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Significance 

Urban heat stress under climate 
change is an increasing concern, 
as most cities are already warmer 
than their rural surroundings, 
heightening their vulnerability to 
rising temperatures and exposing 
a large share of the global 
population. While Global Climate 
Models are essential for 
projecting future temperature 
changes, their relatively coarse 
scale limits their ability to capture 
the trends of smaller cities. To 
bridge this gap, projected changes 
in land surface temperature in 
medium-sized cities are created 
and compared to surrounding 
regions, identifying areas where 
the urban warming rate is faster 
than rural surroundings. Our 
analysis shows low-resolution 
projections likely underestimate 
future urban warming in most 
cities, highlighting the need for 
deeper study. 

Cities are often warmer than rural surroundings due to a phenomenon known as the 
urban heat island, which can be influenced by various factors, such as regional climate 
and land surface types. Under climate change, cities face not only the challenge of 
increasing temperatures in their surrounding hinterland but also the challenge of 
potential changes in their heat islands. However, even high-resolution global Earth 
system models (ESMs) with “urban tiles” can only properly resolve the largest urban 
areas or megacities. Here, we address these limitations by applying a process-based 
statistical learning model to ESM outputs to provide projections of changes in land 
surface temperature (LST) for 104 medium-sized cities of population 300 K to 1 M 
in the subtropics and tropics. Under a 2 °C global warming scenario, annual mean 
LST in 81% of these cities is projected to increase faster than the surrounding area. In 
16% of these cities, mostly in India and China, mean LST is projected to increase by 
an additional 50-112% above ESM projections of the surrounding area. Our findings 
underscore the importance of investigating the specific effects of climate change on 
urban heat exposure. 

urban heat island | climate change | machine learning | urban climate 

The urban heat island (UHI) is a phenomenon whereby the temperature in a city differs 
from the surrounding rural area, typically being warmer. This leads to increased heat-related 
health risks for urban inhabitants in comparison to their rural counterparts (1). In 2018, 
it was estimated that over half the world’s population resided in cities and this proportion 
is projected to increase to 68% by 2050 (2). Climate change results in rising global tem-
peratures and increased frequency of extreme heat events (3), which can have severe human 
health impacts including increased mortality (4–6). 

UHIs are influenced by both climate and city attributes (e.g., city area, rural aridity, 
and landcover) (7), all of which can change over time. A deeper understanding of climate 
change related shifts in UHI intensities will inform city planners as they design cities 
aiming to optimize human comfort and health, and enable evidence based adaptation 
planning. However, modeling and projecting changes in UHI on a global scale remains 
a challenge. ESM or Global Climate Model (GCM) outputs have spatial resolutions larger 
than the scale of most cities due to limitations in computational power. As urban landcover 
only represents a small fraction of the earth’s surface, its inclusion is not essential for 
projecting mean global temperature changes and is often not represented, although studies 
utilizing more complex urban schemes exist (8). Even in such cases however, ESMs can 
have limitations in their ability to simulate the UHI: for instance, ESMs with tiled schemes 
for predicting surface temperature separately for urban and surrounding rural areas have 
urban and rural air temperatures that are identical (i.e., the same model grid point) (9). 
Regional climate models have higher resolutions and provide detailed understandings of 
the urban microclimate, and downscaling of GCMs is an active research field (10). 
However, such models are also constrained by computational expense. This limits their 
ability to model many cities simultaneously at a high enough resolution to capture a 
medium-sized city (11). 

The above limitations mean that projections of the impacts of climate change on the 
UHI are also limited to either the largest cities (12), or to smaller cities in certain geo-
graphical regions, at a lower resolution (13). Indeed, much of the current research focus 
of the UHI is on megacities, which represent just 12% of the urban population (14, 15). 
Furthermore, several regions of the world are underrepresented in the UHI literature, e.g., 
Africa and South and Central America (15, 16). Typically, as cities expand the intensity 
of their UHI also grows (17). However, it is observed that saturation of the UHI with 
city size occurs in very large cities (e.g., London) (18–20). Cities where saturation of the 
UHI has occurred may respond differently to climate change than those medium-sized 
cities where this point has not yet been reached. A complete picture of UHI behavior D
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under climate change can therefore only be gained by addition of 
the examination of such medium-sized cities. 

