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Introduction

The analysis of nonlinear dispersive partial differential equations is a large and rich field
within mathematics. It has encountered decisive breakthroughs in the past decades, based
on methods from harmonic and nonlinear analysis. Important examples of such systems
include the nonlinear wave, Schrodinger, and Maxwell equations, but also water-wave
models like the Korteweg—de Vries (KdV) equation, cf. [71]. The nonlinear wave equation
for instance models a vibrating object with state-dependent force. On the other hand, the
nonlinear Schrédinger equation serves as an important amplitude equation in nonlinear
optics, see [69).

In a dispersive equation, waves with different frequencies tend to travel at different
velocities or in different directions. This makes the solution disperse in space as time
evolves. At the same time, in the core examples conserved quantities such as mass or
energy are available. This is in contrast to diffusive equations such as the heat equation,
which exhibit energy dissipation over time.

The wellposedness of nonlinear dispersive equations has been intensively investigated.
This means existence and uniqueness of solutions, as well as continuous dependence
on the data. To study the long-time behavior as well, it is important to have a good
wellposedness theory in a low-regularity setting, meaning the case when the initial data
come from a function space only requiring a small amount of differentiability, possibly
even allowing discontinuities. This is because the natural conservation laws are often
associated with such spaces. As opposed to diffusive equations such as the heat equation,
no smoothing of the initial data can be expected for fixed times, in general. In the
context of dispersive equations, Strichartz estimates play an important role. Based on
dispersion, they control spatial integrability beyond the estimates following from the
energy and Sobolev inequalities. These estimates were first formulated in [68] and later
generalized in, e.g., [23| |46]. They are very well suited to treat power-type nonlinearities,
and often enable a comprehensive wellposedness theory in situations that would hardly be
accessible by other methods, for instance at the level of finite-energy solutions in several
spatial dimensions. Bilinear refinements of Strichartz estimates are also of interest, such
as null form estimates for the wave equation, which exploit cancellations in the nonlinear
frequency interactions between waves, cf. [48]. An estimate of that type (with a rather
elementary proof) does even exist for the one-dimensional wave equation, which is not a
truly dispersive problem.

For nonlinear differential equations, explicit and practically computable solution
formulas are not available in most cases. Therefore, one often relies on numerical
approximations. If a time-dependent equation separates into a sum of sub-problems that
could be solved efficiently individually, splitting methods are often attractive, see [30, 51]
for an overview. The simplest of those schemes is the Lie splitting. Here, we perform
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one time step of the first sub-problem followed by one step of the second sub-problem
to approximate one time step of the full problem. A natural improvement is the Strang
splitting, where one time step of the full equation is approximated by first computing a
half step of the first sub-problem, then a full step of the second sub-problem, and finally
again a half step of the first sub-problem. Due to its symmetry, the Strang splitting is
formally more accurate than the Lie splitting. Splitting methods often enjoy favorable
geometric properties, cf. [27].

In this work we focus on semilinear equations, meaning that the equation separates
into a linear and a nonlinear part, where the highest-order derivatives appear exclusively
in the linear part. A time-stepping scheme which treats the linear part exactly is referred
to as an exponential integrator, see [28] for an overview on this topic. Such methods are
particularly suitable for partial differential equations with periodic boundary conditions
in space, since the spatial discretization by means of the Fourier (pseudo)-spectral method
enables an efficient computation of the linear propagator. Splitting methods belong to
the class of exponential integrators in the case when one of the sub-problems is linear
and is treated exactly.

The error analysis of exponential integrators applied to nonlinear dispersive equations
is challenging. The seminal paper [50] established second-order convergence of the
Strang splitting applied to the cubic Schrédinger equation. The analysis in that paper
requires high smoothness, in particular, bounds on four spatial derivatives of the solution.
Numerical experiments suggest that this is more than a technical issue, since order
reduction is generally observed if the regularity requirements are not fulfilled. Hence,
it is interesting to investigate which (possibly fractional) convergence rates can still be
proven if the solution is only assumed to belong to a less regular space. Such an analysis
was done, e.g., in [18] in the context of splitting methods for the semilinear Schrédinger
equation and in [22] for exponential integrators applied to the one-dimensional semilinear
wave equation, respectively.

The error analysis in the above works heavily relies on tools such as energy estimates
and Sobolev embeddings. However, as it is the case for the wellposedness theory, such
“classical” inequalities are often insufficient if the regularity is very low, e.g., at energy
level. Therefore, it is natural to exploit variants of the tools used in the wellposedness
theory at low regularity also in numerical analysis, such as versions of Strichartz estimates
that are discrete in time and/or space. In the literature, this has been investigated mainly
for Schrédinger equations so far.

Since the regularizing effect described by Strichartz estimates only exists when time is
averaged, straightforward analogues of these inequalities that are discrete in time but
continuous in space fail, in general. One way to still obtain such results is to include
smoothing operators such as frequency filters. This approach was pursued in the works
[36, [53]. The resulting discrete-time Strichartz estimates were then used to obtain error
bounds for time discretizations of nonlinear Schrédinger equations on R?, see also |15,
17]. In |41}, 52, [54], the case of periodic boundary conditions was treated by also using
discrete Bourgain spaces.

On the other hand, Strichartz estimates which are continuous in time but discrete in
space have been studied as well. The papers [38] 39, |40] analyze the impact of a spatial
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discretization by means of finite differences on the dispersive behavior of the Schrédinger
equation. It turns out that the dispersive estimates are not preserved uniformly in the
discretization parameter, and several modifications of the discretization procedures are
proposed to recover the full dispersion. Fully discrete approximations are also considered
in [37]. In more recent works [31} 32, 33| 34], uniform Strichartz estimates with derivative
loss are shown for finite difference discretizations of the Schrédinger equations on the full
space R? as well as on the torus T¢. The corresponding problem for the multi-dimensional
wave equation seems to be more difficult and much less is known, cf. [16].

Another related branch of research that recently gained a lot of attention in the
literature is the construction and analysis of low-reqularity integrators. In settings of low
regularity, these tailor-made time discretization schemes can outperform more classical
exponential integrators thanks to an improved local error structure which requires less
regularity. The construction of these methods typically relies on the embedding of
nonlinear frequency interactions into the numerical scheme. The first integrators of this
type were proposed in [29] and [55] for the KAV and semilinear Schrodinger equations,
respectively. For the semilinear wave equation, such a scheme was developed in [49]. It is
natural to exploit Strichartz-like estimates for the error analysis of these methods, as it
was first done in the articles [53| 54] for the nonlinear Schrodinger equation. See also,
e.g., [9, 14, |20, 59| for further important contributions in the context of low-regularity
integrators, and [60] for a survey article.

Content of this thesis

The first part of this thesis contains the preprint [62] with minor modifications. However,
the analysis of the second-order scheme in Section and the associated numerical
experiments in Section [2.3] are new.

The second part includes an extended version of the preprint [61]. It has been
generalized in several respects, e.g., we treat fractional powers inside the nonlinearity.
Moreover, we added the derivation of discrete-time Strichartz estimates on R? and the
analysis for the scaling-critical quintic equation, both based on our published paper
[63]. This concerns Sections [5.1H5.2] and parts of Section of this thesis. As a
new feature, the analysis of the critical defocusing equation on the full space has been
extended to a global-in-time result, including scattering of the numerical solution.

We generally concentrate on the error analysis of discrete-time approximations, often
working in a semi-discrete setting with continuous space. The second part of this thesis
also contains error bounds for full discretizations by means of the Fourier pseudo-spectral
method.

Part [I. Improved error estimates for low-regularity integrators using
space-time bounds

In the first part of this thesis, we analyze three known low-regularity integrators. These
are the first- and second-order methods for the semilinear Schrodinger equation from [55]
and [9, 56, 59|, respectively, as well as the second-order scheme for the semilinear wave
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equation from [49]. We show that they converge with their full formal orders in certain
situations in which previously only reduced convergence orders were known. Here we
concentrate on the one-dimensional equations with periodic boundary conditions. The
general strategy of proof is the same in all cases. We first derive a suitable representation
of the local error. In a second step, the sum of the local error terms is optimally estimated
exploiting a known equation-specific space-time inequality for the solution. Here we
only use the estimates for continuous time, since discrete-time estimates often involve a
loss, see |53}, |54, 63]. For the Schrédinger equation, we apply the periodic L* Strichartz
inequality. In the case of the wave equation, we use a null form estimate, which seems
to be a new tool in numerical analysis. The proof of the error bound is then completed
in a classical way by a discrete Gronwall argument. Hence, our proof strategy is very
flexible, also applicable to higher dimensions, and could possibly be adapted to show
error bounds also for other equations and integrators. In this part, we only analyze the
temporal semi-discretization, but expect that an extension to a fully discrete setting is
possible.

Part Il Error analysis of the Strang splitting for 3D semilinear wave
equations with finite-energy solutions

The semilinear wave equation 02u — Au = +|u|* tu is one of the most important model

problems for dispersive behavior. Its analytical properties are well understood, see |66},
71). In view of the energy equality, H' (or its homogeneous version H 1) is the most
natural regularity level for solutions u(t) and data. On 3D domains, in the case of powers
a € (1,3], one can investigate wellposedness by means of the standard tools of evolution
equations, whereas the treatment of the case a € (3, 5] is based on dispersive properties.
To our knowledge, in numerical analysis the latter situation has not been studied in this
setting previously.

In the second part of this thesis, we treat a variant of the Strang splitting for the time
integration of the semilinear wave equation on the full space R? as well as the three-
dimensional torus T3 under a finite-energy condition. In the case of a cubic nonlinearity,
we show almost second-order convergence in L? and almost first-order convergence in the
energy space. For the energy-critical quintic nonlinearity, we show first-order convergence
in L? and convergence without rate in the energy space. To our knowledge, this is the
first error analysis performed for a scaling-critical dispersive problem (together with our
analysis of the Lie splitting in [63]). Notably, our analysis for the critical defocusing
problem on the full space is even global in time. In the case of powers a € (3,5), the
proven convergence rates are the “interpolated values” of the cases = 3 and o = 5.
For the torus case, corresponding error bounds for a full discretization using the Fourier
pseudo-spectral method in space are also given. Finally, we discuss a numerical example
indicating the sharpness of our theoretical results.

We do not treat a low-regularity integrator such as the corrected Lie splitting (which
was also considered in our earlier work [63]) in this part of the thesis. The reason for
this is that we were not able to show superior convergence behavior of the corrected
Lie splitting compared to the Strang splitting in the 3D case with finite-energy data.
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Therefore, we stick to the more classical Strang splitting for our analysis.

Compared to the existing literature on time discretizations of semilinear wave equations
in low-regularity regimes, we do not impose a global Lipschitz assumption on the
nonlinearity as in, e.g., [13, 49]. Moreover, in contrast to the works [10, 22| (and also
our Part , there is no uniform space-time L°°-bound on the solution u available, since
in three dimensions the Sobolev embedding H*® < L requires s > 3/2, but we only
assume H' regularity of .

A main ingredient in our error analysis are continuous- and discrete-time Strichartz
estimates. It would be generally favorable to use exclusively the continuous-time Strichartz
estimates as in Part [I However, in the case of higher powers o > 3, Strichartz estimates
in discrete time are needed to ensure the boundedness of the numerical approximations.
Therefore, a longer chapter of this part is dedicated to the derivation of the needed
estimates in discrete time. We first show them on the full space R3. The corresponding
inequalities on the torus T? are then deduced exploiting the finite propagation speed
of the wave equation. To show error bounds of order greater than one in the cases
a € [3,5), we also make use of the integration and summation by parts formulas to
exploit cancellations in the error terms. Here we follow ideas from [10], though they have
to be carefully adapted to fit to the Strichartz estimates (which were not needed in [10]
due to higher regularity assumptions). We treat the subcritical and energy-critical cases
separately. The latter one does not require the use of summation by parts since only a
first-order error bound is shown. However, already this requires a much more delicate
analysis than the first-order error estimates in the subcritical range.

Organization

Chapter [I] gives an overview on the first part of this thesis, which is concerned with
low-regularity integrators for the one-dimensional semilinear Schrédinger and wave
equations. The error analyses of the first and second-order low-regularity integrators
for the Schrodinger equation are carried out in Chapter [2, which also contains some
numerical experiments. The next Chapter [3] consists of the error analysis of the corrected
Lie splitting applied to the wave equation.

The second part of this thesis is devoted to the three-dimensional semilinear wave
equation. Chapter [4] introduces this topic and gives an overview on our results. In
Chapter [, we give a review on Strichartz estimates for the linear wave equation. We
provide the proofs of the discrete-time inequalities and state all the Strichartz estimates
needed for the forthcoming error analysis. In Chapter 6] we give a brief review on the
wellposedness theory of the semilinear wave equation and deduce important estimates for
its solution. The error analysis of the Strang splitting is then carried out in Chapter [7}
In our last Chapter [§ we discuss a numerical experiment to illustrate our temporal error
bounds.
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General notations

We use the notation A <., .. ~,, B if there is a constant ¢ > 0 (depending on m quantities
Y, -, ¥m) such that A < ¢B, and the symbol 2 is similarly used. If A < B and A 2 B,
then we write A ~ B. We denote by N the set of non-zero natural numbers and set
Ny = NU{0}. The torus T := R/(27Z) is understood as the interval [—m,n] where
one identifies the end-points —7 and 7. Let  either be the d-dimensional torus T¢ or
a measurable subset of R?. We denote the standard Lebesgue spaces of p-integrable
functions (depending on the context real- or complex-valued) by LP(£2) and the standard
L?-based Sobolev spaces of s-times weakly differentiable functions by H*(f2), where
p € [1,00] and s € R. Occasionally we also make use of the LP-based Sobolev spaces
WHP(Q) for k € Ny. If it is clear from the context, we often abbreviate H® = H*(Q) as
well as LP = LP(Q) etc. For p € [1,00], a time interval J, and a Banach space X, we use
the Bochner space LP(J, X) with norm

1
1F sy = ([ IF@I at)”,

and the usual modification for p = co. If a “free” variable ¢ occurs in such a Bochner
norm, the time integration is carried out with respect to t. For a step size 7 > 0 and
a number n € Ny, the discrete times are usually denoted by t,, := n7. Some additional
notations for Part [T are defined in Section K5l



Part |I.

Improved error estimates for
low-regularity integrators using
space-time bounds






1. Overview

Due to their importance as model problems in mathematical physics, the nonlinear
Schrodinger and wave equations have been intensively studied in the past decades, both
analytically and numerically. In this part of the thesis we study their numerical time
integration in the one-dimensional case with periodic boundary conditions. We treat the
semilinear Schrédinger equation

i0pu + 02w = plulu, (t,x) € [0,T] x T,

u(0) = ug € HY(T), (11)

where we allow for both signs p € {£1}. Our second problem is the semilinear wave

equation
Opu—0%u = gu), (t.)€[0,7]xT,

u(0) = ug € HY(T), (1.2)
du(0) = vy € L*(T),
with a general nonlinearity g € C?(R,R). Our regularity assumptions on the initial data

are natural in view of the energy conservation laws. In the case of the wave equation, we
require ug and vy to be real-valued.

1.1. The Schrodinger case

In the seminal paper [55], a low-regularity integrator was proposed for the time integration
of the nonlinear Schrodinger equation (1.1)) (and also its higher-dimensional versions).
The scheme computes approximations u,, ~ u(n7) via

Unt1 = Pr(uy) = el (un — iT,u(un)2gpl(—2i7'8§)ﬂn). (1.3)

The operator ¢;(—2i702) can be defined in Fourier space or using the functional calculus
for ¢1(z) = (e* — 1)/z. For our purposes, the definition via the integral representation

©1(—2iTd2) f == 1/ e 250 £ g (1.4)
0

T

for f € L*(T) is convenient. The authors in [55] proved a general convergence result
which, in the one-dimensional case, reads as follows.

Theorem 1.1 ([55]). Let r > 1/2 and v € (0,1]. Assume that the solution u to (1.1))
satisfies u(t) € H"™(T) for all t € [0,T]. Then there are a constant C > 0 and a
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maximum step size 79 > 0 such that the approximations u, obtained by satisfy the
error bound

|w(nT) — un || gr 1) < CT7
for all 7 € (0,79] and n € Ny with nt < T. The numbers C and 9 only depend on T
and [[ul| oo (0,17, 57+ ()

Note that Theorem asserts that we need ug € H" ™! in order to obtain first-order
convergence in H”. This is in contrast to more classical schemes such as splitting methods,
where first-order convergence in H” would require the stronger condition ug € H" 2, cf.
[18, 50]. We will later make use of Theorem since it provides an a-priori bound in L™
for the numerical solution w,, if 7 is small enough. The condition > 1/2 in Theorem [I.1
arises from the use of the algebra property of the Sobolev space H"(T). The space L?(T)
does not have this property, so it is a natural question if Theorem [I.1] still holds if » = 0
and v = 1. This was addressed in the follow-up work [53|, where the problem (|L.1)) was
considered on the spatial domain R? for d € {1,2,3}. The core difficulty is that the local
error of the scheme is roughly of the form

72|8$u]2u,

cf. p. 731 of [53]. This term can be estimated in L? for fixed times provided that
u(t) € Wh4, which is not covered by the assumption ug € H'. It is however known that
solutions to dispersive equations such as enjoy better integrability properties in
space if we also involve integration in the time variable. This is formalized using Strichartz
estimates, which control mixed space-time LPLY norms of solutions to linear dispersive
equations in terms of the data, cf. Chapter 2.3 of [71]. In [53], the authors proved
discrete-time Strichartz estimates and used them to show fractional convergence rates
(strictly between 1/2 and 1 depending on the dimension) in L? for a frequency-filtered
variant of . In the case d = 1, the convergence rate was 5/6. In the subsequent
paper [54], the authors analyzed the problem on the torus T. They introduced
discrete Bourgain spaces and used them to prove a convergence rate of almost 7/8 for a
significantly refined frequency-filtered variant of .

In [53, [54], the optimal first-order convergence could not be reached since the discrete-
time Strichartz and Bourgain space estimates only hold for frequency localized functions
and contain a multiplicative loss depending on K712, where K is the largest frequency
and 7 denotes the time step-size. The continuous-time Strichartz estimates however do
not suffer from these disadvantages.

In this work we extend Theorem [I.I]to the case r = 0 and v = 1 with optimal first-order
convergence. In contrast to [53}[54], we do not use frequency filtering and discrete-time
Strichartz or Bourgain space estimates. Instead, we derive an error representation which
allows us to apply the continuous-time periodic Strichartz estimate

i 2
1€%% £l ago.yxmy St 11fl2m)- (1.5)

A proof of ([1.5) can be found in Theorem 1 and the subsequent remark of |74] or
Proposition 2.1 of 7]. The idea to use continuous-time Strichartz estimates to control
the local error goes back to [36].

10



1.1. The Schrédinger case

We also give error bounds for the second-order variant of (|1.3|), which was originally
proposed in [9, [56| 59]. This scheme is given by

g1 = D (up) = €% (wy, — irpa(un) o1 (~20702) — @ (—~2ir02)] )

7_2

— irp(e% 0, )22 o (= 2i702) i, — 561763(\11”\41%). (1.6)
The operator ¢} (—2i79?) is defined by
/ : 92 Lo[m a2
01 (—2iT0%) f = —2/ se = fds, (1.7)
T Jo

or alternatively using the functional calculus for ¢} (z) = (ze* — e* +1)/22.

Our convergence result in L? for H!-solutions reads as follows. Its proof is carried out
in Section [2.1] for the first-order scheme and in Section [2.2) for the second-order scheme,
respectively.

Theorem 1.2. Assume that the solution u to (L.1)) satisfies u(t) € H(T) for all
t € [0,T). Then there are a constant C > 0 and a maximum step size 19 > 0 such that

the approximations u, obtained by (L.3) or (1.6 satisfy the error bound
lu(nT) = un|[L2(ry < CT

for all 7 € (0,79] and n € Ny with nt <T. The numbers C and 1y only depend on T
and |[ul| geo (0,77, H51(T)) -

To obtain second-order convergence, we need to impose higher regularity assumptions
than just ug € H*(T). In [56], it was shown that for any » > 1/2, the scheme is
second-order convergent in H" for solutions with ug € H""2. The work [59] established
second-order convergence of in L? under the assumption ug € H/*(T). In Section
2.2, we prove the following result, which asserts that H?-regularity is enough to obtain
second-order convergence in L2.

Theorem 1.3. Assume that the solution u to (L.1)) satisfies u(t) € H?(T) for all
t € [0,T]. Then there are a constant C > 0 and a mazimum step size 19 > 0 such that
the approzimations u, obtained by (1.6)) satisfy the error bound

lu(nT) = unl|2(r) < C72

for all 7 € (0,79] and n € Ny with nt < T. The numbers C and 9 only depend on T
and ||ul| Loo (fo,1), 52 (T)) -

Numerically, the first-order convergence of for H'-solutions, as well as the second-
order convergence of for H?-solutions, are not clearly visible. On the other hand,
the first-order convergence of the second-order scheme for H'-solution shows up in the
numerical experiment as expected from Theorem [[.2l We elaborate on this issue in

Section 2.3

11
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Remark 1.4. We comment on possible extensions of Theorems and to higher
dimensions. The embedding H' — L> as well as the estimate , which are both
crucially exploited in the proof of Theorem [1.2] are then wrong, in general. In two
dimensions, they however both only require an arbitrary small amount of extra regularity
(see Proposition 3.6 of [7] for the 2D version of (L5])). Therefore, it is possible to
extend Theorem to the 2D case under the slightly stronger regularity assumption
ug € H'*¢ for some € > 0. One could also stick to the H! assumption if one considers a
suitably filtered variant of or and lowers the convergence rate by €. Similarly,
Theorem extends to the two-dimensional case under the assumption ug € H?¢. The
three-dimensional cases seem to be more difficult and we do not know how the optimal
result then looks like. The situation becomes easier if the torus T? is replaced by the
full space R?, since then a wider range of Strichartz estimates becomes applicable, cf.
Chapter 2.3 of [71]. By combing our techniques with those of [53], it seems feasible to
show almost first-order convergence in L? for a frequency-filtered version of under
the assumption ug € H'(R3), for instance.

Remark 1.5. It is also possible to extend our analysis to the symmetrized two-step
variants of (1.3)) and (|1.6|) that were recently proposed in |20].

1.2. The wave case

For the nonlinear wave equation (1.2)), the authors in [49] proposed a low-regularity
integrator which was called the corrected Lie splitting. It computes approximations
(Un,vp) = (u(nt), dyu(nr)) via

Un+1\ _ 7 Un 0 o 7g(un)
<’l}nil> =e A[ <Un> + 7 (g(un)> + T2S02( 2 A) <gl(un)7}n> ‘|, (18)

with wave operator A(u,v) = (v,02u). The operator @o(—27A) is defined by the integral
representation .
w2 (—2TA)w = % ; (1 —s)e >Awds (1.9)
for w € H' x L?. Similar as in the Schrédinger case, one could equivalently use the
functional calculus for ¢2(z) = (€ — 2 — 1)/2%. In |49], under a Lipschitz condition
on the nonlinearity g, it was shown that the scheme converges with order 2 in
H' x L? under the regularity assumption (ug, vg) € H't%* x H* for spatial dimensions
d € {1,2,3}. This is an improvement compared to classical trigonometric or exponential
integrators, where second-order convergence in H' x L? would require the stronger
condition (ug,vg) € H? x H', cf. |10, 22]. The reason for the particular regularity
requirement (ug,vy) € H'T4* x H¥* in [49] is that the main part of the local error is
roughly of the form
1(0ru)* — Vu - V| g2 (pay, (1.10)

cf. equation (2.26) of [49]. This term was then estimated (for fixed times) using the triangle
inequality and the Sobolev embedding H%*(T?) < L*(T%). For the one-dimensional
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1.2. The wave case

case d = 1, the authors in [49] also gave a convergence result under the weaker regularity
assumption (ug,vg) € H' x L?. Using an interpolation argument, it was shown that
the scheme converges almost with order 4/3 in H! x L?. However, the numerical
experiments in [49] suggested that the convergence is of order 2 also in this case.

Here, we give a rigorous proof of this second-order convergence. In contrast to the
Schrodinger case, the 1D wave equation does not exhibit dispersive behavior. Instead,
the idea is to exploit that the expression contains a so-called null form which
allows for improved space-time bounds compared to the above fixed-time approach. Such
null form estimates are widely used in the analysis of nonlinear wave equations, cf. [48] or
Chapter 6 of [71]. They rely on cancellation of parallel interactions (where waves move
together) in the bilinear expression in . In the one-dimensional case one has the
following estimate. If ¢ solves the linear inhomogeneous wave equation 02¢ — 02¢ = F
on [0, 7] x T, then one has the inequality

18:6)? = (929)* [l 2 0.171xm) ST 182(O0) |22y + 186 (O 2y + 11 210,79, 2y (1.11)

Note that the right-hand side of only contains the L? norm of d; ,#(0) instead of
the L* norm that would result from the triangle inequality approach. If we replace T
with R, estimate can be found in (1.8) of [48] (in a simplified form) or in (6.29)
of [71]. For convenience, we give a direct proof of on T based on d’Alembert’s
formula in Section [3.11

With the help of estimate , we are able to show the following improved error
bound for the corrected Lie splitting . The proof is given in Section To our
knowledge, this is the first time that a null form estimate like (1.11]) is used in numerical
analysis.

Theorem 1.6. Assume that the solution u to (1.2)) satisfies (u(t), dpu(t)) € H(T) x L*(T)
for allt € [0,T]. Then there are a constant C' > 0 and a mazimum step size 7o > 0 such
that the approximations (uy,vy,) obtained by (1.8) satisfy the error bound

[u(nT) = unl g1 omy + [10u(nT) = vall2m) < CT?

for all 7 € (0,70] and n € Ny with nt <T. The numbers C and 19 only depend on g, T,
[wll oo (0,77, 10 (1)) s and [[Opuul Loo (0,77, 22 (T)) -
For a numerical example concerning the wave equation (1.2)), we refer to Figure 1 of

[49]. Tt shows second-order convergence in H' x L? of the corrected Lie splitting (1.8)) as
predicted by our Theorem [I.6] Comparisons with other schemes are also provided.

Remark 1.7. The higher-dimensional versions of the null form estimate require
more regularity, cf. [48] or inequality (6.29) of [71]. In two dimensions, they could possibly
still be used to show an analogue of Theorem [I.6] with a convergence rate greater than
one under a suitable growth condition on g. Very recently, convergence rates for a Strang
splitting scheme for the 3D semilinear wave equation with power nonlinearity under
the assumption (ug,vg) € H' x L? were obtained in [61], see Part [II. We do not know
whether in this situation it is possible to show higher rates by using a low-regularity
integrator instead.
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2. The Schrodinger case

2.1. Error analysis of the first-order low-regularity integrator

In this section we prove Theorem in the case of the first-order scheme . We first
state the main hypothesis of this section and then convert the linear Strichartz estimate
into a bound for the solution u to the nonlinear problem (I.1)). In the following we
frequently use that for s > 1/2, the Sobolev space H*(T) forms an algebra and embeds
into L>(T), cf. Lemma and Theorem |A.1

Assumption 2.1. There exists a time 7' > 0 and a solution u € C([0,T],H') N
C1([0,T]), H™!) to the nonlinear Schrédinger equation (1.1)) with bound

My = [Jul| oo (jo,7,m1)-

Remark 2.2. The equation (1.1 is actually globally wellposed for any initial data
ug € L*(T) and the time T in Assumption can be taken arbitrarily large, cf. Theorem
4.45 of [7].

Proposition 2.3. Let u, T, and My be given by Assumption [2.1. Then we have the
estimate

10zull La o, r) ) San, 1-
Proof. We apply inequality (1.5) to Duhamel’s formula

. to.
u(t) = ety — i,u/ el(tfs)ag(\uﬁu)(s) ds.
0

Using also Minkowski’s inequality and Sobolev’s embedding H' — L™, we get

T
10wt agozrer) S 19wtollz2 + /0 102 (Jul?u)(s) [ 2 ds
Sy L+ l|ull T2 o ), ooy 10wll oo 0,77,22) Sam,r 1. O

We now give a representation of the local error of the low-regularity integrator ((1.3)).
The calculations are inspired by the ones in Section 3 of [59]. But compared to there and
also [55], we do not insert the approximation u(s) ~ €% at first. This makes it easier

for us to apply Proposition in the subsequent Lemma [2.5]

Lemma 2.4. Let u and T be given by Assumption . Then, the local error of (1.3)) is
given by

u(t) —up = u/ / ei(T_U)aED(a, s)dods,
0o Jo
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2. The Schrédinger case

for 7 € (0,T]. Here we define
D(o,s) = Di(0,s) + D2(0, s) + Ds(0, s)
with
Di(0,5) = ()2 (209 (uf20) (o) — 2fu(o) 222 a(c)),
Dy(o,5) = —2(0yu(0)) 22~ 9)% 4 (),
Ds(o,s) = —4u(a)8xu(a)621(ofs)a%89571(0),
for0<o<s<T.
Proof. By , we have

-
T(pl(—2i7'a§)ﬂ() = / QISaﬂDuO ds.

