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Abstract

In this thesis, next-to-next-to-leading-order corrections to the mixing and decay of bottom-
flavoured hadrons are calculated in perturbative quantum chromodynamics. For the
mixing of B mesons, the absorptive part of the off-diagonal decay matrix element, Γ12, is
computed. The focus of the analysis of the decays is on the lifetime ratios for B+ and
Bd mesons as well as for the corresponding baryons, Ξ0

b and Ξ–
b. The calculations yield

matching coefficients for the |∆B| = 2 and |∆B| = 0 transition operators to leading power
within the Heavy Quark Expansion. Therefore, two-loop amplitudes are computed for the
transition operators while the other side of the matching involves three-loop corrections to
diagrams calculated in the |∆B| = 1 effective field theory. General projectors for spinor
structures of up to eleven γ matrices on two spin lines, applicable to two-point functions
with four external fermions, are constructed as part of the computation. Moreover, the
renormalisation procedure developed here, which preserves Fierz symmetry and deals with
subtleties arising from power-suppressed corrections, is applicable to a broad range of
processes.

The perturbative corrections are furthermore employed to obtain theoretical predictions of
mixing observables and lifetime ratios. For B meson mixing, the most precise calculation of
∆Γ and afs to date for both the Bs and Bd systems are presented. Additionally, stringent
constraints on the apex of the Cabibbo-Kobayashi-Maskawa unitarity triangle are obtained
from the perturbative matching coefficients and measurements of ad

fs and ∆Γd/∆Γs .
The relevance of Γ12 for Beyond Standard Model physics is further emphasised through
the discussion of new physics in the chromoelectric vertex. For the lifetime ratios, the
predictions of τ(B+)/τ(Bd ) and τ(Ξ0

b)/τ(Ξ–
b) are updated to next-to-next-to-leading

order. The theoretical predictions agree with current measurements within the uncertainty,
confirming the Standard Model and the validity of the Heavy Quark Expansion.
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Zusammenfassung

In dieser Dissertation werden Korrekturen der nächst-zu-nächst-zu-führenden Ordnung
in der perturbativen Quantenchromodynamik für die Mischung und die Zerfälle von
Hadronen, die Bottom-Quarks beinhalten, berechnet. Für die Mischung von B-Mesonen
wird der absorptive Teil des nicht-diagonalen Elements der Zerfallsmatrix, Γ12, berech-
net. Der Fokus der Analyse der Zerfälle liegt auf den Lebensdauerverhältnissen der B+-
und Bd -Mesonen sowie der entsprechenden Baryonen Ξ0

b und Ξ–
b. Die Rechnung liefert

Matching-Koeffizienten für die |∆B| = 2 und |∆B| = 0 Übergangsoperatoren der führen-
den Ordnung in der Heavy-Quark-Entwicklung. Hierfür werden Zweischleifenamplituden
für die Übergangsoperatoren berechnet, während die andere Seite des Matchings Drei-
schleifenkorrekturen zu Diagrammen umfasst, die in der |∆B| = 1 Effektivfeldtheorie
ausgewertet werden. Für die Berechnung werden allgemeine Projektoren für Spinorstruk-
turen mit bis zu elf γ-Matrizen auf zwei Spinlinien konstruiert, die für Zweipunktfunktionen
mit vier externen Fermionen anwendbar sind. Darüber hinaus ist das hier entwickelte
Renormierungsverfahren, welches die Fierz-Symmetrie erhält und Subtilitäten im Zusam-
menhang mit Massen-unterdrückten Korrekturen berücksichtigt, auch für weitere Prozesse
anwendbar.

Die perturbativen Korrekturen werden ferner zur Ableitung theoretischer Vorhersagen für
Mischungsobservablen und Lebensdauerverhältnisse verwendet. Für die B-Mesonmischung
werden die bislang präzisesten Berechnungen von ∆Γ und afs sowohl für das Bs - als auch für
das Bd -System dargelegt. Zudem lassen sich aus den perturbativen Matching-Koeffizienten
in Kombination mit Messungen von ad

fs und ∆Γd/∆Γs strenge Einschränkungen für die
Spitze des Cabibbo-Kobayashi-Maskawa-Unitaritätsdreiecks aufstellen. Die Relevanz von
Γ12 für Physik jenseits des Standardmodells wird außerdem anhand der Diskussion neuer
Physik im chromoelektrischen Vertex hervorgehoben. Für die Lebensdauerverhältnisse
werden die Vorhersagen für τ(B+)/τ(Bd ) und τ(Ξ0

b)/τ(Ξ–
b) auf die nächst-zu-nächst-

zu-führende Ordnung aktualisiert. Die theoretischen Vorhersagen stimmen innerhalb der
Unsicherheiten mit den aktuellen Messungen überein, was das Standardmodell und die
Gültigkeit der Heavy-Quark-Entwicklung bestätigt.
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1 Introduction and Motivation

In the following, a brief introduction to particle physics with a focus on B mesons is
presented together with a theoretical description of the decay and mixing processes. By
outlining the current status of experimental and theoretical determinations of the relevant
observables and their phenomenological importance, the need for high-precision calculations
is motivated. The chapter concludes with an overview of the strategy employed in this
work to reduce the theoretical uncertainty.

1.1 B mesons in the Standard Model
The Standard Model (SM) of particle physics provides the best description of nature as we
observe it at the smallest lengths and highest energy scales [1–3]. It offers an explanation
of many physical phenomena based on so-called fundamental particles, as shown in Tab. 1.1
with the quantum numbers as given in Tab. 1.2. The quarks and leptons form the basis of
all observed regular matter around us while the bosons mediate interactions between those
particles. A particular focus of this thesis is the strong interaction between quarks, which
is mediated by gluons. The theory describing the strong interaction is called quantum
chromodynamics (QCD) in reference to the colour charge under SU(3)C [4–6].

Quarks Leptons

Up (u) Down (d) Electron (e) Electron neutrino (νe)
Charm (c) Strange (s) Muon (µ) Muon neutrino (νµ)
Top (t) Bottom (b) Tau (τ) Tau neutrino (ντ )

Vector Bosons

Photon (γ) Gluon (g) W± Z0

Scalar Boson

Higgs (H)

Table 1.1: The Standard Model of elementary particles, arranged by generation.
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1 Introduction and Motivation

An interesting feature of the strong interaction is the formation of bound states. Since the
interaction displays asymptotic freedom, i.e. particles are non-interacting in the ultraviolet
(UV) limit, at low energies, quarks do not occur as free particles, and colour is not observed.
Hence, the theory shows confinement in the infrared (IR) regime, and quarks are found in
hadrons, mostly made up of either three or two quarks although there have been reports of
higher numbers in short-lived bound states [7]. Those particles consisting of three quarks
are called baryons, which include protons and neutrons, while combinations of a quark
and anti-quark are called mesons. Since quarks are in the fundamental 3 representation of

Name Label SU(3)C, SU(2)L, U(1)Y Spin

Quarks
Qi

L =



ui

L

d i
L


 (3, 2, +1

6)
1
2

ui
R (3̄, 1, 23)

1
2

d i
R (3̄, 1, – 13)

1
2

Leptons
Li

L =



ν i

L

ei
L


 (1, 2, – 12)

1
2

ei
R (1, 1, –1) 1

2

ν i∗
R (1, 1, 0) 1

2

Higgs H (1, 2, +1
2) 0

Gluons gα (8, 1, 0) 1

W /Z -Bosons W±, Z0 (1, 3, 0) 1

Photon γ (1, 1, 0) 1

Table 1.2: Quantum numbers of Standard Model fields under the gauge group
SU(3)C×SU(2)L×U(1)Y. Note that the label i enumerates the three
generations of quarks and leptons.

SU(3)C, a quark-antiquark pair can be either in the octet or singlet representation,

3⊗ 3̄ = 8⊕ 1 . (1.1)

The interaction potential as calculated from the scattering amplitude of a quark-antiquark
pair reveals that the potential for the singlet state is attractive whereas it is repulsive for
the octet state. Similarly, a triplet of quarks is can be decomposed as

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1 , (1.2)

and again only the singlet state has an attractive potential. This is consistent with the
observation that the colourless singlet states are bound states.

2



1.2 Particle-antiparticle mixing in B meson systems

qb

b̄q̄

WW

u/c/t

u/c/t

Figure 1.1: Leading-order B meson mixing from a box diagram. Note that the
down-type quark q can be either d or s.

In this thesis, we consider the phenomenology of Bq and B+ mesons. These have the
quark content (b̄q), where q can stand for either d (down) or s (strange) quarks, and
(b̄u) respectively. All B mesons contain one b̄ anti-quark. The bottom quark was first
discovered in 1977 at Fermilab by the E288 experiment [8], and since then flavour physics
involving bottom quarks has been a focus of many particle detectors, including CDF at
the Tevatron, BaBar, Belle I and II, and LHCb [9–12]. The phenomenology of the neutral
B mesons is mostly characterised by the mixing between the meson and its corresponding
antiparticle, which was experimentally confirmed for the Bs system by CDF at Fermilab in
2006 [13].

The contribution of this thesis is to improve the predictions of B meson mixing and decays,
and to enable stronger conclusions to be drawn from experimental measurements of the
mixing and decay properties. For B meson mixing, the focus is on the absorptive part,
i.e. on the width difference ∆Γ and the flavour-specific CP asymmetry afs while for the
decays the lifetime ratios are considered.

1.2 Particle-antiparticle mixing in B meson systems
In the Standard Model, B mesons oscillate between the particle and antiparticle state
because W boson exchanges allow for transitions which change the number of bottom
quarks by two. In the following, B mesons with a generic down-type quark will be discussed.
The Feynman diagram in Fig. 1.1 shows a leading-order contribution to B meson mixing.
That this type of diagram leads to a mixing between particle and antiparticle states can
be seen from the self-energy matrix Σ, which is related to the scattering matrix S in the
Wigner-Weisskopf approximation [14, 15] through

– i (2π)4 δ(4)(pi – pj)Σij =
1

2MB
〈Bi |S|Bj〉 , (1.3)

3



1 Introduction and Motivation

where MB is the mass of the B meson and |Bi 〉, |Bj〉 denotes either a B meson or B̄
anti-meson state with the four-momentum pi , pj [16]. Using time-dependent perturbation
theory in quantum field theory (QFT), the time evolution of the two-state system is given
by

i d
dt

(
|B(t)〉
|B̄(t)〉

)
= Σ

(
|B(t)〉
|B̄(t)〉

)
, (1.4)

where natural units h̄ = 1 are used.

Inspecting the self-energy matrix more closely, we can observe how the states mix into each
other and how physical observables are related to the scattering matrix. The self-energy
matrix is commonly parametrised as

Σ = M – i Γ
2 , (1.5)

where M is called the mass matrix and Γ the decay matrix. Both matrices are taken to
be Hermitian, and their diagonal elements are identical due to charge-parity-time reversal
(CPT) invariance. Hence, this parametrisation offers a unique decomposition of the
Hermitian self-energy matrix,

Σ =



M11 – i

Γ11
2 M12 – i

Γ12
2

M∗12 – i
Γ∗12
2 M11 – i

Γ11
2


 . (1.6)

From a practical standpoint, the off-diagonal elements of the mass and decay matrix are
obtained from the dispersive and absorptive part of the self-energy, i.e.

M12 = (Σ12 + Σ∗21)/2 ≡ Disp (Σ12) ,
Γ12 = i (Σ12 – Σ∗21) ≡ – 2Abs (Σ12) . (1.7)

Since Σ has non-zero off-diagonal elements, the time evolution in Eq. (1.4) mixes the
flavour eigenstates. In other words, diagonalising the self-energy matrix leads to the mass
eigenstates

|BL,H〉 = p|B〉 ± q|B̄〉 , (1.8)

which are linear combinations of the flavour eigenstates. The subscripts L, H denote the
light and heavy states with the eigenvalues

EL,H = ML,H – i ΓL,H
2 , (1.9)

where ML,H and ΓL,H are respectively the mass and decay width of the light and heavy
states. The mass and decay width differences are defined as

∆M ≡ MH – ML , ∆Γ ≡ ΓL – ΓH . (1.10)

4



1.2 Particle-antiparticle mixing in B meson systems

Defining the charge-parity (CP) violating phase

φ ≡ arg
(
– Γ12
M12

)
, (1.11)

and neglecting corrections of order |Γ12/M12|2 ∼ 10–5, the mass and width differences
can be written as

∆M = 2|M12| , ∆Γ = 2|Γ12| cosφ , (1.12)

and hence their ratio is
∆Γ
∆M = – Re Γ12

M12
. (1.13)

Additionally, up to linear order in Im (Γ12/M12) . 10–3, the flavour-specific CP asymmetry
afs is given by

afs = Im Γ12
M12

. (1.14)

It is instructive to see how the observables derived above appear in measurements. The
self-energy matrix from Eq. (1.6) can be diagonalised with the eigenvectors (p, q) and
(p, –q), i.e.

Q–1ΣQ =



ML – i

ΓL
2 0

0 MH – i
ΓH
2


 , (1.15)

where
Q =

(
p q
q –p

)
. (1.16)

Note that afs is defined in terms of p and q as [17]

afs ≡ 1 –
∣∣∣∣∣
q
p

∣∣∣∣∣

2
, (1.17)

which leads to Eq. (1.14).

The time evolution in the flavour basis is solved as

(
|B(t)〉
|B̄(t)〉

)
= Q



ML – i

ΓL
2 0

0 MH – i
ΓH
2


Q–1

(
|B〉
|B̄〉

)
, (1.18)

and the matrix can be expressed as

Q



ML – i

ΓL
2 0

0 MH – i
ΓH
2


Q–1 =




g+(t)
q
p g–(t)

p
q g–(t) g+(t)




, (1.19)
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1 Introduction and Motivation

where the quantities g±(t) encode the oscillations,

g+(t) = e–iMte–Γt/2
(
cosh ∆Γt

4 cos ∆Mt
2 – i sinh ∆Γt

4 sin ∆Mt
2

)
,

g–(t) = e–iMte–Γt/2
(
– sinh ∆Γt

4 cos ∆Mt
2 + i cosh ∆Γt

4 sin ∆Mt
2

)
, (1.20)

and the shorthand notation Γ = Γ11 and M = M11 was used. If we start in a pure state
|B〉 at time t = 0, the state oscillates, and the probability of observing either a particle or
antiparticle is proportional to

|g±(t)|2 = e–Γt

2

[
cosh

(
∆Γt
2

)
± cos (∆Mt)

]
. (1.21)

Meanwhile, the flavour-specific CP asymmetry can be measured in the decays of B mesons
to final states f and their respective antiparticle states [16, 18],

adirCP + afs =
Γ(B̄(t)→ f ) – Γ(B(t)→ f̄ )
Γ(B̄(t)→ f ) + Γ(B(t)→ f̄ )

, (1.22)

where the direct CP asymmetry

adirCP = Γ(B → f ) – Γ(B̄ → f̄ )
Γ(B → f ) + Γ(B̄ → f̄ )

(1.23)

was introduced. For a derivation of the individual decay widths, see e.g. Ref. [17]. Note
that flavour-specific decays are such processes where B → f is allowed while B̄ → f
and B → f̄ are not. However, it is not necessary to tag the initial states to measure afs.
Defining the untagged decay width

Γ[f , t] ≡ Γ(B̄(t)→ f ) + Γ(B(t)→ f ) , (1.24)

the untagged CP asymmetry is further defined as

afs, untagged ≡
Γ[f , t] – Γ[f̄ , t]
Γ[f , t] + Γ[f̄ , t]

. (1.25)

This quantity can be expressed in terms of the previously defined CP asymmetries [16],

afs, untagged = adirCP + afs
2
(
1 – (adirCP)2

)(
1 – cos(∆Mt)

cosh(∆Γt/2)

)
. (1.26)

This is useful for experimental measurements because the need to tag the initial states
is eliminated, making the measurement of the CP asymmetry more tractable. In the
measurement of afs, untagged, the time dependence does not cancel, in contrast with
Eq. (1.22). The tagging of initial states can therefore be traded with the need to measure

6



1.2 Particle-antiparticle mixing in B meson systems

the time dependence of the decays. With the full time dependence, it becomes possible to
distinguish afs from adirCP and detector asymmetries [19].

To illustrate the discussion above, we highlight potential measurements of afs. The
traditional way of measuring the flavour-specific CP asymmetry is to investigate semilep-
tonic decays with f = X`+ν` and f̄ = X̄`–ν̄`. However, other decay channels like
Bd → J/ψK+π–, Bd → D+

s D–, Bd → D–K+ and many more can be included in the
analysis to increase the statistics. It is worth noting that the semileptonic decays have the
advantage that the direct CP asymmetry adirCP vanishes for those decays. This is not the
case for example in the decay channels Bd → J/ψK+π– and Bd → D+

s D– [20].

The B meson mixing observables are sensitive to the Cabibbo-Kobayashi-Maskawa (CKM)
matrix V , which encodes the differences in the weak interaction when it comes to coupling
different flavours of quarks [21, 22]. The CKM matrix is unitary, so there exist six unitarity
triangles, which can be written as

V ∗uiVuj + V ∗ciVcj + V ∗tiVtj = 0 ,
V ∗kdVld + V ∗ksVls + V ∗kbVlb = 0 , (1.27)

where i , j ∈ {u, c, t} are up-type quarks while k, l ∈ {d , s, b} are down-type quarks. It
will be convenient to introduce the notation

λ
q
i ≡ V ∗iqVib , (1.28)

where q is either d or s. When q is not specified, the superscript is not show. The
CKM coefficients from Eq. (1.28) appear in both M12 and Γ12. This can be seen from
considering the off-diagonal part of the self-energy matrix, which is obtained from box
diagrams like the one shown in Fig. 1.1 and QCD corrections to it. The CP-violating CKM
matrix elements factor out of the amplitudes

M(B̄ → B) = –
∑

i ,j
λiλjMij(B̄ → B) ,

M(B → B̄) = –
∑

i ,j
λ∗i λ
∗
j Mij(B → B̄) , (1.29)

where we have introduced the amplitudeM in the parametrisation of the scattering matrix
from Eq. (1.3),

〈Bi |S|Bj〉 = i (2π)4 δ(4)(pi – pj)M . (1.30)
Since QCD obeys CP invariance, the factorised amplitude Mij in Eq. (1.29) must be
CP-invariant. This implies that

Mij(B̄ → B) =Mij(B → B̄) ≡Mij . (1.31)

The CKM elements can hence be factored out from M12 and Γ12. Note that while for M12
all three up-type quarks can appear in the internal loop, Γ12 only obtains contributions

7



1 Introduction and Motivation

from u and c. This is because the imaginary part of a diagram is given by the sum of
all cuts which allow physical on-shell states [23]. Since the top quark is heavier than the
external bottom quark, there are no allowed cuts and the imaginary part of those diagrams
vanishes. Therefore, we have

M12 = λ2t Mtt
12 + 2λtλc Mtc

12 + 2λtλu Mtu
12 + λ2c Mcc

12 + 2λuλc Muc
12 + λ2u Muu

12 , (1.32)

and using the unitarity triangle Eq. (1.27) to remove λu,

M12 = λ2t (Mtt
12 – 2Mut

12 +Muu
12 )

+ 2λcλt(Muu
12 – Muc

12 – Mut
12 +Mct

12)
+ λ2c(Muu

12 – 2Muc
12 +Mcc

12) . (1.33)

If all quarks had the same mass, all terms M ij
12 would be identical, and the expression would

vanish. This is an example of the Glashow-Iliopoulos-Maiani (GIM) mechanism [24]. Since
the top quark is much heavier than the up and charm quarks, the leading contribution to
M12 stems from the λ2t term. Meanwhile for Γ12 the factorisation is

Γ12 = –
(
λ2c Γcc

12 + 2λuλc Γuc
12 + λ2u Γuu

12
)
. (1.34)

Since the CKM elements have been factored out in Eqs. (1.29), (1.32) and (1.34), we can
obtain simple expressions for the individual CKM contributions,

M ij
12 = 1

4MB

(
Mij +Mij ,∗) = 1

2MB
Re
(
Mij) ,

Γij
12 = – i

2MB

(
Mij –Mij ,∗) = 1

MB
Im
(
Mij) . (1.35)

1.3 Decays of B mesons
Lifetimes of B mesons are interesting to study because the Standard Model enables
predictions of differences in lifetimes, or equivalently their ratios, to a very high precision.
The inverse of the lifetime, the total decay width Γ of B mesons is given by the diagonal
part Γ11 of the self-energy as defined in Eq. (1.6). It is clear that this is indeed the decay
width from the exponential in Eq. (1.21), but we can also derive this from the optical
theorem.

The optical theorem in the general case can be derived from the unitarity of the scattering
matrix,

S†S = 1 ⇐⇒ i
(
T † – T

)
= T †T , (1.36)

where the transfer matrix T is defined by S = 1 + iT . Evaluating i(T † – T ) between
initial and final states, |a〉 and |b〉 respectively, yields

〈b|i
(
T † – T

)
|a〉 = i(2π)4δ(4)(pa – pb) (M∗(b → a) –M(a → b)) . (1.37)
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1.4 The need for precision physics

We can use the completeness relation for multi-particle states |X 〉 to evaluate the other
side of Eq. (1.36),

〈b|T †T |a〉 =
∑

X

∫
dPX 〈b|T †|X 〉〈X |T |a〉

=
∑

X
(2π)4δ(4)(pb – pX )(2π)4δ(4)(pa – pX )

∫
dPXM(a → X )M∗(b → X ) ,

(1.38)

where the relativistically normalised integral measure is given by

dPX =
∏

j∈X

d3pj
(2π)3

1
2Ej

. (1.39)

The unitarity condition Eq. (1.36) hence yields the generalised optical theorem

M(a → b) –M∗(b → a) = i
∑

X
(2π)4δ(4)(pa – pX )

∫
dPXM(a → X )M∗(b → X ) ,

(1.40)
which has the special case |a〉 = |b〉 = |B〉:

Im
(
M(B → B)

)
= MB Γ . (1.41)

This also allows us to view Eq. (1.3) as a generalisation of the optical theorem.

Lifetime ratios are especially attractive from a theoretical standpoint because the leading
term drops out of such ratios when using the Heavy Quark Expansion (HQE), which is to
be discussed in Section 2.5. In this thesis, the lifetime ratios

τ(B+)
τ(Bd )

and τ(Ξ0
b)

τ(Ξ–
b)

(1.42)

are considered, where the baryons have the quark contents Ξ0
b ∼ (bus) and Ξ–

b ∼ (bds).

1.4 The need for precision physics

1.4.1 Current status of B meson mixing
The Bs and Bd meson systems have been studied in detail experimentally, and the current
status with regards to the mixing parameters in the Bs system is as follows:

∆Mexp
s = (17.7656± 0.0057) ps–1 , [25] (1.43)

∆Γexp
s = (0.0781± 0.0035) ps–1 , [26] (1.44)

as,exp
fs = (–60± 280)× 10–5 , [26] (1.45)
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1 Introduction and Motivation

while for the Bd system, the most recent experimental measurements are:

∆Mexp
d = (0.5065± 0.0019) ps–1 , [26] (1.46)

∆Γexp
d = (0.7± 6.6)× 10–3 ps–1 , [26] (1.47)

ad ,exp
fs = (–21± 17)× 10–4 . [26] (1.48)

These value can be confronted with theoretical predictions that this thesis aims to update,
specifically for the Bs system:

∆Mtheo
s = (18.23± 0.63) ps–1 , [27] (1.49)

∆Γtheo
s = (0.076± 0.017) ps–1 , [28] (1.50)

as,theo
fs = (2.19± 0.14)× 10–5 , [29] (1.51)

and for the Bd system:

∆Mtheo
d = (0.535± 0.021) ps–1 , [27] (1.52)

∆Γtheo
d = (2.16± 0.47)× 10–3 ps–1 , [29] (1.53)

ad ,theo
fs = (–5.04± 0.33)× 10–4 . [29] (1.54)

From these values and referring to Fig. 1.2, we can observe that the largest theoretical
uncertainty in relative terms persists in ∆Γ, followed by afs. Moreover, there is a large
discrepancy in the central values for ∆Γd , and historical data from experiments showed a
greater deviation from the predicted value for ∆Γs too, see Ref. [30]. The central values
for afs agree within the experimental uncertainty, which is, however, much larger than the
theoretical prediction. The most accurately determined quantity with the best agreement
is ∆M. It should be noted that ∆Γ presents an opportunity to reduce a large theoretical
uncertainty to clear up a potential tension with the experiment. Moreover, new physics
models involving B mesons for baryogenesis and dark matter can be probed via Γ12 [31].

1.4.2 Current status of B and Ξb lifetime ratios
The current experimental data related to the lifetimes and their ratios are

(
τ(B+)
τ(Bd )

)exp
= 1.076± 0.004 , [26] (1.55)

(
τ(Ξ0

b)
τ(Ξ–

b)

)exp
= 0.936± 0.022 , [26] (1.56)

(
τ(B+)

)exp = (1.638± 0.004) ps , [26] (1.57)
(
τ(Ξ0

b)
)exp = (1.477± 0.032) ps . [26] (1.58)
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1.4 The need for precision physics

(a) Bs system (b) Bd system

Figure 1.2: Relative differences between theory and experiment and theoretical
uncertainties for Bs and Bd observables. Note that the relative
differences are calculated with respect to the theoretical predictions.
The hatched bars extend beyond the area of the plot and are not to
scale.

The most recent theoretical predictions of the lifetime ratios in the HQE are
(
τ(B+)
τ(Bd )

)theo
= 1.086± 0.022 , [32] (1.59)

(
τ(Ξ0

b)
τ(Ξ–

b)

)theo
= 0.929± 0.028 . [33] (1.60)

Confronting theory with experiment, we see that the uncertainty of the B meson lifetime
ratio is more than five times as large on the theoretical prediction, motivating a more
precise determination in this thesis.