A barrier to making observation-based global studies of the UHI 
is that weather station data are irregular and sparse in coverage, and 
air temperature sensor networks in cities are rare and have limited 
temporal coverage (21). Furthermore, the methodologies and place-
ments of such sensor networks are inconsistent, making city to city 
comparisons based on air temperature networks problematic (22). 
Satellite data, on the other hand, have a resolution of 1 km and 
global coverage. In addition, a positive correlation exists between 
urban LST and air temperature (23, 24) because LST controls air 
temperature in the lower layers of the atmosphere, although spatially 
within a city, cool and hot spots do not necessarily overlap (24). In 
this paper, we use Earth system model (ESM) projections and a 
process-based machine learning (ML) model of the surface UHI 
(SUHI), the UHI based on LST differences, to make projections 
of total surface temperature change in selected medium-sized cities 
in the tropics and subtropics under 2 °C global warming [a critical 
benchmark established at the 2015 Paris agreement (25)]. 

Statistical or ML approaches have been used before in SUHI studies 
to explore relationships between predictor and target variables (26), 
but have not been employed to predict SUHI changes in the future. 
Our process-based model is based on predictors that are known to 
affect climate on city-sized scales, e.g., precipitation, humidity, vege-
tation (Methods). The selected ML model (Regression Enhanced 
Random Forest) is chosen for its capacity to perform well under 

extrapolation circumstances (27), which is necessary for studies of 
future global change; this property is confirmed via various test-train 
splits (Methods). Our approach is complementary to ESM-based pro-
jections of the SUHI, and detailed studies into the microclimate of 
individual cities would enhance the findings of this study, in particular 
for those highlighted as most impacted by climatic changes. 

Results 

A Statistical Learning Approach for SUHI Projections. Here, 
we present our results for the day-time SUHI at 13:30 h. The 
observed values of the past SUHIs (SI Appendix, Fig.  S1) and 
results for night-time (SI Appendix, Fig.  S2), when changes in 
SUHI with climate change are generally much smaller, can be 
found in the supplementary material. First, an overview of the 
selected cities is given. Next, we describe our ML model and 
evaluate its performance. We then describe the projections made 
by combining the ML model with ESM outputs. 

From a dataset of global urban areas (2), we impose city selec-
tion criteria to return a subset containing medium-sized cities with 
additional restrictions to remove nonclimatic influences. For 
example, coastal cities or those in mountainous regions are not 
included. Selection criteria are listed in Methods  section. The loca-
tions of the 104 selected cities are shown in Fig. 1.          

Fig. 2A outlines the procedure used to generate the changes in 
urban LSTs. The ML model, Regression Enhanced Random Forest 

Fig. 1. Locations of selected cities 
and projected LST changes for the 
background regional area and the 
additional SUHI-driven changes 
with 2 °C warming. Maps show 
regional changes in mean LST 
projected by the ESMs, with the 
additional LST changes in the city 
projected by the ML model for (A) 
annual values and (B) the warm 
season. D
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Fig. 2. Modeling overview and ML model performance. (A) Schematic showing the process to generate projections of changes in SUHI and regional and city 
LSTs. (B) Scatterplot of ML SUHI predictions (horizontal axis) versus observations (vertical axis) for the test data. Data were split by alternate years, with test data 
odd years. Each point represents the monthly mean SUHI observation and prediction for all 104 cities. 

(RERF) (27), is set up to predict SUHI magnitudes from factors 
such as urban–rural vegetation differences and relative humidity. 
These factors are acquired from satellite and reanalysis data for the 
model development. Changes in these drivers under a global 2 °C 
warming, obtained from CMIP6 ESM projections, are then used 
to project changes in the SUHI (Methods ).          

