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Abstract

The transition from a fossil-based economy to a bioeconomy (BE) is crucial for sustainable production and consumption. Yet,
growing demand for bio-based resources challenges sustainability, underscoring the need for indicator-based monitoring.
Forests play a central role by providing carbon sequestration, timber, biodiversity, habitats, and other ecosystem services
but are vulnerable to overuse and conflicting management goals. This study proposes a framework for indicator-based BE
monitoring in the German forest sector, combining empirical data with forest growth models (FGMs) to reconcile resource
use with ecosystem protection and to support policy development. The framework emphasizes ecological aspects and syn-
ergies among societal demands to optimize trade-offs between competing needs. Developed through literature review and
expert consultations, the framework defines selection criteria ensuring concise, evidence-based indicators: they must (i)
provide quantitative feedback on target achievement, (ii) draw on historical datasets, and (iii) be represented in FGMs for
future projections. FGMs simulate interactions between management and ecological factors driving tree growth, mortality,
disturbances, regeneration, and stand development. They track forest development via parameters assessing biomass, ecosys-
tem state, and resilience. We identified 11 FGMs suitable for BE monitoring in Germany and propose five indicator groups:
biomass carbon stocks, biodiversity, soil, water, and biomass extraction. Carbon and biomass indicators are well integrated
into FGMs, while biodiversity indicators remain only partially represented. Soil indicators are hampered by database gaps
and process simplifications. Water indicators focus on drought stress quantification and require high temporal resolution
process representation and meteorological input for accurate soil-plant-atmosphere interactions. These challenges highlight
the need for further FGM development to improve and standardize indicator representation for BE monitoring.

Keywords Forest growth models (FGMs) - Forest-based bioeconomy - Bioeconomy monitoring framework - Ecological
indicators - Carbon stocks - Biodiversity indicators - Soil and water indicators

Introduction The BE relies on biological resources to generate products,

drive processes, and provide services across diverse eco-

The fossil-based economy and its impacts on climate, envi-
ronment, and natural resources are increasingly recognized
as unsustainable (Helm 2017; Kircher 2022; Sharma and
Malaviya 2023; Aguilar et al. 2018). Consequently, transi-
tioning to a biomass-based economy (bioeconomy, short:
BE) is widely seen as a pathway towards more sustainable
production and consumption systems (Aguilar et al. 2018).
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nomic sectors (EC 2022), aiming to balance sustainable
resource use with protecting biodiversity and ecosystem ser-
vices (Queiroz-Stein and Siegel 2023; IPBES 2018; Jitendra
2024).

However, increasing demand for bio-based resources
exerts growing pressure on ecosystems, threatening the
sustainability goals that the BE pursues. To avoid negative
environmental impacts, monitoring of affected ecosystems
is essential for sustainable management and continued pro-
ductivity (Bringezu et al. 2021). This need is amplified by
climate change, which increases uncertainty in bio-based
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production and underscores the importance of adaptive,
evidence-based management.

Forests are a cornerstone of the BE, contributing to cli-
mate change mitigation through carbon sequestration, sup-
plying timber and non-timber products, and providing eco-
system services such as water regulation, air purification,
soil stabilization, recreation, and local climate regulation
(Brockerhoff et al. 2017; Acharya et al. 2019; Krieger 2001;
Bonan 2008). They also support biodiversity conservation
by offering habitats for a wide range of species. These socio-
economic, cultural, and ecological values must be central
to forest-related decision-making (Ninan and Inoue 2013).

Forest-based BE research has focused on sustainable
development, bioenergy production, and climate change
mitigation (Ilaria et al. 2020). Yet, conflicts among eco-
system services can arise, e.g., between maximizing car-
bon sequestration, intensifying resource use (Lin and Ge
2020), and the need for adaptation measures that enhance
forest resilience under climate change (Ibafez et al. 2019;
Forzieri et al. 2022; Gregor et al. 2022). However, well-
designed management strategies can yield synergies, e.g., by
increasing timber production while reducing vulnerability to
climate-related risks (Giana et al. 2023; Collalti et al. 2018).

Germany’s national BE strategy (BMBF and BMEL 2020)
envisions establishing a comprehensive monitoring system
to assess the BE’s contribution to the UN Sustainable Devel-
opment Goals (SDGs) of the Agenda 2030 (UN General
Assembly 2015), with a focus on food security, climate-neu-
tral production, and biodiversity conservation (Bringezu et al.
2020). Forest policy in Germany must reconcile diverse and
sometimes competing objectives across multiple governance
levels: at the European Union level, policies include renew-
able energy targets and biodiversity protection commitments

(EU 2024), while at the national level, initiatives such as the
“Aktionsprogramm Natiirlicher Klimaschutz” (BMUV 2023)
support enhanced natural carbon sinks in line with ambitious
net removal targets under the LULUCF Regulation (German
federal government 2021; EU 2018). Additional federal state
and regional measures—such as timber construction incen-
tives and biodiversity programs (e.g., StMB 2022; BMWE
2024)—add further layers of complexity to forest sector
governance. This multifaceted policy landscape highlights
the need for effective monitoring frameworks that optimize
synergies and manage trade-offs among competing societal
demands in the forest-based bioeconomy.

Indicators and Forest Growth Models in bioeconomy
monitoring

A forest BE monitoring framework should support target set-
ting and adaptive adjustment amid economic, environmental,
and societal challenges (Fig. 1). Such a framework requires
specific indicators to quantitatively monitor ecosystem states
and services. Well-chosen indicators distill complex infor-
mation into comparable, evidence-based metrics that aid
policy formulation, evaluation, and adaptive management
(Wolfslehner et al. 2016). They can guide resource planning,
identify risks and trade-offs, and serve as early warning sys-
tems by enabling long-term tracking of historical trends and
future projections (Bringezu et al. 2021; Robert et al. 2020).

Relevant indicators can be derived from forest invento-
ries, remote sensing, field surveys, experiments, and eco-
nomic statistics (e.g., timber construction quotas, fuelwood
demand; see, e.g., lost et al. 2025). However, such empirical
data usually have limited temporal coverage, irregular spatial
resolution, and are inherently retrospective.

[ Monitoring Framework]

supports

need for adjustment

Economic, environmental, social

[ Target setting ]

specifies

quantify status

Indicators

projections, spatio-temporal
gap-filling possible

historical data, spatio-temporal
interpolation required

Data )

* Environmental: e.g., NFl, remote

Input for initialization,
calibration, benchmarking

Forest Growth Models

sensing, field surveyance, experiments,

 Stand development (growth, mortality,
regneration)

monitoring plots, etc.
Economic: e.g., timber construction
quota, fuelwood demand j

Fig. 1 Flowchart illustrating a forest bioeconomy monitoring frame-
work, where economic, environmental, and social objectives specify
which indicators are required. Suitable indicator selection is based on
empirical data and output from Forest Growth Model (FGM) simu-
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lations. Data harmonization and model calibration ensure accuracy,
while feedback loops enable adaptive management. This integrated
system supports evidence-based assessment and projection of forest
BE development
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Forest growth models (FGMs) complement data by
simulating forest dynamics under variable management
practices, climate scenarios, and disturbances (Weiskit-
tel et al. 2011; Gutsch et al. 2018; Pfeiffer et al. 2023).
FGMs integrate mathematical process representations with
empirical data, tracking variables such as growth, mortal-
ity, biomass, and stand structure, which can directly serve
as ecological indicators (Albrich et al. 2020; Forzieri et al.
2022; Gregor et al. 2022; Ibafiez et al. 2019; Seidl et al.
2014; Tarasewicz and Jonsson 2021). Scenario-based sim-
ulations by FGMs enable spatiotemporal gap filling and
projection of future forest developments but require envi-
ronmental input data for model initialization, calibration,
and benchmarking. Interactions between data sources,
indicators, and FGMs are illustrated in Fig. 1. Feedback
loops allow monitoring results to inform adaptive govern-
ance and management adjustments.

