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Cities are often warmer than rural surroundings due to a phenomenon known as the
urban heat island, which can be influenced by various factors, such as regional climate
and land surface types. Under climate change, cities face not only the challenge of
increasing temperatures in their surrounding hinterland but also the challenge of
potential changes in their heat islands. However, even high-resolution global Earth
system models (ESMs) with “urban tiles” can only properly resolve the largest urban
areas or megacities. Here, we address these limitations by applying a process-based
statistical learning model to ESM outputs to provide projections of changes in land
surface temperature (LST) for 104 medium-sized cities of population 300 Kto 1 M
in the subtropics and tropics. Under a 2 °C global warming scenario, annual mean
LST in 81% of these cities is projected to increase faster than the surrounding area. In
16% of these cities, mostly in India and China, mean LST is projected to increase by
an additional 50-112% above ESM projections of the surrounding area. Our findings
underscore the importance of investigating the specific effects of climate change on
urban heat exposure.

urban heatisland | climate change | machine learning | urban climate

The urban heat island (UHI) is a phenomenon whereby the temperature in a city differs
from the surrounding rural area, typically being warmer. This leads to increased heat-related
health risks for urban inhabitants in comparison to their rural counterparts (1). In 2018,
it was estimated that over half the world’s population resided in cities and this proportion
is projected to increase to 68% by 2050 (2). Climate change results in rising global tem-
peratures and increased frequency of extreme heat events (3), which can have severe human
health impacts including increased mortality (4-6).

UHIs are influenced by both climate and city attributes (e.g., city area, rural aridity,
and landcover) (7), all of which can change over time. A deeper understanding of climate
change related shifts in UHI intensities will inform city planners as they design cities
aiming to optimize human comfort and health, and enable evidence based adaptation
planning. However, modeling and projecting changes in UHI on a global scale remains
a challenge. ESM or Global Climate Model (GCM) outputs have spatial resolutions larger
than the scale of most cities due to limitations in computational power. As urban landcover
only represents a small fraction of the earth’s surface, its inclusion is not essential for
projecting mean global temperature changes and is often not represented, although studies
utilizing more complex urban schemes exist (8). Even in such cases however, ESMs can
have limitations in their ability to simulate the UHI: for instance, ESMs with tiled schemes
for predicting surface temperature separately for urban and surrounding rural areas have
urban and rural air temperatures that are identical (i.e., the same model grid point) (9).
Regional climate models have higher resolutions and provide detailed understandings of
the urban microclimate, and downscaling of GCMs is an active research field (10).
However, such models are also constrained by computational expense. This limits their
ability to model many cities simultaneously at a high enough resolution to capture a
medium-sized city (11).

The above limitations mean that projections of the impacts of climate change on the
UHI are also limited to either the largest cities (12), or to smaller cities in certain geo-
graphical regions, at a lower resolution (13). Indeed, much of the current research focus
of the UHI is on megacities, which represent just 12% of the urban population (14, 15).
Furthermore, several regions of the world are underrepresented in the UHI literature, e.g.,
Africa and South and Central America (15, 16). Typically, as cities expand the intensity
of their UHI also grows (17). However, it is observed that saturation of the UHI with
city size occurs in very large cities (e.g., London) (18-20). Cities where saturation of the
UHI has occurred may respond differently to climate change than those medium-sized
cities where this point has not yet been reached. A complete picture of UHI behavior
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under climate change can therefore only be gained by addition of
the examination of such medium-sized cities.

A barrier to making observation-based global studies of the UHI
is that weather station data are irregular and sparse in coverage, and
air temperature sensor networks in cities are rare and have limited
temporal coverage (21). Furthermore, the methodologies and place-
ments of such sensor networks are inconsistent, making city to city
comparisons based on air temperature networks problematic (22).
Satellite data, on the other hand, have a resolution of 1 km and
global coverage. In addition, a positive correlation exists between
urban LST and air temperature (23, 24) because LST controls air
temperature in the lower layers of the atmosphere, although spatially
within a city, cool and hot spots do not necessarily overlap (24). In
this paper, we use Earth system model (ESM) projections and a
process-based machine learning (ML) model of the surface UHI
(SUHI), the UHI based on LST differences, to make projections
of total surface temperature change in selected medium-sized cities
in the tropics and subtropics under 2 °C global warming [a critical
benchmark established at the 2015 Paris agreement (25)].