1.4.3 Phenomenological importance of the observables
An accurate determination of ∆Γ and afs has a different relevance for the Bs and Bd
systems. Considering the Bs system first, the ratio ∆Γs/∆Ms is almost independent of
any CKM parameters, including |Vcb|. This can be seen from Eqs. (1.32) and (1.34) since
λs

t cancels in the ratio Γ12/M12 and the ratio |λs
u/λs

t | ' 0.02 is small. As ∆Γs/∆Ms is
well-measured experimentally, a comparison of theory and experiment serves as a probe
of SM parameters [28]. On the other hand, as

fs is tiny in the SM, but Beyond Standard
Model (BSM) physics can increase the CP asymmetry by two orders of magnitude [34].
Therefore, a precise parametrisation of as

fs in terms of effective operators will allow for a
more precise implementation of BSM theories too.

Given the experimental status and the different CKM elements involved, the Bd system
can be studied to provide constraints on the CKM unitarity triangle. In particular, we can
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1 Introduction and Motivation

Figure 1.3: The CKM unitarity triangle probed by Bd mixing. The triangle shown
represents the current global average [35]. The constraints in orange
are curves on which the apex of the CKM triangle would need to lie
for hypothetical measurements of ad

fs and ∆Γd/∆Md .

obtain constraints on the CKM unitarity triangle involving λd
u , λd

c and λd
t from future

measurements of afs and ∆Γd . The corresponding triangle is show in Fig. 1.3. Following
the notation of Ref. [36], we introduce the parametrisation

Γ12
M12

≡
[
a λu
λt

+ b λ
2
u
λ2t

+ c
]
× 10–4 , (1.61)

such that the flavour-specific CP asymmetry can be written as

ad
fs =

[
a Imλ

d
u
λd

t
+ b Im(λd

u )2

(λd
t )2

]
× 10–4 , (1.62)

and a measurement of ad
fs can be used to constrain the apex of the CKM triangle, see

Section 4.6. An additional constraint can be constructed from the ratio ∆Γd/∆Γs , which
can be parametrised using Eq. (1.61) as

∆Γd
∆Γs

=
∣∣∣∣∣
λd

t
λs

t

∣∣∣∣∣

2 1 +
a
c Re

λd
u
λd

t
+

b
c Re

(λd
u )2

(λd
t )2

1 +
a
c Re

λs
u
λs

t
+

b
c Re

(λs
u)2

(λs
t )2

. (1.63)

Measurements of ∆Γd and ∆Γs can hence be used to yield another constraint on the
CKM triangle, which is also shown in detail in Section 4.6. Since the two constraints are
almost orthogonal to each other, the apex of the CKM triangle can be determined with
high precision from B meson mixing observables alone. This serves as an excellent test of
the Standard Model.

The inclusion of penguin operators in particular in the calculation of Γ12 is important for
constraining certain types of BSM models. Such models could introduce an additional
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1.5 Reducing the theoretical uncertainty on B meson observables

contribution to e.g. C4, see Section 2.2, but only couple b and q = d , s quarks to down-type
quarks. The new physics effects would not impact M12 significantly, which is dominated
by the top quark loops; however, they contribute to Γ12. The largest contribution would
be expected from the interference with the SM matching coefficient C2. There would be
no leading order contribution as the one-particle reducible diagram vanishes, so the leading
effect comes from NLO diagrams like the one shown in Fig. 1.4 as the interference with
a penguin operator at LO will be smaller than the NLO diagram with a current-current
operator due to the smaller Wilson coefficient of SM penguins. To improve the accuracy
of constraints on such BSM theories, it is hence desirable to calculate the first correction
to this contribution too, i.e. to calculate current-current penguin diagrams at NNLO.

Q3–6

Q1,2

b

b̄

q

q̄

u, c

Figure 1.4: Leading effect from a BSM contribution to a penguin operator Q3–6
that only couples to down-type quarks.

A cornerstone of the B meson mixing calculations is the HQE, so it is important to
independently verify the validity of this operator product expansion. This can be done
through the comparison of experiment and theory for the lifetime ratios. The lifetime
ratios offer a clean way of probing the validity of the HQE since any BSM effects are
expected to be of the per mille level in the lifetime ratios [27, 32]. The main criticism of
the HQE, which should be addressed with precise calculations of the lifetime ratios, is the
possibility of the violation of quark-hadron duality (QHD) as proposed in Refs. [37–39].
As proving QHD in general is very difficult, additional evidence from lifetime ratios is a
valuable contribution to our understanding of QCD.

1.5 Reducing the theoretical uncertainty on B meson
observables

1.5.1 Overview of theoretical determinations of B meson mixing
Calculations of B meson observables consist of a non-perturbative and a perturbative part,
connecting the high- and low-energy regimes. While the non-perturbative calculations
are usually done using QCD sum rules or lattice QCD, perturbative calculations proceed
via an asymptotic expansion in the coupling parameter, amounting to the evaluation of
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increasingly complicated Feynman diagrams. Our focus lies on the perturbative part of
the calculations, which are discussed in the following. The non-perturbative counterparts
are described for example in Refs. [40–46]. For more details on the perturbative part and
how perturbative and non-perturbative results are combined to yield physical results, see
Chapter 2.

Previous calculations of B meson mixing observables have included various contributions
of the weak interaction to at most next-to-next-to-leading order (NNLO) with the most
involved calculations being limited to certain kinematic limits. The various contributions
of the weak interaction are captured through effective operators, which will be introduced
in detail in Section 2.2, most notably the current-current and penguin operators. A smaller
contribution arises from the chromomagnetic operator, which has also been considered
before. The observable Γ12 is calculated in the HQE, where successive terms are suppressed
by the ratio of the fundamental QCD scale (at around 400MeV) to the bottom quark
mass, ΛQCD/mb. The sub-leading contributions in the HQE have been calculated to LO
in QCD [34, 47, 48] and the leading-power terms are discussed in the following.

The current-current operator contributions to Γ12 have previously been determined to
leading order (LO) and next-to-leading order (NLO) [36, 47, 49, 50]. The NNLO
contributions have been calculated for the fermionic parts, i.e. in the large flavour limit, in
Refs. [51–53] and for the non-fermionic parts in Ref. [28], both in an expansion in the
charm-to-bottom mass ratio mc/mb up to second order.

Contributions involving penguin operators have been calculated to LO [47, 49] and to NLO
in an expansion in mc/mb up to second order [28, 54]. The chromomagnetic operator has
been included to NLO in Ref. [49]. Its NNLO and next-to-next-to-next-to-leading (N3LO)
contributions have been considered in Ref. [54] in the expansion up to (mc/mb)2.

1.5.2 Extending the B meson mixing calculations of Γ12

Because of the larger theoretical uncertainties on ∆Γ and afs, the focus of this thesis lies
on the accurate determination of these two observables. They are closely related to the
quantities Γ12 and M12, as can be seen from Eqs. (1.12) and (1.14). Since M12 has been
accurately determined from theoretical predictions [55], Γ12 is a focus topic of this thesis.
Building on previous works, this thesis completes the perturbative NNLO QCD corrections
to the leading-power term of Γ12 in the HQE, including a deep expansion in the mass ratio
mc/mb for all contributions. To this extent, the following improvements are presented:

1. Penguin operator contributions are calculated at NNLO for the first time.

2. The current-current contributions at NNLO are calculated to a deeper expansion up
to (mc/mb)20.
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1.5 Reducing the theoretical uncertainty on B meson observables

3. Contributions involving penguin operators at NLO are calculated to a deeper expan-
sion up to (mc/mb)20.

4. Contributions involving the chromomagnetic operator up to N3LO are calculated to
a deeper expansion up to (mc/mb)20.

Additionally, the question of an unambiguous choice of basis for the leading-power transition
operator in the HQE is resolved, allowing for an accurate combination of perturbative
results from this thesis with non-perturbative matrix elements, see Sections 2.4.2 and
2.4.3. It is worth noting here that the expansion depth of (mc/mb)20 is sufficient to
achieve a relative precision of better than 10–6 at NNLO.

The significance of the added expansion depth in mc/mb for previously calculated contri-
butions is underscored by the fact that the leading term of afs is proportional to (mc/mb)2.
However, also ∆Γ is expected to benefit from the higher precision. The entirely novel
contribution involving penguin operators at NNLO contributes to both observables for dia-
grams involving one penguin and one current-current operator, providing another precision
boost. Meanwhile, the NNLO double penguin contribution has no effect on afs because
the CKM factor λ2t cancels in the ratio Γ12/M12, which is therefore purely real. However,
in BSM theories, the Wilson coefficients might pick up a complex phase such that penguin
double insertions contribute to the imaginary part of Γ12 and thereby afs.

In order to calculate the penguin operator contributions at NNLO, novel projector methods
had to be developed. The algorithm presented in Section 3.3 is applicable to any process
with four external fermions and is particularly relevant for higher-order QCD corrections
involving effective operators and dimensional regularisation.

1.5.3 Overview of theoretical determinations of lifetime ratios
As for the calculations concerning the B meson mixing observables, the focus of this
thesis is on the high-energy perturbative QCD corrections to the lifetime ratios. For an
overview of all the components which enter the B meson lifetimes, see Ref. [32]. Recently,
all LO non-leptonic matching coefficients of the two-quark |∆B| = 0 transition operator
up to dimension six were computed [56]; however, these mostly cancel in the lifetime
ratio τ(B+)/τ(Bd ) due to isospin symmetry. For this lifetime ratio, the most relevant
matching coefficients are those of the four-quark dimension-six |∆B| = 0 transition
operator, which for the non-leptonic part have been computed to LO [57] and to NLO [58,
59] for the CKM-leading contribution of the current-current operators. The penguin and
chromomagnetic operators were also considered in Ref. [59] at one-loop order. The next
step in improving the precision of the lifetime differences is hence the calculation of the
CKM-leading NNLO contributions of the current-current operators together with the
CKM-suppressed terms at NLO.
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Similar to the theoretical calculations of the mixing observables, non-perturbative matrix
elements are required to yield physical results in combination with the high-energy matching
coefficients. For the lifetime ratios, the |∆B| = 0 matrix elements were recently updated
using QCD sum rules in Ref. [60].

Further motivation for an NNLO calculation of the dimension-six terms stems from
the recent calculation of the dimension-three contributions to B meson decays [61, 62].
Theoretical predictions of the decay width to NNLO are hence partially possible now,
and with the addition of the NNLO terms from the four-quark operators, a full NNLO
calculation of the total decay width draws closer.

1.5.4 Increasing the precision of lifetime ratios
In this thesis, the current-current operator contributions to the non-leptonic decay width are
calculated to NNLO in QCD and analysed in terms of their phenomenological implications
for the lifetime ratios of B mesons and Ξb baryons. The calculation involves the imaginary
part of the three-loop weak annihilation (WA) and Pauli interference (PI) diagrams, see
Section 2.5. The following novel contributions are presented:

1. The leading-CKM contributions of the current-current operators are calculated to
NNLO.

2. The CKM-suppressed contributions of the current-current operators are calculated
to NLO.

The calculation also makes use of the advanced projector methodology developed for the
mixing calculations, see Section 3.3.

The results of this high-precision calculation present a major update of the work carried
out in Ref. [58] and allow for a more robust test of the validity of quark-hadron duality
and the Heavy Quark Expansion.

1.6 Summary and overall approach
This thesis describes the methods necessary to complete high-precision calculations for B
meson observables within the framework of the weak effective Hamiltonian in the perturba-
tive regime up to NNLO. Moreover, the phenomenological implications are discussed. The
calculations proceed via two operator product expansions, where the W boson and heavier
particles are integrated out first to obtain an effective |∆B| = 1 theory. Subsequently,
the HQE is employed to match onto an effective |∆B| = 2 and |∆B| = 0 transition
operator for B meson mixing and decays respectively. The theoretical foundations of these
theories are discussed in Chapter 2. These transition operators allow a factorisation of the
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high-energy and low-energy physics, where our focus is on the perturbative high-energy
regime. In Chapter 3, the calculation of amplitudes in terms of Feynman diagrams is
presented with a particular focus on the novel projector methods developed as part of
this thesis. The phenomenological implications of the results in B meson mixing and
their relevance for BSM physics are analysed in Chapter 4 and Chapter 5, while the
phenomenology of B meson and Ξb baryon lifetime ratios follows in Chapter 6. The thesis
concludes with a discussion of the results and an outlook on future work in Chapter 7.

17





2 Operator Product Expansions and
Effective Field Theories

In this chapter, the theoretical foundations of the effective operators employed in calculating
the B meson decay and mixing amplitudes are presented. Starting from a general
introduction to effective field theories (EFTs), the weak effective Hamiltonian of the
|∆B| = 1 basis as well as the |∆B| = 2 and |∆B| = 0 transition operators in the Heavy
Quark Expansion (HQE) are developed. The matching calculation which connects the
|∆B| = 1 theory to the transition operators is discussed for both the mixing observables
and lifetime ratios. Additionally, field theoretic challenges in the evaluation of amplitudes,
e.g. the correct implementation of Fierz symmetry and the preservation of the ΛQCD/mb
suppression of renormalised matrix elements, are highlighted.

2.1 Fundamentals of operator product expansions and
effective field theories

2.1.1 Describing low-energy physics with effective operators

To introduce the concepts of an operator product expansion, the derivation of the weak
effective Hamiltonian is discussed in the following. The effective |∆B| = 1 Hamiltonian
is a useful tool to describe the mixing and decay processes at the typical mass scales of
B mesons. Many calculations in quantum field theory are simplified by working at the
correct scale of the problem, and EFTs offer a convenient path to achieving this. In the
case of the weak effective Hamiltonian, a Type-I EFT [63] where heavy degrees of freedom
are fully removed, the W boson and all particles heavier than it are integrated out. In
doing so, the number of scales is reduced when calculating QCD corrections to the mixing
and decay processes.

In order to construct the effective field theory, a short-distance operator product expansion
is employed, which can be illustrated by examining the W boson exchange shown in
Fig. 2.1, see also Refs. [63, 64] for further details. The weak interaction in the Standard

19



2 Operator Product Expansions and Effective Field Theories

s c

b̄ c̄

W −→

s c

b̄ c̄

Figure 2.1: Effective current-current operator in orange as generated from the
exchange of a W boson.

Model Hamiltonian takes the form

H ⊃ – gw√
2

[
W+
µ

(
ūa

LγµVabdb
L
)
+W –

µ

(
d̄a

LγµV
†
abu

b
L

)]
, (2.1)

where gw is the electroweak coupling constant. The matrix element of the Feynman
diagram on the left of Fig. 2.1 is given by

M =
(
igw√
2

)2
VcsV ∗cb (c̄γµPLs)

(
b̄γνPLc

)
× –igµν

p2 – M2
W

, (2.2)

where the chirality projector PR/L = (1 ± γ5)/2 was introduced. The momentum and
mass of the W boson are denoted by p and MW respectively. In the low-energy limit
p2 � M2

W , the denominator of the W propagator can be expanded in a Taylor series,

1
p2 – M2

W
= – 1

M2
W

(
1 + p2

M2
W

+ . . .

)
, (2.3)

which allows us to write the matrix element from Eq. (2.2) as

M = i
M2

W

(
igw√
2

)2
VcsV ∗cb (c̄γµPLs)

(
b̄γµPLc

)
+O

(
p2
M4

W

)
. (2.4)

We observe that the W boson generates operators which are suppressed by increasing
powers of p2/M2

W . This illustrates the Appelquist–Carazzone decoupling theorem [65],
which states that heavy fields of mass M generate at low energies operators that are
1/M-suppressed, with the exception of renormalisation effects.

Using the example above, the concepts of an operator product expansion and an effective
field theory will be introduced. First, it can be observed that the non-local interaction
mediated by the W boson in Eq. (2.2) is replaced by a series expansion of local operators
in Eq. (2.4). This is an example of an operator product expansion (OPE), which reads in
generic terms as

Oi (x)Oj(y) ∼
∑

k
Ck

ij (x – y)Ok(y) , (2.5)
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where the operators Oi and Oj are expressed as an asymptotic expansion in an open
neighbourhood U of y such that x ∈ U\{y} [66–69]. While the OPE is defined in position
space, the relation above can be Fourier-transformed to momentum space, which is more
practical for loop calculations. Since the definition holds in an open neighbourhood of y ,
the OPE will be valid for spacetime points x close to y , which intuitively makes sense for
the type of short-distance OPEs that we are considering. The advantage of using such
OPEs is that the high-energy and low-energy physics can be factorised into the Wilson
coefficients Ck

ij and operator matrix elements 〈Ok(y)〉 respectively. This allows us to
combine perturbative with non-perturbative results.

After integrating out the W boson, the low-energy physics are described by the electroweak
|∆B| = 1 effective Hamiltonian. Continuing with the example from above, consider the
Hamiltonian

Heff = –4GF√
2
VcsV ∗cb (c̄γµPLs)

(
b̄γµPLc

)
+ h.c. , (2.6)

which generates the same matrix element as given in Eq. (2.4) when

GF = g2W
4
√
2M2

W
. (2.7)

The constant GF is called the Fermi constant, and the Hamiltonian in Eq. (2.6) can be
generalised for all quarks and leptons to the effective field theory proposed by Enrico
Fermi [70, 71]. While OPEs are generally only valid inside correlation functions, EFTs
are standalone quantum field theories, with their own action and perturbative Feynman
rules, valid below a cutoff scale. When constructing EFTs, the most general Hamiltonian
consistent with the symmetries of the theory is written down and organised in powers of
the heavy cutoff scale, which will be presented in Section 2.2. On the other hand, the
|∆B| = 2 and |∆B| = 0 transition operators presented in Section 2.4 and Section 2.5 are
examples for where an OPE is used inside a correlation function to evaluate an amplitude.

Amplitudes calculated using effective operators need to be renormalised to yield finite
results. In the following sections, the renormalisation procedure is discussed, including the
evanescent operators appearing in dimensional regularisation.

2.1.2 Renormalisation of the QCD Lagrangian
As the main focus of this thesis is the calculation of QCD corrections to B meson mixing
and decays, the renormalisation of the QCD Lagrangian is discussed first before moving on
to special considerations for effective field theories. The QCD Fadeev-Popov Lagrangian
is given by [72]

LQCD = –14
(
Ga
µν

)2 – 1
2ξ
(
∂µGa

µ

)2 + ψ̄
(
i /D – m

)
ψ + c̄a (–∂µDac

µ

)
cc , (2.8)
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2 Operator Product Expansions and Effective Field Theories

where ca are the Fadeev-Popov ghosts and ψ denotes a generic quark field of mass m.
The gauge choice ξ = 1 corresponds to Feynman-t’Hooft gauge. The covariant derivative
acting on the fundamental representation is

Dµ = ∂µ – igsGa
µT a , (2.9)

while for the adjoint representation it is defined as

Dac
µ = δac∂µ + gs f abcGa

µ , (2.10)

where f abc are the structure constants of the Lie algebra of SU(3). The field strength
tensor is given by

Ga
µν = ∂µGa

ν – ∂νGa
µ + gs f abcGb

µGc
ν . (2.11)

In order to renormalise the Lagrangian, the fields and coupling constants are expressed in
terms of bare quantities and renormalisation constants,

ψ0 =
√
Z2 ,ψ Ga,0

µ =
√
Z3 Ga

µ ,

ca,0 =
√
Z̃3 ca , m0 = Zm m ,

g0s = µε
√
Zαs gs , ξ0 = Z3 ξ . (2.12)

Here, we have introduced the renormalisation scale µ and the parameter ε, which is
used in dimensional regularisation in d = 4 – 2ε dimensions. This parameter acts as a
regulator of divergences, which appear as poles in ε and need to be renormalised. After the
renormalisation procedure, physical results are recovered by taking the limit ε→ 0. For
the calculations carried out as part of this thesis, the constant Z̃3 is not required and only
mentioned here for completeness. Additionally, the field strength renormalisation of the
gauge field Ga

µ does not appear, but the constant Z3 enters through the renormalisation
of the gauge parameter ξ.

The renormalisation constants can be expanded as a series in the strong coupling constant
and the UV pole regulator,

Z =
∞∑

i=0

i∑

k=–∞

(
αs
4π

)i 1
εk

Z (i ,k) , (2.13)

where αs = g2s /(4π). The renormalisation constants in this thesis are taken to be in the
modified minimal subtraction (MS) scheme in most cases, which removes all poles and
terms with the Euler-Mascheroni constant γE as well as certain logarithms that can be
absorbed by rescaling the renormalisation scale

µ2 → µ2
eγE
4π . (2.14)
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2.1 Fundamentals of operator product expansions and effective field theories

This corresponds to subtracting only poles in
1
ε̃
≡ 1
ε
– γE + ln(4π) , (2.15)

and we have Z (i ,k) = 0 ∀ k > 0 as well as Z (0,0) = 1. The QCD renormalisation constants
are known up to α5s , see Refs. [73–77].

For the mass renormalisation, we find it convenient to work in the on-shell (OS) scheme
when computing the amplitudes as outlined in Chapter 3. This is because the external
bottom quark is taken to be on-shell, such that its momentum squared is equal to the
on-shell mass squared, i.e. q2 = m2

b. In particular, applying the equation of motion
/qub = mbub will yield additional factors of the on-shell mass. Therefore, it is practical to
also use the OS mass for internal propagators and consequently the mass renormalisation.
The OS mass mOS is defined such that the pole in the two-point function occurs at the
physical mass m and has residue 1. If we denote all one-particle irreducible insertions into
the fermion propagator by –iM(p2), the full two-point function A can be written as a
geometric series

A = i
/p – mOS

∞∑

n=0

(
–iM(p2)

)n
(

i
/p – mOS

)n
= i

/p – mOS – M(p2)
, (2.16)

where p is the external momentum of the particle. The renormalisation conditions are
hence

M(p2)
∣∣∣p2=(mOS)2 = 0 , d

dp2 M(p2)
∣∣∣∣∣p2=(mOS)2

= 0 . (2.17)

The mass renormalisation constants in the OS scheme up to α4s can be found in Ref. [78].
Additionally, Ref. [79] gives contributions at α3s from on-shell diagrams with two mass
scales, e.g. the bottom and charm quark masses.

For phenomenological applications, different renormalisation schemes of the bottom quark
mass can be used. While the poles must cancel in any renormalisation scheme, the finite
parts may differ, and the remaining dependence on the renormalisation scale due to the
truncation of the perturbation series at a finite order in αs is also specific to the chosen
scheme. Hence, certain schemes are more suitable for processes at particular scales. The
conversion between the previously discussed MS and OS schemes can be found in Ref. [79].

The third scheme that is interesting to consider in the context of bottom flavour physics
is the potential subtracted (PS) scheme, where large corrections from the heavy quark
potential are removed [80]. Large perturbative corrections to the OS mass cancel with those
in the potential, making the PS mass a well-determined quantity even when truncating
the perturbation series. The PS mass mPS is obtained by subtracting the low-energy part
of the heavy quark potential Ṽ (q) below a factorisation scale µf from the OS mass,

mPS(µf ) = mOS – δm(µf ) , (2.18)
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2 Operator Product Expansions and Effective Field Theories

where the subtraction term is given by

δm(µf ) = –12

∫

|~q|<µf

d3~q
(2π)3 Ṽ (q) . (2.19)

The heavy quark potential in momentum space Ṽ (q) has been computed to order O(α2s )
in Ref. [80], and the three-loop corrections were obtained in Refs. [81, 82]. The conversion
to the MS mass is given in Ref. [78], and a convenient implementation of quark mass
relations as well as the running of the strong coupling constants and the quark masses
called is provided in Ref. [83] in the form of a program called RunDec. The finite charm
mass effects in the definition of the PS mass are presented in Ref. [84].

2.1.3 Renormalisation of EFTs and evanescent operators
In order to renormalise an EFT, additional renormalisation constants are necessary for the
effective operators, which need to be treated differently. The effective operators mix under
renormalisation since higher-order corrections to any operator may yield colour and spinor
structures different from the original one. Therefore, it becomes necessary to renormalise
the Wilson coefficients or equivalently the effective operators through a renormalisation
matrix,

C0
i = CjZji . (2.20)

To define the renormalisation scheme used for the operator mixing, a special class of
operators called evanescent operators needs to be introduced too.

When working with Dirac spinors in d = 4 – 2ε dimensions, the Dirac algebra becomes
infinite-dimensional and additional spinor structures appear, which give rise to evanescent
operators [85]. This is because the four-dimensional identities that could be used to reduce
the number of γ matrices in a so-called Dirac chain are not applicable to d dimensions.
For example, the Chisholm identity [86]

γµγνγρ
d=4= gµνγρ – gµργν + gµργµ + iεσµνργσγ5 (2.21)

does not hold in d 6= 4 dimensions. Similarly, without a particular choice of evanescent
operators, the four-dimensional Fierz identities as derived in Appendix C are not valid
outside of four dimensions. Therefore, evanescent operators are introduced as the difference
between the spinor structures in d dimensions and their counterpart after applying four-
dimensional identities [85, 87, 88]. The tree-level matrix elements of evanescent operators
hence vanish in four dimensions, i.e. they are O(ε); however, in intermediate steps they may
be multiplied by poles in the regulator ε. For a correct physical result, the renormalisation
procedure must include the evanescent operators.

When extending the renormalisation scheme to include evanescent operators, we follow
the prescription outlined in Ref. [89], which extends the MS scheme:
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2.1 Fundamentals of operator product expansions and effective field theories

• Renormalised amplitudes of physical matrix elements are UV-finite, i.e. the renor-
malisation constants only remove poles in 1/ε̃UV.

• Renormalised amplitudes of evanescent matrix elements vanish as εUV → 0, i.e. the
renormalisation constants have poles as well as finite parts that cancel the finite
bare amplitude.

It is worth stressing here that amplitudes can still contain IR poles after the UV divergences
have been removed in the renormalisation procedure. In fact, when using the same regulator
for UV and IR divergences εUV = εIR ≡ ε, one cannot differentiate between the divergences,
and the evanescent operators need to be retained until the IR poles are removed in the
matching, see Section 2.6.