Our ML model performs well for present-day climates across 
the selected cities, successfully predicting SUHI magnitudes for 
a range of observed values, as shown in Fig. 2B. Across all cities, 
the test data have overall performance statistics of R-squared 0.87 
and RMSE 0.86 °C, giving confidence in the ability of the model 
to make projections of the SUHI on unseen data. We consider 
various validation scenarios to ensure a robust model for the 
required application (Methods ).  

SUHIs Increase With 2 °C Warming. For most of the 104 cities, the 
current SUHI is projected to become more positive. This is apparent 
in Fig. 1. Under 2 °C warming, 81% of 13:30 SUHIs are projected 
to increase in their annual mean. This change is in addition to the 
regional background warming projected by ESMs also shown in 
Fig. 1. The overall mean of this amplification is 0.4 °C, increasing 
the overall change in city temperature (urban ∆LST) from 2.2 °C 
(the ESM regional ∆LST) to 2.6 °C. Cities in the Middle East, India, 
and China all undergo large additional annual warming, as shown in 
Fig. 1A. Fig. 3 zooms in on the annual changes shown in Fig. 1. In 
the Middle East increases in SUHI are a particular cause for concern 
as these regions are already very hot, and also face a considerable 
increase in ESM-based regional LST. In these areas, the current 
SUHI is negative (an urban cool island), due to greater vegetation 
and irrigation in the urban area in contrast to the rural (28). The 
projected increase in the urban LST in these regions indicates the 
SUHI becoming less negative, and in some cases, positive. 

Increases in SUHI magnitude are especially likely to impact 
human health during the warmest months of the year (29). To 
investigate this, the data were split into four calendar quarters and 

the warmest season defined as that with the highest mean 2 m air 
temperature for each region. This warm season projected change 
can be seen in Fig. 1B (with a magnified version in SI Appendix, 
Fig. S3) which shows that 75% of the SUHIs increase, with an 
overall mean change of 0.3 °C (with ESM ∆LST being 2.4 °C and 
urban ∆LST 2.7 °C). Warm season increases in SUHI magnitude 
are particularly noticeable for cities in Northeastern China. 

Major Shifts in Highly Populated Regions. For many highly 
populated countries, such as India and China, projected changes 
in the SUHI are shown to be particularly pronounced in 
comparison to background levels of warming (Fig. 3). For all the 
studied cities in India, mean LST is projected to increase by an 
additional 45% above ESM projections of the surrounding area, 
and in China by an additional 40%. A major reason for this is 
the influence of vegetation, which is associated with increased 
cooling due to evapotranspiration and water retention (30). 
Predictor importances, determined using accumulated local effects 
(ALE) (31), find vegetation to be a strong influencer on the SUHI 
magnitude (SI Appendix, Fig. S4). ESM projections of large-scale 
changes to vegetation or moisture availability, which have a cooling 
influence on rural areas, do not typically affect cities to the same 
extent, as they are made up of artificial impervious surfaces and 
drainage systems that carry away surface water (32). In the areas 
where there are increases in regional vegetation (ESM projections 
can be seen in SI Appendix, Fig. S5), the SUHI becomes more 
positive. Here, these changes in vegetation, which lead to an 
increased magnitude in urban–rural vegetation difference, are 
responsible for the largest changes in the SUHI. In parts of Brazil 
the opposite effect is seen (Fig. 3), and the SUHI becomes smaller. 

Fig. 4 summarizes how the inclusion of city-specific projections 
can have a substantial influence on the overall ∆LST as a function 
of ESM ∆LST. While only 3 city regions experience an increase 
above 3 °C based on ESM LST, 26 cities experience increases in 
median urban modeled LST above 3 °C. For two of the cities, D
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Fig. 3. A closer view of the projected annual LST changes for the background regional area and the additional SUHI-driven changes. The map in Fig. 1A is split 
into regions showing (A) North and South America, (B) Africa and Middle East, (C) South Asia, and (D) China and Southeast Asia. The same figure for the warm 
season can be seen in SI Appendix, Fig. S3. 

