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Introduction

The analysis of nonlinear dispersive partial differential equations is a large and rich field
within mathematics. It has encountered decisive breakthroughs in the past decades, based
on methods from harmonic and nonlinear analysis. Important examples of such systems
include the nonlinear wave, Schrödinger, and Maxwell equations, but also water-wave
models like the Korteweg–de Vries (KdV) equation, cf. [71]. The nonlinear wave equation
for instance models a vibrating object with state-dependent force. On the other hand, the
nonlinear Schrödinger equation serves as an important amplitude equation in nonlinear
optics, see [69].

In a dispersive equation, waves with different frequencies tend to travel at different
velocities or in different directions. This makes the solution disperse in space as time
evolves. At the same time, in the core examples conserved quantities such as mass or
energy are available. This is in contrast to diffusive equations such as the heat equation,
which exhibit energy dissipation over time.

The wellposedness of nonlinear dispersive equations has been intensively investigated.
This means existence and uniqueness of solutions, as well as continuous dependence
on the data. To study the long-time behavior as well, it is important to have a good
wellposedness theory in a low-regularity setting, meaning the case when the initial data
come from a function space only requiring a small amount of differentiability, possibly
even allowing discontinuities. This is because the natural conservation laws are often
associated with such spaces. As opposed to diffusive equations such as the heat equation,
no smoothing of the initial data can be expected for fixed times, in general. In the
context of dispersive equations, Strichartz estimates play an important role. Based on
dispersion, they control spatial integrability beyond the estimates following from the
energy and Sobolev inequalities. These estimates were first formulated in [68] and later
generalized in, e.g., [23, 46]. They are very well suited to treat power-type nonlinearities,
and often enable a comprehensive wellposedness theory in situations that would hardly be
accessible by other methods, for instance at the level of finite-energy solutions in several
spatial dimensions. Bilinear refinements of Strichartz estimates are also of interest, such
as null form estimates for the wave equation, which exploit cancellations in the nonlinear
frequency interactions between waves, cf. [48]. An estimate of that type (with a rather
elementary proof) does even exist for the one-dimensional wave equation, which is not a
truly dispersive problem.

For nonlinear differential equations, explicit and practically computable solution
formulas are not available in most cases. Therefore, one often relies on numerical
approximations. If a time-dependent equation separates into a sum of sub-problems that
could be solved efficiently individually, splitting methods are often attractive, see [30, 51]
for an overview. The simplest of those schemes is the Lie splitting. Here, we perform
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one time step of the first sub-problem followed by one step of the second sub-problem
to approximate one time step of the full problem. A natural improvement is the Strang
splitting, where one time step of the full equation is approximated by first computing a
half step of the first sub-problem, then a full step of the second sub-problem, and finally
again a half step of the first sub-problem. Due to its symmetry, the Strang splitting is
formally more accurate than the Lie splitting. Splitting methods often enjoy favorable
geometric properties, cf. [27].

In this work we focus on semilinear equations, meaning that the equation separates
into a linear and a nonlinear part, where the highest-order derivatives appear exclusively
in the linear part. A time-stepping scheme which treats the linear part exactly is referred
to as an exponential integrator, see [28] for an overview on this topic. Such methods are
particularly suitable for partial differential equations with periodic boundary conditions
in space, since the spatial discretization by means of the Fourier (pseudo)-spectral method
enables an efficient computation of the linear propagator. Splitting methods belong to
the class of exponential integrators in the case when one of the sub-problems is linear
and is treated exactly.

The error analysis of exponential integrators applied to nonlinear dispersive equations
is challenging. The seminal paper [50] established second-order convergence of the
Strang splitting applied to the cubic Schrödinger equation. The analysis in that paper
requires high smoothness, in particular, bounds on four spatial derivatives of the solution.
Numerical experiments suggest that this is more than a technical issue, since order
reduction is generally observed if the regularity requirements are not fulfilled. Hence,
it is interesting to investigate which (possibly fractional) convergence rates can still be
proven if the solution is only assumed to belong to a less regular space. Such an analysis
was done, e.g., in [18] in the context of splitting methods for the semilinear Schrödinger
equation and in [22] for exponential integrators applied to the one-dimensional semilinear
wave equation, respectively.

The error analysis in the above works heavily relies on tools such as energy estimates
and Sobolev embeddings. However, as it is the case for the wellposedness theory, such
“classical” inequalities are often insufficient if the regularity is very low, e.g., at energy
level. Therefore, it is natural to exploit variants of the tools used in the wellposedness
theory at low regularity also in numerical analysis, such as versions of Strichartz estimates
that are discrete in time and/or space. In the literature, this has been investigated mainly
for Schrödinger equations so far.

Since the regularizing effect described by Strichartz estimates only exists when time is
averaged, straightforward analogues of these inequalities that are discrete in time but
continuous in space fail, in general. One way to still obtain such results is to include
smoothing operators such as frequency filters. This approach was pursued in the works
[36, 53]. The resulting discrete-time Strichartz estimates were then used to obtain error
bounds for time discretizations of nonlinear Schrödinger equations on Rd, see also [15,
17]. In [41, 52, 54], the case of periodic boundary conditions was treated by also using
discrete Bourgain spaces.

On the other hand, Strichartz estimates which are continuous in time but discrete in
space have been studied as well. The papers [38, 39, 40] analyze the impact of a spatial
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discretization by means of finite differences on the dispersive behavior of the Schrödinger
equation. It turns out that the dispersive estimates are not preserved uniformly in the
discretization parameter, and several modifications of the discretization procedures are
proposed to recover the full dispersion. Fully discrete approximations are also considered
in [37]. In more recent works [31, 32, 33, 34], uniform Strichartz estimates with derivative
loss are shown for finite difference discretizations of the Schrödinger equations on the full
space Rd as well as on the torus Td. The corresponding problem for the multi-dimensional
wave equation seems to be more difficult and much less is known, cf. [16].

Another related branch of research that recently gained a lot of attention in the
literature is the construction and analysis of low-regularity integrators. In settings of low
regularity, these tailor-made time discretization schemes can outperform more classical
exponential integrators thanks to an improved local error structure which requires less
regularity. The construction of these methods typically relies on the embedding of
nonlinear frequency interactions into the numerical scheme. The first integrators of this
type were proposed in [29] and [55] for the KdV and semilinear Schrödinger equations,
respectively. For the semilinear wave equation, such a scheme was developed in [49]. It is
natural to exploit Strichartz-like estimates for the error analysis of these methods, as it
was first done in the articles [53, 54] for the nonlinear Schrödinger equation. See also,
e.g., [9, 14, 20, 59] for further important contributions in the context of low-regularity
integrators, and [60] for a survey article.

Content of this thesis
The first part of this thesis contains the preprint [62] with minor modifications. However,
the analysis of the second-order scheme in Section 2.2 and the associated numerical
experiments in Section 2.3 are new.

The second part includes an extended version of the preprint [61]. It has been
generalized in several respects, e.g., we treat fractional powers inside the nonlinearity.
Moreover, we added the derivation of discrete-time Strichartz estimates on R3 and the
analysis for the scaling-critical quintic equation, both based on our published paper
[63]. This concerns Sections 5.1–5.2, 7.6, and parts of Section 6.1 of this thesis. As a
new feature, the analysis of the critical defocusing equation on the full space has been
extended to a global-in-time result, including scattering of the numerical solution.

We generally concentrate on the error analysis of discrete-time approximations, often
working in a semi-discrete setting with continuous space. The second part of this thesis
also contains error bounds for full discretizations by means of the Fourier pseudo-spectral
method.

Part I. Improved error estimates for low-regularity integrators using
space-time bounds
In the first part of this thesis, we analyze three known low-regularity integrators. These
are the first- and second-order methods for the semilinear Schrödinger equation from [55]
and [9, 56, 59], respectively, as well as the second-order scheme for the semilinear wave
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equation from [49]. We show that they converge with their full formal orders in certain
situations in which previously only reduced convergence orders were known. Here we
concentrate on the one-dimensional equations with periodic boundary conditions. The
general strategy of proof is the same in all cases. We first derive a suitable representation
of the local error. In a second step, the sum of the local error terms is optimally estimated
exploiting a known equation-specific space-time inequality for the solution. Here we
only use the estimates for continuous time, since discrete-time estimates often involve a
loss, see [53, 54, 63]. For the Schrödinger equation, we apply the periodic L4 Strichartz
inequality. In the case of the wave equation, we use a null form estimate, which seems
to be a new tool in numerical analysis. The proof of the error bound is then completed
in a classical way by a discrete Gronwall argument. Hence, our proof strategy is very
flexible, also applicable to higher dimensions, and could possibly be adapted to show
error bounds also for other equations and integrators. In this part, we only analyze the
temporal semi-discretization, but expect that an extension to a fully discrete setting is
possible.

Part II. Error analysis of the Strang splitting for 3D semilinear wave
equations with finite-energy solutions

The semilinear wave equation ∂2
t u− ∆u = ±|u|α−1u is one of the most important model

problems for dispersive behavior. Its analytical properties are well understood, see [66,
71]. In view of the energy equality, H1 (or its homogeneous version Ḣ1) is the most
natural regularity level for solutions u(t) and data. On 3D domains, in the case of powers
α ∈ (1, 3], one can investigate wellposedness by means of the standard tools of evolution
equations, whereas the treatment of the case α ∈ (3, 5] is based on dispersive properties.
To our knowledge, in numerical analysis the latter situation has not been studied in this
setting previously.

In the second part of this thesis, we treat a variant of the Strang splitting for the time
integration of the semilinear wave equation on the full space R3 as well as the three-
dimensional torus T3 under a finite-energy condition. In the case of a cubic nonlinearity,
we show almost second-order convergence in L2 and almost first-order convergence in the
energy space. For the energy-critical quintic nonlinearity, we show first-order convergence
in L2 and convergence without rate in the energy space. To our knowledge, this is the
first error analysis performed for a scaling-critical dispersive problem (together with our
analysis of the Lie splitting in [63]). Notably, our analysis for the critical defocusing
problem on the full space is even global in time. In the case of powers α ∈ (3, 5), the
proven convergence rates are the “interpolated values” of the cases α = 3 and α = 5.
For the torus case, corresponding error bounds for a full discretization using the Fourier
pseudo-spectral method in space are also given. Finally, we discuss a numerical example
indicating the sharpness of our theoretical results.

We do not treat a low-regularity integrator such as the corrected Lie splitting (which
was also considered in our earlier work [63]) in this part of the thesis. The reason for
this is that we were not able to show superior convergence behavior of the corrected
Lie splitting compared to the Strang splitting in the 3D case with finite-energy data.

4



Introduction

Therefore, we stick to the more classical Strang splitting for our analysis.

Compared to the existing literature on time discretizations of semilinear wave equations
in low-regularity regimes, we do not impose a global Lipschitz assumption on the
nonlinearity as in, e.g., [13, 49]. Moreover, in contrast to the works [10, 22] (and also
our Part I), there is no uniform space-time L∞-bound on the solution u available, since
in three dimensions the Sobolev embedding Hs ↪→ L∞ requires s > 3/2, but we only
assume H1 regularity of u.

A main ingredient in our error analysis are continuous- and discrete-time Strichartz
estimates. It would be generally favorable to use exclusively the continuous-time Strichartz
estimates as in Part I. However, in the case of higher powers α > 3, Strichartz estimates
in discrete time are needed to ensure the boundedness of the numerical approximations.
Therefore, a longer chapter of this part is dedicated to the derivation of the needed
estimates in discrete time. We first show them on the full space R3. The corresponding
inequalities on the torus T3 are then deduced exploiting the finite propagation speed
of the wave equation. To show error bounds of order greater than one in the cases
α ∈ [3, 5), we also make use of the integration and summation by parts formulas to
exploit cancellations in the error terms. Here we follow ideas from [10], though they have
to be carefully adapted to fit to the Strichartz estimates (which were not needed in [10]
due to higher regularity assumptions). We treat the subcritical and energy-critical cases
separately. The latter one does not require the use of summation by parts since only a
first-order error bound is shown. However, already this requires a much more delicate
analysis than the first-order error estimates in the subcritical range.

Organization

Chapter 1 gives an overview on the first part of this thesis, which is concerned with
low-regularity integrators for the one-dimensional semilinear Schrödinger and wave
equations. The error analyses of the first and second-order low-regularity integrators
for the Schrödinger equation are carried out in Chapter 2, which also contains some
numerical experiments. The next Chapter 3 consists of the error analysis of the corrected
Lie splitting applied to the wave equation.

The second part of this thesis is devoted to the three-dimensional semilinear wave
equation. Chapter 4 introduces this topic and gives an overview on our results. In
Chapter 5, we give a review on Strichartz estimates for the linear wave equation. We
provide the proofs of the discrete-time inequalities and state all the Strichartz estimates
needed for the forthcoming error analysis. In Chapter 6 we give a brief review on the
wellposedness theory of the semilinear wave equation and deduce important estimates for
its solution. The error analysis of the Strang splitting is then carried out in Chapter 7.
In our last Chapter 8 we discuss a numerical experiment to illustrate our temporal error
bounds.
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General notations
We use the notation A ≲γ1,...,γm B if there is a constant c > 0 (depending on m quantities
γ1, . . . , γm) such that A ≤ cB, and the symbol ≳ is similarly used. If A ≲ B and A ≳ B,
then we write A ≂ B. We denote by N the set of non-zero natural numbers and set
N0 = N ∪ {0}. The torus T := R/(2πZ) is understood as the interval [−π, π] where
one identifies the end-points −π and π. Let Ω either be the d-dimensional torus Td or
a measurable subset of Rd. We denote the standard Lebesgue spaces of p-integrable
functions (depending on the context real- or complex-valued) by Lp(Ω) and the standard
L2-based Sobolev spaces of s-times weakly differentiable functions by Hs(Ω), where
p ∈ [1,∞] and s ∈ R. Occasionally we also make use of the Lp-based Sobolev spaces
W k,p(Ω) for k ∈ N0. If it is clear from the context, we often abbreviate Hs = Hs(Ω) as
well as Lp = Lp(Ω) etc. For p ∈ [1,∞], a time interval J , and a Banach space X, we use
the Bochner space Lp(J,X) with norm

∥F∥Lp(J,X) =
( ∫

J
∥F (t)∥pX dt

) 1
p
,

and the usual modification for p = ∞. If a “free” variable t occurs in such a Bochner
norm, the time integration is carried out with respect to t. For a step size τ > 0 and
a number n ∈ N0, the discrete times are usually denoted by tn := nτ . Some additional
notations for Part II are defined in Section 4.5.
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1. Overview

Due to their importance as model problems in mathematical physics, the nonlinear
Schrödinger and wave equations have been intensively studied in the past decades, both
analytically and numerically. In this part of the thesis we study their numerical time
integration in the one-dimensional case with periodic boundary conditions. We treat the
semilinear Schrödinger equation

i∂tu+ ∂2
xu = µ|u|2u, (t, x) ∈ [0, T ] × T,

u(0) = u0 ∈ H1(T),
(1.1)

where we allow for both signs µ ∈ {±1}. Our second problem is the semilinear wave
equation

∂2
t u− ∂2

xu = g(u), (t, x) ∈ [0, T ] × T,
u(0) = u0 ∈ H1(T),

∂tu(0) = v0 ∈ L2(T),
(1.2)

with a general nonlinearity g ∈ C2(R,R). Our regularity assumptions on the initial data
are natural in view of the energy conservation laws. In the case of the wave equation, we
require u0 and v0 to be real-valued.

1.1. The Schrödinger case
In the seminal paper [55], a low-regularity integrator was proposed for the time integration
of the nonlinear Schrödinger equation (1.1) (and also its higher-dimensional versions).
The scheme computes approximations un ≈ u(nτ) via

un+1 = Φτ (un) := eiτ∂2
x

(
un − iτµ(un)2φ1(−2iτ∂2

x)ūn
)
. (1.3)

The operator φ1(−2iτ∂2
x) can be defined in Fourier space or using the functional calculus

for φ1(z) = (ez − 1)/z. For our purposes, the definition via the integral representation

φ1(−2iτ∂2
x)f := 1

τ

∫ τ

0
e−2is∂2

xf ds (1.4)

for f ∈ L2(T) is convenient. The authors in [55] proved a general convergence result
which, in the one-dimensional case, reads as follows.

Theorem 1.1 ([55]). Let r > 1/2 and γ ∈ (0, 1]. Assume that the solution u to (1.1)
satisfies u(t) ∈ Hr+γ(T) for all t ∈ [0, T ]. Then there are a constant C > 0 and a
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1. Overview

maximum step size τ0 > 0 such that the approximations un obtained by (1.3) satisfy the
error bound

∥u(nτ) − un∥Hr(T) ≤ Cτγ

for all τ ∈ (0, τ0] and n ∈ N0 with nτ ≤ T . The numbers C and τ0 only depend on T
and ∥u∥L∞([0,T ],Hr+γ(T)).

Note that Theorem 1.1 asserts that we need u0 ∈ Hr+1 in order to obtain first-order
convergence in Hr. This is in contrast to more classical schemes such as splitting methods,
where first-order convergence in Hr would require the stronger condition u0 ∈ Hr+2, cf.
[18, 50]. We will later make use of Theorem 1.1 since it provides an a-priori bound in L∞

for the numerical solution un if τ is small enough. The condition r > 1/2 in Theorem 1.1
arises from the use of the algebra property of the Sobolev space Hr(T). The space L2(T)
does not have this property, so it is a natural question if Theorem 1.1 still holds if r = 0
and γ = 1. This was addressed in the follow-up work [53], where the problem (1.1) was
considered on the spatial domain Rd for d ∈ {1, 2, 3}. The core difficulty is that the local
error of the scheme (1.3) is roughly of the form

τ2|∂xu|2u,

cf. p. 731 of [53]. This term can be estimated in L2 for fixed times provided that
u(t) ∈ W 1,4, which is not covered by the assumption u0 ∈ H1. It is however known that
solutions to dispersive equations such as (1.1) enjoy better integrability properties in
space if we also involve integration in the time variable. This is formalized using Strichartz
estimates, which control mixed space-time LpLq norms of solutions to linear dispersive
equations in terms of the data, cf. Chapter 2.3 of [71]. In [53], the authors proved
discrete-time Strichartz estimates and used them to show fractional convergence rates
(strictly between 1/2 and 1 depending on the dimension) in L2 for a frequency-filtered
variant of (1.3). In the case d = 1, the convergence rate was 5/6. In the subsequent
paper [54], the authors analyzed the problem (1.1) on the torus T. They introduced
discrete Bourgain spaces and used them to prove a convergence rate of almost 7/8 for a
significantly refined frequency-filtered variant of (1.3).

In [53, 54], the optimal first-order convergence could not be reached since the discrete-
time Strichartz and Bourgain space estimates only hold for frequency localized functions
and contain a multiplicative loss depending on Kτ1/2, where K is the largest frequency
and τ denotes the time step-size. The continuous-time Strichartz estimates however do
not suffer from these disadvantages.

In this work we extend Theorem 1.1 to the case r = 0 and γ = 1 with optimal first-order
convergence. In contrast to [53, 54], we do not use frequency filtering and discrete-time
Strichartz or Bourgain space estimates. Instead, we derive an error representation which
allows us to apply the continuous-time periodic Strichartz estimate

∥eit∂2
xf∥L4([0,T ]×T) ≲T ∥f∥L2(T). (1.5)

A proof of (1.5) can be found in Theorem 1 and the subsequent remark of [74] or
Proposition 2.1 of [7]. The idea to use continuous-time Strichartz estimates to control
the local error goes back to [36].
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1.1. The Schrödinger case

We also give error bounds for the second-order variant of (1.3), which was originally
proposed in [9, 56, 59]. This scheme is given by

un+1 = Φ̃τ (un) := eiτ∂2
x

(
un − iτµ(un)2[φ1(−2iτ∂2

x) − φ′
1(−2iτ∂2

x)]ūn
)

− iτµ(eiτ∂2
xun)2eiτ∂2

xφ′
1(−2iτ∂2

x)ūn − τ2

2 e
iτ∂2

x(|un|4un). (1.6)

The operator φ′
1(−2iτ∂2

x) is defined by

φ′
1(−2iτ∂2

x)f := 1
τ2

∫ τ

0
se−2is∂2

xf ds, (1.7)

or alternatively using the functional calculus for φ′
1(z) = (zez − ez + 1)/z2.

Our convergence result in L2 for H1-solutions reads as follows. Its proof is carried out
in Section 2.1 for the first-order scheme and in Section 2.2 for the second-order scheme,
respectively.

Theorem 1.2. Assume that the solution u to (1.1) satisfies u(t) ∈ H1(T) for all
t ∈ [0, T ]. Then there are a constant C > 0 and a maximum step size τ0 > 0 such that
the approximations un obtained by (1.3) or (1.6) satisfy the error bound

∥u(nτ) − un∥L2(T) ≤ Cτ

for all τ ∈ (0, τ0] and n ∈ N0 with nτ ≤ T . The numbers C and τ0 only depend on T
and ∥u∥L∞([0,T ],H1(T)).

To obtain second-order convergence, we need to impose higher regularity assumptions
than just u0 ∈ H1(T). In [56], it was shown that for any r > 1/2, the scheme (1.6) is
second-order convergent in Hr for solutions with u0 ∈ Hr+2. The work [59] established
second-order convergence of (1.6) in L2 under the assumption u0 ∈ H9/4(T). In Section
2.2, we prove the following result, which asserts that H2-regularity is enough to obtain
second-order convergence in L2.

Theorem 1.3. Assume that the solution u to (1.1) satisfies u(t) ∈ H2(T) for all
t ∈ [0, T ]. Then there are a constant C > 0 and a maximum step size τ0 > 0 such that
the approximations un obtained by (1.6) satisfy the error bound

∥u(nτ) − un∥L2(T) ≤ Cτ2

for all τ ∈ (0, τ0] and n ∈ N0 with nτ ≤ T . The numbers C and τ0 only depend on T
and ∥u∥L∞([0,T ],H2(T)).

Numerically, the first-order convergence of (1.3) for H1-solutions, as well as the second-
order convergence of (1.6) for H2-solutions, are not clearly visible. On the other hand,
the first-order convergence of the second-order scheme for H1-solution shows up in the
numerical experiment as expected from Theorem 1.2. We elaborate on this issue in
Section 2.3.
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1. Overview

Remark 1.4. We comment on possible extensions of Theorems 1.2 and 1.3 to higher
dimensions. The embedding H1 ↪→ L∞ as well as the estimate (1.5), which are both
crucially exploited in the proof of Theorem 1.2, are then wrong, in general. In two
dimensions, they however both only require an arbitrary small amount of extra regularity
(see Proposition 3.6 of [7] for the 2D version of (1.5)). Therefore, it is possible to
extend Theorem 1.2 to the 2D case under the slightly stronger regularity assumption
u0 ∈ H1+ε for some ε > 0. One could also stick to the H1 assumption if one considers a
suitably filtered variant of (1.3) or (1.6) and lowers the convergence rate by ε. Similarly,
Theorem 1.3 extends to the two-dimensional case under the assumption u0 ∈ H2+ε. The
three-dimensional cases seem to be more difficult and we do not know how the optimal
result then looks like. The situation becomes easier if the torus Td is replaced by the
full space Rd, since then a wider range of Strichartz estimates becomes applicable, cf.
Chapter 2.3 of [71]. By combing our techniques with those of [53], it seems feasible to
show almost first-order convergence in L2 for a frequency-filtered version of (1.3) under
the assumption u0 ∈ H1(R3), for instance.

Remark 1.5. It is also possible to extend our analysis to the symmetrized two-step
variants of (1.3) and (1.6) that were recently proposed in [20].

1.2. The wave case
For the nonlinear wave equation (1.2), the authors in [49] proposed a low-regularity
integrator which was called the corrected Lie splitting. It computes approximations
(un, vn) ≈ (u(nτ), ∂tu(nτ)) via(

un+1
vn+1

)
= eτA

[(
un
vn

)
+ τ

(
0

g(un)

)
+ τ2φ2(−2τA)

(
−g(un)
g′(un)vn

)]
, (1.8)

with wave operator A(u, v) = (v, ∂2
xu). The operator φ2(−2τA) is defined by the integral

representation
φ2(−2τA)w := 1

τ2

∫ τ

0
(τ − s)e−2sAw ds (1.9)

for w ∈ H1 × L2. Similar as in the Schrödinger case, one could equivalently use the
functional calculus for φ2(z) = (ez − z − 1)/z2. In [49], under a Lipschitz condition
on the nonlinearity g, it was shown that the scheme (1.8) converges with order 2 in
H1 ×L2 under the regularity assumption (u0, v0) ∈ H1+d/4 ×Hd/4 for spatial dimensions
d ∈ {1, 2, 3}. This is an improvement compared to classical trigonometric or exponential
integrators, where second-order convergence in H1 × L2 would require the stronger
condition (u0, v0) ∈ H2 × H1, cf. [10, 22]. The reason for the particular regularity
requirement (u0, v0) ∈ H1+d/4 ×Hd/4 in [49] is that the main part of the local error is
roughly of the form

∥(∂tu)2 − ∇u · ∇u∥L2(Td), (1.10)

cf. equation (2.26) of [49]. This term was then estimated (for fixed times) using the triangle
inequality and the Sobolev embedding Hd/4(Td) ↪→ L4(Td). For the one-dimensional
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1.2. The wave case

case d = 1, the authors in [49] also gave a convergence result under the weaker regularity
assumption (u0, v0) ∈ H1 × L2. Using an interpolation argument, it was shown that
the scheme (1.8) converges almost with order 4/3 in H1 × L2. However, the numerical
experiments in [49] suggested that the convergence is of order 2 also in this case.

Here, we give a rigorous proof of this second-order convergence. In contrast to the
Schrödinger case, the 1D wave equation does not exhibit dispersive behavior. Instead,
the idea is to exploit that the expression (1.10) contains a so-called null form which
allows for improved space-time bounds compared to the above fixed-time approach. Such
null form estimates are widely used in the analysis of nonlinear wave equations, cf. [48] or
Chapter 6 of [71]. They rely on cancellation of parallel interactions (where waves move
together) in the bilinear expression in (1.10). In the one-dimensional case one has the
following estimate. If ϕ solves the linear inhomogeneous wave equation ∂2

t ϕ− ∂2
xϕ = F

on [0, T ] × T, then one has the inequality

∥(∂tϕ)2 − (∂xϕ)2∥L2([0,T ]×T) ≲T ∥∂xϕ(0)∥2
L2(T) +∥∂tϕ(0)∥2

L2(T) +∥F∥2
L1([0,T ],L2(T)). (1.11)

Note that the right-hand side of (1.11) only contains the L2 norm of ∂t,xϕ(0) instead of
the L4 norm that would result from the triangle inequality approach. If we replace T
with R, estimate (1.11) can be found in (1.8) of [48] (in a simplified form) or in (6.29)
of [71]. For convenience, we give a direct proof of (1.11) on T based on d’Alembert’s
formula in Section 3.1.

With the help of estimate (1.11), we are able to show the following improved error
bound for the corrected Lie splitting (1.8). The proof is given in Section 3.2. To our
knowledge, this is the first time that a null form estimate like (1.11) is used in numerical
analysis.

Theorem 1.6. Assume that the solution u to (1.2) satisfies (u(t), ∂tu(t)) ∈ H1(T)×L2(T)
for all t ∈ [0, T ]. Then there are a constant C > 0 and a maximum step size τ0 > 0 such
that the approximations (un, vn) obtained by (1.8) satisfy the error bound

∥u(nτ) − un∥H1(T) + ∥∂tu(nτ) − vn∥L2(T) ≤ Cτ2

for all τ ∈ (0, τ0] and n ∈ N0 with nτ ≤ T . The numbers C and τ0 only depend on g, T ,
∥u∥L∞([0,T ],H1(T)), and ∥∂tu∥L∞([0,T ],L2(T)).

For a numerical example concerning the wave equation (1.2), we refer to Figure 1 of
[49]. It shows second-order convergence in H1 ×L2 of the corrected Lie splitting (1.8) as
predicted by our Theorem 1.6. Comparisons with other schemes are also provided.

Remark 1.7. The higher-dimensional versions of the null form estimate (1.11) require
more regularity, cf. [48] or inequality (6.29) of [71]. In two dimensions, they could possibly
still be used to show an analogue of Theorem 1.6 with a convergence rate greater than
one under a suitable growth condition on g. Very recently, convergence rates for a Strang
splitting scheme for the 3D semilinear wave equation with power nonlinearity under
the assumption (u0, v0) ∈ H1 × L2 were obtained in [61], see Part II. We do not know
whether in this situation it is possible to show higher rates by using a low-regularity
integrator instead.
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2. The Schrödinger case

2.1. Error analysis of the first-order low-regularity integrator
In this section we prove Theorem 1.2 in the case of the first-order scheme (1.3). We first
state the main hypothesis of this section and then convert the linear Strichartz estimate
(1.5) into a bound for the solution u to the nonlinear problem (1.1). In the following we
frequently use that for s > 1/2, the Sobolev space Hs(T) forms an algebra and embeds
into L∞(T), cf. Lemma A.2 and Theorem A.1.

Assumption 2.1. There exists a time T > 0 and a solution u ∈ C([0, T ], H1) ∩
C1([0, T ], H−1) to the nonlinear Schrödinger equation (1.1) with bound

M1 := ∥u∥L∞([0,T ],H1).

Remark 2.2. The equation (1.1) is actually globally wellposed for any initial data
u0 ∈ L2(T) and the time T in Assumption 2.1 can be taken arbitrarily large, cf. Theorem
4.45 of [7].

Proposition 2.3. Let u, T , and M1 be given by Assumption 2.1. Then we have the
estimate

∥∂xu∥L4([0,T ]×T) ≲M1,T 1.

Proof. We apply inequality (1.5) to Duhamel’s formula

u(t) = eit∂2
xu0 − iµ

∫ t

0
ei(t−s)∂2

x(|u|2u)(s) ds.

Using also Minkowski’s inequality and Sobolev’s embedding H1 ↪→ L∞, we get

∥∂xu∥L4([0,T ]×T) ≲T ∥∂xu0∥L2 +
∫ T

0
∥∂x(|u|2u)(s)∥L2 ds

≲M1 1 + ∥u∥2
L2([0,T ],L∞)∥∂xu∥L∞([0,T ],L2) ≲M1,T 1.

We now give a representation of the local error of the low-regularity integrator (1.3).
The calculations are inspired by the ones in Section 3 of [59]. But compared to there and
also [55], we do not insert the approximation u(s) ≈ eis∂2

xu0 at first. This makes it easier
for us to apply Proposition 2.3 in the subsequent Lemma 2.5.

Lemma 2.4. Let u and T be given by Assumption 2.1. Then, the local error of (1.3) is
given by

u(τ) − u1 = µ

∫ τ

0

∫ s

0
ei(τ−σ)∂2

xD(σ, s) dσ ds,
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2. The Schrödinger case

for τ ∈ (0, T ]. Here we define

D(σ, s) = D1(σ, s) +D2(σ, s) +D3(σ, s)

with

D1(σ, s) := µu(σ)2
(
e2i(σ−s)∂2

x(|u|2ū)(σ) − 2|u(σ)|2e2i(σ−s)∂2
x ū(σ)

)
,

D2(σ, s) := −2(∂xu(σ))2e2i(σ−s)∂2
x ū(σ),

D3(σ, s) := −4u(σ)∂xu(σ)e2i(σ−s)∂2
x∂xū(σ),

for 0 ≤ σ ≤ s ≤ T .
Proof. By (1.4), we have

τφ1(−2iτ∂2
x)ū0 =

∫ τ

0
e−2is∂2

x ū0 ds.

Duhamel’s formula, (1.3), and the fundamental theorem of calculus thus imply

u(τ) − u1 = −iµeiτ∂2
x

∫ τ

0

(
e−is∂2

x(u2ū)(s) − u2
0e

−2is∂2
x ū0

)
ds (2.1)

= µeiτ∂2
x

∫ τ

0
(N(s, s) −N(0, s)) ds = µeiτ∂2

x

∫ τ

0

∫ s

0
∂1N(σ, s) dσ ds.

Here, the function N(·, s) ∈ C1([0, τ ],H−1(T)) is defined as

N(σ, s) := −ie−iσ∂2
x

(
u(σ)2e2i(σ−s)∂2

x ū(σ)
)
. (2.2)

Using the product rule and the differential equation (1.1), we compute the derivative as

∂1N(σ, s) = e−iσ∂2
x

[
− ∂2

x

(
u(σ)2e2i(σ−s)∂2

x ū(σ)
)

− 2iu(σ)∂tu(σ)e2i(σ−s)∂2
x ū(σ)

+ 2u(σ)2e2i(σ−s)∂2
x∂2
xū(σ) − iu(σ)2e2i(σ−s)∂2

x∂tū(σ)
]

= e−iσ∂2
x

[
− 2∂2

xu(σ)u(σ)e2i(σ−s)∂2
x ū(σ) − 2(∂xu(σ))2e2i(σ−s)∂2

x ū(σ)

− 4u(σ)∂xu(σ)e2i(σ−s)∂2
x∂xū(σ) − u(σ)2e2i(σ−s)∂2

x∂2
xū(σ)

+ 2u(σ)∂2
xu(σ)e2i(σ−s)∂2

x ū(σ) − 2µu(σ)(|u|2u)(σ)e2i(σ−s)∂2
x ū(σ)

+ 2u(σ)2e2i(σ−s)∂2
x∂2
xū(σ) − u(σ)2e2i(σ−s)∂2

x∂2
xū(σ)

+ µu(σ)2e2i(σ−s)∂2
x(|u|2ū)(σ)

]
= e−iσ∂2

x

[
− 2(∂xu(σ))2e2i(σ−s)∂2

x ū(σ) − 4u(σ)∂xu(σ)e2i(σ−s)∂2
x∂xū(σ)

+ µu(σ)2
(

− 2|u(σ)|2e2i(σ−s)∂2
x ū(σ) + e2i(σ−s)∂2

x(|u|2ū)(σ)
)]

= e−iσ∂2
x

[
D1(σ, s) +D2(σ, s) +D3(σ, s)

]
, (2.3)

where we exploit the cancellation of all second-order partial derivatives. The derivative
is well-defined in H−1(T) since in 1D we can use the embedding L1 ↪→ H−1 and that the
multiplication by an H1 function is a continuous operator on H−1.
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2.1. Error analysis of the first-order low-regularity integrator

In the next step we bound the sum of the local errors terms, where we will crucially
exploit Proposition 2.3 as well as the dual of estimate (1.5).

Lemma 2.5. Let u, T , and M1 be given by Assumption 2.1. Then we can bound the
sum of local errors of (1.3) by

∥∥∥ n−1∑
k=0

ei(n−k−1)τ∂2
x

(
u(tk+1) − Φτ (u(tk))

)∥∥∥
L2

≲M1,T τ,

for all τ ∈ (0, T ] and n ∈ N0 with nτ ≤ T .

Proof. Lemma 2.4 with u(tk + ·) instead of u yields
n−1∑
k=0

ei(n−k−1)τ∂2
x

(
u(tk+1) − Φτ (u(tk))

)

= µ
n−1∑
k=0

ei(n−k)τ∂2
x

∫ τ

0

∫ s

0
e−iσ∂2

xD(tk + σ, tk + s) dσ ds.

We now use the decomposition D = D1 +D2 +D3 from Lemma 2.4. For the first term
we even obtain∥∥∥ n−1∑

k=0
ei(n−k)τ∂2

x

∫ τ

0

∫ s

0
e−iσ∂2

xD1(tk + σ, tk + s) dσ ds
∥∥∥
H1

≲M1,T nτ
2 ≲T τ,

using the algebra property of H1 in 1D. The second term is controlled via

∥∥∥ n−1∑
k=0

ei(n−k)τ∂2
x

∫ τ

0

∫ s

0
e−iσ∂2

xD2(tk + σ, tk + s) dσ ds
∥∥∥
L2

≤
n−1∑
k=0

∫ τ

0

∫ s

0
∥D2(tk + σ, tk + s)∥L2 dσ ds

≲
n−1∑
k=0

∫ τ

0

∫ τ

0
∥(∂xu(tk + σ))2∥L2∥e2i(σ−s)∂2

x ū(tk + σ)∥L∞ dσ ds

≲ τ
n−1∑
k=0

∫ τ

0
∥∂xu(tk + σ)∥2

L4∥u(tk + σ)∥H1 dσ ≲M1 τ∥∂xu∥2
L2([0,T ],L4)

≲T τ∥∂xu∥2
L4([0,T ]×T) ≲M1,T τ,

by means of Hölder’s inequality, the Sobolev embedding H1 ↪→ L∞, and Proposition 2.3.
The term involving D3 is first rewritten as

n−1∑
k=0

ei(n−k)τ∂2
x

∫ τ

0

∫ s

0
e−iσ∂2

xD3(tk + σ, tk + s) dσ ds

=
n−1∑
k=0

∫ tk+1

tk

∫ s

tk

ei(nτ−σ)∂2
xD3(σ, s) dσ ds
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2. The Schrödinger case

=
∫ nτ

0
ei(nτ−σ)∂2

x

∫ ⌈ σ
τ

⌉τ

σ
D3(σ, s) dsdσ,

where the application of Fubini’s theorem is justified since the double integral converges
absolutely in H−1. We next apply the dual of the periodic Strichartz estimate (1.5),
which reads ∥∥∥ ∫ T

0
e−it∂2

xF (t) dt
∥∥∥
L2

≲T ∥F∥
L

4
3 ([0,T ]×T)

. (2.4)

Using Hölder’s inequality with 3
4 = 1

∞ + 1
4 + 1

2 , as above we infer that

∥∥∥ ∫ nτ

0
ei(nτ−σ)∂2

x

∫ ⌈ σ
τ

⌉τ

σ
D3(σ, s) dsdσ

∥∥∥
L2

≲T

∥∥∥σ 7→
∫ ⌈ σ

τ
⌉τ

σ
D3(σ, s) ds

∥∥∥
L

4
3 ([0,T ]×T)

≲
∥∥∥σ 7→ ∥u(σ)∥L∞∥∂xu(σ)∥L4

∫ ⌈ σ
τ

⌉τ

σ
∥e2i(σ−s)∂2

x∂xū(σ)∥L2 ds
∥∥∥
L

4
3 ([0,T ])

≲M1 τ∥∂xu∥
L

4
3 ([0,T ],L4)

≲T τ∥∂xu∥L4([0,T ]×T) ≲M1,T τ.

