Energy Lab of KIT plays a crucial role in the university’s research
on grid-interactive storage technologies. This setup serves as a practical testbed for evaluating
control strategies and operational performance under realistic conditions.

The configuration of a FESS includes the integration of all its essential subsystems. Figure 3.4
depicts the component-level architecture of a high-speed FESS. This layout is based on a com-
mercial high-speed FESS rated at 120 kW/8 kWh. Figure 3.5 provides an internal view of the
container housing the 120 kW unit along with its auxiliary equipment, and Table 3.2 shows the
parameters of the FESS.

As shown in Figures 3.4 and 3.5, a high-speed FESS incorporates a PMSM mechanically coupled
to a high-inertia rotor. It also features two Voltage Source Converters (VSC): the Machine-Side
Converter (MSC) and the Grid-Side Converter (GSC), each with dedicated controllers and AC-
side filters. Because the PMSM in this system has exceptionally low inductance, an LC filter
is installed between the PMSM and the machine-side converter to mitigate current and torque
ripple [224].

In essence, a FESS operates on principles comparable to those of a variable-speed wind turbine
that uses a PMSM [225]. Nonetheless, the flywheel differs in several key aspects: it exhibits
significantly faster dynamic behavior, it does not rely on any mechanical input torque, and it
is designed to both store and release energy as needed. PMSMs are typically selected for high-
speed FESS applications, whereas asynchronous machines are more commonly used in low-speed
configurations. The lack of field windings makes PMSMs especially well-suited for operation in
the vacuum chambers of high-speed systems, where convection cooling of the rotor is not feasible.
Additionally, their simple and robust construction contributes to improved reliability. Compared

Flywheel Energy Storage System

Cireuit OESS)
AC Grid Breaker : DC Link PMSM
—~T—LcL|  [AC/FTDC LC
#@)_ Filter K8 DCT AC | Filter
Transformer T T :
: Rotating :
Converter| [Converter Mass

Controller| |Controller

Grid Machine
Side Side

Figure 3.4: Structure of a high-speed Flywheel Energy Storage System (FESS).
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Figure 3.5: The inside view of the container of the 120 kW high-speed FESS.

to other types of electrical machines, PMSMs offer high power-to-weight and torque-to-mass
ratios, along with a comparatively straightforward control design [70].

Table 3.2: Flywheel Energy Storage Parameters

Parameter Value
Nominal power 120 kW
Nominal energy 8 kWh

Max current 160 A

AC voltage 400 V

DC voltage 720V

Max cooling power 16 kW

Max speed 750 Hz
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3.3 KIT 15-kW Power Hardware in the Loop with
Spitzenberger Amplifier

Another PHIL setup at the Karlsruhe Institute of Technology has been employed, with a grid
emulator as a RTDS system and three APS 15000 linear amplifiers from Spitzenberger & Spies,
as shown in Figure 3.6 with a SCES as a DUT.

Figure 3.6: Experimental setup for the supercapacitor SoC estimation.

The employed 4-quadrant amplifiers enable full control of all electrical parameters such as voltage,
current, frequency, and phase angle. This capability offers two main advantages: experiments
can be reproduced under identical conditions, and, in conjunction with a real-time simulator,
arbitrary connection scenarios can be investigated. The main components can be categorized into
a rectifier, DC-link, linear amplifier, resistor bank, internal current and voltage measurement, and
digital control. These components are illustrated in Figure 3.7.

The amplifier operates based on a controlled linear voltage amplifier. The rectifier, the DC-link
with resistor bank, and the linear amplifier can be regarded as a single unit. This unit outputs
a controllable voltage, which is detected by the current and voltage measurement system. The
digital control system then regulates the output voltage to match the setpoint. The rate of change
required for voltage regulation is low in linear amplifiers (in this case, 50 V/u s). For example, a
voltage step from O to 230 Vs s results in a delay of less than 5 i s. The maximum voltage slew
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Figure 3.7: Overview of the internal structure of the power amplifier

rate also determines the maximum output AC voltage frequency. The manufacturer, Spitzenberger
& Spies, specifies a maximum sinusoidal frequency of 10 kHz [226].

With an electrical power rating of 5 kVA per phase, the three-phase power amplifier can support
any operating condition. The power fed into the amplifier is not returned to the grid but is
dissipated in internal resistor banks. The maximum absorbable power is also 5 kVA per phase.
The maximum continuous power (>1 hour) decreases with a declining power factor. With a
maximum output voltage of 270 V (RMS), the amplifier is also capable of conducting overvoltage
tests. The 4-quadrant power amplifiers used allow for both motoring and generating operation of
DUT.

The power amplifier is controlled via an analog voltage signal. Depending on the real-time
simulator used, the input level can range from +10 V to £16 V. Here, 10 V or 16 V corresponds
to the full-scale RMS output voltage of 270 V from the amplifier.

3.3.1 DUT Example Installation: SCES at KIT EnergyLab

Another DUT in the smart charging energy storage platform at the KIT EnergyLab is the EATON
XLR-48R6167-R supercapacitor module, also known as the XLR 166F, shown in Figure 3.8.
This commercially available module is designed for high power applications and is characterized
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by a nominal capacitance of 166 F and a maximum working voltage of 48.6 V. With an Equivalent
Series Resistance (ESR) of only 5 m(2, the device offers a peak power output of up to 118 kW,
enabling it to handle demanding pulse load profiles with a pulse current capability of up to 2200
A. The continuous current rating is 86 A, with a nominal leakage current of approximately 5.2
mA.

Figure 3.8: EATON XLR-48R6167-R supercapacitor in KIT EnergyLab

The module is constructed from 18 individual XL60 cells, each rated at 2.7 V, and includes active
cell balancing and integrated voltage management. This modular configuration results in a stored
energy capacity of approximately 54 Wh, calculated using the classical energy storage formula
E=1ove

2

Designed with robust mechanical housing and IP65 ingress protection, the supercapacitor module
is suitable for harsh environments and is compliant with Restriction of Hazardous Substances
(RoHS) and Underwriters Laboratories (UL) safety standards. It can operate within a temperature
range of —40°C to +65°C, with extended functionality up to +85°C under derated voltage
conditions. The module supports a rated lifetime of 1500 hours at maximum voltage and
temperature, and a cycle life exceeding 1 million cycles with minimal performance degradation.

In the SCES setup, the module is controlled and evaluated using a PHIL framework, allowing
real-time emulation of dynamic grid conditions. Table 3.3 summarizes the nominal specifications
of the EATON XLR 166F supercapacitor as provided by the manufacturer [227].
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Table 3.3: EATON XLR 166F Supercapacitor Specifications

Parameter Value
Capacitance (F) 166
Maximum working voltage (V) 48.6
Equivalent Series Resistance (mf2) 5
Nominal leakage current (mA) 5.2

Stored energy at maximum voltage (Wh) 54

Nominal continuous current (A) 86
Peak power (kW) 118
Pulse current (A) 2200

3.4 Summary

This chapter details the experimental environment used to evaluate Hybrid Energy Storage Systems
(HESS) and related control strategies through Power Hardware-in-the-Loop (PHIL) testing.

PHIL combines real-time simulation with actual power exchange to test hardware under realistic
and repeatable conditions. Unlike traditional Hardware-in-the-Loop (HIL), PHIL setups emulate
real grid conditions by exchanging power with the Device Under Test (DUT). The key components
of PHIL are: a real-time digital simulator that solves complex differential equations within strict
time constraints (often microseconds), a power interface (amplifiers) that reproduces voltage and
current waveforms, and the DUT itself.

At KITs EnergyLab, one of the PHIL platforms consists of an Opal-RT 5700 real-time simulator,
five Egston GAMP6 200 kVA switched-mode power amplifiers configured for a total output
of up to 1 MVA, high-speed fiber-optic connections for low-latency data exchange, and robust
safety systems for hardware protection. This setup allows high-fidelity emulation of low-voltage
grids, including detailed converter dynamics and transient behavior. As the main DUT, the
Flywheel Energy Storage System (FESS) deployed in the EnergyLab is a commercial high-speed
unit rated at 120 kW/8 kWh. It consists of a Permanent Magnet Synchronous Machine (PMSM)
mechanically coupled to a high-inertia rotor, a Machine-Side Converter, and a Grid-Side Converter
with dedicated controllers.

To explore hybrid configurations, there exists another PHIL environment with a supercapacitor-
based storage system. The supercapacitor DUT is supplied via a Spitzenberger & Spies APS 15000
4-quadrant amplifier, which provides precise voltage and current control across all operating
quadrants. Real-Time Digital Simulator (RTDS) is used in this setup as a grid emulator.
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3.4 Summary

Together, the FESS and supercapacitor setups provide a versatile platform to investigate the
integration of hybrid energy storage.
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4 Power Management and Control of
Hybrid Energy Storage Systems
(HESS)

HESSs combine complementary energy storage technologies, typically high-power and high-
energy devices, to address the diverse requirements of modern power systems. As described in
Chapter 2, no single ESS meets all performance criteria for grid applications; hence, HESS has
emerged as a promising solution for balancing power and energy demands. However, integrat-
ing multiple storage technologies increases the complexity of power management and control,
particularly under dynamic conditions. This chapter provides an overview of the control and
power management challenges associated with HESS and the techniques employed to address
these challenges.

4.1 Challenges in HESS Control

The control of HESS presents a complex array of challenges stemming from its intrinsic hetero-
geneity, dynamic behavior, and operational constraints. One of the primary difficulties lies in
coordinating multiple storage devices with fundamentally different characteristics. Batteries are
optimized for high energy capacity but are susceptible to degradation when exposed to frequent,
high-power transients [104,228]. In contrast, supercapacitors and flywheels can absorb and de-
liver large bursts of power but have limited energy storage. The control strategy must therefore
dynamically allocate power in a way that minimizes battery stress while ensuring that fast load
fluctuations are smoothed, an objective that often conflicts with maintaining optimal SoC levels
in all subsystems [159, 229].

Another major challenge is the accurate estimation and prediction of SoC and SoH. Conventional
battery SoC estimation algorithms, such as Kalman Filters or Coulomb Counting, may not be
directly applicable to supercapacitors due to their nonlinear voltage, charge relationships, and self-
discharge behavior [230,231]. Moreover, inaccuracies in SoC estimation can lead to suboptimal
or even unsafe power allocation decisions [232]. This challenge becomes particularly pronounced
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in real-time applications where control algorithms must respond within milliseconds to grid
disturbances.

The design of control strategies that balance performance objectives such as efficiency, lifetime
extension, and grid support services also introduces complexity. Among the most commonly
used control strategies, rule-based controllers are often simple to implement but may not yield
optimal results under varying load conditions. Conversely, optimization-based methods such as
Model Predictive Control (MPC) or dynamic programming can deliver superior performance but
are computationally intensive and require accurate system models. For instance, MPC must solve
constrained optimization problems in real time, often under uncertainty due to load forecasting
errors or parameter variability. This trade-off between computational burden and control quality
remains a key barrier to widespread deployment [233].

Furthermore, HESS control is complicated by the need to handle operational constraints and safety
limits. Each storage component has voltage, current, and thermal limits that must be respected.
For example, excessive charging currents can overheat batteries or supercapacitors, accelerating
degradation and posing safety hazards [234]. Implementing constraint handling robustly under
rapidly changing conditions requires sophisticated algorithms and reliable sensor data, both of
which increase system complexity and cost.

Interfacing HESS with power electronics introduces additional challenges. Bidirectional DC/DC
converters must be controlled to deliver or absorb power rapidly and efficiently, while also
maintaining DC bus voltage stability [235,236]. In grid-connected applications, the power
management strategy must synchronize with the inverter control to comply with grid codes, such
as providing frequency regulation or reactive power support, further increasing the burden on the
control system.

Finally, the uncertainty inherent in real-world environments, including unpredictable renewable
generation, fluctuating loads, and component aging, requires that control strategies be adaptive
and robust. While adaptive controllers or machine learning approaches offer potential solutions,
they introduce new challenges related to training data requirements, interpretability, and ensuring
stability [237].

The control of HESS demands solutions that can reconcile conflicting objectives, respect diverse
physical constraints, and operate reliably under uncertainty and real-time constraints. Addressing
these challenges is crucial to unlocking the full potential of HESS in applications ranging from
renewable energy integration and microgrids to electric vehicle charging and provision of ancillary
services. In following some of the important control strategies, addressing these challenges is
discussed in more detail. Some of the literature that utilizes these strategies and their objectives
is also presented.
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4.2 Control Strategies

Depending on the system configuration and application, various control strategies can be em-
ployed, ranging from simple rule-based methods to advanced optimization and intelligent ap-
proaches. Each strategy offers trade-offs between complexity, adaptability, and computational
requirements [238,239]. In this context, selecting or designing an appropriate control strategy is
crucial for achieving optimal operation of HESS under varying grid conditions, load demands,
and operational constraints [240]. Below are the control architectures or approaches used to
manage the energy and power flow in a HESS.

Figure 4.1 illustrates the main categories of control techniques commonly applied in HESS and
their corresponding subsections.

Rule-Based
4.2.1

Optimization-Based
422

Deterministic
4.2.1.1

FLC ’ MPC SPSA GA
42.1.2 422.1 4222 4223

Figure 4.1: Control Strategies with their most common techniques

4.2.1 Rule-Based Control

Rule-based control strategies represent some of the earliest and most widely implemented ap-
proaches for managing power flows in HESS. Their popularity stems from their conceptual
simplicity, intuitive design, and relatively low computational demands, making them attractive for
applications where real-time responsiveness is prioritized over strict optimality [241]. Despite
the increase of model-based and optimization-based methods, rule-based control remains highly
relevant, particularly in industrial contexts where transparency, ease of tuning, and deterministic
behavior are essential [242].

At their core, rule-based controllers use predefined heuristics or logical conditions to allocate
power among storage devices. These rules are typically based on knowledge of the storage
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technologies and the applications load profile. For example, in battery-supercapacitor systems, it
is common to assign low-frequency power demands to the battery and reserve the supercapacitor
for fast, high-power transients. This principle underpins many practical implementations of
rule-based HESS control. A common approach involves SoC threshold-based rules, which limit
charging and discharging based on each devices SoC to keep them within safe ranges and prolong
their lifespan [243]. These thresholds can be combined with power splitting to create hybrid rule
sets.

Priority-based allocation is also popular, designating one device (often the battery) as the primary
energy source, while the high-energy ESD provides peak support during acceleration or load
spikes. Adaptive rule-based schemes further enhance flexibility by adjusting filter parameters or
SoC thresholds in real time [159,229]. The two main groups of rule-based control are described
in the following.

4.2.1.1 Deterministic (if-then rules)

Deterministic control, often referred to as rule-based or if-then logic, is one of the simplest
and most intuitive control strategies used in HESS. It involves predefined rules and thresholds
to manage the power flow between different storage devices such as batteries, supercapacitors,
or flywheels [244,245]. In these schemes, control actions are triggered directly by measurable
variables, typically the power demand, the SoC of each storage component, and sometimes
temperature or current limits.

In practice, deterministic controllers often incorporate threshold logic to ensure each device
operates within safe and optimal ranges. For instance, if the SoC of the supercapacitor exceeds an
upper threshold, surplus regenerative energy will be directed to the battery or curtailed, while if
the SoC drops below a minimum threshold, the system will prevent further discharge to avoid deep
depletion. These if-then rules can be implemented in real time with minimal computational effort,
making them particularly attractive for embedded controllers in electric vehicles, microgrids, and
renewable energy integration [246].

4.2.1.2 Fuzzy Logic Control (FLC)

FLC is a control strategy for managing HESS, especially when the system dynamics are complex,
nonlinear, or uncertain with conflicting objectives. Unlike deterministic rules, fuzzy logic enables
gradual decisions rather than binary (yes/no) outputs, making it ideal for coordinating multiple
storage units, such as batteries, supercapacitors, and flywheels [247-249]. In FLC, expert
knowledge and heuristic strategies are encoded in the form of linguistic rules (e.g., If the battery
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SoC is low and load power is high, then increase supercapacitor contribution), which are evaluated
using membership functions that assign degrees of truth to input variables [250].

This approach enables the controller to generate smooth and adaptive control actions that reflect
the uncertain or imprecise nature of real-world operations. For example, instead of sharply
switching power flows between storage units, FLC can proportionally adjust their contribution
depending on how closely each input variable matches its fuzzy sets (such as low, medium, or
high SoC) [251]. Typical input variables include battery SoC, supercapacitor SoC, load power
demand, and sometimes the rate of change of power, while the output determines how the
power is split among the devices. The design process involves defining appropriate membership
functions, constructing a rule base, and selecting a defuzzification method to generate crisp
control commands [252,253]. A block diagram of a fuzzy logic control system is shown in
Figure 4.2 [254].

Fuzzy Interface System

Figure 4.2: The basic structure of a fuzzy logic-based controller

Fuzzy logic controllers are particularly valued for their ability to handle nonlinearity, parameter
uncertainties, and conflicting objectives (e.g., balancing battery aging with performance). They
have been applied successfully in applications such as electric buses, grid-connected HESS, and
microgrids [255].