FGMs encompass empirical models using statistical
relationships derived from observations, and process-
based models that simulate biophysical and biogeochemi-
cal processes (Korzukhin et al. 2024; Lindeskog et al.
2021). Empirical models excel at reproducing current
and short- to medium-term conditions, whereas process-
based models are also well suited for assessing long-term
responses to drivers such as climate change, nitrogen dep-
osition, and elevated CO, (Hickler et al. 2015). Combining
both model types leverages their respective strengths for
BE monitoring.

Applications of FGMs include resource assessment
and scenario analysis (Pfeiffer et al. 2025), policy evalua-
tion (Jose et al. 2023), supply chain management (Pretzsch
et al. 2008), the development of sustainability strategies
(Tarasewicz and Jonsson 2021), biodiversity conservation
(Augustynczik et al. 2020), and climate change mitigation
and adaptation (Gregor et al. 2022). Using ecological and
environmental data, FGMs project potential forest develop-
ment across various time scales. However, FGMs only mar-
ginally cover economic indicators, which therefore require
complementary modeling approaches.

This study focuses on indicators that (1) FGMs can rep-
resent and (2) characterize ecological implications of the
forest-based BE, targeting the following questions:

1. What are suitable ecological indicators for effectively
monitoring a forest-based BE in Germany? How should
they be grouped and defined within a conceptual frame-
work?

2. Which existing FGMs can represent these ecological
indicators?

3. What deficiencies and gaps exist in the representation of
indicators by current FGMs, and how can these gaps be
addressed?

To answer these, we conducted a comprehensive literature
review and expert consultation to develop a conceptual moni-
toring framework for the German forest sector based on FGM-
derived indicators. We propose key environmental indicator
groups and specific indicators represented by existing FGMs
and discuss potential development needs to enhance compre-
hensive model-supported indicator-based monitoring.

Materials and methods
Literature review

We first conducted a comprehensive literature review
to support the development of a conceptual monitoring
framework for forest-based BE in Germany. This review
aimed to identify relevant ecological indicators that are
compatible with forest growth models (FGMs) and to
select FGMs suitable for assessing these indicators at a
national scale.

The review process involved screening publications
on existing certification systems, bioeconomy monitor-
ing schemes, and model descriptions, focusing particu-
larly on indicators represented in FGMs operating at the
national level in Germany. Sources included peer-reviewed
scientific literature, technical reports, and grey literature
relevant to FGMs applicable at the national level.

While we did not strictly apply all items of the PRISMA
2020 Checklist (https://www.prisma-statement.org/prisma-
2020-checklist), we predefined clear search terms and plat-
forms. Searches were performed predominantly between
April 2022 and December 2022 using keywords such as
“forest growth model,” “forest model,” “forest simulator,”
“forest management model,” and their German equivalents,
combined with geographical terms such as “Germany” and
“Central Europe.” Searches were conducted using Google
Scholar, Web of Science, and Google Search. Additionally,
we included publications describing models cited in the
reviewed literature, and literature brought to our awareness
during expert exchange rounds. To structure the screening
process, we created an Excel database containing 20 check-
list items covering essential model characteristics and meta-
information on models, including model name, reference
publications/websites for the model, contact information of
scientists developing/using the model, theoretical geographi-
cal region of model applicability, adjustability to Germany,
spatial extent (stand-level vs. national), temporal resolution,
implemented forest management routines, climate sensitiv-
ity, type of stand representation, model type (process-based
vs. empirical), representation of distance-dependent com-
petition, mixed stand representation, implemented types of
management measures, mortality representation, deadwood
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representation, model modules, and required input data.
Papers matching search keywords were screened using full-
text PDFs of articles focusing on abstracts, model descrip-
tions, and figure data. Materials not providing relevant data
on these items were discarded but not formally tracked. In
total, 100 papers were collected and stored.

This approach ensured the selection of indicators and
models that align with policy needs and are feasible for long-
term ecological monitoring within the German forest sector.

Development of a conceptual monitoring
framework and selection of indicator groups

To establish essential indicator groups for forest BE moni-
toring in Germany, a conceptual framework was developed
using a top-down approach. Target for this framework was to
integrate societal demands with forest governance and man-
agement actions, and to link policy targets to quantifiable for-
est conditions through indicators. We specifically aimed to
incorporate feedback loops where monitoring results inform
adaptive management and regulatory adjustments.

To ensure that the monitoring framework is robust,
policy-relevant, and aligned with current international
and European standards and practices, we reviewed rec-
ognized concepts and frameworks to (1) determine which
framework concepts most closely matched the needs of
our targeted monitoring framework and (2) draw on exist-
ing structures and indicator sets rather than designing
an entirely new framework. By synthesizing established
concepts, we aimed to design a framework that combines
formal policy requirements with conceptual clarity and
applied research experiences to define relevant indicator
groups for effective forest BE monitoring.

Criteria for selecting suitable indicators
for forest-based bioeconomy monitoring

Building upon the conceptual monitoring framework devel-
oped in the preceding section, the selection of indicators for
monitoring of the forest-based BE in Germany was guided
by a set of criteria to ensure their strategic relevance, opera-
tional feasibility, and scientific robustness.

First, indicators were required to align closely with policy
and management objectives embedded in key national and
international frameworks, including the United Nations Sus-
tainable Development Goals (SDGs), the EU Bioeconomy
Strategy, the EU Biodiversity Strategy, and the LULUCF
Regulation (Bogdanski et al. 2021; EC 2024). This align-
ment ensures the relevance of selected indicators within pre-
vailing regulatory and strategic contexts, facilitating their
use in policy evaluation and decision-making.

Second, we aimed to adhere to the SMART criteria
(Doran 1981) to promote clarity and practicality: indicators
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must be Specific, Measurable, Accessible, Relevant, and
Timely. This ensures that indicators yield precise, quantifi-
able, and actionable information capable of supporting con-
sistent progress tracking towards BE objectives by informing
forest policy frameworks and management practices.

Third, indicators needed to be quantifiable using available
data and established methodologies, allowing for consistent
monitoring across temporal and spatial scales and under varied
management scenarios. We specified that metrics were prefer-
ably to be expressed in standardized units (e.g., tons per hectare),
with spatial and temporal resolutions consistent with ecological
process dynamics and decision-making requirements.

For model-based monitoring, compatibility with FGMs
was a key consideration, ensuring that indicators could
be accurately represented by FGMs and, where possible,
derived from model simulations calibrated against empirical
observations.

Flexibility and adaptability of indicators were also prior-
itized to accommodate frequent updates in data availability,
shifts in environmental conditions, and advances in scientific
understanding (Pearce-Higgins et al. 2022; Lindner et al.
2010). Finally, transparency and thorough documentation of
indicator definitions, data sources, and computational methods
were regarded as essential to enhance credibility, reproduc-
ibility, and stakeholder confidence in monitoring outcomes.

Identification and evaluation of Forest Growth
Models

To operationalize indicator-based BE monitoring for Ger-
man forests, we systematically reviewed FGMs for their
suitability to generate relevant ecological indicators at the
national scale. The evaluation focused on identifying models
that offer robust, policy-relevant simulations aligned with
the indicator framework described in previous sections.