0
Duhamel’s formula, ([1.3]), and the fundamental theorem of calculus thus imply

u(T) —up = *1,[16”—82/ (e 1562(u u)(s) — ude QISaxUO) ds (2.1)
0

= ,ueiTag /OT(N(S, s)—N(0,s))ds = ,ueiTag /OT /OS 01N (o,s)dods.
Here, the function N(-,s) € C1([0,7], H~(T)) is defined as
N(o,s) i= —ie 7% (u(0) e =% 4 (o) ). (2.2)
Using the product rule and the differential equation , we compute the derivative as
0N (0,5) = e 7% | = 32 (u(0)2e =% u(0) ) — 2iu(0)du(o)e? =% ()
+ 2u(0) % (o) — iu(o)2eH T I% (o) |
= ¢ 0% { - 282u(0)u(0)621(0_5)6311(0) - 2(8111(0))2621((’_5)8%
— 4u(0)Bu(0)e? %9 u(a) — u(0) 2?7 9)% 924 o)
+ 2u(0)07u(0) e % a (o) — 2p(0) (|ul*u) (o) % (o)
+2u(0)2H % 24(0) — u(0)2eH V% 92u(0)

+ pau(e) 22O ([uf?u) (o) |

= e[ — 2(0,u(0))2eH V% (0) — du(0)Dyu(o) )%
+ (o) (= 2u(o) e 7% (o) + eI (ula) (o) )|

= ¢ 100 {Dl (0,s) + Da(o, s) + Ds(o, s)}, (2.3)

u(o)

2

20, u(o)

where we exploit the cancellation of all second-order partial derivatives. The derivative
is well-defined in H~!(T) since in 1D we can use the embedding L! < H~! and that the
multiplication by an H! function is a continuous operator on H~!. ]
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2.1. Error analysis of the first-order low-regularity integrator

In the next step we bound the sum of the local errors terms, where we will crucially
exploit Proposition as well as the dual of estimate (1.5).

Lemma 2.5. Let u, T, and My be given by Assumption [2.1. Then we can bound the
sum of local errors of (1.3|) by

12 SJMl T T

]Eei("—’f—ma% (ulti) — @x(u(t)) )|
k=0

for all T € (0,T] and n € Ny with nt <T.
Proof. Lemma with u(tx + -) instead of u yields

n—1

S O (1) — B (ultr)))

k=0
n-1 o [T [S oo
=p Z (k7 / / e 9% Dty + o, t + 5) do ds.
P 0o Jo

We now use the decomposition D = D + Dy + D3 from Lemma For the first term
we even obtain

n—1 . T s )
H Z el(n=k)r0; / / e_“’aﬂ%Dl(tk +o,t+ s)do dsH ST nr? <rT,
o 0 Jo H1 ’
using the algebra property of H' in 1D. The second term is controlled via
n—1 . T rs .
| S enmbrras /0 /0 e719% Dy(ty, 4 0, t), + 5) do dsHL2
k=0
n=1 . g
< Z/O /0 | Da(ty + o, tr, + )2 dods
k=0
n=1 .+ .7 . 52
Y[ [ 1@t + 01 €t + 0)] 1 dords
0’0 Jo

n—1 .
STy, /0 |18zu(ts + o) ||7allulty + o)l a1 do Sany Tl0wul 20,7y, 1)
k=0

S T\|5xu|’%4([o,ﬂxqr) SMT T

by means of Hélder’s inequality, the Sobolev embedding H' < L*°, and Proposition
The term involving Ds is first rewritten as

n—1

Z ei(n—k)Tag T e—iaagD
3(ty + o, t + s)dods
0o Jo

k=0
n=l tin ops
= Z/ / el(m_”)a%Dg(o*, s)dods
k=0 "tk b

17



2. The Schrédinger case

nr [Z]T
:/ el(m_‘f)ag/ Ds(o,s)dsdo,
0 o

where the application of Fubini’s theorem is justified since the double integral converges
absolutely in H~!. We next apply the dual of the periodic Strichartz estimate (1.5)),

which reads
T
H /0 e 192 (1) dt‘

Using Hélder’s inequality with % = é + i + %, as above we infer that

H /mei(m—a)ag /WﬂT Ds(o,s)ds dU‘
0 o

[Zlr
<r HO’ »—>/U Ds(o, s) ds’

L2

4
L3 ([0,T]xT)

T

|2 0, (0) | 12 ds|

<[l @~ losute) I |

- L3 (10,7])

S 7l|Ozull 4

L4 (jo,11,04) St T||axu||L4([0,T}xT) SMT T [

We can now finish the proof of the global error bound in a classical way with the help
of the discrete Gronwall lemma.

Proof of Theorem[1. for u,, given by (L.3). The error
en = u(ty) — up

satisfies the recursion formula

en+1 = U(tnt1) = Pr(u(tn)) + Pr(u(tn)) — Or(un)
= u(tpi1) — @r(u(tn)) + ™%,

— irpe ™% ((u(tn) 2o (~ 20702 i(n) — (un) o1 (=207 02) ity ).

Lemma [A§ now implies that
n—1 ) )
en =Y TR (b ) — D (u(ty))
k=0
n—1
—irp 3 IO ((u(ty)Pipr (~ 20702 )a(te) — (ur)Pipr (—2i702 )ik ),
k=0

exploiting that ep = 0. The term in brackets can be rewritten as

(u(tr))*e1(—2ir02)uty) — (ur)*e1(—2ir03 )i
= (u(ty))?@1(—2i702)er + (u(ty) + wr)enpr (—2i703) .

18



2.2. Error analysis of the second-order low-regularity integrator

Moreover, due to the definition (T.4)), the operator o1(—2i792) is clearly bounded uni-
formly in 7 on all Sobolev spaces H* with s > 0. From Lemma[2.5]and standard estimates
we thus infer that

n—1

lenllze Sanz 7473 (14 lexl? 3)llexl| 2
k=0

by means of the Sobolev embedding H 3/4 —y L% and the representation uj = u(ty) — eg.
Theorem with 7 = 3/4 and v = 1/4 yields a time 79 > 0 depending only on M; and
T such that

leall 3 <1

for all 7 € (0,7p] and n € Ny with nT < T. For such 7 and n we thus derive that

n—1

lenllze Sanz 7477 llewl 2.
k=0

The discrete Gronwall inequality from Lemma [A.9] then implies that

lenllze Sar.r 7. O

2.2. Error analysis of the second-order low-regularity integrator

In this section, we prove Theorems and for the second-order low-regularity
integrator . Our strategy is similar to that of Section Compared to that, more
error terms will appear, but the critical ones are roughly of the same structure as above.
The proof of the first-order error bound under the H'-assumption will only be sketched
since it does not require new ideas. We first extend Proposition to H2-solutions.

Assumption 2.6. There exists a time 7' > 0 and a solution u € C([0,T], H?) N
C*([0,T], L?) to the nonlinear Schrodinger equation (I.1)) with bound

My = HUHLOO([O,T],H2)~

Remark 2.7. Similar as in Remark the time 7" in Assumption [2.6] can actually be
taken arbitrarily large.

Proposition 2.8. Let u, T, and My be given by Assumption[2.6. Then we have the
estimate

102ull L4 o1 %) Shor 1

Proof. Similar as in the proof of Proposition we apply estimate (|1.5) to Duhamel’s
formula and obtain

T
1020l Lao.r1xm) S 195uoll 2 +/0 163 (Jul*w)(5) |l 12 ds
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2. The Schrédinger case

Sty L l[ull 2o 7y, ooy 1050 oo 0,77, 22)
+ 10wl 220,71, oo) 1 ull Lo 10,77,22)
Sampr 1,
exploiting also Minkowski’s inequality and the Sobolev embedding H' < L. O

The next lemma is the main reason why the scheme (|1.6)) is formally of second order.

Lemma 2.9. Let X be a Banach space, T > 0, and F € C%([0,7],X). We then have the
representation

F(s) — F(0) — 2[F(7) — F(0)]

T

S—. 5—

F'(o0)do — f/ F'(0)do
T Jo
S S T

(s — o) F"(0)do — > /0 (r = 0)F"(0) do

T

for all s € [0, 7].

Proof. The fundamental theorem of calculus and Fubini’s theorem yield

F(s) — F(0) = 2[F(7) — F(0)] = / '(0)do — = /0 " F'(6)d6

T T

_ / [F'(6) — F'(0)]d6 — > / "F'(6) = F'(0)] 6

—//F” dd&—f//F” )do do

—/ s—o)F"(0)do /(T—U)F"( )do. O

We can now compute the local error representation of (|1.6]).

Lemma 2.10. Let u and T be given by Assumption . Then, the local error of (1.6)
s given by

) —up = ;L/ / (= ")BID(U s)dods
‘o /0 /0 - 0)61(7_‘7)83[)(0, s)dods + R(u, 7),
for 7 € (0,T]. Here we define
D(o,s) = Di(0,s) 4+ Dy(0, s) + D3(o, s)

for the terms

Dy (0, 5) = 4i(0%u(0))2e2 9% 4(q),
Dy(o,s) = Siu(a)agu(a)em(”_s)az0522(0),
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2.2. Error analysis of the second-order low-regularity integrator

Ds(o,s) = [~10 + 01]D1 (0, 5) + 6i(0pu(0))?eX 9% 524i( )
+ 2010, u(0)02u(0) €2 =% D,u( ) + 4ipdu(o) D (|ul*u) (o) e % (o)
— 2(0,u(0)) 22O 0% 9,5(o) — 40pu(0)Dpu(c)e? D% 9,1 ( o)
+ digu(0) (0, (Jul*u) (0)e* 7% 0, 0(0) — Dou(o)e? T I% 0, (Jul*a) (),

with D1 from Lemma . Moreover, the remainder R(u,T) is given by
R(u, ) = —ipru(T )2 21760590 (— QiTai)ﬁ(T)
2
—i—z’,tu‘(e”agu )2e 03 O (—2iTd%)iug + %e”aﬂ%(\u0|4u0).

If only Assumption is satisfied, we can still write

u(r) —up = ,u/ / ei(T_U)agD(a, s)dods + ,u/ / fei(T_U)aﬂ%D(cr, s)dods + R(u,T)
0o Jo oJo T
(2.5)
with the expression D(s, o) given by Lemma 2.4

Proof. By the expression ([1.7]), we have
/ .02 TS 91582
T (—2i705) f = / e = fds
0

for all f € L2. Define u; by the second-order scheme (I.6)). Using formula (2.1]), the
definition of N from (2.2, and Lemma we then compute

u(T) —up = el /T (N(s7 s) —N(0,s) — f[N(T, s) — N (0, s)]) ds + R(u, 1)

0 T

= ,uei”?%/ / 01N (o,s)dods +,uei”9 / / —01N(o,s)dods + R(u, 1)
0o Jo

= ,ueiTa%/O /0 (s —0)9iN(0,s)dods

+Meira§/ / ;(7-_g)afN(U,S)dUdS+R(U7T).
0

Under the weaker Assumption the first derivative of N(-,s) was already computed
in @€3) as
O1N(o,s) = e_iaagD(U, s)

with D = D1 4+ Dy + D3 from Lemma Hence, formula is true. Let now the
stronger Assumption hold. We still need to verify that in this case, N (-, s) indeed
belongs to C2([0, 7], H!). Note that the term D; is harmless since it does not contain
any derivatives of u. Similar as in the proof of Lemma we compute

d

P {eiigaﬂ%Dg(U, 5)}
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2. The Schrédinger case

= 9%~ 102 ( - 2(0,u(0))2eH V% (0) ) — 40,u(0) Do) X T % (o)
— 4i(0pu(0)) 2% P24 () — z(axu(a))%?i(U*S)@%ata(a)]
= 9% 4i((02u(0))? + Da(0)Bu(0) )2 TV% (o) + 2i(Byu(0)) 2eH % D20 (o)
+ 8i0,u(0)02u(0)e2 9% 5 ii( )
— 40,u(0)0, (102u(0) - ip(|ulu) (o) )27 % (o)
— 4i(Opu(0)) 2% 924 (5) — 2(axu(o))2621<0—8>8%ata(a)]
= e 4i(02u(0))2eH % (o) - 2i(,u(0)) e % 02 (o)
+ 8i0,u(0)0%u(0) e 9% 9, 1i(0) + 4ipdyu(0) 0y (|ul?u) (o) =9)% (o)
- 2(6xu(a))2621(”_8)89208,5@(0)}

and

4
do
= 9% 102 — 4u(0) (o)X V%, 1(0) )
- 48tu(0)3xu(0)621(”_s)63&Eﬂ(o’) - 4u(0)81tu(0)621(”_5)838112(0)
- 8iu(0)8xu(a)e2i(o_s)a§8512(0) - 4u(0)3xu(0)e2i(‘7—s)8§8xtﬂ(0)}

{e‘iaaﬂ%Dg(a, s)}

= 9% [4i02u(0) Dpu(0) O I%E D, 0(0) + din(o)Du()e? % 0, (o)
+ 4iu(0)Dpu(0)eX T % B u(0) + 8i0yu(0)02u(0) e % 9, u( )
+ 8i(0pu(0))2e¥ 9% 925(o) + 8iu(0)02u(0)e? 9% 924 (o)
— 40u(0),u(0) V% D, u(0) — 4u(0)0, (102u(o) — ipn(|ul?u) () )2 7%0,u(0)
— 8iu(0)dpu(c)e @)% 934 (o)
— 4u(0)0u(0)e2 "%, ( — i02a(0) + ip(jua) (o))

= ¢ 9% 12102u(0)D,u(0) V% B, u(0) + 8i(Dpu(0))2eH T I% (o)
+ 8iu(0)92u(0)eX 9% 24 (0) — 40u(0)dpu(c)e® T )%, u (o)
+ dip ()0, (Jul?u) (0)e =% 0,(0) — dipi(0)Dpu(0) e % b, (|uf*a) (),

again exploiting the differential equation and that all expressions are well-defined

in H~'. Note that all third-order derivatives of u are canceled. We thus obtain the
assertion by summing up all the terms for the second derivative of N(,s). O

The next lemma gives control on the term Ds(c,s) defined in Lemma
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2.2. Error analysis of the second-order low-regularity integrator

Lemma 2.11. Let u, T', and M> be given by Assumption . The term Dg(a, s) defined
by Lemma [2:10 can then by estimated by

1D3(0, 8)l L2 S 1
forall o, s €[0,T).

Proof. All appearing terms are roughly of the form fgh with f € L? and ¢, h € H' and
can thus be estimated using the Sobolev embedding H! < L via

Ifghllz < (I fllz2llglizeelPlizee S WA N c2llgll a1l e O

To control the remainder R(u,7) defined in Lemma we need two more preparatory
lemmas.

Lemma 2.12. The estimate

ird2 :
7% f = fllz2 + 191 (=2i70) f = 5 f 2 S 71 f Il
holds for all f € H? and T # 0.

Proof. The estimate of ei7o% f — f is standard. The other term is then controlled using

A(-2m02) ) - 5f = = [ ste % —1)fds, =

72 Jo

Lemma 2.13. Let u, T, and My be given by Assumption . For all T € [0,T], we can

then write L 3
u(r) = €% uy — ipT|ug|*uo + R(u, 7).

The remainder R(u,T) satisfies the inequality

1R (u, ) L2 Sae 72
If only Assumption[2.1] is satisfied, we still obtain

1R (u, )|t Sy 7

Proof. The H'-estimate is a direct consequence of Duhamel’s formula and the algebra
property of H!. For the inequality in L?, we additionally exploit the fundamental theorem
of calculus to write

a92¢u0 + i,u7'|u0]2u0

: 4 *d i(t—0o . ir
_ —w/ / = [m=% (juu)(0)] dords — iur (e — 1)(Juo Puo)
0 0 g

u(T) — elr

The assertion then follows from standard estimates and Lemma 2.12 O

We can now give the estimates for R(u,7) from Lemma

23



2. The Schrédinger case

Lemma 2.14. Let u, T, and M> be given by Assumption . The remainder R(u,T)
defined by Lemma[2.10 can then by estimated by

IR (u, 7)ll L2 Saze 7

for all T € (0,T). If only Assumption is satisfied, we obtain
[R(u, T)l[2 Say 7

for all T € (0,T].

Proof. We insert the expression

ird2

u(r) = e7%uy — i/ﬁ]u0|2u0 + R(u, )

from Lemma 2.13] and obtain
—ipru(r)2e?70% ) (~2i702)u(T)
= —ipT ()2 ) (— 292 )i + 2(ip) (7% uo ) (Juo | Puo) €T o (—2i782) g
— (i) (7% ug) 22T G (—2i02) (Juo |*To0) + Ri(u, 7)

2
. i i . _ T
= —iut(e Taguo)2 Tafgo (—2iT0%) g — 5e Tag(\uo|4uo) + Ri(u,7) + Ra(u, 7).
The appearing error terms are given by
Ri(u,T)
= —2ipr (™% ug) R(u, 7)e ™% o (—2ir02)iig — ipT (™% ug)2eX 0% o (—2i702) R(u, )

)i
— 2ip7 (% ug) (—ipr|uoPuo + R(u, 7)) 0% o (= 2ir2) (iper|uo |20 + R(u, 7))
’( 217'83)11(7’)

— ipr (—ipr|ug|Puo + R(u, 7)) 7%

and
Ry(u,7) = —272(e™%u0) (|uo[uo) e ™% o) (—2i702) g
722t g (<2702 fuo i)+ -7 (o)
and satisfy R = Ry + Rs. Under Assumption we deduce
[R(u, T)l|z2 < [|Ra(u, 7)ll2 + [[Ra(u, 7)l[ 12 Snmp 7

by Lemma and iterative application of Lemma [2.12] respectively. Here we also
exploit that by the definition (1.7)), the operator ¢} (—2ird?) is bounded uniformly in 7
on all Sobolev spaces H® with s > 0. Similarly, Assumption and Lemma imply
that

1R (u, )| 2 < (1R (s )| 2 + | Ro(u, 7) [ 22 Samy 72 O
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2.2. Error analysis of the second-order low-regularity integrator

The next auxiliary result bounds the sum of the local error terms. Here we will crucially
exploit the L*-bound from Proposition

Lemma 2.15. Let u, T, and My be given by Assumption[2.6. Then we can bound the
sum of local errors of (1.6]) by

|52 07 (i) — s e
k=0

2
12 §M27T T,

H ’”‘f I (Ut 40) = B, (u(tn)) | Sonr T,
k=0

for all T € (0,T] and n € Ny with nt <T. If only Assumption is satisfied, we still
obtain

3 ok (althrr) = ®r(ulte))
H

k=0

H nil p(n—k—1)rd2 <U(tk+1) — éT(u(tk))) HH% San T,
k=0

12 SMl T T,

for all T € (0,T] and n € Ny with nt <T.

Proof. We only give the details for the estimates under the stronger Assumption [2.6]
since the results under the weaker Assumption are obtained analogously by using
the first-order error representation , compare also the proof of Lemma From
Lemma with u(ty + -) instead of u, we deduce

n—1

Zei(nfkfl)‘rag (u(tk+1) - &)T(u(tk)))

k=0

n—1 . T s . ~
=u Z el(n=R)To; / / (s — a)eﬂgagD(tk + 0,1+ s)dods
0 Jo

k=0
n—1 T T . ~
+p Z el(n=h)T0; / / E(T - U)eﬂ”agD(tk +o0,tp+ s)dods
E—0 0o Jo T
n—1
+ 3 R UTE Rty + ), 7). (2.6)
k=0

First, Lemma [2.14] implies

n—1
H Z ei(nfkil)‘r gR(U(tk + .),T)HLQ SMQ nrd ST 72
k=0

We next use the decomposition D = D; + D+ D5 from Lemma The terms involving
D3 are controlled by means of Lemma which gives

n—1 . T S . ~
H Z (k)02 /0 /0 (s — a)e_wang(tk +o,t+ s)do dsHL2 S, nrs <r 72
k=0
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2. The Schrédinger case

n—1 . T T . _
H Z el(n=k)70; / / f(T - a)e_“’ang(tk +o,t, +s)do dsH , SMa,T 72
k=0 0 Jo T L
The first terms in (2.6)) including D; are bounded by
n—l . 2 T s . 2 ~
H Zel("_k)Taﬂc / / (s —0)e 9% Dy (ty + o, t) + ) do dsH
k=0 070 L2
n=1 .. g _
< Z/ / | — olI1D1 (t + o, + 5)|| 2 dor ds
i—0’0 Jo
n=1 .+ . .
ST [0 [ @R+ el E (s + o)) i dords
k=0

n—1 T
ST 10ulty + o) Fallu(ty + o) g1 do Sar, 72(10%ull 720,77, 14
; (0.71.L%)
k=0

2(1192,,(12 2
ST ”a:ruHL‘l([O,T}XT) SMa,T T

Here we used Hélder’s inequality, the Sobolev embedding H' < L>, and Proposition
Similarly, we obtain
n-l1 . 2 T T S . 2 ~
H Z el(n—k)70; / / —(1 — a)e*“’ale(tk +o,t, + s)do dsH S, T 2.
k=0 0Jo T L

The terms involving Dy are first rewritten as
n—1 ) ) T s o
Zel("*k)”?z / / (s — 0)e 9% Dy(ty + 0, ty + s) do ds
k=0 0 /0
ol optegn s . -
= Z / / (s — a)el(”T*")aﬂ%Dg(U, s)dods
k=07t Ttk
nt 52 [Z]T -
= / (=)0 / (s —o0)Ds(0,s)dsdo,
0 o
n—1

Zei(n—k)ﬂ?g/ / 2(7 _ U)e—i08§D2(tk +o,t, + S) do ds
k=0 0 70

T

noloety ps g t . -
=) / / S (r1—0+ tk)el("T_")ang(a, s)dods
k=0 "tk t

nr o [%WT ~
= e [ L2017~ )P, 5) dsdo,

2

where the application of Fubini’s theorem is again justified since the double integral
converges absolutely in H~!. We next apply the Strichartz estimate (2.4) to infer that

H /OnTei(nT—U)aa% /{ji]T(S — U)D2(07 5)ds dJHL2
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2.2. Error analysis of the second-order low-regularity integrator

[Z1r N
St HU '—>/U (s —o)Dsy(o, s) ds‘

4
L3 ([0,T]xT)

%T i(0—s)02 52~
S 7o @)l l2u@le [T 1% 0o

g

I ds L4 (o)

SMy T 2|"92U||Lr3 (10.7],L4) Y 72||a§u‘|L4([0,T]x1r) SM,T 7'27

using again Holder’s inequality, the Sobolev embedding H'! <+ L*°, and Proposition
Similarly, we obtain

o (217 ~
o [ [, G 1D - DDt s

Sr 7o /L[J]( —[2)([2] = 2)Da(0, 5) ds|

EIL NN
S 7llo ol 1020t [, 1R 012 05

4
L3([0,7]xT)

4
L3 ([0,17)

S, 72103 UHL3 (0.71.0%) Sr 72 102ull 4o <) SMoT T

This finishes the proof of the L2-estimate. To obtain the first-order bound for the
H'-norm, we first note that a rough estimate based on the algebra property of H? gives

9 SMZ nrt ST 1.

H 712—:1 (i(n—k—1)72 (u(tk+1) _ @T(U(tk)))‘ .

k=0

The assertion then follows by interpolation. O

As in the last section, we conclude the proof of the global error bounds by means of
the discrete Gronwall lemma.

Proof of Theorem [I.3, For the scheme (1.6)), we define the error
en = u(ty) — up
for n € Ng and 7 € (0,1] with nT < T'. It satisfies the recursion formula

entt = 1) — Br(ultn)) + Br (u(tn)) — ®r(un)
= u(tns1) = B (u(tn)) + € %e,
— il ™% ((u(tn)) o1 (~2i702) — o1 (=27 02)altn)
— (un)?[ip1 (~2ir02) — 4 (~2i702)]iin
*4u(wﬂ%uwf”%¢<2v%m@m

- (eiTagu )2e ”8190 (— 21782)11,,1)
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2. The Schrédinger case

7_2

52
- e (luta)[*u(tn) = Jun| ).
By Lemma this formula and eg = 0 imply that

n—1
= 32 U (1) - @r(u(t)))
k=0
n—1
—irp >0 RO ((u(ty))ipn (~2i702) — ) (—2i702)a(ty)
k=0
— (un)*pr (~2i702) — 1 (=27 03y )
mZ kT (e (1y)) el o (~ 20T 02t
i (ewagu )2 iro2 ( 217‘8 ) )

—fZ 7% () [Hutr) — Junl )

From Lemma [2.15] and standard estimates, we now infer that

n—1
lenllze < er® +er Y (14 llexll3n) el 2,
k=0
n—1
lenll i < em+em > (1 + llerllz) lerll m
k=0

with a constant ¢ > 0 that only depends on M5 and T'. Here we exploited the elementary
re-writings
fPo—g*w = (f +g)o(f = 9) + g*(v —w),
[o*o — [w|*w = o[ *(v = w) + [v]*vw (@ — @) + [v]*|w]*(v — w) + v|w[*w (T - D)
+wlt (v —w),
the Sobolev embedding H' < L, the algebra property of H', and the representation
ug = u(ty) — ex. We then define the maximum step size
70 = (ce?T)71.
Let 7 € (0, 70]. Using the discrete Gronwall lemma by induction on n we deduce
leallgr < ce®r <1
and thus also
lenlzz < ce®r?
for all n € Ng with nt < T. ]
Proof of Theorem for u, given by . This is done analogously to the preceding

proof of Theorem The H'-estimates are replaced by estimates in H 3/4 compare also
the proof of Theorem for u, given by the first-order scheme ([1.3)). O
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2.3. Numerical experiment

2.3. Numerical experiment

The numerical behavior of the scheme (|1.3)) applied to the nonlinear Schrédinger equation
has already been extensively studied in the literature. See, e.g., |1} 54, [55] for
numerical experiments including comparisons with other schemes. However, they do dot
provide a clear picture concerning the convergence rate of the L? error in the situation of
H! initial data. While the experiment in Figure 1 of |1] shows first-order convergence as
proven in our Theorem the experiment in Figure 1 of [54] suggests an order reduction
down to 3/4. A possible explanation of this behavior is that an error bound of the form

lu(nT) = wnl p2my < er”

could hold for some 5 € (0,1), where one might have ¢ < C, with C' from Theorem
depending on the precise choice of initial data. Therefore, we provide a numerical
example where a wider range of 7 is considered than in [1, 54].

We solve the nonlinear Schrodinger equation ([1.1)) with 4 = 1 and 7' = 1 using the
first-order low-regularity integrators and the second-order scheme , called
LRI1 and LRI2, respectively. To construct the initial datum wug, we utilize the following
standard procedure that was similarly used in [54], see also Section [§] for more details on
this construction. We set ug = ¢/||®||p2(t), where the function ¢ € H*(T) is defined by
its Fourier coefficients

(gk _ (1 + ’k‘Z)f%(s+%+s)7,k

for k € {—Ko,...,Kop— 1}, and qgk = 0 elsewhere. Here we use the maximum frequency
Ko = 2%, uniformly distributed numbers r, € [~1,1] + i[~1,1], and a very small
parameter € > 0. The results are similar if we set 7, = 1 (for all k) instead. The space is
discretized by the standard Fourier pseudo-spectral method, where we choose K = 211
grid points. The reference solution is computed using the second-order low-regularity
integrator with 7yt = 10~7. Higher values of K and Jor smaller values of Tf and/or
a different reference integrator such as the Strang splitting did not change the outcome
for the range of 7 considered in the experiments below. Our Python code to reproduce
the results is available at https://doi.org/10.35097/v54nh3fcvy5u8my6.

In Figure we take H' initial data and plot the maximal errors of the first-order
scheme in the L?(T) norm against the step sizes 7. We observe a convergence rate
of approximately 3/4 as in [54] for the greater values of 7 in the range (1073,1072). For
smaller values of 7, the rate increases to approximately 9/10. In Table we list the
values of the step sizes 7, and L? errors e; of , where the index ¢ € {1,...,10}
denotes the corresponding run of the experiment. Moreover, we compute the experimental
order of convergence (EOC) by

loge, —logep_1

EOC, = (2.7)

logmy — logTo—1’

The results in Table indicate that the order of convergence is still increasing for
very small values of 7. According to Theorem [I.2] the convergence rate 1 must show
up for even smaller values of 7. Unfortunately, we were unable to make this visible
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2. The Schrédinger case

107! g —<LRI1 (L.3) ’
E ........... 0(7_3/4)
4 - 0(7_9/10)
1072
= m
2 ]
g ]
51072
1074 E

\H\ \\\\HH\ \\\\HH\ \\\\HH\ \\\\HH\
10~6 10~° 1074 1073 102

T

Figure 2.1.: L? errors of the first-order scheme (1.3)) for uy € H'.

numerically since further experiments revealed that this would require a disproportionate
computational effort.

Table 2.1.: Experimental order of convergence of (|1.3)) in Figure according to ([2.7)).
H T L? error EOC H

le-02  8.84e-02 -
3.59e-03 4.13e-02 0.74
1.29¢-03 1.91e-02 0.75
4.64e-04 8.40e-03 0.81
1.67e-04 3.47e-03 0.86
5.99e-05 1.42e-03 0.87
2.15e-05 5.71e-04  0.89
7.7e-06  2.26e-04 0.90
2.8e-06 8.98e-05 0.91

le-06  3.50e-05 0.92

Interestingly, in the situation of H' initial data, the second-order scheme behaves
better. In Figure [2.2] we observe first-order convergence as predicted by our Theorem
This behavior has already been observed in Figure 2 (a) of [14].

When trying to numerically verify the second-order convergence predicted by Theorem
in the case ug € H?, we observe a similar pathology as for the first-order scheme
above. The full convergence rate 2 is not visible for the range of 7 considered in our
experiment. Instead, we observe a convergence rate of approximately 1.88. In Figure [2.3
we take H? initial data and plot the maximal errors of in the L?(T) norm against
the step sizes 7. Moreover, in Table we list the experimental order of convergence
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2.3. Numerical experiment

——LRI2 (]1.6))
- o)

1072

L? error
Il

1073

1074 1073 102

T

Figure 2.2.: L? errors of the second-order scheme (1.6)) for ug € H*.

according to ([2.7]).