While rule-based controllers offer many advantages in terms of simplicity, transparency, and low
computational requirements, they also have notable limitations that can restrict their effectiveness
in more demanding or dynamic scenarios. One of the most significant drawbacks is their lack
of explicit optimization. Because rules are predefined and static, they cannot guarantee optimal
performance in terms of minimizing energy losses, maximizing battery lifespan, or reducing
operating costs under varying operating conditions [256].

Additionally, deterministic rules and FLCs rely heavily on expert knowledge and extensive tuning
during the design phase. Developing an effective set of rules or membership functions often
requires iterative testing and empirical adjustment, which can be time-consuming and may not
generalize well to different system configurations or use cases. This manual tuning process also
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complicates maintenance and scalability, particularly in applications where the system must adapt
to aging components, environmental variability, or evolving operational constraints. Further-
more, because conventional rule-based controllers react only to real-time measurements, they are
inherently reactive rather than predictive, lacking the capability to plan actions based on forecasts
of future demand or renewable generation [168].

To overcome these limitations, research and industrial practice have increasingly turned to
optimization-based control strategies, which formulate power management as a mathematical
optimization problem subject to system constraints and objectives. Unlike rule-based approaches,
optimization-based methods can explicitly consider multiple competing goals, such as minimizing
battery degradation and improving efficiency [257]. In the following subsection, optimization-
based Control is discussed in more detail.

4.2.2 Optimization-Based Control

Optimization approaches can be either offline or online. Offline optimization refers to an opti-
mization approach where control strategies or decision rules are computed in advance (offline)
using historical data, simulations, or known system models. The resulting control policy is
then stored and used during real-time operation, without solving complex optimization problems
online [258,259]. It is widely used in HESS to balance power allocation, minimize battery
degradation, or optimize cost and efficiency, especially when computational resources are limited
during operation [260,261].

Online optimization in HESS refers to real-time decision-making strategies that dynamically
allocate power between multiple energy storage components based on continuously changing
system states and external conditions [262,263]. Some of the online optimization methods are
explained in the following.

4.2.2.1 Model Predictive Control (MPC)

MPC is among the most widely adopted online optimization techniques for HESS due to its
ability to handle multivariable systems with constraints. In MPC, an internal predictive model
of the system is used to forecast future states, such as SoC trajectories and power demands,
over a defined prediction horizon. At each control interval, the optimizer solves a constrained
optimization problem to determine the control inputs (e.g., power split between two ESDs) that
minimize a cost function, which often includes terms for battery aging, energy losses, or deviation
from desired SoC setpoints [264,265]. Only the first step of the computed control sequence is
implemented before the optimization is repeated at the next time step, enabling continuous
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feedback and adaptation. MPC offers a high degree of flexibility and can incorporate forecasts
of load or renewable generation; however, it requires substantial computational resources and
accurate system models to ensure real-time feasibility [266,267].

Figure 4.3 schematically depicts the MPC process. At each control instant, the MPC controller
first measures the current system state. It then employs numerical optimization to determine
the control input that optimizes performance over a prediction horizon of steps, according to a
specified objective function. The control action computed for the first step of this horizon is
applied to the system. Subsequently, the system evolves to a new state, and the process repeats
from this updated state [268].

Control inputs - Measurements

MPC Controller

] Prediction :
L <«

Objective
! constraints
«—

Figure 4.3: Illustration of model predictive control

4.2.2.2 Simultaneous Perturbation Stochastic Approximation (SPSA)

SPSA is a gradient-free optimization algorithm well-suited for systems with uncertain or noisy
measurements. Unlike classical gradient descent methods that require gradients of the objec-
tive function with respect to all variables, SPSA perturbs all decision variables simultaneously
using random perturbations and estimates the gradient from only two objective function measure-
ments [269,270]. This makes SPSA computationally efficient, particularly in high-dimensional
problems. In HESS, SPSA can adaptively tune power allocation policies or control gains to
minimize losses, balance state-of-charge levels, and improve dynamic response [271].

The increasing complexity of managing non-programmable power generation sources demands
real-time, efficient computation of power shares among renewable sources, hybrid energy storage
devices, and the grid. Consequently, power management strategies require suitable optimization
algorithms [270]. Various approaches, including linear, nonlinear, dynamic, stochastic algo-
rithms, and artificial intelligence techniques, have been proposed to minimize objectives such
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as emissions and costs [272]. However, artificial intelligence methods often face challenges re-
lated to convergence and dependence on initial estimates, limiting their applicability in real-time
optimization.

Within this context, multivariate stochastic optimization techniques offer effective solutions for
engineering system management and control [273]. In particular, gradient-based stochastic
algorithms like SPSA and Lyapunov methods demonstrate strong potential for real-time power
management, as they operate without requiring future knowledge, mathematical uncertainty
models, or forecast error considerations.

SPSA, introduced by Spall in 1992 and recently proposed by the authors [177,274], represents a
fast convergent alternative for the global optimization problem of an unknown system’s perfor-
mance (i.e., the loss function) [275]. Advantages such as easier performance function selection,
no necessity for loss function gradient, ease of implementation, lower computational burden,
robustness to noise in the loss measurements, and the ability to find a global minimum make
SPSA suitable for a wide range of applications [276-280].

SPSA is formulated by an initial estimation of the parameter vector 0), determining the optimal
solution by means of iterations, simultaneously perturbing all the parameters involved within
the current estimate. Algorithm parameters are updated during each iteration through equations
(4.1)-(4.2). Parameters a, c, o, 7y are selected to guarantee algorithm convergence [270, 281].

a
T Atk + 1) @1
C

During each iteration, two different estimates of the vector 6 are calculated by perturbing the
current estimation, as reported in (4.3). The perturbation vector elements (Ay) follow a Bernoulli
distribution.

0 =0+ cr. A, (4.3)
The solution provides a vector of parameters able to minimize the loss function gradient. The

estimate of g(é) at the kth iteration is calculated by (4.4), where A, € RP is the vector of p
mutually independent average zero random variables.
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Finally, (4.5) is used to update the current estimate, and the loss function is re-evaluated.
Ori1 = Or — argn(6r) 4.5)

The iterative process terminates once either the maximum number of iterations or the convergence
condition is reached.

4.2.2.3 Genetic Algorithm (GA) or Particle Swarm Optimization (PSO)

Metaheuristic optimization techniques, such as GA and PSO, have also been employed for HESS
control, particularly in contexts where the optimization problem is highly nonlinear or discontin-
uous [282]. Genetic Algorithms mimic natural selection by evolving a population of candidate
solutions through selection, crossover, and mutation operators. Over successive generations, the
population converges toward high-quality solutions according to a defined fitness function, which
can combine objectives such as efficiency, battery lifespan, and cost [283]. Similarly, PSO is
inspired by the collective behavior of swarms and involves a set of particles exploring the search
space by adjusting their trajectories based on individual and collective experience [284,285].

These methods are particularly well-suited to offline optimization, such as generating lookup
tables or optimal policy maps used during real-time operation. While metaheuristics are flexible
and robust against complex landscapes, they can be computationally demanding and may not
be practical for time-critical online control without simplification or hybridization with faster
algorithms [286].

Overall, these optimization-based control approaches enable HESSs to dynamically adapt to vari-
able loads, fluctuating renewable generation, and evolving system states in a way that rule-based
strategies cannot. By explicitly considering objectives, constraints, and predictions, they provide
a systematic framework for improving performance and prolonging the lifetime of energy storage
assets. However, their implementation requires careful attention to computational complexity,
model accuracy, and real-time feasibility to ensure that theoretical benefits translate into practical
gains in deployed systems.
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Steps of a GA are shown in Figure 4.4 and described below [287,288]:
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Figure 4.4: Flow chart of a typical GA

. Initialization: Generate a random initial population of individual solutions.

. Fitness Evaluation: Evaluate the fitness of each individual in the population using a

defined fitness function to measure how well it solves the problem.

. Selection: Select the fittest individuals based on their fitness values to serve as parents for

the next generation.

. Reproduction (Crossover and Mutation): Create a new generation by applying crossover

(recombining parent chromosomes) and mutation (introducing random variations) to gen-
erate offspring.

. Termination Check: Repeat steps 2-4 until a termination condition is met, such as reaching

a maximum number of generations or achieving a satisfactory fitness level.



4.3 Key Control Parameters

Table 4.1 summarizes selected studies on these control approaches, highlighting whether each

work employed real-time simulation or PHIL experiments to validate their controllers.

Table 4.1: State of the art on hybrid energy storage systems

SoC as
Reference Objective ESS Type Type of Control control RTS®  PHILP
parameter
. Lead acid
[247] Power fluctuations BESS-FESS Rule-based v X X
[289] Power fluctuations BESS-FESS Rule-based v v X
[23g) ~ Decreasepowerrating - ppqg e Rule-based X X X
of the converter
[290] Increase BESS Lifetime =~ BESS-SCES Rule-based v X X
Control power BESS-UC-Fuel
(291 distribution cell Rule-based v x x
[292] Power sharing BESS-SCES Rule-based v X X
[293] Power fluctuations BESS-SCES Rule-based v X X
[294] Supply uninterrupted 1ol ESDs Rule-based v v x
power
[239] Voltage regulation BESS-SCES Optimization X v X
[295] Power sharing BESS-UC Optimization v v X
[296] Electricity usage BESS-SCES ~ Optimization v x X
minimization
[286] Increase BESS Lifetime =~ BESS-SCES Optimization v v X

v'= investigated

X=not investigated

2Used real-time simulation
bUsed power hardware in the loop

Having introduced the various control strategies employed in HESS, it is now essential to explore

in detail the specific parameters these strategies are designed to monitor, regulate, and optimize.

Understanding the role of each parameter provides deeper insight into how control algorithms

ensure the efficient operation of the overall system.

4.3 Key Control Parameters

A major task of the control strategy is to achieve optimal energy management, which entails

determining the most efficient way to allocate and dispatch energy among the storage units.

This requires a thorough consideration of the systems power and energy demands, the storage

capacities and dynamic behaviors of each ESS, and the interconnection topology of the overall
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system. The goal is to utilize the complementary strengths of different technologies, such as
combining high energy density batteries with high power density supercapacitors or flywheels, to
effectively satisfy both short-term and long-term energy requirements [256,297].

In addition, the control system must handle the estimation of critical internal states and perfor-
mance indicators that are not directly measurable. These include the SoC, SoH, and remaining
useful life based on RR or other indicators of storage components [176,298]. Accurate estimation
of these indicators is vital for making informed operational decisions and for maintaining system
reliability over time [229,299, 300].

Ensuring safe operation is another crucial responsibility. This involves continuously monitoring
key parameters, such as current, voltage, temperature, and SoC, for each storage element to keep
them within predefined safety thresholds. Maintaining these variables within optimal ranges not
only protects the components from damage but also enhances their efficiency and extends their
operational lifespan [301].

The control strategy also plays a role in the regulation of system variables, ensuring that the
system can follow reference signals with precision. Many storage technologies are sensitive
to fluctuations in voltage or temperature, and the ability to regulate these variables contributes
significantly to the overall stability and performance of the system [302,303].

Another important aspect is grid integration and power quality management. The control al-
gorithms must manage the interaction between the HESS and the grid, ensuring smooth power
exchanges and supporting grid services, including frequency regulation, voltage control, and load
balancing. This contributes not only to the stability of the HESS itself but also to the reliability
of the broader power network [289,293,294].

Lastly, effective communication and coordination among the various storage technologies are
vital. The control system must ensure that all components work in synergy, leveraging their
complementary characteristics to enhance overall performance. This involves synchronizing
charge and discharge cycles, balancing load contributions, and dynamically adjusting control
parameters in response to changes in operating conditions.

Table 4.2 summarizes the key control parameters important for control of HESSs.

Figure 4.5 depicts an example of HESS architecture combining a battery and flywheel, both
interfaced with a power management system. The controller responds to frequency and voltage
contingencies (A f and AV'), generating active and reactive power references (P and Q) for each
ESS. Control signals are dispatched based on ramp rate constraints and SoC conditions, ensuring
optimal utilization of both storage technologies.
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Table 4.2: Key Control Parameters for HESS Management

Control Parameter

Description

Energy Management

State Estimation

Safety Monitoring

System Regulation

Grid Integration

Coordination and Communication

Optimal allocation and dispatch of energy among storage units, considering pow-
er/energy demands, system topology, and complementary strengths of different
ESS technologies.

Estimation of unmeasurable states like SoC, SoH, and remaining useful life using
RR and other indicators.

Continuous tracking of current, voltage, temperature, and SoC to ensure operation
within safety thresholds, protecting components, and enhancing lifespan.

Ensuring that system variables (e.g., voltage, temperature) follow reference signals
precisely for maintaining system stability and performance.

Managing power exchange and providing grid services such as frequency regula-
tion, voltage support, and load balancing.

Synchronizing charge/discharge cycles, balancing load between ESS units, and
adjusting parameters dynamically in response to operating conditions.

Besides the power management of the HESS, there are management systems for the BESS and

FESS. The Battery Management System (BMS) supervises the operation of the battery energy

storage unit by performing the following essential functions [304-306]:

Voltage Monitoring: Tracks cell and module voltages to ensure they remain within safe
operating limits (e.g., 2.5V - 4.2V per cell).

Temperature Monitoring: Uses thermal sensors to detect overheating and to maintain
cells within the optimal temperature range (e.g., 0°C - 45°C).

Current Control: Limits the charge and discharge current to prevent overcurrent damage,
based on battery specifications.

State Estimation: SoC, which can be estimated using Coulomb counting or model-based
observers such as Kalman filters, SoH, which can be evaluated from capacity degradation
or increased internal resistance, and Remaining Useful Life (RUL), which can be predicted
using usage history and degradation models.

Cell Balancing: Ensures voltage uniformity across cells using passive (resistive) or active
balancing strategies to maximize battery life and performance.

Protection Functions: Engages protective measures under fault conditions such as over-
voltage or undervoltage, overtemperature, overcurrent, and Short circuit.
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e Communication Interface: Provides real-time data (e.g., SoC, SoH, temperature) to the
central controller for energy management decisions.

In the HESS setup, the BMS communicates with the central power management system to regulate
power flow to and from the battery. For example, if SoC drops below 20%, the BMS signals
the controller to limit discharge or shift load to alternative storage units like the flywheel or
supercapacitor.

Moreover, the FESS management system is responsible for supervising and controlling the oper-
ation of a flywheel energy storage unit [307,308]. Key functions include:

* Rotor Speed Monitoring: Ensures flywheel operates within safe RPM ranges (e.g., 20,000-

60,000 RPM).
* SoC Estimation: Calculates stored energy as I = %J w?.

e Vacuum and Containment Monitoring: Maintains a low drag environment and detects
seal failures.

* Bearing Condition Monitoring: Detects vibration or misalignment in magnetic or me-
chanical bearings.

¢ Thermal Management: Prevents overheating of motor-generator and mechanical compo-
nents.

* Power Interface Control: Manages converter operation for fast charge/discharge events.

* Protection Logic: Initiates isolation in case of overspeed, mechanical failure, or fault
conditions.

The FESS management system also communicates with the overall HESS controller to participate
in grid support operations such as frequency regulation and transient power compensation.

Chapter 6 presents a method for estimating the SoC as a key parameter in energy storage systems
using a Kalman filter, specifically applied to a supercapacitor.

4.4 Summary

This chapter explains how Hybrid Energy Storage Systems (HESS) are controlled and managed
to balance power and energy needs. Combining different storage technologies, such as batteries
and flywheels, increases flexibility but also adds complexity to control and management. A major
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Figure 4.5: General HESS management system architecture

challenge is determining how to share power between the devices while maintaining them within
safe operating limits and preventing premature wear. For example, using flywheels excessively
can quickly drain them, while ignoring the state of charge risks overcharging or deep discharging
the batteries.

Different control approaches are available. Rule-based methods utilize predefined thresholds to
trigger actions, whereas fuzzy logic provides smoother, more adaptable decisions when system
behavior is uncertain. Optimization-based strategies can be planned in advance (offline) or
calculated in real time (online). Techniques like Model Predictive Control or Simultaneous
Perturbation Stochastic Approximation dynamically adjust power allocation as conditions change.

In addition, the chapter emphasizes that effective control is not only about deciding how to split
power but also about managing the key control parameters of the system. These include energy
management (optimally dispatching energy between devices), state estimation (SoC, SoH, and
RUL), safety monitoring (current, voltage, temperature), system regulation (keeping variables
such as voltage and temperature within reference limits), grid integration (providing services
like frequency regulation and voltage support), and coordination among storage technologies to
exploit their complementary strengths.