Returning to the renormalisation matrix which describes the operator mixing, we can write
down an explicit parametrisation of the necessary terms for the physical and evanescent
operators. Schematically, the renormalisation constants are defined via

(
(~Cbare)T , (~Cbare

E )T
)
=
(
(~C ren)T , (~C ren

E )T
)
Z

≡
(
(~C ren)T , (~C ren

E )T
)(ZQQ ZQE

ZEQ ZEE

)
, (2.22)

where the sub-matrices ZQQ and ZEE can be expanded in αs and ε,

(ZAA)ij = δij +
αs
4π

1
ε

(
Z (1,1)

AA

)

ij
+O(α2s ) . (2.23)

The off-diagonal sub-matrix ZQE has a similar expansion,

(ZQE )ij =
αs
4π

1
ε

(
Z (1,1)

QE

)

ij
+O(α2s ) . (2.24)

The sub-matrix ZEQ is different because it introduces the finite counterterms which are
needed to fulfil the renormalisation condition for the vanishing finite part of the evanescent
operators, which is easier to see when renormalising the operators instead of the Wilson
coefficients. In either case, the matrix reads

(ZEQ)ij =
αs
4π

(
Z (1,0)

EQ

)

ij
+O(α2s ) . (2.25)

This sub-matrix is special as its highest pole in 1/εk is k = i – 1, where i is the order in
αs , and it contains a finite ε0 part as well. For the second-oder α2s terms this means that
there are both ε0 and 1/ε terms. Since we are working in the modified MS scheme, there
are no terms with positive powers of ε at any order.

Finally, it is worth considering which evanescent operators need to be included in order
to renormalise certain amplitudes. Formally there is an infinite number of evanescent
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2 Operator Product Expansions and Effective Field Theories

operators because the Dirac algebra in d dimensions is infinite-dimensional. However,
when considering a limited set of operators to a finite maximum order in αs , the number
of evanescent operators to be included is also finite. To renormalise an n th generation
evanescent operator up to O(αi

s), evanescent operators E (k) up to generation k = n+ i – `
need to be included in the order ` diagrams, where ` = 0 corresponds to leading order
and n = 0 are the physical operators. To illustrate this point, the required operators at
each loop order are shown for a few examples in Tab. 2.1.

Matrix element Highest at LO Highest at NLO Highest at NNLO
at order i = 2 ` = 0 ` = 1 ` = 2

〈Q〉ren (n = 0) E (2) E (1) Q
〈E (1)〉ren (n = 1) E (3) E (2) E (1)

〈E (2)〉ren (n = 2) E (4) E (3) E (2)

〈E (3)〉ren (n = 3) E (5) E (4) E (3)

Table 2.1: Highest generation evanescent operators required to renormalise dif-
ferent matrix elements up to α2s .

2.1.4 Renormalisation group equations for Wilson coefficients
The renormalisation matrices in Eq. (2.22) can also be used to relate Wilson coefficients at
different scales through the renormalisation group equations (RGE). This is useful because
the low-energy and high-energy physics involve scales which differ significantly but need
to be connected. For example, when integrating out a heavy particle, the full theory side
will involve logarithms like ln(M/µ) where M is the mass of the heavy particle which is no
longer present on the effective side. On the effective theory side we get logarithms of the
form ln(m/µ) where m is a low-energy scale, e.g. the mass of a light particle. It is therefore
impossible to choose a single value of µ which suppresses both logarithms. Instead, we
use renormalisation group equations to relate quantities at different renormalisation scales,
which automatically sums up the large logarithms.

The bare Wilson coefficients must be independent of the renormalisation scale µ; therefore,

µ
d~C0

dµ = µ
d
dµ

(
~CTZ

) != 0 , (2.26)

which implies that the scale evolution of the renormalised Wilson coefficients is given by
the renormalisation group equation

µ
d
dµ
~C = –~CT

(
µ

d
dµZ

)
Z–1 ≡ ~CT γ , (2.27)
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where the anomalous dimension matrix γ was defined. With the QCD beta function

β(αs , ε) ≡ µ
dαs
dµ , (2.28)

we can also write
γ = –β(αs , ε)

(
d

dαs
Z
)
Z–1 , (2.29)

which is more useful since the renormalisation matrix is usually given as a function of αs .
We need the beta function up to O(α2s ), i.e.

β(αs , ε) = –2αs

[
ε+

(
αs
4π

)
β0 +

(
αs
4π

)2
β1 +O(α3s )

]
. (2.30)

Corrections to the QCD beta function are known to five-loop order [90–92], and the
relevant parts for our calculation are

β0 = 11
3 CA – 4

3TFNf , (2.31)

β1 = 34
3 C2

A – 20
3 CATFNf – 4CFTFNf , (2.32)

where CA = Nc and CF = (N2
c – 1)/(2Nc) are the quadratic Casimirs of the adjoint

and fundamental representations respectively, and TF = 1/2 is the Dynkin index of the
fundamental representation. The number of colours is denoted by Nc , and the number of
active quark flavours is Nf .

The solution to Eq. (2.28) for αs at the scale µ2 provided the coupling strength at the
scale µ1 is given by

αs(µ2) = αs(µ1) –
α2s (µ1)
2π β0 ln

(
µ2
µ1

)

+ α3s (µ1)
8π2

[
2β20 ln2

(
µ2
µ1

)
– β1 ln

(
µ2
µ1

)]
+O(α4s ) .

(2.33)

The RGE for the Wilson coefficients in Eq. (2.27) is be solved by

~C(µ2) = ~C(µ1)TU(µ2,µ1), (2.34)

where U can be written as a perturbative expansion in αs . For this purpose, we expand
the anomalous dimension matrix:

γ =
∞∑

i=0

(
αs
4π

)i+1
γi . (2.35)
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We obtain

~C(µ2) = ~C(µ1)T exp
[∫ µ2
µ1

dµγ
µ

]
= ~C(µ1)T exp

[∫ αs(µ2)

αs(µ1)
dαs

γ

β(αs , 0)

]

= ~C(µ1)T exp
[∫ αs(µ2)

αs(µ1)
dαs

(
– γ0
2β0αs

– β0γ1 – β1γ0
8πβ20

+O(αs)
)]

= ~C(µ1)T exp
[
– γ02β0

ln
(
αs(µ2)
αs(µ1)

)
– β0γ1 – β1γ0

8πβ20
(αs(µ2) – αs(µ1)) +O(α2s )

]
.

(2.36)

We can set ε = 0 here since all quantities are finite. Inserting Eq. (2.33) and expanding in
αs , the final expression for the running of the Wilson coefficients is

~C(µ2) = ~C(µ1)T

1+ αs(µ2)

4π γ0 ln
(
µ2
µ1

)

+
(
αs(µ1)
4π

)2 {
γ1 ln

(
µ2
µ1

)
+
(
γ20
2 – γ0β0

)
ln2

(
µ2
µ1

)}
+O(α3s )


 .

(2.37)

This solution to the RGE running is used to connect low-energy matrix elements with the
perturbative matching coefficients obtained at a high-energy scale, see Section 2.6.

2.1.5 The choice of scheme for γ5
In dimensional regularisation, the Dirac algebra also needs to be treated accordingly in
d spacetime dimensions, and an additional challenge arises for the matrix γ5. The issue
is that for d 6= 4, γ5 is not well defined, so a particular scheme needs to be chosen to
treat the matrix in intermediate expressions. The scheme we choose is naive dimensional
regularisation (NDR), where γ5 is taken to be anti-commuting

{γµ, γ5} = 0 , (2.38)

and the Dirac algebra is extended naively to d dimensions,

{γµ, γν} = 2gµν , gµµ = d ,
γµγµ = d , Trd (1) = 4 .

When applying the NDR scheme to loop calculations of higher orders, ambiguities appear
in traces over γ5 with four or more γ matrices, so the scheme may only be used where
these ambiguities do not appear [93–97].

Care must be taken to avoid such inconsistencies, and we treat this issue with two different
approaches for the mixing and decay processes. For B meson mixing, we choose a basis
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2.2 The effective |∆B| = 1 Hamiltonian

which avoids γ5 in the penguin operators, see Section 2.2.3. In the case of B meson
decays, there is no such issue when considering current-current operators only.

Alternative schemes to treat γ5 are the ’t Hooft-Veltman scheme [98], where the Dirac
matrices are split into four- and (d – 4)-dimensional parts, and dimensional reduction [99],
where only four-vectors are treated as d-dimensional while the Dirac algebra is purely
four-dimensional. However, NDR is the most easily implemented scheme in an automated
calculation of a large number of diagrams, so it is the preferred scheme for higher-order
QCD corrections considered in this thesis.

2.2 The effective |∆B| = 1 Hamiltonian
The weak effective Hamiltonian at scales below the W boson mass is given by

H|∆B|=1
full = H|∆B|=1

NL +H|∆B|=1
SL +H|∆B|=1

rare , (2.39)

where the labels NL, SL and rare stand for the non-leptonic, semi-leptonic and rare decay
modes of the bottom quark [100]. The dominant contribution to the mixing stems from
the non-leptonic decays since they are mediated by the strong interaction, and the lifetime
differences in bottom-flavoured hadrons with different spectator quarks depend mostly
on the non-leptonic parts of the Hamiltonian too. Rare decays mediated by H|∆B|=1

rare
like B → K`+`– have small branching fractions below the theoretical uncertainty [32].
Therefore, only the non-leptonic part of the Hamiltonian is considered in the following.

2.2.1 The historical basis of the |∆B| = 1 Hamiltonian
Below the scale of the W boson mass, the effective Hamiltonian is traditionally written as

H|∆B|=1
hist = 4GF√

2


– λt

8∑

i=1
CiOi – λu

2∑

i=1
Ci (Oi – Ouu

i )

+V ∗uqVcb
2∑

i=1
CiOcu

i + V ∗cqVub
2∑

i=1
CiOuc

i +
∑

i
CEi Ẽi


+ h.c. ,

(2.40)

with q denoting either the down or strange quark. The current-current operators are
generated by diagrams like the one in Fig. 2.1 on page 20 as well as QCD corrections to
them. They are defined as

O1 ≡
(
q̄iγµPLcj

) (
c̄jγ

µPLbi
)
, O2 ≡

(
q̄γµPLc

) (
c̄γµPLb

)
,

Ouu
1 ≡

(
q̄iγµPLuj

) (
ūjγ

µPLbi
)
, Ouu

2 ≡
(
q̄γµPLu

) (
ūγµPLb

)
,

Ocu
1 ≡

(
q̄iγµPLuj

) (
c̄jγ

µPLbi
)
, Ocu

2 ≡
(
q̄γµPLu

) (
c̄γµPLb

)
,

Ouc
1 ≡

(
q̄iγµPLcj

) (
ūjγ

µPLbi
)
, Ouc

2 ≡
(
q̄γµPLc

) (
ūγµPLb

)
, (2.41)
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where the colour indices i , j are contracted across the two spinor products when they are
explicitly shown. Suppressed colour indices are contracted within the spinor products. The
Wilson coefficients do not depend on the external quark fields, so they are identical for all
O1 and O2 operators respectively. However, they have to be treated differently for the
purpose of renormalisation since they do not mix with the operators with different CKM
factors.

The penguin operators, which are defined as

O3 ≡
(
q̄γµPLb

) ∑

f

(
f̄ γµPLf

)
,

O4 ≡
(
q̄iγµPLbj

) ∑

f

(
f̄jγµPLfi

)
,

O5 ≡
(
q̄γµPLb

) ∑

f

(
f̄ γµPR f

)
,

O6 ≡=
(
q̄iγµPLbj

) ∑

f

(
f̄jγµPR fi

)
, (2.42)

where the sum runs over the quark flavours f ∈ {u, d , c, s, b}, stem from diagrams in
the full theory as shown in Fig. 2.2a and higher-order QCD corrections to them. The
electromagnetic penguin operator is

O7 ≡
e

16π2 mb (q̄σµνPRb) Fµν , (2.43)

with σµν = i [γµ, γν ]/2 and the electromagnetic field strength tensor Fµν = ∂µAν – ∂νAµ.
This operator stems from penguin diagrams involving photons, see for example Fig. 2.2b.
Since the strong coupling constant gs is much larger than the electric coupling constant e,
this operator will be neglected in the following calculations. Lastly, the chromomagnetic
operator is generated from diagrams like Fig. 2.2c and is given by

O8 ≡ – gs
16π2 mb (q̄σµνT aPRb) Ga

µν , (2.44)

where the field strength tensor Ga
µν is defined as

Ga
µν = ∂µGa

ν – ∂νGa
µ + gs f abcGb

µGc
ν , (2.45)

with the structure constants f abc of the Lie algebra of SU(3).

The operators Ẽi are the so-called evanescent operators which are needed to renormalise
the theory in dimensional regularisation with d = 4 – 2ε dimensions. The evanescent
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b q
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(a) QCD penguin
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(c) Chromomagnetic penguin

Figure 2.2: Leading-order diagrams in the full theory which give rise to the
effective operators Q3–8.

operators corresponding to the current-current operators are

Ẽ (1)
1 ≡

(
q̄iγ

µ1γµ2γµ3PLcj
) (

c̄jγµ1γµ2γµ3PLbi
)
–
(
16 – 4ε+ A2ε

2)O1 ,

Ẽ (1)
2 ≡

(
q̄γµ1γµ2γµ3PLc

) (
c̄γµ1γµ2γµ3PLb

)
–
(
16 – 4ε+ A2ε

2)O2 ,

Ẽ (2)
1 ≡

(
q̄iγ

µ1γµ2γµ3γµ4γµ5PLbj
) (

c̄jγµ1γµ2γµ3γµ4γµ5PLbi
)

(2.46)

–
(
256 – 224ε+ B1ε

2)O1 ,

Ẽ (2)
2 ≡

(
q̄γµ1γµ2γµ3γµ4γµ5PLb

) (
c̄γµ1γµ2γµ3γµ4γµ5PLb

)
(2.47)

–
(
256 – 224ε+ B2ε

2)O2 , (2.48)

which can be generalised to the other up-type flavour combinations by analogy with the
current-current operators. The constants A2, B1 and B2 have been solved for in Ref. [61],
and the solution we choose in our calculation is

A2 = –4 , B1 = –45936115 , B2 = –115056115 . (2.49)

The logic behind the calculation of Ref. [61] is explained in the following section. The
corresponding renormalisation constants of the full basis in the MS scheme can be found
in Appendix A.

2.2.2 Fierz transformations at diagram level
In order to calculate |∆B| = 0 amplitudes from two insertions of |∆B| = 1 operators in
the historical basis, it is convenient to Fierz-transform one of the two operator insertions,
see Section 3.2.4. This is because we want to map onto the |∆B| = 0 basis used in
Ref. [58] where each spin line connects a bottom to a light quark. The reason for this
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is that otherwise we would encounter evanescent operators which vanish under a Fierz
transformation and subsequent application of the equations of motion, i.e. they have the
form

(b̄Γb) (q̄/pΓq) – mb (b̄Γq) (q̄Γb) . (2.50)
This can be avoided by Fierz-transforming the |∆B| = 1 operators at the diagram level.
For a derivation of the Fierz identites, see Appendix C.

Requiring Fierz symmetry at the diagram level determines the O(ε) parts of the evanescent
operators given in Eq. (2.48) with the NNLO solution first determined in Ref. [61]. The
procedure we follow is outlined in Ref. [85] and rests on a particular symmetry of the
anomalous dimension of the current-current operators. Note that this procedures only
works when considering current-current operators up to NNLO because it does not treat
penguin operators.

In the most general scenario, what we want to achieve is to identify an operator Oi with
it’s counterpart that has the external spinors contracted in a different manner, OF

i , which
we call the Fierz-transformed operator. This means we have two equivalent Hamiltonians
with identical Wilson coefficients,

H =
∑

j
CjOj and HF =

∑

j
CF

j OF
j . (2.51)

Calculating a correlation function of two operator insertions and Fierz-transforming one of
the operators is the same as picking out one operator from H and one from HF .

Buras and Weisz show to NLO that this can be achieved through a particular symmetry
of the anomalous dimension [85]. Consider the current-current operators Ocu

1 and Ocu
2

from Eq. (2.41), which differ only in colour structure. The Fierz-transformed basis is then

Ocu,F
1 =

(
q̄γµPLb

) (
c̄γµPLu

)
,

Ocu,F
2 =

(
q̄iγµPLbj

) (
c̄jγ

µPLui
)
. (2.52)

Note that the colour structures have flipped between the two operators, i.e. apart from
the quark flavours, the operators Ocu

1 and Ocu,F
2 are identical.

For the Wilson coefficients of the regular and Fierz-transformed operators to be the same,
we require the initial condition and the running of the operators to be the same. We will
show that fixing the running given by the anomalous dimension is actually sufficient to
achieve this. Hence, we demand that

γ(Ocu,F
1 ,Ocu,F

2 ) != γ(Ocu
1 ,Ocu

2 ) . (2.53)

Since the QCD corrections that contribute to the anomalous dimension are independent
of the external flavours, we know that

γ(Ocu,F
1 ,Ocu,F

2 ) = γ(Ocu
2 ,Ocu

1 ) , (2.54)
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so by combining the two equations we obtain the symmetry condition for the anomalous
dimension

γ(Ocu
1 ,Ocu

2 ) = γ(Ocu
2 ,Ocu

1 ) . (2.55)

The anomalous dimension hence has the form

γ(Ocu
1 ,Ocu

2 ) =
(
a b
b a

)
. (2.56)

To higher orders, the constants A2, B1 and B2 from the definition of the evanescent
operators in Eq. (2.48) enter the 2 × 2 anomalous dimension. It is only necessary to
consider the anomalous dimension for the physical operators, and all required evanescent
operators are fixed if we consider the anomalous dimension to a sufficiently high order
in αs . Note that if we go to the Ocu± = Ocu

1 ± Ocu
2 basis, the two operators do not mix

under running if the anomalous dimension has the above symmetric form.

To complete the argument, we also need to show that this indeed fixes the initial conditions
for the Wilson coefficients too. Following the notation of Ref. [64], the Wilson coefficients
at a scale µ are given by

~C(µ) = U(µ,µ0)

~C (0)(µ0) +

αs(µ0)
4π

~C (1)(µ0) +
(
αs(µ0)
4π

)2
~C (2)(µ0) + . . .


 ,

(2.57)
where the evolution matrix is given by

U(µ,µ0) = 1+ αs(µ0)
4π J(1) +

(
αs(µ0)
4π

)2
J(2) + . . . . (2.58)

The matrix J(i) is determined by the anomalous dimension and depends on the choice of
the evanescent operators. Since the left-hand side of Eq. (2.57) does not depend on µ0,
all terms related to µ0 must drop out from the right-hand side. This means that the initial
conditions, i.e. the ~C (i)(µ0), are fixed through the anomalous dimension that enters J(i).
In other words, the scale dependence in ~C (i)(µ0) stems from the pole structure of the
diagrams, which is also encoded in the renormalisation constants and thus the anomalous
dimension. Hence, fixing the anomalous dimension according to Eq. (2.56) guarantees
that the Wilson coefficients of the regular and Fierz-transformed operators are the same
at all scales.

2.2.3 The CMM basis of the |∆B| = 1 Hamiltonian
The effective Hamiltonian obtained from the Standard Model theory below the mass of the
W boson MW can also be written down in the Chetyrkin-Misiak-Münz (CMM) basis [101].
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It is given by

H|∆B|=1 = 4GF√
2


– λt

8∑

i=1
CiQi – λu

2∑

i=1
Ci (Qi – Quu

i )

+V ∗uqVcb
2∑

i=1
CiQcu

i + V ∗cqVub
2∑

i=1
CiQuc

i +
∑

i
CEiEi


+ h.c. ,

(2.59)

where the quark q is either down or strange. The current-current operators are defined as

Q1 ≡
(
q̄γµT aPLc

) (
c̄γµT aPLb

)
, Q2 ≡

(
q̄γµPLc

) (
c̄γµPLb

)
,

Quu
1 ≡

(
q̄γµT aPLu

) (
ūγµT aPLb

)
, Quu

2 ≡
(
q̄γµPLu

) (
ūγµPLb

)
,

Qcu
1 ≡

(
q̄γµT aPLu

) (
c̄γµT aPLb

)
, Qcu

2 ≡
(
q̄γµPLu

) (
c̄γµPLb

)
,

Quc
1 ≡

(
q̄γµT aPLc

) (
ūγµT aPLb

)
, Quc

2 ≡
(
q̄γµPLc

) (
ūγµPLb

)
, (2.60)

where T a denotes the generator of SU(3). Additionally, we have the penguin operators

Q3 ≡
(
q̄γµPLb

) ∑

f

(
f̄ γµf

)
,

Q4 ≡
(
q̄γµT aPLb

) ∑

f

(
f̄ γµT af

)
,

Q5 ≡
(
q̄γµ1γµ2γµ3PLb

) ∑

f

(
f̄ γµ1γµ2γµ3f

)
,

Q6 ≡
(
q̄γµ1γµ2γµ3T aPLb

) ∑

f

(
f̄ γµ1γµ2γµ3T af

)
, (2.61)

where f ∈ {u, d , c , s, b}. The electromagnetic penguin operator is identical to the historical
basis,

Q7 ≡
e

16π2 mb (q̄σµνPRb) Fµν , (2.62)

and the same holds true for the chromomagnetic operator

Q8 ≡ – gs
16π2 mb (q̄σµνT aPRb) Ga

µν . (2.63)

The Wilson coefficients of the effective operators in the |∆B| = 1 Hamiltonian from
Eq. (2.59) are known to NNLO in QCD [101–105]. Numerically, the Wilson coefficients of
the current-current operators at O(1) are larger than those of the penguin operators at
. O(10–1), which is why diagrams involving current-current operators are more significant
for phenomenological applications.

The main advantage of using the CMM basis is that for the B meson mixing processes it
avoids issues with γ5 in closed loops, which cannot be uniquely determined in dimensional
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regularisation. The traditional basis, as discussed in Section 2.2.1, has a γ5 in the quark-
antiquark product of the penguin operators. Therefore, NLO and higher-order diagrams
like the one shown in Fig. 2.3 may involve traces over γ5 and four or more γ matrices,

Trd (γ5γµγνγργσ) . (2.64)

When using dimensional regularisation for the UV poles, the trace needs to be evaluated
in d dimensions as indicated. This is problematic because the Dirac algebra is infinite-
dimensional in d spacetime dimensions, so the definition of the trace in four spacetime
dimensions in terms of the completely antisymmetric tensor εµνρσ,

Tr4 (γ5γµγνγργσ) = –4iεµνρσ , (2.65)

cannot be extended to d dimensions. However, this problem arises only because of the
choice of basis and can be circumvented by working in the CMM basis. This is possible
because the full theory diagrams underlying e.g. Fig. 2.3 do not contain any problematic
traces. The reason why the CMM basis does not have the same issue as the traditional

b

q̄

q

b̄

Figure 2.3: NLO diagram which will give rise to ambiguous traces over γ5 in
the traditional basis. The green operator insertions correspond to
penguin operators in the traditional basis.

basis is because the spin line with the quark anti-quark pair f̄ Γf does not contain a
chirality projector inside Γ in the CMM basis. Therefore, closed fermion loops stemming
from this part of the penguin operators lead to traces over large numbers of γ matrices,
but they do not contain γ5. For current-current operators, both the traditional and the
CMM basis have chirality projectors on either spin lines; however, those never lead to
closed fermion loops. Instead, on each spin line one of the quarks is contracted with an
external state while the other quark becomes an internal line.

As discussed in Section 2.1.3, a number of evanescent operators is required to renormalise
the physical operators. Since the calculations in this thesis are carried out to NNLO, two
generations of evanescent operators are included in the calculations. The first generation
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is given by [101]

E (1)
1 ≡

(
q̄γµ1γµ2γµ3PLT ac

) (
c̄γµ1γµ2γµ3PLT ab

)
– 16Q1 ,

E (1)
2 ≡

(
q̄γµ1γµ2γµ3PLc

) (
c̄γµ1γµ2γµ3PLb

)
– 16Q2 ,

E (1)
3 ≡

(
q̄γµ1γµ2γµ3γµ4γµ5PLb

) ∑

f

(
f̄ γµ1γµ2γµ3γµ4γµ5f

)

– 20Q5 + 64Q3 ,

E (1)
4 ≡

(
q̄γµ1γµ2γµ3γµ4γµ5PLT ab

) ∑

f

(
f̄ γµ1γµ2γµ3γµ4γµ5T af

)

– 20Q6 + 64Q4 . (2.66)

For the current-current operators coupling to up quarks, there are additional evanescent
operators Eq1q2,(1)

1 and Eq1q2,(1)
2 defined analogously to E (1)

1 and E (1)
2 but with the

charm quarks substituted with up quarks according to the flavour structure q1q2 of the
current-current operator to be renormalised:

Euu,(1)
1 ≡

(
q̄γµ1γµ2γµ3T aPLu

) (
ūγµ1γµ2γµ3T aPLb

)
– 16Quu

1 ,

Euu,(1)
2 ≡

(
q̄γµ1γµ2γµ3PLu

) (
ūγµ1γµ2γµ3PLb

)
– 16Quu

2 ,

E cu,(1)
1 ≡

(
q̄γµ1γµ2γµ3T aPLu

) (
c̄γµ1γµ2γµ3T aPLb

)
– 16Qcu

1 ,

E cu,(1)
2 ≡

(
q̄γµ1γµ2γµ3PLu

) (
c̄γµ1γµ2γµ3PLb

)
– 16Qcu

2 ,

Euc,(1)
1 ≡

(
q̄γµ1γµ2γµ3T aPLc

) (
ūγµ1γµ2γµ3T aPLb

)
– 16Quc

1 ,

Euc,(1)
2 ≡

(
q̄γµ1γµ2γµ3PLc

) (
ūγµ1γµ2γµ3PLb

)
– 16Quc

2 . (2.67)

At O(α2s ), the second generation of evanescent operators is required, which reads [101]

E (2)
1 ≡ (q̄γµ1 . . . γµ5PLT ac)

(
c̄γµ1 . . . γµ5PLT ab

)
– 20E (1)

1 – 256Q1 ,

E (2)
2 ≡ (q̄γµ1 . . . γµ5PLc)

(
c̄γµ1 . . . γµ5PLb

)
– 20E (1)

2 – 256Q2 ,

E (2)
3 ≡ (q̄γµ1 . . . γµ7PLb)

∑

f

(
f̄ γµ1 . . . γµ7f

)
– 336Q5 + 1280Q3 ,

E (2)
4 ≡ (q̄γµ1 . . . γµ7PLT ab)

∑

f

(
f̄ γµ1 . . . γµ7T af

)
– 336Q6 + 1280Q4 . (2.68)
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As for the first generation, there are additional evanescent operators, Eq1q2,(2)
1 and

Eq1q2,(2)
2 , for the current-current operators of different flavour structures:

Euu,(2)
1 ≡ (q̄γµ1 . . . γµ5PLT au)

(
ūγµ1 . . . γµ5PLT ab

)
– 20Euu,(1)

1 – 256Quu
1 ,

Euu,(2)
2 ≡ (q̄γµ1 . . . γµ5PLu)

(
ūγµ1 . . . γµ5PLb

)
– 20Euu,(1)

2 – 256Quu
2 ,

E cu,(2)
1 ≡ (q̄γµ1 . . . γµ5PLT au)

(
c̄γµ1 . . . γµ5PLT ab

)
– 20E cu,(1)

1 – 256Qcu
1 ,

E cu,(2)
2 ≡ (q̄γµ1 . . . γµ5PLu)

(
c̄γµ1 . . . γµ5PLb

)
– 20E cu,(1)

2 – 256Qcu
2 ,

Euc,(2)
1 ≡ (q̄γµ1 . . . γµ5PLT ac)

(
ūγµ1 . . . γµ5PLT ab

)
– 20Euc,(1)

1 – 256Quc
1 ,

Euc,(2)
2 ≡ (q̄γµ1 . . . γµ5PLc)

(
ūγµ1 . . . γµ5PLb

)
– 20Euc,(1)

2 – 256Quc
2 . (2.69)

The renormalisation constants for the CMM basis are given in Appendix A.