Eligibility criteria

Candidate FGMs were screened based on their demonstrated
applicability for Germany-wide projections, either through
direct national-scale simulations or disaggregation of larger-
scale model domains. Models were only considered if they
permitted time series analyses extending through at least
2050 and could output results at a temporal resolution of 10
years or finer—requirements essential for evaluating long-
term forest dynamics and management interventions under
changing environmental conditions.

Further, eligible models were required to incorporate key
aspects of forest management (e.g., thinning, salvage log-
ging, replanting) and to represent central ecological processes,
including natural regeneration and mortality. The ability to
track growing stock and its changes at the unit-area level was
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set as a minimum technical prerequisite. Both empirical and
process-based models were included if they fulfilled these core
requirements.

Model-indicator mapping and assessment

For each FGM, we documented available output variables
and assessed their correspondence to the prioritized indica-
tor groups (see the “Development of a conceptual monitoring
framework and selection of indicator groups” and “Criteria
for selecting suitable indicators for forest-based bioeconomy
monitoring” sections). An iterative process, involving cross-
referencing model documentation and testing output avail-
ability against indicator requirements, ensured both policy
relevance and practical feasibility. Models and indicators were
subsequently classified according to their degree of compat-
ibility (fully, partially/potentially, or not suitable).

This mapping informed a final synthesis of model-sup-
ported indicators available for BE monitoring in Germany,
while also revealing coverage gaps and areas in need of future
model development or supplementary data sources. Historical
datasets used for benchmarking and calibration were compiled
for each compatible model and indicator.

Expert review and framework/indicator refinement

Following the preliminary identification of suitable FGMs
and the mapping of potential indicators within the concep-
tual monitoring framework, we engaged an expert panel to
validate and refine both indicator selection and framework
structure. This participatory phase was conducted to ensure
robustness, policy relevance, and operational feasibility of
the proposed monitoring system.

Experts with domain-specific experience in forest modeling
participated via an online exchange platform across five struc-
tured meetings between February and July 2023 lasting 1.5 to
2 h each. Participant number varied between 8 and 18 partici-
pants per meeting, with an average of 12 participants. Discus-
sions focused on assessing the suitability of each indicator group
for quantifying environmental impacts of the forest-based BE,
evaluating how well FGMs capture these indicators, and identi-
fying existing gaps or priorities for model development.

To guide deliberations, we posed targeted questions
addressing indicator completeness, clarity of definitions,
appropriate units of measurement, and differentiation levels,
as well as temporal and spatial resolution requirements. This
iterative consultation integrated diverse expertise to balance
scientific rigor with practical applicability.

Consistent with academic standards, experts who contrib-
uted substantively beyond feedback—such as to data analysis,
interpretation, or manuscript preparation—were invited to co-
author the resulting publication. All expert inputs were system-
atically incorporated, resulting in a refined and validated set of

indicators and an enhanced evaluation of FGM suitability for
forest bioeconomy monitoring.

Results
Conceptual framework and indicator groups
Conceptual framework

Our literature review identified several established frame-
works linking ecosystem goods and services to societal
needs, sustainable resource use, and environmental protec-
tion. Among these, the DPSIR (Drivers, Pressures, State,
Impact, Response) framework is particularly suited for
analyzing causal chains between society and the environ-
ment and supporting adaptive management (Maxim et al.
2009; Kristensen 2004; Smeets and Weterings 1999), mak-
ing it particularly interesting for integrating forest-based
BE monitoring into policy planning (Table 1).

Life-cycle assessment (LCA), as defined in ISO
14040/44 (ISO 2006a; 2006b), evaluates environmen-
tal impacts of products over their life cycle. Its results
inform industry, policymakers, and consumers, and high-
light opportunities to reduce impacts. For example, net
greenhouse gas balance assessment provides evidence of
the climate benefits or drawbacks of bioenergy production
(RED III, EU 2023; Table 1).

Environmental footprint (FP) analysis methods extend
this to carbon emissions, land use, biodiversity, and water
impacts, applicable from product to national scales (e.g.,
ISO 14067, ISO 14046, see Bringezu et al. 2021; Table 1).
The HANPP (Human Appropriation of Net Primary Pro-
duction) concept was reviewed but deemed too theoretical
and vague in its determination, calculation, and interpreta-
tion and therefore ill-suited for forest BE monitoring.

Certification systems, often informed by LCA and FP,
verify sustainability compliance of biomass production
and use to social, economic, and environmental standards
through third party audits, with varying depth and scope.
The ISO 13065 standard offers an internationally recog-
nized meta standard for bioenergy assessments (ISO 2015;
Table 1), while schemes such as FSC and PEFC also inte-
grate social and governance criteria (Schleicher et al. 2019).

At the European level, the EU Bioeconomy Monitor-
ing Framework compiles indicators aligned with EU Bio-
economy Objectives, SDGs, and the Green Deal (Wydra
and Kroll 2024; Robert et al. 2020; EC 2024; Table 1). For
example, a “forest growing stock” indicator contributes
simultaneously to the Green Deal’s goal of “Preserving and
Restoring Ecosystems and Biodiversity,” the SDGs’ “Life on
Land,” and the bioeconomy objective of “Managing Natu-
ral Resources Sustainably.” Forest-related indicators include

@ Springer
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Table 1 Overview of existing conceptional frameworks and applied environmental indicator groups

Title, reference

Concept/topic

Aim

Approach

Environmental indicators and indicator
groups

DPSIR-framework
(Kristensen 2004;
Smeets and Weterings
1999)

ISO 13065:2015
(ISO 2015)

Environmental footprint
analysis (FP, Bringezu
et al. 2021)

EU BE monitoring
framework (European
Commission 2024a)

RED III (RED III 2023)

Causal framework to
describe the interac-

tions between society

and environment

Sustainability criteria
for bioenergy supply
chains

Environmental and
socio-economic foot-
prints of the German
BE

Comprehensive over-
view of European
trends in indicators
related to the EU
bioeconomy

Minimize the risk of
using forest biomass
derived from unsus-
tainable production

Provide a systematic

approach to assess
environmental issues;
develop effective

policies for sustainable

development

Establish a meta stand-

ard for the develop-
ment of certification
systems in the field of
bioenergy; facilitate
comparability of
bioenergy vs. other
energy options

Analysis of footprints in

relation to the domes-
tic use of biomass in
Germany; differenti-
ated by impacts in
Germany and in other
countries of origin

Assess the EU’s

progress towards

BE objectives, and
to inform about the
progress of goals
specified under the
SDG-framework and
the Green Deal

Definition of legally

binding criteria opera-
tors must fulfill

Causal chain approach
based on sequential
links between driving
forces (human activi-
ties), pressures (stress
on environment),
states (environmental
conditions), impacts
(on ecosystems,
human well-being),
and responses
(mitigation/adaptation
measures)

Description of prin-
ciples, criteria and
indicators that should
be covered by certifi-
cation systems

Combining economic
modelling (includ-
ing trade flows) and
land-use modelling;
deriving information
needed for single
footprints

Query masks covering
existing BE-related
indicators

Proof that criteria are
met requires a cer-
tificate

Depends on application purpose,
defined by user of the framework;
examples: environmental quality
parameters (air, water), biodiversity,
habitat quality, ecosystem services
indicators

Biodiversity, soil, water, air, GHG
emissions, energy efficiency, waste

Land-use change due to agriculture
(including biodiversity impacts),
water withdrawals, GHG emissions,
agricultural and forest biomass
flows

Sustainable natural resource manage-
ment: roundwood removals; felling/
net increment; growing stock; bird
& butterfly indices | Not yet active:
deadwood; primary residue fraction;
certified forests

Climate change adaptation/mitiga-
tion: net GHG (LULUCF) | Not yet
active: soil moisture; soil erosion

Bioenergy criteria (forest biomass):
respect protection areas; soil quality
and biodiversity (see also RED IIT
2023 EC 2018, Art. 29.6), accord-
ance with sustainable forest man-
agement; GHG-emission reduction
vs. fossil fuels (substitution potential
of forest biomass)

growing stock, roundwood removals, felling to increment
ratio, bird and butterfly indices, Natura 2000 area, and
LULUCF GHG emissions (European Commission 2024a).