The chapter also highlights the role of device-level management systems. The Battery Man-
agement System (BMS) monitors voltages, temperature, and current, estimates battery health
indicators, performs cell balancing, and protects against unsafe conditions, while the FESS man-
agement system supervises rotor speed, stored energy, vacuum conditions, bearing health, thermal
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limits, and protection against overspeed or mechanical faults. Both subsystems communicate with
the central HESS controller, ensuring that the battery, flywheel, or supercapacitor responds in a
coordinated way to grid requirements and system contingencies.
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5 Control and Power Management of
Hybrid Energy Storage Systems
Using Moving Average and Fuzzy
Logic

Building on the previous discussion of general control challenges and established power man-
agement techniques, this chapter focuses on a rule-based control strategy tailored explicitly to
battery-flywheel configurations. In particular, it explores a novel combination of moving average
filtering and fuzzy logic controller to coordinate power allocation between two energy storage
systems effectively. These methods are designed to leverage the complementary characteristics
of the two storage technologies. The control strategies presented here explicitly consider key
operational parameters, including the ramp rate of the and the state of charge of the FESS. This
chapter details the modeling, implementation, and experimental evaluation of the proposed power
management technique.

5.1 Proposed Control Strategy

This section outlines the control methodology employed for managing the power distribution
in a HESS consisting of a battery and a flywheel. The overall control scheme is illustrated in
Figure 5.1, which is divided into three main components:

a) Power Signal Separation: The first stage involves separating the input power signal using
a moving average (MA) filter. This filter smooths short-term fluctuations, revealing long-
term trends in the power profile. As a result, the signal is decomposed into slow and
fast-changing components, which is critical for assigning the appropriate energy storage
device, battery or flywheel, based on their respective dynamic characteristics.

b) RR and SoC Monitoring: The second stage involves calculating the Ramp Rate (RR)
of the battery and the State of Charge (SoC) of the flywheel. The RR is a measure of
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¢)

how rapidly the battery can charge or discharge, and controlling it is essential to prevent
degradation and extend battery life. Meanwhile, the flywheels SoC is monitored to ensure
it operates within safe energy bounds. Given the flywheel’s suitability for fast response due
to its mechanical nature, it is tasked with managing rapid power fluctuations. The flywheels
SoC is estimated by integrating its power over time.

Adaptive Window Selection via Fuzzy Logic: In the third stage, a Fuzzy Logic Controller
(FLC) dynamically determines the window size of the moving average filter (n;). This
adaptive approach ensures that the decomposition of the input power profile into fast
and slow components is optimized according to the real-time condition, specifically the
flywheels SoC and the battery’s RR. The FLC facilitates the maintenance of the flywheels
SoC within desired limits while minimizing stress on the battery, thus promoting both
system responsiveness and component longevity.

Each component of the control strategy is detailed in the subsequent subsections, highlighting the

rationale and implementation behind the hybrid power management approach.

Moving Average Energy Storage System
» o Fuzzy Controller
1 P MA, Pt pess dP, RR s =
P E; ke T > n
- Prci;FESS ~ En - Et SOCFESS -
NI En >
Average Window

Figure 5.1: Control scheme for HESS including the moving average and fuzzy logic stages

5.2 Control Components

We have seen an overview of the control strategy. This subsection explains the components of

the control strategy and their responsibilities.

5.2.1 Moving Average (MA)

Moving average filter is a widely utilized signal processing technique that plays a pivotal role in

analyzing trends and smoothing time-series data. At its core, MA involves computing the average

of a sequence of consecutive values over time, achieved through a mathematical convolution
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operation [309]. This technique effectively reduces short-term fluctuations and highlights long-
term trends within the data, making it invaluable in various fields, including finance, control
systems, and electrical engineering.

Historically, the MA strategy has been employed extensively in financial analysis, particularly
for monitoring stock prices and forecasting market trends [310,311]. MA strategy utilizes both
short-term and long-term moving averages to detect trend reversals and generate trading signals.
A buy signal is typically produced when the short-term average crosses above the long-term
average, whereas a sell signal is indicated when the opposite occurs. This principle, comparing
fast and slow trends, finds a direct analogy in power systems. In power quality analysis, load
forecasting, and signal conditioning, MA serves as a low-pass filter, isolating slow dynamics
while filtering out high-frequency components. This makes it especially useful for applications
in energy management and storage control.

In the context of HESS, which combines energy-dense and power-dense storage technologies,
MA-based filtering offers a practical and computationally efficient method for decoupling fast
and slow power variations. This enables distinct energy storage elements, such as batteries and
flywheels, to be allocated roles that align with their physical characteristics. Specifically, the MA
filter is employed to extract the slow-changing component of the power demand, which is then
assigned to the BESS. In contrast, the residual signal, representing the high-frequency and rapid
power variations, is delegated to the FESS.

The most basic implementation of the moving average is the Simple Moving Average (SMA),
defined as:

SMA(t) = L > P (5.1)

o SMA(t) is the simple moving average at time ¢
* n, is the window size or period length (number of previous time steps considered),
e P,_, represents the power value at past time step ¢ — ¢

e P is the power demand or signal to be filtered.
By adjusting n; the filter can be tuned to define what constitutes a slow variation. A larger n,;
results in a smoother, slower-changing average, whereas a smaller window captures more rapid

changes. The difference between the original power signal P(¢) and the moving average output
SM A(t) defines the fast component power setpoint:
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Pjast(t) = Py — SMA(t) (5.2)

This differential signal can then be routed to the fast-acting storage system (e.g., FESS), while the
smoothed signal is assigned to the battery.

While a fixed-window SMA is effective, more advanced HESS control strategies may implement
adaptive or variable-length moving averages. In such configurations, the window size n; can be
dynamically adjusted based on system conditions, such as the SoC of the storage or the rate of
change in power demand. This enables filtering, ensuring the optimal division of power tasks
between the BESS and FESS over time. Such dynamic filtering schemes form the basis of hybrid
control strategies that enhance the efficiency of hybrid energy storage configurations.

5.2.2 Fuzzy Logic Controller

As explained in subsection 4.2.1, fuzzy logic as a rule-based control is a powerful control
methodology well-suited to systems with inherent uncertainties, nonlinearities, or vague operating
rules. Unlike traditional controllers that require precise mathematical models and operate on
binary logic, FLCs use linguistic rules to make decisions, mimicking human reasoning [312,313].
These controllers handle imprecision by defining fuzzy sets for inputs and outputs and using a
rule base to determine control actions based on approximate reasoning [314,315].

In energy management systems, where decisions often depend on dynamic conditions such as
storage states and power profiles, fuzzy logic is particularly advantageous. It allows the controller
to react flexibly to changing conditions and smooth out abrupt transitions in power flows.

In this study, the FLC is employed to optimize the coordination between the BESS and the FESS.
Specifically, the FLC dynamically determines the length of the MA window, which directly affects
how quickly or gradually power is transferred between the two storage units. The goal is to reduce
BESS stress by managing its RR and to maximize the utilization of FESS when its SoC allows.

The inputs of the FLC are the RR of the BESS and the SoC of the FESS, while the output is the
average window length of the moving average filter. The use of fuzzy logic enables the controller
to balance short-term power fluctuations and long-term energy availability without requiring a
detailed mathematical model of the system.
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5.2.2.1 Membership Functions

Instead of using precise numerical values, fuzzy logic describes inputs and outputs using linguistic
terms and approximate reasoning. These linguistic variables are mapped to fuzzy sets through
membership functions, which provide a flexible framework for decision-making. In this study,
the inputs to the FLC are the RR of the BESS and the SoC of the FESS, while the output is the
average window length used by the MA filter. Figure 5.2 illustrates the membership functions of
these variables, and Table 5.1 defines the associated fuzzy sets in linguistic terms.
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This work adopts the Mamdani inference method, implemented in MATLAB/Simulink, which is
widely recognized as a standard approach in fuzzy control applications [316,317]. For simplicity
and effectiveness, both input variables, RR and SoC, are classified into two categories: "Low"
and "High." This design choice simplifies rule creation and ensures faster and more intuitive
decision-making, aligning with the specific needs of our HESS strategy. The dual-category
scheme targets the most critical scenarios: high RRs that can strain the BESS, and SoC levels
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Table 5.1: Fuzzy sets and their linguistic variables

Sets Linguistic Variables
L Low

ML Medium Low

MH Medium Low

H High

that either risk depleting the FESS or affect its efficiency when too high. Introducing additional
categories would increase computational complexity without delivering substantial performance
gains for the intended application.

Keeping the FESS SoC above 30% is essential to ensure adequate torque and rotational speed
and maintain the flywheels ability to deliver high power when needed. Although a high SoC does
not pose a risk to the FESS, distinguishing between "Low" and "High" SoC enhances the systems
responsiveness, particularly in cases where both the ramp rate of BESS and SoC of FESS are
high.

The controllers output, which is the average window length, is divided into four categories to allow
more refined control over power smoothing and distribution. Trapezoidal membership functions
are used for the inputs (RR and SoC), offering smooth transitions between fuzzy regions. The
output employs triangular membership functions, allowing sharper control adjustments over the
window length.

Thanks to this fuzzy logic framework, the system continuously adapts the average window length
in response to real-time conditions, enabling more efficient and balanced power sharing between
the battery and flywheel. The full range definitions for each input and output membership function
are presented in Table 5.2.

Table 5.2: Membership functions sets and their range

Battery Ramp Rate (RR) Flywheel SoC Average Window (AW)
Set Range Set Range Set Range
L AW<
L RR<200 L SoC<50% 200
ML 300<AW<500
<
H RR>100 H SoC>30% MH S00<AW<900
AW >900
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5.2.2.2 Rules of Fuzzy Controller

The core of the FLC lies in its rule base, which consists of a set of decision-making rules. Each
rule consists of an antecedent, which describes the current system state using fuzzy sets and
variables, and a consequent, which specifies the appropriate system response. These fuzzy rules
define how the controller should react under various conditions, with the overall system output
derived by aggregating the results of all applicable rules. The number of rules and linguistic
terms used depends on the complexity of the system and the level of control required. FLCs offer
an effective solution for managing nonlinear and uncertain systems due to their adaptability and
fine-tuned decision-making capability.

In this study, the FLC rule base is outlined in Table 5.3. For instance, when the batterys RR is low
and the flywheels SoC is also low, the FLC reduces the average window length, thereby relying
more on the battery to handle power demands. Conversely, suppose the battery experiences a
high RR while the flywheels SoC is high. In that case, the controller increases reliance on the
flywheel to absorb power fluctuations, thus easing the load on the battery and improving overall
system stability.

These fuzzy rules enable the controller to dynamically modulate the power distribution between
the BESS and FESS based on real-time conditions. Through this rule-based approach, the system
balances the energy flow, optimizing the performance and longevity of both energy storage
components.

Table 5.3: Rules of fuzzy logic controller

Flywheel SoC

L H
L MH
Battery Ramp Rate
H MH H

5.3 Experimental Validation

This section introduces the input power profile used to validate the proposed control strategy and
presents the experimental validation using this profile.
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5.3.1 Input Power Profile

To validate the performance of the proposed control strategy, a real-world power profile was
employed as the target signal for the HESS. This reference power profile was derived using an
enhanced motif discovery algorithm as detailed in [318]. The algorithm identifies the most
recurrent daily load patterns from historical data, providing a representative and repeatable profile
for evaluating storage control techniques. The dataset used for this analysis features a temporal
resolution of 1 second.

The input data was collected during the summer of 2018 in South Germany from four different
10/0.4 kV distribution substations. This period was strategically chosen to capture peak pho-
tovoltaic (PV) generation, which is crucial for realistic sizing and operation of energy storage
systems under high renewable penetration scenarios. The four substations were selected based
on their voltage sensitivity to active power variations, according to the methodology presented
in [319].

High-resolution measurements were recorded using the "PQI-DA Smart" power quality monitor-
ing device from A-Eberle [320], which was installed on the low-voltage side of the transformer
at each substation. This setup enabled the acquisition of the total active and reactive power from
all downstream feeders. Due to the high resolution and data storage limitations, each substation
contributed approximately two weeks of measurements.

The identified motif-based load profile served as the reference signal for the HESS control
system. The goal was to dynamically regulate the energy flow within the HESS to follow this
power trajectory while minimizing battery stress and optimizing system performance. Figure 5.3
presents an example of the control behavior when a 10-minute moving average filter is applied
to the reference input. The filtered output power lies within the range of 160 kW, while the
difference between the raw input and the smoothed output, the component assigned to fast-
response storage such as the flywheel, is within £30 kW. This separation demonstrates the
temporal decoupling enabled by the moving average, allowing short-term fluctuations to be
managed by high-power devices and slower trends to be assigned to high-energy devices.

5.3.2 Experimental Results

To empirically validate the proposed control strategy, the controller was deployed on a 120 kW,
8 kWh high-speed FESS, as detailed in subsection 3.2.1, within a PHIL setup described in
Section 3.1. The implementation involves integrating a controller based on the combination of a
moving average and fuzzy logic. Figure 5.4 illustrates a schematic diagram of the setup created
to assess the performance of the proposed control design.
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Figure 5.3: The input power pattern, the filtered signal via moving average, and the resulting difference.
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Figure 5.4: Configuration for prototyping the proposed controller and conducting PHIL simulations using the 120 kW

high-speed FESS.
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The setup consists of three main parts. The simulated part in the real-time simulator, the actual
device, and the communications and connections between these two parts. Opal-RT OP5700
real-time simulator simulates the proposed control in real-time. The controller controls the input
power mentioned in section 5.3.1, integrated into a low-voltage microgrid, and generates the active
power references for both the BESS and FESS.

The active power reference of BESS is sent to the battery model within the real-time simulator.
For the parameters to be controlled, the SoC of the flywheel is obtained by the device, while
the RR of the battery is derived from its power, as shown in equation (5.3) in the simulation
environment.

dP(t)
RR = - 5.3)
In the battery model, the nominal capacity E,, is crucial in determining the number of cells in
a Li-ion battery and the maximum rotational speed and inertia in a flywheel. Calculating the
nominal capacity involves integrating the power profile of the ESS and assessing the maximum
change in resulting energy variations, as outlined in equations (5.4) and (5.5). However, to extend
the lifespan of an ESS, particularly Li-ion batteries, oversizing is commonly adopted as a strategy.

t
E(t) = n~s9m(P®) / P (1) dr, (5.4)
0

maxE(t) — minE(t)
SOCmam - Socmzn .

E, = (5.5)
For Li-ion batteries, research has indicated that avoiding high SoC values can significantly mitigate
the cells’ cathode degradation and calendar aging. Likewise, deep discharging has been shown to
elevate the internal resistance of the cells [321]. Consequently, allocating a specific non-usable
capacity is advisable to prevent extreme SoC values, denoted as SoC',,;, and SoC, 4. Thus, the
nominal capacity can be determined by considering the minimum and maximum SoC, assuming
10% and 90%, respectively. The round-trip efficiency of the battery () is assumed to be 90%.

The proposed controller requires knowledge of the BESS’s RR and the FESS’s SoC. The RR of
the battery is calculated from its power derivative in its model presented in the real-time simulator.
FESS’s SoC, measured internally in the FESS controller, is sent to the real-time simulator using
an Ethernet connection and the Modbus TCP/IP protocol from the industrial controller of the
FESS.
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In this setup, which is explained in detail in section 3.1 , the Ethernet connection can transmit
reference commands, including the active power reference, to the FESS. However, due to the
slow and non-deterministic nature of the Modbus protocol [322], a faster analog signal trans-
mission method is preferred in this particular study. Specifically, a 4-20 mA current signal is
used to transmit the active power reference to the FESS, ensuring more efficient and reliable
communication.

Figure 5.5 presents the comparison between the actual measured power output of the FESS and
the corresponding reference signal derived from the experimental trials. The close alignment
between the curves indicates the high accuracy of the control strategy in ensuring the FESS tracks
the target power trajectory. In parallel, Figure 5.6 shows the time-varying behavior of the moving
average window length as modulated by the FLC during the test period.
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Figure 5.5: Comparison between reference and hardware-measured power in the flywheel system:(a) Reference and
measured power profiles (b) Absolute error between the two signals
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Figure 5.6: Average Window of the moving average

For comparative analysis, the proposed fuzzy-moving average controller is evaluated against a
LPF-based controller, which is commonly used in energy management literature [247,282,292,
293,323-325]. The LPF controller splits the input power between the BESS and the FESS using
frequency-domain separation:

Filter = 1 (5.6)

+ Ts

Where s is the Laplace operator and T = L ; .A cut-off frequency of feui—ofr=2.5mHz

fcutfof
was selected to balance the storage system dynamics and ensure positive SoC levels for both BESS

and FESS. The architecture of the LPF-based controller is shown in Figure 5.7.
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Figure 5.7: Low-pass filter-based control architecture

Figure 5.8 illustrates how the total input power is distributed between the BESS and FESS under
both control strategies. The FLC-MA controller demonstrates a more dynamic and responsive
power allocation, successfully attenuating high RR demands from the BESS while preserving
sufficient SoC in the FESS.
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Figure 5.8: Experimental comparison of power in two methods (a) Filter method (b) Fuzzy-Moving average Method

This is further validated in Figure 5.9, where the SoC trajectory of the FESS and the ramp rate
of the BESS are depicted. Under the proposed controller, the FESS SoC consistently remains
above the 40% threshold, and the ramp rate of the battery is significantly smoother, indicating
reduced stress and potential enhancement of battery life. In contrast, the LPF controller allows
SoC levels to drop below 30%, a critical point at which the flywheel’s maximum power output
becomes constrained due to reduced rotational speed.