1 ——LRI2 (L.6)
L0+ ; ........... 0(7_2)
g (7_1.88)
5 5:
% 10~ ?
A ]
1076 E
107 E
:\\ T T T T T 1] I
104 1073 1072

T

Figure 2.3.: L? errors of the second-order scheme ((1.6) for ug € H?.
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2. The Schrédinger case

Table 2.2.: Experimental order of convergence of (1.6)) in Figure according to ([2.7)).

32

H T L? error EOC H
le-02 2.38e-04 -
5.99e-03 9.81e-05 1.73
3.59e-03 4.04e-05 1.73
2.15e-03 1.64e-05 1.76
1.29e-03 6.56e-06 1.79
7.74e-04 2.56e-06 1.84
4.64e-04 9.90e-07 1.86
2.78e-04 3.81e-07 1.87
1.67e-04 1.46e-07 1.87

le-04 5.60e-08 1.88




3. The wave case

3.1. Proof of the null form estimate

In this section we show estimate . Therefore we define the bilinear form
Q(),v) = 0 pOip — 0p POy,

As a preparatory step, we treat the homogeneous problem.

Lemma 3.1. Let ¢ and v solve the homogeneous wave equations

o —029=0, ¢(0)=do, 0p(0)=¢1
R -2 =0, 9(0) =10, Y(0)=1

with Cauchy data ¢o, 1o € HY(T) and ¢1, 1 € L*(T). We then have the estimate

1Q(0, V)l L2(rxm) S (10200l L2 + [|d1]l2) (102¢boll L2 + o1l 22)-

Proof. The solution to the wave equation is given by d’Alembert’s formula

T+

8(t,0) = 5ol +0) + dofz —0) 43 [ only)dy,

which is stated in equation (8) of p. 68 of [19] for smooth initial data, and extends to our
setting by density. Using the definitions

Uy = %(31% +¢1), wg= %(ax¢0 — ¢1),
we can then write
Or(t,x) = vg(z +1) —we(z — 1),  020(t,x) = vy(z +1) + we(z — 1),
and analogously for ). We compute

Q(, ¥)(t, 2) = (vp(x +1) — wy(z = 1)) (vy(x +1) — wy(z — 1))
— (vp(z 4+ 1) + we(x — 1)) (vy(z + 1) + wy(xz — t))
= —2ug(x + t)wy(z — t) — 2wg(x — t)vy(x + t).

Note that the “parallel interactions” cancel (where one has twice “z 4 t” or twice “x —t”)
and only the “transverse interactions” remain (where one has once “z + t” and once
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3. The wave case

“r —t7). We refer to p. 293 of [71] for further explanations of this phenomenon that also
apply to the higher dimensional cases.
To obtain the desired estimate, by substituting * —t = y and y + 2t = s, we compute

[ [ oG+ tyute =0 dedt = [olEsgeylwlFagr

for general functions v, w. It follows that

1Q(@, V)l 2(rxm) S lvgllr2llwylize + llwell 2 l[oyll 2
S 10200l L2 + [|@1ll2) (102vboll L2 + [l 22)- 0

Now we give the proof of (1.11]).

Proposition 3.2. Let T > 0 and ¢ solve the inhomogeneous wave equation

Ro—02p=F, ¢0)=¢o, 9p(0) = (3.1)

on [0,T] x T with data ¢g € H*(T), ¢1 € L*(T), and F € L'([0,T], L*(T)). Then we
have the inequality

1Q(6: D)l 2(0,1x1) ST 18200172 + 610172 + 1 F N1 10,7722

Proof. We decompose ¢ = ¢nom + @inh, Where ¢pom solves with ' = 0 and ¢in
solves with ¢9 = ¢1 = 0. The estimate for Q(énom, Phom) follows directly from
Lemma @ and the periodicity of 0 ;¢nom in time. To treat the inhomogeneous part, for
almost all s € [0,T], we define ¢* to be the solution to the homogeneous equation

07¢° — 07¢° =0, ¢°(s) =0, 8¢°(s) = F(s).
By Duhamel’s formula, ¢;,, is then given by
Ginn (1) = /0 "9 (1) ds.
It follows that we can express the bilinear term as
Q(inh, Pinn) () = /0 t /0 " 0(6%, 67 (1) ds dr.

Minkowski’s inequality, Lemma [3.1] and the energy equality imply
[ Q(binn, dinn) | L2([0,1)xT)
T T
< /0 /0 1Q(6%, &") |l 2(j0,77xT) ds dr

T T
Sr [ [ 1006l + 1097 0)]122) (102" (0) 12 + 0167 ()] 2) ds
SIFNZ o7y, 22

The mixed term Q(@hom, Pinn) is treated similarly. O
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3.2. Error analysis of the corrected Lie splitting

3.2. Error analysis of the corrected Lie splitting

In this section we carry out the proof of Theorem It is convenient to work with the
first-order reformulation of the nonlinear wave equation ([1.2)). With the definitions

uw\ . [ u 0 I 0 U
7= (1) = () 4= (3 1) 00 =) o= ()

we obtain the differential equation

QU(t) = AU(t) + GU(®)), te0,T),

U(0) = Up. (32)

Clearly, U = (u, 0yu) € C([0,T), H' x L*)nC* ([0, T], L? x H~1) solves if and only if
u e C([0,T), HY) nC([0,T], L?) N C%([0,T], H ') solves (1.2). The local wellposedness
of can be shown by a standard Duhamel fixed-point iteration in a closed ball of
C([0,b], H' x L?) for a suitable choice of b > 0.

Assumption 3.3. There exists a time 7' > 0 and a solution U = (u, dyu) € C([0,T], H x
L?) N CY([0,T], L? x H~') to the nonlinear wave equation (3.2 with bound

M = HU‘|L°°([O7T],H1><L2)‘

Since the nonlinearity g belongs to C?(R,R), we can find an increasing function L
such that ¢ satisfies

l9(2) +19'(2)] + lg"(2)] < L(]2]) (3.3)

for all z € R. In the following, we suppress the dependency on the function L from (3.3))
in the < notation. We now apply Proposition to the solution u to the nonlinear

problem ([1.2]).

Proposition 3.4. Let u, T, and M be given by Assumption [3.3. Then we have the
estimate

1(0u)® = (0eu)* || 20,1 xT) Sar 1

Proof. By Proposition the result follows from the inequality

lg(u)ll L1 o,m,22) Smr 1,

which is a consequence of ([3.3]), Hélder’s inequality, and the Sobolev embedding H! —
L. O

We now give a brief derivation of the corrected Lie splitting (|1.8)) proposed in [49].
It is based of the Lie splitting approximation for (3.2)), which is a formally first-order
scheme given by
Upy = e A UYS + 7G(UR)]. (3.4)

n

35



3. The wave case

By the Duhamel formulation of (3.2)), the fundamental theorem of calculus, and Fubini’s
theorem, the local error of (3.4) can be represented as

U(r)—Ule — ¢4 /0 e TAG(U (0)) = G(U)] do = €74 /0 N(r—s)eSAH(U(s)) ds. (3.5)

Here we use the definition
H(U(s) = eSA%{e_SAG(U(S))] - <9/(;(gs()1;f9i)u)(3)> .

Similar as in the Schrodinger case, we do not insert the approximation U(s) ~ e34U
(which was used in [49]) in order to create better conditions for applying Proposition
later.

The construction of the low-regularity integrator depends on the following crucial
observation. Since u solves and LY(T) — H~Y(T), the map H(U) satisfies the

differential equation

% H(U(s)) = —AH(U(s)) + B(U(s)) (3.6)

in L?(T) x H~!(T), where the remainder

_ 0
o= (g’%u)[(atuf — (0a0)?) + g’(u>9<w>

only contains first-order derivatives of u. We plug the Duhamel approximation H(U(s)) =~

e SAH (Up) for (3.6) into (3.5) and exploit (1.9) to infer

U(r) ~ U e [ (r = 5)e AR T) ds = e pa(~2r A H(UD)
0

(3.7)

Adding this term on the Lie splitting (3.4) gives the formally second-order corrected Lie
splitting
Unt1 = Ur(Un) = e Uy + 7G(Up) +7°02(—27 A)H(Un)], (3-8)

which corresponds to ([1.8). From this derivation we immediately get the following
representation of the local error. A related formula was derived in Lemma 6.2 of [63] in
the 3D case.

Lemma 3.5. Let U and T be given by Assumption (3.3). Then the local error of the
corrected Lie splitting (3.8]) is given by

Ulr) — Uy = 7 /0 (= e /0 " AB(U(0) do ds

for all T € (0,T].
Proof. Follows directly from ({3.5)), (3.8), and the Duhamel formulation of (3.6)). O

We can now bound the sum of local errors with the help of Proposition
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3.2. Error analysis of the corrected Lie splitting

Lemma 3.6. Let U = (u,du), T, and M be given by Assumption . Then we can
estimate the sum of local errors of (3.8) by

<u7 T2
HlxL2 ~MT T

|52 0t (Uth) - 9,0 (00)|
k=0

for all 7 € (0,T] and n € Ny with nt <T.

Proof. The triangle inequality and Lemma [3.5| with U (t; + -) instead of U yield

| S (U 1) — 0 (U @)
k=0

Hlx L2
n—1 .,
STty /0 IBWU (t + o))l g1 w2 do < 72 BO) || 1 jo,00, 17 x 22)-

We next insert the definition (3.7)) of B and apply (3.3)) and finally Proposition to
obtain

HB(U)||L1([O,T},H1><L2) = ‘|9”(U)[(3tu)2 - (a:cu)Z] + QI(U)Q(U)HD([O,T],L?)
Sar [|(8ru)? — (aﬂcu)2HL2([O,T]><']T) +1Smr 1. O

As in the Schrodinger case, we conclude the proof of the global error bound by means
of the discrete Gronwall lemma.

Proof of Theorem [1.6. We proceed similar as in the proof of Theorems and The

error

E, =U(ty,) — U,
of (3.8) satisfies the recursion formula
Epi1 =U(tny1) = U (U(tn)) + - (U(tn)) — - (Un)

)
= U(tnr1) = Ur(U(tn)) + € Ey + 7e"(G(U(tn)) — G(Un))
+ 726 pa (=27 A)(H (U (t)) — H(Un))-

~— ~—

Since Ey = 0, Lemma (A.8]) gives the representation
n—1
Ey= Y A (U ty) - (U (1))
k=0
n—1
+7 3 " ITA(G(U (1)) - G(UR))
k=0

n—1
+ 72a(=27A) 3" BT (H(U (1)) — H(UY)).
k=0
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3. The wave case

By the bounds on g from (3.3]), we have the inequality

l9(y) = 9(2)| + |9'(y) — ¢'(2)| S L(ly| + |2)ly — 2|

for all y, z € R. Moreover, due to its definition ((1.9), the operator po(—27A) is bounded
uniformly in 7 on H' x L?. Lemma the Sobolev embedding H' < L, the relation
U = U(ty) — Ek, and standard estimates thus imply that

n—1

1Enllzrixze < e +7 3 K(1 Bl )| Bellar e
k=0

with a constant ¢ > 0 and an increasing function K, both depending on M, T, and L.
We define the maximum step size

1
70 = (XT3,
Using the discrete Gronwall lemma we deduce via induction on n
| Enll i xpz < er?eXWT <1

for all 7 € (0,7p] and n € Ny with nt < T. a
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Part Il.

Error analysis of the Strang splitting
for 3D semilinear wave equations
with finite-energy solutions
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4. Overview

4.1. Problem setting

We study the time integration of the semilinear wave equation with power-type nonlin-
earity

Ot — Au+ plu|*tu =0, (t,z)€[0,T) xQ,

u(0) =u®,  Qu(0) =12, (.1

where the spatial domain  can be either T3 or R3. We allow for powers « € [3,5] and
both signs p € {—1,1}. The initial data (u®,v°) are assumed to belong to the physically
natural energy space H'(Q) x L?(€2). Here, the Sobolev space H*(f2) is defined as the
homogeneous Sobolev space H*(R?) if Q = R?, and the standard Sobolev space H*(T?) if
Q) = T3, respectively. To avoid some technicalities, we require u° and v° to be real-valued,
though we could also treat the complex-valued case.

It is well known that local wellposedness of can be shown by a fixed-point
argument. In the cubic case o = 3, the nonlinear term can be controlled only using
classical tools such as Sobolev embedding. In the case of higher powers o > 3, one has
to exploit the dispersive character of the wave equation. A particular useful tool are
the Strichartz estimates, which control mixed space-time LPL%-norms of solutions to
the linear wave equation in terms of the data. Thanks to the LP-norm in time, one can
choose the space integrability exponent ¢ larger than predicted by a fixed-time Sobolev
embedding. This makes it possible to show local wellposedness of for powers up to
the critical value v = 5, see, e.g., the monographs [66, 71].

In this work we are interested in approximating the temporal evolution of . A
natural choice for the time integration of such equations is the class of second-order
trigonometric (or exponential) integrators, cf. Chapter XIII.2.2 of [27] for an overview.
As explained in [11], these methods in one-step form can be interpreted as variants of
the Strang splitting with additional filter functions in the nonlinear part. In the context
of an ordinary differential equation with a globally Lipschitz continuous nonlinearity,
error estimates for such schemes were derived in, e.g., [11, 21, 25, [27]. For the PDE
with pure power nonlinearity, an error analysis was first given in [22], but only on the
one-dimensional torus T. The proof uses a similar strategy as the earlier work [50] for the
nonlinear Schrédinger equation. Under the finite-energy assumption (u°,v°) € H' x L2 it
was shown that trigonometric integrators converge with order two in L? x H~! and with
order one in the energy space H' x L? itself, even if no filter functions are used. In [10],
the same error bounds were shown in a more general setting (possibly including boundary
conditions) which in particular allows for rough L coefficients in the nonlinear part. This
made it necessary to equip the schemes with suitable filter functions to avoid numerical
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resonances for certain step-sizes. The higher dimensional cases d € {2,3} were also
considered in [10], but only under the stronger regularity assumption (u°,v%) € H? x H'.

In the proofs of the one-dimensional results in [10} 22], it was crucially exploited that the
Sobolev space H!(T) forms an algebra. This is however not the case in higher dimensions,
where the estimates for the nonlinear terms become more delicate. The local wellposedness
theory suggests to exploit Strichartz estimates in numerical analysis. Starting from [37,
40], this was first done for the nonlinear Schrédinger equation. Subsequent works used
discrete-time Strichartz estimates to show error bounds under low regularity assumptions,
such as |17, 36, 53] for the nonlinear Schrodinger equation on R? and [41} 54] in the case
of the nonlinear Schrédinger equation on the torus T?. In the latter case, the authors
further made use of discrete Bourgain spaces. For the nonlinear wave equation ,
no literature has been available in this context until recently. Based on discrete-time
Strichartz estimates, in our paper [63] an error analysis of the Lie splitting for (4.1]) on
the full space R3 was given, notably including the scaling-critical power a = 5. It was
shown that under the assumption (u®,v°) € H! x L?, the scheme converges with optimal
first order in L? x H 1.

Recently, another class of methods to approximate the temporal evolution of nonlinear
dispersive problems especially in low regularity gained a lot of attention, namely, the
low-regularity integrators. See [59, 60] for an overview. Due to an improved local error
structure, such schemes can produce higher convergence rates at low regularity than
classical methods such as the Strang splitting. The authors in [49] proposed the corrected
Lie splitting, which is a low-regularity integrator that can be applied to the nonlinear wave
equation . It was shown that the corrected Lie splitting is second-order convergent
in H' x L? under the regularity condition (u%,v°) € H't%* x HY* for dimensions
d € {1,2,3}. If d = 1, the regularity condition for second-order convergence can even
be relaxed to (u®,v%) € H! x L?, see [62] and Part [IL We also refer to [13] for an error
analysis of the corrected Lie splitting in lower regularity with reduced convergence rates
under a CFL-type condition. However, the analyses from |13} 49] do not apply to our
problem since they either require a global Lipschitz condition on the nonlinearity
(which is not satisfied by the power-type nonlinearity =+|u|* 'u), or higher-regularity
solutions satisfying u(t) € H® with s > d/2.

The cases © = 1 and p = —1 are called defocusing and focusing, respectively. In
the defocusing situation g = 1, it is known that the solutions to exist globally in
time (if @ = R? and « < 5, this additionally requires that «® € L**!). Moreover, in
the case of the full space Q = R3, so-called scattering results are known, meaning that
the nonlinear solution u asymptotically behaves like a solution to the linear problem
with possibly different initial value. Depending on the power «, such results sometimes
require additional spatial decay of the initial data, cf. Section 3.6 of [71]. It is a natural
question whether such techniques can be used to describe the long-time behavior of
numerical approximations as well. A first step in this direction was done in [15], where
the authors show a global-in-time convergence result for the Lie splitting applied to the
energy-subcritical Schréodinger equation by transferring results from scattering theory to
the discrete-time setting. In addition to the discrete-time Strichartz estimates from [36],
they exploit the pseudo-conformal conservation law which requires initial data in the
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conformal space, that is a subspace of H! whose elements have suitable spatial decay at
infinity.

The very recent preprint [42] considers splitting schemes for the cubic wave equation
on the two-dimensional torus T? for H* solutions with s > 1/4. Two main results on
error bounds are proven, where one relies on Sobolev embedding and the other one makes
use of discrete Bourgain spaces. However, the convergence rates seem sub-optimal in
the case when no uniform space-time L°° bound on the solution w is available, which
corresponds to the case s < 1 in two dimensions. The losses in the convergence rates
arise due to the the use of fixed-time Sobolev embeddings (that could be improved by
means of Strichartz estimates) in the first case. On the other hand, in the Bourgain
space framework a frequency-filtered scheme is used where already the approximation of
the initial data costs regularity. We believe that the results in [42] for s < 1 could be
improved by adapting our techniques to the two-dimensional setting.

4.2. Our contributions

The goal of the present part of this thesis is to prove optimal error bounds for a second-
order scheme applied to under the finite-energy condition. For powers o away from
the critical value o = 5, the convergence rates obtained here are higher than those from
our previous paper [63]. In the important cubic case a = 3, we even almost recover the
optimal temporal second-order convergence in L?. The treatment of the scaling-critical
nonlinearity o = 5 is based on Section 5 of our earlier work [63], where the Lie splitting
was considered. As far as we know, this provided the first error analysis of a time
discretization for a scaling-critical problem. We adapt this analysis to show first-order
convergence in L? and convergence without rate in H! also for the Strang splitting. In
the case of the defocusing quintic nonlinearity on the full space (i.e., when Q = R3, =1,
and « = 5), our analysis is global in time and we include a scattering result. To our
knowledge, such a global analysis was only done in [15] for the semilinear Schrédinger
equation previously. However, we treat the energy-critical case which was not considered
in [15], and as opposed to that paper, we do not need additional decay assumptions on
the initial data. Indeed, our previous analysis from [63] can be extended to the global case
with only minor adjustments. Finally, for the torus = T3, we treat the fully discrete
setting (using the Fourier pseudo-spectral method) with optimal spatial convergence.
In our earlier work [63], the terms stemming from the local error were estimated using
discrete-time Strichartz estimates. In combination with a non-optimal frequency filtering,
this led to a loss of convergence order in the error analysis of the formally second-order
corrected Lie splitting. Here, we use a more suitable filtering that was similarly proposed
as “method (B)” in the one-dimensional case in [22]. Moreover, we show that at least in
the case of the Strang splitting, one can avoid the issues coming from the application of
discrete-time Strichartz inequalities to the local error terms by using the continuous-time
Strichartz estimates instead. In the cubic case o = 3, it even turns out that we do not
need any discrete Strichartz estimates to prove our semi-discrete error result at all (the
continuous ones are still used). This is related to the fact that, as mentioned above, the

43



4. Overview

wellposedness of (4.1]) can be shown without using Strichartz estimates for « = 3. In
the case a € (3, 5] however, we need the discrete-time Strichartz estimates to ensure the
stability of the numerical scheme.

We establish various discrete-time Strichartz estimates in Section Bl Here one controls
discrete-time points (u(n7)),ez of the solutions to the linear problem in spaces like
¢P(Z,L1(R3)) by L%-based norms of the initial data, where 7 € (0, 1] is the time-step
size. It is easy to see that a naive discrete-time version of results in continuous time
fails, cf. Remark As a remedy, we include frequency cut-offs g that truncate the
high frequencies at level K > 1. The estimates then depend on K7, but are otherwise
in complete analogy with the estimates in continuous time. Similar results for the
Schrodinger equation have been obtained in [36} 53], see also [41} [54] for the case of
periodic boundary conditions using Bourgain spaces. Moreover, Strichartz estimates
for spatially discrete Schrédinger equations were treated in the seminal works [37} 40].
In contrast to the Schrédinger equation on R™, in the wave case one has to work with
frequency-localized estimates and the Littlewood—Paley decomposition already for the
basic Strichartz inequalities. In Theorem [5.12] we also derive local-in-time estimates at the
forbidden endpoint (p, q) = (2, 00) with an additional logarithmic correction depending
on K and the end-time 7. Such an inequality was shown in [43] for continuous time.
Moreover, by exploiting the finite propagation speed of the wave equation on the torus
T3, we obtain locally in time the same Strichartz estimates as on the full space R3. This
is in sharp contrast to the Schrédinger case (with infinite speed of propagation) where
the Strichartz estimates on the torus are restricted compared to those on the full space,
cf. |7].

Even though our nonlinearity is of power-type, we have to make use of a filter function
inside the nonlinearity when estimating the terms resulting from the local error (compared
to the one-dimensional case [22]). This is essentially caused by the fact that in 3D, the
multiplication by an H! N L* function is not a bounded operator on H~'. As a filter,
we use the operator 7.-1 already mentioned above, which is the Fourier multiplier for
the characteristic function of the cube [~77!, 7713, where 7 > 0 denotes the time step
size. This particular choice is made for several reasons. First, it enables us to use the
summation by parts formula to exploit cancellations in the terms stemming from the local
error. Second, a filter of this type is needed to obtain discrete-time Strichartz estimates
(compare, e.g., [36, 41}, 53| |54} [63]), which are necessary if o > 3. Third, it fits well to the
spatial discretization with the Fourier pseudo-spectral method. As a conceptual novelty,
the proof of our error estimates combines the summation/integration by parts technique
(as already used in, e.g., |10} [11]) with the use of Strichartz estimates.

While extending our results to the fully discrete setting, we face the difficulty that one
cannot take advantage of negative-order Sobolev spaces when estimating the trigonometric
interpolation error. We solve this issue by using an L9 estimate for the trigonometric
interpolation error from [2, [35] 58].
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4.3. Results in the semi-discrete setting

We analyze a variant of the Strang splitting scheme that computes approximations U,, =
(u(nt), Opu(nT)) for a step size 7 > 0 and n € Ng. With the notation A(u,v) = (v, Au)
for the wave operator and G(u, v) := (0, —u|u|*~'u) for the nonlinearity, the semi-discrete
form of the scheme reads

Unti/o = € Un + 3G -1U,)),
Un+1 = Upy1j2 + 5GIL1Upy1/2), (4.2)
Up = (u°,2°).
This scheme fits into the class of trigonometric integrators in one-step formulation
as described in Section XIIL.2.2 of [27], with “inner filter” II.-1 = diag(m -1, 7 -1).
It corresponds to a variant of “method (B)” that was proposed and analyzed in the
one-dimensional case in [22]. See (5.8)) and (5.15)) for the precise definition of the filter.

Our convergence result for the subcritical case o € [3,5) reads as follows. It is proved

at the end of Sections [7.4] and respectively.
Theorem 4.1. Let T € (0,00) and U = (u,dyu) € C([0,T], H(2) x L?(2)) solve the

semilinear wave equation (4.1)). Then there are a constant C > 0 and a mazximum step

size 19 > 0, such that the approzimations U, obtained by the filtered Strang splitting
scheme (4.2) satisfy the error bounds

U (n7) = Unllagi 12 < C7|log 7],
|U(n7) — Unllp2xp—1 < CT*|log |
for a =3, and
U (n7) = Unllppr e < C773°,
U (n7) = Unll 21 < CT 2"

for a € (3,5). Theses bounds are uniform in T € (0,70] and n € Ng with nt <T. The
numbers C' and 7o only depend on T, «, and ||U|| Lo jo,7),31 x 1.2)-

Remark 4.2. The logarithm in the result of Theorem [4.1] for &« = 3 comes from the use
of the endpoint Strichartz estimate for the L?L> norm that only holds with a logarithmic
correction, cf. Corollary [5.16]

Remark 4.3. In the case of a slower growing nonlinearity with o € [2,3), an inspection
of the proof of Theorem shows that one obtains the same error bounds as in the cubic
case a = 3. If O = R?, one has to assume an additional condition such as u® € L? to
deal with the case a < 3 (due to issues with homogeneous Sobolev spaces).

We also provide an error analysis for the critical case & = 5. Notably, the analysis is
global in time in the defocusing case on the full space, i.e., if @ = R3 and = 1. To
obtain this result, it is crucial to work in homogeneous Sobolev spaces, since the wave
group e* is not bounded uniformly in ¢ on the standard (inhomogeneous) Sobolev spaces
H" x H™™'. The proof is given a the end of Section
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Theorem 4.4. Let « = 5 and T € (0,00). If Q@ = R3 and p = 1, we also allow
T = oco. Let U = (u,0u) € C([0,T), H () x L3(Q)) with u € L*([0,T], L'23(Q)) solve
the semilinear wave equation . Then there are a constant C' > 0 and a mazximum
step size 19 > 0, such that the iterates U, of the filtered Strang splitting scheme (|4.2))
satisfy the error bound

IU(nT) = Unllp2xy-1 < CT

for all 7 € (0,79] and n € Ny with nt € [0,T). Moreover, we obtain the convergence

IU(n7) = Unlizg 2 = 0

as T — 0, uniformly in n € Ng with nt € [0,T). In the case Q = R3, the number C
only depends on ||U|| s (jo,mm1 x22(0)) and ||u]|aqo/m,012(q)), whereas 7o only depends
on u’ and V0. In the case Q2 = T3, the constants C and 1y additionally depend on T .
Furthermore, if Q = R? and u = 1, we obtain the scattering result

. . A
PE%)JLH&O [Un — € Uil g1y =0

for some asymptotic state U € H' x L2

Remark 4.5. The more sophisticated analysis for a = 5 is reflected by the dependence
of the maximum step size 79 on the solution itself, rather than just on its norm. A similar
behavior occurs in the wellposedness theory, see Section and [71].

Remark 4.6. The global-in-time analysis does not apply to the subcritical case o < 5
without further assumptions. The reasons are the same as those which prevent a
straightforward scattering result in that case, cf. Remark [6.6]

Remark 4.7. We compare our 3D results to the known results in 1D. If o = 3, our
convergence rates are almost the same as those obtained in the one-dimensional cases in
[10, 22]. For a > 3, the Theorems and exhibit an order reduction. This reduction
can be observed in our numerical experiment in Section [§]

Remark 4.8. In the defocusing case ;1 = 1, energy conservation shows that the solutions
to exist globally in time (if @ = R and o < 5, one needs the additional assumption
u® € L*! to ensure that the energy is finite). Moreover, the numbers C' and 7y from
Theorems [.1], as well as the number C from Theorem [4.4] then only depend on T, «,

[0 ll320)» [10°] 1262, and possibly [[u°| je+1(rs). See Remarks 6.6

Remark 4.9. The integrability condition u € L4([0,T], L'?()) is assumed in Theorem
since uniqueness of solutions to (4.1)) for « = 5 is in general not known without such a
restriction, cf. Remark d) and [57]. If = 1 and Q = R3, one can always take T = oo

in Theorem [£.4] cf. Remark

Remark 4.10. With somewhat greater technical effort we could also treat the equation

O*u — Au = g(u) (4.3)
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with a general nonlinearity g € C?(R, R) satisfying the bounds

l9() S 1+ [2]%
9 ()] S 1+ 27,
9" () S 1+ 27,

for z € R. This covers in particular the semilinear Klein—Gordon equation since the
lower-order mass term can be moved into the nonlinearity. The global-in-time result of
Theorem [4.4] will however not directly extend to a setting where the nonlinearity contains
a lower-order part. Still, we expect that global results are possible in the Klein—Gordon
case, for instance.

Remark 4.11. One might wonder if under our assumption (u”,v°) € H! x L?, a low-
regularity integrator such as the corrected Lie splitting proposed in [49] can give higher
convergence rates than classical schemes such as the Strang splitting. The authors in
[49] show that this is possible in the one-dimensional case, see also Part [IL. However, in
our 3D case we did not succeed to find such a result so far, cf. Remark

4.4. The fully discrete scheme

In the case = T3, we can also provide error bounds for a full discretization. Denoting
by K > 1 the spatial discretization parameter for the Fourier pseudo-spectral method,
we consider the fully discrete scheme

Uni1/o = € Un + 5IxG(I1,-1Ty)]
Un+1 = Upq12 + 5Ik G 1Upy1/2) (4.4)
Uo = HK(UO,’UO).
Here, we use the notation Zx = diag(Ix, Ix) for the trigonometric interpolation operator
I, cf. Definition Note that (4.4]) corresponds to the semi-discrete scheme (4.2)) in
the case K = oo, where we define Il = Z,, = I.

In the subcritical range « € [3,5), we establish the following fully discrete convergence
result.

Theorem 4.12. Let T € (0,00) and U = (u, 0yu) € C([0,T], H(T?) x L?(T?)) solve the
semilinear wave equation (4.1)). Then there are positive constants C, 19, and Ky, such
that the approximations U, obtained by the fully discrete filtered Strang algorithm (4.4)
satisfy the error bounds

IU(n7) = Unll2xy-1 < C(7|logr| + K1), if a =3,

[U(nT) = Unllpox— < Cr 2 + K, ifae(3,5),
uniformly in T € (0,79], K > Ko, and n € Ny with nt < T. We moreover obtain the

COn'U@T’genC@
|U(nT) = Unllgixz2 — 0
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as T — 0 and K — oo, uniformly in n € Ny with nt € [0,T]. The numbers C, 19, and
Ko only depend on T, a, and ||U|| oo (j0,1, 1 x 12)-

In the critical case o = 5, our fully discrete result reads as follows.