Further considered inputs included the Renewable Energy
Directive (RED III, EU 2023) that outlines mandatory tar-
gets for renewable energy sources within the EU, and the
pilot report of the “Systemic Monitoring and Modelling of
the Bioeconomy (Symobio)” project (Bringezu et al. 2020,
2021) with exploratory approaches specifically tailored to BE-
related challenges.
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Aligning with DPSIR principles, our conceptual forest BE
monitoring framework (see illustration in Fig. 2) defines societal
needs as the main drivers of policy. Provisioning services such
as wood for material and energy use are balanced with regulat-
ing, supporting, and cultural services, including LULUCF GHG
targets, biodiversity, water protection, recreation, income, and
employment. These needs are translated into measurable tar-
gets that guide forest management strategies, mediating between
policy objectives and actual forest states, generating trade-offs
or synergies depending on chosen strategies.
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Fig.2 Conceptual framework for indicator-based monitoring of the
forest-based bioeconomy in Germany. Societal needs for provisioning
services (e.g., harvested wood, energy use) vs. supporting services
(e.g., GHG balance, biodiversity, water retention, recreation) drive
forest sector policy, implemented via forest management strategies.
Monitoring based on quantitative indicators—wood supply, carbon,

Indicator-based monitoring includes carbon stocks, bio-
diversity, soil, water, and wood supply. Quantitative eco-
logical indicators for these groups derive both from empiri-
cal data (forest inventories, remote sensing, field surveys,
harvest statistics) and FGMs simulating forest dynamics,
which complement and extend data by filling spatiotempo-
ral gaps and project future developments under alternative
management and climate scenarios. Continuous integration
of empirical and modeled data supports feedback loops,
using monitoring outcomes for adaptive policy updates and
management adjustments through decisions of forest owners
and managers.

The framework thus operationalizes monitoring of the
German forest—based BE as a structured, evidence-based,
and adaptive system. By combining empirical data with
dynamic FGM outputs across key ecological indicators, it
provides a robust basis for evaluating sustainability trade-
offs and guiding policy under changing environmental and
societal conditions.

Definition of indicator groups

Building on the review of existing frameworks (the “Con-
ceptual framework” section) and the socio-ecological

biodiversity, soil, and water—derived from empirical data and for-
est growth models (FGMs) supports adaptive management by bench-
marking indicators against policy targets and informing regulatory
adjustments. ESS,ecosystem services; LULUCF,land use, land use
change, and forestry

context outlined above, we refined the indicator system
leaning on the indicator groups defined in ISO 13065 (ISO
2015)—covering greenhouse gas emissions, water, soil, air,
biodiversity, energy efficiency, and waste—to four ecologi-
cal domains that are policy relevant and representable in
FGMs. The four groups were selected based on:

1. International acceptance: Ensuring comparability and
broad recognition.

2. Relevance to biomass: Direct applicability to sustain-
able biomass production systems.

3. Comprehensive coverage: Spanning key environmental
aspects reflected in frameworks such as DPSIR or RED IIL.

4. Applicability in certification: Demonstrated practical
relevance.

5. Alignment with other frameworks: Substantial overlap
with DPSIR and others (see Table 1).

The four environmentally relevant groups that were
chosen to inform on ecosystem service status in forests

are (see Fig. 2):

1. Carbon indicators, including wood extraction indica-
tors: Quantify forest’s contributions to greenhouse gas

@ Springer
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balances under the LULUCEF sector (including national
inventory reporting) and wood supply potentials.

2. Biodiversity indicators: Capture structural and com-
positional dimensions of forests that underpin species
diversity and resilience. Suitable proxies include tree
species composition, volume of habitat trees, and dead-
wood availability, which can be derived from inventories
and model simulations.

3. Soil indicators: Track long-term stability of carbon and
nutrient stocks, which strongly influence growth poten-
tial, carbon fluxes, and ecosystem resilience.

4. Water indicators: Capture water availability constraints
and address forest vulnerability to changing climatic
conditions, especially drought.

By focusing on these domains, the indicator set bal-
ances the ability of FGMs to generate robust, quantitative
outputs with the ecological dimensions most critical for
sustainable BE monitoring. Unlike broader sustainability
frameworks (ISO 13065, RED III), our approach prior-
itizes those indicator groups that can be directly repre-
sented in forest simulation models and evaluated against
national datasets (e.g., National Forest Inventory, soil
surveys, meteorological records).

This focus ensures that the monitoring framework adds value
beyond descriptive statistics: it allows continuous dynamic pro-
jection of forest states and services under alternative manage-
ment and climate scenarios. The chosen groups therefore opera-
tionalize an ecologically centered but model-based perspective
on monitoring, directly linking empirical and simulated infor-
mation with adaptive forest-BE governance.

Summary of selected indicators

The literature review of FGMs suitable for BE monitoring
in Germany identified commonly represented indicators
that we aligned with the indicator groups highlighted in
the “Definition of indicator groups” section. In sum, the
chosen indicators provide a comprehensive set spanning
biomass supply, carbon, biodiversity, soil, and water and
form the operational backbone of the monitoring frame-
work. The indicator set was chosen with the aim to bal-
ance forest productivity with ecosystem health, supporting
evidence-based policy and sustainable forest management
in Germany.

Table 2 summarizes these groups and specific indica-
tors, including their relevance, recommended differentiation
based on FGM outputs, suggested units, available German
datasets for calibration and benchmarking, and the number
of FGMs representing each indicator. The following sections
provide summaries of selected indicators by group. Details
from expert workshop discussions on indicator selection are
available in Supplementary Material S1.
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Economy-related indicators

Economy-related indicators quantifying wood extraction are
well established in German forestry statistics and inventories,
providing direct measures of wood supply and forest manage-
ment activity. They include wood quantities from harvest,
thinning, and salvage logging, as well as growing stock and
net stock change and help assess sustainable harvest levels to
identify risks of overexploitation under the BE transition.

FGMs consistently represent these indicators, surpassing
static yield tables by dynamically incorporating site- and cli-
mate-specific growth responses and allowing adjustments for
climate and disturbance impacts. For monitoring, differentia-
tion by species groups, or at least by broadleaf vs. needleleaf
wood, and diameter classes should be provided, with the lat-
ter providing usage-independent perspectives. Quantities are
ideally tracked in cubic meters under bark (m® u.b.) along-
side wood density data where available. Statistical data from
the German “Einschlagsriickrechnung” (Jochem et al. 2023)
and “Holzeinschlagsstatistik” (Destatis Code 41,261) facili-
tate model calibration and validation, enabling fine-scale and
long-term monitoring, but may exclude unregistered extrac-
tions, e.g., private use. In alignment with historical harvest
statistics and surveys, FGM-derived wood extraction indica-
tors should be tracked with annual resolution. Complement-
ing harvest data, the National Forest Inventory (NFI) can
provide estimates of forest growing stock, stock changes,
tree growth increment, mortality, and wood extraction at
lower temporal resolution based on a 4 x4 km resolution
and partially at 2.83 X2.83 km or 2 X 2 km. More details are
provided in supplementary material S1.2.