We can now finish the proof of the global error bound in a classical way with the help
of the discrete Gronwall lemma.

Proof of Theorem 1.2 for un given by (1.3). The error

en := u(tn) − un

satisfies the recursion formula

en+1 = u(tn+1) − Φτ (u(tn)) + Φτ (u(tn)) − Φτ (un)

= u(tn+1) − Φτ (u(tn)) + eiτ∂2
xen

− iτµeiτ∂2
x

(
(u(tn))2φ1(−2iτ∂2

x)ū(tn) − (un)2φ1(−2iτ∂2
x)ūn

)
.

Lemma A.8 now implies that

en =
n−1∑
k=0

ei(n−k−1)τ∂2
x

(
u(tk+1) − Φτ (u(tk))

)

− iτµ
n−1∑
k=0

ei(n−k)τ∂2
x

(
(u(tk))2φ1(−2iτ∂2

x)ū(tk) − (uk)2φ1(−2iτ∂2
x)ūk

)
,

exploiting that e0 = 0. The term in brackets can be rewritten as

(u(tk))2φ1(−2iτ∂2
x)ū(tk) − (uk)2φ1(−2iτ∂2

x)ūk
= (u(tk))2φ1(−2iτ∂2

x)ēk + (u(tk) + uk)ekφ1(−2iτ∂2
x)ūk.
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2.2. Error analysis of the second-order low-regularity integrator

Moreover, due to the definition (1.4), the operator φ1(−2iτ∂2
x) is clearly bounded uni-

formly in τ on all Sobolev spaces Hs with s ≥ 0. From Lemma 2.5 and standard estimates
we thus infer that

∥en∥L2 ≲M1,T τ + τ
n−1∑
k=0

(1 + ∥ek∥2
H

3
4
)∥ek∥L2

by means of the Sobolev embedding H3/4 ↪→ L∞ and the representation uk = u(tk) − ek.
Theorem 1.1 with r = 3/4 and γ = 1/4 yields a time τ0 > 0 depending only on M1 and
T such that

∥en∥
H

3
4

≤ 1

for all τ ∈ (0, τ0] and n ∈ N0 with nτ ≤ T . For such τ and n we thus derive that

∥en∥L2 ≲M1,T τ + τ
n−1∑
k=0

∥ek∥L2 .

The discrete Gronwall inequality from Lemma A.9 then implies that

∥en∥L2 ≲M1,T τ.

2.2. Error analysis of the second-order low-regularity integrator
In this section, we prove Theorems 1.2 and 1.3 for the second-order low-regularity
integrator (1.6). Our strategy is similar to that of Section 2.1. Compared to that, more
error terms will appear, but the critical ones are roughly of the same structure as above.
The proof of the first-order error bound under the H1-assumption will only be sketched
since it does not require new ideas. We first extend Proposition 2.3 to H2-solutions.

Assumption 2.6. There exists a time T > 0 and a solution u ∈ C([0, T ], H2) ∩
C1([0, T ], L2) to the nonlinear Schrödinger equation (1.1) with bound

M2 := ∥u∥L∞([0,T ],H2).

Remark 2.7. Similar as in Remark 2.2, the time T in Assumption 2.6 can actually be
taken arbitrarily large.

Proposition 2.8. Let u, T , and M2 be given by Assumption 2.6. Then we have the
estimate

∥∂2
xu∥L4([0,T ]×T) ≲M2,T 1.

Proof. Similar as in the proof of Proposition 2.3, we apply estimate (1.5) to Duhamel’s
formula and obtain

∥∂2
xu∥L4([0,T ]×T) ≲T ∥∂2

xu0∥L2 +
∫ T

0
∥∂2

x(|u|2u)(s)∥L2 ds
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2. The Schrödinger case

≲M2 1 + ∥u∥2
L2([0,T ],L∞)∥∂

2
xu∥L∞([0,T ],L2)

+ ∥∂xu∥2
L2([0,T ],L∞)∥u∥L∞([0,T ],L2)

≲M2,T 1,

exploiting also Minkowski’s inequality and the Sobolev embedding H1 ↪→ L∞.

The next lemma is the main reason why the scheme (1.6) is formally of second order.

Lemma 2.9. Let X be a Banach space, τ > 0, and F ∈ C2([0, τ ], X). We then have the
representation

F (s) − F (0) − s

τ
[F (τ) − F (0)] =

∫ s

0
F ′(σ) dσ − s

τ

∫ τ

0
F ′(σ) dσ

=
∫ s

0
(s− σ)F ′′(σ) dσ − s

τ

∫ τ

0
(τ − σ)F ′′(σ) dσ

for all s ∈ [0, τ ].

Proof. The fundamental theorem of calculus and Fubini’s theorem yield

F (s) − F (0) − s

τ
[F (τ) − F (0)] =

∫ s

0
F ′(θ) dθ − s

τ

∫ τ

0
F ′(θ) dθ

=
∫ s

0
[F ′(θ) − F ′(0)] dθ − s

τ

∫ τ

0
[F ′(θ) − F ′(0)] dθ

=
∫ s

0

∫ θ

0
F ′′(σ) dσ dθ − s

τ

∫ τ

0

∫ θ

0
F ′′(σ) dσ dθ

=
∫ s

0
(s− σ)F ′′(σ) dσ − s

τ

∫ τ

0
(τ − σ)F ′′(σ) dσ.

We can now compute the local error representation of (1.6).

Lemma 2.10. Let u and T be given by Assumption 2.6. Then, the local error of (1.6)
is given by

u(τ) − u1 = µ

∫ τ

0

∫ s

0
(s− σ)ei(τ−σ)∂2

xD̃(σ, s) dσ ds

+ µ

∫ τ

0

∫ τ

0

s

τ
(τ − σ)ei(τ−σ)∂2

xD̃(σ, s) dσ ds+R(u, τ),

for τ ∈ (0, T ]. Here we define

D̃(σ, s) = D̃1(σ, s) + D̃2(σ, s) + D̃3(σ, s)

for the terms

D̃1(σ, s) := 4i(∂2
xu(σ))2e2i(σ−s)∂2

x ū(σ),

D̃2(σ, s) := 8iu(σ)∂2
xu(σ)e2i(σ−s)∂2

x∂2
xū(σ),
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2.2. Error analysis of the second-order low-regularity integrator

D̃3(σ, s) := [−i∂2
x + ∂1]D1(σ, s) + 6i(∂xu(σ))2e2i(σ−s)∂2

x∂2
xū(σ)

+ 20i∂xu(σ)∂2
xu(σ)e2i(σ−s)∂2

x∂xū(σ) + 4iµ∂xu(σ)∂x(|u|2u)(σ)e2i(σ−s)∂2
x ū(σ)

− 2(∂xu(σ))2e2i(σ−s)∂2
x∂tū(σ) − 4∂tu(σ)∂xu(σ)e2i(σ−s)∂2

x∂xū(σ)

+ 4iµu(σ)
(
∂x(|u|2u)(σ)e2i(σ−s)∂2

x∂xū(σ) − ∂xu(σ)e2i(σ−s)∂2
x∂x(|u|2ū)(σ)

)
,

with D1 from Lemma 2.4. Moreover, the remainder R(u, τ) is given by

R(u, τ) := −iµτu(τ)2e2iτ∂2
xφ′

1(−2iτ∂2
x)ū(τ)

+ iµτ(eiτ∂2
xu0)2eiτ∂2

xφ′
1(−2iτ∂2

x)ū0 + τ2

2 e
iτ∂2

x(|u0|4u0).

If only Assumption 2.1 is satisfied, we can still write

u(τ) − u1 = µ

∫ τ

0

∫ s

0
ei(τ−σ)∂2

xD(σ, s) dσ ds+ µ

∫ τ

0

∫ τ

0

s

τ
ei(τ−σ)∂2

xD(σ, s) dσ ds+R(u, τ)
(2.5)

with the expression D(s, σ) given by Lemma 2.4.

Proof. By the expression (1.7), we have

τφ′
1(−2iτ∂2

x)f =
∫ τ

0

s

τ
e−2is∂2

xf ds

for all f ∈ L2. Define u1 by the second-order scheme (1.6). Using formula (2.1), the
definition of N from (2.2), and Lemma 2.9, we then compute

u(τ) − u1 = µeiτ∂2
x

∫ τ

0

(
N(s, s) −N(0, s) − s

τ
[N(τ, s) −N(0, s)]

)
ds+R(u, τ)

= µeiτ∂2
x

∫ τ

0

∫ s

0
∂1N(σ, s) dσ ds+ µeiτ∂2

x

∫ τ

0

∫ τ

0

s

τ
∂1N(σ, s) dσ ds+R(u, τ)

= µeiτ∂2
x

∫ τ

0

∫ s

0
(s− σ)∂2

1N(σ, s) dσ ds

+ µeiτ∂2
x

∫ τ

0

∫ τ

0

s

τ
(τ − σ)∂2

1N(σ, s) dσ ds+R(u, τ).

Under the weaker Assumption 2.1, the first derivative of N(·, s) was already computed
in (2.3) as

∂1N(σ, s) = e−iσ∂2
xD(σ, s)

with D = D1 + D2 + D3 from Lemma 2.4. Hence, formula (2.5) is true. Let now the
stronger Assumption 2.6 hold. We still need to verify that in this case, N(·, s) indeed
belongs to C2([0, τ ], H−1). Note that the term D1 is harmless since it does not contain
any derivatives of u. Similar as in the proof of Lemma 2.4, we compute

d
dσ
[
e−iσ∂2

xD2(σ, s)
]
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= e−iσ∂2
x

[
− i∂2

x

(
− 2(∂xu(σ))2e2i(σ−s)∂2

x ū(σ)
)

− 4∂xu(σ)∂xtu(σ)e2i(σ−s)∂2
x ū(σ)

− 4i(∂xu(σ))2e2i(σ−s)∂2
x∂2
xū(σ) − 2(∂xu(σ))2e2i(σ−s)∂2

x∂tū(σ)
]

= e−iσ∂2
x

[
4i
(
(∂2
xu(σ))2 + ∂xu(σ)∂3

xu(σ)
)
e2i(σ−s)∂2

x ū(σ) + 2i(∂xu(σ))2e2i(σ−s)∂2
x∂2
xū(σ)

+ 8i∂xu(σ)∂2
xu(σ)e2i(σ−s)∂2

x∂xū(σ)

− 4∂xu(σ)∂x
(
i∂2
xu(σ) − iµ(|u|2u)(σ)

)
e2i(σ−s)∂2

x ū(σ)

− 4i(∂xu(σ))2e2i(σ−s)∂2
x∂2
xū(σ) − 2(∂xu(σ))2e2i(σ−s)∂2

x∂tū(σ)
]

= e−iσ∂2
x

[
4i(∂2

xu(σ))2e2i(σ−s)∂2
x ū(σ) − 2i(∂xu(σ))2e2i(σ−s)∂2

x∂2
xū(σ)

+ 8i∂xu(σ)∂2
xu(σ)e2i(σ−s)∂2

x∂xū(σ) + 4iµ∂xu(σ)∂x(|u|2u)(σ)e2i(σ−s)∂2
x ū(σ)

− 2(∂xu(σ))2e2i(σ−s)∂2
x∂tū(σ)

]
and

d
dσ
[
e−iσ∂2

xD3(σ, s)
]

= e−iσ∂2
x

[
− i∂2

x

(
− 4u(σ)∂xu(σ)e2i(σ−s)∂2

x∂xū(σ)
)

− 4∂tu(σ)∂xu(σ)e2i(σ−s)∂2
x∂xū(σ) − 4u(σ)∂xtu(σ)e2i(σ−s)∂2

x∂xū(σ)

− 8iu(σ)∂xu(σ)e2i(σ−s)∂2
x∂3
xū(σ) − 4u(σ)∂xu(σ)e2i(σ−s)∂2

x∂xtū(σ)
]

= e−iσ∂2
x

[
4i∂2

xu(σ)∂xu(σ)e2i(σ−s)∂2
x∂xū(σ) + 4iu(σ)∂3

xu(σ)e2i(σ−s)∂2
x∂xū(σ)

+ 4iu(σ)∂xu(σ)e2i(σ−s)∂2
x∂3
xū(σ) + 8i∂xu(σ)∂2

xu(σ)e2i(σ−s)∂2
x∂xū(σ)

+ 8i(∂xu(σ))2e2i(σ−s)∂2
x∂2
xū(σ) + 8iu(σ)∂2

xu(σ)e2i(σ−s)∂2
x∂2
xū(σ)

− 4∂tu(σ)∂xu(σ)e2i(σ−s)∂2
x∂xū(σ) − 4u(σ)∂x

(
i∂2
xu(σ) − iµ(|u|2u)(σ)

)
e2i(σ−s)∂2

x∂xū(σ)

− 8iu(σ)∂xu(σ)e2i(σ−s)∂2
x∂3
xū(σ)

− 4u(σ)∂xu(σ)e2i(σ−s)∂2
x∂x

(
− i∂2

xū(σ) + iµ(|u|2ū)(σ)
)]

= e−iσ∂2
x

[
12i∂2

xu(σ)∂xu(σ)e2i(σ−s)∂2
x∂xū(σ) + 8i(∂xu(σ))2e2i(σ−s)∂2

x∂2
xū(σ)

+ 8iu(σ)∂2
xu(σ)e2i(σ−s)∂2

x∂2
xū(σ) − 4∂tu(σ)∂xu(σ)e2i(σ−s)∂2

x∂xū(σ)

+ 4iµu(σ)∂x(|u|2u)(σ)e2i(σ−s)∂2
x∂xū(σ) − 4iµu(σ)∂xu(σ)e2i(σ−s)∂2

x∂x(|u|2ū)(σ)
]
,

again exploiting the differential equation (1.1) and that all expressions are well-defined
in H−1. Note that all third-order derivatives of u are canceled. We thus obtain the
assertion by summing up all the terms for the second derivative of N(·, s).

The next lemma gives control on the term D̃3(σ, s) defined in Lemma 2.10.
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2.2. Error analysis of the second-order low-regularity integrator

Lemma 2.11. Let u, T , and M2 be given by Assumption 2.6. The term D̃3(σ, s) defined
by Lemma 2.10 can then by estimated by

∥D̃3(σ, s)∥L2 ≲M2 1

for all σ, s ∈ [0, T ].

Proof. All appearing terms are roughly of the form fgh with f ∈ L2 and g, h ∈ H1 and
can thus be estimated using the Sobolev embedding H1 ↪→ L∞ via

∥fgh∥L2 ≤ ∥f∥L2∥g∥L∞∥h∥L∞ ≲ ∥f∥L2∥g∥H1∥h∥H1 .

To control the remainder R(u, τ) defined in Lemma 2.10, we need two more preparatory
lemmas.

Lemma 2.12. The estimate

∥eiτ∂2
xf − f∥L2 + ∥φ′

1(−2iτ∂2
x)f − 1

2f∥L2 ≲ τ∥f∥H2

holds for all f ∈ H2 and τ ̸= 0.

Proof. The estimate of eiτ∂2
xf − f is standard. The other term is then controlled using

φ′
1(−2iτ∂2

x)f − 1
2f = 1

τ2

∫ τ

0
s(e−2is∂2

x − I)f ds.

Lemma 2.13. Let u, T , and M2 be given by Assumption 2.6. For all τ ∈ [0, T ], we can
then write

u(τ) = eiτ∂2
xu0 − iµτ |u0|2u0 + R̃(u, τ).

The remainder R̃(u, τ) satisfies the inequality

∥R̃(u, τ)∥L2 ≲M2 τ
2.

If only Assumption 2.1 is satisfied, we still obtain

∥R̃(u, τ)∥H1 ≲M1 τ.

Proof. The H1-estimate is a direct consequence of Duhamel’s formula and the algebra
property of H1. For the inequality in L2, we additionally exploit the fundamental theorem
of calculus to write

u(τ) − eiτ∂2
xu0 + iµτ |u0|2u0

= −iµ
∫ τ

0

∫ s

0

d
dσ
[
ei(τ−σ)∂2

x(|u|2u)(σ)
]

dσ ds− iµτ(eiτ∂2
x − I)(|u0|2u0).

The assertion then follows from standard estimates and Lemma 2.12.

We can now give the estimates for R(u, τ) from Lemma 2.10.
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Lemma 2.14. Let u, T , and M2 be given by Assumption 2.6. The remainder R(u, τ)
defined by Lemma 2.10 can then by estimated by

∥R(u, τ)∥L2 ≲M2 τ
3

for all τ ∈ (0, T ]. If only Assumption 2.1 is satisfied, we obtain

∥R(u, τ)∥L2 ≲M1 τ
2

for all τ ∈ (0, T ].

Proof. We insert the expression

u(τ) = eiτ∂2
xu0 − iµτ |u0|2u0 + R̃(u, τ)

from Lemma 2.13 and obtain

−iµτu(τ)2e2iτ∂2
xφ′

1(−2iτ∂2
x)ū(τ)

= −iµτ(eiτ∂2
xu0)2eiτ∂2

xφ′
1(−2iτ∂2

x)ū0 + 2(iµτ)2(eiτ∂2
xu0)(|u0|2u0)eiτ∂2

xφ′
1(−2iτ∂2

x)ū0

− (iµτ)2(eiτ∂2
xu0)2e2iτ∂2

xφ′
1(−2iτ∂2

x)(|u0|2ū0) +R1(u, τ)

= −iµτ(eiτ∂2
xu0)2eiτ∂2

xφ′
1(−2iτ∂2

x)ū0 − τ2

2 e
iτ∂2

x(|u0|4u0) +R1(u, τ) +R2(u, τ).

The appearing error terms are given by

R1(u, τ)

= −2iµτ(eiτ∂2
xu0)R̃(u, τ)eiτ∂2

xφ′
1(−2iτ∂2

x)ū0 − iµτ(eiτ∂2
xu0)2e2iτ∂2

xφ′
1(−2iτ∂2

x)R̃(u, τ)

− 2iµτ(eiτ∂2
xu0)(−iµτ |u0|2u0 + R̃(u, τ))e2iτ∂2

xφ′
1(−2iτ∂2

x)(iµτ |u0|2ū0 + R̃(u, τ))

− iµτ(−iµτ |u0|2u0 + R̃(u, τ))2e2iτ∂2
xφ′

1(−2iτ∂2
x)ū(τ)

and

R2(u, τ) = −2τ2(eiτ∂2
xu0)(|u0|2u0)eiτ∂2

xφ′
1(−2iτ∂2

x)ū0

+ τ2(eiτ∂2
xu0)2e2iτ∂2

xφ′
1(−2iτ∂2

x)(|u0|2ū0) + τ2

2 e
iτ∂2

x(|u0|4u0)

and satisfy R = R1 +R2. Under Assumption 2.6, we deduce

∥R(u, τ)∥L2 ≤ ∥R1(u, τ)∥L2 + ∥R2(u, τ)∥L2 ≲M2 τ
3

by Lemma 2.13 and iterative application of Lemma 2.12, respectively. Here we also
exploit that by the definition (1.7), the operator φ′

1(−2iτ∂2
x) is bounded uniformly in τ

on all Sobolev spaces Hs with s ≥ 0. Similarly, Assumption 2.1 and Lemma 2.13 imply
that

∥R(u, τ)∥L2 ≤ ∥R1(u, τ)∥L2 + ∥R2(u, τ)∥L2 ≲M1 τ
2.
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2.2. Error analysis of the second-order low-regularity integrator

The next auxiliary result bounds the sum of the local error terms. Here we will crucially
exploit the L4-bound from Proposition 2.8.

Lemma 2.15. Let u, T , and M2 be given by Assumption 2.6. Then we can bound the
sum of local errors of (1.6) by∥∥∥ n−1∑

k=0
ei(n−k−1)τ∂2

x

(
u(tk+1) − Φ̃τ (u(tk))

)∥∥∥
L2

≲M2,T τ
2,

∥∥∥ n−1∑
k=0

ei(n−k−1)τ∂2
x

(
u(tk+1) − Φ̃τ (u(tk))

)∥∥∥
H1

≲M2,T τ,

for all τ ∈ (0, T ] and n ∈ N0 with nτ ≤ T . If only Assumption 2.1 is satisfied, we still
obtain ∥∥∥ n−1∑

k=0
ei(n−k−1)τ∂2

x

(
u(tk+1) − Φ̃τ (u(tk))

)∥∥∥
L2

≲M1,T τ,

∥∥∥ n−1∑
k=0

ei(n−k−1)τ∂2
x

(
u(tk+1) − Φ̃τ (u(tk))

)∥∥∥
H

3
4
≲M1,T τ

1
4 ,

for all τ ∈ (0, T ] and n ∈ N0 with nτ ≤ T .

Proof. We only give the details for the estimates under the stronger Assumption 2.6,
since the results under the weaker Assumption 2.1 are obtained analogously by using
the first-order error representation (2.5), compare also the proof of Lemma 2.5. From
Lemma 2.10 with u(tk + ·) instead of u, we deduce

n−1∑
k=0

ei(n−k−1)τ∂2
x

(
u(tk+1) − Φ̃τ (u(tk))

)

= µ
n−1∑
k=0

ei(n−k)τ∂2
x

∫ τ

0

∫ s

0
(s− σ)e−iσ∂2

xD̃(tk + σ, tk + s) dσ ds

+ µ
n−1∑
k=0

ei(n−k)τ∂2
x

∫ τ

0

∫ τ

0

s

τ
(τ − σ)e−iσ∂2

xD̃(tk + σ, tk + s) dσ ds

+
n−1∑
k=0

ei(n−k−1)τ∂2
xR(u(tk + ·), τ). (2.6)

First, Lemma 2.14 implies∥∥∥ n−1∑
k=0

ei(n−k−1)τ∂2
xR(u(tk + ·), τ)

∥∥∥
L2

≲M2 nτ
3 ≲T τ

2.

We next use the decomposition D̃ = D̃1 +D̃2 +D̃3 from Lemma 2.10. The terms involving
D̃3 are controlled by means of Lemma 2.11, which gives∥∥∥ n−1∑

k=0
ei(n−k)τ∂2

x

∫ τ

0

∫ s

0
(s− σ)e−iσ∂2

xD̃3(tk + σ, tk + s) dσ ds
∥∥∥
L2

≲M2 nτ
3 ≲T τ

2,
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∥∥∥ n−1∑
k=0

ei(n−k)τ∂2
x

∫ τ

0

∫ τ

0

s

τ
(τ − σ)e−iσ∂2

xD̃3(tk + σ, tk + s) dσ ds
∥∥∥
L2

≲M2,T τ
2.

The first terms in (2.6) including D̃1 are bounded by

∥∥∥ n−1∑
k=0

ei(n−k)τ∂2
x

∫ τ

0

∫ s

0
(s− σ)e−iσ∂2

xD̃1(tk + σ, tk + s) dσ ds
∥∥∥
L2

≤
n−1∑
k=0

∫ τ

0

∫ s

0
|s− σ|∥D̃1(tk + σ, tk + s)∥L2 dσ ds

≲ τ
n−1∑
k=0

∫ τ

0

∫ τ

0
∥(∂2

xu(tk + σ))2∥L2∥e2i(σ−s)∂2
x ū(tk + σ)∥L∞ dσ ds

≲ τ2
n−1∑
k=0

∫ τ

0
∥∂2

xu(tk + σ)∥2
L4∥u(tk + σ)∥H1 dσ ≲M2 τ

2∥∂2
xu∥2

L2([0,T ],L4)

≲T τ
2∥∂2

xu∥2
L4([0,T ]×T) ≲M2,T τ

2.

Here we used Hölder’s inequality, the Sobolev embedding H1 ↪→ L∞, and Proposition
2.8. Similarly, we obtain∥∥∥ n−1∑

k=0
ei(n−k)τ∂2

x

∫ τ

0

∫ τ

0

s

τ
(τ − σ)e−iσ∂2

xD̃1(tk + σ, tk + s) dσ ds
∥∥∥
L2

≲M2,T τ
2.

The terms involving D̃2 are first rewritten as
n−1∑
k=0

ei(n−k)τ∂2
x

∫ τ

0

∫ s

0
(s− σ)e−iσ∂2

xD̃2(tk + σ, tk + s) dσ ds

=
n−1∑
k=0

∫ tk+1

tk

∫ s

tk

(s− σ)ei(nτ−σ)∂2
xD̃2(σ, s) dσ ds

=
∫ nτ

0
ei(nτ−σ)∂2

x

∫ ⌈ σ
τ

⌉τ

σ
(s− σ)D̃2(σ, s) dsdσ,

n−1∑
k=0

ei(n−k)τ∂2
x

∫ τ

0

∫ τ

0

s

τ
(τ − σ)e−iσ∂2

xD̃2(tk + σ, tk + s) dσ ds

=
n−1∑
k=0

∫ tk+1

tk

∫ s

tk

s− tk
τ

(τ − σ + tk)ei(nτ−σ)∂2
xD̃2(σ, s) dσ ds

=
∫ nτ

0
ei(nτ−σ)∂2

x

∫ ⌈ σ
τ

⌉τ

⌊ σ
τ

⌋τ
τ( sτ − ⌊στ ⌋)(⌈στ ⌉ − σ

τ )D̃2(σ, s) dsdσ,

where the application of Fubini’s theorem is again justified since the double integral
converges absolutely in H−1. We next apply the Strichartz estimate (2.4) to infer that∥∥∥ ∫ nτ

0
ei(nτ−σ)∂2

x

∫ ⌈ σ
τ

⌉τ

σ
(s− σ)D̃2(σ, s) dsdσ

∥∥∥
L2
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≲T

∥∥∥σ 7→
∫ ⌈ σ

τ
⌉τ

σ
(s− σ)D̃2(σ, s) ds

∥∥∥
L

4
3 ([0,T ]×T)

≲ τ
∥∥∥σ 7→ ∥u(σ)∥L∞∥∂2

xu(σ)∥L4

∫ ⌈ σ
τ

⌉τ

σ
∥e2i(σ−s)∂2

x∂2
xū(σ)∥L2 ds

∥∥∥
L

4
3 ([0,T ])

≲M2 τ
2∥∂2

xu∥
L

4
3 ([0,T ],L4)

≲T τ
2∥∂2

xu∥L4([0,T ]×T) ≲M2,T τ
2,

using again Hölder’s inequality, the Sobolev embedding H1 ↪→ L∞, and Proposition 2.8.
Similarly, we obtain

τ
∥∥∥ ∫ nτ

0
ei(nτ−σ)∂2

x

∫ ⌈ σ
τ

⌉τ

⌊ σ
τ

⌋τ
( sτ − ⌊στ ⌋)(⌈στ ⌉ − σ

τ )D̃2(σ, s) dsdσ
∥∥∥
L2

≲T τ
∥∥∥σ 7→

∫ ⌈ σ
τ

⌉τ

⌊ σ
τ

⌋τ
( sτ − ⌊στ ⌋)(⌈στ ⌉ − σ

τ )D̃2(σ, s) ds
∥∥∥
L

4
3 ([0,T ]×T)

≲ τ
∥∥∥σ 7→ ∥u(σ)∥L∞∥∂2

xu(σ)∥L4

∫ ⌈ σ
τ

⌉τ

⌊ σ
τ

⌋τ
∥e2i(σ−s)∂2

x∂2
xū(σ)∥L2 ds

∥∥∥
L

4
3 ([0,T ])

≲M2 τ
2∥∂2

xu∥
L

4
3 ([0,T ],L4)

≲T τ
2∥∂2

xu∥L4([0,T ]×T) ≲M2,T τ
2.

This finishes the proof of the L2-estimate. To obtain the first-order bound for the
H1-norm, we first note that a rough estimate based on the algebra property of H2 gives

∥∥∥ n−1∑
k=0

ei(n−k−1)τ∂2
x

(
u(tk+1) − Φ̃τ (u(tk))

)∥∥∥
H2

≲M2 nτ ≲T 1.

The assertion then follows by interpolation.

As in the last section, we conclude the proof of the global error bounds by means of
the discrete Gronwall lemma.

Proof of Theorem 1.3. For the scheme (1.6), we define the error

en := u(tn) − un

for n ∈ N0 and τ ∈ (0, 1] with nτ ≤ T . It satisfies the recursion formula

en+1 = u(tn+1) − Φ̃τ (u(tn)) + Φ̃τ (u(tn)) − Φ̃τ (un)

= u(tn+1) − Φ̃τ (u(tn)) + eiτ∂2
xen

− iτµeiτ∂2
x

(
(u(tn))2[φ1(−2iτ∂2

x) − φ′
1(−2iτ∂2

x)]ū(tn)

− (un)2[φ1(−2iτ∂2
x) − φ′

1(−2iτ∂2
x)]ūn

)
− iτµ

(
(eiτ∂2

xu(tn))2eiτ∂2
xφ′

1(−2iτ∂2
x)ū(tn)

− (eiτ∂2
xun)2eiτ∂2

xφ′
1(−2iτ∂2

x)ūn
)
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− τ2

2 e
iτ∂2

x

(
|u(tn)|4u(tn) − |un|4un

)
.

By Lemma A.8, this formula and e0 = 0 imply that

en =
n−1∑
k=0

ei(n−k−1)τ∂2
x

(
u(tk+1) − Φ̃τ (u(tk))

)

− iτµ
n−1∑
k=0

ei(n−k)τ∂2
x

(
(u(tk))2[φ1(−2iτ∂2

x) − φ′
1(−2iτ∂2

x)]ū(tk)

− (uk)2[φ1(−2iτ∂2
x) − φ′

1(−2iτ∂2
x)]ūk

)
− iτµ

n−1∑
k=0

ei(n−k−1)τ∂2
x

(
(eiτ∂2

xu(tk))2eiτ∂2
xφ′

1(−2iτ∂2
x)ū(tk)

− (eiτ∂2
xuk)2eiτ∂2

xφ′
1(−2iτ∂2

x)ūk
)

− τ2

2

n−1∑
k=0

ei(n−k)τ∂2
x

(
|u(tk)|4u(tk) − |uk|4uk

)
.

From Lemma 2.15 and standard estimates, we now infer that

∥en∥L2 ≤ cτ2 + cτ
n−1∑
k=0

(1 + ∥ek∥4
H1)∥ek∥L2 ,

∥en∥H1 ≤ cτ + cτ
n−1∑
k=0

(1 + ∥ek∥4
H1)∥ek∥H1

with a constant c > 0 that only depends on M2 and T . Here we exploited the elementary
re-writings

f2v − g2w = (f + g)v(f − g) + g2(v − w),
|v|4v − |w|4w = |v|4(v − w) + |v|2vw(v̄ − w̄) + |v|2|w|2(v − w) + v|w|2w(v̄ − w̄)

+ |w|4(v − w),

the Sobolev embedding H1 ↪→ L∞, the algebra property of H1, and the representation
uk = u(tk) − ek. We then define the maximum step size

τ0 := (ce2cT )−1.

Let τ ∈ (0, τ0]. Using the discrete Gronwall lemma A.9, by induction on n we deduce

∥en∥H1 ≤ ce2cnττ ≤ 1

and thus also
∥en∥L2 ≤ ce2cT τ2

for all n ∈ N0 with nτ ≤ T .

Proof of Theorem 1.2 for un given by (1.6). This is done analogously to the preceding
proof of Theorem 1.3. The H1-estimates are replaced by estimates in H3/4, compare also
the proof of Theorem 1.2 for un given by the first-order scheme (1.3).
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2.3. Numerical experiment
The numerical behavior of the scheme (1.3) applied to the nonlinear Schrödinger equation
(1.1) has already been extensively studied in the literature. See, e.g., [1, 54, 55] for
numerical experiments including comparisons with other schemes. However, they do dot
provide a clear picture concerning the convergence rate of the L2 error in the situation of
H1 initial data. While the experiment in Figure 1 of [1] shows first-order convergence as
proven in our Theorem 1.2, the experiment in Figure 1 of [54] suggests an order reduction
down to 3/4. A possible explanation of this behavior is that an error bound of the form

∥u(nτ) − un∥L2(T) ≤ cτβ

could hold for some β ∈ (0, 1), where one might have c ≪ C, with C from Theorem
1.2, depending on the precise choice of initial data. Therefore, we provide a numerical
example where a wider range of τ is considered than in [1, 54].

We solve the nonlinear Schrödinger equation (1.1) with µ = 1 and T = 1 using the
first-order low-regularity integrators (1.3) and the second-order scheme (1.6), called
LRI1 and LRI2, respectively. To construct the initial datum u0, we utilize the following
standard procedure that was similarly used in [54], see also Section 8 for more details on
this construction. We set u0 = ϕ/∥ϕ∥L2(T), where the function ϕ ∈ Hs(T) is defined by
its Fourier coefficients

ϕ̂k = (1 + |k|2)− 1
2 (s+ 1

2 +ε)rk

for k ∈ {−K0, . . . ,K0 − 1}, and ϕ̂k = 0 elsewhere. Here we use the maximum frequency
K0 = 219, uniformly distributed numbers rk ∈ [−1, 1] + i[−1, 1], and a very small
parameter ε > 0. The results are similar if we set rk = 1 (for all k) instead. The space is
discretized by the standard Fourier pseudo-spectral method, where we choose K = 211

grid points. The reference solution is computed using the second-order low-regularity
integrator (1.6) with τref = 10−7. Higher values of K and/or smaller values of τref and/or
a different reference integrator such as the Strang splitting did not change the outcome
for the range of τ considered in the experiments below. Our Python code to reproduce
the results is available at https://doi.org/10.35097/v54nh3fcvy5u8my6.

In Figure 2.1, we take H1 initial data and plot the maximal errors of the first-order
scheme (1.3) in the L2(T) norm against the step sizes τ . We observe a convergence rate
of approximately 3/4 as in [54] for the greater values of τ in the range (10−3, 10−2). For
smaller values of τ , the rate increases to approximately 9/10. In Table 2.1, we list the
values of the step sizes τℓ and L2 errors eℓ of (1.3), where the index ℓ ∈ {1, . . . , 10}
denotes the corresponding run of the experiment. Moreover, we compute the experimental
order of convergence (EOC) by

EOCℓ = log eℓ − log eℓ−1
log τℓ − log τℓ−1

. (2.7)

The results in Table 2.1 indicate that the order of convergence is still increasing for
very small values of τ . According to Theorem 1.2, the convergence rate 1 must show
up for even smaller values of τ . Unfortunately, we were unable to make this visible
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Figure 2.1.: L2 errors of the first-order scheme (1.3) for u0 ∈ H1.

numerically since further experiments revealed that this would require a disproportionate
computational effort.

Table 2.1.: Experimental order of convergence of (1.3) in Figure 2.1 according to (2.7).
τ L2 error EOC

1e-02 8.84e-02 –
3.59e-03 4.13e-02 0.74
1.29e-03 1.91e-02 0.75
4.64e-04 8.40e-03 0.81
1.67e-04 3.47e-03 0.86
5.99e-05 1.42e-03 0.87
2.15e-05 5.71e-04 0.89
7.7e-06 2.26e-04 0.90
2.8e-06 8.98e-05 0.91
1e-06 3.50e-05 0.92

Interestingly, in the situation of H1 initial data, the second-order scheme (1.6) behaves
better. In Figure 2.2, we observe first-order convergence as predicted by our Theorem
1.2. This behavior has already been observed in Figure 2 (a) of [14].

When trying to numerically verify the second-order convergence predicted by Theorem
1.3 in the case u0 ∈ H2, we observe a similar pathology as for the first-order scheme
above. The full convergence rate 2 is not visible for the range of τ considered in our
experiment. Instead, we observe a convergence rate of approximately 1.88. In Figure 2.3,
we take H2 initial data and plot the maximal errors of (1.6) in the L2(T) norm against
the step sizes τ . Moreover, in Table 2.2, we list the experimental order of convergence
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Figure 2.2.: L2 errors of the second-order scheme (1.6) for u0 ∈ H1.

according to (2.7).
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Figure 2.3.: L2 errors of the second-order scheme (1.6) for u0 ∈ H2.
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Table 2.2.: Experimental order of convergence of (1.6) in Figure 2.3 according to (2.7).
τ L2 error EOC

1e-02 2.38e-04 –
5.99e-03 9.81e-05 1.73
3.59e-03 4.04e-05 1.73
2.15e-03 1.64e-05 1.76
1.29e-03 6.56e-06 1.79
7.74e-04 2.56e-06 1.84
4.64e-04 9.90e-07 1.86
2.78e-04 3.81e-07 1.87
1.67e-04 1.46e-07 1.87

1e-04 5.60e-08 1.88
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3.1. Proof of the null form estimate
In this section we show estimate (1.11). Therefore we define the bilinear form

Q(ϕ, ψ) := ∂tϕ∂tψ − ∂xϕ∂xψ.

As a preparatory step, we treat the homogeneous problem.

Lemma 3.1. Let ϕ and ψ solve the homogeneous wave equations

∂2
t ϕ− ∂2

xϕ = 0, ϕ(0) = ϕ0, ∂tϕ(0) = ϕ1

∂2
t ψ − ∂2

xψ = 0, ψ(0) = ψ0, ∂tψ(0) = ψ1

with Cauchy data ϕ0, ψ0 ∈ H1(T) and ϕ1, ψ1 ∈ L2(T). We then have the estimate

∥Q(ϕ, ψ)∥L2(T×T) ≲ (∥∂xϕ0∥L2 + ∥ϕ1∥L2)(∥∂xψ0∥L2 + ∥ψ1∥L2).

Proof. The solution to the wave equation is given by d’Alembert’s formula

ϕ(t, x) = 1
2(ϕ0(x+ t) + ϕ0(x− t)) + 1

2

∫ x+t

x−t
ϕ1(y) dy,

which is stated in equation (8) of p. 68 of [19] for smooth initial data, and extends to our
setting by density. Using the definitions

vϕ = 1
2(∂xϕ0 + ϕ1), wϕ = 1

2(∂xϕ0 − ϕ1),

we can then write

∂tϕ(t, x) = vϕ(x+ t) − wϕ(x− t), ∂xϕ(t, x) = vϕ(x+ t) + wϕ(x− t),

and analogously for ψ. We compute

Q(ϕ, ψ)(t, x) = (vϕ(x+ t) − wϕ(x− t))(vψ(x+ t) − wψ(x− t))
− (vϕ(x+ t) + wϕ(x− t))(vψ(x+ t) + wψ(x− t))

= −2vϕ(x+ t)wψ(x− t) − 2wϕ(x− t)vψ(x+ t).