Theorem 4.13. Leta =5 and T € (0,00). Let U = (u, dyu) € C([0, T], H (T3) x L*(T?))
with w € L*([0,T], L'*(T?)) solve the semilinear wave equation ([4.1). Then there are
positive constants C, 19, and Ky, such that the iterates U, of the fully discrete filtered
Strang splitting scheme (4.4) satisfy the error bound

|U(n7) = Unll2xm—1 < C(r+ K1)
forallT € (0,19], K > Ky, andn € Ny withnt < T. We moreover obtain the convergence
”U(TLT) - UnHHle2 —0

as T — 0 and K — oo, uniformly in n € Ng with nt € [0,T]. The number C only depends
on T, ||U || e (o7, 51 x £2) and ||| pajo.1,112), whereas 1o and Ko only depend on u® and
Y.

Remark 4.14. We emphasize that K and 7 can be chosen independently in our results.
Note that our fully discrete Theorems [£.12] and [£.13] formally imply their semi-discrete
counterparts for the torus T? from Theorems and in the limit K — oo.

Remark 4.15. In Theorems and the spatial order K~! for the error in
L? x H™! is optimal. This can be seen by investigating the projection error

I(I =) U 7)1 S KU 0T || a1 2,
cf. Lemma Similarly, in the energy norm, the projection error satisfies
I = T U (7)1 ez — 0

for K — oo, but without rate in general, since we only assume the regularity U(t) =
(u,Ou)(t) € H' x L?. Therefore, we can only expect spatial convergence without rate in
the H' x L?-norm.

Remark 4.16. Here we could also treat the general equation (4.3). In view of the error
bound for the trigonometric interpolation from Lemma we then would additionally
need the third derivative of g with bound

9" ()] S 1+ 2772

Remark 4.17. In view of the error bounds of Theorem [4.12] it might be advantageous
to choose the spatial resolution finer than the temporal one. In the cases a € {3,5},
the nonlinearity is a polynomial and thus respects the frequency localization up to a
constant. In particular, if additionally K > «//7, it turns out that the highest frequencies
(Ilx =My 7)Uy in are only influenced by the linear part e*4 and not by the nonlinear
function G. Therefore, in that case, if one is only interested in the numerical approximation
Uy for some N > 1, the high-frequency part can be computed directly from the initial
data via (Ilx — 11,/ )Un = eNTA(Mx — I1,/,)(u®,v%), without time-stepping. This idea
was also exploited in the recent paper [13].
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Remark 4.18. The torus T? corresponds to a cube with periodic boundary conditions.
We can also treat the problem on a cube with homogeneous Dirichlet or Neumann bound-
ary conditions by restricting the full Fourier basis to a sine or cosine basis, respectively,
see Section Similarly, the semi-discrete results from Section [4.3] naturally extend to
(possibly irrational) tori R/(a1Z) xR/(asZ) xR /(asZ) and cuboids (0, a1) % (0, az) x (0, a3)
with homogeneous Dirichlet or Neumann boundary conditions for some side-lengths a,
as, ag > 0. To obtain fully discrete results also in that case, it remains to be checked
whether the trigonometric interpolation error estimates from Lemma hold true in
that setting as well.

Remark 4.19. Our results do not cover the case that the differential equation
is posed on a general non-cuboidal domain with appropriate boundary conditions. In
this setting the derivation of Strichartz estimates is considerably harder and the range
of admissible exponents is restricted, see [6]. In the case when K7 =1 in the discrete
Strichartz inequality Theorem (which is sufficient for our applications), one can
show discrete-time Strichartz estimates using the continuous ones as a “black box”, see
Remark Using this, we could transfer our semi-discrete results to the general domain
case, where we would need to adjust the convergence rates for small a according to
the restricted Strichartz estimates. However, it is still unclear how to involve space
discretizations if spectral methods cannot be used and if it is possible to derive Strichartz
estimates for, e.g., finite element approximations. For Schrédinger equations on the full
space, Strichartz estimates for finite-difference Laplacians have been treated in, e.g.,
[32, [37, |40]. Nevertheless, the corresponding problem for a multi-dimensional wave
equation seems to be unsolved even in this simple model case, cf. [16]. Moreover, since the
previously mentioned works make essential use of Fourier techniques, it is still completely
open how they extend to more general domains or non-equidistant meshes.

4.5. Notations

Let p € [1,00]. The discrete p-norms on R? are denoted by | - |, and we simply write
|| = |- |2 for the euclidean norm. The Holder-conjugated index to p is denoted by
p' € [1,00] and satisfies the relation 1/p+1/p’ = 1. The set B(zo,7) = {z € R?: |2| < r}
is the ball with radius r > 0 centered at some position zg € R?. The identity operator is
denoted by I. We write 1p for the indicator function of a set B and 1 for the function
being constantly one.

We denote by D(T?) the space of 2r-periodic C°°(R3)-functions and by D’(T?) the
space of distributions on the torus, cf. Definitions 1.23-1.24 of [64]. The k-th Fourier
coefficient of a distribution v € D'(T?) is defined by

O = (2m) 72 (v, e 75 ) pypoyepersy, k€ ZP.
For a real number s € R, the Sobolev spaces on T? are given by

H(T%) = {0 € D(T9): 0] () < o)
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with norm
[l Fre(pey = > (L4 [k[?)*[0x]*. (4.5)
kez3
We have H°(T3) = L?(T?3) by the Parseval equality.

We write F for the Fourier transform on R? (and also on T?), using the convention
with the prefactor (27)~3/2. We set @ := Fu. We denote by S(R?) the Schwartz space
and by &'(R?) the space of tempered distributions on R3. In the context of Fourier
multipliers, we often simply write £ instead of the map £ — £. For s € R, we use the
inhomogeneous and homogeneous Sobolev spaces

H*(R®) = {w € §'(R?) : b € Li,(R%) and [|w]| s (rs) < o0},
HY(R®) = {w € S'(R?) : d € Lipo(R?) and [|w]| s (gs) < o0}

with norms

ol ey = 10+ 16250l oy, lolgeesy = bl sy, (46)
where L] _(R3) denotes the space of locally integrable functions on R3. Plancherel’s
theorem yields H(R3) = H°(R?) = L?(R?). By Proposition 1.34 of [3], the homogeneous
space H*(R3) is complete if and only if s < 3/2. For Q € {R3, T3}, we set H*(Q) =
H*(R3) if Q = R? and H*(Q) = H*(T?) if Q = T5.

Let h: R — C be a measurable function. To denote the Fourier multiplication operator
for the function & — h(|¢]) (on R3?) and k +~ h(|k|) (on T?), we will use the notation
h(]V]) in both cases (see Definition[A.4with m: & — h(|¢])). It is clear from the definition
of the Sobolev norms that if the function h is bounded, then the operator h(|V|) is
uniformly bounded on all spaces H*(T?), H*(R?) and H*(R3). Moreover, A = —|V|? is
the Laplacian. Some more properties of Fourier multipliers and function spaces can be
found in Appendix [A]]

Let p € [1,00], J be a time interval, X be a Banach space, and 7 > 0 be a time step

size. In analogy to the continuous-time Bochner norm || - [ 1»(s x), we also introduce the
discrete-time norms )
1F ey = (7 2 1Bl )
nez
nteJ

if p < oo, and
”F||Z$°(J,X) = sup || Fnllx-

nez

nreJ
To simplify notation we often write || F5,[/2(; x) instead of |[(F})nezller (s x), Where a “free”
variable n is assumed as the summation variable. In the case J = [0,T], we abbreviate
L3 X = LP([0,T], X) and €] X = 2([0,T], X). We also use the short-hand notations
IPX = [P(R, X), °X = (2(R, X), and (PX = (R, X) = (*(Z, X).
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In the following two Sections and we only work on R?, therefore we abbreviate
L = L4(R3) etc.

5.1. Strichartz estimates on the full space

A triple (p, q,7) is called admissible, H'-admissible (for the wave equation in dimension

three) if p € (2, 00], ¢ € [2,00), and
! + ! < ! + (5.1)
S — == —". .
p oq 2 P oq 2

One then has v € [0, %), and the equality in (5.1)) is called scaling condition. The following

theorem is well known, cf. Chapter IV.1 of [66].

Theorem 5.1. Let (p,q,7y) be admissible. Then we have the estimate
||€it‘v‘f”Lp(R,Lq(R3)) Spa ||f|!m
for all f € HY(R3).

Observe that for p = oo, the estimate can also be deduced from homogeneous Sobolev
embedding (cf. Theorem followed by Plancherel’s theorem. If p < oo however, the
scaling condition implies that we save 1/p derivatives compared to the fixed-time Sobolev
embedding. Moreover, we then obtain some temporal decay at infinity since the estimate
is global in time. The equality in is necessary due to the scaling f — f) with
fia(x) = f(Ax), which explains the terminology. The necessity of the inequality in
follows from the so-called Knapp example, see Exercise 2.43 of [71]. Theorem remains
true for triples (p,00,v) with p € (2, 00) that satisfy (5.1]), see Proposition 0.1 of [47].

Remark 5.2. The transformation f — f shows that one can always replace eV with
e VI in the estimates of this chapter.

The estimate from Theorem can be applifed to the wave equation in the following
way. Let v € [0, 3). For given initial data f € H?(R?) and g € HY~!(R3), we define the
function

w(t) = cos(t|V|)f + V| 'sin(t|V])g, teR.

Using the Fourier transform, one checks that w € C(R, H?) solves (in the sense of
tempered distributions) the linear wave equation

attw —Aw = 07 ’LU(O) = f7 atw(o) =g
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5. Linear estimates

Applied to the decomposition
1 . . 1 . )
sin(t|V]) = f(eltm — e HVh cos(t]V]) = 5(elthl + eV, (5.2)
i
Theorem and Remark yield the inequality

lwllzeze Spa 1115y + 19l a1

whenever (p, q,~) is admissible.
To obtain estimates for discrete time, we start with some standard definitions and
results.

Definition 5.3. Let x € C°(R3 R) be a radial function with x = 1 on B(0,1) and
supp x € B(0,2). For £ € R® and j € 7 we set

0(E) = x(€) — x(26).
U@ = (), Pu=F ()

forueS'.

These definitions yield suppt; C {€ € R? : 2771 < |¢] < 27F1} and the identity

> vi(€) =1, £eR’\{0}.

JEZ

By the convolution theorem, we can also write P f = (2m) 32 F “L(4p;)* f (cf. Proposition
. Young’s convolution inequality then shows that the “Littlewood—Paley projections”
P; are bounded in LP uniformly in j € Z and p € [1,00]. Indeed, using the dilation
operator D, given by (D,f)(z) = f(ax), we have

1P; fllze < IF 7 (Dy-3%) * fllze < IF~H(Da-s)l pall fllze = 2% | Dos F~H (@) [ 1[I £ |
= 177 @D llfllze S I1Fllze,

exploiting Lemma [A77]
From Proposition III.1.5 of [66], we recall the kernel bound

| F 1) e S @+ [t))7Y, tER. (5.3)

The proof of the Strichartz estimates is based on the following well-known frequency-
localized dispersive inequality. We give the proof for convenience.

Lemma 5.4. It holds
. 35 2 . _ 1_2
1€VIP; £l 1o < 257073 (14 27e)) "9 £ L

foralljeZ, teR, qge (2,00, and f € LY.
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5.1. Strichartz estimates on the full space

Proof. Let first f € L'. Young’s convolution inequality yields
1eIYIP; fllzee S IF (M) o 1 £ -
With the dilation operator D, from above, we compute
—l(eit|§\wj) _ ]_——l(eit\5|D27ﬂ/)) _ 23jD2j]_——1(812jt|§\w)‘
Estimate ([5.3) now gives
|€1VIP; fllpee < 2% (1 + 271t M1 e

The assertion follows from the Riesz—Thorin theorem by interpolation with the L?-bound
V1P fll 2 S N1 f |2 O

Now we turn our attention to the discrete-time setting. In the following ¢P LY estimates,
the P-summation is always taken over the variable n. We start with frequency-localized
inequalities.

Lemma 5.5. Let (p,q,7) be admissible. Then the estimates

| RN R <, 22727 + DI F e (5.4)
kez e
_ . J
| X e VB R | Spa 2727+ DIFll g (5.5)
keZ
. . i
131 fllgpra Spq 2725 + 1) P fl 2 (5.6)

hold for all F € P LY, f € L2, and j € Z.
Proof. We first deduce from Lemma [5.4] the estimate

i(n—k)|V| p. PR
HI;ZM PF|, < H%:ZHM Pyl

< 23]'(17%)“ ”FkHLq’ _
ez (1+2in— k)" a
- zzj(%ﬂ)H | Fell o 2
kez (1+27|n — k[)» ¥

P

where the last inequality follows from the admissibility conditions ([5.1]). The first assertion
for p = oo is now clear. For p < oo we compute
)

22j(%+7)H | Fxll 1o
. 2
kez (1+27|n — k[)» 7

N H Z |kl o

(1+ 2|n — k|)»

)

<226 (1Bl |,

< 22]'7(2%“FHZPIM, + H Z |’Fk”Lq
Z n
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5. Linear estimates

2
Sp,q 22]7(2 P+ 1)HF||ep’Lq’

with the help of the discrete Hardy-Littlewood—Sobolev inequality (see Proposition (a)
in [67]). This proves . We note that in the case n = k the factor 2%/P does not
cancel. This is the main difference to the continuous case, where such a term does not
appear in the continuous Hardy—Littlewood—Sobolev inequality.

The other two claims follow by a TT™ argument, exploiting the duality of /PL9 and
' LY. Let first F € coo(Z, qu) be a finitely supported sequence, i.e., there exists N € N
such that F,, = 0 for all |n| > N. From we derive

| S e vmA, = & (Z b B
kEZ n€Z keZ

. 2
<[ X PVBE Pl Spa 2@ + DIF -
keZ

Here we write (-, -) for the L?-inner product and exploit that the adjoint operator in L?
is given by (e™V1)* = ¢=™Vl and that by Bernstein’s inequality from Lemma, P;
maps LY to L2. The assertion for general F' € ('L then follows from the density
of coo(Z, L7 in /7' LY . By duality, implies that

. . 7
1BV fllenra Spag 2727 + D)IIf ] 2 (5.7)

for all f € L?, using that P; is self-adjoint in L2, To recover P; on the right-hand side,
we use the fattened Littlewood-Paley projection E? = Pj_1+ Pj + Pj; for j € Z, noting
that P;P; = P;. Clearly, also holds with P; instead of P;. In this inequality, we
then replace f by P;f to obtain the last assertion (j.6]). O

To obtain discrete-time Strichartz estimates, it is necessary to include a suitable filter
operator. This was first observed in case of the Schrodinger equation, cf. [36]. The filter
will be exploited to deal with the factor 2//? + 1 in . As filter, we choose a frequency
cut-off. For each K > 1 we define the Fourier multiplication operator

TK = f_lﬂﬂ.ﬁ\oog[(}]:- (5.8)

By Plancherel’s theorem, the operators mx are clearly bounded uniformly in K on every
L?-based Sobolev space.

We can now show the desired discrete Strichartz estimates. We stress that these
estimates fail without the cut-off if p < co. For instance, take a function f € HY \ L7 in
Theorem cf. Remark On the other hand, for f € H” the map mx f belongs to
all L™ with r > gp and 3/2 — v = 3/qo by Sobolev’s embedding (Theorem and since
its Fourier transform belongs to L'.

Theorem 5.6. Let (p,q,v) be admissible. Then we have the estimate

. 1
k™ N o Spa (KT)7 117+

forallT € (0,1], K >77', and f € H".
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5.1. Strichartz estimates on the full space

Proof. We first prove the theorem in the case 7 = 1. By means of the Littlewood—Paley
square function estimate (see Theorem 6.1.2 of [24]), Minkowski’s inequality, and Lemma

[5-5] we compute

N =

1
Imie™ fllevre So [[(30 1Pmace™™ £2)*| < (P Mk I )

jez L jez
< JY L 2 % < 1 3y 2 %
oo (127720 + V)P fI32)" S Ko (3127 PfI3:)
JEZ JEZ
1
< K7 £l

also using that Pk = 0 for K < 27. The assertion for general 7 € (0, 1] then follows
from a scaling argument. Indeed, we can write

WKeit‘vlf = DT—lﬂ'KTei%lV'DTf, (5.9)

where the spatial dilation operator D, is given by (D, f)(x) = f(az). Thus, we get the
general estimate

. 1 . 1 3 .
|7 re™ WV fllpra = 77 | Dyamger ™V De fllppa = 7774 | mpcr €™ VD, fl o 1o
1

1,3 1 3.3 1 1
Spa 77 KT Defll g = 70T TE )| fll g = (KT) 21 g

~

by the scaling condition in (/5.1)). O

Remark 5.7. The estimate from Theorem is optimal in the following sense. If we
only consider the term with n = 0 in the left-hand side of Theorem we obtain the
frequency-localized Sobolev embedding

1
17r fllLe Spa K71 f 1 s

which in general is sharp by scaling and (5.1 (cf. Theorem and Lemma |A.3]).

1 since this choice optimizes the

Remark 5.8. Later on, we will always set K = 7~

global error for the Strang splitting scheme. If we allowed for higher frequencies K > 771,
the factor (K7)/? in the discrete Strichartz estimates would grow. Nevertheless, such
a choice could be interesting for further applications (for example for an error analysis
of the corrected Lie splitting proposed in [49], a method with a different local error
structure). However, we were not able to show better convergence rates for the corrected
Lie splitting than for the Strang splitting in 3D so far, cf. Remarks [[.7] and [f.11] See

also [53] for a related discussion in case of Schrodinger equations.

Remark 5.9. There exists an alternative (simpler) approach to discrete-time Strichartz
estimates, which uses the well-known continuous estimates just as a “black box”. In the
context of Schrodinger equations, it was used in Lemma 2.6 of the recent preprint [73],
see also Lemma 2.1 of [70] for a similar technique. But this approach yields a weaker
estimate compared to Theorem in the case when K > 71, We give the details.
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5. Linear estimates

Let (p,q,7) bg admissible with p < co. We first let 7 = 1 and K > 0 be arbitrary. For
a function f € H7, we compute

. n .
I g = 3 [ " I at

nel
n . ) n .
S [T e Y [ g i .
nez /1 nez /-1

Note that the last term is equal to ||eVrg fII% 514, therefore it can be treated directly
by the continuous Strichartz estimate from Theorem The first term is estimated by

[ A5 [ |45 era,
- nezZ’ "

nez "
< [0 e g, dodt
—1Jn-1

nez

it|V
= eNrg | VI re Spa llrx|VIFIT,
P
< K711,
where we used Theorem and finally Bernstein’s inequality from Lemma Alto-
gether, this gives the estimate

I e™ Y fllovra Spg 1+ F ] 7o

The scaling argument from the proof of Theorem then yields the estimate

e Y fllp e Spg L+ K0,

for general 7 > 0. We see that this estimate is inferior to Theorem if K> 7% but
for K = 77! they are the same.

5.2. Endpoint estimates with logarithmic loss

The estimates of Theorem and fail at the so-called “double endpoint” (p, q,7v) =
(2,00,1), see [70] or Exercise 2.44 in [71] for a discussion. However, estimates with
logarithmic corrections in time and frequency are available. For instance, from Proposition
6.3 of |43], one can deduce that the inequality

Irscet¥ fll 2 o S (log(1+ KT)2 £l (5.10)
holds for all f € H LR3), K > 1, and T > 0. In this section, we deduce the discrete-time
analogue of (5.10]) by adapting the approach from Section 8 of [43]. First, we need two

lemmas with basic estimates. The first one is contained in the proof of Lemma 8.1 in
143].
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5.2. Endpoint estimates with logarithmic loss

Lemma 5.10. The function

MO2) = [ e eosNgel de
B(0,1)

)

satisfies the decay estimate

for all X € R and z € R3.

Proof. We note that M is rotation invariant in z, hence we can take z = (0,0, |z|) without
loss of generality. The application of polar coordinates then yields

w/2
M\ z) = 27r/ / cos(Ar)el#15m0) cos(9) Ao drr = 27r/ / cos(Ar)el @ dw dr
w/2

:77/ / cos(Ar)el" @ dw dr,
—1J-1

since the r-integral from 0 to 1 coincides with that from —1 to 0 by symmetry. We clearly
have
|M(X, 2)| < 4. (5.11)

On the other hand, the r-integral can be calculated as
T (1o .
]\4(}\7 Z) _ 5/ / (61)\1" + e*l)\T)elr‘Zh.u dr dw

_ r(|z|lw+A) ir(Jzlw—2X)
= 2/ / +e )drdw

elllzlwt) _ o=illzlo+d)  pillzlw=A) _ o—i(lzlw=2) q
T 2i /4 ( \z\w—i—)\ * |z|lw — A ) n

1
= 7T/ (Sinc(\z|w + A) + sinc(|z|w — A)) dw,
-1

where sinc(A) = (sin A)/\. If |A] > 2|z| > 0, it follows that

1 1 1 1 1 47

M\ < dw <2 dw <
o< [ (ot e ) @ <2 e S
<87r

(5.12)
Moreover, for arbitrary A € R and z # 0, using the symmetry of sinc, we can compute

M\ z) = 7T/11 (sinc(|z|w + A) + sinc(|z|w — A)) dw

r(sl(\z\ +A) = Si(=[2] + A) + Si(|2] = A) — Si(—|z| - V)
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5. Linear estimates
= 2T (Si(]] + A) + Si(|2] - 1)
E '
Since the function Si(¢) = [y sinc(s) ds satisfies the global bound |Si(t)| < 2, this implies

8w
M\ 2)| < —.
M) <

We combine this estimate with (5.11) and (5.12) to obtain the assertion. O

Lemma 5.11. The function

L 1 1
A9 = (= T AT 9)

satisfies the estimate

< 1
]1517a><7; ZAﬁ,nj) 1+ 8 " log(l+ Np)

for all N € Ny and 8 > 0.

Proof. Let j € {0,...,N}. We have

al 1 Yoo N L NB 1
ngolJrB(nﬂ)§n201+5n:1+§11+ﬁn§1+5 /0 T
=141 log(1 + NG),
N 1 j—1 1 N 1
%umw:”&wm;ﬁmw
N— N 1
_1+Zl+ﬁn > +2nz::11
<1428~ 110g(1+ ) =

Now we show the announced discrete-time endpoint estimates with logarithmic loss.

Theorem 5.12. The estimate

) 1
||7rKemT‘V|f||ei,TLoo S (K7 +log(1+ KT))2 || f[| g

holds for all T € (0,1], K >0, T >0, and f € H'(R?).

Proof. Due to a scaling argument, it is enough to show that

~ _in — 1
171" Nl e © (1457 og(1+ NB))Z | fll g (5.13)
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5.2. Endpoint estimates with logarithmic loss
for any 8 > 0 and N € Ny, where g := ]:*IILB((]’K)}". Indeed, this estimate and (5.9)
imply that

||7~TK€mT|V|f||43’TL°o
1 - LT
— 3 ||DK7T16mKT|V|DK71fHKiLT/TJ Lo = T2 ||7T1€1nKT‘V‘DK71f|’€i|_T/TJ [0
S72(1+ (K7) " og(1+ KT))2 | D1 f ||
= (K7)2(1+ (K1) og(1 + KT))?||fll 1 = (K7 + log(1 + KT))? || fl| s
and thus
. - 1 l
||7rKeWW|f||£3’TLw = |y7r¢§KeWW\7rKf||@TLw S (K7 +1log(1+ KT))2 |7k fll
< (K7 +log(1+ KT))2 || f]l -

Inequality ((5.13)) is shown via the dual estimate
N . 1
| > e ™R, |+ 5 og( + NADEIIF g 1o (5.14)
=0 ’

for FF € #2L'. Instead of the exponential, we treat sine and cosine. From the definition
of the H'-norm and Fubini’s theorem, we deduce

H S sin(ng|V)F = el S Lo sin(nBl]) ()|
n=0 n=0

L2
N
= [ e sinlé) sin(iBIED EL(O B €) e
B(0,1) nj=0
N
= en [ o €172 32 sintnsleD sin(isle) L, [, éoer @ F dedy de

N
—en Y [ ] 6-nB.B.y — ) F@)Fy) do dy,

n,j=0

where

G_(a,b,z) = /B ) €]~ 2 sin(a€|) sin(b|£])e' dE.

)

Analogously, we obtain

N 9 LY . L
| 2 meostuatoDAl, = em= 3 L, [, 608,58, = 2)Fu (@) dady,
with

Grlab,2) = [ el cos(ale] cos(vgl)e< e

)
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5. Linear estimates

Next, we use the identities 2 cos(t) cos(s) = cos(t — s) + cos(t + s) and 2sin(¢) sin(s) =
cos(t — s) — cos(t + s) to write

Gi(a,b,z) = %(M(a—b,z):tM(a—i—b,z))

with M (), z) from Lemma Combined with this lemma, the above equations lead to

N . v 2
IS5 nemmisf
ngo/Rg/Rg M (B(n—j),y — )|+ |[M(B(n+7)y —w)l)\F( IIE;(y)| dz dy
N 1

1
néO/RS /Rs (14-,8’77,—]" T 1 +B’n+]’)|Fn($)HFJ(y)|d$dy

N
= > AB D) Fall | Ejll o,

n,j=0

N

with A from Lemma [5 We next apply Cauchy—Schwarz twice and Lemma [5.11] Also
noting that A(S3, n,j) is symmetrlc in n and j, we estimate

N
> AB . IE L | Fill
n,j=0
N N 2 %
<|IFllg Ll[z(z (B, 3 IE )]
n=0 7=0
N N N %
<Pl Ll[z(z (8,5:m) (32 A, ) I1F131)]
n=0 j=0 7=0
N 1 N %
S( é)sz::A 8,n, J) (j:rglﬁ?fN%A(ﬁ,n,j)) ||F‘|§iNL1
< (1487 10g(1+NB)IFIE 11
which shows . O

5.3. Strichartz estimates on the torus

Thanks to the finite speed of propagation for the wave equation, one expects that locally
in time, one has the same Strichartz estimates on the torus T® as on the full space R3.
For continuous time, this has been carried out in, e.g., [45] by using suitable extension
and cut-off operators. We will follow the same strategy to prove corresponding versions
of the discrete-time Theorems [5.6] and B.12] for the torus.
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5.3. Strichartz estimates on the torus

Let E: D'(T3) — S'(R?) denote the periodic extension operator (where we interpret
T3 = [—, 7] as above). Note that for f € C°°(T?) we have Ef € C*(R3) with periodic
partial derivatives. The next lemma shows that an extended Sobolev function multiplied
with a smooth cut-off function belongs to the corresponding Sobolev space on R3.

Lemma 5.13. Let n € C°(R3) and s € R. Then the estimate

IMEf Nl ms sy Sms I1f s (19)
is true for any f € H*(T3).

Proof. By approximation, it suffices to consider smooth f. The statement is clear if
s = 0, and inductively extends to all s € N. By interpolation, we then infer the assertion
for all s > 0. The case s < 0 is handled via duality. Let (¢;);en be a smooth partition of
unity such that > ey ¢; = 1 and ¢; € C°(R?) with supp ¢; C {y;} + (—m,7)? for all
J € N and some y; € R3. We compute

INEfll s (rsy = ‘/ nEf - gd:c’
=1 IR

‘g”H S(]RS
= sup / Ef-nge;dx
Hg”Hfs(]Rii):l J%I;] {yj}+(_7r:7r)3 ‘
< sup | fllmsere) D In99sll -3y Sns 1 Lers(rs),

HgHH,S(Rg):l jEN

where the supremum is taken over smooth g. Here we use that we can consider (ng¢;)(y; +
-) as a test function on T3, and that the sum is actually finite thanks to the compact
support of 7. O

For the discrete-time Strichartz estimates, we need to introduce a Fourier cut-off on the
torus (similar as (5.8) on R3). For f € D'(T3) and K > 1 we define the cube frequency
cut-off operator wx via the truncated Fourier series

(rxf)(z) )72 > fdr ze T (5.15)

koo <K

Here, the sum is taken over all k € Z3 with ||, = max;j—1 23 |k;j| < K, and fk denotes
the k-th Fourier coefficient of f. From the definition of the Sobolev norm (4.5)), it follows
that g is bounded on all spaces H*(T?), uniformly in s € R and K > 1.