Statistical or ML approaches have been used before in SUHI studies
to explore relationships between predictor and target variables (26),
but have not been employed to predict SUHI changes in the future.
Our process-based model is based on predictors that are known to
affect climate on city-sized scales, e.g., precipitation, humidity, vege-
tation (Methods). The selected ML model (Regression Enhanced
Random Forest) is chosen for its capacity to perform well under

extrapolation circumstances (27), which is necessary for studies of
future global change; this property is confirmed via various test-train
splits (Methods). Our approach is complementary to ESM-based pro-
jections of the SUHI, and detailed studies into the microclimate of
individual cities would enhance the findings of this study, in particular
for those highlighted as most impacted by climatic changes.

Results

A Statistical Learning Approach for SUHI Projections. Here,
we present our results for the day-time SUHI at 13:30 h. The
observed values of the past SUHIs (SI Appendix, Fig. S1) and
results for night-time (S Appendix, Fig. S2), when changes in
SUHI with climate change are generally much smaller, can be
found in the supplementary material. First, an overview of the
selected cities is given. Next, we describe our ML model and
evaluate its performance. We then describe the projections made
by combining the ML model with ESM outputs.

From a dataset of global urban areas (2), we impose city selec-
tion criteria to return a subset containing medium-sized cities with
additional restrictions to remove nonclimatic influences. For
example, coastal cities or those in mountainous regions are not
included. Selection criteria are listed in Methods section. The loca-
tions of the 104 selected cities are shown in Fig. 1.

Fig. 24 outlines the procedure used to generate the changes in
urban LSTs. The ML model, Regression Enhanced Random Forest

Regional ALST (°C)

SUHI ALST (°C)
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Fig. 1. Locations of selected cities
and projected LST changes for the
background regional area and the
additional SUHI-driven changes
with 2 °C warming. Maps show
regional changes in mean LST
projected by the ESMs, with the
additional LST changes in the city
2 projected by the ML model for (A)
annual values and (B) the warm
season.
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Fig. 2. Modeling overview and ML model performance. (A) Schematic showing the process to generate projections of changes in SUHI and regional and city
LSTs. (B) Scatterplot of ML SUHI predictions (horizontal axis) versus observations (vertical axis) for the test data. Data were split by alternate years, with test data
odd years. Each point represents the monthly mean SUHI observation and prediction for all 104 cities.

(RERF) (27), is set up to predict SUHI magnitudes from factors
such as urban—rural vegetation differences and relative humidity.
These factors are acquired from satellite and reanalysis data for the
model development. Changes in these drivers under a global 2 °C
warming, obtained from CMIP6 ESM projections, are then used
to project changes in the SUHI (Methods).

Our ML model performs well for present-day climates across
the selected cities, successfully predicting SUHI magnitudes for
a range of observed values, as shown in Fig. 2B. Across all cities,
the test data have overall performance statistics of R-squared 0.87
and RMSE 0.86 °C, giving confidence in the ability of the model
to make projections of the SUHI on unseen data. We consider
various validation scenarios to ensure a robust model for the
required application (Methods).

SUHIs Increase With 2 °C Warming. For most of the 104 cities, the
current SUHT is projected to become more positive. This is apparent
in Fig. 1. Under 2 °C warming, 81% of 13:30 SUHIs are projected
to increase in their annual mean. This change is in addition to the
regional background warming projected by ESMs also shown in
Fig. 1. The overall mean of this amplification is 0.4 °C, increasing
the overall change in city temperature (urban ALST) from 2.2 °C
(the ESM regional ALST) to0 2.6 °C. Cities in the Middle East, India,
and China all undergo large additional annual warming, as shown in
Fig. 1A4. Fig. 3 zooms in on the annual changes shown in Fig. 1. In
the Middle East increases in SUHI are a particular cause for concern
as these regions are already very hot, and also face a considerable
increase in ESM-based regional LST. In these areas, the current
SUHI is negative (an urban cool island), due to greater vegetation
and irrigation in the urban area in contrast to the rural (28). The
projected increase in the urban LST in these regions indicates the
SUHI becoming less negative, and in some cases, positive.
Increases in SUHI magnitude are especially likely to impact
human health during the warmest months of the year (29). To
investigate this, the data were split into four calendar quarters and
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the warmest season defined as that with the highest mean 2 m air
temperature for each region. This warm season projected change
can be seen in Fig. 1B (with a magnified version in S/ Appendix,
Fig. S3) which shows that 75% of the SUHIs increase, with an
overall mean change of 0.3 °C (with ESM ALST being 2.4 °C and
urban ALST 2.7 °C). Warm season increases in SUHI magnitude
are particularly noticeable for cities in Northeastern China.