Note that the “parallel interactions” cancel (where one has twice “x+ t” or twice “x− t”)
and only the “transverse interactions” remain (where one has once “x + t” and once
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3. The wave case

“x− t”). We refer to p. 293 of [71] for further explanations of this phenomenon that also
apply to the higher dimensional cases.

To obtain the desired estimate, by substituting x− t = y and y + 2t = s, we compute∫
T

∫
T

|v(x+ t)w(x− t)|2 dx dt = ∥v∥2
L2(T)∥w∥2

L2(T)

for general functions v, w. It follows that

∥Q(ϕ, ψ)∥L2(T×T) ≲ ∥vϕ∥L2∥wψ∥L2 + ∥wϕ∥L2∥vψ∥L2

≲ (∥∂xϕ0∥L2 + ∥ϕ1∥L2)(∥∂xψ0∥L2 + ∥ψ1∥L2).

Now we give the proof of (1.11).

Proposition 3.2. Let T > 0 and ϕ solve the inhomogeneous wave equation

∂2
t ϕ− ∂2

xϕ = F, ϕ(0) = ϕ0, ∂tϕ(0) = ϕ1 (3.1)

on [0, T ] × T with data ϕ0 ∈ H1(T), ϕ1 ∈ L2(T), and F ∈ L1([0, T ], L2(T)). Then we
have the inequality

∥Q(ϕ, ϕ)∥L2([0,T ]×T) ≲T ∥∂xϕ0∥2
L2 + ∥ϕ1∥2

L2 + ∥F∥2
L1([0,T ],L2).

Proof. We decompose ϕ = ϕhom + ϕinh, where ϕhom solves (3.1) with F = 0 and ϕinh
solves (3.1) with ϕ0 = ϕ1 = 0. The estimate for Q(ϕhom, ϕhom) follows directly from
Lemma 3.1 and the periodicity of ∂t,xϕhom in time. To treat the inhomogeneous part, for
almost all s ∈ [0, T ], we define ϕs to be the solution to the homogeneous equation

∂2
t ϕ

s − ∂2
xϕ

s = 0, ϕs(s) = 0, ∂tϕ
s(s) = F (s).

By Duhamel’s formula, ϕinh is then given by

ϕinh(t) =
∫ t

0
ϕs(t) ds.

It follows that we can express the bilinear term as

Q(ϕinh, ϕinh)(t) =
∫ t

0

∫ t

0
Q(ϕs, ϕr)(t) dsdr.

Minkowski’s inequality, Lemma 3.1, and the energy equality imply

∥Q(ϕinh, ϕinh)∥L2([0,T ]×T)

≤
∫ T

0

∫ T

0
∥Q(ϕs, ϕr)∥L2([0,T ]×T) ds dr

≲T

∫ T

0

∫ T

0
(∥∂xϕs(0)∥L2 + ∥∂tϕs(0)∥L2)(∥∂xϕr(0)∥L2 + ∥∂tϕr(0)∥L2) dsdr

≲ ∥F∥2
L1([0,T ],L2).

The mixed term Q(ϕhom, ϕinh) is treated similarly.
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3.2. Error analysis of the corrected Lie splitting

In this section we carry out the proof of Theorem 1.6. It is convenient to work with the
first-order reformulation of the nonlinear wave equation (1.2). With the definitions

U :=
(
u
v

)
=̂
(
u
∂tu

)
, A :=

(
0 I
∂2
x 0

)
, G(U) :=

(
0

g(u)

)
, U0 :=

(
u0
v0

)
,

we obtain the differential equation

∂tU(t) = AU(t) +G(U(t)), t ∈ [0, T ],
U(0) = U0.

(3.2)

Clearly, U = (u, ∂tu) ∈ C([0, T ], H1 ×L2)∩C1([0, T ], L2 ×H−1) solves (3.2) if and only if
u ∈ C([0, T ], H1) ∩ C1([0, T ], L2) ∩ C2([0, T ], H−1) solves (1.2). The local wellposedness
of (3.2) can be shown by a standard Duhamel fixed-point iteration in a closed ball of
C([0, b], H1 × L2) for a suitable choice of b > 0.

Assumption 3.3. There exists a time T > 0 and a solution U = (u, ∂tu) ∈ C([0, T ], H1×
L2) ∩ C1([0, T ], L2 ×H−1) to the nonlinear wave equation (3.2) with bound

M := ∥U∥L∞([0,T ],H1×L2).

Since the nonlinearity g belongs to C2(R,R), we can find an increasing function L
such that g satisfies

|g(z)| + |g′(z)| + |g′′(z)| ≤ L(|z|) (3.3)

for all z ∈ R. In the following, we suppress the dependency on the function L from (3.3)
in the ≲ notation. We now apply Proposition 3.2 to the solution u to the nonlinear
problem (1.2).

Proposition 3.4. Let u, T , and M be given by Assumption 3.3. Then we have the
estimate

∥(∂tu)2 − (∂xu)2∥L2([0,T ]×T) ≲M,T 1.

Proof. By Proposition 3.2, the result follows from the inequality

∥g(u)∥L1([0,T ],L2) ≲M,T 1,

which is a consequence of (3.3), Hölder’s inequality, and the Sobolev embedding H1 ↪→
L∞.

We now give a brief derivation of the corrected Lie splitting (1.8) proposed in [49].
It is based of the Lie splitting approximation for (3.2), which is a formally first-order
scheme given by

ULie
n+1 = eτA[ULie

n + τG(ULie
n )]. (3.4)
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By the Duhamel formulation of (3.2), the fundamental theorem of calculus, and Fubini’s
theorem, the local error of (3.4) can be represented as

U(τ)−ULie
1 = eτA

∫ τ

0
[e−σAG(U(σ))−G(U0)] dσ = eτA

∫ τ

0
(τ−s)e−sAH(U(s)) ds. (3.5)

Here we use the definition

H(U(s)) := esA
d
ds
[
e−sAG(U(s))

]
=
(

−g(u(s))
g′(u(s))∂tu(s)

)
.

Similar as in the Schrödinger case, we do not insert the approximation U(s) ≈ esAU0
(which was used in [49]) in order to create better conditions for applying Proposition 3.4
later.

The construction of the low-regularity integrator depends on the following crucial
observation. Since u solves (1.2) and L1(T) ↪→ H−1(T), the map H(U) satisfies the
differential equation

d
dsH(U(s)) = −AH(U(s)) +B(U(s)) (3.6)

in L2(T) ×H−1(T), where the remainder

B(U) :=
(

0
g′′(u)[(∂tu)2 − (∂xu)2] + g′(u)g(u)

)
(3.7)

only contains first-order derivatives of u. We plug the Duhamel approximation H(U(s)) ≈
e−sAH(U0) for (3.6) into (3.5) and exploit (1.9) to infer

U(τ) − ULie
1 ≈ eτA

∫ τ

0
(τ − s)e−2sAH(U0) ds = τ2eτAφ2(−2τA)H(U0).

Adding this term on the Lie splitting (3.4) gives the formally second-order corrected Lie
splitting

Un+1 = Ψτ (Un) := eτA[Un + τG(Un) + τ2φ2(−2τA)H(Un)], (3.8)

which corresponds to (1.8). From this derivation we immediately get the following
representation of the local error. A related formula was derived in Lemma 6.2 of [63] in
the 3D case.

Lemma 3.5. Let U and T be given by Assumption (3.3). Then the local error of the
corrected Lie splitting (3.8) is given by

U(τ) − U1 = eτA
∫ τ

0
(τ − s)e−2sA

∫ s

0
eσAB(U(σ)) dσ ds

for all τ ∈ (0, T ].

Proof. Follows directly from (3.5), (3.8), and the Duhamel formulation of (3.6).

We can now bound the sum of local errors with the help of Proposition 3.4.
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Lemma 3.6. Let U = (u, ∂tu), T , and M be given by Assumption 3.3. Then we can
estimate the sum of local errors of (3.8) by

∥∥∥ n−1∑
k=0

e(n−k−1)τA
(
U(tk+1) − Ψτ (U(tk))

)∥∥∥
H1×L2

≲M,T τ
2,

for all τ ∈ (0, T ] and n ∈ N0 with nτ ≤ T .

Proof. The triangle inequality and Lemma 3.5 with U(tk + ·) instead of U yield

∥∥∥ n−1∑
k=0

e(n−k−1)τA
(
U(tk+1) − Ψτ (U(tk))

)∥∥∥
H1×L2

≲T τ
2
n−1∑
k=0

∫ τ

0
∥B(U(tk + σ))∥H1×L2 dσ ≤ τ2∥B(U)∥L1([0,T ],H1×L2).

We next insert the definition (3.7) of B and apply (3.3) and finally Proposition 3.4 to
obtain

∥B(U)∥L1([0,T ],H1×L2) = ∥g′′(u)[(∂tu)2 − (∂xu)2] + g′(u)g(u)∥L1([0,T ],L2)

≲M,T ∥(∂tu)2 − (∂xu)2∥L2([0,T ]×T) + 1 ≲M,T 1.

As in the Schrödinger case, we conclude the proof of the global error bound by means
of the discrete Gronwall lemma.

Proof of Theorem 1.6. We proceed similar as in the proof of Theorems 1.2 and 1.3. The
error

En := U(tn) − Un

of (3.8) satisfies the recursion formula

En+1 = U(tn+1) − Ψτ (U(tn)) + Ψτ (U(tn)) − Ψτ (Un)
= U(tn+1) − Ψτ (U(tn)) + eτAEn + τeτA(G(U(tn)) −G(Un))

+ τ2eτAφ2(−2τA)(H(U(tn)) −H(Un)).

Since E0 = 0, Lemma (A.8) gives the representation

En =
n−1∑
k=0

e(n−k−1)τA
(
U(tk+1) − Ψτ (U(tk))

)

+ τ
n−1∑
k=0

e(n−k)τA
(
G(U(tk)) −G(Uk)

)

+ τ2φ2(−2τA)
n−1∑
k=0

e(n−k)τA
(
H(U(tk)) −H(Uk)

)
.
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By the bounds on g from (3.3), we have the inequality

|g(y) − g(z)| + |g′(y) − g′(z)| ≲ L(|y| + |z|)|y − z|

for all y, z ∈ R. Moreover, due to its definition (1.9), the operator φ2(−2τA) is bounded
uniformly in τ on H1 × L2. Lemma 3.6, the Sobolev embedding H1 ↪→ L∞, the relation
Uk = U(tk) − Ek, and standard estimates thus imply that

∥En∥H1×L2 ≤ cτ2 + τ
n−1∑
k=0

K(∥Ek∥H1×L2)∥Ek∥H1×L2

with a constant c > 0 and an increasing function K, both depending on M , T , and L.
We define the maximum step size

τ0 := (ceK(1)T )− 1
2 .

Using the discrete Gronwall lemma A.9, we deduce via induction on n

∥En∥H1×L2 ≤ cτ2eK(1)T ≤ 1

for all τ ∈ (0, τ0] and n ∈ N0 with nτ ≤ T .
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Part II.

Error analysis of the Strang splitting
for 3D semilinear wave equations

with finite-energy solutions
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4.1. Problem setting
We study the time integration of the semilinear wave equation with power-type nonlin-
earity

∂2
t u− ∆u+ µ|u|α−1u = 0, (t, x) ∈ [0, T ) × Ω,

u(0) = u0, ∂tu(0) = v0,
(4.1)

where the spatial domain Ω can be either T3 or R3. We allow for powers α ∈ [3, 5] and
both signs µ ∈ {−1, 1}. The initial data (u0, v0) are assumed to belong to the physically
natural energy space H1(Ω) × L2(Ω). Here, the Sobolev space Hs(Ω) is defined as the
homogeneous Sobolev space Ḣs(R3) if Ω = R3, and the standard Sobolev space Hs(T3) if
Ω = T3, respectively. To avoid some technicalities, we require u0 and v0 to be real-valued,
though we could also treat the complex-valued case.

It is well known that local wellposedness of (4.1) can be shown by a fixed-point
argument. In the cubic case α = 3, the nonlinear term can be controlled only using
classical tools such as Sobolev embedding. In the case of higher powers α > 3, one has
to exploit the dispersive character of the wave equation. A particular useful tool are
the Strichartz estimates, which control mixed space-time LpLq-norms of solutions to
the linear wave equation in terms of the data. Thanks to the Lp-norm in time, one can
choose the space integrability exponent q larger than predicted by a fixed-time Sobolev
embedding. This makes it possible to show local wellposedness of (4.1) for powers up to
the critical value α = 5, see, e.g., the monographs [66, 71].

In this work we are interested in approximating the temporal evolution of (4.1). A
natural choice for the time integration of such equations is the class of second-order
trigonometric (or exponential) integrators, cf. Chapter XIII.2.2 of [27] for an overview.
As explained in [11], these methods in one-step form can be interpreted as variants of
the Strang splitting with additional filter functions in the nonlinear part. In the context
of an ordinary differential equation with a globally Lipschitz continuous nonlinearity,
error estimates for such schemes were derived in, e.g., [11, 21, 25, 27]. For the PDE (4.1)
with pure power nonlinearity, an error analysis was first given in [22], but only on the
one-dimensional torus T. The proof uses a similar strategy as the earlier work [50] for the
nonlinear Schrödinger equation. Under the finite-energy assumption (u0, v0) ∈ H1 ×L2, it
was shown that trigonometric integrators converge with order two in L2 ×H−1 and with
order one in the energy space H1 × L2 itself, even if no filter functions are used. In [10],
the same error bounds were shown in a more general setting (possibly including boundary
conditions) which in particular allows for rough L∞ coefficients in the nonlinear part. This
made it necessary to equip the schemes with suitable filter functions to avoid numerical
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resonances for certain step-sizes. The higher dimensional cases d ∈ {2, 3} were also
considered in [10], but only under the stronger regularity assumption (u0, v0) ∈ H2 ×H1.

In the proofs of the one-dimensional results in [10, 22], it was crucially exploited that the
Sobolev space H1(T) forms an algebra. This is however not the case in higher dimensions,
where the estimates for the nonlinear terms become more delicate. The local wellposedness
theory suggests to exploit Strichartz estimates in numerical analysis. Starting from [37,
40], this was first done for the nonlinear Schrödinger equation. Subsequent works used
discrete-time Strichartz estimates to show error bounds under low regularity assumptions,
such as [17, 36, 53] for the nonlinear Schrödinger equation on Rd and [41, 54] in the case
of the nonlinear Schrödinger equation on the torus Td. In the latter case, the authors
further made use of discrete Bourgain spaces. For the nonlinear wave equation (4.1),
no literature has been available in this context until recently. Based on discrete-time
Strichartz estimates, in our paper [63] an error analysis of the Lie splitting for (4.1) on
the full space R3 was given, notably including the scaling-critical power α = 5. It was
shown that under the assumption (u0, v0) ∈ H1 ×L2, the scheme converges with optimal
first order in L2 × H−1.

Recently, another class of methods to approximate the temporal evolution of nonlinear
dispersive problems especially in low regularity gained a lot of attention, namely, the
low-regularity integrators. See [59, 60] for an overview. Due to an improved local error
structure, such schemes can produce higher convergence rates at low regularity than
classical methods such as the Strang splitting. The authors in [49] proposed the corrected
Lie splitting, which is a low-regularity integrator that can be applied to the nonlinear wave
equation (4.1). It was shown that the corrected Lie splitting is second-order convergent
in H1 × L2 under the regularity condition (u0, v0) ∈ H1+d/4 × Hd/4 for dimensions
d ∈ {1, 2, 3}. If d = 1, the regularity condition for second-order convergence can even
be relaxed to (u0, v0) ∈ H1 × L2, see [62] and Part I. We also refer to [13] for an error
analysis of the corrected Lie splitting in lower regularity with reduced convergence rates
under a CFL-type condition. However, the analyses from [13, 49] do not apply to our
problem (4.1) since they either require a global Lipschitz condition on the nonlinearity
(which is not satisfied by the power-type nonlinearity ±|u|α−1u), or higher-regularity
solutions satisfying u(t) ∈ Hs with s > d/2.

The cases µ = 1 and µ = −1 are called defocusing and focusing, respectively. In
the defocusing situation µ = 1, it is known that the solutions to (4.1) exist globally in
time (if Ω = R3 and α < 5, this additionally requires that u0 ∈ Lα+1). Moreover, in
the case of the full space Ω = R3, so-called scattering results are known, meaning that
the nonlinear solution u asymptotically behaves like a solution to the linear problem
with possibly different initial value. Depending on the power α, such results sometimes
require additional spatial decay of the initial data, cf. Section 3.6 of [71]. It is a natural
question whether such techniques can be used to describe the long-time behavior of
numerical approximations as well. A first step in this direction was done in [15], where
the authors show a global-in-time convergence result for the Lie splitting applied to the
energy-subcritical Schrödinger equation by transferring results from scattering theory to
the discrete-time setting. In addition to the discrete-time Strichartz estimates from [36],
they exploit the pseudo-conformal conservation law which requires initial data in the
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conformal space, that is a subspace of H1 whose elements have suitable spatial decay at
infinity.

The very recent preprint [42] considers splitting schemes for the cubic wave equation
on the two-dimensional torus T2 for Hs solutions with s > 1/4. Two main results on
error bounds are proven, where one relies on Sobolev embedding and the other one makes
use of discrete Bourgain spaces. However, the convergence rates seem sub-optimal in
the case when no uniform space-time L∞ bound on the solution u is available, which
corresponds to the case s < 1 in two dimensions. The losses in the convergence rates
arise due to the the use of fixed-time Sobolev embeddings (that could be improved by
means of Strichartz estimates) in the first case. On the other hand, in the Bourgain
space framework a frequency-filtered scheme is used where already the approximation of
the initial data costs regularity. We believe that the results in [42] for s < 1 could be
improved by adapting our techniques to the two-dimensional setting.

4.2. Our contributions

The goal of the present part of this thesis is to prove optimal error bounds for a second-
order scheme applied to (4.1) under the finite-energy condition. For powers α away from
the critical value α = 5, the convergence rates obtained here are higher than those from
our previous paper [63]. In the important cubic case α = 3, we even almost recover the
optimal temporal second-order convergence in L2. The treatment of the scaling-critical
nonlinearity α = 5 is based on Section 5 of our earlier work [63], where the Lie splitting
was considered. As far as we know, this provided the first error analysis of a time
discretization for a scaling-critical problem. We adapt this analysis to show first-order
convergence in L2 and convergence without rate in H1 also for the Strang splitting. In
the case of the defocusing quintic nonlinearity on the full space (i.e., when Ω = R3, µ = 1,
and α = 5), our analysis is global in time and we include a scattering result. To our
knowledge, such a global analysis was only done in [15] for the semilinear Schrödinger
equation previously. However, we treat the energy-critical case which was not considered
in [15], and as opposed to that paper, we do not need additional decay assumptions on
the initial data. Indeed, our previous analysis from [63] can be extended to the global case
with only minor adjustments. Finally, for the torus Ω = T3, we treat the fully discrete
setting (using the Fourier pseudo-spectral method) with optimal spatial convergence.

In our earlier work [63], the terms stemming from the local error were estimated using
discrete-time Strichartz estimates. In combination with a non-optimal frequency filtering,
this led to a loss of convergence order in the error analysis of the formally second-order
corrected Lie splitting. Here, we use a more suitable filtering that was similarly proposed
as “method (B̃)” in the one-dimensional case in [22]. Moreover, we show that at least in
the case of the Strang splitting, one can avoid the issues coming from the application of
discrete-time Strichartz inequalities to the local error terms by using the continuous-time
Strichartz estimates instead. In the cubic case α = 3, it even turns out that we do not
need any discrete Strichartz estimates to prove our semi-discrete error result at all (the
continuous ones are still used). This is related to the fact that, as mentioned above, the
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wellposedness of (4.1) can be shown without using Strichartz estimates for α = 3. In
the case α ∈ (3, 5] however, we need the discrete-time Strichartz estimates to ensure the
stability of the numerical scheme.

We establish various discrete-time Strichartz estimates in Section 5. Here one controls
discrete-time points (u(nτ))n∈Z of the solutions to the linear problem in spaces like
ℓp(Z, Lq(R3)) by L2-based norms of the initial data, where τ ∈ (0, 1] is the time-step
size. It is easy to see that a naive discrete-time version of results in continuous time
fails, cf. Remark 5.7. As a remedy, we include frequency cut-offs πK that truncate the
high frequencies at level K ≥ 1. The estimates then depend on Kτ , but are otherwise
in complete analogy with the estimates in continuous time. Similar results for the
Schrödinger equation have been obtained in [36, 53], see also [41, 54] for the case of
periodic boundary conditions using Bourgain spaces. Moreover, Strichartz estimates
for spatially discrete Schrödinger equations were treated in the seminal works [37, 40].
In contrast to the Schrödinger equation on Rn, in the wave case one has to work with
frequency-localized estimates and the Littlewood–Paley decomposition already for the
basic Strichartz inequalities. In Theorem 5.12 we also derive local-in-time estimates at the
forbidden endpoint (p, q) = (2,∞) with an additional logarithmic correction depending
on K and the end-time T . Such an inequality was shown in [43] for continuous time.
Moreover, by exploiting the finite propagation speed of the wave equation on the torus
T3, we obtain locally in time the same Strichartz estimates as on the full space R3. This
is in sharp contrast to the Schrödinger case (with infinite speed of propagation) where
the Strichartz estimates on the torus are restricted compared to those on the full space,
cf. [7].

Even though our nonlinearity is of power-type, we have to make use of a filter function
inside the nonlinearity when estimating the terms resulting from the local error (compared
to the one-dimensional case [22]). This is essentially caused by the fact that in 3D, the
multiplication by an H1 ∩ L∞ function is not a bounded operator on H−1. As a filter,
we use the operator πτ−1 already mentioned above, which is the Fourier multiplier for
the characteristic function of the cube [−τ−1, τ−1]3, where τ > 0 denotes the time step
size. This particular choice is made for several reasons. First, it enables us to use the
summation by parts formula to exploit cancellations in the terms stemming from the local
error. Second, a filter of this type is needed to obtain discrete-time Strichartz estimates
(compare, e.g., [36, 41, 53, 54, 63]), which are necessary if α > 3. Third, it fits well to the
spatial discretization with the Fourier pseudo-spectral method. As a conceptual novelty,
the proof of our error estimates combines the summation/integration by parts technique
(as already used in, e.g., [10, 11]) with the use of Strichartz estimates.

While extending our results to the fully discrete setting, we face the difficulty that one
cannot take advantage of negative-order Sobolev spaces when estimating the trigonometric
interpolation error. We solve this issue by using an Lq estimate for the trigonometric
interpolation error from [2, 35, 58].
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4.3. Results in the semi-discrete setting
We analyze a variant of the Strang splitting scheme that computes approximations Un ≈
(u(nτ), ∂tu(nτ)) for a step size τ > 0 and n ∈ N0. With the notation A(u, v) := (v,∆u)
for the wave operator and G(u, v) := (0,−µ|u|α−1u) for the nonlinearity, the semi-discrete
form of the scheme reads

Un+1/2 = eτA[Un + τ
2G(Πτ−1Un)],

Un+1 = Un+1/2 + τ
2G(Πτ−1Un+1/2),

U0 = (u0, v0).
(4.2)

This scheme fits into the class of trigonometric integrators in one-step formulation
as described in Section XIII.2.2 of [27], with “inner filter” Πτ−1 = diag(πτ−1 , πτ−1).
It corresponds to a variant of “method (B̃)” that was proposed and analyzed in the
one-dimensional case in [22]. See (5.8) and (5.15) for the precise definition of the filter.

Our convergence result for the subcritical case α ∈ [3, 5) reads as follows. It is proved
at the end of Sections 7.4 and 7.5, respectively.

Theorem 4.1. Let T ∈ (0,∞) and U = (u, ∂tu) ∈ C([0, T ],H1(Ω) × L2(Ω)) solve the
semilinear wave equation (4.1). Then there are a constant C > 0 and a maximum step
size τ0 > 0, such that the approximations Un obtained by the filtered Strang splitting
scheme (4.2) satisfy the error bounds

∥U(nτ) − Un∥H1×L2 ≤ Cτ | log τ |,
∥U(nτ) − Un∥L2×H−1 ≤ Cτ2| log τ |

for α = 3, and

∥U(nτ) − Un∥H1×L2 ≤ Cτ
5−α

2 ,

∥U(nτ) − Un∥L2×H−1 ≤ Cτ
7−α

2

for α ∈ (3, 5). Theses bounds are uniform in τ ∈ (0, τ0] and n ∈ N0 with nτ ≤ T . The
numbers C and τ0 only depend on T , α, and ∥U∥L∞([0,T ],H1×L2).

Remark 4.2. The logarithm in the result of Theorem 4.1 for α = 3 comes from the use
of the endpoint Strichartz estimate for the L2L∞ norm that only holds with a logarithmic
correction, cf. Corollary 5.16.

Remark 4.3. In the case of a slower growing nonlinearity with α ∈ [2, 3), an inspection
of the proof of Theorem 4.1 shows that one obtains the same error bounds as in the cubic
case α = 3. If Ω = R3, one has to assume an additional condition such as u0 ∈ L2 to
deal with the case α < 3 (due to issues with homogeneous Sobolev spaces).

We also provide an error analysis for the critical case α = 5. Notably, the analysis is
global in time in the defocusing case on the full space, i.e., if Ω = R3 and µ = 1. To
obtain this result, it is crucial to work in homogeneous Sobolev spaces, since the wave
group etA is not bounded uniformly in t on the standard (inhomogeneous) Sobolev spaces
Hr ×Hr−1. The proof is given a the end of Section 7.6.
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Theorem 4.4. Let α = 5 and T ∈ (0,∞). If Ω = R3 and µ = 1, we also allow
T = ∞. Let U = (u, ∂tu) ∈ C([0, T ),H1(Ω) × L2(Ω)) with u ∈ L4([0, T ], L12(Ω)) solve
the semilinear wave equation (4.1). Then there are a constant C > 0 and a maximum
step size τ0 > 0, such that the iterates Un of the filtered Strang splitting scheme (4.2)
satisfy the error bound

∥U(nτ) − Un∥L2×H−1 ≤ Cτ

for all τ ∈ (0, τ0] and n ∈ N0 with nτ ∈ [0, T ). Moreover, we obtain the convergence

∥U(nτ) − Un∥H1×L2 → 0

as τ → 0, uniformly in n ∈ N0 with nτ ∈ [0, T ). In the case Ω = R3, the number C
only depends on ∥U∥L∞([0,T ],H1×L2(Ω)) and ∥u∥L4([0,T ],L12(Ω)), whereas τ0 only depends
on u0 and v0. In the case Ω = T3, the constants C and τ0 additionally depend on T .
Furthermore, if Ω = R3 and µ = 1, we obtain the scattering result

lim
τ→0

lim
n→∞

∥Un − enτAU+∥Ḣ1×L2 = 0

for some asymptotic state U+ ∈ Ḣ1 × L2.

Remark 4.5. The more sophisticated analysis for α = 5 is reflected by the dependence
of the maximum step size τ0 on the solution itself, rather than just on its norm. A similar
behavior occurs in the wellposedness theory, see Section 6.1 and [71].

Remark 4.6. The global-in-time analysis does not apply to the subcritical case α < 5
without further assumptions. The reasons are the same as those which prevent a
straightforward scattering result in that case, cf. Remark 6.6.

Remark 4.7. We compare our 3D results to the known results in 1D. If α = 3, our
convergence rates are almost the same as those obtained in the one-dimensional cases in
[10, 22]. For α > 3, the Theorems 4.1 and 4.4 exhibit an order reduction. This reduction
can be observed in our numerical experiment in Section 8.

Remark 4.8. In the defocusing case µ = 1, energy conservation shows that the solutions
to (4.1) exist globally in time (if Ω = R3 and α < 5, one needs the additional assumption
u0 ∈ Lα+1 to ensure that the energy is finite). Moreover, the numbers C and τ0 from
Theorems 4.1, as well as the number C from Theorem 4.4, then only depend on T , α,
∥u0∥H1(Ω), ∥v0∥L2(Ω), and possibly ∥u0∥Lα+1(R3). See Remarks 6.4–6.6.

Remark 4.9. The integrability condition u ∈ L4([0, T ], L12(Ω)) is assumed in Theorem
4.4 since uniqueness of solutions to (4.1) for α = 5 is in general not known without such a
restriction, cf. Remark 6.2 d) and [57]. If µ = 1 and Ω = R3, one can always take T = ∞
in Theorem 4.4, cf. Remark 6.6.

Remark 4.10. With somewhat greater technical effort we could also treat the equation

∂2
t u− ∆u = g(u) (4.3)
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with a general nonlinearity g ∈ C2(R,R) satisfying the bounds

|g(z)| ≲ 1 + |z|α,
|g′(z)| ≲ 1 + |z|α−1,

|g′′(z)| ≲ 1 + |z|α−2,

for z ∈ R. This covers in particular the semilinear Klein–Gordon equation since the
lower-order mass term can be moved into the nonlinearity. The global-in-time result of
Theorem 4.4 will however not directly extend to a setting where the nonlinearity contains
a lower-order part. Still, we expect that global results are possible in the Klein–Gordon
case, for instance.

Remark 4.11. One might wonder if under our assumption (u0, v0) ∈ H1 × L2, a low-
regularity integrator such as the corrected Lie splitting proposed in [49] can give higher
convergence rates than classical schemes such as the Strang splitting. The authors in
[49] show that this is possible in the one-dimensional case, see also Part I. However, in
our 3D case we did not succeed to find such a result so far, cf. Remark 1.7.

4.4. The fully discrete scheme
In the case Ω = T3, we can also provide error bounds for a full discretization. Denoting
by K ≥ 1 the spatial discretization parameter for the Fourier pseudo-spectral method,
we consider the fully discrete scheme

Un+1/2 = eτA[Un + τ
2 IKG(Πτ−1Un)]

Un+1 = Un+1/2 + τ
2 IKG(Πτ−1Un+1/2)

U0 = ΠK(u0, v0).
(4.4)

Here, we use the notation IK = diag(IK , IK) for the trigonometric interpolation operator
IK , cf. Definition 5.21. Note that (4.4) corresponds to the semi-discrete scheme (4.2) in
the case K = ∞, where we define Π∞ = I∞ := I.

In the subcritical range α ∈ [3, 5), we establish the following fully discrete convergence
result.

Theorem 4.12. Let T ∈ (0,∞) and U = (u, ∂tu) ∈ C([0, T ], H1(T3) ×L2(T3)) solve the
semilinear wave equation (4.1). Then there are positive constants C, τ0, and K0, such
that the approximations Un obtained by the fully discrete filtered Strang algorithm (4.4)
satisfy the error bounds

∥U(nτ) − Un∥L2×H−1 ≤ C(τ2| log τ | +K−1), if α = 3,

∥U(nτ) − Un∥L2×H−1 ≤ C(τ
7−α

2 +K−1), if α ∈ (3, 5),

uniformly in τ ∈ (0, τ0], K ≥ K0, and n ∈ N0 with nτ ≤ T . We moreover obtain the
convergence

∥U(nτ) − Un∥H1×L2 → 0
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as τ → 0 and K → ∞, uniformly in n ∈ N0 with nτ ∈ [0, T ]. The numbers C, τ0, and
K0 only depend on T , α, and ∥U∥L∞([0,T ],H1×L2).

In the critical case α = 5, our fully discrete result reads as follows.

Theorem 4.13. Let α = 5 and T ∈ (0,∞). Let U = (u, ∂tu) ∈ C([0, T ], H1(T3)×L2(T3))
with u ∈ L4([0, T ], L12(T3)) solve the semilinear wave equation (4.1). Then there are
positive constants C, τ0, and K0, such that the iterates Un of the fully discrete filtered
Strang splitting scheme (4.4) satisfy the error bound

∥U(nτ) − Un∥L2×H−1 ≤ C(τ +K−1)

for all τ ∈ (0, τ0], K ≥ K0, and n ∈ N0 with nτ ≤ T . We moreover obtain the convergence

∥U(nτ) − Un∥H1×L2 → 0

as τ → 0 and K → ∞, uniformly in n ∈ N0 with nτ ∈ [0, T ]. The number C only depends
on T , ∥U∥L∞([0,T ],H1×L2) and ∥u∥L4([0,T ],L12), whereas τ0 and K0 only depend on u0 and
v0.

Remark 4.14. We emphasize that K and τ can be chosen independently in our results.
Note that our fully discrete Theorems 4.12 and 4.13 formally imply their semi-discrete
counterparts for the torus T3 from Theorems 4.1 and 4.4 in the limit K → ∞.

Remark 4.15. In Theorems 4.12 and 4.13, the spatial order K−1 for the error in
L2 ×H−1 is optimal. This can be seen by investigating the projection error

∥(I − ΠK)U(nτ)∥L2×H−1 ≲ K−1∥U(nτ)∥H1×L2 ,

cf. Lemma 5.19. Similarly, in the energy norm, the projection error satisfies

∥(I − ΠK)U(nτ)∥H1×L2 → 0

for K → ∞, but without rate in general, since we only assume the regularity U(t) =
(u, ∂tu)(t) ∈ H1 × L2. Therefore, we can only expect spatial convergence without rate in
the H1 × L2-norm.

Remark 4.16. Here we could also treat the general equation (4.3). In view of the error
bound for the trigonometric interpolation from Lemma 5.23, we then would additionally
need the third derivative of g with bound

|g′′′(z)| ≲ 1 + |z|α−3.

Remark 4.17. In view of the error bounds of Theorem 4.12, it might be advantageous
to choose the spatial resolution finer than the temporal one. In the cases α ∈ {3, 5},
the nonlinearity is a polynomial and thus respects the frequency localization up to a
constant. In particular, if additionally K > α/τ , it turns out that the highest frequencies
(ΠK −Πα/τ )Un in (4.4) are only influenced by the linear part etA and not by the nonlinear
functionG. Therefore, in that case, if one is only interested in the numerical approximation
UN for some N ≫ 1, the high-frequency part can be computed directly from the initial
data via (ΠK − Πα/τ )UN = eNτA(ΠK − Πα/τ )(u0, v0), without time-stepping. This idea
was also exploited in the recent paper [13].
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Remark 4.18. The torus T3 corresponds to a cube with periodic boundary conditions.
We can also treat the problem on a cube with homogeneous Dirichlet or Neumann bound-
ary conditions by restricting the full Fourier basis to a sine or cosine basis, respectively,
see Section 6.2. Similarly, the semi-discrete results from Section 4.3 naturally extend to
(possibly irrational) tori R/(a1Z)×R/(a2Z)×R/(a3Z) and cuboids (0, a1)×(0, a2)×(0, a3)
with homogeneous Dirichlet or Neumann boundary conditions for some side-lengths a1,
a2, a3 > 0. To obtain fully discrete results also in that case, it remains to be checked
whether the trigonometric interpolation error estimates from Lemma 5.23 hold true in
that setting as well.

Remark 4.19. Our results do not cover the case that the differential equation (4.1)
is posed on a general non-cuboidal domain with appropriate boundary conditions. In
this setting the derivation of Strichartz estimates is considerably harder and the range
of admissible exponents is restricted, see [6]. In the case when Kτ = 1 in the discrete
Strichartz inequality Theorem 5.6 (which is sufficient for our applications), one can
show discrete-time Strichartz estimates using the continuous ones as a “black box”, see
Remark 5.9. Using this, we could transfer our semi-discrete results to the general domain
case, where we would need to adjust the convergence rates for small α according to
the restricted Strichartz estimates. However, it is still unclear how to involve space
discretizations if spectral methods cannot be used and if it is possible to derive Strichartz
estimates for, e.g., finite element approximations. For Schrödinger equations on the full
space, Strichartz estimates for finite-difference Laplacians have been treated in, e.g.,
[32, 37, 40]. Nevertheless, the corresponding problem for a multi-dimensional wave
equation seems to be unsolved even in this simple model case, cf. [16]. Moreover, since the
previously mentioned works make essential use of Fourier techniques, it is still completely
open how they extend to more general domains or non-equidistant meshes.

4.5. Notations

Let p ∈ [1,∞]. The discrete p-norms on Rd are denoted by | · |p and we simply write
| · | = | · |2 for the euclidean norm. The Hölder-conjugated index to p is denoted by
p′ ∈ [1,∞] and satisfies the relation 1/p+1/p′ = 1. The set B(x0, r) = {x ∈ Rd : |x| ≤ r}
is the ball with radius r ≥ 0 centered at some position x0 ∈ Rd. The identity operator is
denoted by I. We write 1B for the indicator function of a set B and 1 for the function
being constantly one.

We denote by D(T3) the space of 2π-periodic C∞(R3)-functions and by D′(T3) the
space of distributions on the torus, cf. Definitions 1.23–1.24 of [64]. The k-th Fourier
coefficient of a distribution v ∈ D′(T3) is defined by

v̂k = (2π)− 3
2 ⟨v, e−ik·x⟩D′(T3)×D(T3), k ∈ Z3.