Patiala, India, and Kasur, Pakistan, the additional change in SUHI 
results in the city ∆LST being twice that of the ESM projection.          

Prediction intervals, based on the ML model, are shown in 
Fig. 4. The cities which have small projected changes in SUHI 
tend to have the largest prediction intervals, indicating these 
SUHIs are less influenced by the input climatic variables in the 
ML model. 

When changes in SUHI are considered on top of the changes 
in regional LST, it is clear that almost all of the cities studied 
undergo larger LST increases than their rural hinterlands. The 
overall influence of including city-specific projections, rather than 
simply examining the ESM grid cell, skews the probability distri-
bution of ∆LST toward larger magnitudes for both the annual 
and warm season mean values (SI Appendix, Fig. S6).   

Discussion 

We have investigated the effects of climate change on the day-
time SUHI of 104 medium-sized cities in the tropics and sub-
tropics, which are currently home to over 50 million inhabitants. 

City temperatures are already amplified due to the UHI in most 
regions, with exception of the most arid (33, 34), and globally 
all areas face increases in temperature due to climate change 
(35). On top of these known factors, we have demonstrated the 
potential for urban warming to be amplified in many cities, i.e., 
city LSTs increasing faster than ESM projections suggest. We 
note that such a trend has already been observed over the last 
20 y (36). 

Our results are of immediate relevance to policymakers who 
will need to account for the increased hazards many urban citizens 
will face over the coming decades. The cities studied here are 
located in the warmer parts of the world, which makes this increase 
even more impactful for human health and the urban environment 
(37, 38). More generally, medium-sized cities represent a large 
proportion of global cities with more than 2.5 times as many cities 
in this category than cities with over 1 million population (2). 
Our method, which combines state-of-the-art climate change 
projections with process-based ML models, enables more informed 
planning for these future risks, and aims to complement the cur-
rent body of research using physical modeling approaches. D
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Fig. 4. Projected LST changes with and without SUHI changes under 2 °C warming for the 104 individual cities. The red dots show the median projected LST changes 
for the overall ESM grid cell region. Orange dots show the median ML projected changes in the city LST additional to this, driven by the changes in the ESM climate 
variables. A 68% prediction interval for the ML model is shown in black, representing the likelihood that the true value of each projection lies within this range. 

The projected SUHI increases are particularly noticeable in the 
highly populated regions of north India and northeastern China. 
This is concerning as both these areas are projected to experience 
more frequent and intense heatwaves (39, 40). In hot temperatures, 
outdoor workers are subject to numerous negative impacts of heat 

exposure (41) and economic impacts should they forgo a day’s work. 
India is projected to require large cooling demands in the future, 
which is problematic as the infrastructure may not be able to cope 
with this increased load, and the costs are prohibitive for many (42). 
Increased energy usage also brings consequences for climate change D
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mitigation. The need for UHI mitigation and heat adaption in these 
regions is therefore even more pressing. 

A caveat of this study is that city expansion has not been con-
sidered. Including future urban expansion would likely lead to an 
even greater warming compared to the above projected changes 
(43). Relaxing the city selection criteria to include more cities 
would make the results more generalizable, although the addition 
of variables into the ML model would increase complexity. In 
particular, including coastal cities and those near large waterbod-
ies, where humidity is more important, and an important aspect 
of human health and comfort, is a source for future research. 

Methods 

City Selection. The included cities had a population between 300,000 and one 
million and a latitude of less than 40°.Additionally, the surrounding features (lakes, 
hills, oceans) of cities were considered in order to control other variables and isolate 
the impact of climate (this could be relaxed in future work).These nonclimatic influ-
ences are removed to ensure the model is capturing relationships based on physical 
processes related to climate, rather than other differences between selected cities. 
An overview of the criteria and datasets used is provided below. 