Major Shifts in Highly Populated Regions. For many highly
populated countries, such as India and China, projected changes
in the SUHI are shown to be particularly pronounced in
comparison to background levels of warming (Fig. 3). For all the
studied cities in India, mean LST is projected to increase by an
additional 45% above ESM projections of the surrounding area,
and in China by an additional 40%. A major reason for this is
the influence of vegetation, which is associated with increased
cooling due to evapotranspiration and water retention (30).
Predictor importances, determined using accumulated local effects
(ALE) (31), find vegetation to be a strong influencer on the SUHI
magnitude (S/ Appendix, Fig. S4). ESM projections of large-scale
changes to vegetation or moisture availability, which have a cooling
influence on rural areas, do not typically affect cities to the same
extent, as they are made up of artificial impervious surfaces and
drainage systems that carry away surface water (32). In the areas
where there are increases in regional vegetation (ESM projections
can be seen in ST Appendix, Fig. S5), the SUHI becomes more
positive. Here, these changes in vegetation, which lead to an
increased magnitude in urban—rural vegetation difference, are
responsible for the largest changes in the SUHI. In parts of Brazil
the opposite effect is seen (Fig. 3), and the SUHI becomes smaller.

Fig. 4 summarizes how the inclusion of city-specific projections
can have a substantial influence on the overall ALST as a function
of ESM ALST. While only 3 city regions experience an increase
above 3 °C based on ESM LST, 26 cities experience increases in
median urban modeled LST above 3 °C. For two of the cities,
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Background regional and 13:30 SUHI annual mean LST change

A North and South America

B Africa and Middle East

Regional ALST (°C)

SUHI ALST (°C)

Fig. 3. Acloser view of the projected annual LST changes for the background regional area and the additional SUHI-driven changes. The map in Fig. 1A is split
into regions showing (A) North and South America, (B) Africa and Middle East, (C) South Asia, and (D) China and Southeast Asia. The same figure for the warm

season can be seen in S/ Appendix, Fig. S3.

Patiala, India, and Kasur, Pakistan, the additional change in SUHI
results in the city ALST being twice that of the ESM projection.

Prediction intervals, based on the ML model, are shown in
Fig. 4. The cities which have small projected changes in SUHI
tend to have the largest prediction intervals, indicating these
SUHIs are less influenced by the input climatic variables in the
ML model.

When changes in SUHI are considered on top of the changes
in regional LST, it is clear that almost all of the cities studied
undergo larger LST increases than their rural hinterlands. The
overall influence of including city-specific projections, rather than
simply examining the ESM grid cell, skews the probability distri-
bution of ALST toward larger magnitudes for both the annual
and warm season mean values (S/ Appendix, Fig. S6).

Discussion

We have investigated the effects of climate change on the day-
time SUHI of 104 medium-sized cities in the tropics and sub-
tropics, which are currently home to over 50 million inhabitants.

https://doi.org/10.1073/pnas.2502873123

City temperatures are already amplified due to the UHI in most
regions, with exception of the most arid (33, 34), and globally
all areas face increases in temperature due to climate change
(35). On top of these known factors, we have demonstrated the
potential for urban warming to be amplified in many cities, i.e.,
city LSTs increasing faster than ESM projections suggest. We
note that such a trend has already been observed over the last
20y (36).

Our results are of immediate relevance to policymakers who
will need to account for the increased hazards many urban citizens
will face over the coming decades. The cities studied here are
located in the warmer parts of the world, which makes this increase
even more impactful for human health and the urban environment
(37, 38). More generally, medium-sized cities represent a large
proportion of global cities with more than 2.5 times as many cities
in this category than cities with over 1 million population (2).
Our method, which combines state-of-the-art climate change
projections with process-based ML models, enables more informed
planning for these future risks, and aims to complement the cur-
rent body of research using physical modeling approaches.

pnas.org
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Change in LST with 2 °C warming
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Fig. 4. Projected LST changes with and without SUHI changes under 2 °C warm
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Mean Annual Change in LST (°C)

ing for the 104 individual cities. The red dots show the median projected LST changes

for the overall ESM grid cell region. Orange dots show the median ML projected changes in the city LST additional to this, driven by the changes in the ESM climate
variables. A 68% prediction interval for the ML model is shown in black, representing the likelihood that the true value of each projection lies within this range.