Theorem 5.14. Let (p,q,7v) be admissible and T > 0. We then have the estimates

Heimlv‘”Kszp L L2(T3) Spar (1+KT7)P HfHH“f (T3)>

Heim'VlWKhHe? Lo (T9) <r (KT +10gK) 1]l g g3y

for all f € HY(T3), h € HY(T?), 7 € (0,1], and K > 1.
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5. Linear estimates

Proof. We only give the proof for the first estimate, since the second one can be shown
in the same way, using Theorem [5.12] instead of Theorem We define the function
v(t) = e!Vlrg f for t € R. Since

v(t) = eVlrg f = cos(t| Vg f + 1|V sin(t| V)|V |7k f

is the smooth solution to the linear homogeneous wave equation on R x T3 with initial
data (mx f,i|V|rk f), the extended function Ev solves the corresponding problem on
R x R? with extended initial data (E7g f,iE|V|rk f), ie.,

(Ou — A)Ev =0, Ev(0)=Engf, 0,Ev(0)=iE|V|rgf.
Let n € C°(R3) be a cut-off function such that 7 =1 on B(0,7 + T). The function
w(t) = cos(t|V|)(nErng f) +i|V| tsin(t|V))(nE|V |tk f), tER,

solves the same full space wave equation with truncated initial data. Finite speed of
propagation (see, e.g., Theorem 6 on p. 84 of [19]) yields Ev(t,x) = w(t,z) for all (t,z) €
R*3 with [t| + |z| < 7+ T. Since this condition is satisfied if (¢, z) € [0,T] x (-, )3,
we obtain

o)l 1agrs) (5.16)
= 1Bv(T)ller  La((—rmy) = WD) La(—rme) < 0Tl Lars)
< Nlcos(nr V) B )l cages) + V1™ sin(nr[ V) @EIV i )l 1ages)
We decompose the cosine-term in (5.16) as
lcos(nr|V) BTk )ller . Loges) (5.17)
< llmaxe™ VI Brw )l | ra@s) + 1 = m2x)e ™ N @ETK [l | Lous)-

The first term of ([5.17) is estimated using Theorem and Lemma which gives

. 1
||772K6imT|v|(ﬁEWKf)||z§7TLq(R3) Spa (L + K1) 7 [[nE7k fll v (s
1
St (L+ K7)2 (| fll s

For the second term of (5.17]), we first compute the Fourier transform

@m)2F(nErkf) =nx F(Exxf) =% S fid= > fuil(- —k),
|k oo <K |kloo <K

where 8, denotes the Dirac delta at k € Z3. The Hausdorff-Young inequality then implies
(I — WzK)eii”TWl(UEWKf)He’;,TLq(R?)) < ||]l{|§\0022K}€iim|§|}—(77E77Kf)”2’; LY (R?)

<1 | Lgzar) W;SK Fellat =B, o
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5.3. Strichartz estimates on the torus
For [¢|o > 2K > 2|k|, we obtain
1
A 3 A9\ 2 3
SR SE(CY AR SIER Il
|kl <K |kl oo <K

thanks to the Cauchy—Schwarz estimate. Moreover, we have

(& —E)| Sy 1€ — K17 < (1] = KD S lel™°

since 7} is a Schwartz function. These inequalities result in

inT _T
(1 — 772K)€i W'(WET"Kf)”Zf’TL‘Z(R?’) NV ‘|]]'{|£|0022K}‘§| 2 ||Lq’(1R3)||f”L2(T3)
S llz2ersy-

For the sine term in (5.16)), we treat the low frequencies separately to avoid problems
coming from the homogeneous anti-derivative |V|~™1. We decompose

1191 sin(ar| V) 0BV e e zages
< Imi 9] sin(nr |V BVl )2 saas)
I = m)mare [V 2 Vg )l | ages)
1 = mas) [V eV | e )l o

For the low frequencies, we use Bernstein’s inequality Lemma in space, Holder’s
inequality in time, the boundedness of  — + sinz and finally Lemma to obtain

i[9I sin(n7 [V B[V |l 1oz
St m VI sin(nr | V) (0B V Ik )l 2 )
Sr ”7T1(77E’V\7TKf)HL2(R3) S ”77E\V’77Kf\|val(R3) St H’V‘WKfHval(TB)
< [ f 1z (3)-

The medium and high frequency terms are treated as the cosine-term. Theorem and
Lemma [5.13] yield

(I =m)marc |V~ eV BV mic )l sages)
l —
Spa L+ K)7 (L= m) VI BV 7k )] 70 o)
: 1
S (L4 Kn)e BV rg fllgr-r@s) St (1 + K77l crs),

where the operator I — m; was used to replace the homogeneous by the inhomogeneous
Sobolev norm. Finally, we get as above

|(I=mor) |V | e V(B V|7 f) ler zare)

63



5. Linear estimates

< H ]1{|§\0022K} ‘grleiinﬂﬂf(nE’V‘ﬂ'Kf) HZZTL‘I' (R3)

St H]l{|g\oo221(}|§|_1 S lkfen(— k)”

koo <K L (%)
< £, — <
S AR DI (Ol P 1 ey
|k]oo <K
The assertion now follows from ([5.16|) and the above estimates. O

We now show that the discrete-time Strichartz estimates imply the ones in continuous
time, using an argument from Theorem 1.3 of [70]. The estimates could also be deduced
from the full space inequalities reasoning as in Theorem cf. [45].

Corollary 5.15. Let (p,q,7) be admissible and T > 0. We then have the estimates

it|V
Heltl ‘fHL’}L‘I(T?’) SpaT ||f||Hv(1r3)a

it|V|

1
"M il 12 poo sy ST (14 log K)2[[h]] g (p3),

for all f € HY(T3), h € HY(T?), and K > 1.

Proof. We only give the proof for the second estimate, since it is somewhat non-standard.
The first one can be proven in the same way, where one uses the density of functions
having compact Fourier support in H7(T?) to get rid of the projection 7. From Theorem

we get
B.14 we g

N
7Y Mm@ VI3 o sy S (K7 + log K)||Al[31 oy

n=0

for all 7 € [1/K,1] and N € Ny with N7 < T. We now replace h with ¢?/VIh and
integrate from 0 to 7 to obtain

T N .
/0 Z H7TK€1(nT+9)‘V‘hH%°°(T3) dé ST (KT + log K)Hhu%{l(ﬂ-s),
n=0

which implies the assertion if we set 7 = 1/K. O

5.4. Application to the wave equation

From now on we will treat the cases 2 € {R?, T3} simultaneously whenever possible. We
will abbreviate LI = L(2) and H* = H*(Q), where we recall that H*(Q) = H*(R?) if
Q = R3 and H*(Q) = H*(T3) if Q = T3. Moreover, we will only use admissible triples
(p,q,y) with derivative loss v = 1. We call a pair (p,q) H'-admissible if (p,q,1) is
admissible in the sense of (b.1)).
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5.4. Application to the wave equation

Corollary 5.16. Let T € (0,00), f € H, g € L?, F € LLL?, and w € C([0,T), H') be
the solution to the inhomogeneous wave equation

Oopw — Aw =F, w(0)=f, dw(0)=g.
Let moreover (p,q) be H-admissible. Then w satisfies the estimates
holl g + lmveliza o + I wmnlle o Spar 1l + lgllze + 1 Fllze (5.18)
and
Imnwllz poe + lmnvw(nmlle | o Sr(1+10g N2 (Il + lgllze + 1F ) 1 12

for all N > 1 and 7 € (0,1/N]. In the case Q = R3, the constant in the first inequality
(5.18)) is independent of T and we can thus take T = oo.

Proof. We only give the details for the discrete-time estimate in ([5.18]), since the others
are obtained similarly, also using Theorems [5.1| and estimate (5.10), and Corollary
in place of Theorems and Let first Q = R3. By Duhamel’s formula, w is
given by

w(t) = cos(t|V|)f + |V| sin(t|V])g + /Ot V|~ sin((t — s)|V|)F(s) ds,

for t € [0,T]. By a direct application of Theorem and (5.2)),

T .
lmvw )l Laes) Spa [F 1l sy + H’V|719HH1(R3) “‘/0 Heilsm\V|71F(S)HH1(R3) ds
= 1wy + Ngllezrey + 1 F Il L1 p2rs)-

In the case Q = T3, we need to treat the zero-th Fourier coefficient separately, since
the operator |V|~! is in that case only well-defined for mean value free functions. We
rewrite the Duhamel formula as

t
w(t) = cos(t|V]) f + tsinc(t|V|)g + / (t — s)sinc((t — s)|V|)F(s) ds,
0
for t € [0, T]. Theorem yields

7 COS(”TWDJCHZf’TLq < HTFNeiileszﬁ’TLq Spat 1 f 1

For the other terms we separate the zero-th Fourier coefficient before using Theorem
B14l So we estimate

Iy sine(nr9)glle o < e ™ N9 g~ go)ler 2o+ Tol

Spar IV g = 30)ll + llgllze S llgll 2
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5. Linear estimates

and similarly

[ /Om(m— — §)sine((n — 5)|V|)F(s) ds

&,
T

< /0 lmn(nT —s) sinc((m'—s)|V|)F(s)||£TLq ds
T ) R T

< / |mn eIV =Y (F(s) = Fy(s))]| e oLads+ T/ |Fo(s)| ds
0 T, 0

T T
sl o — .
Spar [ e VI ES) = Bo@)llmds + [ 1F($) 52 ds S [Py e O
It is often convenient to work with the wave equation in first-order formulation. We

therefore define the operator
0 I
(3 0) 50

which maps continuously H" ™ x H" — H" x H"~! and generates the strongly continuous
group of operators

A cos(t|V|) tsinc(t|V])
e <—\V|sin(t|V|) cos(¢|V)) ) (5-20)

on H" x H™™1, for all r € R. In the case Q = R?, the Fourier transform shows that
A: HH'x H — H" x H™ ' and e!4: H" x H™~' — H" x H"~! then continuously map
between the homogeneous Sobolev spaces as well. Moreover, the operators e*4
a strongly continuous group of unitary operators on H” x H" 1.

even form

Corollary 5.17. Let f € H', g€ L?, and F € (*L%. For 7 € (0,1] and n € N, we define

Wy =" A(f,g) + 7Y e hImA (;3 ) '
k
k=0

Let wy, be the first component of W,,. For T € [0,00) and H'-admissible (p,q) we then
get the estimate

Irvnller oo Spar 1l + lgllzz + [ Flle oo

forallT € (0,1] and N € [1,1/7]. In the case Q = R3, the implicit constant is independent
of T and we can thus take T = oo.

Proof. The estimate for the summand containing (f, g) is already contained in Corollary
The term containing F' is treated in the same manner as the corresponding integral
in the proof of Corollary O

Concerning the inhomogeneity F', there are also variants involving Ll}/ L7 -norms instead
of the L%L2-norm on the right-hand side of Corollary and similarly for the discrete-
time estimate in Corollary [5.17] Since we do not use them, we omit them for simplicity.
However, the following dual Strichartz estimates will be needed.
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5.5. Some properties of the filter operator wg

Corollary 5.18. Let (p,q) be H'-admissible and T € (0,00). Then we have the estimates
[ e () o

L[ e (o) .

for all F € L%}/Lq/, G e L%L1 and K > 1. In the case Q = R3, the constant in the first
inequality (5.21)) is independent of T and we can thus take T' = oco.

25 H—1 SpaT ||F||L1;Lq/7 (5.21)

S (141 K)HGllgg 1,

Proof. These estimates follow from the dual versions of Theorem inequality ([5.10)),
and Corollary [5.15] for v = 1, which are given by

| [ R ] Spar 1Pl
H/O me PVIG(s)ds|| | Sr (14108 K)2 (Gl gz 0. (5.22)

We give the details for the term containing G. We split

L[ (o)

SH/O i ssinc(—s|V|])G( dSH +H/ Tk cos(—s|V|)G dsH

L2xH1

The cosine term is estimated directly using (5.22]). For the sine term we compute as
before

H /OTwKs sinc(—s|V|)G(s) ds‘

N H /OT m(eiis\W(G(s) — Clo(s))dsH + ‘ /T s@o(s) ds‘

<r (1+1og K)7 (|G — G0HL2L1 Gl Sr (1 +log K)? 1G22 L1

L2

using (5:22) and [Go(s)| < |G(s)]11- =

5.5. Some properties of the filter operator 7

The following lemma quantifies the convergence nx — I as K — oo, and will be used
to control the error terms that arise from the insertion of the filter into the numerical

scheme (|4.4]).

Lemma 5.19. For all K > 1 and s > 0, we can write

I—mg = (K 'V|¢k)’,
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5. Linear estimates

for a Fourier multiplication operator ¢ that is bounded uniformly in K on all Sobolev
spaces H", r € R. We moreover get the estimate

I =7 ) [l < K777 f e
forall K>1,reR,v<r,and feH".

Proof. We work in Fourier space. The frequency variable is denoted by ¢ regardless of
Q € {R3,T3}. Let ¢x be the Fourier multiplier for the function 1y~ x}K/[€], which
is bounded by 1. The estimate then follows from

I =7 ) fllae = KT (IVIoR) " fllar < K| f e L

The next lemma will be crucially exploited in the error analysis of when using
the summation by parts formula. This strategy is inspired by [10], cf. Property (OF4) in
Theorem 3.14 there. Roughly speaking, the idea is the following. Let v € H" x H" .
Using the Fourier transform, one can deduce that the integral

T
/ odt € H'H x H”
0

is an element of the domain of A; and
T
A/ eydt = (T4 — I,
0

We would like to exploit something similar in the discrete setting, namely, that
n—1
TA Z ek
k=0
is a bounded operator on H" x H"~!, uniformly in 7 € (0,1] and N € N with N7 < T..
If we formally insert the geometric sum formula, we obtain
ntA _ I

n—1
e
TA g A=A~
k=0

But this does not lead anywhere since the operator €™ — I might not be invertible for
certain “resonant” step-sizes 7. However, if we introduce the filter operator

Iy = diag(my, 7N)

and apply the assertion of the following Lemma [5.20] we get

n—1
IIyTA Z eFrA = \I/ﬂN(e”TA - 1),
k=0

which indeed is a bounded operator on H" x H"~! as desired.
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5.6. Trigonometric interpolation

Lemma 5.20. For all 7 € (0,1] and N € [1,77Y], we can write
TAlly = (™ — NV, y,

where the operator ¥, y is bounded uniformly in T and N on all Sobolev spaces H" x HL,
r € R.

Proof. One checks that the equality holds for

[V]sin(r|V])
- I
Uovoe T cos(7|V|) —
TN A V| sin(7|V])
cos(7|V|) —

This operator is uniformly bounded in 7 and N thanks to the presence of IIy, which
ensures that we only need to consider the Fourier modes with 7|k| < V3N~ k|o < V/3.
Therefore, we can exploit that the function

rsinx
rhr— —
cosx — 1

is bounded on [0, v/3]. O

5.6. Trigonometric interpolation

In this section we only work on Q = T3,

Definition 5.21. Let N € N and f € C(T3). We define the trigonometric interpolation
INf as the trigonometric polynomial

(Inf)@) = 2m)"2 Y fne®™®,  zeT?

koo <N

where the coefficients f;@N are given by the discrete Fourier transform

- 3 27y i-2mi
= (2m)2(2N + 1)~ E I3NFR,
e = (2m)2 (2N + ; <Nf(2N+ 1)

We moreover set Iy = diag(In, In).

We need the following well-known generalization of Bernstein’s inequality to the L4
setting, see, e.g., inequality (5.2) in [26].

Lemma 5.22. The estimate

7k fllwre S Kllmx fl Lo

holds for all g € [1,00], f € D'(T?), and K € N.
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5. Linear estimates

We further need an estimate for the trigonometric interpolation error. The L? case is
standard, see, e.g., Lemma 2.4 and expression (5.5) of [26]. The estimate in L? is more
involved. For a proof, we refer to see Corollary 3 of [35], Theorem 1 of [2], and Lemma 3
of [5§].

Lemma 5.23. Let g € (1,00). We then have the inequality

3
I = Ix) fllze Sq Y K" fllwma

m=1
for all f € W34 and K € N. For ¢ = 2, we have the stronger result

I = Tx)hllr2 S

~

s K2([VI°R|| 2
forall s >3/2, h € H®, and K € N.

The two preceding lemmas can be combined to the following estimates, which are used
below with = o € {3,5}.

Lemma 5.24. Let g € (1,00) and B > 1. Then the estimates

I(I = I )mgr flle Sqp K HIman fllwas
[ kmsr fllLe Sqp 78K fllLas

hold for all f € D'(T3) and K > 1.
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6. The semilinear wave equation

6.1. Review of wellposedness theory

The wellposedness theory for is well known, therefore we only address the most
important points. See, e.g., the monographs [3, |66, 71] for more details. Note that,
thanks to finite propagation speed, the local theory is essentially identical regardless of
Q € {R3,T3}. We first reformulate the equation as a first-order system in time.
Using the wave operator A from and the notation

g(u) = —plu*tu,  G(u,0) = (0,9(u))
for the nonlinearity, one obtains the equivalent system

QU (t) = AU(t) + GU W), t e [0,T), o

U(0) = (u’,°) '
for the new variable U = (u, dyu). The local wellposedness is shown by a classical fixed
point argument based on the Duhamel formula

U(t) = e (%) + /O t e=DAG(U(s)) ds (6.2)

for . In the case o = 3, the Sobolev embedding H' < L% from Theorem implies
that the nonlinearity G leaves the space H' x L? invariant. Therefore, the fixed point
space for U can be chosen as a closed ball in C([0,b], H! x L?) for some b > 0 small
enough. If @ > 3, one needs to involve a Strichartz space for u in the fixed point space.
Let a € [3,5]. We define the exponent p, € [4,00] such that (p,,3(a — 1)) are
H!'-admissible, i.e.,
_ 2(a—1)
o T o — 3 bl
see with v = 1. One then obtains the following existence and uniqueness theorem
for the nonlinear wave equation (4.1)).

(6.3)

Theorem 6.1. Let (u’,v") € H! x L?. Then there evists a time b > 0 and a
unique function U = (u,0u) satisfying (6.2) such that U € C([0,b], H' x L?) and
u € LP([0,b], L3~ D). If a < 5, the time b only depends on ||(u®,v°) ||y« 12 and a.

Remark 6.2. a) Since g(u) € C([0,b], L/*) < C([0,b], H~') and Au € C([0,b], H ) —
C([0,b], H~Y), one can deduce from that 0?u belongs to C([0,b], H 1) and that
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6. The semilinear wave equation

the differential equation in holds in this space. Thus, the equation holds in
C([0,0], L* x H71).

b) If Q = R3, the equation enjoys the following scaling symmetry. Let u be a
solution to (4.1)). Then, for each A > 0, the resealed function uy(t, ) = \2/(@=Ny(At, Ax)
also solves with initial data u$(z) == A% (@ Dy(\z) and v (z) == A/ (@ D+10(\z).
The map (u?,v°) = (u3,vY) with X # 1 leaves the H' x L? norm invariant if and only if
« = 5. This explains why this case is referred to as scaling-critical. Correspondingly, the
situations a < 5 and a > 5 are called sub- and supercritical, respectively. See Principle
3.1 of [71] for some heuristics on the behavior of solutions in these cases.

c¢) See Proposition for a more precise statement regarding a lower bound for the
time b in the critical case o = 5. A result concerning the continuous dependence on
the initial data in that case can also be found there. Analogous results on continuous
dependence are available in the subcritical range o € [3,5) as well.

d) In the subcritical case aw < 5, one has uniqueness of solutions U = (u, dyu) to (4.1)) in
the energy class C([0,b], H! x L?) without the requirement that u € LP ([0, ], L3(=1),
cf. [57].

From now on we will always assume the existence of a solution on a fixed interval
[0,7).

Assumption 6.3. There exists a time T' € (0,00) and a solution U = (u, du) of the
nonlinear equation (£.1)) such that U € C([0,T), H' x L?) and u € LP~([0,T], L3~1),
If o =5, p=1, and Q = R?, we also admit 7' = co. We define the bound

M = maX{HUHL;O(Hle?)y |’UHL§6¥L3<0—1)}- (6.4)

Remark 6.4. If a < 5, the quantity M in fact only depends on ||U||pee(31xz2)- In-
deed, the “minimal” existence time b and the number M for T = b are controlled by
l(u®, 00|31« 2 in Theorem compare p. 143 of [71]. Hence, we can divide the interval
[0, 7] into a finite number of smaller subintervals such that the Strichartz norm of u is
bounded on each of them.

The following two remarks concern the long-time behavior of (4.1)).

Remark 6.5. It is well known that the energy
EU®)] = S [Vu®)|2s + ~[0u(t)]22 + ——u(t) |2
2 L* 7 9 L* " a4+ Lot

is constant in ¢t along solutions U = (u, dyu) to . This conservation law gives hope
for a global wellposedness result in the defocusing case p = 1. Indeed, the works [44)
65] established the global-in-time existence of solutions to in the critical case o =5
with u =1, i.e., the time b in Theorem [6.1] can be taken arbitrarily large in that case.
The subcritical range o < 5 is much easier (though if = R?, the global existence for
i = 1 requires the additional condition u® € L®*! to ensure that the energy is finite,
compare Theorem 8.41 of [3]). In the focusing case u = —1 however, the energy might
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6.2. Treatment of boundary conditions

become negative and solutions which blow up in finite time are known to exist. In the
supercritical focusing case a > 5 and p = —1, one can even construct solutions with
arbitrary small initial data that blow up in arbitrary short time, implying illposedness of
in that case, compare p. 142 of [66].

Remark 6.6. Let Q = R?, a = 5, and = 1. In this case we can take T' = oo in the
definition of M and obtain M < C(||u®|| g1, [|v°]|z2), see [72] for more details on
C. The global L*L'2 bound is known to imply scattering in the energy space as follows.
Define the asymptotic state Uy € H' x L? by

Uy = (u®,2°) + /OOO e AG(U(s)) ds.
The integral converges absolutely in H* x L? since
Il *ull 21 0,00).22) < N1l 2a(10,00),112) 1ll o0 (f0,00),L8) Sar 1 (6.5)
by Hoélder’s inequality and Sobolev’s embedding. We then obtain the scattering result
1U(t) = Ut a2 =l U ) = Usllfgap2 = 0

as t — oo, using the unitarity of e*” in H' x L2, the Duhamel formula , and
the definition of U,. This means that the nonlinear solution U(¢) behaves like the
linear solution AU, as t — co. Note that these arguments do not (without further
assumptions) imply scattering in the case o < 5. Indeed, we cannot afford to use Holder’s
inequality in time in due to the unbounded interval. Another idea would be the
application of an inhomogeneous Sobolev embedding in to “waste regularity”, but
this does not not work either since we do not have a uniform bound on ||u(t)||;2 as
t — o0.

6.2. Treatment of boundary conditions

Let Q := (0,7)3. In this section, we shortly explain how the differential equation (4.1))
on the periodic domain Q = T? already contains the cases of homogeneous Dirichlet or
Neumann conditions on ) as special cases. We define the Dirichlet Laplacian

Ap: HY(@) = HT(Q), {Anf6lu-@pemya) = = Y/ Voda,

for f, g € H(Q). As usual in the literature, the space H}(Q) denotes the closure of
C®(Q) in H'(Q), and H~1(Q) is its dual space.

Proposition 6.7. Let u® € H}(Q) and v° € L?(Q). The nonlinear wave equation on Q
with homogeneous Dirichlet boundary conditions

Ofu— Apu=g(u), (1, w)_e [0,7] @, (6.6)

u(0) =u’,  Ou(0) =v°
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6. The semilinear wave equation

can be reduced to that one on T3 by the following transformation. We extend the initial
data (u°,v°) oddly and then periodically to H'(T3) x L%(T?), solve the corresponding
problem [{.1)) on T3, and afterwards restrict the solution to Q again.

Proof. Tt is known that the eigenfunctions of Ap, given by
2\3 : : 3
er(x) = (—) sin(kyx1) sin(koxe) sin(ksxs), r€eQ, ke N,
v

form an orthonormal basis of L?(Q) and an orthogonal basis of HE(Q). Therefore, any
function f € L?(Q) can be expanded in the Fourier sine series

F=>" feex

keNS3

where the coefficients fj, are given by the L?(Q) scalar product of f and ey, for each
k € N3. The functions ej, naturally extend to functions on the torus T? and are then
also eigenfunctions of the Laplacian A: HY(T?®) — H~!(T3). Observe that the Fourier
coefficients satisfy

fo = isgn(kikoks) fijm, kol ksl)y Kk € Z2, (6.7)
with sgn(0) = 0. By comparing coefficients, we see that the function f also extends to a
function in L?(T?3). This procedure corresponds to the odd extension (in every coordinate
direction) of f. Similar considerations apply if we replace L?*(G) by HJ(Q). In this
sense, we can identify H}(Q) x L?(Q) as a closed subspace of H(T3) x L*(T?), and the
operator Ap as a restriction of A. Using the relation , one checks that the group
et4 on HY(T?) x L?(T?) leaves H}(Q) x L?(Q) invariant. Moreover, the nonlinearity
g: H}(Q) N L3@=1(T3) — L2(T?) maps odd functions to odd functions. Note that the
oddness property (almost everywhere) is preserved by an L? limes, too. It follows that if
we extend the initial data (u°,v°) oddly to H'(T3) x L?(T3), the fixed point iteration
based on also converges in C([0, 7], H}(Q) x L*(Q)) — C([0,T], H(T?) x L?(T?)),
and yields a solution to after restricting it to @) again. O

Similar considerations also apply to the homogeneous Neumann boundary problem.
The Neumann Laplacian is defined as

An: HY(Q) — Hy ' (Q), (Apf.9)y=1(Q)xm (@) ::—/QVf-ngx,

where H, '(Q) is the dual space of H'(Q).

Proposition 6.8. Let v’ € HY(Q) and v° € L?(Q). The nonlinear wave equation on Q
with homogeneous Neumann boundary conditions

O*u— Ayu=g(u), (t,z)e[0,T]xQ,
u(0) =u°,  pu(0) ="
can be reduced to that one on T3 by the following transformation. We extend the initial

data (u®,v°) evenly and then periodically to H*(T3) x L?*(T3), solve the corresponding
problem (1)) on T3, and afterwards restrict the solution to Q again.

74



6.3. Nonlinear estimates

Proof. The Neumann Laplacian Ay has the basis of eigenfunctions &, := 7—3/21 and

ér(x) = (%) : cos(kix1) cos(koxa) cos(ksxs), rEeQ, k€ Ng \ {0},

which form a basis that is orthonormal in L?(Q) and orthogonal in H'(Q). In contrast
to the Dirichlet case, we now use the even extension (in every coordinate direction) to
identify H'(Q) x L?*(Q) as a closed subspace of H!(T3) x L?(T?). The condition on the
Fourier coefficients is now given by fo = 23/2f, and

N ~

Tk = Fapalikalinays k€ Z°\{0},

where the coefficients f; now come from the Fourier cosine series expansion using éy.
Again, Ay is a restriction of A. Moreover, the group ¢4 leaves H'(Q) x L?(Q) invariant
and the nonlinearity g: H(Q) N L3@~1(T3) — L?*(T?%) also maps even functions to
even functions. Hence, for given initial data (u°,v%) € H'(Q) x L*(Q), we can solve
the Neumann problem by extending (u,v%) evenly, solving the corresponding periodic
problem on T3, and afterwards restricting it to @ again. O

6.3. Nonlinear estimates

We derive some important estimates for v from Assumption that will be used later.
First, we extend the L’%‘”L‘g(a_l)—bound from the definition of M to other H!-
admissible Strichartz pairs (p,q) and also to discrete time. We frequently exploit the
endpoint Sobolev embedding from Theorem b) in the following.

Proposition 6.9. Let u, T, and M be given by Assumption and let (p,q) be H!-
admissible. Then we have the estimate

[ull e po +llmvull g pa + lmnvu(nr) e go,r), o) Spaarr 1 (6.8)

and if T < oo additionally
1
HWNUHBTLOO + ”WNU(”T)”@([O,T],LOO) Smr (1+1logN)2,

for all N > 1 and 7 € (0,1/N]. The implicit constant in is independent of T if
Q=R3 and a = 5.

Proof. Sobolev and Hélder inequalities yield that

- -1
lg()llzyze < Mul® Mgy pallullzgere Sr llellfn paan Iullzgre Sanr 1. (6.9)
Since p, > a — 1, the result then follows from Corollary Note that if o = 5,
we do not need Hoélder’s inequality in time and hence, the implicit constant in is

independent of T. O
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6. The semilinear wave equation

In the next lemma we give convergence rates for the difference between g(u) and
g(mru). We will often use the elementary Lipschitz bound

l9(v) = g(w)| < (J0]*™ + [w|*H)v — wl (6.10)

for the nonlinearity g. Moreover, in addition to (pa,3(c — 1)) from (6.3)), for o € (3, 5]
we will use the H!-admissible pair (o — 1, g4), where

_ 6(a—1)

*T a—3

(6.11)

Note that (pa,3(a — 1)) = (@ — 1, qq) in the scaling-critical situation oo = 5. Moreover, if
a = 3, the pair (o — 1, q,) corresponds to the “forbidden endpoint” (2, o).

Lemma 6.10. Let u, T, and M be given by Assumption[6.3 Then we have the estimate

lg(w) = g(rru)ll L3z Sar K=

Moreover, we obtain
lg(u) = g(mrw)| Ly 2 S K1+ log K),

ifa =3 and

S5—a

lg(w) = g(mru)llpy 2 Smre K2

for a € (3,5]. These inequalities are uniform in K > 1. The implicit constants are
independent of T if Q = R? and o = 5.

Proof. We first compute
lg(u) = g(mru)l| g g1 S Nl +|rrul* )T = 7x)ul, s
T
S g™ sy + a5 s o) = 7)1

Sarr K7 ul| poop S K

using the dual Sobolev embedding L8 < H~!, estimate (6.10), Holder’s inequality,
Proposition and Lemma [5.19] Note that Holder’s inequality in time is not needed if
a = b, again. Similarly, for a € (3, 5] it follows that

lg(w) = g(mrcu)l gy 2 < Il + |rxul ™) (T = 7w )ull gy 12

Sl + lrgul® DI, e I = 7)ul

o

HLl L LPLt-a

S (lullfats o + Imculls e N = mr)ull ) eco

SMTa K_THUHL;OHI <u K770,
by means of Hélder’s inequality with % = O‘T_‘g + G_TO‘, the Sobolev embedding HT

Lﬁ, and Proposition with (p,q) = (a — 1, q4) from (6.11)).
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6.3. Nonlinear estimates

Finally, let &« = 3. Then we decompose

lg(w) - g(mxu)ll s o < lgw) — g(rrew)ll s 1o + llg(ricou) — glrsc) s 1o

Proceeding as above, we obtain

lg(u) = g(mrzu)| Ly 2 S I(ul? + [meul®) (I = wea)ul|py 2
SNl + lrgzul®) g o ll (= 7re2 Jull Lo 15
St ([ullfs pe + Imeull7a o)1 - TFK2)UHL%OH%
SMr K71||UHL;°H1 Su K1,
using (p,q) = (4,12), and

lg(mic2w) = g(mrcw)ll s 2 S N(mweul® + [mcul®) e (I = i )ull oy 12
S (mxeul® + ’FKU‘Q)HLlTLOOHWKQ(I — 7 )ull g
S (Imreullfa g + Imrull 72 o I = 7o)l e 2

S K7H1 A+ log K) [l eorp Sar K711+ log K).