2.3 Derivation of the Heavy Quark Expansion for the
decay matrix

Before introducing the operator bases for the |∆B| = 2 and |∆B| = 0 transition operators,
the derivation of the Heavy Quark Expansion (HQE) in the context of lifetimes and mixing
of B mesons is discussed. The HQE appears when the physics of heavy quarks is described
in terms of the Heavy Quark Effective Theory (HQET), which is a Type-II EFT in the
terminology of Ref. [63]. This means that in contrast to the weak effective Hamiltonian,
the heavy degrees of freedom are static, but other particles may still collide with them
elastically.

The HQE is developed from the expansion of the momentum of the heavy quark, in our
case a bottom quark,

pµb = mbvµ + kµ , (2.70)
where vµ is the velocity of the hadron [106]. This decomposition is useful because the
bottom quark moves to a good approximation with the same velocity as the hadron and
is only slightly off-shell such that kµ � mbvµ. Scattering processes with the bottom
quark can change its momentum kµ by only a small amount, which also goes to zero as
ΛQCD/mb → 0.

After splitting the heavy quark field in large and small component fields h and H , the
heavy small component field H can be integrated out to yield an expansion in ΛQCD/mb.
The component fields are defined as

h(x) ≡ eimbv ·xP+ b(x) ,
H(x) ≡ eimbv ·xP– b(x) (2.71)
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where P± = (1± /v)/2 are the positive and negative energy projectors. These fields obey
the identities

/vh = h , P+ h = h , P– h = 0 ,
/vH = –H , P+ H = 0 , P– H = H . (2.72)

The quark field can hence be decomposed into the two components via

b(x) = e–imbv ·x [h(x) + H(x)] . (2.73)

To show that the small component field H(x) is suppressed by ΛQCD/mb, we consider
the equation of motion

0 = (i /D – mb)b(x) =
[
i /Dh + (i /D – 2mb)H

]
e–imbv ·x , (2.74)

where the field decomposition from Eq. (2.73) was substituted in. Applying the projector
P– to the above equation yields

i( /D – v · D)h – (2m + iv · D)H = 0 , (2.75)

and using (v · D)h = (v · D)/vh, we can solve for the small component field,

H = 1
iv · D + 2mb

i /D⊥h , (2.76)

where the covariant derivative orthogonal to the heavy quark velocity

Dµ⊥ ≡ Dµ – vµv · D (2.77)

was defined [106].

Substituting Eq. (2.76) into Eq. (2.73), the full heavy quark field can be written as

b(x) = e–imbv ·x
[
1 + i /D⊥

iv · D + 2mb

]
h(x)

= e–imbv ·x
[
1 + i /D⊥

2mb
+O

(
1
m2

b

)]
h(x) .

Using this relation, any operator containing the heavy quark field can be written as an
expansion in the heavy quark mass. From this relation it is also apparent that the higher
order corrections are suppressed by ΛQCD/mb as the residual perpendicular momentum in
the hadron is O(ΛQCD).

After motivating the HQE, we expand the decay matrix of a b hadron in 1/mb as

Γ = Γ3 + Γ5
〈O5〉
m2

b
+ Γ6

〈O6〉
m3

b
+ · · ·+ 16π2

(
Γ̃6
〈Õ6〉
m3

b
+ Γ̃7

〈Õ7〉
m4

b
+ . . .

)
, (2.78)
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where the subscripts label the dimension of the transition operators contributing to the
decay matrix [27]. All low-energy physics is captured by the operator matrix elements 〈Oi 〉.
The terms Γi denote the high-energy contributions to the decays of the free b quark while
the terms with Γ̃i encode the four-quark operator contributions. Therefore, the terms Γi
do not contribute to the off-diagonal element of the decay matrix, and the leading term
in the HQE is contained in Γ̃6. The factor of 16π2 in Eq. (2.78) is a historical choice of
normalisation because the contributions from Γ̃i have an additional loop as compared to
the contributions from Γi at the same order in αs .

For both the diagonal and off-diagonal decay matrix elements, the focus of this thesis is
on Γ̃6 as this describes the leading contribution in the HQE to the mixing of B mesons as
well as the lifetime ratios. The current status of theoretical calculations of Γ̃6 is presented
in Section 1.5.1 and Section 1.5.3 for B meson mixing and lifetime ratios respectively. In
the following sections, the respective operator bases for mixing and decays are outlined.

2.4 The |∆B| = 2 transition operator
The |∆B| = 2 transition operator to leading power in the HQE is defined via

T ≡ Abs
(
i
∫

d4x T H|∆B|=1(x)H|∆B|=1(0)
)
≡ G2

Fm2
b

12π

[
HQ + H̃SQ̃S

]
, (2.79)

which can be used in conjunction with Eq. (1.35) to equate the amplitude of the |∆B| = 1
and |∆B| = 2 theories and obtain the matching coefficients H and H̃S . These matching
coefficients encode the high-energy effects that are calculated in this thesis. The operator
matrix elements 〈Q〉 and 〈Q̃S〉 contain the low-energy physics, and the matching condition
for B meson mixing processes is discussed in more detail in Section 2.6. Here and in
the following we use the shorthand notation for operator matrix elements 〈O〉 to denote
〈B|O|B̄〉, and the external down-type quark q ∈ {d , s} is left unspecified.

Using the generalised optical theorem from Eq. (1.3) for the off-diagonal decay matrix
element, the transition operator can be used to calculate Γ12 through

Γ12 = 1
2MB

〈B|T |B̄〉 = G2
Fm2

b
24πMB

[
H〈Q〉+ H̃S〈Q̃S〉

]
+O(ΛQCD/mb) . (2.80)

2.4.1 Physical operators
Focusing on the dimension-six operators, i.e. the leading contribution to B meson mixing
in the HQE, the basis of physical operators consists of two independent operators, but a
careful treatment of higher order corrections in the HQE is required to obtain this basis.
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In a first step, all amplitudes are mapped for convenience onto three physical operators,
which we choose to be

Q ≡ 4
(
q̄cγµPLbc) (q̄dγµPLbd) ,

Q̃S ≡ 4
(
q̄cPRbd) (q̄dPRbc) ,

QS ≡ 4
(
q̄cPRbc) (q̄dPRbd) , (2.81)

where c , d are the colour indices of the quark fields. The evanescent operators which are
required for the purpose of renormalisation are discussed in Section 2.4.3.

At leading order in the HQE and for the specific process under consideration, the above
operators do not constitute a basis as a linear combination of them,

R0 ≡
1
2Q + QS + Q̃S , (2.82)

is part of the next order in the expansion since 〈B|R0|B̄〉 = O(ΛQCD/mb) [47]. Eq. (2.82)
is hence used to eliminate one of the three original operators. We choose to substitute
QS for R0. However, R0 also contains an evanescent part which is not power-suppressed,
meaning that 〈B|R0|B̄〉(n) requires finite renormalisation constants for its finite part to be
O(ΛQCD/mb) [49]. The calculation of these constants is presented in Ref. [20], and the
renormalisation with R0 is discussed further in Section 2.4.4. Additionally, R0 needs to
be part of the matching calculation due to its evanescent contribution and can only be
discarded after the matching procedure, see Section 2.6.1.

2.4.2 Using Fierz symmetry to obtain a basis of evanescent
operators

In the following, we provide a detailed description of the steps necessary to pick a basis
of evanescent operators which enables the evaluation of renormalised matrix elements
that respect Fierz symmetry. The main motivation for setting up the |∆B| = 2 transition
operator in this way is that the low-energy matrix elements, which need to be combined
with the high-energy matching coefficients obtained in this thesis, are calculated within
four-dimensional frameworks, e.g. lattice gauge theory. Therefore, they automatically obey
Fierz symmetry and Fierz identities may be used in the calculation of low-energy matrix
elements.

The property of Fierz symmetry and the definition of evanescent operators and hence the
renormalisation scheme are closely linked [85, 87]. In the following we present the conditions
we impose to preserve the Fierz symmetry of the renormalised matrix elements [20]:

1. The renormalised matrix elements of physical operators are equal to those of their
Fierz-transformed counterparts: limd→4〈O〉ren = limd→4〈OF 〉ren.
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2. The evanescent operator definitions must be independent of the number of quark
flavours Nf .

3. The O(ε) contributions of physical operators to the evanescent operators must be
at most O(N0

c ) as Nc →∞. This is because the large-Nc limit of the renormalised
physical operator matrix elements fixes the leading term of the NNLO matrix element
to be of order N2

c , and the definition of evanescent operators must not affect this
term.

It can be checked that these conditions lead to a unique definition of the leading O(N2
c )

term of the renormalised physical matrix elements. Also note that in enforcing condition 1,
it is convenient to work with off-shell kinematics such that no IR poles occur, but the
equality must hold for any choice of IR regulator.

The third condition we impose is more subtle, and hence it is worth explaining its origin
from the Vacuum Insertion Approximation (VIA), which also provides further motivation for
enforcing Fierz symmetry of the renormalised matrix elements. The VIA is an approximation
for the limit as Nc →∞, i.e. it can be used to calculate the leading term of the matrix
elements as well as the first-order correction in 1/Nc .

The large-Nc limit is implemented by factorising a four-quark operator into two current
matrix elements after inserting the vacuum as we will illustrate for the operator Q̃S .
Introducing the shorthand notation Γ ≡ (1 + γ5), the matrix element in the VIA is

〈B|Q̃S |B̄〉 VIA= 2ΓαβΓγδ
[
〈B|q̄c

αbd
β |0〉〈0|q̄d

γ bc
δ |B̄〉 – 〈B|q̄c

αbc
δ |0〉〈0|q̄d

γ bd
β |B̄〉

]
. (2.83)

Here, α, β, γ, δ denote spinor indices while the colour indices are c and d . The vacuum
insertion leads to four possible Wick contractions of the quark fields with the external
fields, and each of the terms in Eq. (2.83) corresponds to two contractions. The relative
minus sign is a result of anti-commuting the quark fields.

To compute the matrix element of the second term analytically, the spinor indices need to
be swapped on the Dirac matrices by applying a Fierz identity,

ΓαβΓγδ
Fierz= 1

2ΓαδΓγβ + 1
8
[
σµν(1 + γ5)

]
αδ

[
σµν(1 + γ5)

]
γβ

, (2.84)

such that the VIA can be written as

〈B|Q̃S |B̄〉 VIA= 2〈B|q̄cΓbd |0〉〈0|q̄dΓbc |B̄〉 – 〈B|q̄cΓbc |0〉〈0|q̄dΓbd |B̄〉 . (2.85)

For a derivation of generic Fierz identities as well as their application to the specific
example given in Eq. (2.84), see Appendix C. The antisymmetric terms with σµν vanish
in the case at hand because there is only one external momentum for the B meson, so we
cannot construct any antisymmetric Lorentz tensors. As B mesons are parity odd, only
terms with γ5 will remain in Eq. (2.85). Note also that the mesons are colour singlets, so

〈B|q̄cγ5bd |0〉 = 1
Nc
δcd 〈B|q̄γ5b|0〉 . (2.86)
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With all of the above considerations, the VIA leads to the result

〈B|Q̃S(µ2)|B̄〉 VIA=
( 2
Nc

– 1
)
〈B|q̄γ5b|0〉〈0|q̄γ5b|B̄〉

=
(
1 – 2

Nc

) f 2BM4
B[

mb(µ2) +mq(µ2)
]2 , (2.87)

where fB denotes the decay constant of the B meson. This equation fixes the leading
1/Nc term. Moreover, it was necessary to apply a Fierz identity in obtaining the result,
which further motivates our renormalisation conditions in that regard.

As the result in Eq. (2.87) shows the form of the VIA for the leading order matrix element, it
is also instructive to see that the matrix elements go as Nn

c at the n th order in perturbation
theory. In the VIA, gluons cannot connect across the two separated current insertions as
they annihilate in the vacuum. Therefore, they can only connect across the same spin line
as shown in Fig. 2.4. Diagrams where the gluons are attached to the same spin line yield

b

q̄

q

b̄

Figure 2.4: NNLO corrections to an operator matrix element in the VIA. The
dots represent the factorised current insertions.

additional factors in Nc of the form

T aT a = N2
c – 1
Nc

∼ Nc , (2.88)

so each order in perturbation theory comes with an additional factor of Nc for the leading
term of the VIA.

2.4.3 Definition of evanescent operators
The definitions of all evanescent operators required for the NNLO calculation of Γ12 are
presented below following a description of the practical implementation of the conditions 1,
2 and 3 from Section 2.4.2.

Before constructing the basis, it is worth discussing the required number of operators.
It is sufficient to include only a finite number of evanescent operators to renormalise a
given set of operators to a fixed order in perturbation theory even though there is in

42



2.4 The |∆B| = 2 transition operator

principle an infinite number of evanescent operators. Up to order O(α2s ), the generations
of evanescent operators to be inserted at LO, NLO and NNLO are given in Tab. 2.1 for
evanescent operators up to third generation. This is the highest generation which needs
to be considered to carry out the matching as described in Section 2.6 since the matrix
elements of the third generation appear at LO on the |∆B| = 1 side. However, only
the evanescent operators contributing to the renormalisation of the physical operators,
i.e. those up to second generation, need to be fully determined with their correct O(ε)
and O(ε2) parts.

To evaluate the Fierz-transformed matrix elements, the basis for those operators is defined
first, starting with the physical operators. These are given by

Q̃ = QF ≡ 4
(
q̄cγµPLbd) (q̄dγµPLbc) ,

QF
S ≡

1
12QT – 1

6Q̃T ,

Q̃F
S ≡

1
12Q̃T – 1

6QT , (2.89)

where

QT ≡ 4
(
q̄cσµνPRbc) (q̄dσµνPRbd) ,

Q̃T ≡ 4
(
q̄cσµνPRbd) (q̄dσµνPRbc) . (2.90)

This is a result of applying the familiar Fierz identity

(PR)αβ(PR)γδ =
1
8(σ

µνPR)αδ(σµνPR)γβ + 1
2(PR)αδ(PR)γβ . (2.91)

It is worth noting that Q and the corresponding evanescent operators renormalise separately
from QS and Q̃S and their respective evanescent operators because the odd and even
numbers of γ matrices do not mix. This also holds true for the Fierz-transformed basis.

The first generation evanescent operators with an odd number of γ matrices are defined as

E (1)
1 [Q] ≡ Q – Q̃ ,

E (1)
2 [Q] ≡ 4

(
q̄cγµ1γµ2γµ3PLbd) (q̄dγµ3γµ2γµ1PLbc) –

(
4 + f̃ ε+ g̃ε2

)
Q̃ ,

E (1)
3 [Q] ≡ 4

(
q̄cγµ1γµ2γµ3PLbc) (q̄dγµ3γµ2γµ1PLbd) –

(
4 + f ε+ gε2

)
Q . (2.92)

The operator E (1)
1 [Q] appears because the colour-flipped version of Q, i.e. Q̃, is also the

Fierz-transformed operator and not part of the regular basis. Therefore, an additional
evanescent operator is introduced as compared to the case of an even number of γ matrices,
corresponding to the renormalisation of {QS , Q̃S}, where the evanescent operators of the
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first generation are

E (1)[QS ] ≡ 4
(
q̄cγµ1γµ2PRbc) (q̄dγµ2γµ1PRbd)+

(
8 + ãε+ b̃ε2

)
Q̃S

–
(
aε+ bε2

)
QS ,

E (1)[Q̃S ] ≡ 4
(
q̄cγµ1γµ2PRbd) (q̄dγµ2γµ1PRbc)+

(
8 + ã2ε+ b̃2ε2

)
QS

–
(
a2ε+ b2ε2

)
Q̃S . (2.93)

These operators first appear in the NLO diagrams of the |∆B| = 2 theory, and for the
renormalisation of physical operators to O(αs), the ε2 terms are not required.

For the Fierz-transformed basis, the first generation evanescent operators with an odd
number of γ matrices are defined similarly as

E (1)
1 [QF ] ≡ E (1)

1 [Q] ,

E (1)
2 [QF ] ≡ E (1)

2 [Q] ,

E (1)
3 [QF ] ≡ E (1)

3 [Q] . (2.94)

Note that this choice implies that the ε and ε2 coefficients are identical for Q and QF , which
is permissible because the relation between the Fierz-transformed operators is relatively
simple. For the operators with an even number of γ matrices, the Fierz-transformed
operators have slightly more complicated definitions, see Eq. (2.89), and it is not possible
to choose the same definition for the regular and Fierz-transformed basis beyond NLO. In
anticipation of this and to be completely exhaustive, we allow for more freedom in the
definitions of the first generation evanescent operators:

E (1)[QF
S ] ≡ – 2

3
(
q̄cγµ1γµ2σ

µνγµ2γµ1PRbd) (q̄dσµνPRbc)

+ 1
3
(
q̄cγµ1γµ2σ

µνPRbc) (q̄dσµνPRγ
µ2γµ1bd)

+
(
8 + ãF ε+ b̃F ε2

)
Q̃F

S –
(
aF ε+ bF ε2

)
QF

S ,

E (1)[Q̃F
S ] ≡ – 2

3
(
q̄cγµ1γµ2σ

µνγµ2γµ1PRbc) (q̄dσµνPRbd)

+ 1
3
(
q̄cγµ1γµ2σ

µνPRbd) (q̄dσµνPRγ
µ2γµ1bc)

+
(
8 + ãF

2 ε+ b̃F
2 ε

2)QF
S –

(
aF
2 ε+ bF

2 ε
2)Q̃F

S . (2.95)

Note that the definition of the evanescent operators for calculations up to a finite order in
αs , in our case up to α2s , can only be fixed to the same order in ε, i.e. to ε2 here. Therefore,
even after determining the constants in front of the physical operators in Eq. (2.95), the
definitions have arbitrary O(ε3) terms, and a choice of evanescent operators which differs
in those terms is equally valid. The particular choice of evanescent operators here is
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2.4 The |∆B| = 2 transition operator

convenient for manual calculations on the |∆B| = 2 side at NLO as the spinor structures
appearing in diagrams can be directly identified with the evanescent operators.

In order to impose condition 1 from Section 2.4.2, the amplitudes 〈Q〉(1),ren, 〈QS〉(1),ren
and 〈Q̃S〉(1),ren and 〈Q̃〉(1),ren, 〈QF

S 〉(1),ren and 〈Q̃F
S 〉(1),ren are calculated in the standard

and Fierz-transformed basis respectively. The standard basis amplitudes are obtained
from tree-level and one-loop diagrams of the operators in Eqs. (2.81), (2.92) and (2.93)
together with the corresponding renormalisation constants, which need to be computed
too. Similarly, the calculation in the Fierz-transformed basis proceeds with the operators
in Eqs. (2.89), (2.94) and (2.95) and their renormalisation constants. For a discussion of
the setup of amplitudes for the determination of renormalisation constants see Section 3.2,
where the regularisation of IR divergences in those amplitudes is explained.

When comparing the renormalised amplitudes of a standard operator 〈O〉ren with its
Fierz-transformed counterpart 〈OF 〉ren, the amplitudes should be expressed in a basis
of operator matrix elements, which could be either the standard or Fierz-transformed
operators. However, at this point the amplitudes are finite, and the tree-level matrix
elements of the Fierz-transformed operators can be identified with the standard operators,
dropping an evanescent difference in the process. In practice, one sets the coefficient
of e.g. 〈QS〉(0) in a renormalised amplitude like 〈QS〉(1),ren equal to the coefficient of
〈QF

S 〉(0) in the renormalised amplitude 〈QF
S 〉(1),ren.

Hence, the definition of the evanescent operators of the first generation,

a = a2 = 0 , ã = ã2 = –8 ,
aF = aF

2 = 0 , ãF = ãF
2 = –8 ,

f = f̃ = –8 . (2.96)

is obtained. This agrees with the results given in the literature, see e.g. Refs. [49, 54, 87,
107].

At O(α2s ), the second generation of evanescent operators needs to be considered, and
the ε2 terms in the first generation operators in Eqs. (2.92) through (2.95) appear in the
physical amplitudes. The second generation evanescent operators with an odd number of
γ matrices are

E (2)
1 [Q] ≡ 4

(
q̄cγµ1γµ2γµ3γµ4γµ5PLbd) (q̄dγµ5γµ4γµ3γµ2γµ1PLbc)

–
(
16 + h̃ε+ k̃ε2

)
Q̃,

E (2)
2 [Q] ≡ 4

(
q̄cγµ1γµ2γµ3γµ4γµ5PLbc) (q̄dγµ5γµ4γµ3γµ2γµ1PLbd)

–
(
16 + hε+ kε2

)
Q . (2.97)
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Analogous to the first generation, we define the second generation evanescent operators
with an even number of γ matrices as

E (2)[QS ] ≡ 4
(
q̄cγµ1γµ2γµ3γµ4PRbc) (q̄dγµ4γµ3γµ2γµ1PRbd)

+
(
128 + c̃ε+ d̃ε2

)
Q̃S –

(
cε+ dε2

)
QS ,

E (2)[Q̃S ] ≡ 4
(
q̄cγµ1γµ2γµ3γµ4PRbd) (q̄dγµ4γµ3γµ2γµ1PRbc)

+
(
128 + c̃2ε+ d̃2ε2

)
QS –

(
c2ε+ d2ε2

)
Q̃S . (2.98)

On the Fierz-transformed side, the evanescent operators with an odd number of γ matrices
are again chosen to be identical to those of the standard basis,

E (2)
1 [QF ] ≡ E (2)

1 [Q] ,

E (2)
2 [QF ] ≡ E (2)

2 [Q] , (2.99)

and for the evanescent operators with an even number of γ matrices, we define

E (2)[QF
S ] ≡ – 2

3
(
q̄cγµ1γµ2γµ3γµ4σ

µνγµ4γµ3γµ2γµ1PRbd) (q̄dσµνPRbc)

+ 1
3
(
q̄cγµ1γµ2γµ3γµ4σ

µνPRbc) (q̄dσµνPRγ
µ4γµ3γµ2γµ1bd)

+
(
128 + c̃F ε+ d̃F ε2

)
Q̃F

S –
(
cF ε+ dF ε2

)
QF

S ,

E (2)[Q̃F
S ] ≡ – 2

3
(
q̄cγµ1γµ2γµ3γµ4σ

µνγµ4γµ3γµ2γµ1PRbc) (q̄dσµνPRbd)

+ 1
3
(
q̄cγµ1γµ2γµ3γµ4σ

µνPRbd) (q̄dσµνPRγ
µ4γµ3γµ2γµ1bc)

+
(
128 + c̃F

2 ε+ d̃F
2 ε

2)QF
S –

(
cF
2 ε+ dF

2 ε
2)Q̃F

S . (2.100)

Equating the renormalised amplitudes in the standard and Fierz-transformed bases proceeds
in a similar fashion as for the NLO definitions. After imposing condition 1, we can further
examine the Nf terms only and impose condition 2 to yield the ε2 terms of the first
generation evanescent operators,

b = b2 = 4 , b̃ = b̃2 = 0 ,
bF = bF

2 = 4 , b̃F = b̃F
2 = 0 ,

g = g̃ = 4 . (2.101)

This is consistent with the definitions used in the literature, see for example Ref. [51].

For the c , d , h and k coefficients of the second generation evanescent operators, we obtain
a solution space. The coefficients of all tree-level matrix elements must agree individually
for condition 1, so we obtain a number of equations for the aforementioned constants. We
solve the equations for {c , c̃ , d , d̃ , h, h̃}, leaving the rest of the constants undetermined.
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2.4 The |∆B| = 2 transition operator

Imposing condition 3, the coefficients of Nc and N2
c in the solutions of the evanescent

constants must vanish, so another set of equations can be obtained to further reduce the
dimensionality of the solution space. Note that in imposing condition 3 on the solutions for
{c , c̃ , d , d̃ , h, h̃}, we have chosen a particular subset of the solution space. This particular
solution sub-space consistent with all physical conditions from Section 2.4.2 is given in
Ref. [20].