•Population: 300,000 to 1,000,000 (2) 
•Location: <40 ° Latitude (2) 
•City distance: >42 km from any other city with >300,000 population (2) 
•Coastal distance: >100 km from shoreline (44) 
•Water proximity: >50 km from lakes >50 km wide or >22 km from lakes 

>1 km wide (45) 
•Topography: <±150 m (SD) in elevation within 55 km2 of surrounding area 

(46) 
•City area: >5 km2 city area in 2002 (47) 

Generating the SUHI and Predictor Variables. The dataset used to develop 
the ML model was generated using satellite and reanalysis data. The workflow 
diagram for the model build and use can be seen in Fig. 2A. Here, we explain 
the processing for the satellite and reanalysis data used to quantify the SUHI and 
generate input variables for the ML model. 

For satellite data, cloud contamination thresholds were set so at least 70% 
of the overall (rural + urban) area and 50% of the urban have usable pixels. For 
images deemed acceptable, any remaining poor-quality pixels (predefined in 
the datasets via quality flags) were masked in the analysis to promote accuracy. 

SUHI was quantified as the difference between the monthly mean city LST and 
the surrounding rural reference area; 

SUHI = 1 
n urban 

nurban 
˜ 

i 
LST urban − 1 

n rural 

n rural ̃ 

i 
LST rural, [1]

where LSTurban, nurban, LSTrural, and nrural represent the LST and number of urban 
and rural pixels, respectively. 
The rural reference area was defined as a rectangular box surrounding the city, where 
the city takes up the 10% of the area in the center.The city and all other urban pixels 
in the area are masked out. The satellite data utilized for SUHI quantification are 
outlined below. The temporal span of the data was determined as the overlapping 
period for all data, from 2002 to 2020. Spatially, landcover data, used to flag urban 
versus rural LST pixels, was regridded to the same grid as the LST data (1 km). 

•Terra LST 8-D Global (MOD11A2) (48) 
•ESA Land Cover Climate Change Initiative: Global Land Cover Maps, Version 

2.0.7 (47, 49) 
A number of SUHI quantification methods in two categories were considered. 

The first category, chosen in this study, is to assess the mean of urban pixel LST. 
The second category involves an assessment of the “peak” SUHI (50), aiming to 
understand the LST differential where the city is the warmest. Methods in category 
1, involving mean LSTs, tended to show highly correlated results, with similar 
magnitudes and distributions (SI  Appendix, Fig. S7). The additional method 
investigated was using the same urban area, but the rural reference was set as a 
5 km buffer from the city bounds. 

The second category, investigating the warmest LST pixels within a city is less 
correlated with the mean methods. Additionally, when the ML models are fit with 

these methods as target variable, performance decreases, indicative of drivers 
of peak SUHI that are nonclimatic and may be more related to urban features 
such as building density. 
The predictor variables used (selected based on maximizing R-squared) are 
monthly means of the following. 

•Relative humidity (RH) 
•Total precipitation (TP) 
•Urban enhanced vegetation index (EVI_U) 
•Urban–rural enhanced vegetation index difference (EVI_D) 
•Log10 of city area (LOG_AREA) 
•Urban–rural white sky albedo difference (WSA_D) 
•Urban–rural elevation difference (ELEVATION_D) 
•SD of urban elevation (STD_ELEVATION_U) 
Climate variables (RH and TP) were taken to be the mean of the entire area 

inspected for the analysis, including both the city and the rural area. For satellite- 
derived variables, which have resolution of 1 km or less, urban and rural values 
are determined by calculating the mean result for the areas marked urban and 
rural in the ESA landcover data. 