For a real number s ∈ R, the Sobolev spaces on T3 are given by

Hs(T3) = {v ∈ D′(T3) : ∥v∥Hs(T3) < ∞}
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with norm
∥v∥2

Hs(T3) =
∑
k∈Z3

(1 + |k|2)s|v̂k|2. (4.5)

We have H0(T3) = L2(T3) by the Parseval equality.
We write F for the Fourier transform on R3 (and also on T3), using the convention

with the prefactor (2π)−3/2. We set û := Fu. We denote by S(R3) the Schwartz space
and by S ′(R3) the space of tempered distributions on R3. In the context of Fourier
multipliers, we often simply write ξ instead of the map ξ 7→ ξ. For s ∈ R, we use the
inhomogeneous and homogeneous Sobolev spaces

Hs(R3) = {w ∈ S ′(R3) : ŵ ∈ L1
loc(R3) and ∥w∥Hs(R3) < ∞},

Ḣs(R3) = {w ∈ S ′(R3) : ŵ ∈ L1
loc(R3) and ∥w∥Ḣs(R3) < ∞}

with norms

∥w∥Hs(R3) = ∥(1 + |ξ|2)
s
2 ŵ∥L2(R3), ∥w∥Ḣs(R3) = ∥|ξ|sŵ∥L2(R3), (4.6)

where L1
loc(R3) denotes the space of locally integrable functions on R3. Plancherel’s

theorem yields H0(R3) = Ḣ0(R3) = L2(R3). By Proposition 1.34 of [3], the homogeneous
space Ḣs(R3) is complete if and only if s < 3/2. For Ω ∈ {R3,T3}, we set Hs(Ω) :=
Ḣs(R3) if Ω = R3 and Hs(Ω) := Hs(T3) if Ω = T3.

Let h : R → C be a measurable function. To denote the Fourier multiplication operator
for the function ξ 7→ h(|ξ|) (on R3) and k 7→ h(|k|) (on T3), we will use the notation
h(|∇|) in both cases (see Definition A.4 with m : ξ 7→ h(|ξ|)). It is clear from the definition
of the Sobolev norms that if the function h is bounded, then the operator h(|∇|) is
uniformly bounded on all spaces Hs(T3), Hs(R3) and Ḣs(R3). Moreover, ∆ = −|∇|2 is
the Laplacian. Some more properties of Fourier multipliers and function spaces can be
found in Appendix A.1.

Let p ∈ [1,∞], J be a time interval, X be a Banach space, and τ > 0 be a time step
size. In analogy to the continuous-time Bochner norm ∥ · ∥Lp(J,X), we also introduce the
discrete-time norms

∥F∥ℓpτ (J,X) :=
(
τ
∑
n∈Z
nτ∈J

∥Fn∥pX
) 1

p

if p < ∞, and
∥F∥ℓ∞τ (J,X) := sup

n∈Z
nτ∈J

∥Fn∥X .

To simplify notation we often write ∥Fn∥ℓpτ (J,X) instead of ∥(Fn)n∈Z∥ℓpτ (J,X), where a “free”
variable n is assumed as the summation variable. In the case J = [0, T ], we abbreviate
LpTX = Lp([0, T ], X) and ℓpτ,TX = ℓpτ ([0, T ], X). We also use the short-hand notations
LpX = Lp(R, X), ℓpτX = ℓpτ (R, X), and ℓpX = ℓp1(R, X) = ℓp(Z, X).
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5. Linear estimates

In the following two Sections 5.1 and 5.2 we only work on R3, therefore we abbreviate
Lq = Lq(R3) etc.

5.1. Strichartz estimates on the full space
A triple (p, q, γ) is called admissible, H1-admissible (for the wave equation in dimension
three) if p ∈ (2,∞], q ∈ [2,∞), and

1
p

+ 1
q

≤ 1
2 ,

1
p

+ 3
q

= 3
2 − γ. (5.1)

One then has γ ∈ [0, 3
2), and the equality in (5.1) is called scaling condition. The following

theorem is well known, cf. Chapter IV.1 of [66].

Theorem 5.1. Let (p, q, γ) be admissible. Then we have the estimate

∥eit|∇|f∥Lp(R,Lq(R3)) ≲p,q ∥f∥Ḣγ

for all f ∈ Ḣγ(R3).

Observe that for p = ∞, the estimate can also be deduced from homogeneous Sobolev
embedding (cf. Theorem A.1) followed by Plancherel’s theorem. If p < ∞ however, the
scaling condition implies that we save 1/p derivatives compared to the fixed-time Sobolev
embedding. Moreover, we then obtain some temporal decay at infinity since the estimate
is global in time. The equality in (5.1) is necessary due to the scaling f 7→ fλ with
fλ(x) = f(λx), which explains the terminology. The necessity of the inequality in (5.1)
follows from the so-called Knapp example, see Exercise 2.43 of [71]. Theorem 5.1 remains
true for triples (p,∞, γ) with p ∈ (2,∞) that satisfy (5.1), see Proposition 0.1 of [47].

Remark 5.2. The transformation f 7→ f̄ shows that one can always replace eit|∇| with
e−it|∇| in the estimates of this chapter.

The estimate from Theorem 5.1 can be applied to the wave equation in the following
way. Let γ ∈ [0, 3

2). For given initial data f ∈ Ḣγ(R3) and g ∈ Ḣγ−1(R3), we define the
function

w(t) := cos(t|∇|)f + |∇|−1 sin(t|∇|)g, t ∈ R.

Using the Fourier transform, one checks that w ∈ C(R, Ḣγ) solves (in the sense of
tempered distributions) the linear wave equation

∂ttw − ∆w = 0, w(0) = f, ∂tw(0) = g.
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5. Linear estimates

Applied to the decomposition

sin(t|∇|) = 1
2i(e

it|∇| − e−it|∇|), cos(t|∇|) = 1
2(eit|∇| + e−it|∇|), (5.2)

Theorem 5.1 and Remark 5.2 yield the inequality

∥w∥LpLq ≲p,q ∥f∥Ḣγ + ∥g∥Ḣγ−1 ,

whenever (p, q, γ) is admissible.
To obtain estimates for discrete time, we start with some standard definitions and

results.

Definition 5.3. Let χ ∈ C∞
c (R3,R) be a radial function with χ = 1 on B(0, 1) and

suppχ ⊆ B(0, 2). For ξ ∈ R3 and j ∈ Z we set

ψ(ξ) := χ(ξ) − χ(2ξ),

ψj(ξ) := ψ
( ξ

2j
)
, Pju := F−1(ψj û)

for u ∈ S ′.

These definitions yield suppψj ⊆ {ξ ∈ R3 : 2j−1 ≤ |ξ| ≤ 2j+1} and the identity∑
j∈Z

ψj(ξ) = 1, ξ ∈ R3 \ {0}.

By the convolution theorem, we can also write Pjf = (2π)−3/2F−1(ψj)∗f (cf. Proposition
A.6). Young’s convolution inequality then shows that the “Littlewood–Paley projections”
Pj are bounded in Lp uniformly in j ∈ Z and p ∈ [1,∞]. Indeed, using the dilation
operator Da given by (Daf)(x) := f(ax), we have

∥Pjf∥Lp ≤ ∥F−1(D2−jψ) ∗ f∥Lp ≤ ∥F−1(D2−jψ)∥L1∥f∥Lp = 23j∥D2j F−1(ψ)∥L1∥f∥Lp

= ∥F−1(ψ)∥L1∥f∥Lp ≲ ∥f∥Lp ,

exploiting Lemma A.7.
From Proposition III.1.5 of [66], we recall the kernel bound

∥F−1(eit|ξ|ψ)∥L∞ ≲ (1 + |t|)−1, t ∈ R. (5.3)

The proof of the Strichartz estimates is based on the following well-known frequency-
localized dispersive inequality. We give the proof for convenience.

Lemma 5.4. It holds

∥eit|∇|Pjf∥Lq ≲ 23j(1− 2
q

)(1 + 2j |t|)−(1− 2
q

)∥f∥Lq′

for all j ∈ Z, t ∈ R, q ∈ [2,∞], and f ∈ Lq
′.
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5.1. Strichartz estimates on the full space

Proof. Let first f ∈ L1. Young’s convolution inequality yields

∥eit|∇|Pjf∥L∞ ≲ ∥F−1(eit|ξ|ψj)∥L∞∥f∥L1 .

With the dilation operator Da from above, we compute

F−1(eit|ξ|ψj) = F−1(eit|ξ|D2−jψ) = 23jD2j F−1(ei2jt|ξ|ψ).

Estimate (5.3) now gives

∥eit|∇|Pjf∥L∞ ≲ 23j(1 + 2j |t|)−1∥f∥L1 .

The assertion follows from the Riesz–Thorin theorem by interpolation with the L2-bound
∥eit|∇|Pjf∥L2 ≲ ∥f∥L2 .

Now we turn our attention to the discrete-time setting. In the following ℓpLq estimates,
the ℓp-summation is always taken over the variable n. We start with frequency-localized
inequalities.

Lemma 5.5. Let (p, q, γ) be admissible. Then the estimates∥∥∥∑
k∈Z

ei(n−k)|∇|PjFk
∥∥∥
ℓpLq

≲p,q 22jγ(2
2j
p + 1)∥F∥ℓp′Lq′ , (5.4)

∥∥∥∑
k∈Z

e−ik|∇|PjFk
∥∥∥
L2

≲p,q 2jγ(2
j
p + 1)∥F∥ℓp′Lq′ , (5.5)

∥Pjein|∇|f∥ℓpLq ≲p,q 2jγ(2
j
p + 1)∥Pjf∥L2 (5.6)

hold for all F ∈ ℓp
′
Lq

′, f ∈ L2, and j ∈ Z.

Proof. We first deduce from Lemma 5.4 the estimate∥∥∥∑
k∈Z

ei(n−k)|∇|PjFk
∥∥∥
ℓpLq

≤
∥∥∥∑
k∈Z

∥ei(n−k)|∇|PjFk∥Lq

∥∥∥
ℓp

≲ 23j(1− 2
q

)
∥∥∥∑
k∈Z

∥Fk∥Lq′

(1 + 2j |n− k|)1− 2
q

∥∥∥
ℓp

≤ 22j( 1
p

+γ)
∥∥∥∑
k∈Z

∥Fk∥Lq′

(1 + 2j |n− k|)
2
p

∥∥∥
ℓp
,

where the last inequality follows from the admissibility conditions (5.1). The first assertion
for p = ∞ is now clear. For p < ∞ we compute

22j( 1
p

+γ)
∥∥∥∑
k∈Z

∥Fk∥Lq′

(1 + 2j |n− k|)
2
p

∥∥∥
ℓp

≤ 22j( 1
p

+γ)
(∥∥∥∥Fn∥Lq′

∥∥∥
ℓp

+
∥∥∥∑
k∈Z
k ̸=n

∥Fk∥Lq′

(1 + 2j |n− k|)
2
p

∥∥∥
ℓp

)

≤ 22jγ
(
2

2j
p ∥F∥ℓp′Lq′ +

∥∥∥∑
k∈Z
k ̸=n

∥Fk∥Lq′

|n− k|
2
p

∥∥∥
ℓp

)
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5. Linear estimates

≲p,q 22jγ(2
2j
p + 1)∥F∥ℓp′Lq′

with the help of the discrete Hardy–Littlewood–Sobolev inequality (see Proposition (a)
in [67]). This proves (5.4). We note that in the case n = k the factor 22j/p does not
cancel. This is the main difference to the continuous case, where such a term does not
appear in the continuous Hardy–Littlewood–Sobolev inequality.

The other two claims follow by a TT ∗ argument, exploiting the duality of ℓpLq and
ℓp

′
Lq

′ . Let first F ∈ c00(Z, Lq′) be a finitely supported sequence, i.e., there exists N ∈ N
such that Fn = 0 for all |n| ≥ N . From (5.4) we derive∥∥∥∑
k∈Z

e−ik|∇|PjFk
∥∥∥2

L2
=
∑
n∈Z

〈∑
k∈Z

ei(n−k)|∇|PjFk, PjFn
〉

≤
∥∥∥∑
k∈Z

ei(n−k)|∇|PjFk
∥∥∥
ℓpLq

∥PjFn∥ℓp′Lq′ ≲p,q 22jγ(2
2j
p + 1)∥F∥2

ℓp′Lq′ .

Here we write ⟨·, ·⟩ for the L2-inner product and exploit that the adjoint operator in L2

is given by (ein|∇|)∗ = e−in|∇|, and that by Bernstein’s inequality from Lemma A.3, Pj
maps Lq′ to L2. The assertion (5.5) for general F ∈ ℓp

′
Lq

′ then follows from the density
of c00(Z, Lq′) in ℓp

′
Lq

′ . By duality, (5.5) implies that

∥Pjein|∇|f∥ℓpLq ≲p,q 2jγ(2
j
p + 1)∥f∥L2 (5.7)

for all f ∈ L2, using that Pj is self-adjoint in L2. To recover Pj on the right-hand side,
we use the fattened Littlewood–Paley projection P̃j := Pj−1 +Pj +Pj+1 for j ∈ Z, noting
that P̃jPj = Pj . Clearly, (5.7) also holds with P̃j instead of Pj . In this inequality, we
then replace f by Pjf to obtain the last assertion (5.6).

To obtain discrete-time Strichartz estimates, it is necessary to include a suitable filter
operator. This was first observed in case of the Schrödinger equation, cf. [36]. The filter
will be exploited to deal with the factor 2j/p + 1 in (5.6). As filter, we choose a frequency
cut-off. For each K ≥ 1 we define the Fourier multiplication operator

πK := F−1
1{|ξ|∞≤K}F . (5.8)

By Plancherel’s theorem, the operators πK are clearly bounded uniformly in K on every
L2-based Sobolev space.

We can now show the desired discrete Strichartz estimates. We stress that these
estimates fail without the cut-off if p < ∞. For instance, take a function f ∈ Ḣγ \ Lq in
Theorem 5.6, cf. Remark 5.7. On the other hand, for f ∈ Ḣγ the map πKf belongs to
all Lr with r ≥ q0 and 3/2 − γ = 3/q0 by Sobolev’s embedding (Theorem A.1) and since
its Fourier transform belongs to L1.

Theorem 5.6. Let (p, q, γ) be admissible. Then we have the estimate

∥πKeinτ |∇|f∥ℓpτLq ≲p,q (Kτ)
1
p ∥f∥Ḣγ ,

for all τ ∈ (0, 1], K ≥ τ−1, and f ∈ Ḣγ.
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5.1. Strichartz estimates on the full space

Proof. We first prove the theorem in the case τ = 1. By means of the Littlewood–Paley
square function estimate (see Theorem 6.1.2 of [24]), Minkowski’s inequality, and Lemma
5.5, we compute

∥πKein|∇|f∥ℓpLq ≲q

∥∥∥(∑
j∈Z

|PjπKein|∇|f |2
) 1

2
∥∥∥
ℓpLq

≤
(∑
j∈Z

∥Pjein|∇|πKf∥2
ℓpLq

) 1
2

≲p,q

(∑
j∈Z

∥2jγ(2
j
p + 1)PjπKf∥2

L2

) 1
2
≲ K

1
p

(∑
j∈Z

∥2jγPjf∥2
L2

) 1
2

≲ K
1
p ∥f∥Ḣγ ,

also using that PjπK = 0 for K ≲ 2j . The assertion for general τ ∈ (0, 1] then follows
from a scaling argument. Indeed, we can write

πKe
it|∇|f = Dτ−1πKτe

i t
τ

|∇|Dτf, (5.9)

where the spatial dilation operator Da is given by (Daf)(x) = f(ax). Thus, we get the
general estimate

∥πKeinτ |∇|f∥ℓpτLq = τ
1
p ∥Dτ−1πKτe

in|∇|Dτf∥ℓpLq = τ
1
p

+ 3
q ∥πKτein|∇|Dτf∥ℓpLq

≲p,q τ
1
p

+ 3
q (Kτ)

1
p ∥Dτf∥Ḣγ = τ

1
p

+ 3
q

− 3
2 +γ(Kτ)

1
p ∥f∥Ḣγ = (Kτ)

1
p ∥f∥Ḣγ

by the scaling condition in (5.1).

Remark 5.7. The estimate from Theorem 5.6 is optimal in the following sense. If we
only consider the term with n = 0 in the left-hand side of Theorem 5.6, we obtain the
frequency-localized Sobolev embedding

∥πKf∥Lq ≲p,q K
1
p ∥f∥Ḣγ ,

which in general is sharp by scaling and (5.1) (cf. Theorem A.1 and Lemma A.3).

Remark 5.8. Later on, we will always set K = τ−1, since this choice optimizes the
global error for the Strang splitting scheme. If we allowed for higher frequencies K > τ−1,
the factor (Kτ)1/p in the discrete Strichartz estimates would grow. Nevertheless, such
a choice could be interesting for further applications (for example for an error analysis
of the corrected Lie splitting proposed in [49], a method with a different local error
structure). However, we were not able to show better convergence rates for the corrected
Lie splitting than for the Strang splitting in 3D so far, cf. Remarks 1.7 and 4.11. See
also [53] for a related discussion in case of Schrödinger equations.

Remark 5.9. There exists an alternative (simpler) approach to discrete-time Strichartz
estimates, which uses the well-known continuous estimates just as a “black box”. In the
context of Schrödinger equations, it was used in Lemma 2.6 of the recent preprint [73],
see also Lemma 2.1 of [70] for a similar technique. But this approach yields a weaker
estimate compared to Theorem 5.6 in the case when K > τ−1. We give the details.
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5. Linear estimates

Let (p, q, γ) be admissible with p < ∞. We first let τ = 1 and K > 0 be arbitrary. For
a function f ∈ Ḣγ , we compute

∥ein|∇|πKf∥pℓpLq =
∑
n∈Z

∫ n

n−1
∥ein|∇|πKf∥pLq dt

≲
∑
n∈Z

∫ n

n−1
∥(ein|∇| − eit|∇|)πKf∥pLq dt+

∑
n∈Z

∫ n

n−1
∥eit|∇|πKf∥pLq dt.

Note that the last term is equal to ∥eit|∇|πKf∥pLpLq , therefore it can be treated directly
by the continuous Strichartz estimate from Theorem 5.1. The first term is estimated by

∑
n∈Z

∫ n

n−1
∥(ein|∇| − eit|∇|)πKf∥pLq dt =

∑
n∈Z

∫ n

n−1

∥∥∥ ∫ n

t
i|∇|eiσ|∇|πKf dσ

∥∥∥p
Lq

dt

≤
∑
n∈Z

∫ n

n−1

∫ n

n−1
∥|∇|eiσ|∇|πKf∥pLq dσ dt

= ∥eit|∇|πK |∇|f∥pLpLq ≲p,q ∥πK |∇|f∥p
Ḣγ

≲ Kp∥f∥p
Ḣγ ,

where we used Theorem 5.1 and finally Bernstein’s inequality from Lemma A.3. Alto-
gether, this gives the estimate

∥πKein|∇|f∥ℓpLq ≲p,q (1 +K)∥f∥Ḣγ .

The scaling argument from the proof of Theorem 5.6 then yields the estimate

∥πKeinτ |∇|f∥ℓpτLq ≲p,q (1 +Kτ)∥f∥Ḣγ ,

for general τ > 0. We see that this estimate is inferior to Theorem 5.6 if K > τ−1, but
for K = τ−1 they are the same.

5.2. Endpoint estimates with logarithmic loss
The estimates of Theorem 5.1 and 5.6 fail at the so-called “double endpoint” (p, q, γ) =
(2,∞, 1), see [70] or Exercise 2.44 in [71] for a discussion. However, estimates with
logarithmic corrections in time and frequency are available. For instance, from Proposition
6.3 of [43], one can deduce that the inequality

∥πKeit|∇|f∥L2
TL

∞ ≲ (log(1 +KT ))
1
2 ∥f∥Ḣ1 (5.10)

holds for all f ∈ Ḣ1(R3), K ≥ 1, and T ≥ 0. In this section, we deduce the discrete-time
analogue of (5.10) by adapting the approach from Section 8 of [43]. First, we need two
lemmas with basic estimates. The first one is contained in the proof of Lemma 8.1 in
[43].
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5.2. Endpoint estimates with logarithmic loss

Lemma 5.10. The function

M(λ, z) :=
∫
B(0,1)

|ξ|−2 cos(λ|ξ|)eiz·ξ dξ

satisfies the decay estimate
|M(λ, z)| ≲ 1

1 + |λ|

for all λ ∈ R and z ∈ R3.

Proof. We note that M is rotation invariant in z, hence we can take z = (0, 0, |z|) without
loss of generality. The application of polar coordinates then yields

M(λ, z) = 2π
∫ 1

0

∫ π/2

−π/2
cos(λr)eir|z| sin(θ) cos(θ) dθ dr = 2π

∫ 1

0

∫ 1

−1
cos(λr)eir|z|ω dω dr

= π

∫ 1

−1

∫ 1

−1
cos(λr)eir|z|ω dω dr,

since the r-integral from 0 to 1 coincides with that from −1 to 0 by symmetry. We clearly
have

|M(λ, z)| ≤ 4π. (5.11)

On the other hand, the r-integral can be calculated as

M(λ, z) = π

2

∫ 1

−1

∫ 1

−1
(eiλr + e−iλr)eir|z|ω dr dω

= π

2

∫ 1

−1

∫ 1

−1

(
eir(|z|ω+λ) + eir(|z|ω−λ)

)
dr dω

= π

2i

∫ 1

−1

(ei(|z|ω+λ) − e−i(|z|ω+λ)

|z|ω + λ
+ ei(|z|ω−λ) − e−i(|z|ω−λ)

|z|ω − λ

)
dω

= π

∫ 1

−1

(
sinc(|z|ω + λ) + sinc(|z|ω − λ)

)
dω,

where sinc(λ) = (sinλ)/λ. If |λ| ≥ 2|z| > 0, it follows that

|M(λ, z)| ≤ π

∫ 1

−1

( 1
||z|ω + λ|

+ 1
||z|ω − λ|

)
dω ≤ 2π

∫ 1

−1

1
|λ| − |z||ω|

dω ≤ 4π
|λ| − |z|

≤ 8π
|λ|
. (5.12)

Moreover, for arbitrary λ ∈ R and z ̸= 0, using the symmetry of sinc, we can compute

M(λ, z) = π

∫ 1

−1

(
sinc(|z|ω + λ) + sinc(|z|ω − λ)

)
dω

= π

|z|

(
Si(|z| + λ) − Si(−|z| + λ) + Si(|z| − λ) − Si(−|z| − λ)

)
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5. Linear estimates

= 2π
|z|

(
Si(|z| + λ) + Si(|z| − λ)

)
.

Since the function Si(t) =
∫ t

0 sinc(s) ds satisfies the global bound | Si(t)| ≤ 2, this implies

|M(λ, z)| ≤ 8π
|z|
.

We combine this estimate with (5.11) and (5.12) to obtain the assertion.

Lemma 5.11. The function

A(β, n, j) :=
( 1

1 + β|n− j|
+ 1

1 + β(n+ j)
)

satisfies the estimate

max
j=0,...,N

N∑
n=0

A(β, n, j) ≲ 1 + β−1 log(1 +Nβ)

for all N ∈ N0 and β > 0.

Proof. Let j ∈ {0, . . . , N}. We have

N∑
n=0

1
1 + β(n+ j) ≤

N∑
n=0

1
1 + βn

= 1 +
N∑
n=1

1
1 + βn

≤ 1 + β−1
∫ Nβ

0

1
1 + t

dt

= 1 + β−1 log(1 +Nβ),
N∑
n=0

1
1 + β|n− j|

= 1 +
j−1∑
n=0

1
1 + β(j − n) +

N∑
n=j+1

1
1 + β(n− j)

= 1 +
j∑

n=1

1
1 + βn

+
N−j∑
n=1

1
1 + βn

≤ 1 + 2
N∑
n=1

1
1 + βn

≤ 1 + 2β−1 log(1 +Nβ).

Now we show the announced discrete-time endpoint estimates with logarithmic loss.

Theorem 5.12. The estimate

∥πKeinτ |∇|f∥ℓ2τ,TL
∞ ≲ (Kτ + log(1 +KT ))

1
2 ∥f∥Ḣ1

holds for all τ ∈ (0, 1], K > 0, T ≥ 0, and f ∈ Ḣ1(R3).

Proof. Due to a scaling argument, it is enough to show that

∥π̃1e
inβ|∇|f∥ℓ21,NL

∞ ≲ (1 + β−1 log(1 +Nβ))
1
2 ∥f∥Ḣ1 (5.13)
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5.2. Endpoint estimates with logarithmic loss

for any β > 0 and N ∈ N0, where π̃K := F−1
1B(0,K)F . Indeed, this estimate and (5.9)

imply that

∥π̃Keinτ |∇|f∥ℓ2τ,TL
∞

= τ
1
2 ∥DK π̃1e

inKτ |∇|DK−1f∥ℓ21,⌊T/τ⌋L
∞ = τ

1
2 ∥π̃1e

inKτ |∇|DK−1f∥ℓ21,⌊T/τ⌋L
∞

≲ τ
1
2 (1 + (Kτ)−1 log(1 +KT ))

1
2 ∥DK−1f∥Ḣ1

= (Kτ)
1
2 (1 + (Kτ)−1 log(1 +KT ))

1
2 ∥f∥Ḣ1 = (Kτ + log(1 +KT ))

1
2 ∥f∥Ḣ1

and thus

∥πKeinτ |∇|f∥ℓ2τ,TL
∞ = ∥π̃√

3Ke
inτ |∇|πKf∥ℓ2τ,TL

∞ ≲ (Kτ + log(1 +KT ))
1
2 ∥πKf∥Ḣ1

≲ (Kτ + log(1 +KT ))
1
2 ∥f∥Ḣ1 .

Inequality (5.13) is shown via the dual estimate

∥∥∥ N∑
n=0

π̃1e
−inβ|∇|Fn

∥∥∥
Ḣ−1

≲ (1 + β−1 log(1 +Nβ))
1
2 ∥F∥ℓ21,NL

1 (5.14)

for F ∈ ℓ2L1. Instead of the exponential, we treat sine and cosine. From the definition
of the Ḣ1-norm and Fubini’s theorem, we deduce

∥∥∥ N∑
n=0

π̃1 sin(nβ|∇|)Fn
∥∥∥2

Ḣ−1
=
∥∥∥|ξ|−1

N∑
n=0

1B(0,1) sin(nβ|ξ|)F̂n(ξ)
∥∥∥2

L2

=
∫
B(0,1)

|ξ|−2
N∑

n,j=0
sin(nβ|ξ|) sin(jβ|ξ|)F̂n(ξ)F̂j(ξ) dξ

= (2π)−3
∫
B(0,1)

|ξ|−2
N∑

n,j=0
sin(nβ|ξ|) sin(jβ|ξ|)

∫
R3

∫
R3
ei(y−x)·ξFn(x)Fj(y) dxdy dξ

= (2π)−3
N∑

n,j=0

∫
R3

∫
R3
G−(nβ, jβ, y − x)Fn(x)Fj(y) dxdy,

where
G−(a, b, z) :=

∫
B(0,1)

|ξ|−2 sin(a|ξ|) sin(b|ξ|)eiz·ξ dξ.

Analogously, we obtain

∥∥∥ N∑
n=0

π1 cos(nβ|∇|)Fn
∥∥∥2

Ḣ−1
= (2π)−3

N∑
n,j=0

∫
R3

∫
R3
G+(nβ, jβ, y − x)Fn(x)Fj(y) dxdy,

with
G+(a, b, z) :=

∫
B(0,1)

|ξ|−2 cos(a|ξ|) cos(b|ξ|)eiz·ξ dξ.
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5. Linear estimates

Next, we use the identities 2 cos(t) cos(s) = cos(t− s) + cos(t+ s) and 2 sin(t) sin(s) =
cos(t− s) − cos(t+ s) to write

G±(a, b, z) = 1
2
(
M(a− b, z) ±M(a+ b, z)

)
with M(λ, z) from Lemma 5.10. Combined with this lemma, the above equations lead to

∥∥∥ N∑
n=0

π̃1e
−inβ|∇|Fn

∥∥∥2

Ḣ−1

≲
N∑

n,j=0

∫
R3

∫
R3

(
|M(β(n− j), y − x)| + |M(β(n+ j), y − x)|

)
|Fn(x)||Fj(y)| dxdy

≲
N∑

n,j=0

∫
R3

∫
R3

( 1
1 + β|n− j|

+ 1
1 + β|n+ j|

)
|Fn(x)||Fj(y)| dxdy

=
N∑

n,j=0
A(β, n, j)∥Fn∥L1∥Fj∥L1 ,

with A from Lemma 5.11. We next apply Cauchy–Schwarz twice and Lemma 5.11. Also
noting that A(β, n, j) is symmetric in n and j, we estimate

N∑
n,j=0

A(β, n, j)∥Fn∥L1∥Fj∥L1

≤ ∥F∥ℓ21,NL
1

[ N∑
n=0

( N∑
j=0

A(β, j, n)∥Fj∥L1

)2] 1
2

≤ ∥F∥ℓ21,NL
1

[ N∑
n=0

( N∑
j=0

A(β, j, n)
)( N∑

j=0
A(β, n, j)∥Fj∥2

L1

)] 1
2

≤
(

max
n=0,...,N

N∑
j=0

A(β, n, j)
) 1

2
(

max
j=0,...,N

N∑
n=0

A(β, n, j)
) 1

2 ∥F∥2
ℓ21,NL

1

≲
(
1 + β−1 log(1 +Nβ)

)
∥F∥2

ℓ21,NL
1 ,

which shows (5.14).

5.3. Strichartz estimates on the torus
Thanks to the finite speed of propagation for the wave equation, one expects that locally
in time, one has the same Strichartz estimates on the torus T3 as on the full space R3.
For continuous time, this has been carried out in, e.g., [45] by using suitable extension
and cut-off operators. We will follow the same strategy to prove corresponding versions
of the discrete-time Theorems 5.6 and 5.12 for the torus.
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5.3. Strichartz estimates on the torus

Let E : D′(T3) → S ′(R3) denote the periodic extension operator (where we interpret
T3 = [−π, π]3 as above). Note that for f ∈ C∞(T3) we have Ef ∈ C∞(R3) with periodic
partial derivatives. The next lemma shows that an extended Sobolev function multiplied
with a smooth cut-off function belongs to the corresponding Sobolev space on R3.

Lemma 5.13. Let η ∈ C∞
c (R3) and s ∈ R. Then the estimate

∥ηEf∥Hs(R3) ≲η,s ∥f∥Hs(T3)

is true for any f ∈ Hs(T3).

Proof. By approximation, it suffices to consider smooth f . The statement is clear if
s = 0, and inductively extends to all s ∈ N. By interpolation, we then infer the assertion
for all s ≥ 0. The case s < 0 is handled via duality. Let (ϕj)j∈N be a smooth partition of
unity such that

∑
j∈N ϕj = 1 and ϕj ∈ C∞

c (R3) with suppϕj ⊆ {yj} + (−π, π)3 for all
j ∈ N and some yj ∈ R3. We compute

∥ηEf∥Hs(R3) = sup
∥g∥H−s(R3)=1

∣∣∣ ∫
R3
ηEf · g dx

∣∣∣
= sup

∥g∥H−s(R3)=1

∣∣∣∑
j∈N

∫
{yj}+(−π,π)3

Ef · ηgϕj dx
∣∣∣

≤ sup
∥g∥H−s(R3)=1

∥f∥Hs(T3)
∑
j∈N

∥ηgϕj∥H−s(R3) ≲η,s ∥f∥Hs(T3),

where the supremum is taken over smooth g. Here we use that we can consider (ηgϕj)(yj+
·) as a test function on T3, and that the sum is actually finite thanks to the compact
support of η.

For the discrete-time Strichartz estimates, we need to introduce a Fourier cut-off on the
torus (similar as (5.8) on R3). For f ∈ D′(T3) and K ≥ 1 we define the cube frequency
cut-off operator πK via the truncated Fourier series

(πKf)(x) := (2π)− 3
2
∑

|k|∞≤K
f̂ke

ik·x, x ∈ T3. (5.15)

Here, the sum is taken over all k ∈ Z3 with |k|∞ = maxj=1,2,3 |kj | ≤ K, and f̂k denotes
the k-th Fourier coefficient of f . From the definition of the Sobolev norm (4.5), it follows
that πK is bounded on all spaces Hs(T3), uniformly in s ∈ R and K ≥ 1.

Theorem 5.14. Let (p, q, γ) be admissible and T ≥ 0. We then have the estimates

∥einτ |∇|πKf∥ℓpτ,TL
q(T3) ≲p,q,T (1 +Kτ)

1
p ∥f∥Hγ(T3),

∥einτ |∇|πKh∥ℓ2τ,TL
∞(T3) ≲T (Kτ + logK)

1
2 ∥h∥H1(T3),

for all f ∈ Hγ(T3), h ∈ H1(T3), τ ∈ (0, 1], and K ≥ 1.
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5. Linear estimates

Proof. We only give the proof for the first estimate, since the second one can be shown
in the same way, using Theorem 5.12 instead of Theorem 5.6. We define the function
v(t) := eit|∇|πKf for t ∈ R. Since

v(t) = eit|∇|πKf = cos(t|∇|)πKf + i|∇|−1 sin(t|∇|)|∇|πKf

is the smooth solution to the linear homogeneous wave equation on R × T3 with initial
data (πKf, i|∇|πKf), the extended function Ev solves the corresponding problem on
R × R3 with extended initial data (EπKf, iE|∇|πKf), i.e.,

(∂tt − ∆)Ev = 0, Ev(0) = EπKf, ∂tEv(0) = iE|∇|πKf.

Let η ∈ C∞
c (R3) be a cut-off function such that η = 1 on B(0, π + T ). The function

w(t) := cos(t|∇|)(ηEπKf) + i|∇|−1 sin(t|∇|)(ηE|∇|πKf), t ∈ R,

solves the same full space wave equation with truncated initial data. Finite speed of
propagation (see, e.g., Theorem 6 on p. 84 of [19]) yields Ev(t, x) = w(t, x) for all (t, x) ∈
R1+3 with |t| + |x| ≤ π + T . Since this condition is satisfied if (t, x) ∈ [0, T ] × (−π, π)3,
we obtain

∥v(nτ)∥ℓpτ,TL
q(T3) (5.16)

= ∥Ev(nτ)∥ℓpτ,TL
q((−π,π)3) = ∥w(nτ)∥ℓpτ,TL

q((−π,π)3) ≤ ∥w(nτ)∥ℓpτ,TL
q(R3)

≤ ∥ cos(nτ |∇|)(ηEπKf)∥ℓpτ,TL
q(R3) + ∥|∇|−1 sin(nτ |∇|)(ηE|∇|πKf)∥ℓpτ,TL

q(R3).

We decompose the cosine-term in (5.16) as

∥ cos(nτ |∇|)(ηEπKf)∥ℓpτ,TL
q(R3) (5.17)

≤ ∥π2Ke
±inτ |∇|(ηEπKf)∥ℓpτ,TL

q(R3) + ∥(I − π2K)e±inτ |∇|(ηEπKf)∥ℓpτ,TL
q(R3).

The first term of (5.17) is estimated using Theorem 5.6 and Lemma 5.13, which gives

∥π2Ke
±inτ |∇|(ηEπKf)∥ℓpτ,TL

q(R3) ≲p,q (1 +Kτ)
1
p ∥ηEπKf∥Ḣγ(R3)

≲T (1 +Kτ)
1
p ∥f∥Hγ(T3).

For the second term of (5.17), we first compute the Fourier transform

(2π)
3
2 F(ηEπKf) = η̂ ∗ F(EπKf) = η̂ ∗

∑
|k|∞≤K

f̂kδk =
∑

|k|∞≤K
f̂kη̂(· − k),

where δk denotes the Dirac delta at k ∈ Z3. The Hausdorff–Young inequality then implies

∥(I − π2K)e±inτ |∇|(ηEπKf)∥ℓpτ,TL
q(R3) ≤ ∥1{|ξ|∞≥2K}e

±inτ |ξ|F(ηEπKf)∥ℓpτ,TL
q′ (R3)

≲T

∥∥∥1{|ξ|∞≥2K}
∑

|k|∞≤K
|f̂k||η̂(· − k)|

∥∥∥
Lq′ (R3)

.
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5.3. Strichartz estimates on the torus

For |ξ|∞ ≥ 2K ≥ 2|k|, we obtain

∑
|k|∞≤K

|f̂k| ≲ K
3
2
( ∑

|k|∞≤K
|f̂k|2

) 1
2
≲ |ξ|

3
2 ∥f∥L2(T3)

thanks to the Cauchy–Schwarz estimate. Moreover, we have

|η̂(ξ − k)| ≲η |ξ − k|−5 ≤ (|ξ| − |k|)−5 ≲ |ξ|−5

since η̂ is a Schwartz function. These inequalities result in

∥(I − π2K)e±inτ |∇|(ηEπKf)∥ℓpτ,TL
q(R3) ≲T ∥1{|ξ|∞≥2K}|ξ|−

7
2 ∥Lq′ (R3)∥f∥L2(T3)

≲ ∥f∥L2(T3).

For the sine term in (5.16), we treat the low frequencies separately to avoid problems
coming from the homogeneous anti-derivative |∇|−1. We decompose

∥|∇|−1 sin(nτ |∇|)(ηE|∇|πKf)∥ℓpτ,TL
q(R3)

≤ ∥π1|∇|−1 sin(nτ |∇|)(ηE|∇|πKf)∥ℓpτ,TL
q(R3)

+ ∥(I − π1)π2K |∇|−1e±inτ |∇|(ηE|∇|πKf)∥ℓpτ,TL
q(R3)

+ ∥(I − π2K)|∇|−1e±inτ |∇|(ηE|∇|πKf)∥ℓpτ,TL
q(R3).

For the low frequencies, we use Bernstein’s inequality Lemma A.3 in space, Hölder’s
inequality in time, the boundedness of x 7→ 1

x sin x and finally Lemma 5.13 to obtain

∥π1|∇|−1 sin(nτ |∇|)(ηE|∇|πKf)∥ℓpτ,TL
q(R3)

≲T ∥π1|∇|−1 sin(nτ |∇|)(ηE|∇|πKf)∥ℓ∞τ,TL
2(R3)

≲T ∥π1(ηE|∇|πKf)∥L2(R3) ≲ ∥ηE|∇|πKf∥Hγ−1(R3) ≲T ∥|∇|πKf∥Hγ−1(T3)

≤ ∥f∥Hγ(T3).