In practice, it is useful to pick a unique solution from the full set of allowed definitions,
which simplifies the intermediate steps. We find it convenient to choose as many of
the constants appearing in the standard operator basis as possible to be equal to zero.
Therefore, we choose the simplest version of the second generation evanescent operators
with an even number of γ matrices,

c = c2 = c̃ = d = d2 = d̃ = d̃2 = 0 , (2.102)

and discard the ε2 terms of the second generation evanescent operators of Q and Q̃,

k = k̃ = 0 . (2.103)

The unique solution for the second generation which results from this choice is given by

c̃2 = –1024 ,

cF = –256(534 – 344Nc – 119N2
c – 366N3

c – 116N4
c + 163N5

c )
15(8 – 16N2c + 2N3c + 2N4c + N5c )

,

cF
2 = 256(92 + 46Nc + 164N2

c + 104N3
c + 141N4

c + 17N5
c )

15(8 – 16N2c + 2N3c + 2N4c + N5c )
,

c̃F = –128(196 – 220Nc + 26N2
c – 445N3

c + 256N4
c + 226N5

c )
15(8 – 16N2c + 2N3c + 2N4c + N5c )

,

c̃F
2 = 128(172 – 608Nc – 138N2

c – 730N3
c + 120N4

c + 25N5
c )

15(8 – 16N2c + 2N3c + 2N4c + N5c )
,

dF = –32(1958 – 2608Nc + 6957N2
c – 3572N3

c – 2697N4
c + 1391N5

c )
15(8 – 16N2c + 2N3c + 2N4c + N5c )

,

dF
2 = 64(92 + 46Nc + 164N2

c + 104N3
c + 141N4

c + 17N5
c )

15(8 – 16N2c + 2N3c + 2N4c + N5c )
,

d̃F = –32(–964 – 1550Nc + 2696N2
c – 3610N3

c + 411N4
c + 1061N5

c )
15(8 – 16N2c + 2N3c + 2N4c + N5c )

,

d̃F
2 = 32(1132 – 608Nc – 2058N2

c – 490N3
c + 360N4

c + 145N5
c )

15(8 – 16N2c + 2N3c + 2N4c + N5c )
,

h = –64(–98 – 158Nc + 23N2
c + 30N3

c )
–14 – 14Nc – 7N2c + 6N3c

,

h̃ = –448 . (2.104)
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The particular solution for the second generation provided here is useful because the
evanescent operators for QS and Q̃S have only one non-vanishing constant, c̃2, which is
also Nc -independent. The evanescent operators for Q and Q̃ are also simple and have no
ε2 terms. The trade-off is that the Fierz-transformed basis is more complicated, but this
is not relevant as it is not used in any calculations.

An interesting feature that appears for the first time at NNLO is that the definitions of
the evanescent operators are now QCD-specific as they depend on Nc . This is because
condition 1 is applied to the renormalised amplitudes which contain QCD corrections and
an explicit dependence on Nc .

The operator definitions introduced so far are sufficient to renormalise physical matrix
elements at NNLO, but they need to be supplemented by the definitions of all evanescent
operators that appear in the matching, see Section 2.6. The evanescent operators up to
second generation have been defined above, and we will give the corresponding definitions
of the third to fifth generation below.

For the additional generations of evanescent operators, it is sufficient to only determine
the correct vanishing ε-finite part, so all O(ε) constants in front of physical operators
can be left undetermined and drop out of the matching. When working with penguin
operators, the highest generation of evanescent operators that appears at LO is the third
generation. These operators need to be renormalised to NNLO, so we will also require the
fourth and fifth generation. We define the third generation generically as

E (3)
1 ≡ 4

(
q̄cγµ1 · · · γµ7PLbd) (q̄dγµ7 · · · γµ1PLbc) –

(
64 +O(ε)

)
Q̃ ,

E (3)
2 ≡ 4

(
q̄cγµ1 · · · γµ7PLbc) (q̄dγµ7 · · · γµ1PLbd) –

(
64 +O(ε)

)
Q ,

E (3)[QS ] ≡ 4
(
q̄cγµ1 · · · γµ6PRbc) (q̄dγµ6 · · · γµ1PRbd)

+
(
2048 +O(ε)

)
Q̃S +O(ε)QS ,

E (3)[Q̃S ] ≡ 4
(
q̄cγµ1 · · · γµ6PRbd) (q̄dγµ6 · · · γµ1PRbc)

+
(
2048 +O(ε)

)
QS +O(ε)Q̃S , (2.105)

and the fourth generation as

E (4)
1 ≡ 4

(
q̄cγµ1 · · · γµ9PLbd) (q̄dγµ9 · · · γµ1PLbc) –

(
256 +O(ε)

)
Q̃ ,

E (4)
2 ≡ 4

(
q̄cγµ1 · · · γµ9PLbc) (q̄dγµ9 · · · γµ1PLbd) –

(
256 +O(ε)

)
Q ,

E (4)[QS ] ≡ 4
(
q̄cγµ1 · · · γµ8PRbc) (q̄dγµ8 · · · γµ1PRbd)

+
(
32768 +O(ε)

)
Q̃S +O(ε)QS ,

E (4)[Q̃S ] ≡ 4
(
q̄cγµ1 · · · γµ8PRbd) (q̄dγµ8 · · · γµ1PRbc)

+
(
32768 +O(ε)

)
QS +O(ε)Q̃S , (2.106)
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and finally the fifth generation as

E (5)
1 ≡ 4

(
q̄cγµ1 · · · γµ11PLbd) (q̄dγµ11 · · · γµ1PLbc) –

(
1024 +O(ε)

)
Q̃ ,

E (5)
2 ≡ 4

(
q̄cγµ1 · · · γµ11PLbc) (q̄dγµ11 · · · γµ1PLbd) –

(
1024 +O(ε)

)
Q ,

E (5)[QS ] ≡ 4
(
q̄cγµ1 · · · γµ10PRbc) (q̄dγµ10 · · · γµ1PRbd)

+
(
524288 +O(ε)

)
Q̃S +O(ε)QS ,

E (5)[Q̃S ] ≡ 4
(
q̄cγµ1 · · · γµ10PRbd) (q̄dγµ10 · · · γµ1PRbc)

+
(
524288 +O(ε)

)
QS +O(ε)Q̃S . (2.107)

2.4.4 Renormalisation with the R0 operator

The renormalisation procedure of the |∆B| = 2 theory follows for the most part the steps
described in Section 2.1.3, but the ΛQCD/mb suppression of 〈B|R0|B̄〉 requires a special
treatment, which will be discussed in the following. As the renormalisation procedure is
process-independent, one may choose to renormalise the amplitude with a basis of physical
operators like {Q,QS , Q̃S} or {Q, Q̃S ,R0}. The power-suppression of R0 is a result of
the particular process that is being considered. To preserve it at higher loop orders, a
finite counterterm is introduced, but the UV divergences are unaffected.

It is convenient to calculate the renormalisation constants first in the basis of physical
operators {Q,QS , Q̃S} as the operator Q does not mix with the other two. Note that
switching one of the operators for R0 does not simplify the calculation because the power-
suppression of its matrix element is an on-shell phenomenon. Therefore, it is not applicable
to the renormalisation, which encodes the off-shell properties of the transition operator.
The renormalisation matrix for general Nc obtained in this way is given in Ref. [20], and
for illustration purposes we list the MS renormalisation constants of the physical operators
here:

Z (1,1)
Q = 2 , Z (2,2)

Q = –9 + 2
3Nf , Z (2,1)

Q = –45815516 + 1
9Nf ,

Z (1,1)
QSQ̃S

=



–143

2
3

8
3

16
3


 , Z (2,2)

QSQ̃S
=




337
9 – 14Nf

9 –319 + 2Nf
9

–1249 + 8Nf
9 –1289 + 16Nf

9


 ,

Z (2,1)
QSQ̃S

=




547
9 + 22Nf

27 –2279 + 2Nf
27

1235
6 – 19Nf

27
641
18 – 83Nf

27


 , (2.108)
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where Nc = 3, and the basis of evanescent operators defined via Eqs. (2.101) to (2.104)
was chosen. The renormalised operators are hence given by

Q = ZQ Qbare + ZQE ~Ebare ,


QS

Q̃S


 = ZQSQ̃S



Qbare

S

Q̃bare
S


+ ZQSE ~Ebare , (2.109)

where the mixing with the evanescent operators is shown schematically.

After obtaining the renormalisation matrix in the basis without R0, the matrix is then
transformed through a change of basis. In the following, we will consider bases which are
extended by a vector of all relevant evanescent operators ~E to demonstrate the effect on
the renormalisation constants of evanescent operators too. The basis transformation can
be naively carried out by equating the renormalised operators,




Q

Q̃S
1
2Q + Q̃S + QS

~E



{Q,QS ,Q̃S}

=




Q

Q̃S

R0
~E




naive

{Q,Q̃S ,R0}

, (2.110)

where the renormalised operators are related to the bare operators through Oi = ZijObare
j .

In order to solve for the new renormalisation matrix, the bare operators are substituted
using Eq. (2.82), which leads to the “naive” renormalisation matrix

Znaive = (Znaive
1 ,Znaive

2 ,Znaive
3 ,Znaive

4 ) (2.111)

for the {Q, Q̃S ,R0, ~E} basis. The individual components are given by

Znaive
1 =




ZQ

–12

(
ZQSQ̃S

)

21
1
2

[
ZQ–

(
ZQSQ̃S

)

11
–
(
ZQSQ̃S

)

21

]

ZEQ – 1
2ZEQS




,

Znaive
2 =




0

–
(
ZQSQ̃S

)

21
+
(
ZQSQ̃S

)

22

–
(
ZQSQ̃S

)

11
+
(
ZQSQ̃S

)

12
–
(
ZQSQ̃S

)

21
+
(
ZQSQ̃S

)

22
ZEQ̃S

– ZEQS




,
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Znaive
3 =




0
(
ZQSQ̃S

)

21(
ZQSQ̃S

)

11
+
(
ZQSQ̃S

)

21
ZEQS




,

Znaive
4 =




ZQE

ZQ̃SE
1
2ZQE + ZQSE + ZQ̃SE

ZEE




. (2.112)

However, as previously mentioned, the power-suppression of the matrix element of R0
requires finite renormalisation constants, which are not contained in Eq. (2.112). These
renormalisation constants are necessary to cancel terms proportional to 〈Q〉(0) and 〈Q̃S〉(0)
in the renormalised 〈R0〉 matrix element in the physical basis {Q, Q̃S ,R0}. As R0 contains
a leading-power evanescent part, it needs to be renormalised with a finite piece similar to
other evanescent operators. Otherwise, it may be multiplied with IR divergences, leading
to finite contributions in dimensional regularisation [54].

The finite renormalisation constants can be constructed from considering the linear
combination of the renormalised Q, Q̃S and QS matrix elements,

〈R0〉 =
1
2α1〈Q〉+ α2〈Q̃S〉+ 〈QS〉 , (2.113)

which we require to be suppressed by ΛQCD/mb. The coefficients α1 and α2 are pertur-
bative quantities with the expansions

αi = 1 + αs
4πα

(1)
i +

(
αs
4π

)2
α
(2)
i +O(α3s ) . (2.114)

The coefficient of QS in Eq. (2.113) was chosen to be equal to one. This eliminates a
degree of freedom stemming from a perturbative redefinition of R0. For a discussion of
the calculation of the constants αi , in particular the regularisation of IR divergences with
a massive gluon, see Refs. [20, 28].

Equipped with the constants αi , the renormalisation matrix including the finite renormali-
sation for R0 is obtained by amending Eq. (2.110) as




Q

Q̃S
1
2α1Q + α2Q̃S + QS

E



{Q,QS ,Q̃S}

=




Q

Q̃S

R0
E



{Q,Q̃S ,R0}

. (2.115)
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This set of equations can be solved to yield the renormalisation matrix

Z = (Z1,Z2,Z3,Z4), (2.116)

where

Z1 =




ZQ

–12

(
ZQSQ̃S

)

21
1
2

[
α1ZQ–

(
ZQSQ̃S

)

11
– α2

(
ZQSQ̃S

)

21

]

ZEQ – 1
2ZEQS




,

Z2 =




0

–
(
ZQSQ̃S

)

21
+
(
ZQSQ̃S

)

22

–
(
ZQSQ̃S

)

11
+
(
ZQSQ̃S

)

12
– α2

(
ZQSQ̃S

)

21
+ α2

(
ZQSQ̃S

)

22
ZEQ̃S

– ZEQS




,

Z3 =




0
(
ZQSQ̃S

)

21(
ZQSQ̃S

)

11
+ α2

(
ZQSQ̃S

)

21
ZEQS




,

Z4 =




ZQE

ZQ̃SE
1
2α1ZQE + ZQSE + α2ZQ̃SE

ZEE




. (2.117)

The interpretation of α1 and α2 as finite renormalisation constants materialises here
because they multiply the diagonal elements ZQ and (ZQSQ̃S

)22 and therefore lead to an
ε-finite contribution.

The full renormalisation matrix is provided in computer-readable format with Ref. [20]. As
many generations of evanescent operators need to be included, the resulting matrices are
large and hence not shown here.
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2.5 The |∆B| = 0 transition operator
In this section, the relevant |∆B| = 0 transition operator for the calculation of lifetime
ratios is developed by considering the leading term in the HQE that results in a non-zero
lifetime difference. Referring to Eq. (2.78), the leading contribution to b decays in the
HQE stems from the decay of the free bottom quark, and the corrections due to the
different spectator quark flavours, e.g. up or down quarks, start with Γ̃6. We can therefore
write the decay width Γ(Hb) of any bottom-flavoured hadron with light quarks Hb as
the sum of a leading contribution Γ(b) from the decay of the free bottom quark and
corrections δΓ(Hb),

Γ(Hb) = Γ(b) + δΓ(Hb) , (2.118)
where the corrections δΓ(Hb) are specific to the b hadron under consideration and
suppressed by at least two powers of ΛQCD/mb. A lifetime ratio can thus be written as

τ(Hb)
τ(H ′b)

≈ 1 +
[
δΓ(H ′b) – δΓ(Hb)

]
× τ(Hb) , (2.119)

up to higher-order terms in ΛQCD/mb that were omitted in δΓ(H(′)
b ). Here, the decay

width of the free bottom quark drops out, and the experimental value for τ(Hb) is
used, such that only the calculations of δΓ(Hb) and δΓ(H ′b) are required to predict the
lifetime ratio [32]. Due to isospin symmetry, the two-quark operator contributions Γi
from Eq. (2.78) drop out in the lifetime ratio of B+ and Bd as well as the corresponding
baryons. Therefore, the leading contribution stems from Γ̃6.

The |∆B| = 0 transition operator for the lifetimes is defined as

T ≡ Im
(
i
∫

d4x T H|∆B|=1(x)H|∆B|=1(0)
)
, (2.120)

and it is related to the decay width via the optical theorem, see Eq. (1.41),

δΓ(Hb) =
1

2MHb
〈Hb|T |Hb〉 . (2.121)

For the leading-power corrections, the relevant transition operator is further decomposed
as

T = Tu + Td + Tsing , (2.122)
where the subscript refers to the quark flavour in the intermediate state of the LO CKM-
leading process. The SU(3)F singlet operator Tsing contains contributions which cancel in
the difference of lifetime corrections [58]. These singlet contributions stem from gluon
exchanges with the spectator quark, which is why they are flavour-independent and cancel
in the lifetime ratio, see Fig. 2.5. In the following, only Tu and Td will be considered.

For mesons at leading order, the operator Tu corresponds to the weak annihilation (WA)
while Td mediates Pauli interference (PI), see Fig. 2.6. In the case of baryons, Tu leads to
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b̄

q

b̄

q

t

W

(a) Full theory

b̄

q

b̄

q

(b) Operator in Tsing

Figure 2.5: Singlet operator with the underlying penguin topology in the full
theory. These operators couple to all active quark flavours, which is
why they are singlets under SU(3)F.

u
d

b̄

d

b̄c

(a) Weak annihilation

d
u

b̄

u

b̄c

(b) Pauli interference

Figure 2.6: Leading-CKM one-loop diagrams of the WA and PI topologies for
mesons. The orange dots represent current-current operator inser-
tions.

the weak scattering (WS) process while the insertion of Td again corresponds to PI, see
Fig. 2.7.

The non-singlet parts of the transition operator can be further written as [58]

Tu ≡
G2

Fm2
b|Vcb|2
6π

[
|Vud |2

(
F uQd + F u

SQd
S + GuT d + Gu

ST d
S
)

+ |Vcd |2
(
F cQd + F c

SQd
S + GcT d + Gc

ST d
S
) ]

,

Td ≡
G2

Fm2
b|Vcb|2
6π

[
F dQu + F d

S Qu
S + GdT u + Gd

ST u
S

]
. (2.123)

Note that the WA operator for Bs mesons is identical to Tu above after swapping the
down-type quark d → s. The superscripts on the matching coefficients F q, F q

S , Gq and
Gq

S refer to the quark flavour q in the cq pair of quarks in the loop. To be explicit, the
u matching coefficients stem from the WA and WS diagrams shown in Fig. 2.6a and
Fig. 2.7a while the d matching coefficients correspond to the PI diagrams in Fig. 2.6b and
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u
d

b̄

d

b̄c
s s

(a) Weak scattering

d
u

b̄

u

b̄c
s s

(b) Pauli interference

Figure 2.7: Leading-CKM one-loop diagrams of the WS and PI topologies for
baryons. The orange dots represent current-current operator inser-
tions.

Fig. 2.6b. Finally, the c contributions match onto WA and WS diagrams in the |∆B| = 1
calculations with two charm quarks in the internal loop. Doubly CKM-suppressed operators
have been ignored, and the relation |Vud |2 + |Vus |2 ≈ 1 together with Cd = C s for all
matching coefficients C was used to simplify the PI transition operator. The equality of
the matching coefficients holds under the assumption that the down and strange quarks
have the same mass, in particular md = ms = 0.

The physical |∆B| = 0 operators are defined as

Qq ≡ 4
(
b̄γµPLq

) (
q̄γµPLb

)
, Qq

S ≡ 4
(
b̄PLq

) (
q̄PRb

)
,

T q ≡ 4
(
b̄γµPLT aq

) (
q̄γµPLT ab

)
, T q

S ≡ 4
(
b̄PLT aq

) (
q̄PRT ab

)
. (2.124)

We also need to define the first and second generation evanescent operators to renormalise
the physical operators at NNLO. The first generation is

E (1)[Qq] ≡ 4
(
b̄γµ1γµ2γµ3PLq

) (
q̄γµ3γµ2γµ1PLb

)
–
(
4 – 8ε+ aε2

)
Qq ,

E (1)[Qq
S ] ≡ 4

(
b̄γµ1γµ2PLq

) (
q̄γµ2γµ1PRb

)
–
(
4 – 8ε+ aSε

2)Qq
S , (2.125)

with analogous definitions for the E [T q
(S)] operators, which have the generators T a of

SU(3)C inserted. The second generation is given by

E [Qq](2) ≡ 4
(
b̄γµ1γµ2γµ3γµ4γµ5PLq

) (
q̄γµ5γµ4γµ3γµ2γµ1PLb

)

–
(
16 + bε+ cε2

)
Qq ,

E [Qq
S ]

(2) ≡ 4
(
b̄γµ1γµ2γµ3γµ4PLq

) (
q̄γµ4γµ3γµ2γµ1PRb

)

–
(
16 + bSε+ cSε

2)Qq
S , (2.126)

and similar evanescent operators for the colour octet structures. The constants a(S), b(S)
and c(S) appear in renormalised amplitudes at NNLO; however, they do not appear in
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physical results when the perturbative matching coefficients are combined with the low
energy matrix elements. Since the lattice calculations do not make use of Fierz identities
for the |∆B| = 0 matrix elements, we are free to choose the constants as we wish. As
a check, the dependence of the physical results on the aforementioned constants must
disappear when matching the lattice results to the perturbative matching coefficients,
e.g. with the gradient flow formalism [108–110]. This is in contrast with the |∆B| = 2
transition operator, where the definitions of the evanescent operators are determined by
the requirement of Fierz symmetry.

In intermediate steps before the matching, we also encounter the third generation evanes-
cent operators, which we define as

E (3)[Qq] ≡ 4
(
b̄γµ1 · · · γµ7PLq

) (
q̄γµ7 · · · γµ1PLb

)
–
(
64 + eε+ f ε2

)
Qq,

E (3)[Qq
S ] ≡ 4

(
b̄γµ1 · · · γµ6PLq

) (
q̄γµ6 · · · γµ1PRb

)
–
(
64 + eSε+ fSε2

)
Qq

S , (2.127)

and similarly for the corresponding operators E [T q
(S)]. The constants e(S) and f(S) drop

out of the matching coefficients and do not need to be considered in the matching to
low-energy matrix elements. The reason that only the third generation is required for the
decays whereas up to five generations appear in the mixing calculation is the inclusion
of different operators on the |∆B| = 1 sides. In Section 2.6, the number of generations
necessary for the matching calculation is discussed in detail.

The renormalisation constants for the |∆B| = 0 transition operator are given in Appendix B.

2.6 Matching procedure

2.6.1 Matching to the |∆B| = 2 transition operator
In the following, the matching of the amplitudes calculated with the weak effective
Hamiltonian to the |∆B| = 2 transition operators is discussed. Most of the steps presented
can be easily transferred to the matching to the |∆B| = 0 transition operator, and some
key differences are explained in Section 2.6.2.

The matching condition from Eq. (1.35) reads

Γij
12 = 1

MB
Im
(
Mij) , (2.128)

and recalling that the off-diagonal decay matrix element is calculated from the absorptive
part of a bi-local matrix element in Eq. (2.80), we write

Γij
12 = G2

Fm2
b

24πMBq

[
H ij(z)〈Bq|Q|B̄q〉+ H̃ ij

S (z)〈Bq|Q̃S |B̄q〉
]
+O(ΛQCD/mb) , (2.129)
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where the factorisation of the CKM matrix elements from Eq. (1.34) was used. The
matching coefficients are determined in this thesis as an expansion in z = m2

c/m2
b up to

O(z10).
The matching coefficients can be evaluated from the bottom up, order by order in αs ,
i.e. calculating the matching coefficients first at LO, then NLO and so on. Here, it
is crucial to also note the order in ε to which the matching coefficients are computed.
This is important because both the amplitudeM evaluated with the effective |∆B| = 1
Hamiltonian and the matrix elements of the |∆B| = 2 transition operator have IR poles
beyond LO. Since the IR and UV divergences are regulated with the same regulator ε, it is
important to carry out lower-order matching calculations beyond the ε-finite order. This
way, the poles in ε cancel, and we recover the correct finite contributions which arise from
divergences multiplying matching coefficients vanishing in the limit d → 4. The power of
ε to which the matching coefficients need to be evaluated is hence determined by the IR
poles appearing in front of those matching coefficients. It turns out that the LO and NLO
matching coefficients need to be expanded up to ε2 and ε1 respectively.

Another issue that deserves special consideration is the number of generations of evanescent
operators to be renormalised at each order on the |∆B| = 2 side for the matching. This is
determined by the loop order of the |∆B| = 1 calculation at which the tree-level matrix
elements of the corresponding evanescent operators first appear, as is illustrated below.

The matching equation Eq. (2.128) can be expanded in αs and ε. For this purpose, we
define the expansion of the matching coefficients

H ij = H(0),ij + αs
4πH

(1),ij +
(
αs
4π

)2
H(2),ij +O(α3s ) , (2.130)

as well as similar expansions for Γij
12,Mij and the renormalised matrix elements 〈O〉 ≡

〈B|O|B̄〉. The LO matching equation reads

(Γij
12)

(0) = G2
Fm2

b
24πMBq

[
H(0),ij

P 〈P〉(0) + H(0),ij
E 〈E 〉(0)

]
, (2.131)

where the operators P and E stand for any physical and evanescent operator respectively.
Note that for the purpose of this discussion, R0 is treated like an evanescent operator,
i.e. P ∈ {Q, Q̃S}. This is because after carrying out the renormalisation as outlined in
Section 2.4.4, including the finite renormalisation constants from α1 and α2, the physical
piece of 〈R0〉 is suppressed by ΛQCD/mb, but the evanescent part is unsuppressed, see
Ref. [54].

The LO amplitude in the |∆B| = 1 effective theory is also expanded in ε,

Im(Mij)(0) = G2
Fm2

b
24π

[ (
a(0,0) + εa(0,1) + ε2a(0,2) +O(ε3)

)
〈P〉(0)

+
(
b(0,0) + εb(0,1) + ε2b(0,2) +O(ε3)

)
〈E 〉(0)

]
, (2.132)
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so by equating Eq. (2.131) and Eq. (2.132), the LO matching coefficients

H(0),ij
P = a(0,0) + εa(0,1) + ε2a(0,2) +O(ε3) ,

H(0),ij
E = b(0,0) + εb(0,1) + ε2b(0,2) +O(ε3) (2.133)

are obtained.

At NLO, the matching proceeds analogously, but IR poles appear for the first time, so it is
interesting to observe their impact on the computation of the matching coefficients. The
transition operator contribution to the decay matrix element is decomposed as

(Γij
12)

(1) = G2
Fm2

b
24πMBq

[
H(0),ij

P 〈P〉(1) + H(1),ij
P 〈P〉(0)

+ H(0),ij
E 〈E 〉(1) + H(1),ij

E 〈E 〉(0)
]
, (2.134)

where the operator matrix elements are further expanded as a series in ε,

〈P〉(1) =

c(1,–1)

ε
+ c(1,0) + εc(1,1) +O(ε2)


 〈P〉(0)

+

d(1,–1)

ε
+ d(1,0) + εd(1,1) +O(ε2)


 〈E 〉(0) ,

〈E 〉(1) =
(
e(1,0) + εe(1,1) +O(ε2)

)
〈P〉(0)

+

 f (1,–1)

ε
+ f (1,0) + εf (1,1) +O(ε2)


 〈E 〉(0) . (2.135)

The evanescent operators are of order ε, so the renormalised NLO matrix element has at
most a finite O(ε0) part stemming from IR poles. This means, however, that there are no
poles multiplying the physical matrix elements 〈P〉(0). The amplitude obtained from the
weak effective Hamiltonian at NLO can be similarly expanded as

Im(Mij)(1) = G2
Fm2

b
24π




a(1,–1)

ε
+ a(1,0) + εa(1,1) +O(ε2)


 〈P〉(0)

+

b(1,–1)

ε
+ b(1,0) + εb(1,1) +O(ε2)


 〈E 〉(0)


 . (2.136)
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The NLO matching coefficients are obtained by inserting Eq. (2.135) into Eq. (2.134) and
then equating with Eq. (2.136). They have the following expansion in ε:

H(1),ij
P = a(1,–1)

ε
+ a(1,0) + εa(1,1) –


c(1,–1)

ε
+ c(1,0) + εc(1,1)


H(0),ij

P

–
(
e(1,0) + εe(1,1)

)
H(0),ij

E +O(ε2) ,

H(1),ij
E = b(1,–1)

ε
+ b(1,0) + εb(1,1) –


 f (1,–1)

ε
+ f (1,0) + εf (1,1)


H(0),ij

E

–

d(1,–1)

ε
+ d(1,0) + εd(1,1)


H(0),ij

P +O(ε2) . (2.137)

These matching coefficients show two key mechanisms in the matching of IR-divergent
amplitudes: the cancellation of the IR poles in the matching coefficients and the contri-
bution of O(ε) terms from lower-order matching coefficients to physical results. For the
NLO matching coefficients to be finite, we require that

a(1,–1) – c(1,–1)H(0),ab
P = O(ε) , (2.138)

which serves as a cross-check for the matching calculation. Furthermore, since the pole
c(1,–1)/ε multiplies the LO matching coefficient H(0),ij

P , the term a(0,1) from Eq. (2.133)
contributes to the physical NLO matching coefficient H(1),ij

P , which demonstrates that
lower-order matching coefficients require deeper expansions in ε.

