KIT | KIT-Bibliothek | Impressum | Datenschutz

Multi-Flow Process Mining as an Enabler for Comprehensive Digital Twins of Manufacturing Systems

Khodadadi, Atieh ORCID iD icon 1; Lazarova-Molnar, Sanja ORCID iD icon 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Process Mining (PM) has proven useful for extracting Digital Twin (DT) simulation models for manufacturing systems. PM is a family of approaches designed to capture temporal process flows by analyzing event logs that contain time-stamped records of relevant events. With the widespread availability of sensors in modern manufacturing systems, events can be tracked across multiple process dimensions beyond time, enabling a more comprehensive performance analysis. Some of these dimensions include energy and waste. By integrating and treating these dimensions analogously to time, we enable the use of PM to extract process flows along multiple dimensions, an approach we refer to as multi-flow PM. The resulting models that capture multiple dimensions are ultimately combined to enable comprehensive DTs that support multi-objective decision-making. In this paper, we present our approach to generating these multidimensional discrete-event models and, through an illustrative case study, demonstrate how they can be utilized for multi-objective decision support.


Originalveröffentlichung
DOI: 10.1109/WSC68292.2025.11339008
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 07.12.2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-8726-0
KITopen-ID: 1000190169
Erschienen in Proceedings of the 2025 Winter Simulation Conference. Ed.: E. Azar
Veranstaltung Winter Simulation Conference (WSC 2025), Seattle, WA, USA, 07.12.2025 – 10.12.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 2977–2988
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page