Moreover, unlike basic filtering methods, the FLC-MA controller accounts for the auxiliary power
demand of the flywheel system, which varies with the SoC. The intelligent control of SoC in the
proposed strategy ensures this parasitic load is managed effectively, thereby preserving available
energy for active power delivery.

5.4 Parameter Variation Analysis

Fuzzy logic controllers inherently rely on parameter tuning that is often guided by a heuristic
understanding of the system. Since such tuning can significantly affect performance, a parameter
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Figure 5.9: Comparison of the Filter Method and the Fuzzy-Moving average method (a) Flywheel SoC from experimental
results (b) Battery ramp rate derived from post-analysis of experimental data

sensitivity study was conducted to analyze the impact of the two core design parameters: the
moving average window width in the proposed controller and the cut-off frequency in the LPF
approach.

5.4.1 Moving Average Window Width

The moving average window length plays a key role in determining the balance between smoothing
the input power and maintaining the responsiveness of the HESS. Simulation results using the
real daily power profile and battery models (subsection 5.3.1) reveal the performance trade-offs
of varying the window width.

A lower range for the average window length restricts the controllers decision-making flexibility,
leading to suboptimal smoothing of the power signal. On the opposite, a higher range can result
in operational inefficiencies, with the system responding too frequently to minor fluctuations.
Figure 5.10 illustrates these trade-offs, considering simulations for two window width ranges:
300-900s (the proposed one) and 100-1300s (higher range). The results show that increasing
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the average window length from 300-900s to 100-1300s significantly increases the ramp rate
of the BESS, potentially affecting its lifetime. This is attributed to the larger window length
introducing excessive variability into the moving average calculation. Consequently, the chosen
window width strikes a balance, minimizing ramp rate fluctuations while maintaining efficient
smoothing for optimal SoC dynamics.
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Figure 5.10: Effect of different membership functions on the ramp rate and the average window (a) Average window
between 300 - 900 s (b) Average window between 100 - 1300 s

The works in [326—328] underline that the parameter acquisition in fuzzy logic systems is often
guided by the specific requirements of the target application, reinforcing the validity of our
approach to defining parameters based on the systems operational characteristics. To further
demonstrate the adaptability of the proposed fuzzy logic controller, we tested the system with two
additional power profiles: one scaled to double the existing power profile and another scaled to
half of it. For each case, the ramp rate of the power profile changes, necessitating modifications
to the membership function and storage sizes to accommodate the altered dynamics.

The results in Figure 5.11 compare each power profiles RR and SoC behavior with its correspond-
ing filter range. The results confirm that the controller consistently balances the RR and SoC
independently from the power profile dynamics.
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Figure 5.11: Comparison of the controller on different power profiles (a) half of the original power profile (b) original
power profile (c) twice the original power profile

5.4.2 Low-pass Filter Cut-Off Frequency

In addition to the moving average window width, the cut-off frequency of the low-pass controller
was analyzed in the same simulation setup. A higher cut-off frequency allows the controller to
respond more quickly to fluctuations, improving the SoC dynamics of the FESS by allocating
more of the high-frequency power variations to the BESS. However, this comes at the cost of
increased ramp rates for the BESS (similarly to the larger moving average window width), as the
battery is more exposed to components of the power demand.
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Conversely, a lower cut-off frequency effectively smooths the BESS ramp rate but compromises
the SoC performance. Figure 5.12 depicts these trade-offs. It can be seen that for the chosen cut-
off frequency of 2.5 mHz, the ramp rate of the BESS is comparable with the proposed controller,
while the SoC of FESS is kept positive. It also demonstrates how a higher cut-off frequency of
3.5 mHz improves the SoC utilization of the FESS while simultaneously increasing the ramp rate
of the BESS. A lower cut-off frequency of 1.5 mHz, on the other hand, achieves the opposite
effect of a lower ramp rate of BESS but leads to an empty FESS, highlighting the importance of
selecting an intermediate frequency that balances the trade-offs between the parameters.
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Figure 5.12: Comparison of the different cut-off frequency (a) 1.5 mHz (b) 2.5 mHz (c¢) 3.5 mHZ
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5.5 Summary

This chapter presented a control strategy for managing power distribution in a Hybrid Energy
Storage System (HESS) combining a battery and a flywheel. The approach uses a moving average
filter to split the power signal into slow and fast components, assigning them to the battery and
flywheel, respectively. A fuzzy logic controller dynamically adjusts the moving average window
size in real time based on the battery ramp rate and the flywheels state of charge (SoC), allowing
the system to adapt to changing conditions and balance performance.

The proposed method was experimentally validated using real load profiles and a Power Hardware-
in-the-Loop (PHIL) setup with a 120 kW flywheel. Results demonstrated accurate tracking of
power references, effective smoothing of battery ramp rates, and maintenance of adequate flywheel
SoC levels. Comparisons with a conventional low-pass filter controller confirmed that the fuzzy-
moving average strategy provided improved control performance and better utilization of storage
capacities.

Finally, a sensitivity analysis highlighted the impact of tuning key parameters such as moving
average window length and low-pass filter cut-off frequency, showing the importance of selecting
appropriate settings to balance responsiveness and stability. Overall, the proposed adaptive control
strategy enhanced the efficiency and reliability of hybrid energy storage operation.
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6 Supercapacitor SoC Estimation in
Hybrid Energy Storage Systems

Thanks to their high specific power and long life cycle, supercapacitors are highly suitable for
use alongside batteries in HESS. As explained in Section 4.3, one of the key challenges in their
integration is accurately estimating the state of charge (SoC), which is essential for reliable energy
management and overall system performance. SoC serves as the primary indicator of the energy
stored within a device, and accurate tracking is crucial to ensure safe and efficient operation.
Inaccurate estimation can lead to overcharging, degradation, or underutilization of the storage
device, which are particularly critical risks for high-power components such as supercapacitors.

This chapter presents a detailed overview of algorithms used for SoC estimation in supercapacitors,
with a focus on Kalman filter-based methods. In particular, an adaptive square-root unscented
Kalman filter (ASR-UKF) approach is introduced to enhance estimation accuracy. To support the
implementation of these algorithms, equivalent electrical circuit models of the supercapacitor are
developed and used as the basis for applying the Kalman filtering (KF) techniques.

6.1 Overview of Estimation Methods

Estimation methods play a crucial role in accurately determining system states and parameters that
are not directly measurable. These methods enable effective monitoring, control, and optimization
of complex systems by providing reliable state information based on available measurements and
models. In the following subsections, the conventional estimation methods and the Kalman
Filtering (KF) Method are explained in detail. The mathematical formulation of the Kalman
filters is provided separately in Appendix A.

6.1.1 Conventional Methods

Traditional approaches for estimating the SoC in supercapacitors often begin with simplified
models. One of the most widely used techniques is the simple capacitive model, which treats
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the supercapacitor as an ideal capacitor. In this approach, the SoC is calculated as the ratio of
the energy currently stored to the maximum possible energy, derived directly from the measured
terminal voltage. The stored energy is obtained from the capacitor voltage, while the maximum
energy is based on the rated capacitance and nominal voltage [329,330]. This results in the
following State of Art (SoA) expression:

3Cn V2 &
S0C gou = 2 sCces _ Y SCES 6.1
1o, vz V2

Where Vscgs is the measured terminal voltage, and C,, and V;, are the rated capacitance and
nominal voltage, respectively. This method is favored for its simplicity and ease of implementa-
tion. However, it fails to capture the non-linear behaviors of real supercapacitors, such as internal
losses and charge redistribution, which can lead to significant estimation inaccuracies.

To address these shortcomings, a more detailed representation can be used through a multi-
branch RC model, which includes multiple internal capacitance branches. In this model, the
SoC is computed by summing the energy stored across all internal capacitive elements, thereby
accounting for internal charge redistribution effects [331]. In detail, the SoC given by a multi-
branch model, namely SoC y; g, results as follows:

noo1.,2
dic 7Civ;

SoC' MB = E
max

(6.2)

where n represents the number of internal RC branches, C; and v; denote the internal capacitance
and its corresponding voltage, and Ep,« is the total maximum energy characterized across all
branches.

Another commonly applied technique, especially in real-time applications, is the Coulomb Count-
ing method. This approach estimates the SoC by integrating the measured current over time,
starting from a known initial SoC value SoC. The estimated SoC at time ¢, denoted as SoCcc,
is given by:

1 t
SoCcc = SoCy — CiAh/ Iscps(t)dt (6.3)
0

where Cly, is the rated capacity in ampere-hours, and Iscgs is the measured current. While this
method is suitable for online estimation, it is sensitive to sensor noise and cumulative integration
errors. Moreover, its accuracy heavily depends on the correctness of the initial SoC value.
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To correct accumulated errors, a relationship between SoC and Open-Circuit Voltage (OCV)
is often used. The initial SoC is interpolated from OCV data obtained during rest conditions.
However, this approach requires prior offline characterization and assumes a linear OCV-SoC re-
lationship, which does not account for the voltage-dependent capacitance and non-linear behavior
typical of supercapacitors. Additionally, observing a true open-circuit voltage requires extended
rest periods with zero current, which may not be practical in real-world operation.

Overall, while these conventional methods are adequate for applications where simplicity is
prioritized over precision, they are often insufficient for the demands of HESS applications. In
such systems, high accuracy is critical for effective energy management. Phenomena like internal
charge redistribution and self-discharge can significantly affect the available energy, necessitating
more advanced estimation techniques to ensure reliable SoC tracking.

6.1.2 Kalman Filtering (KF) Method

The Kalman Filter (KF) is an optimal state estimation algorithm for systems with linear dynamics
and Gaussian noise. It combines a system model with noisy sensor measurements to estimate
hidden states (e.g., position, velocity, or SoC) with minimum mean squared error [332,333].

The system model and KF steps are summarized as follows:
» System model: Discrete-time statespace form:

Tpy1 = Az + Bup +wy,  wr ~N(0,Q) (6.4)
yr = Cxg + Dug + vg, v ~ N(O, R) (6.5)

with:

x: state vector (e.g., SoC, voltage states).
— wuy: input/control (e.g., current, power).

— yk: measurement (e.g., voltage, current sensors).

A, B,C, D: system matrices.

— wg, vy process and measurement noise, Gaussian with covariances @, R.
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e Prediction step: Propagates state and covariance:

-1 = AZp—1jk—1 + Bup—1 (6.6)
Pyjj—1 = AP_1p1 AT +Q 6.7

where: Zy,_1: predicted state, #j,_jj,_1: updated state from previous step, Ppp_1:
predicted covariance, P, _1),_1: previous covariance.

» Update step: Corrects prediction with new measurement:

Ky = Py CT(CPyj CT + R)? (6.8)
Tk = Trjp—1 + Ke(yr — CZppp—1) (6.9)
Py = (I — KiC)Pyjp—1 (6.10)

where: Kj.: Kalman gain, y, — C'Zy),—1: innovation (measurement-prediction error), Ly
updated state, P ,: updated covariance.

Its efficiency, low computational cost, and ability to run in real time have made it a standard tool
in control, navigation, and energy storage state estimation [332].

Initially introduced in 1960 for linear systems [334], the KF has since become a foundational
technique for optimal state estimation. Over the years, its application has expanded to vari-
ous nonlinear systems through adaptations such as the Extended Kalman Filter (EKF), which
incorporates nonlinear models using a first-order Taylor series expansion [335].

In the context of supercapacitor SoC estimation, an EKF-based method employing a three-
branch equivalent circuit model was proposed in [329]. This method was validated across several
charge/discharge cycles, although its comparison was limited to the basic capacitive model, leaving
out more complex or nonlinear alternatives.

To address the limitations of linearization, the Unscented Kalman Filter (UKF) was developed. It
introduces a deterministic sampling strategy, improving estimation robustness in highly nonlinear
systems [336]. Its application to supercapacitor SoC estimation using a first-order dynamic equiv-
alent circuit model has been demonstrated in [337], where experimental validation confirmed
resilience to parameter variations. However, this work did not include a comparison with alter-
native estimation algorithms or supercapacitor models, leaving open questions regarding relative
performance.

A further refinement of this approach is the Square-Root Unscented Kalman Filter (SR-UKF),
which offers enhanced numerical stability and computational efficiency [338]. An adaptive
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extension of this filter, referred to as ASR-UKF, was proposed in [339], and shown to improve
estimation accuracy in other domains [340]. Despite its advantages, its use for supercapacitor
SoC estimation has not yet been addressed in the existing literature.

Similarly, adaptive laws can be defined for the process noise covariance () to reflect model
uncertainties and variations in system dynamics. By updating ) and R online, the ASR-UKF
achieves improved robustness and accuracy in the presence of time-varying or uncertain noise
statistics [341,342].

An alternative modeling strategy involves the use of fractional-order models, leading to the
development of fractional KF methods [343]. While promising in terms of accuracy, these ap-
proaches demand extensive parameter identification. Moreover, implementations such as the
hybrid Kalman Filter-Particle Filter (KF-PF) significantly increase algorithmic complexity. Al-
though good estimation accuracy was reported in [343], the testing was performed offline on a host
PC, without confirming real-time execution capability. In addition, comparisons were limited to
the conventional Ampere-hour integration method.

Another notable approach is the multiobserver estimation scheme presented in [344]. This
technique combines multiple model observers to achieve robust and accurate SoC estimation.
However, it requires substantial modeling effort and complexity, and although experimental
validation was performed using MATLAB/Simulink, its suitability for real-time applications
remains unverified.

On the other hand, intelligent modeling techniques such as data-driven Artificial Neural Networks
(ANN) and fuzzy logic offer strong modeling capability [345]. Their adoption is limited by high
training effort and the requirement for large datasets to ensure robustness and accuracy [346].

Table 6.1 summarizes the main state-of-the-art approaches for supercapacitor SoC estimation,
covering both classical Kalman filtering variants and intelligent modeling techniques. The com-
parison highlights whether each method has been applied to supercapacitors, implemented in
real time, compared across different supercapacitor models, or requires training data. While
classical Kalman-based methods (KF, EKF, UKF, SR-UKF), which are explained in more detail
in Appendix A, generally offer real-time feasibility and do not require training data, their ability
to handle different models is often limited, and some have not yet been applied to supercapacitors.
Hybrid approaches such as the KF-PF and multi-observer frameworks provide higher model-
ing accuracy at the cost of increased complexity and lack of real-time validation. Intelligent
methods (ANN, fuzzy logic) demonstrate strong modeling capability but are constrained by their
dependence on extensive training datasets.

The adaptive algorithm originally proposed in [339,347] for SoC estimation of Li-ion batteries has
been adapted and implemented for supercapacitor applications in this work. The adaptive scheme
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dynamically updates the process and measurement covariance matrices at each iteration, based
on the residual covariance of the terminal voltage, defined as the error between the measured
voltage and the model output estimated by the filter. This approach eliminates the need for manual
tuning of initial parameters and enhances both accuracy and robustness under realistic operating
conditions [338,347].

Table 6.1: State of the art on supercapacitor SoC estimation methods

Super Different Training
Reference Method a ul;iiai?(?n Real-Time models data
PP comparison required
[334] KF v v X X
[329,335] EKF v v X X
[336,337] UKF v X X X
[338-340] SR-UKF X v X X
[343] KF-PF v X X X
[344] Multi-observer v X X X
(345,346] NN/ Fuzzy v X X v
Logic
Proposed ASR-UKF v v v X
method

6.1.2.1 Kalman Filter Initialization

For KF algorithms to achieve optimal performance and robustness, a proper initialization phase
that aligns with the system dynamics is essential. In particular, the key covariance matrices,
namely the measurement noise covariance R, the process noise covariance (), and the initial state
covariance S are typically initialized as diagonal matrices. This assumption implies that only
the auto-covariance terms are considered and that the noise sources are uncorrelated.

Since these parameters directly affect the filters convergence behavior and estimation accuracy,
they must be carefully calibrated. To facilitate this process, a representative charge/discharge
current profile can be employed to test and refine the initialization values. As part of the modeling
workflow, optimal calibration is achieved by aligning the filter-estimated state trajectories with
reference simulations using the Parameter Estimator app in MATLAB-Simulink®. This toolbox
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applies a nonlinear least-squares solver to minimize discrepancies between selected model outputs
and reference data. The resulting optimized parameters offer a reliable initialization of the KF
under specified operating conditions.

6.2 Supercapacitor Model

To implement a reliable and effective model-based state estimation method, such as KF, a rep-
resentative model of the physical system is required. For supercapacitors, two widely adopted
Equivalent Circuit Models (ECMs) are typically used to describe their dynamic behavior: the
three-branch ECM and the first-order ECM.

The three-branch model has been demonstrated as an effective compromise between accuracy
and computational efficiency, making it a suitable option for real-time applications [348-350].
However, a key limitation of this model is the absence of a direct mathematical expression for the
SoC, which complicates its integration into SoC estimation algorithms and necessitates additional
identification procedures.

In contrast, first-order dynamic ECMs incorporate an explicit relationship between the SoC and
the modeled OCV, along with other circuit parameters. This structure facilitates SoC estimation
by allowing it to be directly computed as part of the models internal state. While these models
generally offer lower fidelity in capturing the nonlinear behavior of supercapacitors compared to
more detailed multi-branch models, their reduced complexity and straightforward implementation
make them attractive for SoC estimation tasks [337,351].