At NNLO, no new features arise, but the expressions become more involved. For the
transition operator, the expansion is

(Γij
12)

(2) = G2
Fm2

b
24πMBq

[
H(0),ij

P 〈P〉(2) + H(1),ij
P 〈P〉(1) + H(2),ij

P 〈P〉(0)

+ H(0),ij
E 〈E 〉(2) + H(1),ij

E 〈E 〉(1) + H(2),ij
E 〈E 〉(0)

]
, (2.139)

where the renormalised matrix elements are parametrised in a similar way as for the NLO
calculation:

〈P〉(2) =

c(2,–2)

ε2
+ c(2,–1)

ε
+ c(2,0)


 〈P〉(0) +


d(2,–2)

ε2
+ d(2,–1)

ε
+ d(2,0)


 〈E 〉(0) ,

〈E 〉(2) =

e(2,–1)

ε
+ e(2,0)


 〈P〉(0) +


 f (2,–2)

ε2
+ f (2,–1)

ε
+ f (2,0)


 〈E 〉(0) . (2.140)

59



2 Operator Product Expansions and Effective Field Theories

On the |∆B| = 1 side, the amplitude is written as

Im(Mij)(2) = G2
Fm2

b
24π




a(2,–2)

ε2
+ a(2,–1)

ε
+ a(2,0) +O(ε)


 〈P〉(0)

+

b(2,–2)

ε2
+ b(2,–1)

ε
+ b(2,0) +O(ε)


 〈E 〉(0)


 . (2.141)

As before, Eq. (2.140) is inserted into Eq. (2.139) and equated with Eq. (2.141) to obtain
the NNLO matching coefficients, which have the expansions

H(2),ab
P = a(2,–2)

ε2
+ a(2,–1)

ε
+ a(2,0) – e(1,0)H(1),ab

E –

c(1,–1)

ε
+ c(1,0)


H(1),ab

P

–

e(2,–1)

ε
+ e(2,0)


H(0),ab

E –

c(2,–2)

ε2
+ c(2,–1)

ε
+ c(2,0)


H(0),ab

P +O(ε) ,

H(2),ab
E = b(2,–2)

ε2
+ b(2,–1)

ε
+ b(2,0) –


 f (1,–1)

ε
+ f (1,0)


H(1),ab

E

–

d(1,–1)

ε
+ d(1,0)


H(1),ab

P –

 f (2,–2)

ε2
+ f (2,–1)

ε
+ f (2,0)


H(0),ab

E

–

d(2,–2)

ε2
+ d(2,–1)

ε
+ d(2,0)


H(0),ab

P +O(ε). (2.142)

The cancellation of all IR poles in ε provides yet another cross-check of the matching
calculation, leading to similar conditions as the one given in Eq. (2.138). We also observe
that the LO and NLO matching coefficients are multiplied by poles in ε such that their
O(ε2) and O(ε) parts respectively contribute to the finite parts of the NNLO matching
coefficients.

The matching procedure provides another powerful cross-check on our calculation as the
gauge parameter dependence must cancel in the process. The amplitudes calculated with
the weak effective Hamiltonian and the |∆B| = 2 transition operator depend on the
gauge parameter ξ of the strong interaction. The gauge parameter stems from the gluon
propagator,

∆ab
µν = iδab

k2

(
gµν – (1 – ξ)k

µkν
k2

)
, (2.143)

where the gauge ξ = 1 corresponds to Feynman-t’Hooft gauge. Since physical observables
must not depend on the choice of gauge, the matching coefficients must be independent
of ξ. Working in the general Rξ gauge, one can check that the gauge parameter cancels
in the matching.
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2.6 Matching procedure

Using the above results, we return to the issue of the number of generations of evanescent
operators to include in the matching. From Eq. (2.142), we can see that the LO and NLO
matching coefficients of evanescent operators, H(0)

E and H(1)
E , contribute to the matching

coefficients of physical operators. The way that the evanescent matching coefficients enter
the physical result is through the renormalised matrix elements of evanescent operators,
as is evident from Eq. (2.139). Therefore, evanescent operators whose tree-level matrix
elements appear in the LO calculation on the |∆B| = 1 side, i.e. in Eq. (2.132), must
be renormalised to NNLO. The evanescent operators for which the matrix elements are
encountered at NLO for the first time, i.e. in Eq. (2.136), need to be renormalised to NLO.

In general terms, the highest generation kmax of evanescent operators for which there are
tree-level matrix elements in the amplitude calculated from the |∆B| = 1 Hamiltonian
needs to be renormalised to the highest order n in αs . The matrix elements of all k ≤ kmax
generations are renormalised to the same order in αs while higher generations k > kmax
are renormalised to the order αm

s given by

m = n – (k – kmax) . (2.144)

To illustrate the above, we will consider two cases: the contribution from two current-
current and two penguin operators respectively at NNLO, which are presented in Tab. 2.2.
For the first case with two current-current operators, the matrix elements of the first
generation evanescent operators appear in the LO calculation of the |∆B| = 1 side, so they
need to be renormalised to NNLO. At NLO, the tree-level matrix elements of the second
generation appear, meaning they have to be renormalised to NLO. The renormalised
amplitude of the |∆B| = 2 transition operator hence includes the third, second and first
generation of evanescent operators to LO, NLO and NNLO respectively. For the case with
two penguin operator insertions, the tree-level matrix elements of the third, fourth and
fifth generation evanescent operators appear respectively at LO, NLO and NNLO in the
calculation of the |∆B| = 1 side. Therefore, they are renormalised on the |∆B| = 2 side
to NNLO and NLO for evanescent operators belonging to the third and fourth generation
respectively. For the fifth generation, no renormalisation is required.

An exhaustive list of |∆B| = 2 operator matrix elements that appear in calculations of Γ12
using the |∆B| = 1 effective Hamiltonian is given in Tab. 2.3. In principle, it is sufficient
to identify the highest generation evanescent operators whose matrix elements appear
at the lowest order in αs and then determine the orders to which all other generations
need to be renormalised using Eq. (2.144). With Tab. 2.3 this can be confirmed for all
considered operators.

61



2 Operator Product Expansions and Effective Field Theories

Operators LO diagram on |∆B| = 1 side Highest evanescent
generation at LO

Required renormalised
|∆B| = 2 matrix
elements

Q1,2 × Q1,2

γµ1 γµ3

γµ2

〈E (1)
i 〉(0) 〈E (1)

i 〉(2), 〈E
(2)
i 〉(1)

Q3–6 × Q3–6

γµ1γµ2γµ3 γµ5γµ6γµ7
γµ4

〈E (3)
i 〉(0)

〈E (3)
i 〉(2), 〈E

(2)
i 〉(2),

〈E (1)
i 〉(2), 〈E

(4)
i 〉(1)

Table 2.2: The evanescent operators required on the |∆B| = 2 side for a NNLO
matching calculation depend on the physical operators included on
the |∆B| = 1 side.

Order |∆B| = 1 operators Highest generation evanescent
|∆B| = 2 operator matrix elements

α0s Q1,2 × Q1,2 〈E (1)
i 〉(0)

Q1,2 × Q3–6 〈E (1)
i 〉(0)

Q3–6 × Q3–6 〈E (3)
i 〉(0)

α1s Q1,2 × Q1,2 〈E (2)
i 〉(0)

Q1,2 × Q3–6 〈E (2)
i 〉(0)

Q3–6 × Q3–6 〈E (4)
i 〉(0)

Q8 × Q1–6 〈E (1)
i 〉(0)

α2s Q1,2 × Q1,2 〈E (3)
i 〉(0)

Q1,2 × Q3–6 〈E (3)
i 〉(0)

Q3–6 × Q3–6 〈E (5)
i 〉(0)

Q8 × Q1–6 〈E (2)
i 〉(0)

Q8 × Q8 〈E (2)
i 〉(0)

α3s Q8 × Q8 〈E (3)
i 〉(0)

Table 2.3: Tree-level |∆B| = 2 operator matrix elements which appear in the
amplitude on the |∆B| = 1 side at each order in αs .

62



2.6 Matching procedure

2.6.2 Matching to the |∆B| = 0 transition operator
The procedure for the B meson decays is similar to the one outlined in Section 2.6.1, so
the focus of this section is on highlighting the steps that are specific to the |∆B| = 0
calculation. The key aspect of the |∆B| = 0 matching is that we are only interested in the
difference of the decay widths since we are calculating the lifetime ratio, see Eq. (2.119).
As the matching procedure is the same for the meson and baryon lifetime ratios, only the
mesonic case is discussed in the following. There is, however, a difference in the treatment
of the hadronic matrix elements, which is discussed in Section 6.2.

Both Tu and Td contribute to both δΓ(Bd ) and δΓ(B+), and in evaluating the difference,
we can use the isospin symmetry relations

〈Bd |Qd ,u|Bd 〉 = 〈B+|Qu,d |B+〉 , 〈Bd |T d ,u|Bd 〉 = 〈B+|T u,d |B+〉 ,
〈Bd |Qd ,u

S |Bd 〉 = 〈B+|Qu,d
S |B

+〉 , 〈Bd |T d ,u
S |Bd 〉 = 〈B+|T u,d

S |B+〉 . (2.145)

The lifetime ratio for Bd and B+ mesons can hence be written in a compact form with
the matching coefficients in Eq. (2.123) and the expansion of the lifetime ratio to the first
non-trivial order in the HQE from Eq. (2.119):

τ(B+)
τ(Bd )

= 1 +
[
δΓ(Bd ) – δΓ(B+)

]
× τ(B+)

= 1 +
[
G2

Fm2
b|Vcb|2
12π f 2BMB

(
|Vud |2~F u + |Vcd |2~F c – ~F d) · ~B

]
× τ(B+) ,

(2.146)

where the vector notation

~F q =




F q

F q
S

Gq

Gq
S




, ~B =




B1
B2
ε1
ε2




(2.147)

was introduced following Ref. [58]. The constants in ~B contain the low-energy physics
and are related to the matrix elements via

〈
B+

∣∣∣
(
Qu – Qd)∣∣∣B+〉 = f 2B M2

B B1 ,
〈
B+

∣∣∣
(
Qu

S – Qd
S
)∣∣∣B+〉 = f 2B M2

B B2 ,
〈
B+

∣∣∣
(
T u – T d)∣∣∣B+〉 = f 2B M2

B ε1 ,
〈
B+

∣∣∣
(
T u

S – T d
S
)∣∣∣B+〉 = f 2B M2

B ε2 . (2.148)

It is worth noting that the matrix elements 〈B+|Od |B+〉 for O ∈ {Q,QS ,T ,TS} drop
out of the lifetime ratios to good approximation but yield small contributions to the total
decay rates [111, 112].
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2 Operator Product Expansions and Effective Field Theories

Since both the calculation of δΓ(Bd ) and δΓ(B+) leads to the matching coefficients
~F u, ~F c and ~F d , we can simplify the calculation by ignoring redundant information. The
path we choose is to calculate δΓ(Bd ) and δΓ(B+) separately, and to match only onto
the |∆B| = 0 matrix elements which start at LO, i.e. 〈Bd |Od |Bd 〉 and 〈B+|Ou|B+〉
respectively. This means the matching of δΓ(Bd ) yields ~F u and ~F c while we extract
~F d from δΓ(Bu). Therefore, the calculation needs to be carried out to NNLO on both
sides of the matching in order to obtain the NNLO matching coefficients. Moreover, the
|∆B| = 0 calculation is only carried out for the flavour combination where the external
states have the same light quark as the inserted |∆B| = 0 operators. Due to isospin
symmetry, only one of Bd or B+ needs to be considered here to calculate the renormalised
matrix elements of either 〈Bd |Od |Bd 〉 or 〈B+|Ou|B+〉 for the matching.

The other strategy that does not calculate any redundant diagrams focuses only on one
of the decay width corrections, either δΓ(Bd ) or δΓ(B+), but it is slightly more involved
overall. One can extract all matching coefficients by computing e.g. only δΓ(Bd ). This
requires a calculation of the |∆B| = 0 transition operator that includes both 〈Bd |Od |Bd 〉
and 〈Bd |Ou|Bd 〉. However, since the matrix elements of the opposite light flavour
〈Bd |Ou|Bd 〉 vanish to LO, both sides of the matching would need to be calculated to
N3LO in order to extract the NNLO matching coefficients. Therefore, we do not pursue
this path.

Care must also be taken to calculate only the SU(3)F-breaking diagrams which contribute
to the corrections δΓ(Bd ) and δΓ(B+) since the matching coefficients are only extracted
from one of the two corrections, with the difference being implicit. The types of diagrams
which must hence be discarded on both sides of the matching are the penguin contractions
shown in Fig. 2.8, which appear at NLO and NNLO. These diagrams contribute to δΓ(Bd )
and δΓ(B+) and cancel in the difference.

c
b̄

d

b̄

d

u

d

(a) Penguin contraction from H|∆B|=1

b̄

d

b̄

d

d

(b) Penguin contraction from T d

Figure 2.8: Penguin contraction diagrams for the |∆B| = 1 and |∆B| = 0 sides
of the matching calculation with Bd external states. The orange dots
represent current-current operator insertions while the ruby square is
an insertion of the |∆B| = 0 transition operator.
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2.6 Matching procedure

The remainder of the matching procedure for the individual matching coefficients follows
similar steps as outlined for the B meson mixing in Section 2.6.1. In particular, the
cancellation of the IR poles occurs in the same way across orders, so evanescent operators
need to be included at lower orders in αs , and O(ε) matching coefficients at LO and
NLO affect the NNLO matching coefficients. For the current-current contributions to the
lifetime difference, the tree-level matrix elements of only the first generation of evanescent
operators appear at LO in the PI diagrams, so the E (1) operators are renormalised to
NNLO while the E (2) operators are renormalised to NLO, as summarised in Tab. 2.4.
Since one of the |∆B| = 1 operators is Fierz-transformed, all but one of the γ matrices of
the WA diagrams have contracted Lorentz indices, and no |∆B| = 0 evanescent operators
need to be renormalised to NNLO, and the E (1) operators are renormalised only to NLO.

Decay width LO diagram on |∆B| = 1 side Highest evanescent
generation at LO

Required renormalised
|∆B| = 0 matrix
elements

δΓ(Bd ) ∼WA

d

b̄

d

b̄

γµ1 None 〈E (1)
i 〉(1)

δΓ(B+) ∼ PI

u

b̄

b̄

u

γµ2

γµ3

γµ1

〈E (1)
i 〉(0) 〈E (1)

i 〉(2), 〈E
(2)
i 〉(1)

Table 2.4: The evanescent operators required on the |∆B| = 0 side for a NNLO
matching calculation depend on the physical operators included on
the |∆B| = 1 side.
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2 Operator Product Expansions and Effective Field Theories

Order Decay width Highest generation evanescent
|∆B| = 0 operator matrix elements

α0s δΓ(Bd ) ∼ WA None
δΓ(B+) ∼ PI 〈E (1)

i 〉(0)

α1s δΓ(Bd ) ∼ WA 〈E (1)
i 〉(0)

δΓ(B+) ∼ PI 〈E (2)
i 〉(0)

α2s δΓ(Bd ) ∼ WA 〈E (2)
i 〉(0)

δΓ(B+) ∼ PI 〈E (3)
i 〉(0)

Table 2.5: Tree-level |∆B| = 0 operator matrix elements which appear in the
amplitude on the |∆B| = 1 side at each order in αs .
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3 Calculation of Amplitudes

This chapter provides a detailed description of the methods used to calculate amplitudes
for B meson mixing and decay processes based on the theories outlined in Chapter 2.
Therefore, the theoretical models are linked to the desired phenomenological output for the
key observables. Using the methods described here, amplitudes of O(106) diagrams are
computed efficiently and in such a way that the matching coefficients for the applications
in Chapters 4 and 6 are easily extracted following the matching procedure from Section 2.6.

The structure of this chapter is as follows: The overall workflow of the automated
evaluation of amplitudes is presented first, followed by a discussion of the specific setup
and kinematics employed for mixing and decay processes. Two particularly challenging
aspects of the computation, the spinor projectors and the evaluation of master integrals,
are then explained in more detail. For the projectors, an efficient algorithm applicable to
generic four-fermion scattering is developed, which has been published in Ref. [113]. The
chapter closes with a presentation of the semi-analytic evaluation of master integrals.

3.1 Overview of workflow

3.1.1 Calculation of individual diagrams
Due to the large number of diagrams, of which there are O(106) at NNLO for the B
mixing amplitude on the |∆B| = 1 side, an automated toolchain is constructed based on
well-tested and cutting-edge software packages. A graphical overview of the toolchain up
to the computation of individual diagrams in terms of scalar integrals is shown in Fig. 3.1.
At this point, the outputs are passed on to the second half of the toolchain, shown in
Fig. 3.4 which evaluates the scalar integrals and produces our final results for the bare
amplitudes.

The first half of the toolchain handles most of the process-specific steps, starting with
the generation of Feynman diagrams, see Fig. 3.1. For the diagram generation, we use
QGRAF [114], which generates a list of all allowed diagrams based on the external states
and the propagator and vertex combinations permitted by the Lagrangian of the problem.
It is possible to employ simple topology-based filters, e.g. to limit the number of certain
propagators or vertices. QGRAF can also be used to differentiate between so-called on-shell

67



3 Calculation of Amplitudes

QGRAF

tapir

EXP

calc

Diagram 
topologies

Feynman rulesKinematics

Diagrams with 
Feynman rules

Topology files

FORM input files

Amplitude in terms 
of scalar integrals

Spinor projectors

Figure 3.1: Workflow for the generation of amplitudes in terms of scalar integrals.
The program in dark blue was developed as part of this thesis.
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3.1 Overview of workflow

and off-shell topologies, where off-shell topologies are those that have a one-particle
irreducible (1PI) propagator connected via a bridge to the rest of the diagram, see Fig. 3.2.
This is useful for filtering out QCD self-energies on the legs of the diagram, which need
to be amputated; however, it is not possible to distinguish between flavour-changing
self-energies and QCD self-energies with this option. Therefore, QGRAF filters cannot be
employed in some cases, see Section 3.2.2.

b

b̄

q

q̄

Figure 3.2: Off-shell topology as identified by QGRAF.

Since most of the effective operators that we use in our calculation have four-fermion
vertices, the implementation of these vertices deserves special attention. The main
complication is that we need to determine the correct sign of the diagram. This sign is
determined by crossing symmetry, i.e. the anti-commutative property of the Grassmann-
valued fermion fields. QGRAF can account for this sign change, and the most practical way
of implementing such four-fermion vertices is by introducing a so-called σ particle. These
auxiliary particles are used to split the four-fermion vertex into two separate three-particle
interactions connected by the scalar σ particle, see Fig. 3.3. The propagator of the σ
particle is the product of the identity matrix in colour space and metric tensors, contracting
the Lorentz indices across the two spin lines. The Wilson coefficient can be split across
the two vertices, e.g. each vertex can be chosen to have the square root of the original
coupling. For each effective operator, a distinct σ-particle is introduced, with the penguin
operators having special sigma particles that couple to quark pairs qq̄ of all active flavours.

q1

q̄3

q2

q̄4

σ

Figure 3.3: Four-fermion vertex decomposed as two separate three-particle ver-
tices connected by an auxiliary σ particle.
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The next step in the toolchain is the insertion of the Feynman rules for all propagators and
vertices in the topologies generated in the previous step. For this step we use tapir [115].
This program offers a very convenient interface from QGRAF output to FORM [116–119]
expressions, which can the be used for further manipulations. Therefore, tapir requires
Feynman rules in FORM code format as additional input. The kinematics of the problem are
also specified here, and additional filters on propagators, vertices and special topologies can
be applied. Most notably, tapir differentiates between flavour-changing and non-flavour-
changing self-energies. Thus, we use it in this step to filter out any QCD self-energies,
which are always of the non-flavour-changing type. In addition to the diagram output,
tapir also generates various topology files that can be used in later steps of the calculation.

To generate FORM code that can be readily executed in an automated and parallelised
manner, and to map the diagram files generated by tapir to the corresponding topologies,
we use EXP [120, 121]. This program has additional capabilities in performing asymptotic
expansions of diagrams in terms of sub-diagrams, but for our calculation, we mainly use
it to identify the topologies corresponding to individual diagrams. Note that this is not
completed in the previous step as tapir generates one topology for each diagram, with
some redundancies removed in a separate step. EXP is able to identify the minimal set
of topologies needed out of those provided by tapir. Moreover, the output files include
make files that can be used in the final step of manipulations on the diagram level.

The diagram evaluation is done with calc, an implementation written in FORM that
efficiently handles diagram manipulations and colour factor evaluation based on the
program color [122]. This last step simplifies the expressions obtained for each Feynman
diagram as much as possible, reducing each to a linear combination of scalar integrals
that are multiplied with the corresponding colour factor, and a rational polynomial of the
occurring quark masses and the dimensional regulator ε. Additionally, the spinor structures
of the diagrams need to be identified with basis elements, which are tree-level matrix
elements of the transition operator that the matching is done with. For this purpose,
dedicated spinor projectors were developed as part of this thesis, which are described in
more detail in Section 3.3. These are also written as standalone modules in FORM and can
be readily integrated within calc, see the dark blue box in Fig. 3.1.

3.1.2 Evaluation of the full amplitude

In the second half of the toolchain, the scalar integrals are evaluated and inserted into the
amplitude, with some of the intermediate results used across different processes. As shown
in Fig. 3.4, the amplitude expressed in terms of scalar integrals together with the topology
files from tapir are the starting point for the reduction to master integrals (MIs). The
first step is the extraction of all scalar integrals, called seeds, which can be reduced to a
minimal set of integrals using integration-by-parts (IBP) [123, 124] and Lorentz invariance
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3.1 Overview of workflow

(LI) [125] identities as well as symmetries of the integrals, e.g. under momentum shifts.
The IBP identities can be derived from considering integrals of total derivatives like

∫

k1,...,kn
ddk1 . . . ddkn

∂

∂kµj


kµl

∏

i

(p · k)bi
i

(q2i +m2
i )ai


 = 0 (3.1)

where the original Feynman integrand, i.e. the product of propagators in parentheses,
vanishes on the integration surface [124]. Here, the momenta labelled p are external, k are
loop momenta and q are linear combinations of different momenta. The second type of
identities, the LI identities, require asymmetric combinations of external momenta and are
hence not relevant for the processes considered here with one external momentum. The
package Kira [126–128] offers an efficient implementation of all aforementioned identities,
generating and solving the necessary equations with Fermat [129] or FireFly [130, 131]
to reduce either a list of integrals or an entire sector.

In an intermediate step, we use the script ImproveMasters.m [132] to refine the basis
of MIs for which Kira finds linear relations with all seed integrals. A good basis of
master integrals has the feature that the dependence on any kinematic variables and
on the dimensional regulator ε factorise in the denominators of the IBP relations. This
is desirable as it leads to more compact IBP relations with simpler rational coefficients,
which also facilitates the evaluation of MIs in the next step. Since we first require a list
of IBP reductions to find a good basis of masters, Kira is run three times; first, for the
sector in which we expect to find our master integrals, and then once more for the list of
seed integrals and the preferred masters as provided by ImproveMasters.m. A third and
final run of Kira is then used to find symmetry relations among the MIs across different
families. Here, the list of all previously determined masters is taken as the set of seed
integrals for the reduction.

Next, the IBP reductions are used to reduce the amplitude to a minimal basis of MIs.
This is done with a few custom FORM routines, and requires a careful treatment of the
dimensional regulator ε as the expressions should be Taylor-expanded in ε, but at the
same time, poles in ε may appear in IBP identities and symmetry relations. Therefore,
expansions in ε are done as soon as all reductions and symmetries are inserted, and up to
the minimum order as required for the matching and taking into account potential poles
from the MIs.

The IBP tables are also required for the evaluation of the master integrals in a semi-analytic
expansion using the “expand and match” approach [133–136]. The method is described in
more detail in Section 3.4, and we note here that further input for the numerical boundary
conditions of integrals is required, for which we use AMFlow [137].

In the final step, the MIs are inserted into the amplitude and the expression is saved as a
series expansion in ε and the mass ratio mc/mb. These expressions are then further treated
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Kira

Seed integrals Topology files

IBP reductions ImproveMasters.m

Preferred masters

FORM routines

Amplitude in terms 
of master integrals

Amplitude in terms 
of scalar integrals

Expand and match

Semi-analytic 
master integrals

Mathematica script

Final bare 
amplitude

Figure 3.4: Workflow for the reduction to master integrals and evaluation of
those integrals for the bare amplitude.
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in the renormalisation and matching procedures, see Sections 2.1.3 and 2.6 respectively.
These last computations are all carried out in Mathematica [138].

The key steps in setting up and executing the workflow outlined here are discussed in the
following sections.

3.2 Setup and kinematics

3.2.1 General considerations for four-point interactions

In the following, the setup of the amplitude calculations for the mixing and decay processes
is outlined. First, general considerations applicable to all mixing and decay amplitudes are
discussed, with the specifics of the individual processes presented in Sections 3.2.2 and
3.2.4.