The projected SUHI increases are particularly noticeable in the
highly populated regions of north India and northeastern China.
This is concerning as both these areas are projected to experience
more frequent and intense heatwaves (39, 40). In hot temperatures,
outdoor workers are subject to numerous negative impacts of heat

PNAS 2026 Vol.123 No.6 2502873123

exposure (41) and economic impacts should they forgo a day’s work.
India is projected to require large cooling demands in the future,
which is problematic as the infrastructure may not be able to cope
with this increased load, and the costs are prohibitive for many (42).
Increased energy usage also brings consequences for climate change
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mitigation. The need for UHI mitigation and heat adaption in these
regions is therefore even more pressing.

A caveat of this study is that city expansion has not been con-
sidered. Including future urban expansion would likely lead to an
even greater warming compared to the above projected changes
(43). Relaxing the city selection criteria to include more cities
would make the results more generalizable, although the addition
of variables into the ML model would increase complexity. In
particular, including coastal cities and those near large waterbod-
ies, where humidity is more important, and an important aspect
of human health and comfort, is a source for future research.

Methods

City Selection. The included cities had a population between 300,000 and one
million and a latitude of less than 40°. Additionally, the surrounding features (lakes,
hills, oceans) of cities were considered in order to control other variables and isolate
the impact of climate (this could be relaxed in future work). These nonclimatic influ-
ences are removed to ensure the model is capturing relationships based on physical
processes related to climate, rather than other differences between selected cities.
An overview of the criteria and datasets used is provided below.

ePopulation: 300,000 to 1,000,000 (2)

e|ocation: <40 ° Latitude (2)

oCity distance: >42 km from any other city with >300,000 population (2)

e(oastal distance: >100 km from shoreline (44)

eWater proximity: >50 km from lakes >50 km wide or >22 km from lakes
>1 km wide (45)

eTopography: <150 m (SD) in elevation within 55 km? of surrounding area
(46)

oCity area: >5 km? city area in 2002 (47)

Generating the SUHI and Predictor Variables. The dataset used to develop
the ML model was generated using satellite and reanalysis data. The workflow
diagram for the model build and use can be seen in Fig. 2A. Here, we explain
the processing for the satellite and reanalysis data used to quantify the SUHI and
generate input variables for the ML model.

For satellite data, cloud contamination thresholds were set so at least 70%
of the overall (rural + urban) area and 50% of the urban have usable pixels. For
images deemed acceptable, any remaining poor-quality pixels (predefined in
the datasets via quality flags) were masked in the analysis to promote accuracy.

SUHI was quantified as the difference between the monthly mean city LSTand
the surrounding rural reference area;

1 Nyrban Nryral

Z LST span = nL Z BT (1]

urban " ral

SUHI =

n

where LST, o0 Nupans LT and Ny, represent the LST and number of urban
and rural pixels, respectively.

The rural reference area was defined as a rectangular box surrounding the city, where
the city takes up the 10% of the area in the center. The city and all other urban pixels
in the area are masked out. The satellite data utilized for SUHI quantification are
outlined below. The temporal span of the data was determined as the overlapping
period forall data, from 2002 to 2020. Spatially, landcover data, used to flag urban
versus rural LST pixels, was regridded to the same grid as the LST data (1 km).

eTerra LST8-D Global (MOD11A2) (48)

oESA Land Cover Climate Change Initiative: Global Land Cover Maps, Version
2.0.7 (47,49)

Anumber of SUHI quantification methods in two categories were considered.
The first category, chosen in this study, is to assess the mean of urban pixel LST.
The second category involves an assessment of the "peak” SUHI (50), aiming to
understand the LST differential where the city is the warmest. Methods in category
1, involving mean LSTs, tended to show highly correlated results, with similar
magnitudes and distributions (S/ Appendix, Fig. S7). The additional method
investigated was using the same urban area, but the rural reference was set as a
5 km buffer from the city bounds.

The second category, investigating the warmest LST pixels within a city is less
correlated with the mean methods. Additionally, when the MLmodels are fit with

https://doi.org/10.1073/pnas.2502873123

these methods as target variable, performance decreases, indicative of drivers
of peak SUHI that are nonclimatic and may be more related to urban features
such as building density.