The medium and high frequency terms are treated as the cosine-term. Theorem 5.6 and
Lemma 5.13 yield

∥(I−π1)π2K |∇|−1e±inτ |∇|(ηE|∇|πKf)∥ℓpτ,TL
q(R3)

≲p,q (1 +Kτ)
1
p ∥(I − π1)|∇|−1(ηE|∇|πKf)∥Ḣγ(R3)

≲ (1 +Kτ)
1
p ∥ηE|∇|πKf∥Hγ−1(R3) ≲T (1 +Kτ)

1
p ∥f∥Hγ(T3),

where the operator I − π1 was used to replace the homogeneous by the inhomogeneous
Sobolev norm. Finally, we get as above

∥(I−π2K)|∇|−1e±inτ |∇|(ηE|∇|πKf)∥ℓpτ,TL
q(R3)
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5. Linear estimates

≤ ∥1{|ξ|∞≥2K}|ξ|−1e±inτ |ξ|F(ηE|∇|πKf)∥ℓpτ,TL
q′ (R3)

≲T

∥∥∥1{|ξ|∞≥2K}|ξ|−1 ∑
|k|∞≤K

|kf̂kη̂(· − k)|
∥∥∥
Lq′ (R3)

≲
∥∥∥1{|ξ|∞≥2K}

∑
|k|∞≤K

|f̂kη̂(· − k)|
∥∥∥
Lq′ (R3)

≲T ∥f∥L2(T3).

The assertion now follows from (5.16) and the above estimates.

We now show that the discrete-time Strichartz estimates imply the ones in continuous
time, using an argument from Theorem 1.3 of [70]. The estimates could also be deduced
from the full space inequalities reasoning as in Theorem 5.14, cf. [45].

Corollary 5.15. Let (p, q, γ) be admissible and T > 0. We then have the estimates

∥eit|∇|f∥Lp
TL

q(T3) ≲p,q,T ∥f∥Hγ(T3),

∥eit|∇|πKh∥L2
TL

∞(T3) ≲T (1 + logK)
1
2 ∥h∥H1(T3),

for all f ∈ Hγ(T3), h ∈ H1(T3), and K ≥ 1.

Proof. We only give the proof for the second estimate, since it is somewhat non-standard.
The first one can be proven in the same way, where one uses the density of functions
having compact Fourier support in Hγ(T3) to get rid of the projection πK . From Theorem
5.14 we get

τ
N∑
n=0

∥πKeinτ |∇|h∥2
L∞(T3) ≲T (Kτ + logK)∥h∥2

H1(T3)

for all τ ∈ [1/K, 1] and N ∈ N0 with Nτ ≤ T . We now replace h with eiθ|∇|h and
integrate from 0 to τ to obtain

∫ τ

0

N∑
n=0

∥πKei(nτ+θ)|∇|h∥2
L∞(T3) dθ ≲T (Kτ + logK)∥h∥2

H1(T3),

which implies the assertion if we set τ = 1/K.

5.4. Application to the wave equation

From now on we will treat the cases Ω ∈ {R3,T3} simultaneously whenever possible. We
will abbreviate Lq = Lq(Ω) and Hs = Hs(Ω), where we recall that Hs(Ω) = Ḣs(R3) if
Ω = R3 and Hs(Ω) = Hs(T3) if Ω = T3. Moreover, we will only use admissible triples
(p, q, γ) with derivative loss γ = 1. We call a pair (p, q) H1-admissible if (p, q, 1) is
admissible in the sense of (5.1).
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5.4. Application to the wave equation

Corollary 5.16. Let T ∈ (0,∞), f ∈ H1, g ∈ L2, F ∈ L1
TL

2, and w ∈ C([0, T ],H1) be
the solution to the inhomogeneous wave equation

∂ttw − ∆w = F, w(0) = f, ∂tw(0) = g.

Let moreover (p, q) be H1-admissible. Then w satisfies the estimates

∥w∥Lp
TL

q + ∥πNw∥Lp
TL

q + ∥πNw(nτ)∥ℓpτ,TL
q ≲p,q,T ∥f∥H1 + ∥g∥L2 + ∥F∥L1

TL
2 (5.18)

and

∥πNw∥L2
TL

∞ + ∥πNw(nτ)∥ℓ2τ,TL
∞ ≲T (1 + logN)

1
2
(
∥f∥H1 + ∥g∥L2 + ∥F∥L1

TL
2

)
,

for all N ≥ 1 and τ ∈ (0, 1/N ]. In the case Ω = R3, the constant in the first inequality
(5.18) is independent of T and we can thus take T = ∞.

Proof. We only give the details for the discrete-time estimate in (5.18), since the others
are obtained similarly, also using Theorems 5.1 and 5.12, estimate (5.10), and Corollary
5.15 in place of Theorems 5.6 and 5.14. Let first Ω = R3. By Duhamel’s formula, w is
given by

w(t) = cos(t|∇|)f + |∇|−1 sin(t|∇|)g +
∫ t

0
|∇|−1 sin((t− s)|∇|)F (s) ds,

for t ∈ [0, T ]. By a direct application of Theorem 5.6 and (5.2),

∥πNw(nτ)∥ℓpτ,TL
q(R3) ≲p,q ∥f∥Ḣ1(R3) + ∥|∇|−1g∥Ḣ1(R3) +

∫ T

0
∥e±is|∇||∇|−1F (s)∥Ḣ1(R3) ds

= ∥f∥Ḣ1(R3) + ∥g∥L2(R3) + ∥F∥L1
TL

2(R3).

In the case Ω = T3, we need to treat the zero-th Fourier coefficient separately, since
the operator |∇|−1 is in that case only well-defined for mean value free functions. We
rewrite the Duhamel formula as

w(t) = cos(t|∇|)f + t sinc(t|∇|)g +
∫ t

0
(t− s) sinc((t− s)|∇|)F (s) ds,

for t ∈ [0, T ]. Theorem 5.14 yields

∥πN cos(nτ |∇|)f∥ℓpτ,TL
q ≤ ∥πNe±inτ |∇|f∥ℓpτ,TL

q ≲p,q,T ∥f∥H1 .

For the other terms we separate the zero-th Fourier coefficient before using Theorem
5.14. So we estimate

∥πNnτ sinc(nτ |∇|)g∥ℓpτ,TL
q ≲ ∥πNe±inτ |∇||∇|−1(g − ĝ0)∥ℓpτ,TL

q + T |ĝ0|

≲p,q,T ∥|∇|−1(g − ĝ0)∥H1 + ∥g∥L2 ≲ ∥g∥L2
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5. Linear estimates

and similarly∥∥∥πN ∫ nτ

0
(nτ − s) sinc((nτ − s)|∇|)F (s) ds

∥∥∥
ℓpτ,TL

q

≤
∫ T

0
∥πN (nτ − s) sinc((nτ − s)|∇|)F (s)∥ℓpτ,TL

q ds

≲
∫ T

0
∥πNei(nτ−s)|∇||∇|−1(F (s) − F̂0(s))∥ℓpτ,TL

q ds+ T

∫ T

0
|F̂0(s)| ds

≲p,q,T

∫ T

0
∥e−is|∇||∇|−1(F (s) − F̂0(s))∥H1 ds+

∫ T

0
∥F (s)∥L2 ds ≲ ∥F∥L1

TL
2 .

It is often convenient to work with the wave equation in first-order formulation. We
therefore define the operator

A :=
(

0 I
∆ 0

)
, (5.19)

which maps continuously Hr+1 ×Hr → Hr×Hr−1 and generates the strongly continuous
group of operators

etA :=
(

cos(t|∇|) t sinc(t|∇|)
−|∇| sin(t|∇|) cos(t|∇|)

)
(5.20)

on Hr × Hr−1, for all r ∈ R. In the case Ω = R3, the Fourier transform shows that
A : Ḣr+1 × Ḣr → Ḣr × Ḣr−1 and etA : Ḣr × Ḣr−1 → Ḣr × Ḣr−1 then continuously map
between the homogeneous Sobolev spaces as well. Moreover, the operators etA even form
a strongly continuous group of unitary operators on Ḣr × Ḣr−1.

Corollary 5.17. Let f ∈ H1, g ∈ L2, and F ∈ ℓ1L2. For τ ∈ (0, 1] and n ∈ N, we define

Wn := enτA(f, g) + τ
n∑
k=0

e(n−k)τA
(

0
Fk

)
.

Let wn be the first component of Wn. For T ∈ [0,∞) and H1-admissible (p, q) we then
get the estimate

∥πNwn∥ℓpτ,TL
q ≲p,q,T ∥f∥H1 + ∥g∥L2 + ∥F∥ℓ1τ,TL

2

for all τ ∈ (0, 1] and N ∈ [1, 1/τ ]. In the case Ω = R3, the implicit constant is independent
of T and we can thus take T = ∞.

Proof. The estimate for the summand containing (f, g) is already contained in Corollary
5.16. The term containing F is treated in the same manner as the corresponding integral
in the proof of Corollary 5.16.

Concerning the inhomogeneity F , there are also variants involving Lp̃
′

T L
q̃′-norms instead

of the L1
TL

2-norm on the right-hand side of Corollary 5.16, and similarly for the discrete-
time estimate in Corollary 5.17. Since we do not use them, we omit them for simplicity.
However, the following dual Strichartz estimates will be needed.
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5.5. Some properties of the filter operator πK

Corollary 5.18. Let (p, q) be H1-admissible and T ∈ (0,∞). Then we have the estimates

∥∥∥ ∫ T

0
e−sA

(
0

F (s)

)
ds
∥∥∥
L2×H−1

≲p,q,T ∥F∥
Lp′

T L
q′ , (5.21)

∥∥∥ ∫ T

0
e−sA

(
0

πKG(s)

)
ds
∥∥∥
L2×H−1

≲T (1 + logK)
1
2 ∥G∥L2

TL
1 ,

for all F ∈ Lp
′

T L
q′, G ∈ L2

TL
1 and K ≥ 1. In the case Ω = R3, the constant in the first

inequality (5.21) is independent of T and we can thus take T = ∞.

Proof. These estimates follow from the dual versions of Theorem 5.1, inequality (5.10),
and Corollary 5.15 for γ = 1, which are given by∥∥∥ ∫ T

0
e−is|∇|F (s) ds

∥∥∥
H−1

≲p,q,T ∥F∥
Lp′

T L
q′ ,∥∥∥ ∫ T

0
πKe

−is|∇|G(s) ds
∥∥∥

H−1
≲T (1 + logK)

1
2 ∥G∥L2

TL
1 . (5.22)

We give the details for the term containing G. We split

∥∥∥ ∫ T

0
e−sA

(
0

πKG(s)

)
ds
∥∥∥
L2×H−1

≲
∥∥∥ ∫ T

0
πKs sinc(−s|∇|)G(s) ds

∥∥∥
L2

+
∥∥∥ ∫ T

0
πK cos(−s|∇|)G(s) ds

∥∥∥
H−1

.

The cosine term is estimated directly using (5.22). For the sine term we compute as
before ∥∥∥ ∫ T

0
πKs sinc(−s|∇|)G(s) ds

∥∥∥
L2

≲
∥∥∥ ∫ T

0
πKe

±is|∇|(G(s) − Ĝ0(s)) ds
∥∥∥

H−1
+
∣∣∣ ∫ T

0
sĜ0(s) ds

∣∣∣
≲T (1 + logK)

1
2 ∥G− Ĝ0∥L2

TL
1 + ∥G∥L1

TL
1 ≲T (1 + logK)

1
2 ∥G∥L2

TL
1 ,

using (5.22) and |Ĝ0(s)| ≤ ∥G(s)∥L1 .

5.5. Some properties of the filter operator πK

The following lemma quantifies the convergence πK → I as K → ∞, and will be used
to control the error terms that arise from the insertion of the filter into the numerical
scheme (4.4).

Lemma 5.19. For all K ≥ 1 and s > 0, we can write

I − πK = (K−1|∇|ϕK)s,
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5. Linear estimates

for a Fourier multiplication operator ϕK that is bounded uniformly in K on all Sobolev
spaces Hr, r ∈ R. We moreover get the estimate

∥(I − πK)f∥Hγ ≤ Kγ−r∥f∥Hr

for all K ≥ 1, r ∈ R, γ ≤ r, and f ∈ Hr.

Proof. We work in Fourier space. The frequency variable is denoted by ξ regardless of
Ω ∈ {R3,T3}. Let ϕK be the Fourier multiplier for the function 1{|ξ|∞>K}K/|ξ|, which
is bounded by 1. The estimate then follows from

∥(I − πK)f∥Hγ = Kγ−r∥(|∇|ϕK)r−γf∥Hγ ≤ Kγ−r∥f∥Hr .

The next lemma will be crucially exploited in the error analysis of (4.4) when using
the summation by parts formula. This strategy is inspired by [10], cf. Property (OF4) in
Theorem 3.14 there. Roughly speaking, the idea is the following. Let v ∈ Hr × Hr−1.
Using the Fourier transform, one can deduce that the integral∫ T

0
etAv dt ∈ Hr+1 × Hr

is an element of the domain of A; and

A

∫ T

0
etAv dt = (eTA − I)v.

We would like to exploit something similar in the discrete setting, namely, that

τA
n−1∑
k=0

ekτA

is a bounded operator on Hr × Hr−1, uniformly in τ ∈ (0, 1] and N ∈ N with Nτ ≤ T .
If we formally insert the geometric sum formula, we obtain

τA
n−1∑
k=0

ekτA = τA
enτA − I

eτA − I
.

But this does not lead anywhere since the operator eτA − I might not be invertible for
certain “resonant” step-sizes τ . However, if we introduce the filter operator

ΠN := diag(πN , πN )

and apply the assertion of the following Lemma 5.20, we get

ΠNτA
n−1∑
k=0

ekτA = Ψτ,N (enτA − I),

which indeed is a bounded operator on Hr × Hr−1 as desired.
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Lemma 5.20. For all τ ∈ (0, 1] and N ∈ [1, τ−1], we can write

τAΠN = (eτA − I)Ψτ,N ,

where the operator Ψτ,N is bounded uniformly in τ and N on all Sobolev spaces Hr×Hr−1,
r ∈ R.

Proof. One checks that the equality holds for

Ψτ,N := −τ

2ΠN


|∇| sin(τ |∇|)
cos(τ |∇|) − I

I

∆ |∇| sin(τ |∇|)
cos(τ |∇|) − I

 .
This operator is uniformly bounded in τ and N thanks to the presence of ΠN , which
ensures that we only need to consider the Fourier modes with τ |k| ≤

√
3N−1|k|∞ ≤

√
3.

Therefore, we can exploit that the function

x 7→ x sin x
cosx− 1

is bounded on [0,
√

3].

5.6. Trigonometric interpolation
In this section we only work on Ω = T3.

Definition 5.21. Let N ∈ N and f ∈ C(T3). We define the trigonometric interpolation
INf as the trigonometric polynomial

(INf)(x) := (2π)− 3
2
∑

|k|∞≤N
f̃k,Ne

ik·x, x ∈ T3,

where the coefficients f̃k,N are given by the discrete Fourier transform

f̃k,N := (2π)
3
2 (2N + 1)−3 ∑

|j|∞≤N
f
( 2πj

2N + 1
)
e−i 2πj

2N+1 ·k.

We moreover set IN := diag(IN , IN ).

We need the following well-known generalization of Bernstein’s inequality to the Lq
setting, see, e.g., inequality (5.2) in [26].

Lemma 5.22. The estimate

∥πKf∥W 1,q ≲ K∥πKf∥Lq

holds for all q ∈ [1,∞], f ∈ D′(T3), and K ∈ N.
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5. Linear estimates

We further need an estimate for the trigonometric interpolation error. The L2 case is
standard, see, e.g., Lemma 2.4 and expression (5.5) of [26]. The estimate in Lq is more
involved. For a proof, we refer to see Corollary 3 of [35], Theorem 1 of [2], and Lemma 3
of [58].

Lemma 5.23. Let q ∈ (1,∞). We then have the inequality

∥(I − IK)f∥Lq ≲q

3∑
m=1

K−m∥f∥Wm,q

for all f ∈ W 3,q and K ∈ N. For q = 2, we have the stronger result

∥(I − IK)h∥L2 ≲s K
−s∥|∇|sh∥L2

for all s > 3/2, h ∈ Hs, and K ∈ N.

The two preceding lemmas can be combined to the following estimates, which are used
below with β = α ∈ {3, 5}.

Lemma 5.24. Let q ∈ (1,∞) and β ≥ 1. Then the estimates

∥(I − IK)πβKf∥Lq ≲q,β K
−1∥πβKf∥W 1,q ,

∥IKπβKf∥Lq ≲q,β ∥πβKf∥Lq ,

hold for all f ∈ D′(T3) and K ≥ 1.
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6. The semilinear wave equation

6.1. Review of wellposedness theory
The wellposedness theory for (4.1) is well known, therefore we only address the most
important points. See, e.g., the monographs [3, 66, 71] for more details. Note that,
thanks to finite propagation speed, the local theory is essentially identical regardless of
Ω ∈ {R3,T3}. We first reformulate the equation (4.1) as a first-order system in time.
Using the wave operator A from (5.19) and the notation

g(u) := −µ|u|α−1u, G(u, v) := (0, g(u))

for the nonlinearity, one obtains the equivalent system

∂tU(t) = AU(t) +G(U(t)), t ∈ [0, T ],
U(0) = (u0, v0)

(6.1)

for the new variable U =̂ (u, ∂tu). The local wellposedness is shown by a classical fixed
point argument based on the Duhamel formula

U(t) = etA(u0, v0) +
∫ t

0
e(t−s)AG(U(s)) ds (6.2)

for (6.1). In the case α = 3, the Sobolev embedding H1 ↪→ L6 from Theorem A.1 implies
that the nonlinearity G leaves the space H1 × L2 invariant. Therefore, the fixed point
space for U can be chosen as a closed ball in C([0, b],H1 × L2) for some b > 0 small
enough. If α > 3, one needs to involve a Strichartz space for u in the fixed point space.

Let α ∈ [3, 5]. We define the exponent pα ∈ [4,∞] such that (pα, 3(α − 1)) are
H1-admissible, i.e.,

pα := 2(α− 1)
α− 3 , (6.3)

see (5.1) with γ = 1. One then obtains the following existence and uniqueness theorem
for the nonlinear wave equation (4.1).

Theorem 6.1. Let (u0, v0) ∈ H1 × L2. Then there exists a time b > 0 and a
unique function U = (u, ∂tu) satisfying (6.2) such that U ∈ C([0, b],H1 × L2) and
u ∈ Lpα([0, b], L3(α−1)). If α < 5, the time b only depends on ∥(u0, v0)∥H1×L2 and α.

Remark 6.2. a) Since g(u) ∈ C([0, b], L6/α) ↪→ C([0, b], H−1) and ∆u ∈ C([0, b],H−1) ↪→
C([0, b], H−1), one can deduce from (6.2) that ∂2

t u belongs to C([0, b], H−1) and that
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6. The semilinear wave equation

the differential equation in (4.1) holds in this space. Thus, the equation (6.1) holds in
C([0, b], L2 ×H−1).

b) If Ω = R3, the equation (4.1) enjoys the following scaling symmetry. Let u be a
solution to (4.1). Then, for each λ > 0, the resealed function uλ(t, x) := λ2/(α−1)u(λt, λx)
also solves (4.1) with initial data u0

λ(x) := λ2/(α−1)u0(λx) and v0
λ(x) := λ2/(α−1)+1v0(λx).

The map (u0, v0) 7→ (u0
λ, v

0
λ) with λ ≠ 1 leaves the Ḣ1 × L2 norm invariant if and only if

α = 5. This explains why this case is referred to as scaling-critical. Correspondingly, the
situations α < 5 and α > 5 are called sub- and supercritical, respectively. See Principle
3.1 of [71] for some heuristics on the behavior of solutions in these cases.

c) See Proposition 7.15 for a more precise statement regarding a lower bound for the
time b in the critical case α = 5. A result concerning the continuous dependence on
the initial data in that case can also be found there. Analogous results on continuous
dependence are available in the subcritical range α ∈ [3, 5) as well.

d) In the subcritical case α < 5, one has uniqueness of solutions U = (u, ∂tu) to (4.1) in
the energy class C([0, b],H1 × L2) without the requirement that u ∈ Lpα([0, b], L3(α−1)),
cf. [57].

From now on we will always assume the existence of a solution on a fixed interval
[0, T ).

Assumption 6.3. There exists a time T ∈ (0,∞) and a solution U = (u, ∂tu) of the
nonlinear equation (4.1) such that U ∈ C([0, T ),H1 × L2) and u ∈ Lpα([0, T ], L3(α−1)).
If α = 5, µ = 1, and Ω = R3, we also admit T = ∞. We define the bound

M := max{∥U∥L∞
T (H1×L2), ∥u∥Lpα

T L3(α−1)}. (6.4)

Remark 6.4. If α < 5, the quantity M in fact only depends on ∥U∥L∞
T (H1×L2). In-

deed, the “minimal” existence time b and the number M for T = b are controlled by
∥(u0, v0)∥H1×L2 in Theorem 6.1, compare p. 143 of [71]. Hence, we can divide the interval
[0, T ] into a finite number of smaller subintervals such that the Strichartz norm of u is
bounded on each of them.

The following two remarks concern the long-time behavior of (4.1).

Remark 6.5. It is well known that the energy

E[U(t)] := 1
2∥∇u(t)∥2

L2 + 1
2∥∂tu(t)∥2

L2 + µ

α+ 1∥u(t)∥α+1
Lα+1

is constant in t along solutions U = (u, ∂tu) to (4.1). This conservation law gives hope
for a global wellposedness result in the defocusing case µ = 1. Indeed, the works [44,
65] established the global-in-time existence of solutions to 4.1 in the critical case α = 5
with µ = 1, i.e., the time b in Theorem 6.1 can be taken arbitrarily large in that case.
The subcritical range α < 5 is much easier (though if Ω = R3, the global existence for
µ = 1 requires the additional condition u0 ∈ Lα+1 to ensure that the energy is finite,
compare Theorem 8.41 of [3]). In the focusing case µ = −1 however, the energy might
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6.2. Treatment of boundary conditions

become negative and solutions which blow up in finite time are known to exist. In the
supercritical focusing case α > 5 and µ = −1, one can even construct solutions with
arbitrary small initial data that blow up in arbitrary short time, implying illposedness of
(4.1) in that case, compare p. 142 of [66].

Remark 6.6. Let Ω = R3, α = 5, and µ = 1. In this case we can take T = ∞ in the
definition (6.4) of M and obtain M ≤ C(∥u0∥Ḣ1 , ∥v0∥L2), see [72] for more details on
C. The global L4L12 bound is known to imply scattering in the energy space as follows.
Define the asymptotic state U+ ∈ Ḣ1 × L2 by

U+ := (u0, v0) +
∫ ∞

0
e−sAG(U(s)) ds.

The integral converges absolutely in Ḣ1 × L2 since

∥|u|4u∥L1([0,∞),L2) ≤ ∥u∥4
L4([0,∞),L12)∥u∥L∞([0,∞),L6) ≲M 1 (6.5)

by Hölder’s inequality and Sobolev’s embedding. We then obtain the scattering result

∥U(t) − etAU+∥Ḣ1×L2 = ∥e−tAU(t) − U+∥Ḣ1×L2 → 0

as t → ∞, using the unitarity of etA in Ḣ1 × L2, the Duhamel formula (6.2), and
the definition of U+. This means that the nonlinear solution U(t) behaves like the
linear solution etAU+ as t → ∞. Note that these arguments do not (without further
assumptions) imply scattering in the case α < 5. Indeed, we cannot afford to use Hölder’s
inequality in time in (6.5) due to the unbounded interval. Another idea would be the
application of an inhomogeneous Sobolev embedding in (6.5) to “waste regularity”, but
this does not not work either since we do not have a uniform bound on ∥u(t)∥L2 as
t → ∞.

6.2. Treatment of boundary conditions
Let Q := (0, π)3. In this section, we shortly explain how the differential equation (4.1)
on the periodic domain Ω = T3 already contains the cases of homogeneous Dirichlet or
Neumann conditions on Q as special cases. We define the Dirichlet Laplacian

∆D : H1
0 (Q) → H−1(Q), ⟨∆Df, g⟩H−1(Q)×H1

0 (Q) := −
∫
Q

∇f · ∇g dx,

for f , g ∈ H1
0 (Q). As usual in the literature, the space H1

0 (Q) denotes the closure of
C∞
c (Q) in H1(Q), and H−1(Q) is its dual space.

Proposition 6.7. Let u0 ∈ H1
0 (Q) and v0 ∈ L2(Q). The nonlinear wave equation on Q

with homogeneous Dirichlet boundary conditions

∂2
t u− ∆Du = g(u), (t, x) ∈ [0, T ] ×Q,

u(0) = u0, ∂tu(0) = v0 (6.6)
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6. The semilinear wave equation

can be reduced to that one on T3 by the following transformation. We extend the initial
data (u0, v0) oddly and then periodically to H1(T3) × L2(T3), solve the corresponding
problem (4.1) on T3, and afterwards restrict the solution to Q again.

Proof. It is known that the eigenfunctions of ∆D, given by

ek(x) :=
( 2
π

) 3
2 sin(k1x1) sin(k2x2) sin(k3x3), x ∈ Q, k ∈ N3,

form an orthonormal basis of L2(Q) and an orthogonal basis of H1
0 (Q). Therefore, any

function f ∈ L2(Q) can be expanded in the Fourier sine series

f =
∑
k∈N3

f̃kek,

where the coefficients f̃k are given by the L2(Q) scalar product of f and ek, for each
k ∈ N3. The functions ek naturally extend to functions on the torus T3 and are then
also eigenfunctions of the Laplacian ∆: H1(T3) → H−1(T3). Observe that the Fourier
coefficients satisfy

f̂k = i sgn(k1k2k3)f̃(|k1|,|k2|,|k3|), k ∈ Z3, (6.7)

with sgn(0) = 0. By comparing coefficients, we see that the function f also extends to a
function in L2(T3). This procedure corresponds to the odd extension (in every coordinate
direction) of f . Similar considerations apply if we replace L2(G) by H1

0 (Q). In this
sense, we can identify H1

0 (Q) × L2(Q) as a closed subspace of H1(T3) × L2(T3), and the
operator ∆D as a restriction of ∆. Using the relation (6.7), one checks that the group
etA on H1(T3) × L2(T3) leaves H1

0 (Q) × L2(Q) invariant. Moreover, the nonlinearity
g : H1

0 (Q) ∩ L3(α−1)(T3) → L2(T3) maps odd functions to odd functions. Note that the
oddness property (almost everywhere) is preserved by an L2 limes, too. It follows that if
we extend the initial data (u0, v0) oddly to H1(T3) × L2(T3), the fixed point iteration
based on (6.2) also converges in C([0, T ], H1

0 (Q) ×L2(Q)) ↪→ C([0, T ], H1(T3) ×L2(T3)),
and yields a solution to (6.6) after restricting it to Q again.

Similar considerations also apply to the homogeneous Neumann boundary problem.
The Neumann Laplacian is defined as

∆N : H1(Q) → H−1
0 (Q), ⟨∆Df, g⟩H−1

0 (Q)×H1(Q) := −
∫
Q

∇f · ∇g dx,

where H−1
0 (Q) is the dual space of H1(Q).

Proposition 6.8. Let u0 ∈ H1(Q) and v0 ∈ L2(Q). The nonlinear wave equation on Q
with homogeneous Neumann boundary conditions

∂2
t u− ∆Nu = g(u), (t, x) ∈ [0, T ] ×Q,

u(0) = u0, ∂tu(0) = v0

can be reduced to that one on T3 by the following transformation. We extend the initial
data (u0, v0) evenly and then periodically to H1(T3) × L2(T3), solve the corresponding
problem (4.1) on T3, and afterwards restrict the solution to Q again.
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6.3. Nonlinear estimates

Proof. The Neumann Laplacian ∆N has the basis of eigenfunctions ẽ0 := π−3/2
1 and

ẽk(x) :=
( 2
π

) 3
2 cos(k1x1) cos(k2x2) cos(k3x3), x ∈ Q, k ∈ N3

0 \ {0},

which form a basis that is orthonormal in L2(Q) and orthogonal in H1(Q). In contrast
to the Dirichlet case, we now use the even extension (in every coordinate direction) to
identify H1(Q) × L2(Q) as a closed subspace of H1(T3) × L2(T3). The condition on the
Fourier coefficients is now given by f̂0 = 23/2f̃0 and

f̂k = f̃(|k1|,|k2|,|k3|), k ∈ Z3 \ {0},

where the coefficients f̃k now come from the Fourier cosine series expansion using ẽk.
Again, ∆N is a restriction of ∆. Moreover, the group etA leaves H1(Q) ×L2(Q) invariant
and the nonlinearity g : H1(Q) ∩ L3(α−1)(T3) → L2(T3) also maps even functions to
even functions. Hence, for given initial data (u0, v0) ∈ H1(Q) × L2(Q), we can solve
the Neumann problem by extending (u0, v0) evenly, solving the corresponding periodic
problem on T3, and afterwards restricting it to Q again.

6.3. Nonlinear estimates

We derive some important estimates for u from Assumption 6.3 that will be used later.
First, we extend the Lpα

T L
3(α−1)-bound from the definition (6.4) of M to other H1-

admissible Strichartz pairs (p, q) and also to discrete time. We frequently exploit the
endpoint Sobolev embedding from Theorem A.1 b) in the following.

Proposition 6.9. Let u, T , and M be given by Assumption 6.3 and let (p, q) be H1-
admissible. Then we have the estimate

∥u∥Lp
TL

q + ∥πNu∥Lp
TL

q + ∥πNu(nτ)∥ℓpτ ([0,T ],Lq) ≲p,q,M,T 1, (6.8)

and if T < ∞ additionally

∥πNu∥L2
TL

∞ + ∥πNu(nτ)∥ℓ2τ ([0,T ],L∞) ≲M,T (1 + logN)
1
2 ,

for all N ≥ 1 and τ ∈ (0, 1/N ]. The implicit constant in (6.8) is independent of T if
Ω = R3 and α = 5.

Proof. Sobolev and Hölder inequalities yield that

∥g(u)∥L1
TL

2 ≤ ∥|u|α−1∥L1
TL

3∥u∥L∞
T L6 ≲T ∥u∥α−1

Lpα
T L3(α−1)∥u∥L∞

T H1 ≲M,T 1. (6.9)

Since pα ≥ α − 1, the result then follows from Corollary 5.16. Note that if α = 5,
we do not need Hölder’s inequality in time and hence, the implicit constant in (6.9) is
independent of T .
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6. The semilinear wave equation

In the next lemma we give convergence rates for the difference between g(u) and
g(πKu). We will often use the elementary Lipschitz bound

|g(v) − g(w)| ≲ (|v|α−1 + |w|α−1)|v − w| (6.10)

for the nonlinearity g. Moreover, in addition to (pα, 3(α− 1)) from (6.3), for α ∈ (3, 5]
we will use the H1-admissible pair (α− 1, qα), where

qα := 6(α− 1)
α− 3 . (6.11)

Note that (pα, 3(α− 1)) = (α− 1, qα) in the scaling-critical situation α = 5. Moreover, if
α = 3, the pair (α− 1, qα) corresponds to the “forbidden endpoint” (2,∞).

Lemma 6.10. Let u, T , and M be given by Assumption 6.3. Then we have the estimate

∥g(u) − g(πKu)∥L1
T H−1 ≲M,T K

−1.

Moreover, we obtain

∥g(u) − g(πKu)∥L1
TL

2 ≲M,T K
−1(1 + logK),

if α = 3 and
∥g(u) − g(πKu)∥L1

TL
2 ≲M,T,α K

− 5−α
2

for α ∈ (3, 5]. These inequalities are uniform in K ≥ 1. The implicit constants are
independent of T if Ω = R3 and α = 5.

Proof. We first compute

∥g(u) − g(πKu)∥L1
T H−1 ≲ ∥(|u|α−1 + |πKu|α−1)(I − πK)u∥

L1
TL

6
5

≲ (∥u∥α−1
Lα−1

T L3(α−1) + ∥πKu∥α−1
Lα−1

T L3(α−1))∥(I − πK)u∥L∞
T L2

≲M,T K
−1∥u∥L∞

T H1 ≲M K−1,

using the dual Sobolev embedding L
6
5 ↪→ H−1, estimate (6.10), Hölder’s inequality,

Proposition 6.9, and Lemma 5.19. Note that Hölder’s inequality in time is not needed if
α = 5, again. Similarly, for α ∈ (3, 5] it follows that

∥g(u) − g(πKu)∥L1
TL

2 ≲ ∥(|u|α−1 + |πKu|α−1)(I − πK)u∥L1
TL

2

≲ ∥(|u|α−1 + |πKu|α−1)∥
L1

TL
6

α−3
∥(I − πK)u∥

L∞
T L

6
6−α

≲ (∥u∥α−1
Lα−1

T Lqα
+ ∥πKu∥α−1

Lα−1
T Lqα

)∥(I − πK)u∥
L∞

T H
α−3

2

≲M,T,α K
− 5−α

2 ∥u∥L∞
T H1 ≲M K− 5−α

2 ,

by means of Hölder’s inequality with 1
2 = α−3

6 + 6−α
6 , the Sobolev embedding H

α−3
2 ↪→

L
6

6−α , and Proposition 6.9 with (p, q) = (α− 1, qα) from (6.11).
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Finally, let α = 3. Then we decompose

∥g(u) − g(πKu)∥L1
TL

2 ≤ ∥g(u) − g(πK2u)∥L1
TL

2 + ∥g(πK2u) − g(πKu)∥L1
TL

2 .

Proceeding as above, we obtain

∥g(u) − g(πK2u)∥L1
TL

2 ≲ ∥(|u|2 + |πK2u|2)(I − πK2)u∥L1
TL

2

≲ ∥(|u|2 + |πK2u|2)∥L1
TL

6∥(I − πK2)u∥L∞
T L3

≲T (∥u∥2
L4

TL
12 + ∥πK2u∥2

L4
TL

12)∥(I − πK2)u∥
L∞

T H
1
2

≲M,T K
−1∥u∥L∞

T H1 ≲M K−1,

using (p, q) = (4, 12), and

∥g(πK2u) − g(πKu)∥L1
TL

2 ≲ ∥(|πK2u|2 + |πKu|2)πK2(I − πK)u∥L1
TL

2

≲ ∥(|πK2u|2 + |πKu|2)∥L1
TL

∞∥πK2(I − πK)u∥L∞
T L2

≲ (∥πK2u∥2
L2

TL
∞ + ∥πKu∥2

L2
TL

∞)∥(I − πK)u∥L∞
T L2

≲M,T K
−1(1 + logK)∥u∥L∞

T H1 ≲M K−1(1 + logK).

Here, the logarithmic estimate for the L2
TL

∞ norm from Proposition 6.9 was applied.

77





7. Error analysis
We now start with the error analysis of the splitting scheme. We directly treat the fully
discrete algorithm (4.4), given by

Un+1/2 = eτA[Un + τ
2 IKG(Πτ−1Un)],

Un+1 = Un+1/2 + τ
2 IKG(Πτ−1Un+1/2),

U0 = ΠK(u0, v0),

which contains the semi-discrete one (4.2) in the special case K = ∞. In the case Ω = R3,
we always set K = ∞ since our full discretization only makes sense on the torus Ω = T3.

Note that since G(u, v) = (0, g(u)) we have G(Πτ−1Un+1/2) = G(Πτ−1Un+1) due to
(4.4). Moreover, since ΠKIK = IK , it inductively follows that Un defined by (4.4) satisfies
the frequency localization Un = ΠKUn. Thus, we can also state the scheme (4.4) in the
more compact form

Un+1 = eτAUn + τ

2
(
eτAIKG(ΠNUn) + IKG(ΠNUn+1)

)
, (7.1)

where N := min{τ−1,K}. In view of a later iteration argument, we allow here for general
initial values U0 ∈ H1 × L2 that are not necessarily equal to ΠKU(0). We often denote
the discrete times by tn := nτ .

7.1. Error recursion
We first establish a discrete Duhamel formula for Un given by (4.4). We introduce the
notation S(t) for the first line of etA, i.e.,

S(t)(f, v) := cos(t|∇|)f + t sinc(t|∇|)v.

Lemma 7.1. The iterates Un given by (7.1) satisfy the formulas

Un = enτAU0 + τ
n∑
k=0

ck,ne
(n−k)τAIKG(ΠNUk) (7.2)

and

un = S(tn)U0 + τ
n−1∑
k=0

ck,ntn−k sinc(tn−k|∇|)IKg(πNuk) (7.3)

for all n ∈ N0, τ ∈ (0, 1], and K ∈ N ∪ {∞}, where un denotes the first component of
Un. Here we define

c0,0 := 0, c0,n = cn,n := 1
2 , ck,n := 1 (7.4)

for k ∈ {1, . . . , n− 1} and n ≥ 1.
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Proof. Starting from (7.1) and Lemma A.8, we compute

Un = enτAU0 + τ

2

n−1∑
k=0

e(n−k−1)τA
(
eτAIKG(ΠNUk) + IKG(ΠNUk+1)

)

= enτAU0 + τ

2

n−1∑
k=0

e(n−k)τAIKG(ΠNUk) + τ

2

n∑
k=1

e(n−k)τAIKG(ΠNUk)

= enτAU0 + τ
n∑
k=0

ck,ne
(n−k)τAIKG(ΠNUk).

Formula (7.3) for the first component is obtained by inserting G = (0, g) and the
expression (5.20) for etA.

Now we derive a useful decomposition of the error. Recall that for the sake of notational
simplicity, we assume that the initial data (u0, v0) are real-valued, which is inherited
by the solution U and the approximations Un, cf. Lemma A.5. For the nonlinearity
g(u) = −µ|u|α−1u, we then obtain

g′(u) = −µα|u|α−1,

g′′(u) = −µα(α− 1)|u|α−3u.