For the calculations presented in this thesis, we work with five active quark flavours,
namely up, down, charm, strange and bottom quarks. The masses of the light quarks
are set to zero, i.e. mu = md = ms = 0, while for the charm and bottom quarks we
work with the non-zero masses mc and mb respectively. For the calculation of matching
coefficients, we take the external quarks to be on-shell as we are interested in the physical
observables. Choosing a reference frame where the three-momentum of the light external
quark vanishes, there is only one non-zero external momentum q. The on-shell condition
for the bottom quark implies that q2 = m2

b.

The topologies that are filtered for in the diagram generation differ slightly across the two
sides of the matching. On the |∆B| = 1 side, calculations in general may include one-
particle reducible contributions while the transition operators only require 1PI topologies
since we amputate all QCD corrections on the legs. The allowed topologies of the
amplitudes from two insertions of the |∆B| = 1 Hamiltonian depend on the pairs of
operators inserted.

To determine the renormalisation constants of the |∆B| = 2 and |∆B| = 0 transition
operators, off-shell amplitudes may be calculated since the UV divergences are the same as
for the physical on-shell amplitudes. However, care must be taken to differentiate between
IR and UV divergences. The way we regularise IR divergences is by introducing a finite
mass for the light external quark, setting it equal to the bottom mass mb. In this way, the
amplitudes are IR-finite, and by working with vanishing external momenta, all integrals
reduce to tadpoles. These can be evaluated with the MATAD package [139].
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3 Calculation of Amplitudes

3.2.2 Setup of the B meson mixing amplitudes
The B mixing amplitudes are generated following the general considerations above with
the exception that flavour-changing self-energies (FCSE) require a careful filtering of
topologies. In this thesis, the contributions to the |∆B| = 2 matching coefficient from
both current-current and penguin operators are calculated to NNLO, so there is a wide
range of topologies that can appear in the amplitude generated from the |∆B| = 1
Hamiltonian. The most interesting class of topologies is those of FCSEs, which give
non-vanishing contributions from NLO onwards, see Fig. 3.5. It is worth noting that
these diagram classes do not appear when considering only current-current operators.
Therefore, they were first considered in Ref. [140], where the mixed contributions from
one current-current and one penguin operator were calculated. At NNLO and beyond, the
FCSE topologies appear also with only current-current operator insertions.

Q3–6

b

b̄

q

q̄
q

Q1–6

Figure 3.5: Flavour-changing self-energy diagrams at NLO.

For this thesis, the current-current and penguin operator contributions are calculated up
to NNLO, i.e. diagrams of up to three-loops on the |∆B| = 1 side are generated with
any two of the operators Q1–6. The contributions from the chromomagnetic operator Q8
are computed up to two loops, corresponding to NNLO for the mixed contributions with
Q1–6 and to N3LO for the contributions proportional to C2

8 since this operator comes
with an additional factor of the strong coupling gs . For the |∆B| = 2 transition operator,
two-loop diagrams with a single |∆B| = 2 operator insertion are computed.

3.2.3 Linear charm mass dependence in B meson mixing
The NNLO contributions to the matching coefficients are special because they give rise
to √z = mc/mb terms, and it is instructive to show how they appear. The square root
terms stem from diagrams like the one shown in Fig. 3.6a, which can be reduced to a
linear combination of master integrals that includes the integral in Fig. 3.6b. Odd powers
in mc/mb arise from the integral

I =
∫ ∫ ∫

ddk dd` ddp 1
k2

1
(`2 – m2c)3

1
p2 – m2c

1
(` – p + q)2 – m2

b

1
(k + q)2 (k + p)4

(3.2)
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Quu
1,2 Quu

1,2
b

q̄

q

b̄

u

u

c

(a) Diagram with
√

z terms

kp

ℓ

(b) MI with
√

z terms

Figure 3.6: Diagram with the relevant master integral which gives rise to √z
terms. The dashed, single and double lines of the MI are massless,
charm and bottom propagators respectively. The filled dots denote
additional powers of the propagator while the grey dot denotes an
inverted dot, i.e. a propagator raised to the power of +2.

in the limit mc → 0 and can be obtained by carrying out an asymptotic expansion with
the method of regions [141, 142]. In the following, we explicitly show the source of the
linear mc/mb contribution. There are two scalings of squared loop momenta to consider,
the hard (∼ q2 = m2

b) and the soft (∼ m2
c) regime. The only region which contributes to

the √z terms is

k2 ∼ q2 , `2 ∼ m2
c , p2 ∼ m2

c . (3.3)

This is because the bottom propagator for soft ` and p has a simplified leading term,
2q · (` – p), which leads to a linear term in mc . The third loop momentum k needs to
be hard because the integral otherwise contains a massless tadpole and vanishes. The
leading term of the integral from Eq. (3.2) in the relevant region is

Ihss =
∫ ∫ ∫

ddk dd` ddp 1
(`2 – m2c)3

1
p2 – m2c

1
2q · (` – p)

k2
(k + q)2 +O

(
m2

c
m2

b

)
, (3.4)

where the integral over k can be carried out, and the remaining two-loop integral is found
in Ref. [143] such that

Ihss ∼ m2
b

(
mc
mb

+O(m2
c/m2

b)
)

, (3.5)

from which it becomes apparent that the discussed diagrams will lead to √z terms in the
matching coefficients at NNLO.

3.2.4 Setup of the B meson decay amplitudes
For the decay amplitudes, the diagram generation on the |∆B| = 1 side is special because
one of the current-current operators is Fierz-transformed. This is necessary because we
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3 Calculation of Amplitudes

want to be able to match onto |∆B| = 0 operators which have exactly one bottom
quark per spin line without introducing evanescent operators on the |∆B| = 0 side that
vanish under a Fierz transformation. Fierz-transforming a |∆B| = 1 operator instead
is possible through the correct choice of evanescent operators in the historical basis as
shown in Section 2.2.2. The diagrams are then generated by inserting one regular and
one Fierz-transformed current-current operator, leading to topologies as shown in Fig. 3.7.
The advantage here is that there are no closed fermion lines, so no difficulties with γ5
arise.

u
d

b̄

d

b̄c
O1,2 OF

1,2

(a) Fierz-transformed WA

d

u

b̄

b̄

u

c

O1,2

OF
1,2

(b) Fier-transformed PI

Figure 3.7: Leading-order diagrams with one regular and one Fierz-transformed
current-current operator.

We calculate the leading-CKM contributions, i.e. ~F u,d , to NNLO and the sub-leading-CKM
contributions, i.e. ~F c , to NLO, see Eq. (2.146). Therefore, the diagrams we compute on
the |∆B| = 1 side are generated by inserting only Q1,2 at NLO and NNLO, while at LO
we also need the penguin operators. The differentiation between leading and sub-leading
contributions in terms of the CKM factors is relevant for the Weak Annihilation diagrams,
i.e. those with Bd external states. The leading terms have a u and a c quark in the
internal loop, while the sub-leading terms have two c quarks. Referring to Eq. (2.123),
the sub-leading contributions are those that give rise to the matching coefficients with the
superscript c . The suppression factor relative to the leading terms is |Vud |2/|Vcd |2, which
is roughly 5%. The leading contribution is given by only the current-current operators
because the penguin operators have the CKM factor

V ∗tbVtd = –V ∗cbVcd – V ∗ubVud , (3.6)

where we have used the unitarity of the CKM matrix. Therefore, all penguin contributions
are suppressed, and we choose to discard the doubly Cabibbo-suppressed second term
above. For the sub-leading CKM contribution, which we calculate to NLO from current-
current operators, penguin operators are needed to LO and as counterterm contributions
to the current-current amplitude. In these LO diagrams with one penguin and one
current-current operator as shown in Fig. 3.8a, the current-current operator should not be
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3.3 Spinor projector algorithm

Fierz-transformed to avoid closed fermion lines. This is consistent, since we are always
free to choose either OF

1,2 or O1,2 when inserting a current-current operator. Moreover,
the corresponding current-current NLO diagrams in Fig. 3.8b that receive counterterm
contributions from the mixed one-loop diagrams do not involve Fierz-transformed operators
either, as is necessary to avoid issues with γ5.

c
d

b̄

d

b̄c
O1,2 O3–6

(a) LO current-current × penguin

cd

b̄

d

b̄c
O1,2 O1,2

c

c

(b) NLO current-current

Figure 3.8: Penguin topologies contributing to the CKM-suppressed ~F c matching
coefficients.

As discussed in Section 2.6.2, the matching coefficients are only extracted for the SU(3)F-
breaking contributions; therefore, all diagrams that lead to SU(3)F singlet matrix elements
should be filtered out. This is achieved by discarding all diagrams on both sides of
the matching where two b quarks sit on the same spin line. Sample diagrams of those
contributions that are discarded are shown in Fig. 2.8 on page 64.

Similar to the B meson mixing calculation, the |∆B| = 1 side involves diagrams with
two effective operator insertions and up to three loops while for the transition operator
two-loop diagrams with a single |∆B| = 0 operator insertion are computed.

3.3 Spinor projector algorithm
The projection of spinor structures that appear in dimensional regularisation poses a
particular challenge, which is efficiently treated using the algorithm presented here. The
general idea is to reduce the Dirac chains in the diagrams with computationally inexpensive
manipulations before applying two tables of pre-computed identification statements, see
Fig. 3.9. The use of lookup tables reduces the need for carrying out expensive calculations
multiple times since they are only done for a minimal set of spinor structures. Moreover,
through the successive application of two tables, one for the γ matrices and one for
the momentum insertions, the computation time in setting up the projectors is reduced
significantly. The individual steps of the algorithm, including the generation of the lookup
tables are explained in the following.

The implementation of the algorithm was written in FORM as this language offers an
efficient implementation of the d-dimensional trace over a product of γ matrices and is
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Figure 3.9: Overview of the spinor projector algorithm.
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Q5 Q5
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Figure 3.10: B mixing at NLO with two Q5 penguin operators inserted.

able to handle large expressions of hundreds of GB. We primarily discuss the projectors for
two spin lines with one external momentum.

For the computation of the renormalisation constants, we also have to consider diagrams
without an external momentum. The corresponding projectors do not include elements
with a slashed external momentum and are hence simpler.

In the following, the problem is first defined in terms of the spinor structures that appear
in the amplitudes. After a discussion of the mathematical tools and the construction of
projectors over special vector spaces, the details of the spinor projector algorithm, which
has been published in Ref. [113], are presented.

3.3.1 Dirac chains in amplitudes

The purpose of applying spinor projectors to a scattering amplitude between Dirac spinors
is to decompose the appearing tensor integrals in terms of linear combinations of scalar
integrals. Those linear combinations should only depend a minimal set of spinor structures
independent of the loop momenta. The spinor structures of four-fermion amplitudes
consist of two matrices in spinor space, each of which is a product of Dirac γ matrices.
These products are called spin lines or equivalently Dirac chains. The Lorentz indices on
the γ matrices can be contracted with other γ matrices, loop momenta or the external
momentum. To illustrate this point, the most complicated spinor structure of the diagram
shown in Fig. 3.10 is given by

PR γ
µ1γµ2γµ3 /k1 γσ /k2 γν1γν2γν3 ⊗ PR γν1γν2γν3 /k3 γσ /k4 γµ1γµ2γµ3 . (3.7)

Since γ5 never appears in closed fermion loops, the chirality projectors can always be
commuted to the end of the spin line as has been done here. The momenta ki are the
propagator momenta of the fermion lines and therefore linear combinations of the loop
momenta and the external momentum q. In the following, γ matrices which do not have
their Lorentz indices contracted with a momentum vector are called “pure” γ matrices,
and their products are referred to as “pure” spin lines.
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Figure 3.11: Sample diagrams with the maximum number of eleven γ matrices
in B mixing on the |∆B| = 1 side.

Like the number of generations of evanescent operators to be considered, the number
of γ matrices per spin line is also limited by the most complicated three-loop structure
that appears in the amplitude calculations. The maximum number of γ matrices on a
single spin line after contracting repeated Lorentz indices on the same spin line is eleven,
which appears in the B meson mixing amplitudes. The most complicated diagrams on the
|∆B| = 1 side with eleven γ matrices on each spin line are, by loop order:

• LO diagrams with second generation penguin evanescent operators E (2)
3,4 and a

penguin operator Q5,6 or equivalently two first generation penguin evanescent
operators E (1)

3,4 . In either case, there are ten pure γ matrices and only one slashed
momentum per spin line.

• NLO diagrams with a first generation penguin evanescent operator E (1)
3,4 and a

penguin operator. Here, we have two slashed momenta and nine pure γ matrices
one each spin line.

• NNLO diagrams with two penguin operators Q5,6, which have three slashed momenta
and eight pure γ matrices per spin line.

These topologies have all gluons connecting across the spin lines, so the number of
slashed momenta is given by the number of loops. Sample diagrams for each of the above
categories are shown in Fig. 3.11.

3.3.2 Vector spaces over γ matrices
Pure γ matrices

To be able to define an inner product and hence projectors, we need to discuss the vector
spaces we are dealing with. The construction of vector spaces is done first over spin lines
with only pure γ matrices to illustrate the basic concepts. A generic element of the vector
space over pure spin lines can be written as

Ξ = Γµ1,...,µn ⊗ Γµσ(1),...,µσ(n) , (3.8)

where σ(x) is a permutation of the n Lorentz indices. Note that the Clifford algebra

{γµ, γν} = 2gµν (3.9)
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3.3 Spinor projector algorithm

should be used to commute γ matrices with repeated Lorentz indices together to reduce a
degree of redundancy from inserting an identity on either spin line using

1 = 1
d γ

µγµ . (3.10)

In setting up Eq. (3.9), we specify the NDR scheme, which is used throughout the
calculation of amplitudes. We further define the trace of the unit matrix in spinor space to
be equal to four. With these definitions, spinor structures like the one given in Eq. (3.8)
are elements of

Clp,q(C)⊗ Clp,q(C) , (3.11)
where Clp,q is the Clifford algebra over the spacetime Rp,q. In our case we have p = 1
time and q = d – 1 space dimensions. However, the Clifford algebra is not closed in d
dimensions, so we can further simplify the mathematical description of our problem by
building a vector space from the finite number of spinor structures that actually appear in
the scattering amplitudes at hand.

In practice, any diagram can be written as the sum of Dirac chains of different lengths, so
the actual spinor structure of the diagram is fully encoded by the n-tuple

x =

c(0)1⊗ 1, c(1)γµ ⊗ γµ,

∑

i
c(2)i Γ(2) ⊗ Γ(2)

i , . . .

 , (3.12)

where the γ matrices in a spin line Γ(k)
i of length k have not been ordered. That is, the

index i labels a particular permutation of the Lorentz indices on the second spin line; the
first spin line can always be canonically labelled with indices µ1, . . . ,µk . The elements x
live in the vector space

Ṽn ≡ Ṽ (0) ⊕ Ṽ (1) ⊕ . . . ⊕ Ṽ (n) , (3.13)

which is the direct sum of the vector spaces of unordered γ matrices of length k, Ṽ (k).
The diagram limits the maximum number of γ matrices to be at most n, which for the
most complicated diagrams is eleven.

This description still has too many degrees of freedom since the Clifford algebra from
Eq. (3.9) can be used to order the γ matrices canonically. Therefore, there exists a linear
map φCliff : Ṽn → Vn, where we define the vector space over ordered spin lines up to
length n as

Vn ≡ spanC
(
{1⊗ 1, γµ ⊗ γµ, . . . , γµ1 . . . γµn ⊗ γµn . . . γµ1}

)
, (3.14)

or equivalently
Vn ≡ V (0) ⊕ V (1) ⊕ . . . ⊕ V (n) (3.15)

where V (k) ∼= C is the vector space of ordered γ matrices of length k. Hence, Vn is
isomorphic to Cn+1. This vector space is much smaller compared to Ṽn, where each of
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the sub-spaces Ṽ (k) has k! complex dimensions. The definition of the vector space in
Eq. (3.14) is only meaningful in d dimensions, where we cannot apply four-dimensional
identities like the Chisholm identities or Fierz-transform the spinor structures.

For pure γ matrices, we hence need to implement the map φCliff in an efficient manner in
order to reduce any spinor structure in terms of the basis elements of Vn as defined in
Eq. (3.14).

Adding complexity with slashed momenta

The challenge in working with actual amplitudes is that we need to treat spinor structures
that also contain slashed momenta. Assuming that all momenta have been commuted to
the left and γ matrices with repeated Lorentz indices on the same spin line have been
contracted, we are left with spinor structures like

Ξ = /p1 . . . /pm γµ1 . . . γµk ⊗ /pm+1 . . . /pr γµσ(1) . . . γµσ(k) , (3.16)

where σ(x) is a permutation of the Lorentz indices. The number of slashed momentum
insertions r is at most equal to the number of fermion propagators.

We now proceed to construct the vector space for spinor structures of the form given in
Eq. (3.16) from the bottom up by starting from the observation that

Ξ ∈ Cd ⊕ · · · ⊕ Cd ⊕ Ṽ (k) ∼= (Cd )r ⊕ Ṽ (k) ≡ Wr ,k , (3.17)

since the slashed momenta live in Cd . Eventually, the final result is written in terms of
physical Lorentz tensors appearing in the process, i.e. the external momentum qµ and the
metric tensor gµν . Therefore, we are interested in finding a map onto the vector space

Wk ≡ spanC
(
{1⊗ 1, /eq ⊗ 1, 1⊗ /eq, /eq ⊗ /eq,

γµ ⊗ γµ, . . . , γµ1 . . . γµk/eq ⊗ γµk . . . γµ1/eq}
)
,

(3.18)

where we have defined
/eq ≡

/q√
q2

. (3.19)

Note that Wk is isomorphic to C4k+4.

In the following, we will also make reference to the vector space

W̃r ,n ≡ (Cd )r ⊕ Ṽn , (3.20)

which has elements of the form

x =
(
c(0)/p1 . . . /pm ⊗ /pm+1 . . . /pr , c

(1)/p1 . . . /pm γµ ⊗ /pm+1 . . . /pr γµ,
∑

i
c(2)i /p1 . . . /pm Γ(2)

i ⊗ /pm+1 . . . /pr Γ(2)
i , . . .

)
.

(3.21)
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This extends Wr ,k in a similar fashion as Ṽn in Eq. (3.13) extends Ṽ (k). The vector space
which covers all possible spinor structures, accounting for different numbers of slashed
momenta, is the direct sum

ŨR,n ≡
⊕

r≤R
W̃r ,n (3.22)

with up to R slashed momenta.

3.3.3 Constructing projectors with inner products

Projections in vector spaces are carried out with the help of an appropriately defined inner
product 〈· , ·〉. For example, the projectors Pi can be applied to an element x of a vector
space to obtain the projection onto a subspace,

P(x) =
∑

i
eiPi (x) =

∑

i ,j
eiλij〈ej , x〉 , (3.23)

where ei are the basis elements of that subspace. Since a projection of any basis element
should yield that same basis element,

Pi (ek) =
∑

j
λij〈ej , ek〉 =

∑

j
λijGjk

!= δik , (3.24)

the coefficients λij can be determined from the above equality. The matrix G is called the
Gram matrix, which is defined via

Gij ≡ 〈ei , ej〉 , (3.25)

such that the coefficient matrix λij is given by its inverse. In order to construct a set of
projectors, the Gram matrix must be invertible, which is the case when the vectors ei form
a proper basis because in that case they are linearly independent.

The problem of defining a set of projectors can hence be reduced to defining an inner
product 〈· , ·〉 : V × V → C. An inner product has the following properties:

(i) Conjugation symmetry: 〈x , y〉 = 〈y , x〉

(ii) Linearity: 〈ax + by , z〉 = a〈x , z〉+ b〈y , z〉 ∀ a, b ∈ C

(iii) Positive-definiteness: 〈x , x〉 > 0

However, one can also compromise on property (iii) if the resulting Gram matrix is
nevertheless invertible.
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The traditional choice of inner product

The inner product on the vector space Wr ,k for x , y ∈ Wr ,k is usually defined as

〈x , y〉 ≡Tr
[ (

/p1 . . . /pmx
γµ1 . . . γµkx

)†
/q1 . . . /qmy

γν1 . . . γνky
]
×

Tr
[ (

/pmx+1 . . . /prx γµσ(1) . . . γµσ(kx )

)†
/qmy+1 . . . /qry γ

νσ′(1) . . . γ
νσ′(ky )

]
,

(3.26)

see for example Refs. [144, 145]. In the inner product above, the indices µi and νi with
the permutations σ and σ′ belong to x and y with the momenta pi and qi .

It can be checked that this is a proper inner product, fulfilling the three conditions above.
For Eq. (3.26), property (i) is obeyed for either complex conjugation or the interchange of
the two spin lines. Although the traditional inner product uses complex conjugation, the
more natural choice is the interchange of spin lines. The latter conjugation symmetry is
also more easily obeyed.

Showing that property (ii) is fulfilled by Eq. (3.26) is slightly more involved as the
definition needs to be extended to W̃r ,n to handle spinor structures with more than one
term, e.g. x = γµ ⊗ γµ + γµγν ⊗ γµγν . To ensure the correct contraction of Lorentz
indices, the scalar product should be applied to all pairs of vector components in Eq. (3.21)
individually,

〈· , ·〉 :
((

x (0), x (1), . . . , x (n)m
)
,
(
y (0), y (1), . . . , y (n)m

))
7→

φ(x (0), y (0)) + φ(x (0), y (1)) + · · ·+ φ(x (n)m , y (n)m ) .
(3.27)

We can thus see that the scalar map from Eq. (3.26) that is an inner product on Wr ,k is
a special case of the scalar map φ,

φt : (Cd )r ⊕ Ṽ (k) × (Cd )r ⊕ Ṽ (k) → C

(x1 ⊗ x2, y1 ⊗ y2) 7→ Tr
[
x†1y1

]
× Tr

[
x†2y2

]
,

(3.28)

which we use in the definition of the inner product on the bigger vector space W̃r ,n. With
the definition of the inner product on W̃r ,n from Eq. (3.27), we can now see that the
linearity condition (ii) is fulfilled for any linear map φ.

It is therefore important to differentiate between the scalar map φ which maps elements
from (Cd )r ⊕ Ṽ (k)× (Cd )r ⊕ Ṽ (k) to C and the inner product 〈· , ·〉 which maps elements
from W̃r ,n × W̃r ,n = (Cd )r ⊕ Ṽn × (Cd )r ⊕ Ṽn to C. Note that the extension to W̃R,n
proceeds analogously with the inner product being defined component-wise for each
number of slashed momenta, and applying the map to all pairs of vector components as
in Eq. (3.27).
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Choosing φ = φt , the traditional inner product is also positive definite, fulfilling prop-
erty (iii). However, this requirement can be relaxed for the purpose of defining projectors
as long as the Gram matrix is invertible.

Choosing a new scalar map

For long spin lines, especially those with many pure γ matrices, the traditional map φt is
not the most efficient, and we may choose a different map instead. This is because in the
traditional map the Lorentz indices on the γ matrices are contracted across the two traces.
Therefore, the intermediate expressions after taking one of the traces become quite large,
and the computation cannot easily be parallelised. For example, each individual trace
product that appears in the projection of spin lines with nine γ matrices requires several
days of single-core computation with FORM.

The alternative that we choose for the map φ is

φp : (Cd )r ⊕ Ṽ (k) × (Cd )r ⊕ Ṽ (k) → C
(x1 ⊗ x2, y1 ⊗ y2) 7→ Tr [x1y1x2y2] .

(3.29)

The main advantage of φp is that there is only one single trace, and all Lorentz indices
of the pure γ matrices are contracted within the same trace. Therefore, γ matrices with
pairwise contracted Lorentz indices can be commuted together and eliminated, reducing
the length of the trace. As a trade-off, commuting the γ matrices through the spin line
will generate additional terms, but each of them will have fewer γ matrices, and they can
be evaluated in parallel on multiple cores. Since the map φp is particularly powerful for
spinor structures with many pure γ matrices, it carries the subscript “p”.

The properties (i) to (iii) need to be checked for this new definition of φp. Linearity still
holds, and with the interchange of the spin lines, conjugation symmetry is also obeyed.
However, property (iii) does not hold since the map is not positive-definite as can be
checked for x = γµ ⊗ γµ. Since we still want to use this map φp to construct projectors,
the Gram matrix must be checked for invertibility.

With a proper inner product, the invertibility condition for the Gram matrix is automatically
fulfilled. For example, for the vector space Vn of pure ordered γ matrices,

〈x , x〉 > 0 ∀ x ∈ Vn : x 6= 0 ⇐⇒ ~v†G~v > 0 ∀ ~v ∈ Cn+1 ∼= Vn : ~v 6= 0 , (3.30)

where ~v is the coefficient vector of the (n + 1)-tupel of basis elements up to length n.
Conversely, if the bilinear map 〈· , ·〉 is not positive-definite, the Gram matrix becomes
non-invertible in case there are eigenvectors with zero eigenvalue,

〈x , x〉 > 0 =⇒ ∀~v 6= 0 : G~v 6= 0, (3.31)
∃~v 6= 0 : G~v = 0 ⇐⇒ G non-invertible. (3.32)
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For the vector space Vn, there are no such eigenvectors; however, for Wn such eigenvectors
exist when the basis is not chosen with care.

Construction of a spinor basis

We now outline the construction of the Dirac basis and the strategy used to ensure that
the associated Gram matrix remains invertible. Since we are considering amplitudes with
one external momentum, the basis elements contain at most one slashed momentum
per spin line. For the projection of tadpole amplitudes, all basis elements with slashed
momenta are removed. The full list of basis elements is given in Appendix D.

In projecting the Dirac structures appearing in the amplitude with one external momentum,
we first determine the number n of γ matrices on the shorter spin line. The projector
basis is then built to include all combinations containing up to n total γ matrices, as well
as an additional slashed momentum on the longer spin line. This upper bound reflects the
most complicated Dirac structure that can arise in the amplitude. Whenever the longer
spin line contains more γ matrices, index contractions must occur, effectively reducing the
number of γ matrices. If both spin lines have the same length, we still add a further basis
element as the Gram matrix would otherwise become non-invertible for odd numbers of γ
matrices.