The predictor variables used (selected based on maximizing R-squared) are
monthly means of the following.

eRelative humidity (RH)

eTotal precipitation (TP)

eUrban enhanced vegetation index (EVI_U)

eUrban-rural enhanced vegetation index difference (EVI_D)

elog;, of city area (LOG_AREA)

eUrban-rural white sky albedo difference (WSA_D)

eUrban-rural elevation difference (ELEVATION_D)

oSD of urban elevation (STD_ELEVATION_U)

Climate variables (RH and TP) were taken to be the mean of the entire area
inspected for the analysis, including both the city and the rural area. For satellite-
derived variables, which have resolution of 1 km or less, urban and rural values
are determined by calculating the mean result for the areas marked urban and
rural in the ESA landcover data.

To ensure the MLmodel is process based, these variables were chosen as they
are known to influence the SUHI (30, 33, 51, 52), and relate to heat and mois-
ture exchange in the surface energy balance. The variable relationships with the
predictions made are tested through model evaluation techniques such as ALE
(31)(SIAppendix, Fig. S4) to ensure the ML model accurately reflects the physical
processes that cause the SUHI to vary. To reduce multicollinearity, all predictor
variable candidates were checked for correlations, and any pair with a Pearson's
correlated coefficient of |r| > 0.7 (53) are not considered in the model together.
City area is calculated using the ESA landcover data (47) and elevation variables
using the topography (46). The additional satellite and reanalysis datasets used
are as follows.

*RH, TP from ERA-5 (54)

oEVI_U, EVI_D from MODIS MYD13A2, MOD13A2 (55, 56)

*WSA_D from MODIS MCD43A3, MCD43A2 (57, 58)

The urban-rural difference variables were derived using the same rural and
urban areas, as well as Eq. 1 applied in SUHI quantification. After quality control,
22,177 points representing monthly mean values were retained for training and
testing the ML model. The smallest cities based on 2020 area are Bahawalpur
(Pakistan) and Mymensingh (Bangladesh) and the largest Birmingham (USA).
Taking the annual mean for each city, overall, there are more positive SUHIs
(76%) than negative (SI Appendix, Fig. S1). For positive SUHIs, the mean was
2.2 1.5 °C(=SD). Negative SUHIs had a mean of —1.1 + 0.9 °C. Exploratory
analysis revealed the predictor most strongly correlated with the SUHI (based on
Pearson's correlation coefficient) was EVI_D, showing a strong negative correlation
(r==0.77). For most cities, annual mean EVI_R exceeded EVI_U, aside from 4
cities in arid areas. The greatest rural EVI is in Cascavel (Brazil) in the DJF (south-
ern hemisphere summer) months at 0.56 and the lowest in Ha'il (Saudi Arabia)
which persists at a mean of 0.06 y-round. A correlation matrix of all predictor
variables and SUHI is provided in S/ Appendix, Fig. S8. Not all predictor variables
showed linear relationships with SUHI. For example, LOG_AREA was found to be
positively correlated (r = 0.39) with SUHI magnitude in cities exhibiting positive
SUHIs, consistent with previous findings (5960, 61), but negatively correlated
(r=—0.24) with negative SUHIs.

Developing the ML Model. The chosen ML model, RERF (27), combines the
strengths of Ridge Regression (RR) and Random Forest Regression (RFR) in a
two stage hybrid setup. In the first stage, a "base” model (RR in this case) is
trained on the input features and target variable. This step captures the more
linear components of the relationship between the predictor and the response,
providing a stable parametric fit. This model then generates preliminary predic-
tions on the training set, which are subtracted from the observed target values
to produce residuals. In the second stage, these residuals are modeled using
RFR.This nonparametric method captures more complex, nonlinearinteractions
and dependencies the RR cannot account for. The final RERF prediction is then
obtained by summing the RR baseline and RFR prediction of the residuals. The
model therefore capitalizes on the benefits of both methods. Fitting a linear
and parametric relationship between variables via the Ridge base model, which
is more robust in a changing climate system than other ML techniques (62),
and the flexibility of a nonparametric Random Forest to model more intricate,
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nonlinear patterns. The RERF has been shown to perform well under extrapo-
lation circumstances (27), where a standalone RFR would typically degrade in
performance due to its reliance on training domain similarity.