Proposition 7.2. Let the solution U = (u, ∂tu) satisfy Assumption 6.3 and the approxi-
mations Un be given by (7.1). Define the (projected) error En by

En := ΠKU(tn) − Un. (7.5)

We then have

En = enτAE0 + ΠKB(nτ) + ΠKDn + ΠKQn + ΠKHn (7.6)
= enτAE0 + ΠKB(nτ) + ΠKDn + Q̃n + ΠKH̃n (7.7)

for all τ ∈ (0, 1], K ∈ N ∪ {∞}, and n ∈ N0 with tn ∈ [0, T ). The appearing terms are
given by

B(t) :=
∫ t

0
e(t−s)A[G(U(s)) −G(ΠNU(s))] ds,

Dn := τ2

2

∫ tn

0
e(nτ−s)A(⌊ sτ ⌋ − s

τ )(⌈ sτ ⌉ − s
τ )
(

d1(s)
d2(s) + d3(s) + d4(s)

)
ds,

Qn := τ
n∑
k=0

ck,ne
(n−k)τA[G(ΠNU(tk)) −G(ΠNUk)],

Hn := τ
n∑
k=0

ck,ne
(n−k)τA(I − IK)G(ΠNUk),

(7.8)
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and

Q̃n := τ
n∑
k=0

ck,ne
(n−k)τAIK [G(ΠNU(tk)) −G(ΠNUk)],

H̃n := τ
n∑
k=0

ck,ne
(n−k)τA(I − IK)G(ΠNU(tk)),

(7.9)

for ck,n from (7.4), N := min{τ−1,K}, and

d1(t) := −2g′(πNu(t))πN∂tu(t),
d2(t) := g′′(πNu(t))

[
|∇πNu(t)|2 + (πN∂tu(t))2],

d3(t) := g′(πNu(t))πNg(u(t)),
d4(t) := 2g′(πNu(t))πN∆u(t).

(7.10)

We can alternatively write

Dn = τ2

2

∫ τ

0
s
τ ( sτ − 1)

n−1∑
k=0

e((n−k)τ−s)A
(

d1
d2 + d3 + d4

)
(tk + s) ds, (7.11)

and also
Dn = τ

∫ tn

0
e(nτ−s)A(1

2 + ⌊ sτ ⌋ − s
τ )
(

−g(πNu(s))
g′(πNu(s))πN∂tu(s)

)
ds. (7.12)

Proof. We subtract the discrete Duhamel formula (7.2) from its continuous analogue

ΠKU(nτ) = enτAΠKU(0) + ΠK

∫ nτ

0
e(nτ−s)AG(U(s)) ds

(see (6.2)) to obtain

En = enτAE0 + ΠKB(nτ) + ΠK

∫ tn

0
e(nτ−s)AG(ΠNU(s)) ds

− τΠK

n∑
k=0

ck,ne
(n−k)τAG(ΠNU(tk)) + ΠKQn + ΠKHn

where we exploit that IK = ΠKIK . To get the desired formulas for Dn, we use the error
representation of the trapezoidal sum (in second and first order)∫ tn

0
F (s) ds− τ

n∑
k=0

ck,nF (tk) = 1
2

n−1∑
k=0

∫ tk+1

tk

(s− tk)(s− tk+1)F ′′(s) ds

=
n−1∑
k=0

∫ tk+1

tk

( τ2 + tk − s)F ′(s) ds, (7.13)

where we set F (s) := e(nτ−s)AG(ΠNU(s)). We compute

F ′(s) = e(nτ−s)A
[

−
(

0 I
∆ 0

)(
0

g(πNu(s))

)
+ d

ds

(
0

g(πNu(s))

)]
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= e(nτ−s)A
(

−g(πNu(s))
g′(πNu(s))πN∂tu(s)

)
,

F ′′(s) = e(nτ−s)A
[

−
(

0 I
∆ 0

)(
−g(πNu(s))

g′(πNu(s))πN∂tu(s)

)
+ d

ds

(
−g(πNu(s))

g′(πNu(s))πN∂tu(s)

)]

= e(nτ−s)A
(

d1(s)
d2(s) + d3(s) + d4(s)

)
,

using that ∆[g(w)] = g′′(w)|∇w|2 + g′(w)∆w and the differential equation (4.1). Since

1
2

n−1∑
k=0

∫ tk+1

tk

(s− tk)(s− tk+1)F ′′(s) ds = τ2

2

∫ tn

0
(⌊ sτ ⌋ − s

τ )(⌈ sτ ⌉ − s
τ )F ′′(s) ds = Dn,

from (7.13) we deduce the second-order formula (7.6). The substitution s̃ = s− tk yields
the alternative representation (7.11). Similarly, the second line of (7.13) leads to the
first-order representation (7.12). Since ΠKQn + ΠKHn = Q̃n + ΠKH̃n, we also obtain
the other recursion formula (7.7).

Remark 7.3. The first component of Q̃n defined by (7.9) satisfies

[Q̃n]1 = τ
n−1∑
k=0

[
e(n−k)τAck,nIK [G(ΠNU(tk)) −G(ΠNUk)]

]
1
,

and similarly for Qn from (7.8). Here, the notation [·]1 means that we take the first
component of the vector. The n-th term in the sum vanishes since the first component of
the nonlinearity G is zero.

7.2. Estimates for error terms resulting from the filter
We now deal with the term B in (7.6) that results from the introduction of the filter
function ΠN . Here we face the following difficulty. If we move the L2 × H−1 norm inside
the integral and apply Lemma 5.19 with s = 2, we end up with a term roughly of the
form

∥g′(u)(I − πN )u∥L1
T H−1 ≈ N−2∥g′(u)∆u∥L1

T H−1 .

Now we would like to use a nonlinear product estimate, but we do not have enough
regularity available to obtain an optimal error bound if α < 5. For example, consider
α = 3 so that g′(u) ≈ u2 and we are aiming for an almost second-order error bound
in time. Recall that N = min{τ−1,K}, thus we cannot afford a loss in the product
estimate. Assumption 6.3 yields u ∈ L∞

T H1 and hence ∆u ∈ L∞
T H−1. Moreover, thanks

to Proposition 6.9 we almost have u ∈ L2
TL

∞. But a product estimate of the form
∥vw∥H−1 ≲ ∥v∥H1∩L∞∥w∥H−1 is wrong, because in 3D, one only has

∥vw∥H−1 ≲ ∥v∥W 1,3∩L∞∥w∥H−1
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7.2. Estimates for error terms resulting from the filter

in general, which would require additional integrability.
To solve this problem, we follow a different strategy. We do not move the L2 × H−1

norm into the integral at first. Instead, we involve integration by parts in time, which
helps to “move regularity to the right position”. This technique was used previously in,
e.g., [10] in a context without Strichartz estimates.

Lemma 7.4. Let U = (u, ∂tu), T , and M be given by Assumption 6.3, and B by (7.8).
We then have

∥B(t)∥H1×L2 ≲M,T N
−1(1 + logN),

∥B(t)∥L2×H−1 ≲M,T N
−2(1 + logN)

if α = 3, and

∥B(t)∥H1×L2 ≲M,T,α N
− 5−α

2 ,

∥B(t)∥L2×H−1 ≲M,T,α N
− 7−α

2

for α ∈ (3, 5], uniformly in N ≥ 1 and t ∈ [0, T ). The implicit constants are independent
of T if Ω = R3 and α = 5.

Proof. Since
∥B(t)∥H1×L2 ≲T ∥g(u) − g(πNu)∥L1

TL
2 ,

the bounds for the energy norm follow directly from Lemma 6.10. Similarly, using that

∥B(t)∥L2×H−1 ≲T ∥g(u) − g(πNu)∥L1
T H−1 ,

we obtain the bound for the case α = 5, where the constant is independent of T if Ω = R3.
For the remaining estimates in the L2 × H−1 norm, we use a decomposition. We first
split1

B(t) =
∫ t

0
e(t−s)A[G(U(s)) −G(ΠN2U(s))] ds

+
∫ t

0
e(t−s)A[G(ΠN2U(s)) −G(ΠNU(s))] ds

=: I1 + I2.

Lemma 6.10 also yields

∥I1∥L2×H−1 ≲T ∥g(u) − g(πN2u)∥L1
T H−1 ≲M,T N

−2.

The second term is reformulated as

G(ΠN2U(s)) −G(ΠNU(s)) =
∫ 1

0
G′(UN,θ(s))ΠN2(I − ΠN )U(s) dθ.

1Similar as in the proof of Lemma 6.10, this first decomposition is in principle only necessary for α = 3.
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Here we use the notation

UN,θ(s) := θπN2U(s) + (1 − θ)πNU(s)

and write uN,θ for the first component of UN,θ so that

G′(UN,θ(s)) =
(

0 0
g′(uN,θ(s)) 0

)
.

Moreover, in order to gain a negative power of N , we insert the equality

(I − ΠN ) = (N−1DΦN )
7−α

2

from Lemma 5.19 with D := diag(|∇|, |∇|) and ΦN := diag(ϕN , ϕN ). This leads to the
representation

I2 = N− 7−α
2

∫ 1

0

∫ t

0
e(t−s)AG′(UN,θ(s))ΠN2Φ

7−α
2

N D
7−α

2 U(s) dsdθ.

Next, observe that D = JA for the operator

J :=
(

0 −|∇|−1

|∇| 0

)
.

If Ω = T3, here we define the zero-th Fourier coefficient of |∇|−1f to be zero, for arbitrary
functions f ∈ Hr. To simplify notation, we set Φ̃N := ΠN2Φ(7−α)/2

N J , which is a bounded
operator on Hr × Hr−1 for all r < 3/2, uniformly in N ≥ 1. Altogether it follows that

I2 = N− 7−α
2

∫ 1

0

∫ t

0
e(t−s)AG′(UN,θ(s))Φ̃ND

5−α
2 AU(s) dsdθ.

Recall that the differential equation AU = ∂tU −G(U) from (6.1) holds in C([0, T ], L2 ×
H−1). Inserting it, we split I2 into

I2 = N− 7−α
2

∫ 1

0

∫ t

0
e(t−s)AG′(UN,θ(s))Φ̃ND

5−α
2 ∂tU(s) ds dθ

−N− 7−α
2

∫ 1

0

∫ t

0
e(t−s)AG′(UN,θ(s))Φ̃ND

5−α
2 G(U(s)) ds dθ

=: N− 7−α
2 (I2,1 − I2,2).

Using Hölder’s inequality with 5
6 = 1

3 + 1
2 and the Sobolev embedding L

6
α ↪→ H

3−α
2 , the

term with G(U) is estimated by

∥I2,2∥L2×H−1 ≲T sup
θ∈[0,1]

∥g′(uN,θ)[Φ̃ND
5−α

2 G(U)]1∥
L1

TL
6
5

≤ sup
θ∈[0,1]

∥g′(uN,θ)∥L1
TL

3∥|∇|
5−α

2 g(u)∥L∞
T H−1
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7.2. Estimates for error terms resulting from the filter

≲ ∥|πN2u|α−1 + |πNu|α−1∥L1
TL

3∥|u|α∥
L∞

T L
6
α

≲
(
∥πN2u∥α−1

Lα−1L3(α−1) + ∥πNu∥α−1
Lα−1L3(α−1)

)
∥u∥αL∞

T L6 ≲M,T 1,

where the estimate in the last line follows from Hölder’s inequality in time, pα ≥ α− 1,
Proposition 6.9, and Assumption 6.3. Recall that the notation [·]1 means that we take
the first component of the vector.

The summand with ∂tU is integrated by parts in time, which gives

I2,1 =
∫ 1

0

[
e(t−s)AG′(UN,θ(s))Φ̃ND

5−α
2 U(s)

]t
s=0

dθ

+
∫ 1

0

∫ t

0
Ae(t−s)AG′(UN,θ(s))Φ̃ND

5−α
2 U(s) dsdθ

−
∫ 1

0

∫ t

0
e(t−s)A d

dsG
′(UN,θ(s))Φ̃ND

5−α
2 U(s) dsdθ

=: I2,1,1 + I2,1,2 − I2,1,3.

The boundary terms I2,1,1 can be estimated by means of Sobolev and Hölder inequalities.
For θ ∈ [0, 1] and s ∈ {0, t}, we infer

∥I2,1,1∥L2×H−1 ≲T ∥g′(uN,θ(s))[D
5−α

2 Φ̃NU(s)]1∥
L

6
5

≤ ∥g′(uN,θ(s))∥
L

6
α−1

∥[D
5−α

2 Φ̃NU(s)]1∥
L

6
6−α

≲
(
∥πN2u(s)∥α−1

L6 + ∥πNu(s)∥α−1
L6

)
∥U(s)∥H1×L2 ≲M 1,

using H
α−3

2 ↪→ L
6

6−α . Similarly the contribution with A is estimated by

∥I2,1,2∥L2×H−1 ≲T ∥g′(uN,θ)[D
5−α

2 Φ̃NU ]1∥L1
TL

2

≤ ∥g′(uN,θ)∥
L1

TL
6

α−3
∥[D

5−α
2 Φ̃NU ]1∥

L∞
T L

6
6−α

≲M ∥πN2u∥α−1
Lα−1

T Lqα
+ ∥πNu∥α−1

Lα−1
T Lqα

.

If α ∈ (3, 5), the right-hand side is uniformly bounded by a constant depending on
M , T , and α, using Proposition 6.9 with (p, q) = (α − 1, qα) from (6.11), and hence,
∥I2,1,2∥L2×H−1 ≲M,T,α 1. If α = 3, we instead use the logarithmic endpoint estimate from
Proposition 6.9 for the L2

TL
∞ norm, which gives ∥I2,1,2∥L2×H−1 ≲M,T 1 + logN . Finally,

to get the estimate for I2,1,3, we observe that

d
dsg

′(uN,θ(s)) = g′′(uN,θ(s))∂suN,θ(s) = g′′(uN,θ(s))
(
θπN2∂tu(s) + (1 − θ)πN∂tu(s)

)
.

If α ∈ (3, 5), the dual Strichartz estimate from Corollary 5.18 with (p, q) = (α − 1, qα)
implies

∥I2,1,3∥L2×H−1 ≲T ∥g′′(uN,θ)∂suN,θ[D
5−α

2 Φ̃NU ]1∥
L

α−1
α−2
T Lq′

α
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≤ ∥g′′(uN,θ)∥
L

α−1
α−2
T L

6(α−1)
(α−3)(α−2)

∥∂suN,θ∥L∞
T L2∥[D

5−α
2 Φ̃NU ]1∥

L∞
T L

6
6−α

≲
(
∥πN2u∥α−2

Lα−1
T L

6(α−1)
α−3

+ ∥πNu∥α−2

Lα−1
T L

6(α−1)
α−3

)
∥∂tu∥L∞

T L2∥U∥L∞
T (H1×L2)

≲M,T,α 1,

using Hölder’s inequality with

1
q′
α

= 5α− 3
6(α− 1) = (α− 3)(α− 2)

6(α− 1) + 6 − α

6 + 1
2 = (α− 3)(α− 2)

6(α− 1) + 9 − α

6 = 3(α− 1)
α

+ 1
2 ,

(7.14)
the Sobolev embedding H

α−3
2 ↪→ L

6
6−α , and Proposition 6.9. In the case α = 3, we

exploit that the polynomial g(u) = −µu3 keeps the frequency localization πN2 up to a
factor 3. This means that I2,1,3 = Π3N2I2,1,3.2 Hence, we can apply the dual endpoint
logarithmic Strichartz estimate from Corollary 5.18 to conclude

∥Π3N2I2,1,3∥L2×H−1

≲T (1 + logN)
1
2 ∥g′′(uN,θ)∂suN,θ[DΦ̃NU ]1∥L2

TL
1

≤ (1 + logN)
1
2 ∥g′′(uN,θ)∥L2

TL
∞∥∂suN,θ∥L∞

T L2∥[DΦ̃NU ]1∥L∞
T L2

≲ (1 + logN)
1
2
(
∥πN2u∥L2

TL
∞ + ∥πNu∥L2

TL
∞

)
∥∂tu∥L∞

T L2∥U∥L∞
T (H1×L2)

≲M,T (1 + logN),

where in the end we again apply the logarithmic endpoint estimate for u from Proposition
6.9.

7.3. Estimates for local error terms

Next, we treat the term Dn from (7.8) that includes the local error terms, starting with
d1, d2, and d3. In the following, we will not always explicitly mention the repeated use
of the Sobolev embeddings H(α−3)/2 ↪→ L6/(6−α) and L6/5 ↪→ H−1, Hölder’s inequality
with 5

6 = 1
2 + 1

3 and 1
2 = α−3

6 + 6−α
6 , and Proposition 6.9 with admissible exponents

(p, q) ∈ {(pα, 3(α− 1)), (α− 1, qα)}.

Lemma 7.5. Let U = (u, ∂tu), T , and M be given by Assumption 6.3. The third term
in (7.10) satisfies

∥d3∥L1
T H−1 ≲M,T 1

if α ∈ [3, 4], and
∥d3∥L1

T H−1 ≲M,T N
α−4

2In view of Remark 4.10, one could avoid to use the special form of g, by involving another triangle
inequality with ΠN2 I2,1,3, for instance.
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for α ∈ (4, 5]. For the first two terms in (7.10), we have

∥d1∥L1
TL

2 ≲M,T (1 + logN),

∥d2∥L2
TL

1 ≲M,T (1 + logN)
1
2

for α = 3, and

∥d1∥L1
TL

2 + ∥d2∥
L

α−1
α−2
T Lq′

α

≲M,T,α N
α−3

2

for α ∈ (3, 5] and qα from (6.11). All estimates are uniform in N ≥ 1.

Proof. First, Sobolev and Hölder inequalities yield

∥d3∥L1
T H−1 ≲ ∥g′(πNu)πNg(u)∥

L1
TL

6
5

≤ ∥g′(πNu)∥
L

2
α−3
T L3

∥πNg(u)∥
L

2
5−α
T L2

≲ ∥πNu∥α−1
Lpα

T L3(α−1)∥πNg(u)∥
L

2
5−α
T L2

≲M ∥πNg(u)∥
L

2
5−α
T L2

.

For α ∈ [3, 4], we get

∥πNg(u)∥
L

2
5−α
T L2

≲ ∥u∥α
L

2α
5−α
T L2α

≲T ∥u∥α
L

2α
α−3
T L2α

≲M,T 1

by Hölder’s inequality in time (using α ≤ 4) and Proposition 6.9 with (p, q) = ( 2α
α−3 , 2α).

If α ∈ (4, 5], we need to apply Bernstein’s Lemma A.3 to obtain first

∥πNg(u)∥
L

2
5−α
T L2

≲ Nα−4∥g(u)∥
L

2
5−α
T H4−α

≲ Nα−4∥g(u)∥
L

2
5−α
T L

6
2α−5

≤ Nα−4∥u∥α
L

2α
5−α
T L

6α
2α−5

≲M,T N
α−4,

exploiting the dual Sobolev embedding L
6

2α−5 ↪→ H4−α and Proposition 6.9 with (p, q) =
( 2α

5−α ,
6α

2α−5).
Let now α = 3. We then derive

∥d1∥L1
TL

2 ≲ ∥g′(πNu)πN∂tu∥L1
TL

2 ≤ ∥g′(πNu)∥L1
TL

∞∥πN∂tu∥L∞
T L2

≲M ∥πNu∥2
L2

TL
∞ ≲M,T 1 + logN,

∥d2∥L2
TL

1 ≲ ∥g′′(πNu)
[
|∇πNu|2 + (πN∂tu)2]∥L2

TL
1

≤ ∥g′′(πNu)∥L2
TL

∞∥|∇πNu|2 + (πN∂tu)2∥L∞
T L1

≲ ∥πNu∥L2
TL

∞

(
∥∇u∥2

L∞
T L2 + ∥∂tu∥2

L∞
T L2

)
≲M,T (1 + logN)

1
2 ,

using the logarithmic endpoint estimate from Proposition 6.9. Similarly, for α ∈ (3, 5],
these terms are bounded by

∥d1∥L1
TL

2 ≲ ∥g′(πNu)∥
L1

TL
6

α−3
∥πN∂tu∥

L∞
T L

6
6−α
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≲ ∥πNu∥α−1
Lα−1

T Lqα
∥πN∂tu∥

L∞
T H

α−3
2

≲M,T,α N
α−3

2 ∥∂tu∥L∞
T L2 ≲M N

α−3
2 ,

∥d2∥
L

α−1
α−2
T Lq′

α

≲ ∥g′′(πNu)∥
L

α−1
α−2
T L

6(α−1)
(α−3)(α−2)

∥|∇πNu|2 + (πN∂tu)2∥
L∞

T L
6

9−α

≲ ∥πNu∥α−2
Lα−1

T Lqα

(
∥∇πNu∥2

L∞
T L

12
9−α

+ ∥πN∂tu∥2
L∞

T L
12

9−α

)
≲M,T,α N

α−3
2
(
∥∇u∥2

L∞
T L2 + ∥∂tu∥2

L∞
T L2

)
≲M N

α−3
2 ,

employing the relation 7.14 and Proposition 6.9 with (p, q) = (α − 1, qα). The loss of
N (α−3)/2 comes from the Bernstein inequality in Lemma A.3.

The term d4 from (7.10) is the most difficult one, because it involves second partial
derivatives of u. Therefore, we follow the same strategy as in Lemma 7.4. However, since
the situation is now more “discrete” in time, we apply summation by parts instead of
integration by parts. Roughly speaking, this transforms the term containing d4 into terms
that can be estimated in the same way as d1 and d2 in Lemma 7.5. To use summation
by parts, we need the filter Πτ−1 , cf. the discussion before Lemma 5.20. As noted before,
such a strategy was already used in [10] in a situation without Strichartz estimates.

Lemma 7.6. Let U = (u, ∂tu), T , and M be given by Assumption 6.3. Then the term
Dn from (7.8). is estimated by

∥Dn∥H1×L2 ≲M,T τ(1 + | log τ |),
∥Dn∥L2×H−1 ≲M,T τ

2(1 + | log τ |)

if α = 3, and

∥Dn∥H1×L2 ≲M,T,α τ
5−α

2 ,

∥Dn∥L2×H−1 ≲M,T,α τ
7−α

2

for α ∈ (3, 5], uniformly in τ ∈ (0, 1], K ∈ N ∪ {∞}, and n ∈ N0 with nτ ∈ [0, T ). The
implicit constants are independent of T if Ω = R3 and α = 5.

Proof. We first show the estimates for the energy norm. Recall that N = min{τ−1,K}.
The first-order representation (7.12) implies

∥Dn∥H1×L2 ≲T τ
(
∥g(πNu)∥L1

T H1 + ∥g′(πNu)πN∂tu∥L1
TL

2

)
≲ τ∥|πNu|α−1∥

L1
TL

6
α−3

(
∥πN∇̃u∥

L∞
T L

6
6−α

+ ∥πN∂tu∥
L∞

T L
6

6−α

)
≲ τ1− α−3

2 ∥πNu∥α−1
Lα−1

T Lqα

(
∥πNu∥L∞

T H1 + ∥πN∂tu∥L∞
T L2

)
≲M,T,α τ

5−α
2 ,

for α ∈ (3, 5], also taking into account Bernstein’s inequality from Lemma A.3 and
Proposition 6.9, where ∇̃ = ∇ on R3 and ∇̃ = I + ∇ on T3. Similarly, for α = 3 we
derive the inequality

∥Dn∥H1×L2 ≲M,T τ(1 + | log τ |),
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by means of the logarithmic endpoint estimate from Proposition 6.9. For α = 5, we get

∥Dn∥L2×H−1 ≲T τ
(
∥g(πNu)∥L1

TL
2 + ∥g′(πNu)πN∂tu∥L1

T H−1

)
≲ τ∥πNu∥4

L4
TL

12

(
∥πNu∥L∞

T L6 + ∥πN∂tu∥L∞
T L2

)
≲M τ

using again Proposition 6.9, where the constant is independent of T if Ω = R3.
We now show the remaining bounds for the L2 × H−1 norm. Using Corollary 5.18 for

the term involving d2, we start with the inequality

∥Dn∥L2×H−1 ≲T τ
2
(
∥d1∥L1

TL
2 + d̃2 + ∥d3∥L1

T H−1 + ∥Dn,4∥L2×H−1),

where d̃2 := (1 + | log τ |)1/2∥d2∥L2
TL

1 for α = 3 and d̃2 := ∥d2∥
L

α−1
α−2
T Lq′

α

for α ∈ (3, 5), as

well as

Dn,4 :=
∫ tn

0
e(nτ−s)A(⌊ sτ ⌋ − s

τ )(⌈ sτ ⌉ − s
τ )
(

0
d4(s)

)
ds

independent of α. The terms containing d1, d2, and d3 are estimated by Lemma 7.5
(using that α ≤ 5 for d3). We still need to deal with the term Dn,4. As in (7.11), the
remaining summand is given by

Dn,4 =
∫ τ

0
s
τ ( sτ − 1)

n−1∑
k=0

e((n−k)τ−s)A
(

0
d4(tk + s)

)
ds.

Since (
0

d4(tk + s)

)
= 2G′(ΠNU(tk + s))A2ΠNU(tk + s),

G′(ΠNU(tk + s)) =
(

0 0
g′(πNu(tk + s)) 0

)
,

we can write

Dn,4 = 2
∫ τ

0
s
τ ( sτ − 1)

n−1∑
k=0

e((n−k)τ−s)AG′(ΠNU(tk + s))A2ΠNU(tk + s) ds.

Recall the summation by parts formula

n−1∑
k=0

akbk = an−1bn−1 + an−1

n−2∑
k=0

bk +
n−2∑
k=0

(ak − ak+1)
k∑
j=0

bj ,

with ak = e(n−k)τAG′(ΠNU(tk + s)) and bk = A2ΠNU(tk + s). It yields

Dn,4 = 2(I1 + I2 + I3)
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with

I1 :=
∫ τ

0
s
τ ( sτ − 1)e(τ−s)AG′(ΠNU(tn−1 + s))A2ΠNU(tn−1 + s) ds,

I2 :=
∫ τ

0
s
τ ( sτ − 1)e(τ−s)AG′(ΠNU(tn−1 + s))

n−2∑
k=0

A2ΠNU(tk + s) ds,

I3 :=
∫ τ

0
s
τ ( sτ − 1)

n−2∑
k=0

e((n−k)τ−s)A
(
G′(ΠNU(tk + s))

− e−τAG′(ΠNU(tk+1 + s))
) k∑
j=0

A2ΠNU(tj + s) ds.

Next, we insert the equality

τAΠN = (eτA − I)Ψτ,N

from Lemma 5.20, where the operator Ψτ,N is bounded on Hr × Hr−1 for all r ∈ R,
uniformly in τ ∈ (0, 1] and N ∈ [1, 1/τ ]. The term I1 is controlled by Sobolev, Hölder,
and Bernstein inequalities via

∥I1∥L2×H−1 ≲ sup
s∈[0,τ ]

∥g′(πNu(tn−1 + s))[(eτA − I)Ψτ,NAU(tn−1 + s)]1∥
L

6
5

≲ sup
s∈[0,τ ]

∥g′(πNu(tn−1 + s))∥L3∥AU(tn−1 + s)∥L2×H−1

≲M ∥πNu∥α−1
L∞

T L3(α−1) ≲ τ− α−3
2 ∥u∥α−1

L∞
T H1 ≲M τ− α−3

2 .

Next, for j ∈ {0, . . . , n− 2} and s ∈ [0, τ ] we define the sum

S̃(τ, j, s) := τ
j∑

k=0
A2ΠNU(tk + s) =

j∑
k=0

(eτA − I)Ψτ,NAU(tk + s). (7.15)

A shifted version of Duhamel’s formula (6.2) yields

S̃(τ, j, s) =
j∑

k=0
Ψτ,NA[U(tk+1 + s) − U(tk + s)]

−
j∑

k=0

∫ τ

0
Ψτ,NAe

(τ−σ)AG(U(tk + s+ σ)) dσ.

We exploit this telescopic and (6.9) sum to conclude that

∥S̃(τ, j, s)∥L2×H−1 ≲T ∥U(tj+1 + s) − U(s)∥H1×L2 +
j∑

k=0

∫ τ

0
∥g(u(tk + s+ σ))∥L2 dσ

≲ ∥U∥L∞
T (H1×L2) + ∥g(u)∥L1

TL
2 ≲M,T 1, (7.16)
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uniformly in j ∈ {0, . . . , n − 2}, τ ∈ (0, 1] and s ∈ [0, τ ]. Hence, the summand I2 is
estimated similar as I1 by

∥I2∥L2×H−1 ≲ sup
s∈[0,τ ]

∥g′(πNu(tn−1 + s))[S̃(τ, n− 2, s)]1∥
L

6
5

≲ sup
s∈[0,τ ]

∥g′(πNu(tn−1 + s))∥L3∥S̃(τ, n− 2, s)∥L2×H−1 ≲M,T τ
− α−3

2 .

The term I3 is treated by means of another decomposition. Involving (7.15), we split it
as

I3 = I3,1 + I3,2,

with the expressions

I3,1 := 1
τ

∫ τ

0
s
τ ( sτ − 1)

n−2∑
k=0

e((n−k)τ−s)A(I − e−τA)G′(ΠNU(tk + s))S̃(τ, k, s) ds,

I3,2 := 1
τ

∫ τ

0
s
τ ( sτ − 1)

n−2∑
k=0

e((n−k−1)τ−s)A

·
(
G′(ΠNU(tk + s)) −G′(ΠNU(tk+1 + s))

)
S̃(τ, k, s) ds.

For I3,1, observe that
I − e−τA = τAφ1(−τA),

where φ1(z) := (ez − 1)/z. Since the function φ1 is bounded on iR, the operator φ1(−τA)
is bounded on H1 × L2, uniformly in τ ∈ (0, 1]. For α = 3, we then derive

∥I3,1∥L2×H−1 ≲T

∫ τ

0

n−2∑
k=0

∥G′(ΠNU(tk + s))S̃(τ, k, s)∥H1×L2 ds

≤
∫ τ

0

n−2∑
k=0

∥g′(πNu(tk + s))∥L∞∥S̃(τ, k, s)∥L2×H−1 ds

≲M,T ∥πNu∥2
L2

TL
∞ ≲M,T 1 + | log τ |,

using estimate (7.16) and the logarithmic endpoint estimate for u from Proposition 6.9.
Similarly, for α ∈ (3, 5) one obtains

∥I3,1∥L2×H−1 ≲T

∫ τ

0

n−2∑
k=0

∥g′(πNu(tk + s))∥
L

6
α−3

∥[S̃(τ, k, s)]1∥
L

6
6−α

ds

≲ ∥πNu∥α−1
Lα−1

T Lqα
τ− α−3

2 sup
k∈{0,...,n−2}

s∈[0,τ ]

∥S̃(τ, k, s)∥L2×H−1 ≲M,T,α τ
− α−3

2

due to Bernstein’s inequality and Proposition 6.9. For the term I3,2, we first substitute
s̃ = s+ tk to get

I3,2 = 1
τ

∫ tn−1

0
e((n−1)τ−s)A( sτ − ⌊ sτ ⌋)( sτ − ⌈ sτ ⌉)
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·
(
G′(ΠNU(s)) −G′(ΠNU(τ + s))

)
S̃(τ, ⌊ sτ ⌋, s− τ⌊ sτ ⌋) ds.

We first consider the case α = 3. By the polynomial structure of g, we have the frequency
localization I3,2 = Π3τ−1I3,2. The dual logarithmic endpoint Strichartz estimate from
Corollary 5.18 and the bound (7.16) for S̃ thus yield

∥I3,2∥L2×H−1 ≲T
1
τ

(
(1 + | log τ |)

∫ tn−1

0

∥∥(g′(πNu(s)) − g′(πNu(τ + s))
)

· [S̃(τ, ⌊ sτ ⌋, s− τ⌊ sτ ⌋)]1
∥∥2
L1 ds

) 1
2

≲M,T
1
τ (1 + | log τ |)

1
2 ∥g′(πNu) − g′(πNu(τ + ·))∥L2

tn−1
L2 . (7.17)

To conclude, from the equation

u(s) − u(τ + s) = −
∫ τ

0
∂tu(s+ σ) dσ

we deduce

∥g′(πNu) − g′(πNu(τ + ·))∥L2
tn−1

L2

≲ ∥|g′′(πNu)| + |g′′(πNu(τ + ·))|∥L2
tn−1

L∞ sup
s∈[0,tn−1]

∫ τ

0
∥∂tu(s+ σ)∥L2 dσ

≲M,T ∥πNu∥L2
TL

∞τ∥∂tu∥L∞
T L2 ≲M,T (1 + | log τ |)

1
2 τ.

Together with (7.17), this implies the desired bound for I3,2.
If α ∈ (3, 5], we follow a similar strategy to obtain

∥I3,2∥L2×H−1 ≲T
1
τ

( ∫ tn−1

0

∥∥(g′(πNu(s)) − g′(πNu(τ + s))
)

· [S̃(τ, ⌊ sτ ⌋, s− τ⌊ sτ ⌋)]1
∥∥α−1

α−2

Lq′
α

ds
)α−2

α−1

≲M,T
1
τ ∥g′(πNu) − g′(πNu(τ + ·))∥

L
α−1
α−2
tn−1

L
3(α−1)

α

≲ ∥g′′(πNu)∥
L

α−1
α−2
T L

6(α−1)
(α−3)(α−2)

∥πN∂tu∥
L∞

T L
6

6−α

≲M,T τ
− α−3

2 ∥πNu∥α−1
Lα−1

T Lqα
∥∂tu∥L∞

T L2 ≲M,T τ
− α−3

2 ,

exploiting the relation (7.14), which concludes the proof.

7.4. Proof of the global error bounds for α = 3
We give different proofs of the global error bounds depending on α ∈ [3, 5]. We start
with the proof for α = 3, which is somewhat simpler.
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In the cases α ∈ {3, 5}, the nonlinearity g is a polynomial. This makes the trigonometric
interpolation IK operator quite harmless due to Lemma 5.24. Therefore, in these cases
we use the recursion formula (7.7), instead of formula (7.6) that is employed if α ∈ (3, 5).
The next lemma deals with the term H̃n from (7.9) and will be exploited in both cases
α ∈ {3, 5}.

Lemma 7.7. Let U = (u, ∂tu), T , and M be given by Assumption 6.3 with Ω = T3 and
define H̃n by (7.9). We then obtain

∥H̃n∥H1×L2 ≲M,T K
−1(1 + logK)

if α = 3, and
∥H̃n∥L2×H−1 ≲M,T K

−1

for α ∈ {3, 5}, uniformly in τ ∈ (0, 1], K ∈ N ∪ {∞}, and n ∈ N0 with nτ ∈ [0, T ].

Proof. For α = 3, Lemma 5.24 with β = 3 and Proposition 6.9 yield

∥H̃n∥ℓ∞τ ([0,T ],H1×L2) ≲T ∥(I − IK)g(πNu(tn))∥ℓ1τ ([0,T ],L2) ≲ K−1∥g(πNu(tn))∥ℓ1τ ([0,T ],H1)

≲ K−1∥g′(πNu(tn))∥ℓ1τ ([0,T ],L∞)∥πNu(tn)∥ℓ∞τ ([0,T ],H1)

≲ K−1∥πNu(tn)∥2
ℓ2τ ([0,T ],L∞)∥u(tn)∥ℓ∞τ ([0,T ],H1)

≲M,T K
−1(1 + logK).

Similarly, for α ∈ {3, 5} we obtain

∥H̃n∥ℓ∞τ ([0,T ],L2×H−1) ≲T ∥(I − IK)g(πNu(tn))∥
ℓ1τ ([0,T ],L

6
5 )

≲ K−1∥g(πNu(tn))∥
ℓ1τ ([0,T ],W 1, 6

5 )

≲ K−1∥g′(πNu(tn))∥ℓ1τ ([0,T ],L3)∥πNu(tn)∥ℓ∞τ ([0,T ],H1)

≲ K−1∥πNu(tn)∥α−1
ℓα−1

τ ([0,T ],L3(α−1)) ≲M,T K
−1.

Here it is important to use the interpolation error estimate from Lemma 5.24 with
q = 6/5. If we stuck to L2-based estimates, we could for the L2 ×H−1 norm only reach
a sub-optimal estimate (the same as above for the energy norm, which would not yield
convergence for α = 5), since optimal error bounds for trigonometric interpolation in
negative Sobolev spaces are not available.

We still need to deal with the term Q̃n from (7.6). For α = 3 it turns out that it is
enough to use Sobolev and Hölder inequalities. We write un for the first component of
Un, as well as en for the first component of En.

Lemma 7.8. Let U = (u, ∂tu), T , and M be given by Assumption 6.3 with α = 3. Define
the error En by (4.4) and (7.5). We then have the estimates

∥IK(g(πNu(tn)) − g(πNun))∥L2 ≲M

(
1 + ∥en∥2

H1

)
∥en∥H1 ,

∥IK(g(πNu(tn)) − g(πNun))∥H−1 ≲M

(
1 + ∥en∥2

H1

)
∥en∥L2

for all τ ∈ (0, 1], K ∈ N∪ {∞}, and n ∈ N with nτ ≤ T , where we set N = min{τ−1,K}.
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Proof. From (6.10), we deduce that

∥IK(g(πNu(tn)) − g(πNun))∥L2 ≲M

(
1 + ∥un∥2

H1

)
∥en∥H1 ,

∥IK(g(πNu(tn)) − g(πNun))∥H−1 ≲M

(
1 + ∥un∥2

H1

)
∥en∥L2 .

Here we use the Sobolev embeddings H1 ↪→ L6 and L6/5 ↪→ H−1, Lemma 5.24 with
q ∈ {6/5, 2} and β = 3, as well as Hölder’s inequality with 1

2 = 1
6 + 1

6 + 1
6 and 5

6 = 1
6 + 1

6 + 1
2 .

The assertion follows from this by inserting un = πKu(tn) − en.

We can now give the proof of the global error bound for α = 3. We use a standard
procedure based on the discrete Gronwall inequality. The error bound for en in the
H1-norm is inductively exploited to get a uniform control on the numerical solution un
in H1, which is also essential to obtain the error bound in the L2 norm. This strategy
goes back to [50].

Theorem 7.9. Let U , T , and M be given by Assumption 6.3 with α = 3. Define the
iterates Un by the Strang splitting (4.4) and the (projected) error En = ΠKU(tn) − Un
by Proposition 7.2. Then there are positive constants τ0 ∈ (1, e−1] and K0 ≥ 3 that only
depend on M and T , such that we have the estimates

∥En∥H1×L2 ≲M,T τ | log τ | +K−1 logK,
∥En∥L2×H−1 ≲M,T τ

2| log τ | +K−1,

for all τ ∈ (0, τ0], K ∈ N ∪ {∞} with K ≥ K0, and n ∈ N0 with nτ ≤ T .