Carbon indicators

Carbon-related indicators are central both for tracking forest
carbon stocks and national GHG reporting under UNFCCC/
EU frameworks and for evaluating forest’s role in the BE
transition, supporting compliance with national targets. All
assessed FGMs simulate C-storage and dynamics in biomass
pools (stems, branches, leaves, roots, dead wood), support-
ing monitoring of stock dynamics influenced by harvests,
climate-related diebacks and disturbances (storms, droughts,
beetle outbreaks, fire), growth, and regeneration. Differentia-
tion by stand development phase, species group, and biomass
pool refines analysis for management and trend evaluation.

Annual indicator resolution allows capturing climate
impacts across seasonal cycles. Volume-based units are
easier to derive but can be converted to carbon units via
representative wood densities. Although carbon stored in
harvested wood products is relevant for GHG reporting, it
falls outside typical forest management influence and FGM
scope and is excluded from our framework. Further details
are provided in Supplementary Material S1.1.
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Table 2 List of proposed indicators for BE monitoring of forests
Proposed groups and Main reason for choice of Level of further differentiation ~ Units of indicators Available historical data base Implemented

indicators

indicators

for Germany

in models for
Germany
(11 models)*

1. Economy-related indicators

1.1 Wood extraction Quantification of wood

1.2 Growing stock

1.4 Gross increment

supply; indication of forest
management activities

Volume of living trees

Growth increment of living

trees

1.3 Net stock change Quantification of annual net

2. Carbon indicators
2.1 Carbon stocks in
different biomass

pools

2.2 Change of
biomass carbon
stocks

3. Biodiversity indicators
3.1 Volume of
broadleaf habitat
trees

3.2 Deadwood

volume

3.3 Simpson diver-
sity index for tree
species diversity

3.4 Gini coefficient
for structural
diversity of stands

4. Soil-related indicators
4.1 Soil carbon
stocks

stock change (increment
and establishment minus
losses due to harvest,
thinning and natural mor-
tality); indicator for forest
management intensity

Quantification for GHG
inventory reporting; indi-

cator of forest state

Quantification of annual
changes for GHG inven-
tory reporting; Indicator
of forest state

Quantification of potential
rare habitat structures;
Indicator needed for
threatened and endangered
species

Quantification of deadwood
habitats; Indicator of for-
est development stage

Quantification of a-diversity
of tree species

Quantification of structural

diversity of stands

Quantification for GHG
inventory reporting;

- Harvest, thinning, salvage

logging

- Species groups (e.g., needle-

leaf vs. broadleaf)

- Diameter classes (favorable)

or assortments (stemwood,
indusrial wood)

- Species groups (e.g., needle-
leaf vs. broadleaf)

- Diameter classes (favorable)
or assortments (stemwood,
industrial wood)

- Species groups

- Diameter classes

- Species groups

- Diameter classes

- Stems, branches, coarse roots,
leaves, fine roots, dead wood

- Species groups

- Stems, branches, coarse
roots, leaves, fine roots,
dead wood - Species groups

Broadleaf trees > 60 cm dbh

Deadwood class and orientation
(standing, lying)

Calculation based on basal area
of species at plot-level; mean
value, 10%-quantiles etc. per
year; multi-panel histograms

Calculation based on basal area
of size classes at plot-level;
mean value, 10%-quantiles
etc. per year; multi-panel
histograms

[m3 0.b.>7 cm dbh] or [m?
0.b.>7 cm dbh ha™'] values
can also be expressed u.b.

[m? 0.b.>7 cm dbh] or [m?
0.b.>7 cm dbh ha™']

[m? 0.b.>7 cm dbh] or [m?

0.b.>7 cm dbh ha™']

[m? 0.b.>7 cm dbh] or [m?

0.b.>7 cm dbh ha™']

[tClor [tCha™]

[tCyear '] or [tC
ha™! year'l]

[m? 0.b.> 60 cm dbh] or
[m? 0.b.> 60 cm dbh ha™!]

[m? 0.b.] or [m® 0.b. ha™!]

Index

Index

[tClor [tCha™"]

Einschlagriickrechnung
(Jochem et al. 2023);
NFI, Destatis Holzein-
schlagsstatistik
(Code 41261)

National forest inventories
(https://bwi.info)

National forest inventories
(https://bwi.info)

National forest inventories
(https://bwi.info)

National GHG Reporting
(UBA 2024), National
forest inventories
(https://bwi.info)

National GHG Reporting
(UBA 2024), National
forest inventories
(https://bwi.info)

National forest inventories
(https://bwi.info)

Potentially by the analysis of
national forest inventory
data (https://bwi.info)

Potentially by the analysis of
national forest inventory
data (https://bwi.info)

National forest soil survey
(Bodenzustandserhebung;
FAO; IIASA; ISRIC;
ISSCAS; JRC 2009);
ISRIC-WISE; HWSD
(Harmonized World Soil
Database)

Harvest: 10/1/0

Thinning: 10/1/0

Salvage logging:
4/2/5

6/5/0

6/5/0

6/5/0

11/0/0

11/0/0

5/2/4

7/1/3

1/5/5

3/3/5

8/172
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Table2 (continued)

Proposed groups and
indicators

Main reason for choice of
indicators

Level of further differentiation

Units of indicators

Available historical data base Implemented

for Germany

in models for
Germany
(11 models)*

4.2 Changes in soil
carbon stock

4.3 Soil nitrogen

4.4 Changes in soil
nitrogen

5. Water indicators

Annual water
deficit (aET/pET),
combined with

Quantification of annual
changes for GHG inven-
tory reporting;

Quantification of site pro-
ductivity; nitrogen loads/
deposition; N,0O emission

Quantification of changes in
site productivity; nutrient
loads/nitrogen deposition;
N,O emission, nitrate

leaching

Quantification of annual
drought stress

Calculation at plot-level; mean
value, 10%-quantile etc. per
year; multi-panel histograms

[tC year’l] or [tC
ha™! year™']

[tN]or [t N ha™']

[tN yr’l] or [tN ha™! year’l]

[mm/mm]

National forest soil survey
(Bodenzustandserhebung),
National GHG Reporting
(UBA 2024)

Ballabio et al. 2019; emep
2018; Schaap et al. 2018;
ISRIC 2017

Ballabio et al. 2019; emep
2018; Schaap et al. 2018;
ISRIC 2017

Can be derived from data
provided by German
Weather Service (DWD)

8/1/2

4/0/7

4/0/7

3/2/6

stand basal area
and usable field
capacity

*Explanation of model counts: Out of 11 models (4C, EFISCEN-space, EFISCEN 4.1, FABio-Forest, FORMIND, FORMIT-M, Landscape-
DNDC, LPImL-FIT, LPJ-GUESS, Thiinen Matrixmodel, WEHAM; see Supplemental Material S 2.1), x models have available output/possible
but no output yet/not possible, e.g., 8/1/2; 0.b., over bark; w.b.,under bark; aET/pET, actual to potential evapotranspiration

Biodiversity indicators

Biodiversity is not a key focus of FGMs. Nonetheless, they
can capture partial but informative proxies. Structural and
compositional indicators such as tree species diversity, size
distribution, habitat trees, and deadwood volume are recog-
nized as meaningful for assessing habitat quality and resil-
ience. Among the eleven assessed models, five provide out-
puts on habitat tree potential, seven on deadwood, and several
allow derivation of diversity metrics such as Simpson’s index
(one model with available output, five with potential to cal-
culate it but no output yet) or Gini coefficients (three models
with available output, three with potential but no output yet;
see Table 2). Suggested quantitative units for monitoring indi-
cators include wood volume per species or species group (m?),
or basal area (m?), with a differentiation by species, size, and,
for deadwood, decay class and orientation where possible.