Here, the logarithmic estimate for the L2TLOo norm from Proposition was applied. [
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7. Error analysis

We now start with the error analysis of the splitting scheme. We directly treat the fully
discrete algorithm (4.4]), given by

Uni1ja = €U + ST G(IL,1U,)),
Unt1 = Untrj2 + 52 GU1Up i),
U = M (u’,0%),

which contains the semi-discrete one in the special case K = co. In the case Q = R3,
we always set K = oo since our full discretization only makes sense on the torus Q = T3.

Note that since G(u,v) = (0,g(u)) we have G(Il.-1Up,41/2) = G(I1;-1Up41) due to
. Moreover, since Il xTx = T, it inductively follows that U,, defined by satisfies
the frequency localization U,, = IIxU,. Thus, we can also state the scheme in the
more compact form

Upt1 = AU, + %(BTAIKG(HNUn) + IKG(HNUH+1))a (7.1)

where N := min{7~!, K}. In view of a later iteration argument, we allow here for general
initial values Uy € H! x L? that are not necessarily equal to ITxU(0). We often denote
the discrete times by t,, := nr.

7.1. Error recursion

We first establish a discrete Duhamel formula for U, given by (4.4). We introduce the
notation S(t) for the first line of ', i.e.,

S(t)(f,v) == cos(t|V])f + tsinc(t|V|)v.
Lemma 7.1. The iterates U, given by (7.1) satisfy the formulas

Up =" 0o+ 7Y e ne™ I GIINU) (7.2)
k=0
and )
Uy = S(tn)U() +T7 Z Ck,ntnfk sinc(tn,k|V\)IKg(7TNuk) (73)
k=0

for alln € Ng, 7 € (0,1], and K € NU {0}, where u,, denotes the first component of
U,. Here we define

1
00 =0, Con=cani=g5, Chni=1 (7.4)

forke{l,...,n—1} andn > 1.
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7. Error analysis

Proof. Starting from (7.1) and Lemma we compute

n—1
Up = "™ Uy + g Z en—k-1)rA (eTAIKG(HNUk) + IKG(HNUHl))

n

— n’l’AU 4+ = Z n— k:TAIKG HNUk Z n— k’TAIKG HNUk)
k 0 k=1

I\D\ﬂ

= 6nTAU0 + 7 Z Ckyne(n_k)TAIKG(HNUk).
k=0

Formula ([7.3) for the first component is obtained by inserting G = (0,g) and the
expression ([5.20]) for et4. O

Now we derive a useful decomposition of the error. Recall that for the sake of notational

simplicity, we assume that the initial data (u°,v°) are real-valued, which is inherited

by the solution U and the approximations U,, cf. Lemma [A:5] For the nonlinearity
g(u) = —p|u|*tu, we then obtain

¢/ (u) = —palul*~,
¢ (u) = —pafa - Dul*~*u,

Proposition 7.2. Let the solution U = (u, Opu) satisfy Assumptz’on and the approxi-
mations U, be given by (7.1)). Define the (projected) error E, by

E, =1gU(t,) — Up. (7.5)
We then have

E, =" Ey+ g B(nt) + gDy + MgQp + g Hy, (7.6)
= "By + g B(nt) + gD, + Q, + Mg H,

for all T € (0,1], K € NU{oc}, and n € Ny with t,, € [0,T). The appearing terms are
given by

B = [ «IGW(s) — GITU(s))] ds.

12 fn nT—s s s S S d (S)
D, = 7/0 T2 = 2121 - 2) <d2(s) + d;(s) +d4(8)> @

Qn =7 e PITAGIINU (1)) — G(IIyUL)],
k=0

(7.8)

Hy = 7Y ene® (1 - TGN TR,
k=0
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7.1. Error recursion

and

Qn =7 crne" MALLGIINU (t)) — G(LINUy)),
k=0

n (7.9)
Hy=1Y cpne™ ™I — T ) GINU (),
k=0
for ¢y, from , N :=min{r~!, K}, and
di(t) = =24 (mnu(t))TNOu(t),
a(t) = g (exult) [ v + (mnOru ()7, 710
ds(t) = g (mnu(t))mng(u(t)),
dy(t) == 2¢' (myu(t))mnAu(t).
We can alternatively write
n—1
2 [Tsgs ((n—k)7—5)A dy
D,=5% /0 (2 1)];)6 <d2+d3+d4> (tp + s)ds, (7.11)

and also

Da=r [ g 2] - 1 (g,< A >) ds. (112

mnu(s))TnOu(s
Proof. We subtract the discrete Duhamel formula ([7.2)) from its continuous analogue

MU (nr) = ™ RU(0) + Tk / cPTAG(U(5)) ds
0

(see (6.2)) to obtain

tn
B, — "By + T B(nr) + g / ePTAG(TIN T (5)) ds
0

n
- 7_I_IK Z Ck,ne(n_k)TAG(HNU(tk)) =+ HKQn + HKHn
k=0

where we exploit that Zx = [IxZg. To get the desired formulas for D,,, we use the error
representation of the trapezoidal sum (in second and first order)

/ F(s ds—chkn (tx) /tk+1 (s —tr)(s — try1)F"(s)ds
_ Z /t M b — ) (s) ds, (7.13)

where we set F(s) = "™ )AG(IIyU(s)). We compute
/(s) = 6(nT—s)A _ 0 1 0 i 0
F(s) [ (A 0) (g(m\fu(s))> T3 (g(mwds)))]

81



7. Error analysis

(nT—3s) < WNU )) )
g (myu(s))mnou(s) )’
I8 ) < o) Vo d () ]
"(mnu(s))mnopu(s) ds \ ¢ (mnu(s))mnOpu(s)
Y < +d3 —|—d4( ))

using that A[g(w)] = ¢"(w)|Vw|? + ¢'(w)Aw and the differential equation ([4.1)). Since

F//( _ _(nt—ys)

1 n—1

Iy /t’““(s — ) (s — tpr1) F'(s)ds = T /Otn(LiJ = 2[F1 = 2)F"(s)ds = Dy,

250t

from - we deduce the second order formula . The substitution § = s — ¢, yields
the alternative representatlon . Similarly, the second line of - ) leads to the
first-order representation (|7.12] Smce @, +1gH, = Qn + Il H,,, we also obtain
the other recursion formula 1} O

Remark 7.3. The first component of Q,, defined by (7.9) satisfies

n—1

(Quhi =73 [e" P e, T [GINU (1) = G
k=0

and similarly for @,, from (7.8)). Here, the notation [-]; means that we take the first
component of the vector. The n-th term in the sum vanishes since the first component of
the nonlinearity G is zero.

7.2. Estimates for error terms resulting from the filter

We now deal with the term B in ((7.6) that results from the introduction of the filter
function IIy. Here we face the following difficulty. If we move the L? x H~! norm inside
the integral and apply Lemma with s = 2, we end up with a term roughly of the
form

g () (I = wn)ull -1 = N72lg (w) Aul| 1 gy

Now we would like to use a nonlinear product estimate, but we do not have enough
regularity available to obtain an optimal error bound if o < 5. For example, consider
a = 3 so that ¢'(u) ~ u? and we are aiming for an almost second-order error bound
in time. Recall that N = min{r~!, K}, thus we cannot afford a loss in the product
estimate. Assumption yields u € L¥H! and hence Au € L¥H 1. Moreover, thanks
to Proposition we almost have u € L%L‘X’. But a product estimate of the form
low]ly-1 S |vllgrare ||wl]-1 is wrong, because in 3D, one only has

[owllgg-1 S lvllwrsapee [wllz-1
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7.2. Estimates for error terms resulting from the filter

in general, which would require additional integrability.

To solve this problem, we follow a different strategy. We do not move the L? x H~!
norm into the integral at first. Instead, we involve integration by parts in time, which
helps to “move regularity to the right position”. This technique was used previously in,
e.g., |10] in a context without Strichartz estimates.

Lemma 7.4. Let U = (u,0uu), T, and M be given by Assumption and B by (7.8).
We then have

IB(t)lsrxze S N7H(1+ log N),
1B exner Sar N-2(1+log N)

ifa=3, and

_5-a
1Bt lsixr2 SMra N~ 2,

1Bl L2xw-1 Smra N7 72

for a € (3,5], uniformly in N > 1 and t € [0,T). The implicit constants are independent
of T if Q=R and a = 5.

Proof. Since
I1B(O)ll3rxr2 S llg(u) — g(mnvw)ll s L2,

the bounds for the energy norm follow directly from Lemma [6.10] Similarly, using that
1Bl L2xw—1 S1 llg(w) — g(mnvuw)l g1,

we obtain the bound for the case oo = 5, where the constant is independent of T if ) = R3.
For the remaining estimates in the L? x H~! norm, we use a decomposition. We first

splitﬂ
t
B(t) = / =AU (s)) — Gl 2U(s))] ds
0
t
+ / DA G (T2 U (s)) — G(TIy U (s))] ds
0
=11 + 5.
Lemma also yields
11l 22 sr—1 S llg(u) — g(myew) Ly g1 Saar N2
The second term is reformulated as

G(Iy2U(s)) — G(IINU(s)) = /0 1 G (U o(s)) T2 (I — Ty )U(s) 6.

'Similar as in the proof of Lemma , this first decomposition is in principle only necessary for oo = 3.
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7. Error analysis

Here we use the notation
Un,o(s) == 0mn2U(s) + (1 — 0)mnU(s)

and write ux g for the first component of Uy g so that

G'(Unp(s)) = (g’(w\?e(S» 8) .

Moreover, in order to gain a negative power of IV, we insert the equality

T—a

(I -TIy) = (N~ 'Ddy) 2

from Lemma with D = diag(|V], |V|) and @y := diag(¢n, ¢n). This leads to the

representation

T—a

Cw 1 rt T—a
L=N""5" / / CIAG Uy () TLy2 @2 D7 U(s) ds .
0 0

Next, observe that D = JA for the operator

(0 =V
()

If Q = T3, here we define the zero-th Fourier coefficient of |[V|~! f to be zero, for arbitrary
functions f € H". To simplify notation, we set Dy =11 N2 @%_a)/ 2] , which is a bounded
operator on H" x H"~! for all » < 3/2, uniformly in N > 1. Altogether it follows that

IS Y’ _ .
L=N""% / / G (U o(5) DD 7" AU (5) ds d.
0 JO

Recall that the differential equation AU = 9,U — G(U) from (6.1]) holds in C([0,T7], L? x
H~1). Inserting it, we split I3 into

o 1 t . Ca
L=N""3" / / CIAG Uy () BN DT 0, (5) ds b
0 JO
—a 1 t ~ —a
N5 / / CDAG (U o(5)BND T G(U(s)) ds d
_T—a 00
= N 2 (1271 — 1272).

Using Holder’s inequality with % = % + % and the Sobolev embedding La — H?)_Ta, the
term with G(U) is estimated by

= S5—a
1122]l22x3-1 S sup [|g'(un,)[®nD 2 G(U)h|

6
0€[0,1] °

LLL

S5—a
< up g (un o)y V12 g(w) || Lo

)
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7.2. Estimates for error terms resulting from the filter

S ™"+ frcul™ g poll a8

S (Ilmveull2t s + el Sty paem ) lelfe o Sarr 1,
where the estimate in the last line follows from Hélder’s inequality in time, p, > o — 1,
Proposition and Assumption Recall that the notation [-]; means that we take

the first component of the vector.
The summand with 0;U is integrated by parts in time, which gives

1 = 5 !
Iy, :/0 [e(t_s)AG/(UN,e(S))(I)ND ? U(S)L:o df

1 t ~ —a
+ / / Ae(t_S)AG’(UNﬂ(s))(I)NDSTU(s) ds o
/ / (t=3) G’(UNg( )END T U(s) ds b
=Iy11+1I12— 12,1,3-

The boundary terms I 11 can be estimated by means of Sobolev and Holder inequalities.
For § € [0,1] and s € {0,t}, we infer

a1 llzexas S g (uno(s) D72 SNU ()] g
< g (uno()Il o D2 SN o
< (uwu(s)HLg lrwu(s) 155 U Sl sz Sar 1,
using HET < L6 «. Similarly the contribution with A is estimated by
lp2at S 9/ (ung) D72 BN U |y 12

< llg'(un,p) 7\\[7? 7 onUh [
T

12,12

S lmneu| T + [l T

La 1an La ILQa'

If a € (3,5), the right-hand side is uniformly bounded by a constant depending on
M, T, and «, using Proposition with (p,q) = (@ — 1,¢,) from (6.11), and hence,
I T212llL2x-1 Smra 1. If @ = 3, we instead use the logarithmic endpoint estimate from
Proposition for the L2 L>° norm, which gives ||I212||12x3-1 Sarr 1+ log N. Finally,
to get the estimate for I 3, we observe that

d

&QI(UN,Q(S)) = QN(UN,G(S))asUN,e(S) = Qll(UN,G(S)) (QWW@tU(S) + (1 - g)ﬂNatu(S))-

If a € (3,5), the dual Strichartz estimate from Corollary with (p,q) = (o —1,¢a)
implies

12,13l 221 S 9" (un0)Osun D7 @NUL azs
Lo
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7. Error analysis

<llg"(uvoll azp s 105 unollzr D2 ONULI o
Lo2 [Ta=5)(a~ LgLt-a

< (||7rN2uHa_2 SN ||7TNU||O‘_2 6(a_1>)HatUHLOTom||UHL39(H1xL2)
LTfl “a-3 L%flL a—3

SMTe 1,
using Holder’s inequality with

1 5a-3 _ (a—3)(a—2)+6—0¢ 1 (a—3)(a—2)+9—oz B 3(a—1)+1

¢, 6(a—1)  6(a—1) 6 2 6(a—1) 6 « 2’
(7.14)

a=3 _6

the Sobolev embedding H 2 < L6-a, and Proposition . In the case a = 3, we

exploit that the polynomial g(u) = —puu® keeps the frequency localization 72 up to a

factor 3. This means that I3 = H3N2]2,1,3E| Hence, we can apply the dual endpoint

logarithmic Strichartz estimate from Corollary [5.18| to conclude

T2 d2,1,3 ]| 221
1

Sr (1+1og N)2 " (un0)dsun o[ DENU | 121,
l ~
< (1+1log N)z|lg"(uno)ll 2, IDeNU |56 r2

1
S (L+1logN)z <||7TN2UHL2TL°° + Hﬂ-NUHL%LO@) 10cull g r2 U | Lge (341 x 12
SM,T (1 + logN),

where in the end we again apply the logarithmic endpoint estimate for « from Proposition
6.9 O

7.3. Estimates for local error terms

Next, we treat the term D,, from that includes the local error terms, starting with
di, ds, and ds. In the following, we will not always explicitly mention the repeated use
of the Sobolev embeddings H(@=3)/2 y [6/(6=0) and L6/5 s H~1 Holder’s inequality
Wlth 2 + 3 and 1 = O‘T_?’ + G_TO‘, and Proposition with admissible exponents

2 ) {(pa, 3(cx 1))( —1,qa)}-

Lemma 7.5. Let U = (u,0wu), T, and M be given by Assumption . The third term
in (7.10) satisfies

HdSHLlT%k1 Smrl

if a € [3,4], and
ds | g 3¢-1 Saar NO

2In view of Remark [4.10] one could avoid to use the special form of ¢, by involving another triangle
inequality with IIy212 1 3, for instance.
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7.3. Estimates for local error terms

for a € (4,5]. For the first two terms in (7.10), we have
ldillpy 2 Smr (1 +log N),
1
12l L2 21 Sar (1+1log N)2

for a =3, and

a—3

ldillpyrz +lldell ezt Samra N2
LY 2 L%

for a € (3,5] and q, from (6.11)). All estimates are uniform in N > 1.

Proof. First, Sobolev and Holder inequalities yield

ldslliyae-s < 9" (v mng (il o < llg' (mavu) = Jmvg(u )HL;%LQ
<
HWNUHLpaLs<a yllmng(u) HL%H ~M HWNQ(U)HL%L2~

For « € [3,4], we get
levg@)ll 2 Sllull® 20 Srllufl® 2a  Swrd
—a 72 L5—a [2x qu:—S 2

by Holder’s inequality in time (using o < 4) and Proposition [6.9| with (p, ¢) = (2%, 2a).
If o € (4, 5], we need to apply Bernstein’s Lemma to obtain first

lmvg@)ll 2o SN THgw)] oo < NTHg(w) L
Ly or2 Ly~ ®Hi-a

aL2 =5

SNl s Swr N
L;*QLQagﬁs ~

exploiting the dual Sobolev embedding L= < H4~* and Proposition with (p,q) =
2 6

(577&0{’ 2a(i5)'
Let now a = 3. We then derive

Iyl o2 p2 S llg' (rvu)mn Dyl 1 g2 < g’ (rvu)l s oo |l Opul| oo e
SMm HTFNUH%;LOO Smr 1+1log N,
||d2||L2TL1 S Nlg" (mvu) [[Vanul® + (mydpu)?] ||L2TL1
< |lg" (el 2 poe IV xul? + (v 0in)? | e o
S llrwull gz o (1Yl 2 + 100l 2 ) Sarr (1+log V)2,

using the logarithmic endpoint estimate from Proposition . Similarly, for a € (3, 5],
these terms are bounded by

ldillpy e < IIQI(WNU)HLITL% ”WN@WHL;OL%
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a=3 a—3
S el Imndsal oy Sarira N 10l rn Sat N5
T

La 1an

Idoll o1, SNg" (AN et _s@n [[[VANul* + (ndu)?|] o
L2~ LY

=2 1, (@a=3)(a—2) LP L=«

< lmwvulgat (]

Vayul® e 4 [l dpul® 1*2)
%OLS)—Q OO 9—a
Suza N°T (”VUHLOOL2 + ”8tUHL°°L2) SuN"T

employing the relation and Proposition with (p,q) = (a — 1,¢,). The loss of
N(©@=3)/2 comes from the Bernstein inequality in Lemma ]

The term d4 from is the most difficult one, because it involves second partial
derivatives of u. Therefore, we follow the same strategy as in Lemma [7.4] However, since
the situation is now more “discrete” in time, we apply summation by parts instead of
integration by parts. Roughly speaking, this transforms the term containing dy4 into terms
that can be estimated in the same way as d; and dy in Lemma To use summation
by parts, we need the filter IL -1, cf. the discussion before Lemma [5.20] As noted before,
such a strategy was already used in [10] in a situation without Strichartz estimates.

Lemma 7.6. Let U = (u,0pu), T, and M be given by Assumption . Then the term
D, from (7.8]). is estimated by

| Dnllmr w2 Smr 7(1+ [log 7)),
IDnl 2521 Saar 7°(1 + |log 7))
if a =3, and
S5—a
IDullarixre SMTaT 2,

T—a
1Dall 231 Shra 77

for a € (3,5], uniformly in 7 € (0,1], K € NU{oo}, and n € Ny with nt € [0,T). The
implicit constants are independent of T if Q =R3 and o = 5.

Proof. We first show the estimates for the energy norm. Recall that N = min{7~!, K}.
The first-order representation ([7.12) implies

1Dallza e Sr 7 (llg(myu) a0 + ||g'<mu>mvatu|rL1TLz)

(I Vall, o+ Imndrul

<
S 7l Jerrts)

a—1

[ (s
5—

ST vl (||mquL;ow + |mnOuullpzre) Supa T

for a € (3,5], also taking into account Bernstein’s inequality from Lemma and
Proposition , where V.=V on R3 and V = I + V on T?%. Similarly, for a = 3 we
derive the inequality

[ Dnllagzz Sar 7(1+ [log7|),
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7.3. Estimates for local error terms

by means of the logarithmic endpoint estimate from Proposition [6.9] For a = 5, we get

1Dallzexns <o 7 (laanwllyy po + g (ravu) Dl 501
< il g (Imvellze oo + vl gess) S 7
using again Proposition where the constant is independent of T if Q = R3.

We now show the remaining bounds for the L? x H~! norm. Using Corollary for
the term involving ds, we start with the inequality

1Dallzexri—s S 72 (ldall g o + o+ sl g 301 + 1D all2xres),

where dy = (1 + | logT|)1/2||d2||LzTL1 for o = 3 and dy == ||ds|  for a €(3,5), as

‘ a—1
Lo La
well as

Dn,4 = /Otn e(m_S)A(EJ - f)([§—| - ;) <d4(zs)> ds

independent of a. The terms containing di, da, and d3 are estimated by Lemma
(using that oo < 5 for d3). We still need to deal with the term D,, 4. As in (7.11)), the

remaining summand is given by

n—1

T 0
D, 4 = s(s _q (n—k)T—s)A d
=) HED T i)

k=0

Since

<d4(tko+ 3)> = 2G/(INU (ty, + 8))A’TINU (t, + 5),

G/(HNU(tk + 8)) = <g/(7TNU?tk T S)) 8) s

we can write
T n—1
Dpy =2 / 5(2 = 1) 37 el =RT=DAGN TN U (1), + 5)) AN U (1, + s) ds.
0 k=0

Recall the summation by parts formula

n—1 n—2 n—2 k
> arby = an_1bp1 +an-1 Y br+ > (ar — ars1) Y by,
k=0 k=0 k=0 j=0

with a, = e FTAG(TINU (), + s)) and b, = A2TINU (tg, + s). It yields

Dy =2(11 + I + I3)
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with

I = / 2(2 — 1) IAG (TINU (1 + 5)) A2TINU (1 + 5) ds,
0
. n—2

I = / 52— 1)eTVAG (UNU (ta—1 +5)) > APTINU (), + ) ds,
0 k=0
r n—2

Iy = / 2(2-1) ) ellnmhr=9)4 (G’(HNU(tk +5))
0 k=0

k
— eiTAG/(HNU(thrl + S))) Z A2HNU(tj + s)ds.
7=0

Next, we insert the equality
TAlly = (74 = 1)U,

from Lemma, where the operator ¥, x is bounded on H" x H™! for all r € R,
uniformly in 7 € (0,1] and N € [1,1/7]. The term I; is controlled by Sobolev, Holder,
and Bernstein inequalities via

1l ozt S sup g/ (myvultn-r + )€™ = DU N AU (tar + )il ¢
s€l0,T

< sup [lg'(mnvultn—1 + )l Ls[[AU (tn—1 + 8) | L2
s€[0,7]

— _a=3 — _a=3
Su lmvullfseny S77F lulgzhp Sur™ T
Next, for j € {0,...,n — 2} and s € [0, 7] we define the sum

J J
S(r,4,s) =7 ATMINU(ty +s) = > (™ = )T, yAU (t; + 5). (7.15)
k=0 k=0

A shifted version of Duhamel’s formula ([6.2) yields
B J
5(7-7 j? S) = Z \IIT7NA[U(tk+1 + S) — U(tk + S)]
k=0
Jioopr
- Z / \IJTJ\er(T_")AG(U(t;C +s+o0))do.
k=0"0

We exploit this telescopic and sum to conclude that

i
1S(7, 3, )| z2xa—1 So U1+ 5) = U(s)llagp 2 + Z/O lg(u(te + s+ 0))||r2do
k=0

S WUllgrxezy + lg(@llpyrz Sar 1, (7.16)
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7.3. Estimates for local error terms

uniformly in j € {0,...,n — 2}, 7 € (0,1] and s € [0,7]. Hence, the summand Iy is
estimated similar as I7 by

12llz2x2-1 S sup g/ (mvultn-1 + ) [S(r,n = 2,8)l1]l g

s€[0,7]

~ _a=3
N 81[11)] lg' (mnvultn-1 + s)LsllS(T, 7 — 2, )l L2 S 7™ 2
s€(0,7

The term I3 is treated by means of another decomposition. Involving ([7.15)), we split it
as

I3 =131 + I3,
with the expressions

T n—2 N

I3y =1 / s(s 1) Y R4 (] _ o~mAYGH Ty Uty + 5))S(r K, 5) ds,
0 k=0
T n—2

I3,2 = %/ g(% _ 1) Z ((n—k—1)T—5)A
0 k=0

(G (NNU (1 + 5)) = G (U (g1 + 9)) ) S(r k, 5) ds.
For I3 1, observe that
I—e ™= TApi(—TA),

where ¢1(z) = (e* —1)/z. Since the function ¢; is bounded on iR, the operator ¢ (—7A)
is bounded on H! x L2 uniformly in 7 € (0,1]. For a = 3, we then derive

T n—2

aur S1 [0 NG TNV (b + )5 (k. ) ds
k=0

7 n—2

< [ 3 llg' et + )= 15 ) 2 ds
k=0
St mvullfs oo Saur 1+ [ log 7,

using estimate ([7.16|) and the logarithmic endpoint estimate for u from Proposition
Similarly, for o € (3,5) one obtains

T n—2

P 3l (vt + )l 1S o)l g 0

_;3 = _a-3
¢ sup  [[S(rky8)| p2rt Smga T 2
ke{0,...,n—2}
s€[0,7]

< HWA”iHLa 1an

due to Bernstein’s inequality and Proposition For the term I3 9, we first substitute
§ =5+t to get

tn—1
Ba=1 [ DA 2y - 2]
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7. Error analysis

. (G’(HNU(S)) - G'(IINU(T + s)))g(r, 12],s —71[2])ds.

We first consider the case a = 3. By the polynomial structure of g, we have the frequency
localization I3 = II3,-1132. The dual logamthmm endpoint Strichartz estimate from
Corollary E 5.18 and the bound ( - ) for S thus yield

Msallesr St 4 ((1+ [ log ) /0 (¢ (mu(s)) — ¢ (mxulr + 5))

=

(8 12 s = 72D ds)
Sur 21+ [log 7))3lg (myvu) — o/ (mnvu(r + -))IILgHLQ' (7.17)
To conclude, from the equation
u(s) —u(r+s) = /c%us-i—a
we deduce
I (rvu) — o (el + Dl o
Slg” (evuw)l + 19" (rnu(r + DIz~ p e / 10cu(s + o)l 2 do
Smr [mvull gz pee 7l Ol oo 2 Sarr (14 [log 7])% 7.

Together with (7.17)), this implies the desired bound for I3 .
If o € (3,5], we follow a similar strategy to obtain

s ([ ) - o vt + )

L*Q
(8(r, 2], s — [ 2 H“2ds>
SM,T%Hg'(ﬂNU)—9’(7TNU(T+-))|| oz} 3=
tn— 1 &
< llg” a1l 6 )
llg (WNU)H g $IIWN tUHL%OL%
a—3
S 7 Il 0 Nl e Sar 75F
exploiting the relation (7.14]), which concludes the proof. O
p g ) p

7.4. Proof of the global error bounds for a = 3

We give different proofs of the global error bounds depending on « € [3,5]. We start
with the proof for & = 3, which is somewhat simpler.
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7.4. Proof of the global error bounds for o = 3

In the cases a € {3,5}, the nonlinearity g is a polynomial. This makes the trigonometric
interpolation Ix operator quite harmless due to Lemma Therefore, in these cases
we use the recursion formula ([7.7)), instead of formula that is employed if a € (3,5).
The next lemma deals with the term H,, from (7.9) and will be exploited in both cases
a e {3,5}.

Lemma 7.7. Let U = (u,0pu), T, and M be given by Assumption with Q = T3 and
define Hy, by (7.9). We then obtain

| Holl e Sarr K11+ log K)

if o =3, and
| Hnll 2 -1 Saar K1

for a € {3,5}, uniformly in T € (0,1], K € NU {0}, and n € Ny with nT € [0,T].
Proof. For o = 3, Lemma with 8 = 3 and Proposition [6.9] yield
Hﬁnuego([o,T},Hlxm) St (= Ik )g(mnu(tn)) e qo,m,z2) S K_l||g(7TNu(tn))||E}([0,T},H1)
S K Mg (mvultn))llex o7y, 00 v ultn) lese (jo77, 1)
S KM manvulta) 172 o1, 00y 10 (En) lese o7, 1)
Sur K'(1+1logK).
Similarly, for o € {3,5} we obtain
| Hullese 0.7, p2x -1y S (I = Ik )g(mnvu(tn))|]

< K7 lg(mnultn))

oL(0,71,L8)

I oy w8
S K Mg (mvultn)) llex o,ry,2) lmn (i) lese (0,77, 11

-1 -1 -1
5 K Hﬂ-Nu(tnN ?g—l([07T]7L3(a—1)) ,SM,T K.

Here it is important to use the interpolation error estimate from Lemma with
q = 6/5. If we stuck to L2-based estimates, we could for the L? x H~! norm only reach
a sub-optimal estimate (the same as above for the energy norm, which would not yield
convergence for a = 5), since optimal error bounds for trigonometric interpolation in
negative Sobolev spaces are not available. O

We still need to deal with the term Q,, from (7.6)). For a = 3 it turns out that it is
enough to use Sobolev and Holder inequalities. We write u,, for the first component of
U,, as well as e, for the first component of E,.