Data were splitinto testand training data and RERF hyperparameters were tuned
using fivefold cross-validation on the training data only. The split was done based
on odd and even years, but validation was also undertaken using various splits
(e.g., early and later years) and performance remained similar. Additionally, two
specific extrapolation tests were done. One using the warmest 20 cities as the test
datasetand the remaining 84 cities as training, and a second using the negative or
smallest 10% plus largest 10% of SUHI magnitudes as the test data and remaining
80% of data as the training. Details of these tests can be seen in S/ Appendiix, Fig. S9.
Comparisons with RFR and RR are also shown, to demonstrate the improved ability
of the RERF to extrapolate, where RFR cannot. Additionally, including input variables
from a wide variety of climate regimes results in the range of the training data more
likely to encompass potential future climate scenarios.

Before using the RERF to make projections, it was refitted on the entire dataset
using the hyperparameters from cross-validation. This gives the best constrained
model on the largest possible training data range, still with the objectively best
hyperparameter settings for the REFR fit.

Merging the ML Model with ESM Projections. Changes in the future SUHI are
investigated by combining the RERF functions learned from observations with
climate model projections for future regional changes (i.e., areas surrounding
the cities considered) for the predictor variables from the most recent phase of
the Coupled Model Intercomparison Project (CMIP)-CMIP6. ESM projections are
used to quantify potential future changes in vegetation and climate, so they can
then be added into the dataset of predictor variables.

Akey challenge is that ESM climate projections show different rates of warming
due to the forcings, feedbacks, and parameterizations used (63). An alternative
approach is to analyze climate ata 2 °C global mean temperature rise from pre-
industrial (64). This is additionally relevant to policymakers as it is easier for those
without expertise in climate modeling to understand. Here, we use the SSP3-7.0
pathway, the medium to high emissions scenario (65).

To use ESM projections in the RERF, variables are converted according to the
following preprocessing steps:

1. Calculate a preindustrial mean global temperature for each ESM, defined as
the mean global temperature from 01/01/1850 to 01/01/1900.

2. Find the 20-y period where the mean global temperature is 2 °C higher than
preindustrial baseline. This will be known as future period.
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3. Regrid the ESMs so they are all on the same grid. This is the coarsest grid,
CanESMS, which has spatial resolution 2.8° latitude x 2.8° longitude.

4. Use the ESM outputs from the preindustrial period to get a baseline for the
climate (surface RH and TP) and vegetation (LAI) variable outputs.

5. Use the ESM outputs from the future period (2 °C global mean warming from
preindustrial) to geta projection for the future climate and vegetation variables.

6. Calculate the change in the climate and vegetation variables using these two
ESM outputs. This gives a change in LAI, RH, and TP for each ESM (5 total).
By looking at the difference between preindustrial and 2 °C warming in the
model rather than the absolute prediction for each predictor variable, some
bias adjustment is implicitly performed on the ESMs.

7. Thechangesin the predictorvariables are then added to observations. This means
the resolution of the variables will remain that of the observations, and not those
of the ESMs. This technique is known as the delta change method (66).

Animplicitassumption of the approach is that climate forcing will be constant
throughout an ESM grid box.

Well studied and validated ESMs, with the required variables and scenario
available from CMIP6 were chosen. The ESMs are as follows: CanESM5 (67-69),
CNRM-CM6-1 (70-72), ACCESS-ESM1-5 (73-75), IPSL-CM6A-LR (76-78), and
UKESM1-1-LL(79-81).

statistical Analysis. Prediction intervals for the REFR model were calculated
using the SE of the model performance for each individual city. The 68% prediction
interval corresponds to plus and minus one SE. ALE plots were used to assess how
the individual variables contribute to the overall outcome of a model, and ensure
these relationships agree with known physical processes. ALE plots depicting
variable influences on prediction outcomes can be seen in S/ Appendix, Fig. S4.
Pearson’s correlation coefficient (r) (82) was used to quantify the strength and
direction of the linear relationship between variables.

Data, Materials, and Software Availability. Code is publically available on
Zenodo (83). All data used in this study are publically available, including city
population and location (2), coastal distance (44), water proximity (45), topogra-
phy (46), landcover (47), LST (48), vegetation index (55, 56), albedo (57, 58) and
CMIP6 ESM (68, 69,71,72,74,75,717,78, 80, 81). All other data are included in
the manuscript and/or S/ Appendix.
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