Suitable temporal resolutions for biodiversity indica-
tors are annual or longer, reflecting the typically slow
changes in forest composition and biodiversity, except
under disturbance events. The proposed model-based prox-
ies align with national and EU biodiversity policy needs
(e.g., Nature Restoration Law) and complement empirical
data from the NFI. While not comprehensive, they provide
operational entry points for linking forest management and
biodiversity outcomes. More details from expert discus-
sions are provided in Supplementary Material S1.3.
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Soil-related indicators

Forest soils provide vital ecosystem services by regulat-
ing carbon, water, and nutrient cycles. Soil carbon stocks
often represent a significant portion of total forest carbon
(Griineberg et al. 2019). Currently available national soil
inventories provide snapshots of soil-related indicators,
albeit at low temporal resolution, highlighting the value of
continuous model-based projections. Most process-based
and some empirical FGMs can simulate soil carbon stocks
and their dynamics with varying degrees of process simpli-
fication. These indicators have policy relevance for GHG
reporting and ecosystem resilience assessments. Suggested
indicator units for monitoring are t C, tons C ha!, tons C
year !, and tons C ha! year .

Compared to soil carbon aspects, the representation of
soil nutrient cycles in FGMs is less consistent but could
provide indicators to quantify nutrient constraints on pro-
ductivity, site-specific N-loads, and the risk of N,O emis-
sions and nitrate leaching. C/N ratios can derive insights
on decomposition, organic matter quality, and microbial
activity. Currently, nitrogen dynamics is only included
in a minority of the assessed FGMs, while phosphorus
and biological processes are even less commonly rep-
resented. Analogous to carbon, monitoring of nutrient
stocks and fluxes should use mass-based units (e.g., t ha!,
t ha! year!), enabling aggregation at regional or national
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scales. Standardized reference soil depths are necessary
for comparability. Challenges related to soil indicators dis-
cussed during expert evaluation are provided in detail in
Supplementary Material S1.4.

Water indicators

Water availability and drought stress influence forest growth,
productivity, mortality, C-sequestration, and species com-
position and are increasingly important for assessing forest
resilience under climate change. Water availability depends
on climatic conditions, stand properties, and soil characteris-
tics including rooting depth, soil texture, organic matter con-
tent, and compaction. Suggested monitoring indices include
the Standardized Precipitation Evapotranspiration Index
(SPEI, Vicente-Serrano et al. 2010) and the ratio of actual
to potential evapotranspiration (annual water deficit, aET/
pET), which additionally accounts for plant water processes.

Using meteorological input data from weather stations or
climate models external to FGMs in combination with input on
soil characteristics, a subset of process-based FGMs can simu-
late water balances and evapotranspiration dynamics, while
the assessed empirical models currently lack this capacity.
Indicators such as annual water deficit (aET/pET) or stand-
ardized drought indices can therefore be derived in some cases.
Indirect proxies hinting on water stress potential include stand
basal area or stand density and structure, combined with infor-
mation on species composition and site-specific environmental
conditions. Suggested temporal resolutions for water indica-
tors range from growing season to annual. Further background
information from the expert exchange on water-related indica-
tors is provided in Supplementary Material S1.5.

Suitability of Forest Growth Models, indicator
representation by models, and historical data
availability

We identified eleven FGMs suitable for forest BE monitor-
ing in Germany (see Supplementary Material S2.1), includ-
ing eight process-based models (4C, EFISCEN-space,
EFISCEN 4.1, FORMIND, FORMIT-M, LPImL-FIT,
LPJ-GUESS, LandscapeDNDC) and three empirical ones
(FABio-Forest, WEHAM, Thuenen matrix model). Most
models simulate forests at high spatial resolution (stand or
tree level), except the Thuenen matrix model, which aggre-
gates National Forest Inventory (NFI) data. The degree of
indicator representation and approaches how models cover
the selected indicators vary considerably.

All FGMs provide robust representation of wood extrac-
tion and forest growth, supporting indicators such as wood
harvesting, net stock change, and biomass carbon pools
(see Table 2). Most models simulate detailed biomass com-
partments (stems, branches, bark, leaves), with deadwood

outputs varying among models. Salvage logging is explic-
itly modeled by five FGMs. Historical data for these indi-
cators are available from established databases (Jochem
et al. 2023), Holzeinschlagsstatistik (Code 41,261), the NFI
(https://bwi.info), and the German National GHG Inventory
(UBA 2025; Table 2).

Carbon indicators, central to GHG accounting, are well
covered and scalable to national levels. Temporal resolution
differs across models, affecting comparability for long-term
projections or detailed analyses. Where possible, models
with sub-annual or lower-than-annual temporal resolution
should aggregate or interpolate their results to annual values,
as required for integrated BE monitoring.

In contrast, biodiversity indicators are less comprehensively
represented. Only five FGMs provide output for the volume
of broadleaf habitat trees (DBH > 60 cm), and seven cover
deadwood volume, while advanced metrics (e.g., Simpson’s
diversity index, Gini coefficient) are seldom directly available.
Historical data exist through the NFI but lack annual resolution.

All process-based FGMs simulate soil C-stocks, while
empirical models provide limited coverage. Only four
process-based FGMs simulate soil nitrogen dynamics,
with varying detail. National soil carbon inventories occur
approximately every 15 years (National forest soil survey,
Thiinen-Institut 2024), compensated partly by models such as
Yassol5 (Viskari et al. 2020) used for the German National
GHG Inventory (UBA 2023).

Process-based FGMs simulating carbon assimilation
and water balance based on climatic and soil inputs can
provide water-related indicators. Three process-based
FGMs directly supply seasonal or annual evaporative
index (i.e., aET/pET), two more can potentially derive it.
The empirical FGMs lack soil water dynamics simulation
and cannot provide this indicator. Accurate modeling of
soil water dynamics—including infiltration, percolation,
plant water uptake, and evaporation—ideally requires sub-
daily or at least daily time steps. For monitoring, appro-
priate aggregation periods—annual, growing season, or
critical months (e.g., June—August for drought/mortality
analysis)—depend on specific objectives.

Overall, FGMs effectively represent wood supply and car-
bon pools, yet significant gaps remain for comprehensive
biodiversity, soil nutrient, and water indicators.

Discussion and conclusions

Applicability and scope of the conceptual
framework

The opportunities and challenges of the transition to a cir-

cular BE require a robust monitoring framework to ensure
sustainable development (Hagemann et al. 2016; Thrin
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2022; Zeug et al. 2021). Our study addresses this need by
proposing a model-based monitoring framework for the Ger-
man forest sector that aims for a quantitative assessment of
ecosystem conditions with ecological indicators aligned to
national and international bioeconomy strategies. In addi-
tion, the proposed conceptual framework should be appli-
cable to other countries with available FGMs capable of
providing relevant BE monitoring indicators. However, spe-
cific indicators may require adjustment to reflect the unique
policy objectives, ecological contexts, data availability, and
capabilities of FGMs in each country.

The framework is deliberately focused on forest ecosys-
tem states, emphasizing indicators related to wood produc-
tion, carbon, biodiversity, soil, and water. While this eco-
logical orientation ensures strong compatibility with forest
growth models (FGMs) and allows projection of climate
adaptation and mitigation impacts through model scenarios,
corresponding socio-economic aspects such as trade flows,
employment, and market dynamics cannot be represented
within the current system boundaries. Similarly, allocation
of harvested wood products to material or energy use lies
largely outside the scope of FGMs. However, model outputs
generated by FGMs can serve as valuable input for down-
stream assessments, including lifecycle analysis (LCA) and
linkage to the broader BE value chain (e.g., D’Amato et al.
2020).