To ensure the ML model is process based, these variables were chosen as they 
are known to influence the SUHI (30, 33, 51, 52), and relate to heat and mois-
ture exchange in the surface energy balance. The variable relationships with the 
predictions made are tested through model evaluation techniques such as ALE 
(31) (SI Appendix, Fig. S4) to ensure the ML model accurately reflects the physical 
processes that cause the SUHI to vary. To reduce multicollinearity, all predictor 
variable candidates were checked for correlations, and any pair with a Pearson’s 
correlated coefficient of |r| > 0.7 (53) are not considered in the model together. 
City area is calculated using the ESA landcover data (47) and elevation variables 
using the topography (46). The additional satellite and reanalysis datasets used 
are as follows. 

•RH, TP from ERA-5 (54) 
•EVI_U, EVI_D from MODIS MYD13A2, MOD13A2 (55, 56) 
•WSA_D from MODIS MCD43A3, MCD43A2 (57, 58) 
The urban–rural difference variables were derived using the same rural and 

urban areas, as well as Eq. 1 applied in SUHI quantification. After quality control, 
22,177 points representing monthly mean values were retained for training and 
testing the ML model. The smallest cities based on 2020 area are Bahawalpur 
(Pakistan) and Mymensingh (Bangladesh) and the largest Birmingham (USA). 
Taking the annual mean for each city, overall, there are more positive SUHIs 
(76%) than negative (SI Appendix, Fig. S1). For positive SUHIs, the mean was 
2.2 ±1.5 °C (±SD). Negative SUHIs had a mean of −1.1 ± 0.9 °C. Exploratory 
analysis revealed the predictor most strongly correlated with the SUHI (based on 
Pearson’s correlation coefficient) was EVI_D, showing a strong negative correlation 
(r = −0.77). For most cities, annual mean EVI_R exceeded EVI_U, aside from 4 
cities in arid areas. The greatest rural EVI is in Cascavel (Brazil) in the DJF (south-
ern hemisphere summer) months at 0.56 and the lowest in Ha’il (Saudi Arabia) 
which persists at a mean of 0.06 y-round. A correlation matrix of all predictor 
variables and SUHI is provided in SI Appendix, Fig. S8. Not all predictor variables 
showed linear relationships with SUHI. For example, LOG_AREA was found to be 
positively correlated (r = 0.39) with SUHI magnitude in cities exhibiting positive 
SUHIs, consistent with previous findings (5960, 61), but negatively correlated 
(r = −0.24) with negative SUHIs. 

Developing the ML Model. The chosen ML model, RERF (27), combines the 
strengths of Ridge Regression (RR) and Random Forest Regression (RFR) in a 
two stage hybrid setup. In the first stage, a “base” model (RR in this case) is 
trained on the input features and target variable. This step captures the more 
linear components of the relationship between the predictor and the response, 
providing a stable parametric fit. This model then generates preliminary predic-
tions on the training set, which are subtracted from the observed target values 
to produce residuals. In the second stage, these residuals are modeled using 
RFR. This nonparametric method captures more complex, nonlinear interactions 
and dependencies the RR cannot account for. The final RERF prediction is then 
obtained by summing the RR baseline and RFR prediction of the residuals. The 
model therefore capitalizes on the benefits of both methods. Fitting a linear 
and parametric relationship between variables via the Ridge base model, which 
is more robust in a changing climate system than other ML techniques (62), 
and the flexibility of a nonparametric Random Forest to model more intricate, 
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nonlinear patterns. The RERF has been shown to perform well under extrapo-
lation circumstances (27), where a standalone RFR would typically degrade in 
performance due to its reliance on training domain similarity. 

Data were split into test and training data and RERF hyperparameters were tuned 
using fivefold cross-validation on the training data only. The split was done based 
on odd and even years, but validation was also undertaken using various splits 
(e.g., early and later years) and performance remained similar. Additionally, two 
specific extrapolation tests were done. One using the warmest 20 cities as the test 
dataset and the remaining 84 cities as training, and a second using the negative or 
smallest 10% plus largest 10% of SUHI magnitudes as the test data and remaining 
80% of data as the training. Details of these tests can be seen in SI Appendix, Fig. S9. 
Comparisons with RFR and RR are also shown, to demonstrate the improved ability 
of the RERF to extrapolate, where RFR cannot.Additionally, including input variables 
from a wide variety of climate regimes results in the range of the training data more 
likely to encompass potential future climate scenarios. 