Proof. We apply Lemmas 7.4, 7.6, 7.7, and 7.8 to the formula (7.7), which gives

∥en∥H1 ≲ ∥B(nτ)∥H1×L2 + ∥Dn∥H1×L2 + ∥H̃n∥H1×L2 + ∥[Q̃n]1∥H1

≲M,T τ | log τ | +K−1 logK + τ
n−1∑
k=1

(
1 + ∥ek∥2

H1

)
∥ek∥H1 , (7.18)

∥En∥H1×L2 ≲ ∥B(nτ)∥H1×L2 + ∥Dn∥H1×L2 + ∥H̃n∥H1×L2 + ∥Q̃n∥H1×L2

≲M,T τ | log τ | +K−1 logK + τ
n∑
k=1

(
1 + ∥ek∥2

H1

)
∥ek∥H1 (7.19)

and similarly

∥En∥L2×H−1 ≲ ∥B(nτ)∥L2×H−1 + ∥Dn∥L2×H−1 + ∥H̃n∥L2×H−1 + ∥Q̃n∥L2×H−1

≲M,T τ
2| log τ | +K−1 + τ

n∑
k=1

(
1 + ∥ek∥2

H1

)
∥ek∥L2 (7.20)

for all τ ∈ (0, e−1], K ∈ N ∪ {∞} with K ≥ 3, and n ∈ N0 with nτ ≤ T . Here we use
Remark 7.3 for the estimate on en, and we exploit that E0 = 0. Let c = c(M,T ) > 0 be
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maximum of the implicit constants in (7.18), (7.19), and (7.20). We then define the final
error constant

C := 2ce4cT

and choose the maximum step size τ0 ∈ (0, e−1] such that

4cτ0 ≤ 1, 2τ0| log τ0|C ≤ 1.

Moreover, the space discretization restriction parameter K0 ≥ 3 should satisfy the
condition

2K−1
0 log(K0)C ≤ 1.

Let τ ∈ (0, τ0] and K ∈ N ∪ {∞} with K ≥ K0. We first show that the bound

∥en∥H1 ≤ 1 (7.21)

holds for all n ∈ N0 with nτ ≤ T . For n = 0 this is clear since e0 = 0. Take now n ∈ N
with nτ ≤ T . We assume that we already have

∥ek∥H1 ≤ 1

for all k ∈ {0, . . . , n− 1}. Inequality (7.18) thus yields

∥en∥H1 ≤ c(τ | log τ | +K−1 logK) + 2cτ
n−1∑
k=1

∥ek∥H1 .

The discrete Gronwall lemma A.9 then implies that

∥en∥H1 ≤ ce2cnτ (τ | log τ | +K−1 logK) ≤ C(τ | log τ | +K−1 logK) ≤ 1,

using the restrictions τ ≤ τ0 and K ≥ K0. Hence, (7.21) is true. From (7.19) we can
now infer that

∥En∥H1×L2 ≤ c(τ | log τ | +K−1 logK) + 2cτ
n∑
k=1

∥ek∥H1 ,

∥En∥H1×L2 ≤ 2c(τ | log τ | +K−1 logK) + 4cτ
n−1∑
k=1

∥Ek∥H1×L2 ,

where we use the step size restriction 2cτ ≤ 1
2 to absorb the n-th term in the above sum.

The discrete Gronwall inequality then gives the desired bound

∥En∥H1×L2 ≤ 2ce4cnτ (τ | log τ | +K−1 logK) ≤ C(τ | log τ | +K−1 logK).

Similarly, starting from (7.20) we establish the inequality

∥En∥L2×H−1 ≤ C(τ2| log τ | +K−1),
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again using (7.21) and the discrete Gronwall lemma. If we deal with homogeneous
Sobolev norms on the full space Ω = R3, we have to check that ∥en∥L2 is finite, in order
to absorb it above. This is done inductively starting from E0 = 0, using the inequality

∥en∥L2 ≲M,T τ
2| log τ | +K−1 + τ

n−1∑
k=1

(
1 + ∥ek∥2

H1

)
∥ek∥L2

that follows similar to (7.18) and (7.20) from Remark 7.3.

Proof of Theorems 4.1 and 4.12 for α = 3. The semi-discrete Theorem 4.1 directly fol-
lows from Theorem 7.9 with K = ∞. For the fully discrete Theorem 4.12, we take τ0
and K0 from Theorem 7.9 with Ω = T3 and obtain

∥U(tn) − Un∥L2×H−1 ≤ ∥(I − ΠK)U(tn)∥L2×H−1 + ∥En∥L2×H−1 ≲M,T τ
2| log τ | +K−1,

for τ ∈ (0, τ0], K ≥ K0, and n ∈ N0 with nτ ≤ T , where the projection error is bounded
by Lemma 5.19. Similarly, for the energy norm we have

∥U(tn) − Un∥H1×L2 ≲M,T,α ∥(I − ΠK)U(tn)∥H1×L2 + τ | log τ | +K−1 logK → 0

as τ → 0 and K → ∞, uniformly in n ∈ N0 with nτ ≤ T . Here we used dominated
convergence for the projection error.

7.5. Proof of the global error bounds for α ∈ (3, 5)
For α ∈ (3, 5), we rely on the recursion formula (7.6). It turns out that estimates in
discrete Strichartz norms are needed to control the terms Qn and Hn in (7.6). The bound
on the solution u is already contained in Proposition 6.9. However, we will also need a
corresponding inequality for the approximation un which is not clear a priori. To this
aim, we first show a “discrete local wellposedness result” for the scheme (7.1). It is the
discrete counterpart to Theorem 6.1.

Lemma 7.10. Let R > 0 and α ∈ [3, 5). Then there is a time b0 = b0(R,α) ∈ (0, 1] such
that for all U0 ∈ H1 × L2 with ∥U0∥H1×L2 ≤ R, and all H1-admissible pairs (p, q), the
sequence (Un) defined by (7.1) satisfies the estimate

∥un∥ℓ∞τ ([0,b0],H1) + ∥πNun∥ℓpτ ([0,b0],Lq) ≲p,q,R 1

for all τ ∈ (0, b0] and K ∈ N ∪ {∞}, where N = min{τ−1,K}.

Proof. Let j ∈ N0 with tj+1 ≤ 1. The discrete Duhamel formula (7.3) and the discrete
Strichartz estimate from Corollary 5.17 imply

max{∥un∥ℓ∞τ ([0,tj+1],H1), ∥πNun∥ℓpτ ([0,tj+1],Lq)} ≲p,q ∥U0∥H1×L2 + ∥IKg(πNun)∥ℓ1τ ([0,tj ],L2).
(7.22)
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By means of Hölder’s inequality in space and time with 1
2 = 1

3 + 1
6 and 1

α−1 = α−3
2(α−1) +

5−α
2(α−1) , respectively, and Sobolev’s embedding H1 ↪→ L6, we estimate

∥g(πNun)∥ℓ1τ ([0,tj ],L2) ≤ ∥πNun∥α−1
ℓα−1

τ ([0,tj ],L3(α−1))∥πNun∥ℓ∞τ ([0,tj ],L6)

≲ t
5−α

2
j+1 ∥πNun∥α−1

ℓpα
τ ([0,tj ],L3(α−1))∥un∥ℓ∞τ ([0,tj ],H1).

The interpolation error satisfies

∥(I − IK)g(πNun)∥ℓ1τ ([0,tj ],L2) ≲ K−2∥∆[g(πNun)]∥ℓ1τ ([0,tj ],L2)

≤ K−2∥g′(πNun)πN∆un∥ℓ1τ ([0,tj ],L2)

+K−2∥g′′(πNun)|∇πNun|2∥ℓ1τ ([0,tj ],L2)

by Lemma 5.23. Similar as before, these terms are controlled by

∥g′(πNun)πN∆un∥ℓ1τ ([0,tj ],L2) ≲ ∥πNun∥α−1
ℓα−1

τ ([0,tj ],L3(α−1))∥πN∆un∥ℓ∞τ ([0,tj ],L6)

≲ t
5−α

2
j+1 ∥πNun∥α−1

ℓpα
τ ([0,tj ],L3(α−1))K

2∥un∥ℓ∞τ ([0,tj ],H1)

and

∥g′′(πNun)|∇πNun|2∥ℓ1τ ([0,tj ],L2)

≲ ∥|πNun|α−2∥
ℓ

α−1
α−2
τ ([0,tj ],L

3(α−1)
α−2 )

∥|∇πNun|2∥
ℓα−1

τ ([0,tj ],L
6(α−1)

α+1 )

≤ ∥πNun∥α−2
ℓα−1

τ ([0,tj ],L3(α−1))∥∇πNun∥ℓ∞τ ([0,tj ],L6)∥∇πNun∥ℓα−1
τ ([0,tj ],L3(α−1))

≲ t
5−α

2
j+1 K

2∥πNun∥α−1
ℓpα

τ ([0,tj ],L3(α−1))∥un∥ℓ∞τ ([0,tj ],H1),

using the inverse inequality from Lemma 5.22 twice. Plugging all this into (7.22), we
derive

max{∥un∥ℓ∞τ ([0,tj+1],H1), ∥πNun∥ℓpτ ([0,tj+1],Lq)}

≲p,q ∥U0∥H1×L2 + t
5−α

2
j+1 ∥πNun∥α−1

ℓpα
τ ([0,tj ],L3(α−1))∥un∥ℓ∞τ ([0,tj ],H1). (7.23)

Also, the Bernstein inequality from Lemma A.3 and the admissibility (5.1) yield

τ
1
p ∥πNu0∥Lq ≲ ∥u0∥H1 . (7.24)

Let C be the maximum of 1 and the implicit constants in (7.23) and (7.24) with
(p, q) = (pα, 3(α− 1)). Since α < 5, we can choose the time b0 ∈ (0, 1] such that

b
5−α

2
0 (2C)αRα−1 ≤ 1. (7.25)

We next show via induction that

max{∥un∥ℓ∞τ ([0,tj ],H1), ∥πNun∥ℓpα
τ ([0,tj ],L3(α−1))} ≤ 2CR (7.26)
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for all j ∈ N0 with tj ≤ b0. For j = 0, the claim follows from (7.24). Assume now that
(7.26) holds for some j ∈ N0 with tj+1 ≤ b0. Estimate (7.23) and (7.25) then imply

max{∥un∥ℓ∞τ ([0,tj+1],H1), ∥πNun∥ℓpα
τ ([0,tj+1],L3(α−1))} ≤ C[R+ b

5−α
2

0 (2CR)α] ≤ 2CR

for all τ ∈ (0, b0], which ends the proof of (7.26). The assertion for general H1-admissible
(p, q) now follows from (7.23).

Using the previous lemma, we can now give an estimate for Qn on a possibly small
time interval of fixed size, depending on the H1 × L2 norm of the initial value U0 of the
numerical scheme.

Lemma 7.11. Let U , T , and M be given by Assumption 6.3 with α ∈ [3, 5). Let moreover
R > 0 and U0 ∈ H1 × L2 with ∥U0∥H1×L2 ≤ R. Define Un by (7.1), En and Qn by
Proposition 7.2, and b0 = b0(R,α) ∈ (0, 1] by Lemma 7.10. Then for any time b > 0 with
b ≤ min{b0, T}, we obtain

∥Qn∥ℓ∞τ ([0,b],H1×L2) ≲M,T,R b
5−α

2 ∥en∥ℓ∞τ ([0,b],H1),

∥Qn∥ℓ∞τ ([0,b],L2×H−1) ≲M,T,R b
5−α

2 ∥en∥ℓ∞τ ([0,b],L2),

for all τ ∈ (0, b] and K ∈ N ∪ {∞}.

Proof. We estimate

∥Qn∥ℓ∞τ ([0,b],H1×L2)

≲T ∥g(πNu(tn)) − g(πNun)∥ℓ1τ ([0,b],L2)

≲ ∥|g′(πNu(tn))| + |g′(πNun)|∥ℓ1τ ([0,b],L3)∥πNu(tn) − πNun∥ℓ∞τ ([0,b],L6)

≲ b
5−α

2
(
∥πNu(tn)∥α−1

ℓpα
τ ([0,b],L3(α−1)) + ∥πNun∥α−1

ℓpα
τ ([0,b],L3(α−1))

)
∥πNen∥ℓ∞τ ([0,b],H1)

≲M,T,R b
5−α

2 ∥en∥ℓ∞τ ([0,b],H1),

using Hölder and Sobolev inequalities as in the proof of Lemma 7.10, as well as the
estimates from Proposition 6.9 and Lemma 7.10. The other claim follows similarly via

∥Qn∥ℓ∞τ ([0,b],L2×H−1)

≲T ∥g(πNu(tn)) − g(πNun)∥
ℓ1τ ([0,b],L

6
5 )

≲ ∥|g′(πNu(tn))| + |g′(πNun)|∥ℓ1τ ([0,b],L3)∥πNu(tn) − πNun∥ℓ∞τ ([0,b],L2)

≲ b
5−α

2
(
∥πNu(tn)∥α−1

ℓpα
τ ([0,b],L3(α−1)) + ∥πNun∥α−1

ℓpα
τ ([0,b],L3(α−1))

)
∥πNen∥ℓ∞τ ([0,b],L2)

≲M,T,R b
5−α

2 ∥en∥ℓ∞τ ([0,b],L2).

The next lemma deal with Hn from (7.8). Since g is not a polynomial for α ∈ (3, 5),
we cannot use Lemma 5.24. Instead, we need to write out the W k,q-norm appearing in
Lemma 5.23 using product and chain rule, apply Hölder’s inequality, and only afterwards
exploit Lemma 5.22. Hence, the proof is more involved than Lemma 7.7 for α ∈ {3, 5},
though the general procedure stays the same.
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Lemma 7.12. Let α ∈ (3, 5), R > 0, and U0 ∈ H1 × L2 with ∥U0∥H1×L2 ≤ R. Define
Un by (7.1), Hn by (7.8), and b0 = b0(R,α) ∈ (0, 1] by Lemma 7.10. Then for any time
b ∈ (0, b0], we obtain the estimates

∥Hn∥H1×L2 ≲R,α K
− 5−α

2 ,

∥Hn∥L2×H−1 ≲R K
−1,

uniformly in τ ∈ (0, 1], K ∈ N ∪ {∞}, and n ∈ N0 with nτ ∈ [0, b].

Proof. For the energy norm, the interpolation error estimate from Lemma 5.23 yields

∥Hn∥H1×L2 ≲ ∥(I − IK)g(πNun)∥ℓ1τ ([0,b],L2) ≲ K−2∥∆[g(πNun)]∥ℓ1τ ([0,b],L2)

≤ K−2∥g′(πNun)πN∆un∥ℓ1τ ([0,b],L2) +K−2∥g′′(πNun)|∇πNun|2∥ℓ1τ ([0,b],L2).

The appearing terms are estimated by

∥g′(πNun)πN∆un∥ℓ1τ ([0,b],L2) ≲ ∥|πNun|α−1∥
ℓ1τ ([0,b],L

6
α−3 )

∥πN∆un∥
ℓ∞τ ([0,b],L

6
6−α )

≲ ∥πNun∥α−1
ℓα−1

τ ([0,b],Lqα )∥πNun∥
ℓ∞τ ([0,b],H

1+α
2 )

≲ K
α−1

2 ∥πNun∥α−1
ℓα−1

τ ([0,b],Lqα )∥un∥ℓ∞τ ([0,b],H1)

and

∥g′′(πNun)|∇πNun|2∥ℓ1τ ([0,b],L2)

≲ ∥|πNun|α−2∥
ℓ

α−1
α−2
τ ([0,b],L

6(α−1)
(α−2)(α−3) )

∥∇πNun∥ℓα−1
τ ([0,b],Lqα )∥∇πNun∥

ℓ∞τ ([0,b],L
6

6−α )

≲ ∥πNun∥α−2
ℓα−1

τ ([0,b],Lqα )K∥πNun∥ℓα−1
τ ([0,b],Lqα )∥∇πNun∥

ℓ∞τ ([0,b],H
α−3

2 )

≲ K
α−1

2 ∥πNun∥α−1
ℓα−1

τ ([0,b],Lqα )∥un∥ℓ∞τ ([0,b],H1),

using Hölder and Sobolev inequalities in a canonical way, as well as the inverse estimate
from Lemma 5.22. Altogether, Lemma 7.10 leads to

∥Hn∥H1×L2 ≲ K− 5−α
2 ∥πNun∥α−1

ℓα−1
τ ([0,b],Lqα )∥un∥ℓ∞τ ([0,b],H1) ≲R,α K

− 5−α
2 ,

which concludes the proof of the bound for the energy norm.
For the estimate in L2 ×H−1, we follow a similar strategy, starting with the Sobolev

embedding L
6
5 ↪→ H−1 and the interpolation error estimate from Lemma 5.23 with

q = 6/5. This gives

∥Hn∥L2×H−1 ≲ ∥(I − IK)g(πNun)∥
ℓ1τ ([0,b],L

6
5 )

≲
3∑

m=1
K−m∥g(πNun)∥

ℓ1τ ([0,b],Wm, 6
5 )

≲ K−1∥g′(πNun)∇πNun∥
ℓ1τ ([0,b],L

6
5 )

+K−2∥g′′(πNun)|∇πNun|2∥
ℓ1τ ([0,b],L

6
5 )

+K−2∥g′(πNun)∇2πNun∥
ℓ1τ ([0,b],L

6
5 )
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+K−3∥g′′′(πNun)|∇πNun|3∥
ℓ1τ ([0,b],L

6
5 )

+K−3∥g′′(πNun)∇2πNun|∇πNun|∥
ℓ1τ ([0,b],L

6
5 )

+K−3∥g′(πNun)∇3πNun∥
ℓ1τ ([0,b],L

6
5 )
.

The appearing terms are again treated by Hölder’s inequality and the inverse estimate
from Lemma 5.22, which results in

∥g′(πNun)∇πNun∥
ℓ1τ ([0,b],L

6
5 )

≲ ∥g′(πNun)∥ℓ1τ ([0,b],L3)∥∇πNun∥ℓ∞τ ([0,b],L2)

≲ ∥πNun∥α−1
ℓα−1

τ ([0,b],L3(α−1))∥∇πNun∥ℓ∞τ ([0,b],L2)

≲ ∥πNun∥α−1
ℓpα

τ ([0,b],L3(α−1))∥un∥ℓ∞τ ([0,b],H1),

∥g′′(πNun)|∇πNun|2∥
ℓ1τ ([0,b],L

6
5 )

≲ ∥|πNun|α−2∥
ℓ

α−1
α−2
τ ([0,b],L

3(α−1)
α−2 )

∥∇πNun∥ℓα−1
τ ([0,b],L3(α−1))∥∇πNun∥ℓ∞τ ([0,b],L2)

≲ K∥πNun∥α−1
ℓpα

τ ([0,b],L3(α−1))∥un∥ℓ∞τ ([0,b],H1),

∥g′(πNun)∇2πNun∥
ℓ1τ ([0,b],L

6
5 )

≲ ∥g′(πNun)∥ℓ1τ ([0,b],L3)∥∇2πNun∥ℓ∞τ ([0,b],L2)

≲ K∥πNun∥α−1
ℓα−1

τ ([0,b],L3(α−1))∥∇πNun∥ℓ∞τ ([0,b],L2)

≲ K∥πNun∥α−1
ℓpα

τ ([0,b],L3(α−1))∥un∥ℓ∞τ ([0,b],H1),

∥g′′′(πNun)|∇πNun|3∥
ℓ1τ ([0,b],L

6
5 )

≲ ∥|πNun|α−3∥
ℓ

α−1
α−3
τ ([0,b],L

3(α−1)
α−3 )

∥|∇πNun|2∥
ℓ

α−1
2

τ ([0,b],L
3(α−1)

2 )
∥∇πNun∥ℓ∞τ ([0,b],L2)

≲ K2∥πNun∥α−1
ℓpα

τ ([0,b],L3(α−1))∥un∥ℓ∞τ ([0,b],H1),

∥g′′(πNun)∇2πNun|∇πNun|∥
ℓ1τ ([0,b],L

6
5 )

≲ ∥|πNun|α−2∥
ℓ

α−1
α−2
τ ([0,b],L

3(α−1)
α−2 )

∥∇2πNun∥ℓα−1
τ ([0,b],L3(α−1))∥∇πNun∥ℓ∞τ ([0,b],L2)

≲ K2∥πNun∥α−1
ℓpα

τ ([0,b],L3(α−1))∥un∥ℓ∞τ ([0,b],H1),

∥g′(πNun)∇3πNun∥
ℓ1τ ([0,b],L

6
5 )

≲ ∥g′(πNun)∥ℓ1τ ([0,b],L3)∥∇3πNun∥ℓ∞τ ([0,b],L2)

≲ K2∥πNun∥α−1
ℓα−1

τ ([0,b],L3(α−1))∥∇πNun∥ℓ∞τ ([0,b],L2)

≲ K2∥πNun∥α−1
ℓpα

τ ([0,b],L3(α−1))∥un∥ℓ∞τ ([0,b],H1).

Combining these bounds with Lemma 7.10, we end up with

∥Hn∥L2×H−1 ≲ K−1∥πNun∥α−1
ℓpα

τ ([0,b],L3(α−1))∥un∥ℓ∞τ ([0,b],H1) ≲R K
−1.
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We now show the global error bound for α ∈ (3, 5). Unlike as for the case α = 3, it is
not enough to use the discrete Gronwall lemma. Instead, we need to apply Lemmas 7.11
and 7.12 iteratively on the possibly small intervals [0, T1], [T1, 2T1] and so on, where we
reach the final time T after finitely many iterations. To apply Lemmas 7.11 and 7.12, we
need the uniform boundedness of the numerical approximations Un in H1 × L2. Similar
as for α = 3, this boundedness follows from the error estimate after imposing a restriction
on the discretization parameters τ and K. This method goes back to [17, 36, 53] in the
context of Schrödinger equations.

Theorem 7.13. Let U , T , and M be given by Assumption 6.3 with α ∈ (3, 5). Define
the iterates Un by the Strang splitting (4.4) and the (projected) error En = ΠKU(tn) −Un
by Proposition 7.2. Then there are positive constants τ0 and K0 that depend on M , T ,
and α, such that we have the estimates

∥En∥H1×L2 ≲M,T,α τ
5−α

2 +K− 5−α
2 ,

∥En∥L2×H−1 ≲M,T,α τ
7−α

2 +K−1,

for all τ ∈ (0, τ0], K ∈ N ∪ {∞} with K ≥ K0, and n ∈ N0 with nτ ≤ T .

Proof. We set R := M + 1 and define b0 = b0(R,α) ∈ (0, 1] from Lemma 7.10. Formula
(7.6) and Lemmas 7.4, 7.6, 7.11, and 7.12 yield

∥En∥ℓ∞τ ([tj ,tj+b],H1×L2) ≲M,α ∥Ej∥H1×L2 +N− 5−α
2 + b

5−α
2 ∥en∥ℓ∞τ ([tj ,tj+b],H1), (7.27)

∥En∥ℓ∞τ ([tj ,tj+b],L2×H−1) ≲M,α ∥Ej∥L2×H−1 + τ
7−α

2 +K−1 + b
5−α

2 ∥en∥ℓ∞τ ([tj ,tj+b],L2)
(7.28)

for all j ∈ N0 and b ∈ (0, b0] which satisfy ∥Uj∥H1×L2 ≤ R and jτ + b ≤ T . Recall that
N = min{τ−1,K}. Let c = c(M,α) be the maximum of 1 and the implicit constants
from (7.27) and (7.28). Since α < 5, we can define the time T1 ∈ (0, T ] by

T1 := min{T, b0, (2c)− 2
5−α }. (7.29)

Moreover, we set L := ⌈2T
T1

⌉ ∈ N and define the final error constant

C := 2(2c)L+1. (7.30)

We then choose parameters τ0 ∈ (0, T1] and K0 > 0 such that

N
5−α

2 ≥ C (7.31)

holds for all τ ∈ (0, τ0] and K ≥ K0, again exploiting that α < 5.
Take now τ ∈ (0, τ0] and K ∈ N ∪ {∞} with K ≥ K0. We define the indices

ν := ⌊T/τ⌋ ∈ N, ν1 := ⌊T1/τ⌋ ∈ {1, . . . , N}, and νm := mν1 for all m ∈ N0. These
definitions imply that ν ≤ νL. In addition, we set ℓ := ⌊ν/ν1⌋ ∈ {1, . . . , L}. This gives
the decomposition

[0, tν ] =
ℓ−1⋃
m=0

[tνm , tνm+1 ] ∪ [tνℓ
, tν ] =:

ℓ⋃
m=0

Jm,
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where each interval Jm has length less or equal T1. To measure the error in Jm, we set
Errm := ∥En∥ℓ∞τ (Jm,H1×L2) for m ∈ {−1, . . . , ℓ}, where J−1 := {0}. We aim to show the
recursion formula

Errm ≤ 2c(Errm−1 +N− 5−α
2 ). (7.32)

Note that once (7.32) is proved for all indices in {0, . . . ,m}, one can derive the absolute
bound

Errm ≤ 2cN− 5−α
2

m∑
k=0

(2c)k = 2cN− 5−α
2

(2c)m+1 − 1
2c− 1 ≤ 2(2c)L+1N− 5−α

2 = CN− 5−α
2 ≤ 1,

(7.33)
using Err−1 = 0, the definition 7.30 of C, and the discretization parameter restriction
from (7.31).

Let us now fix an index m ∈ {0, . . . , ℓ}. If m > 0 we assume that the inequality (7.32)
holds for all indices in {0, . . . ,m− 1}. From (7.33) we obtain Errm−1 ≤ 1, and thus

∥Uνm∥H1×L2 ≤ ∥ΠKU(tνm)∥H1×L2 + ∥Eνm∥H1×L2 ≤ M + Errm−1 ≤ M + 1 = R.

Estimate (7.27) and the definition (7.29) of T1 then imply

Errm ≤ c∥Eνm∥H1×L2 + cN− 5−α
2 + cT

5−α
2

1 Errm ≤ cErrm−1 + cN− 5−α
2 + 1

2Errm.

Hence, the recursion (7.32) and the bound (7.33) are true for all m ∈ {0, . . . , ℓ}. This
finishes the proof of the bound in the energy norm.

Similarly, starting from (7.28) we obtain the recursion formula

∥En∥ℓ∞τ (Jm,L2×H−1) ≤ 2c(∥En∥ℓ∞τ (Jm−1,L2×H−1) + τ
7−α

2 +K−1)

for all m ∈ {0, . . . , ℓ}, which yields the estimate

∥En∥ℓ∞τ ([0,T ],L2×H−1) ≤ C(τ
7−α

2 +K−1)

as in (7.33). If we deal with homogeneous Sobolev norms on the full space Ω = R3,
the finiteness of ∥en∥L2 (in order to absorb it) is inductively checked using Remark 7.3,
starting from E0 = 0 (as in the proof of Theorems 7.9 and 4.4 for α ∈ {3, 5}).

Proof of Theorems 4.1 and 4.12 for α ∈ (3, 5). We first note that the LpαL3(α−1)-norm
in the definition (6.4) of M only depends on ∥U∥L∞

T (H1×L2), as explained in Remark 6.4.
The assertions now follow from Theorem 7.13 by the same arguments as in the case α = 3
at the end of Section 7.4.

7.6. The critical case α = 5
In the case α = 5, the approach from the previous Section 7.5 needs to be modified, since
two new difficulties arise. First, it is no longer possible to obtain smallness on small
intervals by an application of Hölder’s inequality in time as in Lemma 7.11. Second,
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we can no longer show a convergence rate for the scheme in the energy norm (the rate
(5 − α)/2 from Theorem 7.13 approaches zero as α → 5). On the other hand, for the
defocusing equation on the full space (i.e., Ω = R3 and µ = 1) we can treat the global
case T = ∞ in this section.

To deal with the smallness issue, as a first auxiliary result we establish that the
discrete-time Strichartz norm converges to the continuous-time Strichartz norm. This
will be done for the homogeneous part of the evolution, i.e.,

S(t)(f, v) = cos(t|∇|)f + t sinc(t|∇|)v,

on an interval J .

Lemma 7.14. Let (p, q, γ) be admissible with p < ∞, f ∈ Hγ, v ∈ Hγ−1, and J ⊆ R be
a bounded interval. Then we have the limit

∥S(nτ)ΠN (f, v)∥ℓpτ (J,Lq) → ∥S(t)(f, v)∥Lp
JL

q ,

as τ → 0 and K → ∞, where N = min{τ−1,K}. If Ω = R3, the assertion also holds for
the unbounded interval J = [0,∞).

Proof. Let ε > 0. We choose Schwartz functions φ, ψ ∈ S such that supp φ̂, supp ψ̂ are
compact and ∥f − φ∥Hγ , ∥v − ψ∥Hγ−1 ≤ ε (note that S(T3) = D(T3) = C∞(T3)).

Let first J be bounded. The function t 7→ S(t)(φ,ψ) is then continuous with values in
Lq, since the Hausdorff–Young inequality and dominated convergence yield

∥S(s)(φ,ψ) − S(t)(φ,ψ)∥Lq

≤ ∥(cos(s|∇|) − cos(t|∇|))φ∥Lq + ∥(s sinc(s|∇|) − t sinc(t|∇|))ψ∥Lq

≤ ∥(cos(s|ξ|) − cos(t|ξ|))φ̂∥Lq′ + ∥(s sinc(s|ξ|) − t sinc(t|ξ|))ψ̂∥Lq′ → 0

as s → t, where the Fourier variable is denoted by ξ regardless of Ω ∈ {R3,T3}, and Lq
′

actually is ℓq′ if Ω = T3. We also have ΠN (φ,ψ) = (φ,ψ) for (τ, 1/K) small enough,
because φ and ψ have compact Fourier support. It directly follows that

∥S(nτ)ΠN (φ,ψ)∥ℓpτ (J,Lq) → ∥S(t)(φ,ψ)∥Lp
JL

q (7.34)

as (τ, 1/K) → 0, as there are essentially Riemann sums on the left-hand side.
In the case Ω = R3 and J = [0,∞) we use a different argument, exploiting that in this

case,
∥S(nτ)(φ,ψ)∥ℓpτ (J,Lq) = ∥S(⌊ tτ ⌋τ)(φ,ψ)∥Lp

JL
q .

Observe that∣∣∣∥S(t)(φ,ψ)∥Lp
JL

q − ∥S(⌊ tτ ⌋τ)(φ,ψ)∥Lp
JL

q

∣∣∣
≤ ∥(S(t) − S(⌊ tτ ⌋τ))(φ,ψ)∥Lp

RL
q

≲ ∥(e±it|∇| − e±i⌊t/τ⌋τ |∇|)φ∥Lp
RL

q + ∥(e±it|∇| − e±i⌊t/τ⌋τ |∇|)|∇|−1ψ∥Lp
RL

q .
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With the help of Hölder’s inequality, Fubini’s theorem, and Theorem 5.1, we derive that

∥(e±it|∇| − e±i⌊t/τ⌋τ |∇|)φ∥Lp
RL

q =
∥∥∥ ∫ t

⌊t/τ⌋τ
i|∇|e±is|∇|φ ds

∥∥∥
Lp
RL

q

≤
(
τp−1

∫
R

∫ ⌈s/τ⌉τ

s
∥e±is|∇||∇|φ∥pLq dt ds

) 1
p

≤ τ∥e±it|∇||∇|φ∥Lp
RL

q ≲p,q τ∥φ∥Ḣγ+1 → 0

as τ → 0, and similarly with φ replaced by |∇|−1ψ. Thus, (7.34) is also true for Ω = R3

and J = [0,∞).
Putting things together, we conclude that∣∣∣∥S(nτ)ΠN (f, v)∥ℓpτ (J,Lq) − ∥S(t)(f, v)∥Lp

JL
q

∣∣∣
≤ ∥S(nτ)ΠN (f − φ, v − ψ)∥ℓpτ (J,Lq) +

∣∣∣∥S(nτ)ΠN (φ,ψ)∥ℓpτ (J,Lq) − ∥S(t)(φ,ψ)∥Lp
JL

q

∣∣∣
+ ∥S(t)(φ− f, ψ − v)∥Lp

JL
q

≲p,q ∥f − φ∥Hγ + ∥v − ψ∥Hγ−1 + ε ≲ ε

for τ small enough, using the reverse triangle inequality and the Strichartz estimates
from Corollaries 5.16 and 5.17, where the Strichartz constants additionally depend on
the length of J in the case Ω = T3.

In the critical case α = 5, we use a regularization argument to obtain convergence
without rate of the error in the energy norm. This type of argument was already used in
the proof of Theorem 1.6 in [17] in the context of nonlinear Schrödinger equations, but
only in the easier energy-subcritical case. We first establish first-order convergence of the
scheme (4.4) in the H1 ×L2-norm under the assumption that the initial data comes from
the smaller space H2 ×H1. To exploit this result in the general case of H1 × L2-data,
we need the continuous dependence on the initial data, both for the equation (6.1) and
the scheme (4.4). We show these auxiliary results under a smallness condition on a
Strichartz norm of the orbit, which can always be fulfilled by choosing a small end time
b, see Corollary 5.16. We note that the time b in Proposition 7.15 corresponds to a lower
bound for the existence time b in Theorem 6.1, cf. [66, 71].

Proposition 7.15. Let b ∈ (0,∞) if Ω = T3 and set b := ∞ if Ω = R3. Let R > 0.
Then there is a radius δ0 = δ0(R, b) > 0 such that for any δ ∈ (0, δ0] the following is true.
For all W0 ∈ H1 ×L2 with ∥W0∥H1×L2 ≤ R and every b ∈ (0, b] with ∥S(·)W0∥L4

b
L12 ≤ δ,

there is a time step τ̄ = τ̄(δ,W0, b) > 0 such that the next assertions hold.
a) For every Y0, Z0 ∈ BH1×L2(W0, δ), the solutions Y and Z of (6.1) with α = 5 and

initial values Y0 and Z0, respectively, exist on [0, b]. Moreover, we then have the estimates

∥πNy(tn)∥ℓ4τ ([0,b],L12) ≲b δ, (7.35)
∥πNyn∥ℓ4τ ([0,b],L12) ≲b δ, (7.36)

∥Y − Z∥L∞([0,b],H1×L2) ≲b ∥Y0 − Z0∥H1×L2 , (7.37)
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∥Yn − Zn∥ℓ∞τ ([0,b],H1×L2) ≲b ∥Y0 − Z0∥H1×L2 , (7.38)

for all τ ∈ (0, τ̄ ] and K ∈ N∪ {∞} with K ≥ (τ̄)−1, where N = min{K, τ−1}, Yn and Zn
are the iterates of (7.1) for initial values Y0 and Z0, and yn and y are the first components
of Yn and Y , respectively.

b) If Y0 ∈ H2 × H1 satisfies ∥Y0 − W0∥H1×L2 ≤ δ/2, then there is a constant C =
C(∥Y0∥H2×H1 , b) > 0 such that the error bound

∥Y (tn) − Yn∥ℓ∞τ ([0,b],H1×L2) ≤ C(τ +K−1) (7.39)

holds for all τ ∈ (0, τ̄ ] and K ∈ N ∪ {∞} with K ≥ (τ̄)−1.

Proof. Step 1. Let c = c(b) be the maximum of 1, the constants from Corollaries 5.16
and 5.17 with exponents (p, q) ∈ {(∞, 6), (4, 12)} and end time T = b, and the constant
from Lemma 5.24 with q = 2 and β = 5. We define

δ0 := min
{
R, (3c4(3 + c)4R)− 1

3 , (10c4(3 + c)4)− 1
4
}
. (7.40)

Let δ ∈ (0, δ0]. Since by assumption ∥S(·)W0∥L4
b
L12 ≤ δ, Lemma 7.14 yields a step size

τ̄ > 0 such that
∥S(tn)ΠNW0∥ℓ4τ ([0,b],L12) ≤ 2δ (7.41)

for all τ ∈ (0, τ̄ ] and K ∈ N ∪ {∞} with K ≥ (τ̄)−1. We first show

∥yn∥ℓ∞τ ([0,tj ],H1) ≤ 3cR, ∥πNyn∥ℓ4τ ([0,tj ],L12) ≤ (3 + c)δ (7.42)

for all τ ∈ (0, τ̄ ], K ∈ N ∪ {∞} with K ≥ (τ̄)−1, and j ∈ N0 with jτ ≤ b. In particular,
this shows the inequality (7.36).

We proceed by induction on j. For j = 0, we clearly have

∥Y0∥H1×L2 ≤ ∥Y0 −W0∥H1×L2 + ∥W0∥H1×L2 ≤ δ +R ≤ 2R (7.43)

since δ ≤ R. Corollary 5.17 and (7.41) further imply

∥πNyn∥ℓ4τ ({0},L12) = τ
1
4 ∥S(0)ΠNY0∥L12

≤ τ
1
4 ∥S(0)ΠN (Y0 −W0)∥L12 + τ

1
4 ∥S(0)ΠNW0∥L12

≤ c∥Y0 −W0∥H1×L2 + 2δ ≤ cδ + 2δ = (2 + c)δ.

For the induction step j ; j + 1, we assume that (7.42) holds for some j ∈ N0 with
(j + 1)τ ≤ b. We compute

∥yn∥ℓ∞τ ([0,tj+1],H1)

≤ ∥S(nτ)Y0∥ℓ∞τ ([0,tj+1],H1) + τ
∥∥∥ n−1∑
k=0

ck,ntn−k sinc(tn−k|∇|)IKg(πNyk)
∥∥∥
ℓ∞τ ([0,tj+1],H1)

≤ c∥Y0∥H1×L2 + c2∥g(πNyn)∥ℓ1τ ([0,tj ],L2)
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≤ 2cR+ c2∥πNyn∥4
ℓ4τ ([0,tj ],L12)∥πNyn∥ℓ∞τ ([0,tj ],L6) ≤ 2cR+ 3c4(3 + c)4δ4R ≤ 3cR,

by means of the discrete Duhamel formula (7.3), (7.43), Lemma 5.24, Hölder’s inequality,
the induction assumption (7.42), and the definition of δ from (7.40). Note that Lemma
5.24 is applicable since for α = 5, g is a polynomial and therefore g(πNyk) = π5Ng(πNyk).
Similarly, using (7.3) and Corollary 5.17, we estimate

∥πNyn∥ℓ4τ ([0,tj+1],L12) ≤ ∥S(tn)ΠNY0∥ℓ4τ ([0,tj+1],L12)

+ τ
∥∥∥ n−1∑
k=0

ck,ntn−k sinc(tn−k|∇|)πNIKg(πNyk)
∥∥∥
ℓ4τ ([0,tj+1],L12)

≤ ∥S(tn)ΠN (Y0 −W0)∥ℓ4τ ([0,tj+1],L12)

+ ∥S(tn)ΠNW0∥ℓ4τ ([0,tj+1],L12) + c2∥g(πNyn)∥ℓ1τ ([0,tj ],L2)

≤ cδ + 2δ + 3c4(3 + c)4δ4R ≤ (3 + c)δ.