Despite the widespread use of both modeling approaches, comparative studies analyzing their
respective impacts on SoC estimation performance remain limited. Therefore, this section inves-
tigates the modeling of supercapacitor behavior using both the three-branch and first-order ECMs.
Their applicability to SoC estimation is assessed, along with an evaluation of how model selection
influences the performance and reliability of the model-based estimation process.

6.2.1 Three-Branch Equivalent Circuit Model

Figure 6.1(a) shows the electrical schematic of the three-branch equivalent circuit model, as
proposed in [352]. This structure consists of a main nonlinear RC branch and two parallel RC
sub-branches that capture the internal diffusion dynamics of the supercapacitor.

In the main branch, the capacitor C'(v) models the voltage-dependent capacitance and is connected
in series with resistor R. The variation of capacitance with voltage is described by:
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(b)

Figure 6.1: Supercapacitor equivalent models: (a) Three-Branch Electric Circuit Model and (b) Generic n-Order Dynamic
Equivalent Circuit Model.

C(’U) =Cy+ K, vy (6.11)

where () is the base (constant) capacitance, vy is the voltage across the main branch capacitor, and
K, is a coefficient that quantifies the voltage dependency. The sub-branches R;-C; and Ra-Co
represent two different time constants associated with ion diffusion [352]. A leakage resistor
Rieak 1s also included to model self-discharge, with its value typically provided in manufacturer
datasheets.

According to Kirchhoff’s laws, the state-space representation of the system can be written as:

dvo R, [ 1 1 R, R, R,
Clo) 2 = o (= 4 ot 2T
(UU) dt Ro (Rl + Rg) vo + RoRy v1+ RoRs v2 + Ry
dor R, R, (1 1 R, R,
ot L Ty
Vi T RREY T R\R TR T REY TR

6.12)

dv R R R 1 1 R
Co=2 = 2 pop —2 g — 2 — 4 — Yoyt 2T
dt ROR2 R1R2 R2 Rl RO

v, = B + Ry + Ry + R,
= — — v — v q
t Ro 0 T 1 Rs 2 »

where R, = Ry || R1 || Rz || Rieak> and v1 and vo are the voltages across capacitors C; and Cs,
respectively.

90



6.2 Supercapacitor Model

To enable real-time implementation of the KF, the model is discretized with a sampling time
T,. Defining the state vector as © = [vg, vy, vg]T, the discrete-time state-space equations are
expressed as follows:

R,T. 1 1 R,T. R,T. R,T.
j R— —+—>>V,+<1+L>V.+<1+L>V,+ pls
( RoC(v) (Rl Ry)) °F RoR:C(v) ) M* RoRyC(v) ) 2 " RoClv) "

Vot R,T RT, /(1 1 BT\ T
1| = 1 P25 NV Vor+ (1- 22—+ —) )W 1 pls Ny BT
Vijet1 ( +RoRICI> 0’”( RiCy (Ro +R2>> 1'”( * R1R201> 2 R6,
Vot R,T. R,T. RT, (1 1 T
' 1 LB ) 1 LB, ) - 22—+ — ) ) Vax Lutly
< + R0R202> 0.k + ( + RleCz) Lk * < RZCZ <Rl + R0>> 2k * RZCZ
6.13)
R R R
Vik = —Lvgp + =L L R, 6.14
.k Rovo,k-i- R1U1,k+ R2U2,k+ oLk ( )

These equations define the evolution of internal capacitor voltages at each discrete time step &,
where T’ is the time step and [}, is the input current.

Although the model is highly effective for internal voltage tracking, ideal for voltage monitoring
and observer-based estimation, there is no direct link between these internal voltages and the SoC.
To enable SoC estimation, the energy stored in the capacitors can be used, as defined in Eq. (6.2).
To provide a normalized SoC representation, especially when considering a minimum operational
voltage (typically half the rated voltage), an indication of SoC definition as below is used:

no1 2
Zi:l 50“)1' — Enmin
Emax - Emin

SoCsp = (6.15)

where F,;, is the minimum required energy to keep the supercapacitor in its operational range,
calculated as:

1
Enin = Z §Civ§m (6.16)

6.2.2 First-Order Dynamic Equivalent Circuit Model

Equivalent circuit modeling is a widely adopted approach in battery research to represent electro-
chemical behavior through simplified electrical networks. A similar approach can be applied to
supercapacitors, with necessary adjustments for their distinct voltage characteristics. As shown
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in Figure 6.1(b), the typical structure consists of an ideal voltage source (V,.) in series with an
internal resistance Ry and one or more R;C); branches in parallel.

In this work, a first-order ECM is selected due to its favorable balance between modeling accuracy
and implementation simplicity. Compared to higher-order models, the first-order structure offers
adequate fidelity for capturing the key electrical behavior of supercapacitors, while remaining
computationally efficient for real-time applications [330].

The model includes [337,353]:

* An open-circuit voltage (V,.), which reflects the SoC-dependent terminal voltage under
no-load conditions

e A series resistance Ry accounting for contact and electrode losses

* A single R,-C parallel branch to capture charge redistribution and diffusion dynamics

A key advantage of this configuration is that it yields a locally observable model, with the SoC
explicitly included as a state variable. The SoC is updated through Coulomb Counting, allowing
real-time energy tracking during both charge and discharge cycles. The continuous-time model
equations are given as:

1 t
SoC = S0Cy — ————— [ I.(t)dt
¢ oro 36()0~CAh/0 ®)
doy, v I (6.17)
i RO O

‘/t:Voc_RO'Isc_'Ul
where vy is the voltage across the R1-Cy branch, and I, is the current through the supercapacitor,
considered positive during discharge and negative during charge.

For implementation in a discrete-time framework, the state vector is defined as = [SoC, Vl]T,
and the discretized equations using a sampling interval 7 are:

T
SoCp — oo I,
SoChi1| Ok T8600 - Cap ook 6.18)
V1 k+1 (- Is -V +£~I .
> Rlcl 1,k Cl sc,k
‘/t,k = Voc - RO : Isc,k - Vl,k (619)
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6.2 Supercapacitor Model

6.2.3 Model Parameters Extraction

The models described in subsections 6.2.1 and 6.2.2 were experimentally characterized using
an EATON XLR-48R6167-R supercapacitor (model 166F) as the DUT, which is explained in
subsection 3.3 where Table 3.3 presents the key nominal specifications of the tested component,
as provided by the manufacturer.

In the three-branch equivalent circuit model, the identified parameters remain constant across
different SoC levels. The variation in capacitance with respect to voltage is modeled by the K,
coefficient, which, when multiplied by the voltage vy, accounts for the voltage dependency of the
capacitance.

A charging/discharging repeating cycle has been experimentally performed by imposing constant
current steps on the device to calibrate the three-branch model. In this way, the DUT is charged
and discharged four times between a selected minimum voltage level and its nominal value,
applying a 20-second rest period between each phase of the test. The supercapacitor voltage and
current measurements during the experimental characterization are illustrated in Figure 6.2(a).
The extraction of the model parameters has been made by means of the "Parameter Estimator"
tool in Matlab-Simulink®. It allows for fitting the model voltage curve to the measured one by
selecting the same current input given by the experimental test. As a solver, the nonlinear least
square method has been selected, and the obtained parameters are reported in Table 6.2.

Table 6.2: Fitted parameters for the three-branch supercapacitor model

Parameter ‘ Co (F) Ky, (F/v) Ry (mQ) Ry (Q) C1 (F) Ry () Ca (F) Riear (EQ)
Value ‘ 132.78 1.08 5.2 11.01 6.61 159.96 2.38 9.5

The second model in this analysis includes SoC-dependent parameters to enable direct observ-
ability of the SoC as a state variable. Therefore, a dedicated parameter identification procedure is
required. This model is widely used in Li-ion battery applications, where the standard approach
is the Hybrid Pulse Power Characterization (HPPC) [354], which involves applying 20-second
current pulses at incremental SoC levels, assuming negligible SoC variation during each pulse.

However, for supercapacitors, due to their significantly lower capacity, this assumption becomes
less valid. Hence, a similar procedure known as the Positive Pulsed Current (PPC) method [355]
is adopted. In this method, shorter current pulses are applied to incrementally increase the
supercapacitors SoC while simultaneously identifying the model parameters.
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Figure 6.2: Experimental characterization of the supercapacitor: measured current and corresponding terminal voltage
during the procedure related to (a) three-branch model and (b) first-order dynamic Equivalent Circuit Model.

The procedure was performed at various charging and discharging current levels. Figure 6.2(b)
presents an example of current and voltage measurements obtained during a test using the nominal
current. Each current pulse is designed to change the SoC by approximately 10%, and a 20-second
rest period is inserted between consecutive pulses. The voltage recorded during each rest phase
is used for parameter estimation, as it reflects the SoC reached at the end of the previous pulse.

The series resistance Ry is determined from the instantaneous voltage drop AV observed im-
mediately after the current pulse ends, calculated as AV divided by the pulse amplitude. The
remaining voltage relaxation is modeled using an exponential fit corresponding to an RC response,
enabling the estimation of Ry and Cf.

Both modeling procedures were carried out using a nominal current of 86 A for both charging
and discharging. The parameters identified through the PPC characterization procedure are
summarized in Table 6.3 and Table 6.4, with separate listings for the charging and discharging
phases to account for any asymmetric behavior or hysteresis in the supercapacitor’s electrical
response.
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Table 6.3: Extracted parameters during discharge using PPC procedure for the first-order ECM

SoC (%)

Voe (V) Ro (m§2) Ry (m$) Cy (KF)

10
20
30
40
50
60
70
80
90

6.08
11.28
16.28
21.09
25.73
30.27
34.73
39.14
43.51

2.7
2.7
2.7
2.7
2.6
2.7
2.8
2.8
2.6

2.6
2.1
1.9
1.8
1.7
1.6
1.4
1.1
0.8

4.77
547
5.97
5.79
5.65
5.63
5.75
5.52
3.90

Table 6.4: Extracted parameters during charge using PPC procedure for the first-order ECM

SoC (%)

Voe (V) Ro (m€) R, (m) Cy (KF)

10
20
30
40
50
60
70
80
90

5.98
11.62
16.92
21.92
26.71
31.34
35.85
40.26
47.03

2.8
2.8
2.7
2.7
2.7
2.7
2.6
2.8
2.6

1.2
1.6
1.8
2.1
2.5
2.8
3.2
33
4.0

7.55
6.23
5.95
5.64
5.25
4.82
4.42
4.31
3.78

6.3 Results and Validation

This section presents the numerical and experimental results, along with their validation under a

realistic grid power profile.

6.3.1 Numerical Results

To compare their performance, all SoC estimation methods described in the previous section
were implemented in MATLAB-Simulink. The three-branch model and the first-order ECM
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were employed as plant models to simulate the supercapacitor behavior, with random noise added
to both voltage and current measurements to emulate a realistic acquisition environment.

The model equations presented in Sections 6.2.1 and 6.2.2 were incorporated into two distinct
ASR-UKF frameworks to evaluate the influence of each modeling approach on the proposed
adaptive estimation algorithm. Furthermore, all SoC estimation results were scaled to reflect the
relative SoC with respect to the supercapacitors voltage operating range, allowing for practical
interpretation and a fair comparison across methods.

To quantify estimation performance, the absolute estimation error relative to the reference SoC,
computed as in (6.20), was used:

€ =|S0C st — S0C, ] (6.20)

where SoC.; is the estimated state of charge, and SoC'. is the reference computed from ideal
internal voltages.

As in the model characterization process, a constant current was applied to pre-charge the device
to its minimum operating voltage. After a rest period, a sequence of charging and discharging
current pulses was imposed to test the estimation performance.

The numerical SoC estimation results from four different methods are shown in Figure 6.3(a),
where SoC\.y is the true reference which has been computed on the basis of the ideal internal
supercapacitor voltages. SoC'g,4 and SoC¢¢ correspond to the State-of-the-Art and Coulomb
Counting methods, as described by (6.1) and (6.3), respectively. The proposed adaptive methods
based on ASR-UKF combined with the first-order ECM and the three-branch model are labeled
as ASR-UKFgcy and ASR-UKF;p, respectively.

The corresponding estimation errors are illustrated in Figure 6.3(b). It can be observed that the
conventional methods and the ASR-UKFgcy produce comparable accuracy, with absolute errors
exceeding 8%. This limited accuracy can be attributed to the small capacity and high current
rates characteristic of supercapacitors, which differ significantly from typical battery applications.
Specifically, the Coulomb Counting approach performs poorly due to its inability to account for
nonlinear behaviors such as voltage-dependent capacitance and internal redistribution effects.

In contrast, the proposed ASR-UKF;p approach demonstrates significantly improved performance
by effectively modeling the supercapacitors dynamic behavior. This results in estimation errors
remaining below 1% throughout the entire testing profile, confirming the suitability of the three-
branch model for high-accuracy SoC estimation.
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Figure 6.3: Numerical results for SoC estimation: (a) SoC estimation results and (b) errors with respect to the ideal SoC

reference.
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6.3.2 Experimental Results

An experimental setup, which is explained in subsection 3.3, was developed to validate the nu-
merical findings and assess the real-time performance of the proposed SoC estimation algorithm.
The ASR-UKF was implemented using the models introduced in Sections 6.2.1 and 6.2.2, and
a real-time comparison was carried out against conventional methodsnamely the simple SoC
definition and Coulomb Counting.

The same EATON supercapacitor used in the numerical simulations was employed as the DUT
for experimental validation. As illustrated in Figure 6.4, the supercapacitor was connected to a
Spitzenberger&Spies DM 15000 PAS amplifier, acting as a bidirectional current source driven by
the desired current profiles.

| Control Desk [

Figure 6.4: Experimental setup for the supercapacitor SoC estimation.

All estimation algorithms, described in Section 6.1, were deployed on an Opal-RT OP4510 real-
time simulator, which also managed the acquisition of voltage and current measurements along
with the estimation outputs. The ASR-UKF-based SoC estimation was performed with a sampling
time of 0.5 s, while the Coulomb Counting and simple SoC computation methods were executed
at 50 us to replicate high-frequency data acquisition.

The complete experimental setup is depicted in Figure 6.5, which highlights both the estimation
and measurement components integrated within the Opal-RT system. The power amplifier
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6.3 Results and Validation

was controlled using a NovaCor Real-Time Digital Simulator (RTDS), which generated the
control signals required to automatically execute the test procedure. The current profile used
for characterizing the three-branch model (see Figure 6.2) was also applied here for consistency
across all estimation methods.

P Profil SCES
ower Profile | power 3
RIDS | Amplifier @ o
A g :
=)
I
=
g
E Y
SoC Estimation
OPAL-RT

Figure 6.5: Supercapacitor SoC estimation hardware diagram.

To emulate realistic measurement conditions, voltage dividers and current transducers were in-
cluded. The experimental SoC estimation results are presented in Figure 6.6, where each estima-
tion method is compared to the ideal SoC reference. The absolute estimation error is used as a
performance metric.

Additionally, the supercapacitor’s internal temperature was continuously monitored using a ther-
mistor embedded within the device, as provided by EATON. The temperature variation throughout
the test remained below 3°C relative to ambient, and was thus considered negligible in terms of
its impact on SoC estimation accuracy.

The results confirm the advantage of the proposed ASR-UKF when paired with the three-branch
model. As shown in Figure 6.6(b), this combination achieved the lowest estimation error, remain-
ing below 2% throughout the entire experiment. In contrast, both the simple SoC and Coulomb
Counting methods resulted in errors ranging from 6% to 8%. Moreover, the SoC's, 4 method ex-
hibited noticeable noise, primarily due to voltage measurement disturbances in the experimental
setup. The ASR-UKF implementation using the first-order ECM also showed improved results
compared to conventional methods, but its peak error still exceeded 6%.

Although a slight performance degradation was observed in the experimental results compared to
the numerical simulations, the three-branch ASR-UKF consistently delivered superior accuracy.
These findings validate the robustness and real-time applicability of the proposed estimation
approach using the three-branch ECM for supercapacitor SoC monitoring.
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the ideal SoC reference.

6.3.3 Validation under Realistic Grid Power Profiles

Additional experimental tests were conducted using a 1-hour time window extracted from a
standard daily power profile measured at a German MV/LV substation [318], explained in detail
in Subsection 5.3.1, representing realistic conditions typically encountered by a HESS.

The plant model consisted of a HESS integrating a supercapacitor module and a Li-ion battery
pack. A LPF control strategy was employed to allocate power between the energy storage tech-
nologies: low-frequency current variations were assigned to the battery, while the supercapacitor
was tasked with damping current transients and supplying the high-frequency power demands.
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To reproduce this scenario in the real-time experimental setup, the supercapacitor reference power
profile was scaled to match the voltage and current operating ranges of the EATON supercapacitor.
Figure 6.7 shows the daily power profile, with the selected 1-hour test window highlighted. The
extracted power allocations for the battery and supercapacitor using the LPF are displayed in
Figure 6.7(b) and 6.7(c), respectively.