Given this scope, the framework is most suited to inform-
ing policy and strategic forestry decisions that address broad
objectives—such as sustainable harvesting regulations, cli-
mate mitigation targets under the LULUCEF sector, or biodi-
versity conservation—but less useful for detailed operational
management. Moreover, evaluating policies shaped primar-
ily by socio-economic mechanisms requires integration with
additional models and datasets beyond the ecological focus
of FGMs.

This limitation opens possibilities for complementing
our approach with broader monitoring instruments that
capture economic and governance dimensions. Previous
work highlights the utility of LCA, monetary valuation of
ecosystem services, and governance indicators in assess-
ing the wider sustainability of the bioeconomy (Bouma
and van Beukering 2015; Koetse et al. 2015; Whitehead
et al. 2008). Incorporating these perspectives would enrich
the assessment of trade-offs and synergies between eco-
logical sustainability, economic performance, and societal
well-being.

In sum, while the proposed framework does not com-
prehensively cover the entire bioeconomy, it provides a
structured and model-based foundation for monitoring eco-
logical dimensions. Strengthening interdisciplinary linkages
and integrating complementary approaches will be key to
addressing socio-economic gaps and ensuring the long-term
policy relevance of forest-based BE-monitoring.
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Representation of indicator groups in Forest Growth
Models, evaluation against selection criteria,
and potential applications

We designed our monitoring framework to provide a model-
based assessment of the forest-based bioeconomy (BE) in
Germany. Indicator selection was guided by their policy
relevance, data availability, measurability, and compatibil-
ity with forest growth models (FGMs), as outlined in the
“Criteria for selecting suitable indicators for forest-based
bioeconomy monitoring” section. FGMs necessarily sim-
plify complex ecosystem processes. Their outputs should
therefore be interpreted with an understanding of underlying
assumptions and uncertainties, supported by model com-
parisons, ensemble simulations, and rigorous uncertainty
analyses. Robust application also depends on high-quality
empirical data for model initialization, calibration, and vali-
dation. Below, we discuss how well FGMs represent indica-
tor groups, evaluate indicators against selection criteria, and
outline potential applications of each indicator group.

Economy-related indicators

As highlighted in previous sections, all analyzed FGMs are
principally oriented towards wood production indicators, pro-
viding robust simulations for sustainable yield management,
trend detection, and policy support. These indicators, includ-
ing harvest volume and standing stock stratified by species and
dimensions, align with international reporting standards and the
ecological focus of the presented monitoring framework (see
also (Barreiro et al. 2016; Blujdea et al. 2021). Importantly,
FGMs advance beyond traditional yield tables by capturing the
dynamic effects of mixed and uneven-aged stands and climate
variability, enhancing the accuracy of projections in scenarios
such as those underpinning Germany’s “Climate-adapted Forest
Management” compensation schemes.

The strong compatibility with empirical forest inven-
tory data underpins their value for long-term policy evalu-
ation, but also delineates the boundaries of this approach,
which currently excludes broader economic indicators
like value-added generation, employment effects, and
market mechanisms—a limitation that becomes evident
by comparison to the studies of Jose et al. (2023) and
Kalogiannidis et al. (2022). Closing this gap requires inte-
gration with economic and social datasets and modeling
approaches outside the scope of ecological FGMs. Thus,
the effective application of economy-related indicators
represents both a strength and a constraint of FGM-based
bioeconomy monitoring.

Overall, while the current scope provides actionable,
measurable indicators crucial for national and EU sustain-
ability strategies, existing FGMs should be complemented
by economic models and interdisciplinary tools to capture
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the full spectrum of the forest-based bioeconomy (Bouma
and van Beukering 2015; Koetse et al. 2015).

Carbon indicators

Carbon and biomass indicators are core variables in FGMs,
essential for modeling forest growth and ecosystem dynam-
ics (Barreiro et al. 2016; Blujdea et al. 2021; Zald et al.
2016). They are consistently represented, though models
vary in spatial and temporal resolution, species coverage,
and biomass compartment detail. This broad representa-
tion enables inter-model comparison, supports uncertainty
assessment, and builds confidence where results converge.
Carbon indicators are central to national and EU green-
house gas (GHG) accounting and reporting. In Germany,
reporting under the UNFCCC relies on the National Forest
Inventory (NFI), yet its decadal cycle leaves gaps after the
most recent 2022 survey. FGMs can bridge these gaps by pro-
jecting annual forest growth and carbon stock changes based
on emerging climate data series, supporting timely and more
accurate forest GHG reporting aligned with the EU LULUCF
Regulation (EU 2018) and national climate protection targets.
Model-derived carbon indicators also meet SMART cri-
teria: they are specific (biomass pools), measurable (e.g., t
Cha ! year!), and directly linked to inventories and report-
ing systems. Data availability is strong, models capture key
pools such as stems, branches, and deadwood, and outputs
are well suited for scenario analysis. Their policy relevance
is high, as they feed directly into LULUCF and UNFCCC
instruments. A notable limitation is the omission of har-
vested wood products (HWP) and downstream life-cycle
impacts, which remain outside the scope of most FGMs and
require complementary approaches for a full carbon balance.

Biodiversity indicators

Biodiversity spans multiple spatial scales (alpha, beta, gamma
diversity) and taxonomic, genetic, and functional dimensions,
which interact with geodiversity (Read et al. 2020; Scholes et al.
2008). Identifying robust and policy-relevant indicators at national
scales therefore remains challenging (Geijzendorfter et al. 2016;
Navarro et al. 2017). Rare forest structures support threatened
species and unique functions (Leitdo et al. 2016; Mouillot et al.
2013), while higher structural and functional diversity strengthens
ecosystem resilience under stress through complementarity and
facilitation (Niklaus et al. 2017; Trogisch et al. 2021). Germany’s
shift from Norway spruce monocultures to mixed-species forests
exemplifies synergies between climate adaptation, carbon storage,
and biodiversity protection (Portner et al. 2021).

FGMs face limitations in representing complex functional
diversity, fungal, faunal, and understory communities, and
landscape connectivity due to simplified ecological processes
and model resolutions (Blanco and Lo 2023; Lexer et al.

2000; Leidinger et al. 2021; Puumalainen 2001). However,
measurable proxy indicators compatible with FGMs, such as
deadwood volume, vertical heterogeneity, tree species com-
position, and management intensity, are recognized practical
biodiversity indicators in European forestry, provide action-
able stand-level insights, are available from inventories, and
are already established in monitoring frameworks (Feld et al.
2010; Oettel and Lapin 2021; Read et al. 2020; Scholes et al.
2008; Cosovié et al. 2020). Large broadleaf tree abundance
(e.g., diameter > 60 cm) can serve as a proxy indicator for rare
microhabitats in German forests (Paillet et al. 2019; Spinu
et al. 2022), and associations between tree species compo-
sition and non-woody taxa allow for indirect assessment of
broader ecosystem diversity (Schneider et al. 2021).

The chosen biodiversity indicators can support goals of
the EU Biodiversity Strategy and EU Green Deal targets
(EC 2024), which require systematic reporting on ecosystem
condition and restoration progress. They meet SMART prin-
ciples insofar as they are specific, measurable, and opera-
tional for monitoring and modeling, providing quantifiable
information relevant for restoration efforts and identification
of synergies with climate protection and adaptation policy
decisions. Yet, current proxies only partially cover the ambi-
tions of advanced biodiversity strategies. Future frameworks
will need integration of complementary datasets, cross-scale
monitoring, and novel methods to close existing gaps.