Hence, the claim (7.42) is true for all jτ ≤ b.
Step 2. Estimate (7.38) is shown by an analogous argument starting from (7.2). Using

also (7.42) for zn, we deduce the inequality

∥Yn − Zn∥ℓ∞τ ([0,b],H1×L2)

≤ c∥Y0 − Z0∥H1×L2 + c∥IK(g(πNyn) − g(πNzn))∥ℓ1τ ([0,b],L2)

≤ c∥Y0 − Z0∥H1×L2 + 5
2c

2∥(|πNyn|4 + |πNzn|4)|πNyn − πNzn|∥ℓ1τ ([0,b],L2)

≤ c∥Y0 − Z0∥H1×L2

+ 5
2c

2
(
∥πNyn∥4

ℓ4τ ([0,b],L12) + ∥πNzn∥4
ℓ4τ ([0,b],L12)

)
∥πNyn − πNzn∥ℓ∞τ ([0,b],L6)

≤ c∥Y0 − Z0∥H1×L2 + 5c3(3 + c)4δ4∥Yn − Zn∥ℓ∞τ ([0,b],H1×L2)

≤ c∥Y0 − Z0∥H1×L2 + 1
2∥Yn − Zn∥ℓ∞τ ([0,b],H1×L2),

which in turn implies

∥Yn − Zn∥ℓ∞τ ([0,b],H1×L2) ≤ 2c∥Y0 − Z0∥H1×L2 ,

as desired.
Step 3. The existence of the continuous solutions Y and Z until time b as well as the

estimate (7.37) are part of the known local wellposedness theory of (6.1), cf. Theorem 6.1
and Chapter 5.1 of [71]. We therefore omit the proof. To carry it out, one can proceed
analogously to Step 1 and 2, replacing the discrete norms by the continuous ones and
the induction by a fixed point argument. The estimate (7.35) in discrete Strichartz norm
can be shown in a similar way as (7.36). More precisely, one obtains the inequality

max{∥y∥L4
b
L12 , ∥πNy∥L4

b
L12 , ∥πNy(tn)∥ℓ4τ ([0,b],L12)} ≤ (3 + c)δ (7.44)

analogously to (7.42) (possibly modyfying δ0). So part a) is shown.
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Step 4. Now we want to show the error bound (7.39) for better data Y0 ∈ H2 × H1

with ∥Y0 − W0∥H1×L2 ≤ δ/2. Since the nonlinearity G leaves the space H2 × H1

invariant and is Lipschitz continuous on bounded subsets, the standard Duhamel iteration
yields a unique solution Ỹ ∈ C([0, Tmax), H2 × H1) of (6.1) with initial data Y0 on a
maximal existence interval [0, Tmax). By Sobolev’s embedding, the integrability condition
ỹ ∈ L4

loc([0, Tmax), L12) is satisfied. Hence, Ỹ coincides with the H1 × L2-solution Y on
[0, b] by uniqueness, as long as they are both defined.

In the following, we show that [0, Tmax) ⊇ [0, b). By a standard blow-up criterion,
it suffices to show that ∥Y (t)∥H2×H1 is finite for all t ∈ [0, b). First, note that (y, ∂ty)
belongs to C([0, b],H1 × L2) and that the L2 norm of y stays bounded since

∥y(t)∥L2 ≤ ∥y(0)∥L2 +
∫ t

0
∥∂ty(s)∥L2 ds ≤ ∥Y0∥H2×H1 + t∥∂ty∥L∞([0,t],L2) < ∞

for all t ∈ [0, b).
For the boundedness of ∇2y and ∇∂ty in L2, we use that the Sobolev norm of a function

can be expressed by bounds on the norms of difference quotients. For any h ∈ R3, we
introduce the spatial translation operator Th by (Th(f, g))(x) := (f(x + h), g(x + h)),
where f and g are functions on Ω. By Proposition 9.3 of [8] (which is only stated for
Ω = R3, but the same proof works for Ω = T3), we have

∥ThY0 − Y0∥H1×L2 ≲ |h|∥Y0∥H2×H1 .

Therefore, there is a number h0 > 0 with ∥ThY0 − Y0∥H1×L2 ≤ δ/2 for all |h| ≤ h0. From
now on we assume that |h| ≤ h0. The triangle inequality yields ∥ThY0 −W0∥H1×L2 ≤ δ.
Since ThY solves (6.1) with initial value ThY0, from (7.37) we can deduce that

∥ThY − Y ∥L∞([0,b],H1×L2) ≲b ∥ThY0 − Y0∥H1×L2 ≲ |h|∥Y0∥H2×H1 .

Proposition 9.3 of [8] now shows that Y (t) belongs to H2 ×H1 for t ∈ [0, b] and

∥Y ∥L∞([0,b],H2×H1) ≲ ∥Y0∥H2×H1 . (7.45)

Thus, [0, Tmax) ⊇ [0, b).
Step 5. We can now estimate the error ∥Y (tn) − Yn∥ℓ∞τ ([0,b],H1×L2). Let τ ∈ (0, τ̄ ]. For

the rest of this proof, we allow our implicit constants to depend on ∥Y0∥H2×H1 . We use
the expressions from Proposition 7.2 to write

Y (tn) − Yn = B(tn) +Dn + H̃n + Q̃n, (7.46)

where the terms on the right hand side now include Y instead of U . The terms B(tn)
and Dn can be bounded similarly as in the Lemmas 7.4 and 7.6, respectively. Using
Lemma 5.19, we infer that

∥B∥L∞([0,b],H1×L2) ≲b ∥|y|4y − |πNy|4πNy∥L1
b
L2 ≲ ∥(|y|4 + |πNy|4)|y − πNy|∥L1

b
L2

≤
(
∥y∥4

L4
b
L12 + ∥πNy∥4

L4
b
L12

)
∥(I − πN )y∥L∞

b
L6
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≲b ∥(I − πN )y∥L∞
b

H1 ≲ N−1∥y∥L∞
b

H2 ≲ τ +K−1.

Here, the bounds for the L4
bL

12-norm follow from (7.44). By (7.12) and Proposition 6.9,
the second summand in (7.46) is estimated by

∥Dn∥ℓ∞τ ([0,b],H1×L2) ≲b τ
∥∥∥( −g(πNy)

g′(πNy)πN∂ty

)∥∥∥
L1([0,b],H1×L2)

≲ τ∥πNy∥4
L4

b
L12

(
∥∇πNy∥L∞

b
L6 + ∥πN∂ty∥L∞

b
L6

)
≲ τ.

The term H̃n in (7.46) is controlled similarly by

∥H̃n∥ℓ∞τ ([0,b],H1×L2) ≲b ∥(I − IK)g(πNy(tn))∥ℓ1τ ([0,b],L2) ≲ K−1∥g(πNy(tn))∥ℓ1τ ([0,b],H1)

≲ K−1∥πNy(tn)∥4
ℓ4τ ([0,b],L12)∥y(tn)∥ℓ∞τ ([0,b],H2) ≲ K−1,

by means of Lemma 5.24 and (7.44). Finally, we estimate the last part of (7.46) by

∥Qn∥ℓ∞τ ([0,b],H1×L2)

≤ c2∥|πNy(tn)|4πNy(tn) − |πNyn|4πNyn∥ℓ1τ ([0,b],L2)

≤ 5
2c

2
(
∥πNy(tn)∥4

ℓ4τ ([0,b],L12) + ∥πNyn∥4
ℓ4τ ([0,b],L12)

)
∥πNy(tn) − πNyn∥ℓ∞τ ([0,b],L6)

≤ 5c3(3 + c)4δ4∥Y (tn) − Yn∥ℓ∞τ ([0,b],H1×L2) ≤ 1
2∥Y (tn) − Yn∥ℓ∞τ ([0,b],H1×L2),

using (7.44), (7.42), and the definition of δ0 in (7.40). This term can be absorbed by the
left-hand side of (7.46) and we obtain (7.39).

Proposition 7.15 only gives a local statement on a possibly small time interval [0, b].
Since we want to show a global error bound on the potentially much larger interval [0, T ),
we need to apply Proposition 7.15 recursively. To this aim, we first have to iterate the
smallness condition in L4

bL
12.

Lemma 7.16. Let U = (u, ∂tu), T , and M be given by Assumption 6.3 with α = 5 and
let δ > 0. Then there are a number L ∈ N and times 0 = T0 < T1 < · · · < TL = T such
that the inequality

∥S(·)U(Tm)∥L4
bm
L12 ≤ δ

holds for all m ∈ {0, . . . , L− 1}, where we set bm := Tm+1 − Tm > 0. The number L ∈ N
only depends on δ and M , and additionally on T in the case Ω = T3.

Proof. Let C be the constant of the Strichartz estimates from Corollary 5.16 with respect
to the exponents (p, q) ∈ {(∞, 6), (4, 12)} (and end time T if Ω = T3). We define

r := min
{δ

2 ,
( δ

2C2M

) 1
4
}
. (7.47)

Since ∥u∥L4
TL

12 ≤ M is finite, we can find times 0 = T0 < T1 < · · · < TL = T , such that
the inequality

∥u∥L4([Tm,Tm+1],L12) ≤ r
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holds for all m ∈ {0, . . . , L − 1}. Here we can choose L = ⌈∥u∥4
L4

TL
12/r

4⌉. Let m ∈
{0, . . . , L− 1} and bm := Tm+1 − Tm > 0. Starting from (6.2), Corollary 5.16 and (7.47)
imply that

∥S(·)U(Tm)∥L4
bm
L12

≤ ∥u(Tm + ·)∥L4
bm
L12 +

∥∥∥ ∫ t

0
(t− s) sinc((t− s)|∇|)g(u(Tm + s)) ds

∥∥∥
L4

bm
L12

≤ r + C∥|u|4u∥L1([Tm,Tm+1],L2) ≤ r + C2M∥u∥4
L4([Tm,Tm+1],L12) ≤ r + C2Mr4 ≤ δ.

We now show the global error bound for the critical case. The proof will be divided
in three steps. In the first step, we define the needed variables and divide the interval
[0, T ] into a finite number of subintervals, which have the property that we can apply
Proposition 7.15 on each of them. In the second step, we first prove the convergence of
the scheme in the H1 × L2-norm without any convergence rate. This fact ensures that
the discrete approximation stays close to the solution in the H1 × L2-norm if τ is small
enough. We can then apply Proposition 7.15 iteratively. Finally, in the last step, we
estimate the error in the L2 × H−1-norm to obtain the convergence of order one. In
contrast to Theorems 4.1 and 4.12, the maximum step size τ0 will now not only depend
on the size M of the solution u and on the end time T , but also on further properties of
the solution u to (4.1).

Proof of Theorems 4.4 and 4.13. Step 1. Let R := ∥U∥L∞([0,T ],H1×L2) ≤ M < ∞. Set
b := T in the case Ω = T3 and b := ∞ in the case Ω = R3. We take δ0 = δ0(R, b) given by
Proposition 7.15. Let moreover c be the maximum of 2 and the constants from Corollary
5.16 (with (p, q) = (∞, 6)), Proposition 7.15, Lemma 7.4, Lemma 7.6, Lemma 7.7, and
Lemma 5.24 (with q = 6

5 and β = 5). Note that δ0 and c only depend on M in the case
Ω = R3 and T = ∞. We define

δ := min
{
δ0, (10c7)− 1

4
}
. (7.48)

Lemma 7.16 provides a number L ∈ N and times 0 = T0 < T1 < · · · < TL = T such that

∥S(·)U(Tm)∥L4
bm
L12 ≤ δ (7.49)

holds for all m ∈ {0, . . . , L− 1}, where bm := Tm+1 − Tm > 0. Here, the number L ∈ N
only depends on M and T . We now choose a parameter ε > 0 such that

ε ≤ δ

5cL+1 . (7.50)

By continuity of U , there is a number ρ > 0 such that

∥U(Tm) − U(t)∥H1×L2 ≤ ε (7.51)

for all m ∈ {1, . . . , L} and t ∈ [0, T ] with |Tm − t| ≤ ρ. We pick functions Y 0, . . . , Y L ∈
H2 ×H1 with

∥Y m − U(Tm)∥H1×L2 ≤ ε ≤ δ

2 (7.52)
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for all m ∈ {0, . . . , L}. Due to Corollary 5.16, we find a time bL > 0 such that

∥S(·)U(T )∥L4
bL
L12 ≤ δ. (7.53)

We define the maximal step size τ0 > 0 by

τ0 := min
{ ρ
L
,
bL
L
, min
m=0,...,L

cε

2C(Y m) , min
m=0,...,L

τ̄(δ, U(Tm), bm)
}

(7.54)

and set K0 := 1/τ0. Here, the numbers C(Y m) = C(∥Y m∥H2×H1) and τ̄(δ, U(Tm), bm)
are taken from Proposition 7.15. In the case T = ∞, condition (7.53) is not needed, thus
we then take bL = 0 and replace L by L− 1 in (7.51), (7.52), (7.54), and in the following.

Let τ ∈ (0, τ0] and K ∈ N ∪ {∞} with K ≥ K0. To decompose the interval, for any
m ∈ {0, . . . , L} we set

νm :=
m−1∑
j=0

⌊bj
τ

⌋
∈ N0.

The intervals Jm are defined as Jm := [tνm , tνm+1 ] if m ∈ {0, . . . , L− 1} and JL := [tνL , T ].
Hence, we have

[0, T ] =
L⋃

m=0
Jm.

By construction, each subinterval Jm is of length less or equal bm. This also holds for
the last interval JL, because of

T − tνL =
L−1∑
m=0

(
bm −

⌊bm
τ

⌋
τ
)

≤
L−1∑
m=0

(
bm −

(bm
τ

− 1
)
τ
)

= Lτ ≤ bL, (7.55)

where we use (7.54).
Step 2. We prove the second assertions of Theorems 4.4 and 4.13, namely the conver-

gence in the H1 × L2-norm

∥U(tn) − Un∥ℓ∞τ ([0,T ],H1×L2) → 0 (7.56)

as τ → 0 and K → ∞ (without any rate). To measure the error in each subinterval Jm,
we define the error norms Errm by Err−1 := 0 and

Errm := ∥U(tn) − Un∥ℓ∞τ (Jm,H1×L2), m ∈ {0, . . . , L}.

Next, we show the recursion formula

Errm ≤ cErrm−1 + 5cε, m ∈ {0, . . . , L} (7.57)

via induction on m. First, let m = 0. We introduce the notations U(t,W 0) := W (t),
where W is the solution of (6.1) with initial value W 0, and Φn

τ (W 0) for the n-th iterate
of the Strang splitting scheme (4.4) with initial value W 0. We get

Err0 = ∥U(tn) − Un∥ℓ∞τ (J0,H1×L2)
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≤ ∥U(tn, U0) − U(tn, Y 0)∥ℓ∞τ (J0,H1×L2) + ∥U(tn, Y 0) − Φn
τ (Y 0)∥ℓ∞τ (J0,H1×L2)

+ ∥Φn
τ (Y 0) − Φn

τ (U0)∥ℓ∞τ (J0,H1×L2)

≤ c∥U0 − Y 0∥H1×L2 + C(Y 0)(τ +K−1) + c∥U0 − Y 0∥H1×L2 ≤ 3cε,

using the estimates from Proposition 7.15 and the relations (7.49), (7.52), (7.54) as well
as K−1 ≤ τ0.

For the induction step m − 1 ; m, we first deduce from the induction assumption
(7.57) the inequality

∥U(tνm) − Uνm∥H1×L2 ≤ Errm−1 ≤ 5cε
m−1∑
k=0

ck = 5cεc
m − 1
c− 1 ≤ 5cε(cL − 1).

As in (7.55), we obtain

|Tm − tνm | =
m−1∑
j=0

(
bj −

⌊bj
τ

⌋
τ
)

≤ mτ ≤ Lτ ≤ ρ, (7.58)

using also (7.54). Hence, (7.51) and (7.50) imply

∥U(Tm) − Uνm∥H1×L2 ≤ ∥U(Tm) − U(tνm)∥H1×L2 + ∥U(tνm) − Uνm∥H1×L2

≤ ε+ 5cε(cL − 1) ≤ 5εcL+1 ≤ δ. (7.59)

So we can apply Proposition 7.15 (with W 0 = U(Tm)). Furthermore, we write

Errm = ∥U(tn) − Un∥ℓ∞τ (Jm,H1×L2) = ∥U(tn, U(tνm)) − Φn
τ (Uνm)∥ℓ∞τ ([0,bm],H1×L2).

In the case m = L, we would have to replace the interval [0, bm] with the interval
[0, T − tνL ] (which is smaller by (7.55)), but for simplicity we keep this abuse of notation.
Using also (7.51), (7.52), and (7.58), we can now proceed similar as for m = 0 and
conclude

Errm = ∥U(tn, U(tνm)) − Φn
τ (Uνm)∥ℓ∞τ ([0,bm],H1×L2)

≤ ∥U(tn, U(tνm)) − U(tn, Y m)∥ℓ∞τ ([0,bm],H1×L2)

+ ∥U(tn, Y m) − Φn
τ (Y m)∥ℓ∞τ ([0,bm],H1×L2)

+ ∥Φn
τ (Y m) − Φn

τ (Uνm)∥ℓ∞τ ([0,bm],H1×L2)

≤ c∥U(tνm) − Y m∥H1×L2 + C(Y m)(τ +K−1) + c∥Y m − Uνm∥H1×L2

≤ c∥U(tνm) − Y m∥H1×L2 + cε+ c∥Y m − U(tνm)∥H1×L2 + c∥U(tνm) − Uνm∥H1×L2

≤ 2c∥U(tνm) − U(Tm)∥H1×L2 + 2c∥U(Tm) − Y m∥H1×L2 + cε+ cErrm−1

≤ 5cε+ cErrm−1.

Therefore, (7.57) is true. It follows that

Errm ≤ 5cε
m∑
k=0

ck = 5cεc
m+1 − 1
c− 1 ≤ 5εcL+2
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for all m ∈ {0, . . . , L}. This shows the convergence in the H1 × L2-norm as stated in
(7.56), since L is independent of ε, which could be chosen arbitrarily small in (7.50). To
complete the proof of Theorem 4.4, we will actually not need the full statement of (7.56).
It is enough to know that ∥U(Tm) − Uνm∥H1×L2 ≤ δ for all m ∈ {0, . . . , L}, as noted in
(7.59).

Step 3. We show the first assertions of Theorems 4.4 and 4.13, which are the first-order
convergences of the scheme in the L2 × H−1-norm. By Lemma 5.19, it is enough to
bound En = ΠKU(tn) −Un. Let m ∈ {0, . . . , L}. We use the recursion formula (7.7) and
estimate similar as in the proof of Theorem 7.13 to obtain

∥En∥ℓ∞τ (Jm,L2×H−1)

≤ c∥Eνm∥L2×H−1 + 3cN−1 + c2∥IKπ5N (g(πNu(tn)) − g(πNun))∥
ℓ1τ (Jm,L

6
5 )

≤ c∥Eνm∥L2×H−1 + 3cN−1 + 5
2c

3
(
∥πNu(tn)∥4

ℓ4τ (Jm,L12) + ∥πNun∥4
ℓ4τ (Jm,L12)

)
· ∥u(tn) − un∥ℓ∞τ (Jm,L2)

≤ c∥Eνm∥L2×H−1 + 3cN−1 + 5c3c4δ4∥en∥ℓ∞τ (Jm,L2)

≤ c∥Eνm∥L2×H−1 + 3cN−1 + 1
2∥en∥ℓ∞τ (Jm,L2). (7.60)

Here we use Lemmas 7.4, 7.6, 7.7, and 5.24, the bounds from Proposition 7.15 and the
definition of δ in (7.48). We can apply Proposition 7.15 thanks to the estimates on U(Tm)
in (7.49) and (7.53), on Uνm −U(Tm) in (7.59), and on τ and K in (7.54). If we deal with
homogeneous Sobolev norms on the full space Ω = R3, we have to check that ∥ej∥L2 is
finite for all jτ ∈ [0, T ), in order to absorb it in (7.60). This can be verified via induction
on j, based on the inequality

∥ej∥L2 ≤ 3cN−1 + 5
2c
(
∥πNu(tn)∥4

ℓ4τ ([0,tj−1],L12) + ∥πNun∥4
ℓ4τ ([0,tj−1],L12)

)
∥en∥ℓ∞τ ([0,tj−1],L2)

that follows similarly to (7.60) from Remark 7.3, where we exploit that E0 = 0. Inequality
(7.60) now leads to

∥En∥ℓ∞τ (Jm,L2×H−1) ≤ 2c∥Eνm∥L2×H−1 + 6cN−1 ≤ 2c∥En∥ℓ∞τ (Jm−1,L2×H−1) + 6cN−1

if m > 0. Since E0 = 0, this recursion formula yields the global bound

∥En∥ℓ∞τ ([0,T ],L2×H−1) ≤ 6cN−1
L∑
k=0

(2c)k ≤ 2(2c)L+1(τ +K−1),

which is the asserted first-order convergence in L2 × H−1.
Step 4. It remains to show the numerical scattering result of Theorem 4.4. Let Ω = R3,

µ = 1, and T = K = ∞. Take the asymptotic state U+ ∈ Ḣ1 ×L2 from Remark 6.6. Let
n ∈ N and τ ∈ (0, τ0]. Since

∥Un − enτAU+∥Ḣ1×L2 ≤ ∥Un − U(nτ)∥Ḣ1×L2 + ∥U(nτ) − enτAU+∥Ḣ1×L2 ,
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from (7.56) and Remark 6.6 we obtain the convergence

lim
τ→0

lim sup
n→∞

∥Un − enτAU+∥Ḣ1×L2 = 0.

To complete the proof of Theorem 4.4, we still need to show that the limit

lim
n→∞

∥Un − enτAU+∥Ḣ1×L2

exists for fixed τ ∈ (0, τ0]. This is equivalent to the existence of limn→∞ e−nτAUn in
Ḣ1 × L2. By means of the discrete Duhamel formula from Lemma 7.1, we can write

e−nτAUn = U0 + τ
n∑
k=0

e−kτAG(ΠNUk) − 1
2G(ΠNU0) − 1

2e
−nτAG(ΠNUn). (7.61)

By (7.56), (7.59) and Proposition 7.15, we already know that

∥g(πNun)∥ℓ1τ ([0,∞),L2) ≲ ∥un∥ℓ∞τ ([0,∞),Ḣ1)∥πNun∥4
ℓ4τ ([0,∞),L12) ≲M

L−1∑
m=0

∥πNun∥4
ℓ4τ (Jm,L12)

≤ Lc4δ4

is finite. Thus, the series
∞∑
k=0

e−kτAG(ΠNUk)

converges absolutely in Ḣ1 × L2. This in particular implies that e−nτAG(ΠNUn) → 0 as
n → ∞. Hence, the limit of (7.61) exists in Ḣ1 × L2 as n → ∞.
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8. Numerical experiment

Let Ω = T3. For the numerical tests we need initial data (u0, v0) which lie in H1 × L2

but do not have higher regularity. The standard approach to obtain initial in a Sobolev
space Hs(T3) is to take Fourier coefficients of the form

(1 + |k|2)− 1
2 ( 3

2 +s+ε)rk, k ∈ Z3, (8.1)

for some numbers r ∈ ℓ∞(Z3) and small ε > 0. Therefore, one most commonly uses rk
uniformly distributed in [−1, 1] + i[−1, 1]. This approach is well suited to precisely obtain
the desired differentiability of order s. However, it is known that such random initial data
does not only belong to Hs, but also to all Lq-based Sobolev spaces Hs,q for 1 ≤ q < ∞
with probability one. This can be exploited to obtain an improved local wellposedness
theory for the nonlinear wave equation (4.1) with random initial data compared to
the deterministic setting, cf. [12]. Since our error bounds are purely deterministic and
heavily use Lq-based inequalities such as Sobolev and Strichartz estimates, it is crucial to
numerically work with initial data which do not have higher integrability than predicted
by Sobolev embedding. The following lemma shows that this can be achieved by simply
taking rk = 1 in (8.1).

Lemma 8.1. Let s ∈ R. We define a distribution f ∈ D′(Td) by its Fourier coefficients

f̂k := (1 + |k|2)− 1
2 ( d

2 +s), k ∈ Zd. (8.2)

Then, for all ε > 0, the following assertions hold.

a) f ∈ Hs−ε(Td), but f /∈ Hs(Td).
b) If −d/2 ≤ s < d/2, then f /∈ L

2d
d−2s

+ε(Td).
c) If s > 0, then f ∈ L2(Td) is real-valued.

Proof. a) We have

∥f∥2
Hs−ε =

∑
k∈Zd

(1 + |k|2)s−ε|f̂k|2 =
∑
k∈Zd

(1 + |k|2)− d
2 −ε ≲

(
1 +

∫
Rd\B(0,1)

|x|−d−2ε dx
)

< ∞,

but ∥f∥2
Hs ≂ 1 +

∫
Rd\B(0,1) |x|−d dx = ∞.

b) For N ∈ N, we consider the truncated Fourier series

πNf(x) = (2π)− d
2
∑

|k|∞≤N
f̂ke

ik·x, x ∈ Td. (8.3)
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Let a > 0 such that cos(z) ≥ 1/2 for all z ∈ [−a, a]. For all x ∈ Td with |x|1 =∑d
j=1 |xj | ≤ a/N , we then infer that

πNf(x) ≂
∑

|k|∞≤N
(1 + |k|2)− 1

2 ( d
2 +s)eik·x =

∑
|k|∞≤N

(1 + |k|2)− 1
2 ( d

2 +s) cos(k · x)

≳
∑

1≤|k|∞≤N
|k|−

d
2 −s.

Hence, for q ∈ (1,∞) and s < d/2,

∥πNf∥Lq ≳ N
− d

q
∑

1≤|k|∞≤N
|k|−

d
2 −s ≂ N

− d
q

∫
1≤|x|≤N

|x|−
d
2 −s dx

≂ N
− d

q

∫ N

1
ρd−1− d

2 −s dρ = 2
d− 2sN

− d
q

+ d
2 −s

,

which is unbounded as N → ∞ if d/q < d/2 − s. By Theorem 4.1.8 in [24], f ∈ Lq(Td)
would imply that πNf → f in Lq. Thus, if d/q < d/2 − s, f cannot belong to Lq(Td).

c) By symmetry, (8.3) is real-valued. This property is inherited by f since fN → f in
L2 for s > 0.

We illustrate our error bounds by a numerical experiment for the nonlinear wave
equation (4.1) on T3 with µ = 1 and powers α ∈ {3, 4, 5}. We focus on the error of the
time integration. The initial data (u0, v0) are defined using (8.2) with d = 3 and s = 1+ε
or s = ε, for a very small ε > 0. We use a scaling such that ∥u0∥H1 = ∥v0∥L2 ≈ 3. We
apply the scheme (4.4) with spatial discretization parameters K ∈ {24, 25, 26}. For the
implementation we identify T3 = [0, 1]3 such that the spatial resolution (distance of the
collocation points) is h = (2K+1)−1. We compare the errors in the ℓ∞τ ([0, 1/4], L2 ×H−1)
and ℓ∞τ ([0, 1/4], H1 × L2) norms for various step sizes τ , where the reference solution is
computed using (4.4) with the same K and τref = 2−12. In the plots only the temporal
error is visible since the reference solution has the same spatial accuracy. Our Python code
to reproduce the results is available at https://doi.org/10.35097/2zvaw7qyvy6ymuu2.

For the cubic equation with α = 3, in Figure 8.1 we numerically observe temporal
convergence rates of order 2 in the L2 × H−1 norm and order 1 in the H1 × L2 norm,
uniformly in the spatial discretization parameter K. These observations are in accordance
with Theorem 4.1. If τ is small compared to the spatial resolution, the error is of second
order even in H1 × L2, however with deteriorating error constant as K → ∞. This
behavior was already observed in the one-dimensional case in [22].

In the case α = 4, we observe in Figure 8.2 that the convergence rates which are
uniform in K have reduced to 3/2 for the L2 ×H−1 norm and order 1/2 for the energy
norm, again in accordance with Theorem 4.1.

We also did the experiment for the critical power α = 5, see Figure 8.3. Here it turned
out that we get temporal convergence of order 1 in the L2 ×H−1 norm, uniformly in K.
Moreover, we cannot observe a clear convergence order for the error in the H1 ×L2 norm
if τ is not small compared to the spatial resolution. This behavior fits to Theorem 4.4.
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Figure 8.1.: Errors for α = 3
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Figure 8.2.: Errors for α = 4
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Figure 8.3.: Errors for α = 5

118



A. Appendix

A.1. Function spaces and Fourier multipliers

The following Sobolev embeddings are used throughout this thesis. We recall that for
Ω ∈ {Rd,Td}, we set Hs(Ω) := Ḣs(Rd) if Ω = Rd and Hs(Ω) := Hs(Td) if Ω = Td.

Theorem A.1. Let Ω ∈ {Rd,Td}.

a) Let s > d/2. Then Hs(Ω) ↪→ L∞(Ω).
b) Let s ∈ [0, d/2). Then Hs(Ω) ↪→ L

2d
d−2s (Ω).

Proof. Part a) is a direct consequence of the definition of the Sobolev norm via the
Fourier transform since

∥f∥L∞ ≲ ∥f̂∥L1 ≤ ∥(1 + |ξ|2)− s
2 ∥L2∥(1 + |ξ|2)

s
2 f̂∥L2 ≲s,d ∥f∥Hs ,

where the Fourier variable is denoted by ξ regardless of Ω ∈ {Rd,Td}, and L1 and L2

actually are ℓ1 and ℓ2 if Ω = T3. For part b), we refer to Theorem 1.38 of [3] and
Corollary 1.2 of [4] for the full space and torus cases, respectively.

If s > d/2, the Sobolev space Hs even forms an algebra. Proofs can be found in Lemma
A.8 of [71] and Proposition 1 of [5].

Lemma A.2. Let Ω ∈ {Rd,Td} and s > d/2. We then have the inequality

∥fg∥Hs ≲s,d ∥f∥Hs∥g∥Hs

for all f , g ∈ Hs(Ω).

The following Bernstein inequalities quantify the smoothness of functions whose Fourier
transforms are supported in a ball.

Lemma A.3. Let Ω ∈ {Rd,Td}, r ∈ R, s ≥ 0 and q ∈ [2,∞]. We then have the estimates

∥h∥Hs+r ≲ Ks∥h∥Hr ,

∥f∥Lq ≲ K
d( 1

2 − 1
q

)∥f∥L2

for all f ∈ L2(Ω) and h ∈ Hr(Ω) with supp f̂ , supp ĥ ⊆ B(0,K) for some K ≥ 1.
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Proof. The first estimate follows directly from the representations of the Sobolev norm
(4.5) and (4.6). The second one is a consequence of the Hausdorff–Young and Hölder
inequalities, since

∥f∥Lq ≲ ∥f̂∥Lq′ ≲ K
d( 1

q′ − 1
2 )∥f̂∥L2 = K

d( 1
2 − 1

q
)∥f∥L2 ,

where the Lq′ and L2 norms in Fourier space actually are ℓq′ and ℓ2 in the case Ω = Td.

We also make extensive use of Fourier multipliers in this thesis.

Definition A.4. Let m : Rd → C be a locally integrable function that is polynomially
bounded at infinity. We define the Fourier multiplication operator Tm : S(Rd) → S ′(Rd)
by

Tmf := F−1(mf̂). (A.1)

On the torus, Tm : D(Td) → D′(Td) is also defined by (A.1), where one restricts m to Zd.

It is clear from the definition that all Fourier multiplication operators formally commute,
since Tm1Tm2 = Tm1m2 . For the complex conjugation, one has the following result that
follows from Proposition 2.2.11 of [24].

Lemma A.5. The operator Tm from Definition A.4 satisfies the property

Tmf = Tm̃f (A.2)

for f ∈ S(Rd) or f ∈ D(Td), where we set m̃(x) := m(−x). In particular, Tm maps
real-valued functions to real-valued functions in the case m = m̃.

One can often extend Tm and property (A.2) to larger subspaces of S ′(Rd) and D′(Td)
by density.

The convolution theorem connects multiplication and convolution via the Fourier
transform. The following assertions are a consequence of Propositions 2.2.11 and 2.3.22
of [24].

Proposition A.6. We have

F(u ∗ φ) = (2π)
d
2 ûφ̂, F(uϕ) = (2π)− d

2 û ∗ φ̂

for all u ∈ S ′(Rd) and φ ∈ S(Rd). The first equality also holds if u ∈ L2(Rd) and
φ ∈ L1(Rd).

The next lemma concerns basic properties of dilations that can be shown by means of
elementary integral transformations and the duality between S(Rd) and S ′(Rd).

Lemma A.7. Let a > 0. The dilation operator

Da : S(Rd) → S(Rd), (Daφ)(x) := φ(ax),
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extends to tempered distributions by

(Dau)(φ) := a−du(D 1
a
φ), u ∈ S ′(Rd), φ ∈ S(Rd).

It can be related to the Fourier transform via

F(Dau) = a−dD 1
a
û, F−1(Dau) = a−dD 1

a
F−1(u), u ∈ S ′(Rd).

For the Lp-norms we further have

∥Daf∥Lp = a
− d

p ∥f∥Lp , f ∈ Lp(Rd), p ∈ [1,∞].

A.2. Some discrete formulas
In this section, we collect elementary discrete formulas which are often used in the
literature, however there does not seem to exist a standard reference for them. The
following lemma is a discrete variant of Duhamel’s formula.

Lemma A.8. Let V be a vector space, A : V → V be a linear operator, and (xn)Nn=0,
(bn)Nn=0 be finite sequences in V . Assume that

xn+1 = Axn + bn (A.3)

holds for all n ∈ {0, . . . , N − 1}. Then, the vectors satisfy

xn = Anx0 +
n−1∑
k=0

An−k−1bk (A.4)

for all n ∈ {0, . . . , N}. If V = R and A ≥ 0, we can replace “=” by “≤” in (A.3) and
(A.4).

Proof. The assertion is clear for n = 0. Assume now that (A.4) is true for some
n ∈ {0, . . . , N − 1}. Equation (A.3) then implies

xn+1 = Axn + bn = A
(
Anx0 +

n−1∑
k=0

An−k−1bk
)

+ bn = An+1x0 +
n∑
k=0

An−kbk,

and thus (A.4) also holds with n replaced by n+ 1. The addendum is shown in the same
way.

The next lemma is a discrete variant of Gronwall’s inequality. It is often used to
conclude the proof of a numerical convergence result.

Lemma A.9. Let b ≥ 0, c > 0, and let (xn)Nn=0 be a sequence of non-negative numbers
such that the inequality

xn ≤ b+ c
n−1∑
k=0

xk (A.5)
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holds for all n ∈ {0, . . . , N}. We then obtain

xn ≤ b(1 + c)n ≤ becn (A.6)

for all n ∈ {0, . . . , N}.

Proof. The second inequality in (A.6) is clear. If n = 0, the assertion follows directly
from (A.5). Let now n ∈ {1, . . . , N} and assume that

xk ≤ b(1 + c)k

holds for all k ∈ {0, . . . , n− 1}. We then infer by (A.5) and the geometric sum formula
that

xn ≤ b+ c
n−1∑
k=0

xk ≤ b+ cb
n−1∑
k=0

(1 + c)k = b+ cb
(1 + c)n − 1

1 + c− 1 = b(1 + c)n.
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Glossary

[·]1 first component of vector 82
| · |p discrete ℓp norm on Rd 49
| · | euclidean norm on Rd 49
|∇| homogeneous derivative F−1|ξ|F 50
1B indicator function for set B 49
1 the function being constantly one 49
A wave operator 35, 45
admissible, H1-admissible allowed param-

eters for Strichartz 51, 64
α power of nonlinearity 41
B(x0, r) ball with radius r centered at x0

49
D(Td) space of smooth functions on the

torus 49
D′(Td) space of distributions on the torus

49
E periodic extension operator 61
F Fourier transform operator 50
f̂ Fourier transform of f 49, 50
g, G nonlinearity 9, 35, 45, 71
Hs L2-based Sobolev space 6, 49, 50
Ḣs homogeneous Sobolev space 50
Hs Sobolev space Ḣs(R3) or Hs(T3) 41
I identity operator 49
IK , IK trigonometric interpolation operator

69
Lp Lebesgue space 6
LpTX, LpX Bochner space Lp([0, T ], X) or

Lp(R, X) 50
ℓpτ (J,X), ℓpτ,TX, ℓpτX, ℓpX discrete-time

Bochner space 50
µ focusing/defocusing parameter 9, 41
p′ Hölder-conjucate index to p 49
pα parameter such that (pα, 3(α − 1)) are

H1-admissible 71
φ1(z) = (ez − 1)/z 9
φ′

1(z) = (zez − ez + 1)/z2 11
φ2(z) = (ez − z − 1)/z2 12
Φτ First-order low-regularity integrator 9
Φ̃τ Second-order low-regularity integrator

11
Ψτ Corrected Lie splitting 36
πK , ΠK frequency cut-off operator 45, 54,

61
Pj Littlewood–Paley projection 52
Q(·, ·) null form 33
qα parameter such that (α− 1, qα) are H1-

admissible 76
S(Rd) Schwartz space 50
S ′(Rd) space of tempered distributions 50
S(t) first line of wave group etA 79
Td d-dimensional torus 6
tn discrete times nτ 6
W k,p Lp-based Sobolev space 6
ξ Fourier variable 50
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