Figure 6.8(a) presents the supercapacitor current imposed by the power amplifier during the
experiment, obtained by scaling the power profile to the device’s operating range and dividing by
its rated voltage.

In Figure 6.8(b), the ideal SoC reference (computed under ideal conditions) is compared with SoC
estimations from conventional methods and the proposed ASR-UKF algorithm. Consistent with
prior tests, Figure 6.8(c) shows that the simple capacity model is affected by voltage measurement
noise, while the Coulomb Counting method exhibits errors within the 6%-8% range. Conversely,
the proposed ASR-UKF combined with the three-branch model reduces the error to below 1.5%
over the entire test duration, demonstrating superior accuracy and robustness under realistic grid
power conditions.

6.4 Summary

This chapter introduces a novel approach for estimating the State of Charge (SoC) of supercapac-
itors using an Adaptive Square-Root Unscented Kalman Filter (ASR-UKF), originally developed
for batteries and adapted here to handle the highly variable charge and discharge currents typical of
supercapacitors. The method incorporates both three-branch and first-order dynamic electric cir-
cuit models to accurately represent the behavior of supercapacitors. Using MATLAB-Simulink,
the Kalman filter was optimally calibrated, and the approach was experimentally validated with
an EATON 166 F supercapacitor. Real-time simulators, including Novacor RTDS and Opal-RT
OP4510, were employed to control the system and implement the SoC estimation. Compared
to traditional methods such as Coulomb Counting and simple capacitive models, the ASR-UKF
demonstrated superior estimation accuracy. Additional tests using realistic power profiles from
a German MV/LV substation further confirmed the methods applicability within Hybrid Energy
Storage Systems (HESS), using a classic low-pass filter for power allocation.
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Figure 6.7: Experimental results for supercapacitor SoC estimation in a HESS: (a) daily power reference profile in a

German MV/LV substation with selected 1-hour window; (b) power profile allocated to the battery; (c) power
profile allocated to the supercapacitor.
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Figure 6.8: Experimental results for supercapacitor SoC estimation in a HESS: (a) supercapacitor current scaled to its
rated range; (b) SoC estimation results; (c) absolute estimation errors compared to the ideal reference.
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7 BESS Lifetime Extension using
Hybrid Energy Storage Systems

Following the detailed discussion on power management strategies for HESS and the critical role
of parameter estimation in ensuring accurate system behavior and control, it is also essential to
justify the use of HESS from both technical and economic perspectives. While earlier chapters
have focused on the operational benefits and control methods, this chapter takes a step further
by addressing the long-term implications of hybridization, particularly in the context of battery
aging and cost-effectiveness.

This chapter introduces a novel experimental approach using the PHIL+aging test to realistically
assess the impact of hybridization on battery aging. Through PHIL-based experiments, real-time
operating scenarios are replicated in a controlled lab environment. The study compares two
configurations: a hybrid setup that couples the BESS with a FESS, and a standalone BESS with
the same capacity as the HESS. By incorporating a validated PHIL model of the flywheel and
conducting accelerated aging tests on Li-ion cells, the investigation captures key degradation
factors such as power ramp rates and cycle depth, offering a basis for comparison.

7.1 PHIL-Based Battery Aging Assessment

Battery aging estimation is conducted through a comprehensive methodology combining simulation-
based analysis with accelerated aging tests. The testing protocol is informed by the SoC evolution
derived from a dynamic simulation model of the energy storage system, which is developed to
emulate the real power profiles associated with frequency regulation in the scenario described in
Section 5.3.

The methodology enables a comparative lifespan assessment of the battery in two configurations:

e Case 1: A HESS composed of a Li-ion BESS and a FESS.

e Case 2: A single BESS of equivalent capacity to the HESS, operating independently.
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Numerical and experimental activities are combined, targeting an accurate comparative analysis,
in terms of battery lifespan assessment under real operating conditions, between Case 1 and
Case 2, both contributing to frequency regulation in the investigated micro-grid. In Case 1, the
HESS dynamic model is refined, specifically with reference to the flywheel device, through PHIL
tests. Once the model is refined, simulations are performed to provide the SoC evolution profile.
The methodology globally followed aims to accurately assess battery lifespan according to the
specific operating conditions of the application in which the energy storage section is integrated.
It consists of three phases:

a) ESS modeling, sizing, and simulation: Following the implementation scenario definition
(Section 7.3), this phase focuses on developing and tuning the dynamic models of the
ESS for both Case 1 and Case 2. In Case 1, PHIL testing is additionally carried out to
refine the flywheel representation, particularly with respect to power losses in the HESS
model. Furthermore, Case 1 includes the implementation of a real-time stochastic power
management algorithm, which performs online power splitting for frequency regulation
based on a multi-objective optimization function. The dynamic modeling of both scenarios
produces the battery SoC evolution profiles that serve as inputs for the subsequent steps.

b) Application of Rainflow Cycle Counting (RFC): The obtained SoC profiles are processed
using the RFC algorithm to determine the frequency distribution of charge/discharge cycles
categorized by Depth of Discharge (DoD) classes. This distribution forms the statistical
basis for designing realistic aging tests.

c) Design of Experiments (DoE) and Accelerated Aging Tests: Based on the RFC-derived
cycle distribution, a tailored DoE is created for each case to reproduce the actual usage
conditions observed in simulation. The DoE outlines the test procedure used to conduct
the accelerated aging campaigns, which aim to quantify degradation patterns and estimate
battery lifespan under application-specific operating conditions.

The chart of the implemented methodology is illustrated in Figure 7.1.

7.2 Power management strategy

The PHIL platform, previously introduced in Section 3.2, is employed to validate the dynamic
performance of the HESS under realistic operating conditions, including grid disturbances and
fast power transients. As illustrated in Figure 7.2, the system integrates a real-time simulation
environment (Opal-RT OP5700), a power interface (Egston GAMP6, 2x200 kVA), and the
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Figure 7.1: Schematic chart of the developed methodology.

physical 120 kW / 8 kWh FESS, whose technical parameters are summarized in Table 3.2 in
Subsection 3.2.1.
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Figure 7.2: Power Hardware in the Loop Setup
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As shown in Figure 7.2, the SPSA-based power management strategy explained in Subsec-
tion 4.2.2.2 optimizes the power split between the flywheel and battery, prioritizing rapid fluc-
tuations for the flywheel and smoothing battery input power. The SPSA algorithm provides the
optimal power share in terms of two coefficients: gprss and grgss, representing the proportion
of the total input power allocated to the battery and flywheel, respectively. These coefficients are
then further adjusted using a control parameter that accounts for the SoC and power constraints of
both energy storage systems. Based on this adjustment, the final reference power for each storage
unit is determined.

To study the benefits of HESS integration to micro-grids in the view of frequency regulation, a
detailed model of the micro-grid including a Li-ion battery and a flywheel as HESS (Case 1) is
developed in MATLAB/Simulink environment. A schematic layout of the implemented dynamic
model is depicted in Figure 7.3. The real power profile shown in 7.4 provided as input to
the model and detailed in Section 5.3 is managed by the power management strategy based on
SPSA algorithm. The power management strategy determines the power shares among the HESS
components in real-time, considering their specific features in terms of operating C-rates and
efficiencies, as well as the defined multi-objective power management function.

Power Profile
o BESS
g » A - =
> SPSA EI
06:00 Timclozf[()]l‘)c day 18:00 Power
Management
A 4 Strategy FESS
Power Ramp g <« }
Calculation A Ny
\ 4
HESS
Characteristics

Figure 7.3: Schematic overview of the micro-grid dynamic model integrating HESS Case 1.

Moreover, the current FESS and Li-ion BESS SoCs are taken into account to assess the capabilities
of each component in providing/absorbing power at each time step. Furthermore, to assess the
benefits of HESS integration in the micro-grid with respect to Case 2, i.e., the sole use of a Li-ion
BESS with a capacity equivalent to the sum of capacities of the HESS devices, the model is
modified without considering the FESS. This is to compare the different operating conditions of
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Figure 7.4: The input power profile

the BESS in the hybrid configuration with respect to the non-hybrid case and perform specific
aging tests to quantify the lifespan extension of Li-ion BESS when coupled to power-intensive
devices as FESS for the specific case study.

In the following, the power management with SPSA for the selected scenario and Li-ion battery
and flywheel modeling equations are described in detail.

7.2.1 Simultaneous Perturbation Stochastic Approximation
(SPSA) Power Management

Power management strategy is developed based on SPSA algorithm, whose theory is described
in Subsection 4.2.2.2. Concerning the problem formulation designed for micro-grid frequency
support, the input power to be managed has to be instantaneously split between the FESS and the
BESS. Therefore, the vector of unknown parameters (6) is defined as three dimensionless shares
(i.e., Li-ion BESS, FESS, and grid, namely ¢ggss, ¢ress, and ggrrp), expressed by (7.1). It is
highlighted that ¢ rrp share is included to consider a residual power not managed by the HESS.

4BESS
0= 4FESS (7.1)

4JGRID
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Consequently, the split power values are calculated according to (7.2):

Pggss = qpess AP
Press = qress AP (7.2)

Perip = qerip AP

Where AP = Pg., — Plai, (W) is defined as the difference between the required power

for frequency regulation at time ¢ and the residual power at the previous instant (¢t — 1). The
SPSA parameters, detailed in Section 4.2.2.2, are selected according to [356]. The power shares
instantaneously assigned must pursue the following objectives:

I. Maximize micro-grid frequency support, minimizing residual power not managed by HESS
over the day within the micro-grid as detailed in:

AP\?
yi(0) = (qG;ItDl ) (13)
GRID

II. Smooth the Li-ion BESS power profile by means of the ratio between the battery power at
timestep ¢ and at the previous instant (¢ — 1), as expressed by:

AP\ ?
%@:(mm) (7.4)

t—1
PBESS

The multi-objective problem is therefore modeled by means of the weighted sum of the objectives
expressed by (7.3) and (7.4), defining the SPSA loss function as (7.5):

' (0) = wiyi(0) + ways(0) (7.5)

Where the two weights wy and wo are both set at 0.5. The iterative process starts based on the
initial estimate of the vector 0, as specified by (7.6):

0.2
0=10.78 (7.6)
0.02

110



7.3 Energy Storage Modeling and Device

7.3 Energy Storage Modeling and Device

The BESS model used in this study is explained in detail in this section. BESS device and
experimental setup are also explained while FESS model is explained in Subsection 2.1.3 and the
device and experimental setup are explained in Section 3.2.

7.3.1 Battery Energy Storage Modeling

The Li-ion battery model used in this study is based on the work by [357] and has been tuned
according to the technical specifications provided by the manufacturer [358]. The battery current
Iggss and terminal voltage Vpgss are computed in real time from the instantaneous battery power
P using the following equations (7.7) and (7.8):

Voev =/ Ve _4Rg1lassp

ocv
int
2}%BESS

Ipgss = (7.7)

Vigss = Voev — Ristss Ingss (7.3)

The open circuit voltage Vo, and internal resistance Riltqs depend on the battery state of charge

(SoCggss) and differ between charging and discharging conditions, as described by (7.9) and
(7.10):

Viey = {V:)cv,c = f1(SoCggss) (Cl.largingl) 7.9)
Voeva = f2(SoCggss)  (discharging)

BESS — (7.10)

it _ {Rch = [3(SoCgess)  (charging)
Rais = f1(SoCggss)  (discharging)

These functions are implemented via look-up tables, derived from experimental characterization
of the Li-ion cells to capture the variations in V., and Rg}gss throughout operation. The battery

state of charge is computed continuously using (7.11):

nIBEss

dt 7.11
0 (7.11)

SoCgEss = SoCgEss,ini —
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The charge/discharge efficiency 7 is given by (7.12):

_ Vioev ;
n= { Tleh = Vo " Tyess Rn (charging) (7.12)

Tais = Vioev — Ipkss Rais

Vo

(discharging)

Here, SoCggss.ini 1s the initial battery SoC and () is the battery capacity in ampere-hours (Ah).

To ensure the battery can support the microgrid frequency regulation requirements over a complete
daily cycle, the BESS is sized based on the energy demand profile. In Case 2 (non-hybrid BESS),
the battery capacity is determined to be 884 kWh, starting from an initial SoCgggss of 50%. In
the HESS configuration (Case 1), the real flywheel installed at the KIT facility has a capacity of
8 kWh (see Subection 3.2.1), reducing the required battery capacity to 876 kWh.

In addition, Case 1 features reduced maximum charge and discharge power limits for the battery
compared to Case 2, since the flywheel absorbs high-frequency power fluctuations and alleviates
stress on the battery. This results in a lower C-rate requirement for the battery in the HESS, as the
flywheel handles the fast dynamics while the battery mainly supplies the smoother, low-frequency
power. The technical specifications of the BESS for both configurations are provided in Table 7.1.

Table 7.1: BESS technical features for the considered simulation scenarios.

Parameter Case 1: HESS Case 2: non-hybrid
Configuration Configuration
Chemestry Nickel Manganese Cobalt oxide (NMC)
Nominal Capacity 876 kWh 884 kWh
Max Dis-/charge Rate 0.15C 0.25C
Nominal Voltage 400 V 400 V
Operating voltage 300-420 V 300-420 V
Max DOC 90% 90%

7.3.2 Battery Energy Storage Experimental Setup

The accelerated aging test campaign was carried out on two Samsung INR18650-20R Li-ion
cells at the University of Perugia. Cell specifications are deduced from the manufacturer’s
datasheet [358]. The test was performed by means of a galvanostat/potentiostat BTS4000-5V20A
purchased from NEWARE, consisting of 8 channels with a voltage range of 0-5V and +20 A as
maximum current.
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7.3 Energy Storage Modeling and Device

Cells were cycled within an operating voltage range of 2.5-4.2 V, with maximum continuous
charge and discharge currents of 4 A and 20 A, respectively. This was done while considering the
maximum allowable current range of the battery testing system. During the experimental activity,
cells were maintained at a fixed temperature of 20 4+ 1°C'. Figure 7.5 illustrates the described
experimental test rig and Table 7.2 summarizes the characteristics of the battery.

| Data Acquisition |

| Battery Testing System |

| INR18650 tested cells |

Figure 7.5: Experimental test rig for aging tests on Li-ion cells.

Table 7.2: Key specifications of Samsung INR18650-20R lithium-ion cell (2011 datasheet).

Parameter Specification Notes
Cell type Lithium-ion rechargeable Cylindrical
Model name INR18650-20R 18650 format
Nominal capacity 2 Ah -
Nominal voltage 36V -
Standard charge 1.0 A CCCV, 4.20 £ 0.05 V, cut-off 100 mA 3h
Rapid charge 4.0 A CCCV, 4.20 £+ 0.05 V, cut-off 100 mA 50 min
Ma’zisccohlgrl;‘:“s 2 A at25°C
Cut-off voltage 25V Discharge termination
Weight <45¢g -
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7 BESS Lifetime Extension using Hybrid Energy Storage Systems

7.3.3 Flywheel Energy Storage Modeling

FESS characteristics allow for peak-shaving operations with the aim of extending the Li-ion
battery lifetime. To determine the total losses, PHIL simulations are carried out to accurately
evaluate the efficiency and power losses of the actual installed flywheel for the studied application.
Therefore, the flywheel model explained in Subsection 2.1.3 is tuned according to the specific
features and real-time behavior of the installed flywheel system (120 kW, 8 kWh) at the KIT
facility, provided by STORNETIC and described in Subsection 3.2.1. The outcomes of PHIL
simulations allow for the emulation of the real behavior of the flywheel within the micro-grid
under frequency regulation service, in reference to the selected power profile used as input. It is
worth noting that Reference [359] provides the detailed flywheel model and its validation using
the very same flywheel system installed at the KIT facility.

7.4 Experimental Data Acquisition

The implemented methodology for PHIL testing using the PHIL test facility described in sec-
tion 3.1 moves from the selection of three windows of the daily input power profile. The length
of the three selected patterns is set equal to 30 minutes, to reduce the PHIL test duration. The
selection is realized by identifying the most representative and significant patterns depicted in
Figure 7.6 of the input power profile, i.e.:

- The window with the maximum mean power.
- The window corresponding to the minimum mean power.

- The window of the power that crosses the zero value.

Simulations are performed with inputs from the selected windows of the input power profile.
Simulated power shares between the HESS devices are imposed as input to the PHIL test,
including the real FESS. According to the followed methodology, a comparison is carried out
between the power trends managed by the modeled FESS and the PHIL FESS, respectively. Power
profile measured at the PHIL FESS is therefore used as a feedback parameter to tune modeled
flywheel losses. For fine-tuning of the FESS model, it is assumed that the difference between the
real and simulated flywheel SoC at the end of the simulations has to be lower than two percentage
points.
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Figure 7.6: Selected patterns of the input power profile. In detail, the profile with the maximum mean power is represented
by the red line, while the profile corresponding to the minimum mean power is depicted by the purple line.
The green line indicates the selected pattern corresponding to the case of power crossing zero.