Lemma 7.8. Let U = (u,0pu), T, and M be given by Assumption with o = 3. Define
the error E, by (4.4)) and (7.5). We then have the estimates

| T (g(mnu(tn)) = g(mnun)llze Sar (1+ llenldn ) lenllza,
| i (g(mu(ta)) — grnun))ll-+ Sar (14 [lenl3 ) lenll2

for all 7 € (0,1], K € NU{oo}, and n € N with nt < T, where we set N = min{r !, K}.
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7. Error analysis

Proof. From (/6.10]), we deduce that

s (g(mnutn) = glrnun))lze Sar (1+ lunl3s ) lenllze,

|1k (g(mvu(tn)) = g(mnun)) a1 Sar (1+ lwnle ) lenl 2

Here we use the Sobolev embeddings H! < L% and L8/5 <y =1 Lemma with
g € {6/5,2} and § = 3, as well as Holder’s inequality with % = %—1—%—{—% and % = %+%+%.
The assertion follows from this by inserting w,, = Tgu(t,) — en. O

We can now give the proof of the global error bound for o = 3. We use a standard
procedure based on the discrete Gronwall inequality. The error bound for e, in the
H'-norm is inductively exploited to get a uniform control on the numerical solution ,,
in H', which is also essential to obtain the error bound in the L? norm. This strategy
goes back to [50].

Theorem 7.9. Let U, T, and M be given by Assumption with o = 3. Define the
iterates Uy, by the Strang splitting and the (projected) error E, = UgU(t,) — Uy,
by Proposition . Then there are positive constants 7o € (1,e7 1] and Ko > 3 that only
depend on M and T, such that we have the estimates

|Enllgsre S m|logT| + K1 log K,
|Enllr2xp— Sy 7 log 7|+ K71

for all T € (0,70], K € NU{oo} with K > Ky, and n € Ny with nt <T.
Proof. We apply Lemmas and to the formula , which gives
lenllza S IBT)llggxre + [ Dallraxrz + | Hallagsze + 111@nl1 I
Sorr 7 log | + KM og K + Tnf (1+ llerlleo ) llexllz,  (718)
k=1
1Enllxzz S IB(T) i xrz + I Dallaasre + 1Hnlla xrz + 1Qnllag <

n
Smr 7| log T + K 'logK + 7 Z (1 + Heng_[l) lle |2 (7.19)
k=1

and similarly
1Bl 21 S 1B g2xa-1 + | Dall 2zt + [ Hall 21 + 1Qull 1201

n
S 2 log 7+ K714 77 (14 el ) llexll 2 (7.20)
k=1

for all 7 € (0,e7!], K € NU {00} with K > 3, and n € Ny with n7 < T. Here we use
Remark for the estimate on e, and we exploit that Ey = 0. Let ¢ = ¢(M,T) > 0 be
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7.4. Proof of the global error bounds for o = 3

maximum of the implicit constants in ((7.18]), (7.19)), and ((7.20). We then define the final

error constant
C = 2ce*T

and choose the maximum step size 1 € (0, e_l] such that
dery < 1, 2719|log 0|C < 1.

Moreover, the space discretization restriction parameter Ko > 3 should satisfy the
condition
2K, M log(Ko)C < 1.

Let 7 € (0,70)] and K € NU {oo} with K > Kj. We first show that the bound
lenllzn <1 (7.21)

holds for all n € Ny with n7 < T. For n = 0 this is clear since eg = 0. Take now n € N
with n7 < T. We assume that we already have

lerllzr <1

for all k € {0,...,n — 1}. Inequality (7.18]) thus yields
n—1

llenllzn < c(r|log 7| + Kt log K) + 2ct Z ek
k=1

The discrete Gronwall lemma then implies that
lenllzr < ce®*"(r]log |+ K tlog K) < C(r|log7| + K tlog K) < 1,

using the restrictions 7 < 79 and K > K. Hence, ([7.21)) is true. From (7.19) we can

now infer that

n
1Enllggrxre < e(r|log 7|+ K 'og K) +2¢7 Y [lekl,
k=1
n—1
1Bl xre < 2¢(r|log 7| + K~ og K) +4er Y || Exllpgr w2,
k=1

where we use the step size restriction 2cr < % to absorb the n-th term in the above sum.
The discrete Gronwall inequality then gives the desired bound

| B2 w2 < 2ce (r]log 7| + K tlog K) < C(7|log 7| + K 'log K).
Similarly, starting from ([7.20)) we establish the inequality

1Bl p2 -1 < C(72[log | + K1),
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7. Error analysis

again using (7.21]) and the discrete Gronwall lemma. If we deal with homogeneous
Sobolev norms on the full space Q = R3, we have to check that ||e,||;2 is finite, in order
to absorb it above. This is done inductively starting from Fy = 0, using the inequality

n—1

lenllze Sanr 2 log |+ K71 +7 3 (14 llexl3n ) lexl 22
k=1

that follows similar to ((7.18) and ([7.20]) from Remark O

Proof of Theorems[{.1] and for a = 3. The semi-discrete Theorem [4.1] directly fol-
lows from Theorem [7.9 with K = co. For the fully discrete Theorem [£.12] we take 79
and Ky from Theorem with 2 = T3 and obtain

1U(tn) = Unllpzxm—1 < (I = W)U (tn) | z2xc—1 + | Enlln2xm—1 Sar 72 log 7|+ K71,

for 7 € (0,79], K > Ky, and n € Ny with n7 < T, where the projection error is bounded
by Lemma [5.19] Similarly, for the energy norm we have

1U(tn) = Unllmrixre Sarra I = TE)U (tn)ll 1<z + 7 log 7] + K~ log K — 0

as 7 — 0 and K — oo, uniformly in n € Ny with nt < T. Here we used dominated
convergence for the projection error. O

7.5. Proof of the global error bounds for o € (3,5)

For a € (3,5), we rely on the recursion formula . It turns out that estimates in
discrete Strichartz norms are needed to control the terms @),, and H,, in . The bound
on the solution u is already contained in Proposition [6.9] However, we will also need a
corresponding inequality for the approximation u, which is not clear a priori. To this
aim, we first show a “discrete local wellposedness result” for the scheme . It is the
discrete counterpart to Theorem [6.1]

Lemma 7.10. Let R > 0 and « € [3,5). Then there is a time by = bo(R, «) € (0, 1] such
that for all Uy € H' x L? with ||Uplly1xr2 < R, and all H'-admissible pairs (p,q), the
sequence (Uy,) defined by (7.1)) satisfies the estimate

[unllese(j0,001,21) T+ 1T U2 ((0,00],29) Spoa.R 1
for all 7 € (0,bg] and K € NU {oo}, where N = min{r~1, K}.

Proof. Let j € Ny with ¢;;1 < 1. The discrete Duhamel formula (7.3) and the discrete
Strichartz estimate from Corollary imply

max{|[unllee (0,¢;411,#)5 TNl 0,000,200} Spa 100llrscze + [xg(mnun)ller oz, 12)-
(7.22)
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7.5. Proof of the global error bounds for a € (3,5)

By means of Holder’s inequality in space and time with l = % + % and ﬁ = 2(0;__31) +

2(@ 1) respectively, and Sobolev’s embedding H' < L%, we estimate

lg(mnwn)lex(o,e,),02) < ||7TNun||@a (0,4, 1301 [N tnllese (j0,2,),L9)
S tjz ”WNunH?IT’;([O’thLs(aﬂ))”unuégo([o,tj]ﬂ-ll)'
The interpolation error satisfies
I = I )g(mnun)lexqou1.02) S K2 Alg(mnvun)lleo,).22)
< K2|lg' (mnvun)mn At o,,1,L2)
+ K2 g" (mnun)|

F([0,45],L2)

by Lemma [5.23] Similar as before, these terms are controlled by
19" (TN un) TN Aun e o,),02) S ||7TNUnH£a 1 (j0,1,], 1360 [T Bttnlee (o,7],20)
5—
= - 2
S tj-&l HWNUHH?ga([oij]ylﬂa—n)K HUTLHZ?O([O,tj],Hl)
and

" (7N un) IV Nt 01 0,1,,12)
72| oz sop, [V un | 6(a—1)

< Ml e
L a=2 027 2([0,t5],L aF1 )

T slyly

< [lmnvunlfja- - 1([0t 1,L3(a—1) ||V7TNUHHE$°([0,tj],L6)||V7rNunHzg—l([o,t].],LB(a—l))

5 t]—|—1 K Hﬂ—Nunnga([o’thLB(afl))HunH@o([O,tj]vﬂl)v

using the inverse inequality from Lemma twice. Plugging all this into ((7.22)), we
derive

max{ || unlese ((0,t;41],21) ||7TNunHzP (0,t541),L9) }
Spaq 100l 2 + t]+1 ||7TNUnH€pa( 0,6,],230- 0y [Unllez(fo.,).741)- (7.23)
Also, the Bernstein inequality from Lemma and the admissibility yield
w7 myuoll o S luollpa- (7.24)

Let C' be the maximum of 1 and the implicit constants in (7.23]) and ([7.24]) with
(p,q) = (P, 3(ax — 1)). Since a < 5, we can choose the time by € (0, 1] such that

5—a
by? (2C)*R! < 1. (7.25)

We next show via induction that
max{||unlese((0,t,1,21): 1TNUn | 2a j0.4,], L3@-1y } < 2CR (7.26)
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7. Error analysis

for all j € Ny with ¢; < bg. For j = 0, the claim follows from (7.24). Assume now that
(7.26)) holds for some j € Ng with ¢; 1 < bg. Estimate (7.23]) and (7.25) then imply

max{[[unllis (0. 11201y, |78 Un Lz (0., 1) 150 1)} < CIR+b,® (2CR)"] < 2CR

for all 7 € (0, by, which ends the proof of (7.26]). The assertion for general H!-admissible
(p, q) now follows from (|7.23)). O

Using the previous lemma, we can now give an estimate for ), on a possibly small
time interval of fixed size, depending on the H' x L? norm of the initial value Uy of the
numerical scheme.

Lemma 7.11. Let U, T, and M be given by Assumption with o € [3,5). Let moreover
R > 0 and Uy € H' x L? with |[Up|ly1xr2 < R. Define U, by (7)), E, and Q, by
Proposition and by = by(R, @) € (0,1] by Lemma[7.10, Then for any time b > 0 with
b < min{bg, T}, we obtain
S5—a
1@n e (0,511 x22) SR b2 |lenllese (jo,60,21)5
S5—a
1Qnlleco (0,60, L2x7-1) SR b2 |lenlless(0,5],22)
for all T € (0,b] and K € NU {o0}.
Proof. We estimate

1Qnle2= (j0,57,21 x L2)
St llg(mvultn)) — g(mnvun) e o5),22)

S Ml (mvulta))] + l9' (ravien) s 0.1, 9) I u(tn) = mxtalles o,

S5—a —
S b7 (Ilravultn) 1 6m i.zoe-0y + 178l o g ey ) ITenlles o 20)
SR D2 |lenlles(o.5,20);

using Holder and Sobolev inequalities as in the proof of Lemma as well as the
estimates from Proposition [6.9 and Lemma The other claim follows similarly via

|@nllese (j0,00,22 x 2~ 1)

Srllg(mnvultn)) —g(mnun)ll, o )

S Mg’ (mxutn))| + 19/ (mxun)lles o4, 29) I ult) = Txvun e o 22
S5—a
S b7 (lmavultn) 16 gy ooy + 17805 o g ooy ) ITNvenlless o, 22)
5—a
SMT,R b 2 |lenlese(j0,0),2)- 0

The next lemma deal with H,, from (7.8)). Since g is not a polynomial for a € (3,5),
we cannot use Lemma |5.24 ﬂ Instead, we need to write out the W*%-norm appearing in
Lemma [5.23] using product and chain rule, apply Holder’s inequality, and only afterwards
exploit Lemma Hence, the proof is more involved than Lemma for a € {3,5},
though the general procedure stays the same.
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7.5. Proof of the global error bounds for a € (3,5)

Lemma 7.12. Let a € (3,5), R >0, and Uy € H' x L? with HUonng < R. Define

U, by (7.1] -, H, by (7.8 -, and by = bp(R, ) € (0,1] by Lemma . Then for any time
b € (0,bo], we obtain the estimates

| Hollmrixere Ska K07,

[Hnllp2x -1 Sr K,
uniformly in 7 € (0,1], K € NU {00}, and n € Ny with nt € [0,b].
Proof. For the energy norm, the interpolation error estimate from Lemma yields
[Hnllmxre S U = 1) g(mnun) e o, r2) S K2 ALg(rnwn)]lle o.,22)
< K72\ g (mnun)mn Al o,,02) + K 219" (mnun) VTN ual* [l (o,5,02) -
The appearing terms are estimated by

>l o v Aun||

/
lg' (v tn ) Atin ey 0.2 S Hlimavin (0,5],L5F) (52 ([0,,L5%)

< Hmvunllga 1 (j0.4], Loy ITN Unll o 0,07, 5%

SK™® HTFNUana 1 (f0.4], Loy [0nllez= ((0.01,501)
and
lg" (78 wn) VTN U 01 (0,9, 12)

< lanun |72 S 0y L ))HVﬂNunllea (o), Lea) VTN U],
- [e3 a—3

2o ((0,b],L5°7)

S ||7TNUn”ga 1 KHWNuang—l([o,b},an)HVﬂ'NunHZOO

([0,b], Lo (10,0, H°T)

S K7 |mnun|% 1 sy 1t ll e (0,0, 215
£2=1([0,b], Lac)

using Hoélder and Sobolev inequalities in a canonical way, as well as the inverse estimate
from Lemma [5.22] Altogether, Lemma [7.10] leads to

_5-a
1Hullgispe S K72 ||7TNUn”@a 1([0,1,}’an)||unH€$°([0,b],H1) Sra K72,

which concludes the proof of the bound for the energy norm.

For the estlmate in L2 x H™1, we follow a similar strategy, starting with the Sobolev
embedding L5 — H~! and the interpolation error estimate from Lemma with
q = 6/5. This gives

3

[HnllL2m-1 S = Ix)g(mnvun)| 6 S Z K" lg(mvun)|
m=

0L([0,0),L8) 2100, W™ )

S K7 g (mvun) Vanun | +K ?llg" (mnvun) [V

0L([0,0),L8) L ([0.5],L8)

2
+ K~ Hg (WNun)v TNU nHél 0b]L5)
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7. Error analysis

31,
+ K" () Dl e

+ K¢ (e un) VAN un [Vt |y 008

+ K~ 3”9 (ﬂ'Nun)V 7T]\/un||£1 (08,08

The appearing terms are again treated by Holder’s inequality and the inverse estimate
from Lemma which results in

g () VTN U | S g (mvn) ez o020 | VAN U llese (0,01,22)

01([0,0,L8)
~ HT‘-NUHHW 1([0,b],L3(e=1)) HVT[-NUHHZE;O([O,I)],LQ)
S ||7TNun||gPa (0.8, p3e—0y [Unllez= 0,61, 11

Hgll(ﬂNun)‘Vﬂ'NunF”

6
L ([0.b],L8)
S rnual* | a1

T Wl

sy [VINURl a1 (g 4 p3—1) I VTN UR e (0,5],22)
a—2 )

S K||7TNUanpa( 0,6, 13—y [ Unlleze (o,01,17):

HQI(WNUTL)VQWNURH S g (mvun) Hfl [0,6],13) HVQWNURHQO([OJ;],L?)

a(ob.L8)
S KH?TNuana 1o 23y VTN Un e 0.6].£2)

S KHWNUTLHgPa ([0,0],L3(2—1)) HunH&O([O,b},Hl)a

lg" (mvun) [V un

01([0,0,L9)
< v wn|*™ 3 asa _ 2| aca a1y ||VaNu 2
I nl ||é§*3([0,b],L ol Zfz ([O,b],LS( - 1))” n”é?"([O,bLL )

S K HWNUnH?g;l([o’bLLa(aﬂ)) HunH@O([o,b],Hl)a

19" (TN Un) V27N U | VTN U

St g e IVl o0 19T s 022

o ([o,b},L a2

01([0,0),L8)

S K> HWNuanpa(Ob] L3(a— 1>)HunHe$o([o,b],H1),

lg' (v un) Vo un|| S N9 (mvun) llex g0, IV 7t oo (0,91, 22)

(o, LE)
N KzHWNUnHza 10,130y VTN Unleze (0.6, 22)
S K? ||7TNUanpa (0., p3e—y [ unllez= (0.6, 11y

Combining these bounds with Lemma [7.10] we end up with

HH ||L2><H 1 S KT 1||7rNUanpa(0b]7L3(a71))HunHZ?O([O,b],Hl) SR K O
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7.5. Proof of the global error bounds for a € (3,5)

We now show the global error bound for « € (3,5). Unlike as for the case a = 3, it is
not enough to use the discrete Gronwall lemma. Instead, we need to apply Lemmas
and iteratively on the possibly small intervals [0, T}], [T1,27}] and so on, where we
reach the final time T after finitely many iterations. To apply Lemmas and we
need the uniform boundedness of the numerical approximations U,, in #!' x L?. Similar
as for a = 3, this boundedness follows from the error estimate after imposing a restriction
on the discretization parameters 7 and K. This method goes back to [17} 36} 53] in the
context of Schrodinger equations.

Theorem 7.13. Let U, T, and M be given by Assumptz'on with o € (3,5). Define
the iterates U, by the Strang splitting and the (projected) error B, = IIgU (t,) — Uy
by Proposition[7.3. Then there are positive constants o and Ko that depend on M, T,
and «, such that we have the estimates

5—a 5—a
[Enllaixre SMra 2 + K2,
T—a _
IEnllL2xs SuraT? +K 1,
or att T € (U, 1], € NU oo} wi > Ko, anan € Ng with nt < 1.
Il 0 K eN ith K > K| d N ith <T

Proof. We set R := M + 1 and define by = bo(R, «) € (0, 1] from Lemma Formula
(7.6) and Lemmas and yield

_5—«a S5—a
[ Enllece (1t,6,48, 10 x£2) SMya 1Ejllarxrz + N72 + 072 |lenllco (e 0,45,10),  (7-27)

T—a _ 5—a
| Enlleso (it;,,+8, 22 x-1) SMa | Bjllzxu—r +72 + K 4072 lenlloso e 1,+8,22)
(7.28)

for all j € Ng and b € (0, bp] which satisfy ||Uj|l1xz2 < R and j7 + b <T. Recall that
N = min{r~!, K}. Let ¢ = ¢(M,a) be the maximum of 1 and the implicit constants
from (7.27) and (7.28). Since o < 5, we can define the time T} € (0,T] by

Ty == min{T, by, (2¢) 75 }. (7.29)
Moreover, we set L := [%] € N and define the final error constant
C = 2(2c)F L. (7.30)
We then choose parameters 79 € (0,77] and Ky > 0 such that
S5—a
N2 >C (7.31)

holds for all 7 € (0,79] and K > K, again exploiting that o < 5.

Take now 7 € (0,79] and K € NU {oo} with K > Ky. We define the indices
vi=|T/r] € N, vy = |Tv/7] € {1,...,N}, and v, := mu; for all m € Ny. These
definitions imply that v < vp. In addition, we set ¢ = |v/v1] € {1,..., L}. This gives
the decomposition

-1 ¢
[O,t;j] = U [tumytum+1] U [tl’é’tl’] = U I
m=0 m=0
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7. Error analysis

where each interval J,,, has length less or equal T1. To measure the error in J,,, we set
Erry, = || Enll g0 (7, 11 x22) for m € {=1,... £}, where J_; := {0}. We aim to show the
recursion formula o

Erry,, <2c¢(Errp,—1 + N7 2 ). (7.32)

Note that once is proved for all indices in {0, ..., m}, one can derive the absolute
bound
m m+1
Err,, < 2cN~°2° > (20)F = gen-352 2™ —1 <2(20)FTIN"E = ONTE < 1,
e 2c—1
(7.33)
using Err_; = 0, the definition of C', and the discretization parameter restriction
from .
Let us now fix an index m € {0,...,¢}. If m > 0 we assume that the inequality
holds for all indices in {0,...,m — 1}. From we obtain Err,,_1 < 1, and thus

10vm 31 xz2 < (MUt ) 20522 + | Bullxz2 < M+ Erry g <M 41 = R.

Estimate ((7.27) and the definition (7.29)) of 77 then imply

o —a

S—a 1
Err,, < c||Ey,, ||yixr2 + N~ + T, ? Errp, < cErrp,oq + N~ % + §Errm.

Hence, the recursion ((7.32)) and the bound (7.33) are true for all m € {0,...,¢}. This
finishes the proof of the bound in the energy norm.

Similarly, starting from (7.28)) we obtain the recursion formula

T—a _
1 Enlleee (1,22 x1-1) < 2¢(| Enlles gy, L2xp-1) + 72 + K h

for all m € {0, ..., ¢}, which yields the estimate

7T—

| Enllese o, p2xn-1) < C(r 2 + K1)

as in (7.33). If we deal with homogeneous Sobolev norms on the full space = R3,
the finiteness of |le,||z2 (in order to absorb it) is inductively checked using Remark
starting from Ey = 0 (as in the proof of Theorems (7.9 and [4.4] for a € {3,5}). O

Proof of Theorems and for a € (3,5). We first note that the LP« L3 _norm
in the definition of M only depends on [[U]| s (31x2), as explained in Remark
The assertions now follow from Theorem [7.13] by the same arguments as in the case o =

at the end of Section [7.4l O

7.6. The critical case o« =5

In the case o = 5, the approach from the previous Section needs to be modified, since
two new difficulties arise. First, it is no longer possible to obtain smallness on small
intervals by an application of Holder’s inequality in time as in Lemma Second,
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7.6. The critical case o = 5

we can no longer show a convergence rate for the scheme in the energy norm (the rate
(5 — @)/2 from Theorem approaches zero as a — 5). On the other hand, for the
defocusing equation on the full space (i.e., 2 = R? and = 1) we can treat the global
case T' = oo in this section.

To deal with the smallness issue, as a first auxiliary result we establish that the
discrete-time Strichartz norm converges to the continuous-time Strichartz norm. This
will be done for the homogeneous part of the evolution, i.e.,

S(8)(f,v) = cos(t]|V]) f + tsinc(t/V])v,
on an interval J.

Lemma 7.14. Let (p,q,7) be admissible with p < oo, f € HY, v € H'~!, and J C R be
a bounded interval. Then we have the limit

1S ()TN (f, 0)llez g,20y = IS@ S ) 22 Loy

as T — 0 and K — oo, where N = min{r~!, K}. If Q = R3, the assertion also holds for
the unbounded interval J = [0, 00).

Proof. Let € > 0. We choose Schwartz functions ¢, ¥ € S such that supp ¢, supp& are
compact and || f — @[l ||[v — ¥||lyr-1 < e (note that S(T3) = D(T?) = C°°(T?3)).

Let first J be bounded. The function ¢ — S(t)(p, 1)) is then continuous with values in
L4, since the Hausdorff-Young inequality and dominated convergence yield

15(s)(@, ) = S(t) (0, ¥) | La
< [[(cos(s| V) = cos(t|V )¢l La + [[ (s sine(s[V]) — ¢ sinc(t[V]))4)]| La
< [I(cos(s[¢]) — cos(t[E]) @l ar + || (ssinc(s|€]) — ¢ sinc(tE])) ]| o — O

as s — t, where the Fourier variable is denoted by ¢ regardless of € {R3, T3}, and L
actually is ¢4 if Q@ = T3, We also have Ix (g, 1) = (¢,1) for (7,1/K) small enough,
because ¢ and ¥ have compact Fourier support. It directly follows that

1S (nT) XN (@, D)z (g,00) = (1S (@, D) 12 o (7.34)

as (1,1/K) — 0, as there are essentially Riemann sums on the left-hand side.
In the case = R? and J = [0, 00) we use a different argument, exploiting that in this
case,

IS(n7) (@, )l (s,Lay = IS(LF1T) (0, )| 12 Lo
Observe that

15 (. )15 20—~ IS(E D)@ )11
< 11(5(t) = ST, ) iz o

S H(ezl:it\V\ _ eii\'t/TJTlv‘)(PHLﬁLq + H(e:lzit|V| o eiiLt/TJT‘VI)’v‘_lw”[/ﬁlﬂ'
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7. Error analysis

With the help of Holder’s inequality, Fubini’s theorem, and Theorem 5.1 we derive that
+i i
O O E PR
1

B [s/T]T s 1
< (7t [ e, deds)”

< T\Ieiit'v‘!VIwIILqu S Tlell gy = 0

¢ .
i|V]etslVip ds‘

t/T]T LyLa

as 7 — 0, and similarly with ¢ replaced by |V|~!4. Thus, (7.34)) is also true for Q = R?
and J = [0, 00).
Putting things together, we conclude that

‘HS(nT)HN(faU)HZQ(J,L‘Z) —IS@® o)l ex e
<ISONTN(f = 9,0 = D)l g.z0) + (IS .20y = SO (%) 1210
+1S@ (@ = f,¢ =)z La
Spa llf =@l + o =ty +eSe

for 7 small enough, using the reverse triangle inequality and the Strichartz estimates
from Corollaries [5.16] and [5.17, where the Strichartz constants additionally depend on
the length of J in the case Q = T3, O

In the critical case o = 5, we use a regularization argument to obtain convergence
without rate of the error in the energy norm. This type of argument was already used in
the proof of Theorem 1.6 in |17] in the context of nonlinear Schrodinger equations, but
only in the easier energy-subcritical case. We first establish first-order convergence of the
scheme in the H! x L?-norm under the assumption that the initial data comes from
the smaller space H? x H'. To exploit this result in the general case of H' x L?-data,
we need the continuous dependence on the initial data, both for the equation and
the scheme . We show these auxiliary results under a smallness condition on a
Strichartz norm of the orbit, which can always be fulfilled by choosing a small end time
b, see Corollary We note that the time b in Proposition [7.15] corresponds to a lower
bound for the existence time b in Theorem cf. |66, [71].

Proposition 7.15. Let b € (0,00) if Q@ = T3 and set b == oo if @ = R3. Let R > 0.
Then there is a radius 6y = 6o(R,b) > 0 such that for any § € (0,50] the following is true.
For all Wy € H' x L? with |[Wol|z1xr2 < R and every b € (0,b] with HS(~)W0HL3L12 <9,
there is a time step T = 7(3, Wy, b) > 0 such that the next assertions hold.

a) For every Yy, Zo € By 12(Wo,d), the solutions Y and Z of with o =5 and
initial values Yy and Zy, respectively, exist on [0,b]. Moreover, we then have the estimates

7Ny () llea j0,5),212) g 6 (7.35)
||7TNyn||é$([0,b],L12) Sg 9, (7.36)
1Y — Z|| oo (p0,5,11 x £2) S5 1Yo — Zollwr <22, (7.37)
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7.6. The critical case o = 5

1Y — Znllee (0,61, x£2) S 1Yo — Zollpr sz, (7.38)

for all T € (0,7] and K € NU{oo} with K > (7)~!, where N = min{K, 77!}, Y, and Z,
are the iterates of (7.1)) for initial values Yy and Zy, and y, and y are the first components
of Y, and Y, respectively.

b) If Yo € H? x H' satisfies ||Yo — Wol|lyixr2 < §/2, then there is a constant C =
C(|Yoll g2 x 1, b) > 0 such that the error bound

1Y (tn) = Yalleo o441 x22) < C(r + K1) (7.39)
holds for all T € (0,7] and K € NU {oo} with K > (7)71.

Proof. Step 1. Let ¢ = ¢(b) be the maximum of 1, the constants from Corollaries
and with exponents (p, q) € {(c0,6),(4,12)} and end time T = b, and the constant
from Lemma with ¢ = 2 and 5 = 5. We define

80 = min { R, (3¢'(3 + ¢)'R) 75, (10c4(3 + o) 71 }. (7.40)

Let 6 € (0,6p]. Since by assumption ||S(-)W0HL;1L12 < 0, Lemma [7.14] yields a step size
7 > 0 such that
1S () IINWollea (0,0, 112) < 20 (7.41)

for all 7 € (0,7] and K € NU {oo} with K > (7)~!. We first show
[y lle(jo,e,],21) < 3R, 7 NYnlleao,e),12) < (34 ¢)d (7.42)

for all 7 € (0,7], K € NU {oo} with K > (7)7!, and j € Ny with j7 < b. In particular,

this shows the inequality ([7.36]).
We proceed by induction on j. For 5 = 0, we clearly have

IYollarxrz < Yo = Wollarxzz + [Wollpixz2 <6+ R < 2R (7.43)
since § < R. Corollary and (7.41)) further imply

1
7N Ynll e (goy,012) = T2 S(O)IINYol[ 12
1 1
< 7SO (Yo — Wo)ll g1z + 71[|S(0)TINWol| 12
< c||Yo = Wollgrxrz +20 <cd+25 =(2+ c)d.

For the induction step j ~ j + 1, we assume that ((7.42)) holds for some j € Ny with
(j +1)7 <b. We compute

Hyn|’€$0([0,tj+1],7-£1)

n—1
< [|S(n7)Yolleso (j0,¢;4]11) + TH > Chntn—i Sinc(tnfk|V’)IKg(77Nyk)H

k=0 e;.'o([(]?t]'ﬁ’l]v%l)

< cYollarxrz + Ellg(mnyn) ler(po.;],22)
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< 2cR+ Cz”ﬂNyn”?flr([O,thLu) Hﬂ']\[ynH[?([OijLLG) < 2eR +3c*(3+¢)*6*R < 3¢R,

by means of the discrete Duhamel formula (7.3)), (7.43)), Lemma Holder’s inequality,
the induction assumption ([7.42)), and the definition of ¢ from ([7.40). Note that Lemma
is applicable since for & = 5, g is a polynomial and therefore g(mnyx) = T8 g(TNYK)-

Similarly, using (7.3|) and Corollary we estimate

7 NYnlleao,yza),2r2) < 1SE)INY0ll e ((0,6;41],L12)

n—1
+ TH > Cptnksinc(tn_k| V) an Ik g(TNyk)
=0

< ISE)IN (Yo — Wo)llea(o,e,.1],L12)
+ 1S )TN Wollea(o,t;511,212) + ENg(mnyn) e (o.,1,L2)
<6 +20 4334 ) R < (34 ¢)d.