Before using the RERF to make projections, it was refitted on the entire dataset 
using the hyperparameters from cross-validation. This gives the best constrained 
model on the largest possible training data range, still with the objectively best 
hyperparameter settings for the REFR fit. 

Merging the ML Model with ESM Projections. Changes in the future SUHI are 
investigated by combining the RERF functions learned from observations with 
climate model projections for future regional changes (i.e., areas surrounding 
the cities considered) for the predictor variables from the most recent phase of 
the Coupled Model Intercomparison Project (CMIP)—CMIP6. ESM projections are 
used to quantify potential future changes in vegetation and climate, so they can 
then be added into the dataset of predictor variables. 

A key challenge is that ESM climate projections show different rates of warming 
due to the forcings, feedbacks, and parameterizations used (63). An alternative 
approach is to analyze climate at a 2 °C global mean temperature rise from pre-
industrial (64). This is additionally relevant to policymakers as it is easier for those 
without expertise in climate modeling to understand. Here, we use the SSP3-7.0 
pathway, the medium to high emissions scenario (65). 
To use ESM projections in the RERF, variables are converted according to the 
following preprocessing steps: 

1. Calculate a preindustrial mean global temperature for each ESM, defined as 
the mean global temperature from 01/01/1850 to 01/01/1900. 

2. Find the 20-y period where the mean global temperature is 2 °C higher than 
preindustrial baseline. This will be known as future period. 

3. Regrid the ESMs so they are all on the same grid. This is the coarsest grid, 
CanESM5, which has spatial resolution 2.8° latitude x 2.8° longitude. 

4. Use the ESM outputs from the preindustrial period to get a baseline for the 
climate (surface RH and TP) and vegetation (LAI) variable outputs. 

5. Use the ESM outputs from the future period (2 °C global mean warming from 
preindustrial) to get a projection for the future climate and vegetation variables. 

6. Calculate the change in the climate and vegetation variables using these two 
ESM outputs. This gives a change in LAI, RH, and TP for each ESM (5 total). 
By looking at the difference between preindustrial and 2 °C warming in the 
model rather than the absolute prediction for each predictor variable, some 
bias adjustment is implicitly performed on the ESMs. 

7. The changes in the predictor variables are then added to observations.This means 
the resolution of the variables will remain that of the observations, and not those 
of the ESMs. This technique is known as the delta change method (66). 

An implicit assumption of the approach is that climate forcing will be constant 
throughout an ESM grid box. 

Well studied and validated ESMs, with the required variables and scenario 
available from CMIP6 were chosen. The ESMs are as follows: CanESM5 (67–69), 
CNRM-CM6-1 (70–72), ACCESS-ESM1-5 (73–75), IPSL-CM6A-LR (76–78), and 
UKESM1-1-LL (79–81). 

Statistical Analysis. Prediction intervals for the REFR model were calculated 
using the SE of the model performance for each individual city.The 68% prediction 
interval corresponds to plus and minus one SE. ALE plots were used to assess how 
the individual variables contribute to the overall outcome of a model, and ensure 
these relationships agree with known physical processes. ALE plots depicting 
variable influences on prediction outcomes can be seen in SI Appendix, Fig. S4. 
Pearson’s correlation coefficient (r) (82) was used to quantify the strength and 
direction of the linear relationship between variables. 

Data, Materials, and Software Availability. Code is publically available on 
Zenodo (83). All data used in this study are publically available, including city 
population and location (2), coastal distance (44), water proximity (45), topogra-
phy (46), landcover (47), LST (48), vegetation index (55, 56), albedo (57, 58) and 
CMIP6 ESM (68, 69, 71, 72, 74, 75, 77, 78, 80, 81). All other data are included in 
the manuscript and/or SI Appendix. 
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