7.4.1 Rainflow Cycle Counting (RFC)

Following the procedure summarized in Figure 7.1, Li-ion BESS daily SoCs obtained from one-
day simulations in reference to Case 1 and Case 2 are then processed through RFC. In the selected
scenarios, RFC is applied to the Li-ion BESS of the Li-ion BESS to determine the daily cycles
and the related DoD in reference to the investigated application. Subsequently, it allows us to
identify the number of cycles per class of DoD over the day. Cycles with a DoD lower than 0.1%
are assumed to be neglected. RFC represents a widely used algorithm for estimating the lifespan
of the batteries. Referring to the considered cells, values are properly scaled according to the
Samsung SDI INR18650-20R specifications. Theoretical background on RFC is provided in the
following.

RFC is a widely used algorithm for assessing fatigue stress on materials. RFC allows cycles
counting and quantifying their depths, analyzing damage accumulation in an object subjected
to cyclical stress, with the number of cycles leading to a failure of the object dependent on
the cycle amplitude [360]. Recently, RFC has also been applied to electrochemical devices,
such as batteries, to evaluate their lifespan when subjected to complex charging/discharging
cycles [273,275,278,361,362]. Specifically, RFC finds cycles from local extrema in the load
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7 BESS Lifetime Extension using Hybrid Energy Storage Systems

profile as a function of cycle amplitude. Concerning batteries, the load consists of SoC variation.
The SoC-time curves resulting from the simulations are then rotated 90 degrees clockwise, and
the time coordinate axis is vertically downward [271,363]. Firstly, RFC transforms the battery
SoC into a sequence of reversals, defined as the local minima and maxima in reference to a load
sign changing. Each reversal is seen as a source of water dripping down the roof.

According to American Society for Testing and Materials (ASTM) standard [364], the RFC
working procedure is as follows:

I. The number of half-cycles is counted, determining the flow terminations when either:

* Reaching the time history end.
* Merging with a flow that started at an earlier reversal.

* Encountering a greater magnitude trough.

II. A magnitude is assigned to each half-cycle, equal to the difference between its start and
termination in terms of stress.

III. To determine the number of full charge-discharge cycles, pair up half-cycles of equal
magnitude but in opposite directions. Usually, some incomplete half-cycles remain. For
lithium-ion batteries, only cycles with a DoD greater than 2% are important for studying
battery degradation [281,365]. Therefore, cycles with a lower DoD are disregarded.

Figure 7.7 illustrates the operating flow chart of the RFC algorithm according to the ASTM
standard. RFC counts cycles by taking into account a moving reference point of the data sequence
(Z) and a moving ordered three-point subset with the following features: i) the first and second
points are collectively called Y, ii) the second and third points are collectively called X and in
both X and Y, the points are sorted from earlier to later in time but not necessarily consecutive,
and iii) the range of X, denoted by r(X), represents the absolute value of the difference between
the amplitude of the first point and the amplitude of the second point. The definition of r(Y) is
analogous.

7.4.2 Design of Experiment (DoE)

Accelerated aging tests are carried out on two Samsung SDI INR18650-20R cells. Initially, the
two tested Li-ion cells are characterized to determine their nominal capacities. To perform an
accelerated testing procedure, the number of cycles per DoD class over a day is performed by gal-
vanostatic charge and discharge cycles at currents of 4 A and 19.5 A, respectively. The maximum
discharge current is limited with respect to what is indicated in the cell specifications (i.e., 22A),
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Figure 7.7: Rainflow cycle counting algorithm: schematic view of the flow chart according to ASTM standard.
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7 BESS Lifetime Extension using Hybrid Energy Storage Systems

because of the current limitations of the instrument (the maximum current provided/absorbed
equals 20 A).

Moreover, to emulate the different battery stress due to the presence or absence of the flywheel, the
average values of the power ramps deduced from the simulations performed for Case 1 and Case 2
are assessed. These result in a power oscillation amplitude of about 0.55 kW/s and 2.3 kW/s for
Case 1 and Case 2, respectively. These values are divided by the average of positive values of
the input profile and by the average of negative values (respectively 28.2 kW and -28.2 kW). The
obtained ratios equal £0.02 (Case 1) and 0.08 (Case 2). The amplitude of current oscillations
to be superimposed to charge and discharge currents is obtained in both cases by multiplying the
obtained ratios by the nominal capacity of the tested cells (i.e., 2 Ah). The amplitudes of current
oscillations equal £0.04 A and £0.16 A are obtained.

The overall testing current profile provides accelerated operating conditions relative to 1 day of
operation. Therefore, the daily testing procedure is repeated to emulate three equivalent years of
battery operation. The capacities of the cells are assessed at each equivalent year of operation
through capacity determination performed at 0.5C both in Constant Current-Constant Voltage
(CCCV) charge and Constant Current (CC) discharge modes as explained below:

e CCCYV Charge: During charging, the cells were first subjected to a Constant Current (CC)
phase, in which a fixed current (e.g., 1 A for standard charge or 4 A for rapid charge) was
applied. The cell voltage increased gradually until reaching the maximum charge voltage
of 420 V £ 0.05 V. At this point, the charger switched to the Constant Voltage (CV)
phase, maintaining the voltage at 4.20 V while the current naturally decreased. Charging
was terminated once the current fell below the cut-off threshold of 100 mA. This approach
ensures safe charging while allowing the cell to reach nearly its full capacity without
overcharging.

* CC Discharge: During discharge, the cells were operated in CC mode, drawing a fixed
current (e.g., 20 A) until the cell voltage reached the cut-off voltage of 2.5 V. This mode
guarantees reproducible results and prevents over-discharge, which could degrade the cells
performance and lifespan.

The State of Health (SoH) of battery cells is assessed at the end of each equivalent year of
operation as the ratio between the current measured capacity and the capacity measured before
the aging test began.
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7.5 Results: State of Health Evaluation

In the following subsections, the experimental validation and results are described in detail.

7.5.1 PHIL-Based Aging Results

In reference to the flow chart depicted in Figure 7.1, the simulation outcomes relating to the two
investigated case studies (i.e., HESS configuration and non-hybrid Li-ion BESS of equivalent ca-
pacity) are illustrated. In detail, PHIL simulations are carried out aiming at the tuning of flywheel
power losses implemented in the developed system dynamic model. Flywheel characteristics,
previously presented in Subsection 3.2.1, such as maximum dis-/charge powers, operating speed
range, inertia, and a preliminary value of power losses, are implemented in the model to emulate
the real flywheel dynamic behavior. Specifically, the three selected patterns of the input power
profile, as detailed in Section 7.4, are firstly used to perform dynamic simulations. Simulated
trends of power shares between the HESS devices are provided as input to the PHIL test facility,
including the real FESS. Then, the power profile at the terminals of the flywheel, installed in
the PHIL test rig, is measured. Therefore, flywheel power losses are tuned up to the difference
between real and simulated flywheel SoC at the end of the simulations, reducing down to 2
percentage points.

Table 7.3 reports the power loss values obtained from the fine tuning of the FESS model by means
of PHIL tests. Specifically, an average flywheel power loss of 2 kW is obtained and consequently
implemented in the dynamic model to simulate with greater accuracy the operation of the FESS
installed in the PHIL system.

Table 7.3: Assessment of FESS power losses to emulate real FESS behavior.

Case Pioss (kW) Socr,fin(%)a Socs,fin(%)b
Pattern 1 2.2 50.3 49
Pattern 2 1.5 57.1 55.5
Pattern 3 2.2 51.7 51.45
Average 2

* Final SoC measured from the real flywheel in the PHIL setup.
* Final SoC obtained from the simulated flywheel model.
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7 BESS Lifetime Extension using Hybrid Energy Storage Systems

7.5.2 Simulation Results

The FESS primarily operates to mitigate power spikes by continuously performing charge and
discharge cycles, thereby protecting the battery from high-frequency variations. This effect can
be quantitatively evaluated using the Cumulative Distribution Functions (CDFs) of the FESS and
BESS power ramps shown in Figure 7.8. The CDF represents the probability that the power ramp
rate remains below a given threshold, providing a statistical measure of how frequently certain
ramp magnitudes occur. For instance, at the 90% CDF level, 90% of the observed ramp values are
below the corresponding point on the x-axis. As observed, the CDF of the power ramp managed by
the BESS is significantly lower compared to the FESS, with values of 0.5 kW/s and 1.8 kW/s at the
90% CDF for the BESS and FESS, respectively, in the HESS mode. This confirms that the FESS
takes over the faster transients, while the BESS is exposed only to smoother dynamics, which is
beneficial for reducing degradation and extending its operational lifetime. The zoomed-in view
(0-7 kW/s, 0.8-1 CDF) further emphasizes this effect in the high-probability region, where the
BESS in HESS mode shows markedly lower ramp magnitudes than the standalone BESS.

= BESS (HESS)
0.2 = FESS (HESS) |
0.1 == =BESS (only)
’ Grid
0 L L L L L L
0 10 20 30 40 50 60
Power ramp (kW/s)

Figure 7.8: cumulative density functions of power ramp rates for BESS (HESS and standalone), FESS, and grid power.
The zoomed-in view highlights smoother BESS operation in HESS mode.

Figure 7.8 also illustrates the CDF of the residual power not managed by the HESS due to the power
and energy limitations of the integrated devices. For example, as visible in Figure 7.4, around
17h the BESS output power drops to zero once the maximum state of charge is reached. Such
outcomes emphasize the efficiency of the SPSA-based power management in both minimizing
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7.5 Results: State of Health Evaluation

the BESS power ramp and reducing the residual portion of the input power that is not absorbed
by the HESS, as further detailed in the problem formulation section. The resulting daily residual
energy is indeed kept below 6 kWh.

HESS configuration advantages are also reflected in the lower exploitation of the BESS capacity.
As a matter of fact, Figure 7.9 reports SoC profiles derived from simulations. RFC algorithm is
then applied to these profiles, as described in the following section.
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Figure 7.9: BESS SoCs in case of hybrid (orange line) and non-hybrid (blue line) configurations.

7.5.2.1 Rainflow Cycle Counting Results

Simulated profiles of BESS SoC, obtained for Case 1 and Case 2, are processed by applying RFC.
Table 7.4 lists the obtained results for both the scenarios taken into account. It is evident that
Li-ion BESS is less stressed when coupled with a flywheel (Case 1), with a minimum SoC of
19%, if compared to the minimum SoC registered in the case of Case 2 (i.e., 12.1%). This is also
clearly visible from the SoC simulated daily trends reported in Figure 7.9. Seven cycles, listed in
Table 7.4, are identified through RFC (according to the procedure detailed in Section 7.4.1, cycles
with a DoD lower than 0.1% are neglected). Figure 7.10a shows the zoomed-in SoC figure that
depicts cycles 2,3 and 4, and Figure 7.10b shows cycles 5 and 6, respectively. It can be noted that
the overall amplitude of the cycles is greater for Case 2 (non-hybrid configuration) with respect to
Case 1 (HESS) due to the lack of FESS peak-shaving operation in minimizing the stress towards
the BESS.
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7 BESS Lifetime Extension using Hybrid Energy Storage Systems

Table 7.4: Daily cycles obtained by RFC application on Li-ion BESS SoCs for non-hybrid and hybrid cases.

Cycle ‘ Case 1 - HESS Li-ion Battery ‘ Case 2 - Equivalent Li-ion Battery
‘ S0Cinit(%) SoCyin(%) DoD(%) ‘ S0Cinit(%) SoCyin(%) DoD(%)
1 50.0 58.7 +8.7 50.0 58.3 +8.3
2 58.7 58.2 -0.5 58.3 57.7 -0.6
3 58.2 58.4 +0.2 57.7 58.0 +0.3
4 58.4 19.0 -39.4 58.0 12.1 -45.9
5 19.0 100 +81.0 12.1 99.3 +87.2
6 100 43.0 -57.0 99.3 37.0 -62.3
7 43.0 433 +0.3 37.0 37.3 +0.3
0.59 T T T 1.05 : : : : :
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Figure 7.10: Zoomed in BESS SoCs in case of hybrid (orange line) and non-hybrid (blue line) configurations (a) SoC
change between 2 and 4 (b) SoC change between 15.5 and 18.5.

7.5.3 Results of experimental aging

Results of RFC application to the daily SoC of BESS operated in both cases are used to design
the experimental test campaign on two Samsung SDI INR18650-20R cells. Specifically, the
cells are operated, according to the testing conditions detailed in Section 7.4.2, by repeating the
cycles of Table 7.4 all over the year. The aging of the two cells is assessed through battery
capacity determination after each equivalent year of operation (one equivalent year corresponds
to less than 16 and 17 days of test for Case 1 and Case 2, respectively). This can be achieved by
increasing the applied current to the cells to their maximum continuous values, aiming to reduce
the time required for evaluating cell aging when subjected to complex degradation cycles. Such
a procedure is repeated for three consecutive years, each equivalent to the others. The design
of the experiment also includes 10-minute resting times to provide relaxation for the cells and
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7.5 Results: State of Health Evaluation

prevent overcharging/overdischarging. All details of the accelerated test campaign are described
in Table 7.5.

Table 7.5: Step cycles for the accelerated test campaign on Li-ion cells in relation to Case 1 and Case 2.

Step ‘ Case 1 - HESS Li-ion Battery ‘ Case 2 - Equivalent Li-ion Battery
| DoD(%) Teers (A) Time (s) | DoD(%) J N Time (s)

1 +8.7% -4 £0.04 157 +8.3% -4 £0.16 149
2 -0.5% 19.5 £0.04 2 -0.6% 19.5 £0.16 2
3 +0.2% -4 +0.04 4 +0.3% -4 +0.16 5
4 -39.4% 19.5 £0.04 142 -45.9% 19.5 £0.16 165
5 - 0 600 - 0 600
6 +81.0% -4 +0.04 1458 +87.2% -4 +0.16 1570
7 - 0 600 - 0 600
8 -57.0% 19.5 £0.04 205 -62.3% 19.5 +0.16 224
9 - 0 600 - 0 600
10 +0.3% -4 +£0.04 5 +0.3% -4 +0.16 5

The "Time (s)" column in Table 7.5 indicates the duration of each step in the accelerated test
campaign, i.e., how long the battery cell is subjected to a specific combination of current (I.¢;;)
and change in DoD. Steps with a dash (-) for DoD correspond to resting periods, where no current
is applied, allowing the cell to relax and its voltage to stabilize. The duration of the steps varies
depending on the type of energy exchange being replicated: short steps (e.g., 2-5 s) represent fast,
small changes in DoD corresponding to rapid power fluctuations in the real system, such as brief
power spikes or regenerative events. Long steps (hundreds to thousands of seconds) reproduce
slower, larger energy exchanges, where the battery experiences sustained charging or discharging.
Resting steps with zero current ensure the cell is not overcharged or over-discharged and allow
relaxation between active steps.

Experimental aging results are reported in Table 7.6. It is highlighted that the battery cell capacity
in Case 2 exhibits greater degradation, achieving a capacity of 1302.9 mAh compared to 1501.7
mAh measured on the cell tested under the operating conditions of Case 1. This is a clear
indication of the benefits of HESS integration for the specific studied application, allowing BESS
lifespan extension and leading to fewer device replacements over a long-term horizon.

For the sake of clarity, the reduction of cell aging is also depicted in Figure 7.11. It is evident
that in Case 2 the cell SoH dramatically decreases at the end of the third year at 65% of the initial
capacity, while in Case 1 it stands at about 75%.
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7 BESS Lifetime Extension using Hybrid Energy Storage Systems

Table 7.6: Registered capacity values for the investigated cases.

Measured Capacity (mAh)

Case 1 - HESS Li-ion Battery Case 2 - Equivalent Li-ion

Equivalent year Battery
0 2008.7 2013.8
1 1838.3 1804.7
2 1668.8 1622.0
3 1501.7 1302.9
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Figure 7.11: BESS SoCs in case of hybrid (blue line) and non-hybrid (red line) configurations.

7.6 Economic Analysis

The experimental results in the previous section confirm that integrating a FESS with a BESS
in a HESS configuration significantly improves system performance. The HESS setup reduces
high-frequency power fluctuations, leading to smoother battery operation and lower DoD cycles.
The RFC analysis revealed that HESS reduces large amplitude charge-discharge cycles, a major
contributor to battery degradation. This section provides an overview of the economic analysis
of the two cases: HESS and standalone BESS. The Life Cost of Storage (LCOS) and LCOS over
a longer period of 20 years, based on the frequency of changes in ESSs, are discussed in this
chapter.
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7.6.1 Levelized Cost of Storage (LCOS) Framework

Battery degradation has a significant impact on the total cost of energy storage systems over time.
This section evaluates the economic impact of integrating a flywheel into a HESS by comparing
the battery replacement frequency and LCOS with those of a standalone BESS.