€2 ([0,t541],L12)

Hence, the claim is true for all j7 < b.
Step 2. Estimate is shown by an analogous argument starting from . Using
also for z,, we deduce the inequality
1Yo — Znll e (0,511 x 12)
< cl|Yo = Zollwrxre + el (9(mnyn) — g(7n2n))llero0,5),22)
|4

5
< clYo = Zollworxrz + 5 | (Imvynl* + lmnznl ) mnyn = wvznllle o,L2)

< c||Yo — Zollpx 12
+ §C2(H7U\7yn”44 12y + H7TNZnH44 12 )HWNyn - 7rNZnHé"o 0,b],L6
< cl|Yo = Zollar 2 + 53 + )6 Yo — Znllooe (o542 x 12)
1
< c||Yo — Zollaprxe + iHYn — Zn|leo ([0, 11 x L2)
which in turn implies
1Yo — Zn|leeo ((0,6),71 x£2) < 2¢l|Y0 — Zoll31 %22,

as desired.

Step 3. The existence of the continuous solutions Y and Z until time b as well as the
estimate are part of the known local wellposedness theory of , cf. Theorem 6.1
and Chapter 5.1 of [71]. We therefore omit the proof. To carry it out, one can proceed
analogously to Step 1 and 2, replacing the discrete norms by the continuous ones and
the induction by a fixed point argument. The estimate in discrete Strichartz norm
can be shown in a similar way as . More precisely, one obtains the inequality

max{||yllzspiz, |7yl pape, ITnyEn)lesqom,L2)} < B +¢)d (7.44)

analogously to (7.42)) (possibly modyfying dp). So part a) is shown.
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7.6. The critical case o = 5

Step 4. Now we want to show the error bound for better data Yy € H? x H'
with ||Yo — Wollyixz2 < 8/2. Since the nonlinearity G leaves the space H? x H!
invariant and is Lipschitz continuous on bounded subsets, the standard Duhamel iteration
yields a unique solution Y € C([0, Tinax ), H> x H') of with initial data Yy on a
maximal existence interval [0, Tiyax). By Sobolev’s embedding, the integrability condition
7 € Li ([0, Timax), L'2) is satisfied. Hence, Y coincides with the H! x L?-solution Y on
[0, b] by uniqueness, as long as they are both defined.

In the following, we show that [0, Tyax) 2 [0,b). By a standard blow-up criterion,
it suffices to show that ||Y (¢)|| 2w is finite for all ¢ € [0,b). First, note that (y, 0y)

belongs to C([0,b], H! x L?) and that the L? norm of y stays bounded since

t
Iyl < ly(0)]] 2 +/0 10ey(s)l[ 2 ds < [[Yoll g2t + syl Lo (j0,,L2) < 00

for all t € [0,b).

For the boundedness of V2y and Vd;y in L?, we use that the Sobolev norm of a function
can be expressed by bounds on the norms of difference quotients. For any h € R3, we
introduce the spatial translation operator 7y, by (Tn(f,9))(z) == (f(x + h),g(x + h)),
where f and g are functions on 2. By Proposition 9.3 of [§] (which is only stated for
) = R3, but the same proof works for Q = T3), we have

[ThYo — Yollur <z S |RIY0ll 22 -

Therefore, there is a number hy > 0 with || 7,Yo — Yo||y1xr2 < 0/2 for all || < hg. From
now on we assume that |h| < hg. The triangle inequality yields || 7Yy — Wolly1xr2 < 0.
Since T,Y solves (6.1)) with initial value 7,Yp, from (7.37)) we can deduce that

[ThY = Yoo (o021 x22) S5 1ThY0 — Yollarxze < [A/l[Yoll 22w -

Proposition 9.3 of [8] now shows that Y () belongs to H? x H! for t € [0,b] and

YN[ zoe (o2 5341y S [Yoll22 201+ (7.45)

Thus, [0, Tmax) 2 [0,0).
Step 5. We can now estimate the error ||V (¢,) — Y| seo (0,511 x 2.2)- Let 7 € (0,7]. For

the rest of this proof, we allow our implicit constants to depend on ||Yp|| g2y 1. We use
the expressions from Proposition [7.2] to write

Y (tn) — Yy = B(tp) + Dy + Hy + Qn, (7.46)

where the terms on the right hand side now include Y instead of U. The terms B(t,)
and D,, can be bounded similarly as in the Lemmas and respectively. Using
Lemma [5.19] we infer that

1B oo o, x22) S5 Myl*y = Imwyl vyl a e S N(yl* + vyl )y — vyl e

< (Iyltapee + Imnyllfa oo JIICE = 7o)yl e o
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Sp 1l = 7)Yl pgern S Nﬁl”@/”L;OW STHE L

Here, the bounds for the L} L'2-norm follow from (7.44). By (7.12) and Proposition
the second summand in ([7.46|) is estimated by

5 —g 7TNZJ
| Drllese (0,5, x22) S5 "(mny) TN Oy

L1([0,b],H! x L2)
< Tuwuw (IVenyllzzors + lmndylgers) S 7
The term H, in is controlled similarly by
[ Hollee o), 1222y S5 1T = T)g(mny () e o,y S K g(rvy(tn))llex o, mm)
S K mny(ta) o 1,212y 19 () leze o, 12) S K7

by means of Lemma and (7.44). Finally, we estimate the last part of ([7.46|) by

1@nl e (0,511 x .2

< Almny () *7ny(tn) — [TNyn* TN Ynlle2 (0,5,22)

5)
< 502(HWNy(tn)Hg}%([o,b},Lu) + HWNyTLH;}ﬁ([O,b},LU)) 7Ny (tn) — TN Ynllese (j0,4],26)
1
< 5B+ )0 Y (tn) — Yallee (o000 x12) < iHY(tn) = Yalleso (10,6, 11 x 22)

using ([7.44)), (7.42), and the definition of dp in ([7.40]). This term can be absorbed by the
left-hand side of (7.46)) and we obtain (7.39). O

Proposition only gives a local statement on a possibly small time interval [0, b].
Since we want to show a global error bound on the potentially much larger interval [0, T),
we need to apply Proposition [7.15| recursively. To this aim, we first have to iterate the
smallness condition in LéLlQ.

Lemma 7.16. Let U = (u,0wu), T, and M be given by Assumptz’on with o =5 and
let 6 > 0. Then there are a number L € N and times 0 =Ty < Ty < --- < T, =T such
that the inequality

HS(')U(Tm)HLglez < 1)

holds for allm € {0,...,L — 1}, where we set by, = Tyy1 — T, > 0. The number L € N
only depends on § and M, and additionally on T in the case = T3.

Proof. Let C be the constant of the Strichartz estimates from Corollary with respect
to the exponents (p, q) € {(c0,6), (4,12)} (and end time T if Q = T3). We define

6, 0 N\i
r—mln{ (2C2M) } (7.47)

Since HUHL‘;LH < M is finite, we can find times 0 =Ty < Ty < --- < Ty, =T, such that
the inequality

lull a1 Toga1L12) ST
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holds for all m € {0,...,L — 1}. Here we can choose L = [|lul[}412/r*]. Let m €

T
{0,...,L — 1} and by, :== Ty41 — Topy > 0. Starting from (6.2]), Corollary and ([7.47))

imply that
ISCOUTm s 112

< T+ Mg pro+ | /Ot(t — ) sine((t = 5)|V])g(u(Tn + 5)) ds|

4
Lj 112

<7+ Olllul*ull i (m Ty, 22) <7 F CQMHUH%LL([Tm’TmH]’Lm) <r+C?’Mr*<6.0

We now show the global error bound for the critical case. The proof will be divided
in three steps. In the first step, we define the needed variables and divide the interval
[0,T] into a finite number of subintervals, which have the property that we can apply
Proposition [7.15] on each of them. In the second step, we first prove the convergence of
the scheme in the H' x L?-norm without any convergence rate. This fact ensures that
the discrete approximation stays close to the solution in the H#' x L?-norm if 7 is small
enough. We can then apply Proposition [7.15] iteratively. Finally, in the last step, we
estimate the error in the L? x H~!-norm to obtain the convergence of order one. In
contrast to Theorems [4.1] and [A.12] the maximum step size 7y will now not only depend
on the size M of the solution u and on the end time 7', but also on further properties of

the solution u to (4.1)).

Proof of Theorems[{.4] and[{.13. Step 1. Let R = ||U| poo(jo,r)p1x22) < M < 0o. Set
b:=T in the case Q = T3 and b := oo in the case Q = R3. We take dy = &o(R,b) given by
Proposition Let moreover ¢ be the maximum of 2 and the constants from Corollary

5.16| (with (p,q) = (00,6)), Proposition Lemma [7.4] Lemma [7.6] Lemma and
Lemma (with ¢ = g and 8 = 5). Note that Jp and ¢ only depend on M in the case

Q2 =R3 and T = co. We define
d == min {50, (1007)*i}. (7.48)
Lemma [7.16] provides a number L € N and times 0 =Ty < T3 < --- < T, = T such that
ISOU @)l = < 6 (7.49)

holds for all m € {0,...,L — 1}, where b, := T),41 — Tp, > 0. Here, the number L € N
only depends on M and 7. We now choose a parameter € > 0 such that

e < T (7.50)
By continuity of U, there is a number p > 0 such that
IU(Tm) = U(t)ll31x22 < € (7.51)

for all m € {1,...,L} and t € [0, T] with |T}, — t| < p. We pick functions Y°,... Yt ¢
H? x H' with

Y™ = U(Tm)llg <22 <€ < (7.52)

N &1
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for all m € {0, ..., L}. Due to Corollary we find a time bz, > 0 such that
ISOUD g 1oz <6 (7.53)

We define the maximal step size 79 > 0 by

o= min {2, bfL min ﬁ i F0,U (T, b)) (7.54)
and set Ky := 1/79. Here, the numbers C(Y"™) = C(||Y™| g2y 1) and 7(5,U(T}), bm)
are taken from Proposition In the case T' = oo, condition is not needed, thus
we then take by, = 0 and replace L by L — 1 in (7.51)), (7.52), (7.54)), and in the following.

Let 7 € (0,70] and K € NU {oo} with K > Kj. To decompose the interval, for any
m € {0,...,L} we set

m—1 b
Vi = Z {?JJ € Np.
j=0

The intervals Jp, are defined as J,,, := [t,,,, ty,, ., if m € {0,...,L—1} and Jp, == [t,,,T].
Hence, we have

L
0,7 = | Jm-

By construction, each subinterval J,, is of length less or equal b,,. This also holds for
the last interval Jr,, because of

L—-1 b L—-1 b
Tty =Y (b= [2]7) <X (bm— (2 -1)7) = L7 <br, (7.55)

where we use ([7.54)).
Step 2. We prove the second assertions of Theorems and namely the conver-
gence in the H' x L?-norm

1U(tn) = Unlless (o121 x22) = 0 (7.56)

as 7 — 0 and K — oo (without any rate). To measure the error in each subinterval J,,,
we define the error norms Err,, by Err_; := 0 and

Err,, = ||U(tn) — Un“ggo(Jm’Hle2), m € {0,...,L}.
Next, we show the recursion formula
Err,, < cErry,,—1 +5ce, me{0,...,L} (7.57)

via induction on m. First, let m = 0. We introduce the notations U(t, W) = W(t),
where W is the solution of (6.1)) with initial value W9, and ®*(W?) for the n-th iterate
of the Strang splitting scheme (4.4]) with initial value W°. We get

Errg = ||U(tn) — Unllseo (3,11 x 12)

110



7.6. The critical case o = 5

<NU (tn, U?) = Ultn, YO) g (go 11 x22) + 10U (b, YO) = @2(YO) g0 (1o 101 x 22)
1P (YO) = @2(U) |l oo (o 201 x 12)
< U° =Ygz + COYO) (T + K1) + U = YO lpp1, 2 < Bee,
using the estimates from Proposition and the relations ([7.49)), (7.52)), (7.54) as well

as K1 <.
For the induction step m — 1 ~» m, we first deduce from the induction assumption

(7.57) the inequality

! " —1
WU (ty,,) — Un, llixre < Errp—1 < 5ee Z & =b5ce < 5ee(cl —1).
C J—

k=0

As in ([7.55]), we obtain

[T =t = > (b= | 2|7) <mr < L7 <), (7.58)
; T

J
using also ((7.54)). Hence, (7.51) and ([7.50) imply

IU(Tm) = U lr sz < |U(Tm) = Ulto,)llaoxzz + 1U (b)) = Un 301 <12
<e+5ce(ct —1) < et <6 (7.59)

So we can apply Proposition (with W0 = U(T},,)). Furthermore, we write

Erry = |U(tn) = Unllee (1, 71 x22) = [1U(En; U (L)) = @7 (U)o (0,) 11 x £2)-

In the case m = L, we would have to replace the interval [0,b,,] with the interval
[0,T —t,,] (which is smaller by ((7.55))), but for simplicity we keep this abuse of notation.

Using also , , and , we can now proceed similar as for m = 0 and
conclude
Erry = U (tn, U(tw,,)) — @7 (Us,) e ([0,bm] 21 x £2)
<NU 0, U(tu,,)) = Utns Y™)lgzo (j0,00], 11 x 22)
FNUEn, Y™) = O™l ([0,6] 2 x 12)
+[@FY™) = @2 (U, )l 420 ((0,6mm] 11 x 12)
< |U(tn,) = Y™ lgwre + CO™)T + K1) + | Y™ = Uy, llpg1 w22
< flUGw,,) = Y™ arxrz +ce +c|[Y™ = Ult, )l xrz + c|U(t,) = Uvy [l 2
<2e||U(ty,,) = U(To)llmrsrz +2e|U(Tm) — Y™l 512 + ¢ + cErrp,—1
< 5ce + cErry, 1.

Therefore, (7.57) is true. It follows that

m Kk -1 L
Err,, < bce Z c" =bce— < bec +2
o c—1
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7. Error analysis

for all m € {0,...,L}. This shows the convergence in the #! x L?-norm as stated in
, since L is independent of €, which could be chosen arbitrarily small in . To
complete the proof of Theorem we will actually not need the full statement of .
It is enough to know that |U(Ty,) — Uy, |lg1 <2 < 6 for all m € {0, ..., L}, as noted in
(7.59)).

Step 8. We show the first assertions of Theorems [£.4 and [£.13] which are the first-order
convergences of the scheme in the L? x H '-norm. By Lemma it is enough to
bound E,, = IIgU(t,) — Uy. Let m € {0, ..., L}. We use the recursion formula and
estimate similar as in the proof of Theorem to obtain

I Enllese (g, 22 x2-1)
< | By, |2 xn-t + 3eN "L+ | Ixmsn (g(mnulty)) — g(WNun))Hel(Jm %)
_ )
< l|By,[lL2xp-1 +3eN~1 + 503<||7TNU(tn)H?¢(Jm,L12) + HWNURH?‘;(JWL”))

Ju(tn) = unHEgO(Jm,L?)
< ||Bu,, | 2xa1 + 3N+ 5636 lenlle (4,,,12)

o1
< |l Bullzzsnr +3eN "+ Sllenllee (g,.,L2) (7.60)

Here we use Lemmas [7.4] [7.6] [7.7] and [5.24] the bounds from Proposition [7.15] and the
definition of § in ((7.48)). We can apply Proposition thanks to the estimates on U(T},)
in (7.49) and (7.53), on U,,, —U(T},) in (7.59)), and on 7 and K in (7.54)). If we deal with

homogeneous Sobolev norms on the full space 2 = R3, we have to check that |e;|p2 is

finite for all j7 € [0,7T), in order to absorb it in ((7.60)). This can be verified via induction
on j, based on the inequality

5
-1 4 4
lejllr2 < 3eNT" + §C(||77Nu(tn)”fﬁ([o,tj,l],Lm) + ||7TNUn||e;x_([o,tj,1],L12)> llenllese (0,6;_11,22)

that follows similarly to (7.60)) from Remark where we exploit that Ey = 0. Inequality
(7.60) now leads to

| Enllee (g p2x3-1) < 26| By, [ p2xp-1 +6eN ™" < 2¢|| Enllgoo (s, 1 125x3-1) + 6N
if m > 0. Since Eg = 0, this recursion formula yields the global bound
L
| Enllese o, n2x0-1) < 6eN71Y " (20)F < 2(20)" (7 + K1),
k=0

which is the asserted first-order convergence in L% x H~!.

Step 4. It remains to show the numerical scattering result of Theorem Let Q = R3,
pu=1,and T = K = co. Take the asymptotic state U, € H' x L? from Remark Let
n € N and 7 € (0, 70]. Since

1Un = "™ Ul g2 < NUn = UMD 1y g2 + 10U (07) = € TAUL a1y g2,
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7.6. The critical case o = 5

from (|7.56]) and Remark we obtain the convergence

. . A
Jim limsup Uy = €40 | 1,12 = 0.

To complete the proof of Theorem [.4] we still need to show that the limit
. A
Jim Un — €™ U4 g1 2

exists for fixed 7 € (0,7y]. This is equivalent to the existence of lim, o e 74U, in
H' x L?. By means of the discrete Duhamel formula from Lemma we can write

" 1 1
e ", =Up+ 7Y e FAGIINTY) — 3Gy Uo) — 5e—’m“G(HNUn). (7.61)
k=0

By (7.56), (7.59) and Proposition we already know that

L-1
4
||9(7TNUn)||1z;([0,oo),L2) < Hun”ego([o,oo),gl)||7TNUn”§3([o,oo),L12) SM Z HWNUnHzg(Jm,Lw)

m=0

< Lot

is finite. Thus, the series

Z eikTAG(HNUk)
k=0

converges absolutely in H' x L2. This in particular implies that e ""AG(IIxU,) — 0 as
n — oco. Hence, the limit of (7.61]) exists in H' x L? as n — co. O
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8. Numerical experiment

Let 2 = T3. For the numerical tests we need initial data (u",v") which lie in H' x L2
but do not have higher regularity. The standard approach to obtain initial in a Sobolev
space H*(T?3) is to take Fourier coefficients of the form

(1+[k2)"2GT4, ke Z?, (8.1)

for some numbers r € (*°(Z3) and small ¢ > 0. Therefore, one most commonly uses 7y
uniformly distributed in [—1, 1] +i[—1, 1]. This approach is well suited to precisely obtain
the desired differentiability of order s. However, it is known that such random initial data
does not only belong to H?®, but also to all L%-based Sobolev spaces H*? for 1 < g < oo
with probability one. This can be exploited to obtain an improved local wellposedness
theory for the nonlinear wave equation with random initial data compared to
the deterministic setting, cf. [12]. Since our error bounds are purely deterministic and
heavily use L9-based inequalities such as Sobolev and Strichartz estimates, it is crucial to
numerically work with initial data which do not have higher integrability than predicted
by Sobolev embedding. The following lemma shows that this can be achieved by simply

taking 7, = 1 in (8.1)).
Lemma 8.1. Let s € R. We define a distribution f € D'(T?) by its Fourier coefficients

A

fi= (4 RA72EH, pezd, (82)
Then, for all € > 0, the following assertions hold.

a) f € H5(T%), but f ¢ H*(T?).

d
b) If —d/2 < s < dJ2, then f ¢ L&z"5(T4%).
¢) If s >0, then f € L?(T%) is real-valued.

Proof. a) We have

Yame = 1+ k)2 8| fi|* = 1+ k22 < 1+/ —d=2e g
I£1me = 32 (L k) IR = 3 A+ P25 (1 el da)

kezd kezd
< 00,

but ||} = 1+ Jga\p(o,) 21~ dz = .
b) For N € N, we consider the truncated Fourier series

7wy f(x) = (277)7% Z fre®e, z e T (8.3)
|kloc <N
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8. Numerical Experiment

Let a > 0 such that cos(z) > 1/2 for all z € [~a,a]. For all x € T? with |z|; =
Z;l:l |zj| < a/N, we then infer that

avf@ = S (4 kD) EEER T = ST (14 k22 G cos(k - x)
k| <N [kloo <N

> S kEe

1<|k|oo <N

Hence, for ¢ € (1,00) and s < d/2,

d d
o 28t S e[t
1<]klooc <N 1<]z|<N
N
:N_%/ piridmrgp = 2Nt
1 d—2s

which is unbounded as N — oo if d/q < d/2 — s. By Theorem 4.1.8 in [24], f € L(T4)

would imply that 7x f — f in L9. Thus, if d/q < d/2 — s, f cannot belong to L7(T4).
c¢) By symmetry, (8.3) is real-valued. This property is inherited by f since fxy — f in

L? for s > 0. O

We illustrate our error bounds by a numerical experiment for the nonlinear wave
equation on T3 with u = 1 and powers a € {3,4,5}. We focus on the error of the
time integration. The initial data (u°,v°) are defined using withd =3 and s =1+¢
or s = ¢, for a very small £ > 0. We use a scaling such that ||u|| ;1 = [|v°||;2 = 3. We
apply the scheme (4.4 with spatial discretization parameters K € {24 25 26}. For the
implementation we identify T3 = [0, 1]? such that the spatial resolution (distance of the
collocation points) is h = (2K +1)~. We compare the errors in the £2°([0,1/4], L? x H™!)
and £2°(]0,1/4], H! x L?) norms for various step sizes 7, where the reference solution is
computed using with the same K and 7ot = 272, In the plots only the temporal
error is visible since the reference solution has the same spatial accuracy. Our Python code
to reproduce the results is available at https://doi.org/10.35097/2zvaw7qyvy6ymuu2.

For the cubic equation with a = 3, in Figure [8.1| we numerically observe temporal
convergence rates of order 2 in the L? x H~! norm and order 1 in the H' x L? norm,
uniformly in the spatial discretization parameter K. These observations are in accordance
with Theorem If 7 is small compared to the spatial resolution, the error is of second
order even in H' x L?, however with deteriorating error constant as K — oo. This
behavior was already observed in the one-dimensional case in [22].

In the case @ = 4, we observe in Figure [8:2] that the convergence rates which are
uniform in K have reduced to 3/2 for the L? x H~! norm and order 1/2 for the energy
norm, again in accordance with Theorem [4.1]

We also did the experiment for the critical power o = 5, see Figure [8.3] Here it turned
out that we get temporal convergence of order 1 in the L? x H~! norm, uniformly in K.
Moreover, we cannot observe a clear convergence order for the error in the H! x L? norm
if 7 is not small compared to the spatial resolution. This behavior fits to Theorem [4.4]
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A. Appendix

A.1. Function spaces and Fourier multipliers

The following Sobolev embeddings are used throughout this thesis. We recall that for
Q € {RY, T4, we set H5(Q) = H5(RY) if Q = R? and H*(Q) == H*(T9) if Q = T

Theorem A.1l. Let Q € {R%, T?}.

a) Let s > d/2. Then H(Q) — L>*(Q).
d
b) Let s € [0,d/2). Then H3(Q) < LT ().

Proof. Part a) is a direct consequence of the definition of the Sobolev norm via the
Fourier transform since

e S e < N+ IER) 2 N2l + 1672 Fll 2 Soa IF e,

where the Fourier variable is denoted by ¢ regardless of Q € {R% T?}, and L! and L?
actually are ¢! and (2 if Q = T3. For part b), we refer to Theorem 1.38 of [3] and
Corollary 1.2 of |4] for the full space and torus cases, respectively. O

If s > d/2, the Sobolev space H® even forms an algebra. Proofs can be found in Lemma
A8 of [71] and Proposition 1 of [5].

Lemma A.2. Let Q € {RY T4} and s > d/2. We then have the inequality
[fgllers Ss.a | Fllmsllglms
forall f, g € H*(Q).

The following Bernstein inequalities quantify the smoothness of functions whose Fourier
transforms are supported in a ball.

Lemma A.3. Let Q € {R% T4}, r € R, s > 0 and q € [2,00]. We then have the estimates

[Bll3gsr < K2R3,

1_1
1£lpe S K™ 27| £ o

for all f € L*(Q) and h € H" () with supp f, supph C B(0,K) for some K > 1.
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A. Appendix

Proof. The first estimate follows directly from the representations of the Sobolev norm
(4.5) and (4.6). The second one is a consequence of the Hausdorff—~Young and Holder
inequalities, since

=

A d(L -1y 4 d(i-1
1Fllze S 1l e S KT flpe = K90 £ 12,

~|

where the L? and L? norms in Fourier space actually are £4° and 2 in the case Q = T¢. [
We also make extensive use of Fourier multipliers in this thesis.

Definition A.4. Let m: R — C be a locally integrable function that is polynomially
bounded at infinity. We define the Fourier multiplication operator T}, : S(R%) — &'(R%)
by

Tpnf = FL(mf). (A1)
On the torus, Tp,: D(TY) — D'(T9) is also defined by (A1), where one restricts m to Z.

It is clear from the definition that all Fourier multiplication operators formally commute,
since Ty, Tiny = Tinym,- For the complex conjugation, one has the following result that
follows from Proposition 2.2.11 of [24].

Lemma A.5. The operator T, from Definition[A.]] satisfies the property

for f € S(RY) or f € D(TY), where we set m(x) = m(—=x). In particular, T,, maps
real-valued functions to real-valued functions in the case m = m.

One can often extend T}, and property (A.2) to larger subspaces of S'(R%) and D'(T%)
by density.
The convolution theorem connects multiplication and convolution via the Fourier

transform. The following assertions are a consequence of Propositions 2.2.11 and 2.3.22
of [24].

Proposition A.6. We have

A

d ~
2 U * @

_d
2

Fluxg)=(2m)2ap,  Flug) = (2m)

for all uw € S'(RY) and ¢ € S(RY). The first equality also holds if u € L*(R?) and
¢ € LY(RY).

The next lemma concerns basic properties of dilations that can be shown by means of
elementary integral transformations and the duality between S(RY) and S'(R9).

Lemma A.7. Let a > 0. The dilation operator

D,: S(RY) = S(RY),  (Day)(z) == ¢(az),
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extends to tempered distributions by
(Dqu) () := a_du(D%go), ue S'(RY), ¢ e SMRY.
It can be related to the Fourier transform via
F(Dgu) = a_dD%ﬁ, F Y Duu) = a_dD%]:_l(u), u € S'(RY).
For the LP-norms we further have

_d
IDafllze = a” ?||fllze, f € LP(RY), pe[1,00].

A.2. Some discrete formulas

In this section, we collect elementary discrete formulas which are often used in the
literature, however there does not seem to exist a standard reference for them. The
following lemma is a discrete variant of Duhamel’s formula.

Lemma A.8. Let V be a vector space, A: V — V be a linear operator, and (ﬂUn)nN:o;
(bn)N_ be finite sequences in V. Assume that

Tpt1 = Azy + by, (A.3)

holds for alln € {0,...,N — 1}. Then, the vectors satisfy
n—1
ap = Alzg+ > AV, (A.4)
k=0
foralln € {0,...,N}. If V=R and A > 0, we can replace “=" by “<” in (A.3) and
).

Proof. The assertion is clear for n = 0. Assume now that (A.4]) is true for some
n € {0,...,N —1}. Equation (|A.3) then implies

n—1 n
Tagt = Az + by = A(A"g + 3 AN ) b, = A g 430 ARy,
k=0 k=0

and thus (A.4]) also holds with n replaced by n + 1. The addendum is shown in the same
way. O

The next lemma is a discrete variant of Gronwall’s inequality. It is often used to
conclude the proof of a numerical convergence result.

Lemma A.9. Let b >0, ¢ > 0, and let (x,)Y_, be a sequence of non-negative numbers
such that the inequality

n—1

$n§b+chk (A.5)
k=0
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holds for alln € {0,...,N}. We then obtain
Tn < b(14¢)" < be™ (A.6)
foralln e {0,...,N}.

Proof. The second inequality in (A.6) is clear. If n = 0, the assertion follows directly
from (A.5). Let now n € {1,..., N} and assume that

zp < b(1+c)F

holds for all k € {0,...,n —1}. We then infer by (A.5) and the geometric sum formula
that

n—1 n—1
k _ (1+C)n_1_ n
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Glossary

[]1 first component of vector

|V| homogeneous derivative F~1|¢|F

1p indicator function for set B [49]

1 the function being constantly one [49]

A wave operator [35] [45]

admissible, H'-admissible  allowed param-
eters for Strichartz

o power of nonlinearity

B(zg,r) ball with radius r centered at g
49

D(T?) space of smooth functions on the
torus (49

D'(T9) space of distributions on the torus
49

FE periodic extension operator

F Fourier transform operator [50]

f Fourier transform of f

g, G nonlinearity [9]

H* L?*-based Sobolev space |§|7

H? homogeneous Sobolev space

H?® Sobolev space H*(R?) or H*(T?)

I identity operator [49]

I, I trigonometric interpolation operator
09|

LP Lebesgue space [0]

LI X, L’ X Bochner space LF([0,T], X) or

L7(R, X)

E(L,X), X, #X, (PX discrete-time
Bochner space

u focusing/defocusing parameter |§|7

p’ Holder-conjucate index to p

Pa parameter such that (p,,3(a — 1)) are
H!-admissible [71]

p1(2) = (5 — 1)/

P(2) = (26 — e +1))22

p2(2) = (¢ — 2 — 1)/

@, First-order low-regularity integrator []

®, Second-order low-regularity integrator
11

U, Corrected Lie splitting [30]

7K, Ik frequency cut-off operator [45] [54]
(631

P; Littlewood-Paley projection

Q(-,-) null form

o parameter such that (a — 1, ¢q,) are H!-
admissible

S(R?) Schwartz space

S'(R?) space of tempered distributions

S(t) first line of wave group e*4

T? d-dimensional torus

t, discrete times nr [0]

WkP LP-based Sobolev space |§|

¢ Fourier variable
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