Soil indicators

Soil modules in FGMs can consistently represent indica-
tors for carbon pools and fluxes. Model-based indicators are
measurable, reported in national inventories, and directly rel-
evant for GHG accounting. In Germany, the Yasso model is
already applied to estimate carbon emissions and removals
from mineral forest soils (Viskari et al. 2020; UBA 2025),
but soil carbon indicators are also central to emerging policy
frameworks, including the proposed EU Soil Monitoring Law
and the revised LULUCF Regulation from 2023, which man-
date higher-tier reporting. By providing annual projections of
soil carbon, FGMs can move beyond default emission factors.
However, FGMs simplify soil process representation for
feasibility, which can cause major sources of uncertainty,
for example in flux assessments (Vereecken et al. 2016).
Moreover, pronounced spatial heterogeneity and uncertain-
ties in underlying databases used for model initializations,
which often require interpolation for continuous coverage,
can further obscure climate impact signals (Lark and Bolam
1997; Nachtergaele et al. 2012; Folberth et al. 2016).
Nutrient dynamics, particularly nitrogen, influence tree
growth, decomposition, nitrate leaching, and N,O emissions.
Rising deposition since the nineteenth century and synthetic
fertilizer use since 1913 have intensified N-related risks
(Lamarque et al. 2013; Pretzsch et al. 2014). Monitoring soil
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N status thus is central to the critical loads concept (Aazem
et al. 2022), and N-cycling is linked to key ecosystem ser-
vices (Costanza et al. 1997; Kooch et al. 2022). Yet, nutrient
cycling is only partially represented in FGMs, with limited
estimates of productivity effects or leaching risk.
Phosphorus dynamics, soil biological activity, and soil
organism diversity receive even less attention and remain
largely outside model scope. Consequently, soil indicators
only partially fulfill SMART criteria: carbon pools are spe-
cific and measurable, whereas nutrient and biological dimen-
sions are incomplete. Data availability and resolution are
sufficient for carbon but remain weak for N and P. Thus,
while FGMs provide actionable, policy-relevant insights for
soil carbon, the integration of nutrient and biological indi-
cators lags behind, constraining their use for monitoring of
soils as multifunctional, biodiversity-supporting systems.

Water indicators

Climate change increases the need for water indicators, exem-
plified by the widespread Norway spruce dieback during the
2018-2022 droughts (Knapp et al. 2024; Anders et al. 2024).
Water availability is a key predictor of drought-induced
mortality and growth decline, with implications for carbon
stocks, harvest potential, and linkages to carbon and nutrient
cycling. Accordingly, water indicators are increasingly rel-
evant to inform the development of adaptation and resilience
strategies, such as forest conversion to more diverse stands,
which is expected to generate co-benefits for water regula-
tion (Obladen et al. 2021). Additional management interven-
tions such as adjusted thinning can mitigate drought stress by
reducing stand density while maintaining canopy microcli-
mate (Bradford et al. 2022; Meyer et al. 2022).

Water indicators are challenging, as high temporal vari-
ability makes drought frequency and duration often more
critical than integrated annual water deficits (Lazoglou
et al. 2024). Aggregation to national or annual scales tends
to obscure such variability and complicates interpretation.
Moreover, soil properties, including depth, porosity, texture,
and organic matter content, strongly influence water avail-
ability (Minasny et al. 2021; Nemes and Rawls 2004; Saxton
and Rawls 2006), and uncertainties in soil datasets directly
affect indicator reliability (Bagnall et al. 2022). Process-
based models can partially capture soil-plant-atmosphere
interactions (Blyth et al. 2011; Fatichi et al. 2012) when
explicitly representing transpiration, evaporation, percola-
tion, and runoff (Bonan et al. 2014). Empirical FGMs cur-
rently lack water indicator representations. A particular
difficulty remains the estimation of actual evapotranspira-
tion (aET), as model outputs often depend on site-specific
conditions.

@ Springer

Against SMART and policy criteria, water indicators
align well with priorities on drought and adaptation. Spe-
cific indices, such as aET/pET ratios, are interpretable where
data permit. However, quantifiability is limited due to model
representation and data constraints. Actionability is high in
targeted applications, such as drought risk assessment or
management planning, but diminishes at broader scales due
to temporal and spatial variability.

Research and development needs

Advancing forest growth models (FGMs) for bioeconomy
monitoring requires interdisciplinary development and
modular integration with complementary ecological mod-
els. Current FGMs are primarily designed for tree- and
stand-level dynamics, with limited coverage of non-woody
plants, fungi, fauna, and functional diversity. Coupling
FGMs with models such as BERN and ForestDNDC, as
demonstrated by Nagel et al. (2010), can broaden biodiver-
sity and biogeochemical representation. Integrating simu-
lations of mycorrhizal contributions to C- and N-cycling
(Meyer et al., 2010) and ectomycorrhizal roles in P-cycling
(Bortier et al. 2018; Nakhavali et al. 2022; Thum et al.
2019) provides promising modular pathways to improve
functional indicator coverage.

Progress in soil indicator representation is contin-
gent on incorporating detailed nutrient process rep-
resentations, including N-cycling and in particular
P-cycling, which remains simplified or absent in many
models. Incorporation of soil biological activity indi-
cators, encompassing faunal and microbial interactions
(Komarov et al. 2017), will require more frequent, spa-
tially resolved measurements to develop model represen-
tations of these aspects.

Water indicators, especially drought-related metrics
and actual-to-potential evapotranspiration (aET/pET), are
increasingly critical under climate change (Knapp et al.
2024; Anders et al. 2024; Fischer et al. 2025). Empirical
FGMs not representing water indicators should be devel-
oped towards representation of water aspects, and the pro-
vision of high-resolution water indicators in process-based
FGMs should be standardized to facilitate inter-model
comparability. Priority research should also target indica-
tors of forest resilience and adaptation, integrating climate
extremes, legacy effects of past events, or sensitive pheno-
logical stages (Zhang et al. 2025).

Technological advances, from UAV/LIDAR remote
sensing to big data analytics and Al/machine learning, can
improve model calibration, detect new patterns, and inte-
grate large heterogeneous datasets to enhance predictive
capabilities of FGMs (Minunno et al. 2025). Incorporation
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of such approaches will allow FGMs to evolve with ongoing
advances in Earth observation and computational capacities.
Further cross-cutting needs also include standardization of
monitoring indicators across FGMs to enable comparability
and synthesis, since no single model can cover all indica-
tors and effort joining will be beneficial. Regular calibration
and validation against empirical data should be institutional-
ized, using forest inventory updates, new soil surveys, and
remote sensing to continually refine model initialization and
parameterization.

Finally, the societal relevance of indicator-based mon-
itoring rests on stakeholder participation and transpar-
ency. Feedback from forest owners, policymakers, sci-
entists, and the public into monitoring and management
processes is essential, especially for translating large-
scale monitoring results into locally relevant recommen-
dations that address differing site conditions and vulner-
abilities. In this context, the recreational value of forests
and regulating services such as air quality improvement,
currently not represented by FGM-based indicators, are
legitimate components of the forest-based BE, broad-
ening its societal legitimacy and relevance (TEEB DE
2016). Establishing a platform for regular updates and
transparent communication of FGM-based monitoring
indicators will be central to ensuring acceptance and
long-term impact.

In sum, advancing research and development for an indi-
cator-based forest BE monitoring framework will benefit
from interdisciplinary model coupling, better soil and water
process representation, standardized outputs, improved data
infrastructures, integration of emerging technologies, and
continuous stakeholder participation. Given such efforts,
FGMs can underpin a robust, adaptive monitoring system
responsive to future policy and climate challenges.
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