7.6.2 Battery Replacement Frequency Estimation

Based on experimental results, the State of Health (SoH) after three years was observed as 65% for
the standalone BESS and 75% for the BESS operating within the HESS configuration. Assuming
a linear degradation model and that battery replacement is required when SoH falls below 80%,
the annual degradation rates are:

100% — 65
Annual degradation (BESS) = M = 11.67%/year (7.13)

1 _
Annual degradation (HESS) = M = 8.33%/year (7.14)

From this, the time to reach 80% SoH is described as Tgng of Life (EoL) :

100% — 80%

TEOL,BESS = 11 67% ~1.71 years (715)
100% — 80%
TEoL HESS = SOT%O ~ 2.4 years (7.16)

Over a 20-year service life, this corresponds to:

20

Nreplace,BESS = ﬁ ~ 11.67 (7.17)
20

Nreplace,HESS = 54 ~ 8.33 (7.18)

This reduction in replacement frequency results in significant long-term cost savings in favor of
HESS.
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7.6.2.1 LCOS Calculation Methodology

To evaluate cost-effectiveness per unit of energy delivered, we compute the LCOS as:

Ccap - CRF + Cogm

LCOS =
Eannual

where C,, is the total capital expenditure, CRF is the capital recovery factor:

r(1+4r)™

CRF= ————
(I+r)m -1

where:

* Ceap: Total capital expenditure,

e CRF: Capital Recovery Factor, defined as

r(l1+nr)"

CRF= —————
(147 -1’

with 7 = 7% and n = 10 years,
* Cogm: Annual operation and maintenance costs (2% of Cyp),

* Finnual: Annual discharged energy,

Eannual = Eusavle - Ncycles <1

(7.19)

(7.20)

(7.21)

(7.22)

With Neyeles = 365 and round-trip efficiency 1 (95% for BESS and 90% for FESS), the resulting

LCOS values are:

o Standalone BESS: $0.379/kWh,

¢ Hybrid Energy Storage System: $0.400/kWh.

Although HESS exhibits a slightly higher LCOS due to the high capital cost of the flywheel,
the reduction in battery replacements and associated downtime results in long-term economic

advantages. These benefits are especially relevant in high-cycling applications where battery

longevity is critical.
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7.6.3 Long-Term Economic Evaluation over 20 Years

To evaluate the cost-effectiveness of the standalone BESS and the HESS, the Levelized Cost of
Storage (LCOS) [366,367] is computed over a 20-year operational lifetime [368].

The LCOS over 20 years is defined as:

20 Cleyp,t+Coam,t
t=1 (14r)t
20 &,

LCOS50, =
D=1 T

(7.23)

where Ccap,; is the capital cost in year ¢ (including battery replacements), Cogm,¢ i the annual
operating cost (assumed to be 2% of initial capital cost, based on the average values reported in
the literature [369,370]), E} is the discharged energy in year ¢, and r is the discount rate (7%)
which reflects commonly used assumptions and averages from prior studies [160,371].

The cost parameters for the BESS and FESS, including both energy and power costs, are derived
from the latest data provided in the PNNL report [369]. Due to the difficulty of precisely estimating
the capital cost, the total project cost is considered for this study. A detailed breakdown of these
costs is presented in Table 7.7, and the system specification of each system and the corresponding
total calculated cost are presented in Table 7.8. The total cost is calculated based on both the
power cost C'p and energy cost C'p of each ESS as (7.24) [369,372].

Total Costgss = Cp - Pow + Cg - Fiwn (7.24)

Table 7.7: Capital cost parameters for BESS and FESS

Component Power Cost (Cp) Energy Cost (Cg)

[$/kW] [$/kWh]
BESS 1446 362
FESS 1980 7920

Battery replacement costs are assumed to match the original BESS unit cost. With efficiency of
BESS being 90% and efficiency of FESS being 95% [155, 158], the annual discharged energy for
BESS is Epgss = 884 - 365 - 0.95 = 306,181 kWh/year and for HESS is Epgss = (876 - 0.95 +
8-0.90) - 365 = 306,381 kWh/year.

The determination of battery end-of-life thresholds in this study is based on the observed SoH
degradation trends shown in Figure 7.12b and summarized in Table 7.9. Different SoH thresholds
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Table 7.8: Power and Energy Ratings of Storage Systems

Case System Power Rating Energy Rating Total Cost

(kW] [kWh] [$]
Case 1: HESS BESS 1314 876 944880
FESS 120 8
Case 2: Single BESS BESS 221 884 639574

Table 7.9: Replacement Intervals for Different SoH Thresholds

SoH Threshold BESS BESS (HESS) FESS
[%] Interval [years] Interval [years] Interval [years]
80 1.7 2.4 15
70 2.5 3.6 14
60 34 6.8 12
40 5.1 7.2 10

(80%, 70%, 60%, and 40%) were considered to assess the sensitivity of battery replacement inter-
vals on the LCOS [373,374]. The BESS replacement intervals were derived from experimental
SoH degradation rates, while the FESS replacement intervals were assigned based on mechanical
fatigue considerations.
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Figure 7.12: (a) Measured state of health for the cells tested according to operating conditions (b) BESS replacement
based on end of life on different SoH.
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7.7 Summary

Unlike the battery, whose end-of-life is typically defined by a drop in SoH to a specified thresh-
old, the flywheel’s life is governed by mechanical fatigue and bearing wear mechanisms. The
fatigue life of composite flywheel rotors is commonly reported between 10° to 10° equivalent
cycles [59, 375, 376], depending on design and operational stresses. Considering the typical
operating profiles in energy storage applications and accounting for mechanical stresses induced
by deep torque cycles, a variable flywheel replacement schedule was adopted. Specifically, the
FESS replacement interval was set to decrease progressively from 15 years to 10 years as cycling
severity increased, corresponding to lower SoH thresholds. This approach reflects the increasing
mechanical fatigue and bearing stress under more aggressive operational profiles, while maintain-
ing realistic assumptions aligned with industrial practice. The comprehensive comparison across
these four cases is illustrated in Figure 7.13, which reports the LCOS evolution over a 20-year
horizon.

The results in Figure 7.13 demonstrate that HESS does not universally guarantee lower costs
compared to standalone BESS configurations. Instead, the cost competitiveness of HESS strongly
depends on the chosen SoH limit for battery end-of-life and the corresponding replacement
timing. Specifically, in scenarios with stricter SoH thresholds (e.g., 80% and 70%), the HESS
configuration often shows economic advantages due to the reduced battery cycling stress and
extended battery lifespan. Conversely, for lower SoH thresholds (e.g., 60% and 40%), where
batteries are replaced less frequently, the higher capital cost of integrating a flywheel becomes
more pronounced, potentially offsetting the longevity benefits.

7.7 Summary

This chapter presents a comprehensive methodology for evaluating the benefits of hybridizing
battery energy storage systems (BESS) with flywheel energy storage systems (FESS) in extend-
ing battery lifespan for frequency regulation services in microgrids. Two configurations are
assessed: a hybrid energy storage system (HESS) combining a Li-ion battery and a flywheel, and
a conventional battery-only system of equivalent energy capacity. The methodology integrates
simulation-based modeling, Power Hardware-in-the-Loop (PHIL) experiments, Rainflow Cycle
Counting (RFC) analysis, and accelerated aging tests on Li-ion cells.

Dynamic simulations using a detailed MATLAB/Simulink model and an SPSA-based power man-
agement algorithm generate battery State of Charge (SoC) profiles under realistic grid conditions.
These SoC profiles are analyzed via RFC to extract cycle distributions by depth of discharge
(DoD). Subsequently, a tailored Design of Experiments (DoE) defines accelerated degradation
tests that reproduce application-specific cycling patterns on real Li-ion cells. PHIL tests refine the
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Figure 7.13: Cumulative Levelized Cost of Storage (LCOS) over 20 years (a) replacement of the battery by 80% of SoH
(b) replacement of the battery by 70% of SoH (c) replacement of the battery by 60% of SoH (d) replacement
of the battery by 40% of SoH.
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7.7 Summary

flywheel model by comparing simulated and measured power losses and SoC evolutions, ensuring
accurate emulation of flywheel dynamics.

Results demonstrate that integrating the flywheel substantially reduces battery stress, smoothing
power fluctuations, and lowering the frequency and amplitude of deep discharge cycles. Accel-
erated aging tests reveal that after three equivalent years of operation, the battery in the hybrid
configuration retains approximately 75% of its initial capacity, compared to 65% in the battery-
only system. This apparent improvement in battery state of health highlights the effectiveness of
the hybrid configuration in extending battery life, reducing replacement frequency, and enhancing
the sustainability and cost-effectiveness of energy storage solutions for grid support applications.
Moreover, a 20-year economic analysis was conducted for both configurations, showing that the
HESS case reduces total lifecycle costs by decreasing battery replacement frequency.
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8 Summary, Conclusion, and Future
Work

8.1 Summary and Conclusion

This work has demonstrated the significant potential of Hybrid Energy Storage Systems (HESS)
in improving the performance, longevity, and economic viability of energy storage solutions for
modern power systems. By integrating complementary storage technologies, the HESS approach
effectively mitigates the inherent limitations of individual devices.

The work began with an in-depth analysis of key energy storage technologies, outlining their
characteristics and operational challenges. Flywheels and supercapacitors, with their fast response
capabilities and high power densities, are ideal partners for batteries, which provide high energy
capacity but suffer from degradation under high cycling stress.

A contribution of this thesis is the experimental validation of HESS performance through Power
Hardware-in-the-Loop (PHIL) testing. This methodology enabled realistic emulation of grid
conditions while capturing the dynamic behavior and losses of a commercial Flywheel Energy
Storage System (FESS) in conjunction with a Battery Energy Storage System (BESS). The results
indicate that HESS reduces high-frequency power fluctuations imposed on batteries, leading to
smoother operation and lower depth-of-discharge cycles, which are critical factors influencing the
degradation of BESS.

Control strategies developed and experimentally validated here, including a power split based on
moving average filtering and fuzzy logic, ensure optimal load sharing between the BESS and the
FESS. These control methods preserve the FESS State of Charge (SoC) while reducing the Ramp
Rate (RR) of BESS. The proposed controller was validated with a commercial 120 kW, 8 kWh
high-speed FESS connected to a 400 kVA Egston Power Amplifier.

Further, the thesis introduced a SoC estimation method for supercapacitors based on the Adaptive
Square-Root Unscented Kalman Filter (ASR-UKF). This method was successfully adapted and
experimentally validated using an Eaton 166F supercapacitor interfaced through a Spitzenberger
APS amplifier, and implemented in real-time using Novacor RTDS and Opal-RT simulators. The
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results confirmed improved accuracy compared to conventional approaches such as Coulomb
Counting and simple capacitive models, confirming improved accuracy over conventional ap-
proaches and applicability in HESS contexts.

Accelerated aging experiments further demonstrate the benefits of HESS: batteries integrated
within hybrid systems exhibit significantly slower degradation, retaining greater capacity over
equivalent operational periods compared to standalone batteries. This translates directly into
reduced battery replacement frequency and extended operational lifetimes.

The economic analysis supports these technical gains by showing that, despite higher initial capital
costs due to flywheel investment, HESS provides a lower Levelized Cost of Storage (LCOS)
over typical 20-year lifespans through fewer battery replacements and reduced downtime. This
highlights HESS as a financially attractive option for applications demanding high cycling and
reliable energy storage.

In conclusion, this thesis presents a comprehensive and experimentally grounded framework for
power management and evaluating HESS. The findings contribute to advancing energy storage
technologies that are more durable, efficient, and cost-effective, essential qualities for supporting
future resilient and sustainable power grids.

8.2 Outlook

e Optimal sizing: While this thesis has demonstrated the benefits of HESS using specific
component configurations, the question of optimal sizing remains open. The ratio between
high-energy and high-power devices is highly application dependent, and suboptimal sizing
can lead to unnecessary investment costs or under-utilization of storage capacity. Future
work should focus on optimization frameworks that jointly consider technical constraints,
degradation models, economic factors, and grid service requirements to determine the
most cost-effective HESS configurations for different use cases, ranging from microgrids
to utility-scale storage.

* Power management considering extended dynamics: The power management strategies
developed in this thesis have successfully reduced battery stress and optimized load sharing,
but they primarily focused on SoC, RR, and average power dynamics. In reality, the
performance of HESS is also influenced by converter losses, efficiency variations, and
thermal dynamics, which were not explicitly included in the control design. Future studies
should incorporate these dynamics into the optimization and control framework, ensuring
that the HESS not only improves battery lifetime but also minimizes overall system losses
and maintains thermal stability during high-demand operation.
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8.2 Outlook

¢ Exploration of other HESS configurations, such as hydrogen-based systems: This
thesis has concentrated on hybridization of batteries with flywheels and supercapacitors;
however, other promising HESS architectures exist. In particular, hydrogen-based HESS
(combining batteries with electrolyzers and fuel cells) can provide long-duration energy
storage while still supporting fast grid services. Future work should extend the methods
developed here, such as PHIL validation, SoC estimation, and aging analysis, to these
systems. Such studies would clarify how hybridization with hydrogen can complement
high-power-density devices and further enhance the flexibility of renewable-based power
systems.

e Improving high-power-density storage to reduce initial cost: A key challenge identified
in this work is the relatively high capital cost of high-power-density storage technologies
such as flywheels and supercapacitors. Although they improve system performance and
extend battery lifetime, their cost remains a barrier to large-scale adoption. Future re-
search should therefore investigate technological improvements and material innovations
that enhance energy density and reduce production costs of high-power devices.

In summary, while this thesis has established the technical, economic, and experimental founda-
tions for HESS, the future of hybrid storage lies in advancing optimal sizing strategies, integrating
extended system dynamics into control frameworks, exploring new architectures such as hydrogen-
based hybrids, and reducing the costs of high-power-density devices. Addressing these challenges
will not only accelerate the adoption of HESS but also position it as a central enabler of resilient,
flexible, and sustainable power systems capable of supporting the global energy transition.
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A Appendix

A.1  Kalman Filter (KF)

The standard Kalman Filter is a recursive linear estimator that combines system dynamics with
noisy measurements to estimate internal states, such as the supercapacitor SoC. It assumes linear
system dynamics and Gaussian noise [334].

System model:

Tpi1 = Az + Bug +wg,  wr ~N(0,Q) (A.D
yr = Cxgp + Dug + vg, v ~ N(O, R) (A.2)

Prediction step:
Bpp—1 = AZp_1jp—1 + Bug—1 (A3)
Pyjj—1 = APy_1—1 AT+ Q (A4)

Update step:

Ky, = Pyp—1CT (CPyj_1CT + R)™! (A.5)
jjk\lc :£k|k—l +Kk(yk 703}/@\!@—1) (A.6)
Py = (I — KiC)Pyjp—1 (A7)

A.2 Extended Kalman Filter (EKF)

The EKF extends the KF to nonlinear systems by linearizing the system and measurement
functions around the current estimate. It is widely used for supercapacitor SoC estimation due to
system nonlinearities [335].
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Nonlinear system model:

Tpy1 = f(l'k, uk) —+ W (A.8)
yr = h(xr, ur) + vk (A9)
Prediction:
-1 = f(Br—1jp—1, Ur—1) (A.10)
Pyjj—1 = FiPy_1jp—1 FL +Q (A.11)
where Fj, = % Brtjps is the Jacobian of f.
Update:
Ky = Py HE (H Py HF + R)™', H —@\ (A.12)
k= Iklk—141 kL k|k—141 ; k= Oz | Erik—1 .
Tk = Trjp—1 + Ke(yr — h(Erjp—1, ur)) (A.13)
Py = (I — K Hy) Prjo—1 (A.14)

A.3 Unscented Kalman Filter (UKF)

The UKF estimates the state of nonlinear systems without linearization. It uses a set of deter-
ministically chosen sigma points to capture the mean and covariance accurately under nonlinear
transformations [336].

Sigma point generation and prediction:

Xiklk—1 = f(Xik—1,U—1) (A.15)

Tpp—1 = Z W X k| k—1 (A.16)
_ c A ~ T

P = Z WE X k-1 — Trje—1) (X klo—1 — Tejp—1)" +Q (A.17)

Update: Propagate sigma points through the measurement function A (-) and compute the Kalman
gain K, as in standard KF.
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A.4 Square Root UKF (SR-UKF)

A.4 Square Root UKF (SR-UKF)

The SR-UKF is a numerically stable variant of the UKF that propagates the square root of the
covariance matrix, rather than the full covariance. This enhances numerical accuracy and stability,
particularly for simulations of long duration [338].

Covariance square root:
pP=258T (A.18)

Sigma points are propagated through the nonlinear system, and updates are performed using .S
via Cholesky or QR decomposition.

A.5 Kalman Filter Particle Filter (KF-PF)

The KF-PF hybrid combines a Kalman Filter for linear parts of the system and a Particle Filter
to handle nonlinearities and non-Gaussian noise. Particles are propagated through the nonlinear
dynamics, and weights are updated according to measurement likelihood [343].

State estimate:
N
Z w gV (A.19)

where :1:,(;) are particles and w,(j) their weights, resampled at each step.

A.6 Adaptive Square Root UKF (ASR-UKF)

The ASR-UKF enhances SR-UKF by adapting the process and measurement noise covariances
online based on residuals, improving robustness under model uncertainties [339].

Adaptive noise estimation:

ex = Yk — MEpp-1) (A.20)
Qr, Ry updated using ey, (A.21)

Then the standard SR-UKF prediction and update steps are applied using the adapted @)y, and Rj.
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