A special treatment is required when both spin lines contain eleven γ matrices. In this
symmetric configuration, each spin line features ten pure γ matrices and one slashed
momentum. The standard approach would be to add an additional basis element with
an additional slashed momentum on one of the spin lines. However, since enlarging the
basis to twelve γ matrices would entail a substantial computational overhead, we instead
employ a slightly modified basis. For this case, we retain all structures containing up to
eleven γ matrices on each spin line, including slashed momenta, but we omit a single
asymmetric element. The element that is removed has ten γ matrices on both lines and a
slashed momentum on only one of them. This adjustment ensures that the Gram matrix
remains invertible. The asymmetric basis element is not required because it is impossible
to reduce the number of γ matrices by exactly one since the length of the spin lines can
only be reduced as a result of a Lorentz index contraction via γµγµ = d .

3.3.4 A different view on pure γ matrix chains

As alluded to earlier, the problem of mapping an unordered chain of pure γ matrices onto
a linear combination of ordered basis elements hinges on the efficient implementation of
the Clifford algebra, but we can find a simpler description of the problem without making
reference to the underlying algebra. In essence, what needs to be determined are the
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functions

fk : Sk → Rk+1 (3.33)
σ 7→ ~a , (3.34)

where Sk denotes the permutation group of k elements. Here, the elements σ ∈ Sk are
the permutations of the Lorentz indices of the spin line which is not labelled canonically,
and ~a ∈ Rk+1 are the coefficients of the linear combination of ordered spinor structures.
The ordering of the coefficients is chosen such that a1 is the coefficient of the longest
Dirac chain, while the ak+1 for each fk is the coefficient of the identity. If the full set
of functions fk up to the maximum length of Dirac chains is known, all spinor structures
of pure γ matrices can be resolved in terms of the basis that spans Vn as defined in
Eq. (3.14).

The functions fk can be explicitly constructed by applying the Dirac algebra, and they
read for the first few elements:

f1 : S1 → R2 , (1) 7→ (1, 0)

f2 : S2 → R3 ,



(12) 7→ (1, 0, 0)
(21) 7→ (–1, 0, 2d)

f3 : S3 → R4,





(123) 7→ (1, 0, 0, 0)
(132) 7→ (–1, 0, 2d , 0)
(231) 7→ (1, 0, 4 – 4d , 0)
...

(3.35)

The permutations (. . . ) denote the ordering of the Lorentz indices µi on the spin which is
not labelled canonically, back to front. That is, the permutation which has all Lorentz
indices in the correct order directly corresponds to a basis elements of Vn. As an example,
consider f2((21)), which is given by

γµ1γµ2 ⊗ γµ1γµ2 = –γµ1γµ2 ⊗ γµ2γµ1 + 2d(1⊗ 1) . (3.36)

From the discussion above, a clear pattern can be observed. The first coefficient, corre-
sponding to the contribution from the longest basis element of length k , is always given by
the sign of the permutation, i.e. a1 = sgn(σ). Furthermore, all even coefficients a2n vanish,
since any contraction on the Lorentz indices necessarily reduces the number of γ matrices
on a spin line by two. Although deriving closed analytic expressions for the coefficients is
rather involved, constructing a lookup table for all permutations of Dirac chains up to
length k = 11 is straightforward and required O(106) single-core CPU minutes.

When computing the lookup table, the computational efforts can be reduced significantly
by recognising that for the function fk+1 one only needs to commute the γ matrix with
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Q6

b

q̄

q

b̄

Q6

Figure 3.12: Sample diagram appearing in the NNLO B mixing calculation used
to illustrate the spinor projector algorithm with the most compli-
cated topologies. The Lorentz indices associated with the penguin
operators Q6 are denoted by µi and νi , whereas the gluon vertices
carry Lorentz indices αi .

the Lorentz index µk+1 into position. After that, the map fk is applied to all generated
terms, and the maps can be generated from the bottom up in an efficient manner.

Using this method, the basis mapping of pure γ matrices can be resolved and the
computational effort for projecting spinor amplitudes is significantly reduced. Consequently,
only a limited number of spinor structures needs to be projected because the pure γ
matrices are easily brought in order.

3.3.5 A practical algorithm for generic Dirac chains

With the general framework established in the preceding sections, we now describe the
algorithm employed to handle the γ matrices appearing in our amplitude. The objective
is to express each diagram as a linear combination of operator matrix elements in the
|∆B| = 2 theory. This is achieved in two stages: first, the pure γ matrices are brought
into canonical order, and subsequently the projectors are applied to resolve the slashed
momentum insertions. The complete procedure is summarised below, and for illustration
we show the intermediate structures encountered in the evaluation of the diagram shown
in Fig. 3.12.

(i) Project onto the left- and right-handed spinor structures. This can be accomplished
by multiplying with the chirality projectors PR/L = (1 ± γ5)/2 and subsequently
discarding all remaining terms containing γ5. Such terms do not contribute to the
amplitude, since the chiral projectors can always be commuted through to the end
of each spin line, ensuring that no overall γ5 factor remains. For the sample diagram
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shown in Fig. 3.12 we obtain

γµ1γµ2γµ3/k1γα1/k2γα2/k3γν1γν2γν3⊗
γα2/k4γµ1γµ2γµ3/k5γν1γν2γν3/k6γα1 + 3 terms .

(3.37)

Here, the ki are the line momenta of the propagators.

(ii) Rewrite all line momenta in terms of the loop momenta and the external momentum.
This substitution reduces the number of possible slashed γ matrices that can appear.
For instance, in the case of the sample diagram we have

γµ1γµ2γµ3/p3γ
α1/p3γ

α2/p2γ
ν1γν2γν3⊗

γα2/p3γµ1γµ2γµ3/p1γν1γν2γν3/p2γα1 + 95 terms .
(3.38)

(iii) Canonically order the slashed momenta:

a) Replace any repeated momenta on the same spin line by corresponding scalar
products. This step increases the number of terms by at most an order of
magnitude; for the example considered here, the expression expands to 419
terms after this transformation.

b) Move all slashed momenta to the left along each spin line by commuting them
through the pure γ matrices. This operation can increase the number of terms
by up to a factor of 103.

c) Bring all instances of the external momentum to the far left, followed by
the loop momenta. Arranging the external momentum in this position is
advantageous, as several basis elements contain a slashed external momentum
situated on the right. Applying a projector element with an external momentum
immediately leads to a scalar product q2, which shortens the trace. For the
sample diagram, this step results in a total of 318 808 terms.

d) Resolve all permutations of the loop momenta, e.g. with the indices in descend-
ing order.

At the end of these steps to reorder the slashed momenta, the sample diagram has
the following structure:

/p3/p2/p1γ
µ2γµ3γα2γν1γν2γν3 ⊗ /p3γα2γµ2γµ3γν1γν2γν3 + 181 510 terms . (3.39)

(iv) Contract repeated Lorentz indices appearing on the same spin line by commuting
the corresponding γ matrices together.

(v) Arrange all pure γ matrices in canonical order. This is accomplished using a
precomputed lookup table that resolves the permutations of pure γ matrices. The
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table provides all mappings of permutations involving up to ten γ matrices on each
spin line into linear combinations of canonically ordered structures. The biggest
such table has a size of 1.5 GB and contains all 10! permutations of up to ten
pure gamma matrices. To minimise the number of terms generated when applying
the map φp from Eq. (3.29) during the projection, it is advantageous to adopt a
canonical ordering in which the γ matrices on the two spin lines appear in reversed
order relative to one another. In this configuration, the maximum number of required
commutations equals the length of the projector element inserted between the spin
lines. For the sample diagram, this yields

/p3/p2/p1γ
ρ1γρ2γρ3γρ4γρ5γρ6 ⊗ /p3γρ6γρ5γρ4γρ3γρ2γρ1 + 40 134 terms , (3.40)

which is usually a significant reduction by a factor of five in the number of terms
compared to the previous step. Note that this step is the most expensive of the
algorithm, taking up more than 90% of the computation time.

(vi) Map the expressions containing ordered pure γ matrices and isolated slashed momenta
directly onto the basis elements given in Appendix D. This is accomplished using
a pre-computed lookup table generated by applying projectors to the ordered γ
structures. Since the procedure is symmetric under the interchange of the spin lines,
it suffices to evaluate only one of the two configurations whenever the distribution of
loop momenta is asymmetric under such an exchange. The lookup table is relatively
compact with a total size of 1.3MB and around 150 lines. For vacuum integrals,
the table is even smaller with around 50 kB.

In constructing the lookup table, different projectors, in particular different inner
products, may be employed depending on the specific spinor structure to be resolved.
For most cases, we employ the bilinear map φp defined in Eq. (3.29). However, for
the projection of spinor structures involving eleven γ matrices and slashed momenta
on both spin lines, this map becomes inefficient as the slashed momenta effectively
represent open Lorentz indices within the trace. In these instances, we instead use
the linear map φt , which performs the traces over both spin lines separately, as
defined in Eq. (3.26).1

For the representative diagram, this procedure yields

(p1 · p3)2p22
d3 – 6d2 + 11d – 6 × B45 + 104 335 terms , (3.41)

where the dimension is d = 4 – 2ε. For the definition of B45 see Appendix D.
1To optimise the computation of the lookup table entry for φt , the inner products are divided into
separate files, each containing up to 105 terms after the first trace has been taken. Parallelising the
second trace renders this calculation feasible, although the large intermediate file sizes of up to 2TB
remain a practical challenge.
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3.3 Spinor projector algorithm

(vii) Map the spinor basis elements onto the corresponding operator matrix elements,
such as 〈Q〉, 〈Q̃S〉, 〈E

(1)
1 〉, and so on. This step is efficiently implemented through

the use of another lookup table.

The main advantage of the above algorithm is that it avoids the three main bottlenecks
of a traditional spinor projector, namely:

• The hybrid approach of ordering the pure γ matrices before applying projectors
minimises the number of spinor structures for which φp,t need to be calculated.

• The lookup tables cover all cases of up to eleven γ matrices and for the kinematics
of a two-point function without having the need to recompute new traces on the fly.

• Applying the projectors only when generating lookup tables avoids inflating the
amplitude by a few orders of magnitude in intermediate steps.

3.3.6 Future improvements to the spinor projector algorithm
To conclude the discussion of the spinor projector algorithm, two possible improvements
which have not been implemented in this thesis are highlighted as possible areas for future
research. The first concerns a modification of the implementation of φt , especially with
slashed momenta in the diagram, while the second focuses on the basis mapping of pure
gamma matrices.

The map φt , as defined in Eq. (3.26), is the most efficient treatment of long spinor
structures with many slashed momenta, e.g. for seven pure γ matrices and four slashed
momenta on each spin line, but minor improvements of the implementation are possible.
The limiting step in the calculation is taking the first of the two traces on a single core and
generating all of the terms from multiplying out the index contractions with the second
spin line. However, this step may be parallelised as shown in Ref. [146]. We define a Dirac
chain of length n as

Γn ≡ γµ1 . . . γµn , (3.42)

and the same Dirac chain with the k th and l th matrices deleted as

Γk,l
n ≡ γµ1 . . . γµk–1γµk+1 . . . γµl–1γµl+1 . . . γµn . (3.43)

For an even length n, we have the identity [146]

Tr(Γn) =
n∑

k=2
(–1)kgµ1µkTr(Γ

1,k
n ) , (3.44)

which can be used to split a trace into multiple terms with shorter traces. While this
does not reduce the overall complexity or the number of terms generated, it allows for the
limiting step to be parallelised.
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Another projector algorithm for pure γ matrices is presented in Ref. [147], where the γ
matrices are treated as fermionic operators in a non-interacting field theory. This allows
for the derivation of various identities for antisymmetric products of γ matrices, which
correspond to normal ordered products in the free field theory. The main idea is to identify
each γ matrix with a fermionic operator

γµ → ψµ ≡ aµ + a†µ , (3.45)

where aµ and a†µ correspond to the annihilation and creation operators. Since these obey
the usual anti-commutation relations

{aµ, aν} = 0 , {a†µ, a†ν} = 0 , {aµ, a†ν} = gµν , (3.46)

the fields ψµ fulfil the Clifford algebra, see Eq. (3.9). Crucially, the antisymmetric product
of ψ fields is equal to the normal ordered product,

As
(
ψµ1 . . . ψµn

)
= :ψµ1 . . . ψµn : , (3.47)

where the antisymmetric product is defined as

As
(
ψµ1 . . . ψµn

)
≡ 1

n!
(
ψµ1ψµ2 . . . ψµn – ψµ2ψµ1 . . . ψµn ± . . .

)
. (3.48)

Therefore, a convenient basis for a single spin line in this formalism is given by the
antisymmetric products of γ matrices. Finding a mapping onto the basis elements of one
spin line is hence equivalent to computing the normal ordered products. Moreover, the
trace operation on γ matrices translates to taking the vacuum expectation value 〈0| . . . |0〉
of a product of ψ fields. These calculations are simplified by the fact that Wick’s theorem
can be used in the free field theory.

The application of the field-theoretic approach to the case of two Dirac chains lies in the
determination of the coefficients Rm in

Γ⊗ Γ′ =
∞∑

m=0

1
m! Rm γ

(m)
C ⊗ γ(m)

C (3.49)

using functional methods. In the equation above Γ and Γ′ are Dirac chains with all Lorentz
indices contracted between them. In this sense they are products of pure γ matrices. The
symbol γ(m)

C stands for the antisymmetric product of γ matrices, containing m matrices
with the set of Lorentz indices C contracted across the two spin lines. For a formula for
the calculation of Rm, see Ref. [147].

While this approach provides an efficient mechanism to order the pure γ matrices, it is not
directly applicable to the most difficult problem at hand. First of all, the problem of treating
slashed momenta has not been solved in this formalism. Secondly, the antisymmetric
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ordering of the γ matrices in the result, i.e. on the right-hand side of Eq. (3.49), is not
a convenient basis to work with in order to map to evanescent operators, which do not
have antisymmetric products of γ matrices in their definition. An implementation of this
formalism for the processes considered here should treat the case of slashed momenta or,
equivalently, open Lorentz indices on Γ′ and map to a more convenient basis of γ matrices.

3.4 Calculation of scalar integrals
After reducing the amplitude to a linear combination of a minimal set of scalar integrals,
the so-called master integrals (MIs), those integrals need to be evaluated in order to
extract the final results from the amplitudes. The methods employed in calculating the
MIs are described in this section. Since the one- and two-loop integrals are available in the
literature [142, 148], the focus is on the three-loop integrals. As only the imaginary part
of the three-loop amplitudes is required, all purely real MIs can be discarded, and only
610 complex integrals need to be calculated. Here, we obtain semi-analytic expansions
for the MIs, which can be used to cover the entire range of the charm to bottom mass
ratio relevant for phenomenological applications, [0.17, 0.35]. The lower bound of this
interval is given by the smallest possible charm mass, i.e. mc(8.4 GeV), and the largest
possible bottom mass, i.e. mb(2.1 GeV). The upper bound of the interval is obtained
from the largest possible charm mass, i.e. mOS

c , and the smallest possible bottom mass,
i.e. mb(8.4 GeV).

The semi-analytic “expand and match” approach [133–136] starts from a differential
equation of the master integrals in a kinematic variable, which is then solved using an
appropriate ansatz that captures the structure of the expected divergences in ε and the
kinematic variable. In the following, we describe the three main steps in calculating master
integrals: setting up a differential equation, solving it using an expansion ansatz and finally
matching to numerical boundary conditions.

3.4.1 Differential equations for master integrals
In a first step, the differential equation for a set of MIs is obtained by differentiating a
vector of integrals with respect to the kinematic variable. In the B mixing and decay
amplitudes, there are two scales, and an appropriate kinematic variable is x ≡ mc/mb.
The differential equation

d
dx

~J = A~J (3.50)

is then set up with the help of the IBP relations obtained earlier for the reduction of the
seed scalar integrals in the amplitude. Considering a master integral of the form

Ji =
∫∫∫

ddp1 ddp2 ddp3D–n1
1 . . .D–nk

k ≡ J(n1, . . . , nk) , (3.51)
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where the denominators Di are functions of the loop momenta and the masses, we can
see that the derivative simply raises the index, i.e. the power, of a charm propagator.
Normalising all momenta to the bottom mass, a massive charm propagator is written as

Dc = p2 – x2 , (3.52)

and the derivative of Ji is hence given as
d
dx Ji =

∑

Dj=Dc

2 x nj Ji (n1, . . . , nj + 1, . . . , nk) , (3.53)

where the sum is over all massive charm propagators. The resulting integrals on the
right-hand side are not necessarily in the set of master integrals, so the IBP relations need
to be applied to obtain the differential equation for ~J . It is possible, however, that the MIs
appearing in an amplitude are not sufficient to write down a closed differential equation,
i.e. that new masters appear in the reduction of the derivatives. In this case, the vector of
MIs is extended by the new masters, which are then part of the differential equation. This
procedure is iterated until a closed form of Eq. (3.50) is obtained.

The computation time for the expand and match approach depends on the form of
the matrix A, so it is important to choose a good basis of masters for ~J . A necessary
condition for the expansion to converge is that there are no poles in ε on the diagonal
of A. Additionally, the calculation is more efficient if the denominators of the IBP
relations factorise in polynomials in x and ε, which can be achieved with the program
ImproveMasters.m [132]. A basis that fulfils these conditions is called “good”. Overall,
the expand and match approach offers more flexibility than traditional analytic expansion
methods which require the differential equation to be transformed to ε-form where
A = εB(x), see e.g. Refs. [149–151].

In order to bring the matrix A into the required form and facilitate the expansion, we use
a simple trick to remove ε poles on the diagonals by hand. The strategy is to choose a
new master integral J ′ from the left-hand side of the IBP reduction table to replace the
old master integral J1 which has a pole on the diagonal in A. It turns out that the new
MI should have a factor of ε in front of the old master in the IBP relation of the form

J ′ = k1J1 + k2J2 + . . . . (3.54)

Considering the derivative of the new MI,
d
dx J ′ = d

dx (k1J1 + k2J2 . . . )

= k1 (A11J1 + A12J2 + . . . ) + k2 (A21J1 + A22J2 + . . . ) + . . . , (3.55)

and inserting the definition of J ′ to replace J1, we obtain
d
dx J ′ =

(
A11 +

k2
k1

A21 + . . .

)
J ′ + . . . , (3.56)
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where the elements of A were inserted explicitly. The terms proportional to the master
integrals Ji with i > 1 have been omitted here as they are not relevant to the discussion
of the poles on the diagonal of A. The objective is to find an integral J ′ such that there
is no pole multiplying that same integral on the right-hand side above, given that A11 has
a pole in ε. We therefore require

A11 +
n∑

i=2

ki
k1

Ai1
!= O(ε0) . (3.57)

Choosing an integral J ′ where k1 starts at O(ε) is hence a good candidate to remove the
pole in A11 from the diagonal. However, not all such candidates will work, so we try out
possible substitutions until we find one for which the pole disappears.

3.4.2 Solving the differential equations with “expand and match”
The expand and match algorithm from Refs. [133–136] was not implemented anew as
part of this thesis. An existing setup within our collaboration was employed for this part
of the calculation, and the theoretical foundations are summarised here for completeness.
To set up the expand and match framework, we first need to choose the correct ansatz
for the expansion and then match it to boundary conditions. It is necessary to choose
the expansion points to be at the thresholds of the integrals, i.e. at points where the
integrals have additional cuts, because the intermediate state charm quarks can be on
shell. Otherwise, expansions around regular points are only valid in a small interval up
to the next threshold. Since there are cuts through 0, 1, 2, 3 and 4 charm quarks, there
are threshold expansions around x ∈ {0, 1/4, 1/3, 1/2, 1}. To cover the range of physical
charm masses, we expand around the points

xE ∈ {0, 1/10, 1/4, 1/3} , (3.58)

where the regular point xE = 1/10 was added for additional coverage. The generic ansatz
used in the expansion around xE is

Ji =
εmax∑

k=–2

k+2∑

m=0

nmax∑

n=nmin
ci ,k,m,n ε

k (x – xE )n/2 logm (x – xE ) . (3.59)

The highest ε pole appearing in the imaginary part of the three-loop integrals is 1/ε2 as is
reflected in the expansion above. Each integral is expanded up to at least ε0 if there are
no spurious poles in the amplitude multiplying that integral. Otherwise, εmax is chosen to
match the power of the spurious pole such that after the integral is inserted, the amplitude
is correct up to and including O(ε0). The power of the logarithms has an upper limit as
those terms stem from expansions of xaε/ε2. The summation over n starts at nmin < 0
as some of the integrals have poles which will cancel in the bare amplitude. The upper
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limit is chosen to be nmax = 100, which is sufficient to achieve a precision of 20 digits
or more at each physical value separately for all MIs, see Ref. [113]. The regular point
xE = 1/10 has no expansion terms with logarithms as there is no divergence at that point.
The expansion terms also vanish for odd values of n in the expansions around xE = 0, 1/10
and 1/3, but for xE = 1/4 there are square roots stemming from cuts through an even
number of massive charm quarks [152–154].

For the boundary conditions, we use numerical evaluations of the MIs obtained at a
matching point xM from AMFlow [137]. The matching points are chosen to be

xM ∈
{ 1
100,

1
10,

6
25,

29
100

}
(3.60)

for the expansions around 0, 1/10, 1/4 and 1/3 respectively. At each point, the integrals
are evaluated to a precision of 100 digits, allowing for an accurate determination of the
undetermined coefficients ci ,k,m,n when matching to the expansion.
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Mixing

In this chapter, the results of the novel, precise determination of Γ12 are presented. Using
the ratio Γ12/M12, the two mixing observables ∆Γ and afs are calculated, and the achieved
precision of the perturbative calculation is discussed in detail. Moreover, the double ratio
of the off-diagonal matrix elements across the Bd and Bs systems is calculated to obtain
the most accurate prediction of ∆Γd to date. The chapter concludes with a discussion
of the constraints on new physics and the CKM unitarity triangle, in particular from ad

fs
and ∆Γd/∆Γs . The results for Γ12/M12 are also given with the explicit dependence on
hadronic matrix elements and CKM input values to enable more precise calculations in the
future. The phenomenological outcomes presented in this chapter have been published in
Refs. [20, 155].

4.1 Included matching coefficients and comparison
with previous calculations

Before discussing the phenomenological results, the included matching coefficients are
listed and compared to previous calculations. The results presented here are obtained using
the matching coefficients for Γ12 computed in this thesis together with literature results
for M12 as published in Ref. [55]. The matching coefficients for M12 are only known to
NLO. However, as the expansion is in αs(µt) with µt ∼ mt as opposed to αs(mb), this
accuracy is sufficient. The leading-power contributions to Γ12 from different |∆B| = 1
operators are discussed in the following. For the power-suppressed ΛQCD/mb matching
coefficients of Γ12, LO literature results from Refs. [34, 47] were used. For the |∆B| = 1
matching coefficients, the NLO [85, 156, 157] and NNLO [103, 105, 158] literature results
were used.

For the matching coefficients of Γ12, we reproduce literature results for the current-current
operator contributions at LO and NLO, which can be found in Refs. [34, 36, 49, 159], where
Ref. [34] provides the exact z = m2

c/m2
b dependence in the {Q, Q̃S} basis. Furthermore,

we calculate the NNLO current-current matching coefficients in an expansion up to z10,
extending the results of Ref. [28], which were computed up to z1. Note that in Ref. [28]
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the terms stemming from closed charm loops at NNLO were taken from Refs. [51–53]
and converted to a different operator basis. In doing so, Ref. [28] missed a numerically
small term. To clarify the source of this error, the transformation is shown here. Going
from the basis of Ref. [51] to the basis employed by Ref. [28] and this thesis, we rewrite
the renormalised operator matrix elements using the definition of the renormalised matrix
element of the ΛQCD/mb-suppressed operator R0 from Eq. (2.113):

Γ12 ∝ (F + P)〈Q〉+ (FS + PS)〈QS〉+O
(

ΛQCD
mb

)

∝
(
F + P – α12 FS – α12 PS

)
〈Q〉 – α2

(
FS + PS

)
〈Q̃S〉+O

(
ΛQCD
mb

)
. (4.1)

The matching coefficients in the {Q, Q̃S} basis can hence be read off from the above
equation. The results presented in Ref. [160] do not include the cross-terms that stem
from α2s contributions of the decoupling constants α1,2 and α0s parts of the matching
coefficients F(S) and P(S):

Γ12,missing ∝ –12α
(2)
1

(
F (0)

S + P(0)
S

)
〈Q〉 – α(2)2

(
F (0)

S + P(0)
S

)
〈Q̃S〉 . (4.2)

If these are included in the basis transformation, the √z = mc/mb terms of this thesis can
be reproduced, see Section 3.2.3 for a discussion of their origin. The terms are numerically
small, resulting in a relative contribution of less than 10–5 for the central value of Γ12 up
to NNLO.

The z1 terms from diagrams with closed charm loops which are reconstructed from
Ref. [51] are only correct for the up-up contribution, i.e. the contribution that arises from
current-current operators which do not couple to charm quarks. This is because the charm
mass was only kept for the closed fermion loops in Ref. [51], see e.g. Fig. 3.6a on page 75.
The matching coefficients of this thesis extend these results, obtaining the correct z1
terms for all |∆B| = 1 operator contributions, and further increasing the expansion depth
to z10.

The penguin operator contributions were calculated to LO in Refs. [36, 47] with their exact
z-dependence and to NLO in Ref. [140] in an expansion up to z1. The results presented
here agree with the aforementioned literature results and advance the NLO calculation to
a deeper expansion up to z10 together with the entirely new NNLO matching coefficients
up to z10. Moreover, we find agreement with the chromomagnetic operator contributions
published in Ref. [54], which presents the matching coefficients as an expansion up to z1.
The results of this thesis are calculated as a deeper expansion up to z10 for this operator
as well.

In addition to comparing with the literature, internal checks have been carried out to
ensure the robustness of the novel results. In particular, the matching coefficients with
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penguin operators at NNLO had not been considered in any work before and were checked
most thoroughly. For the subset of diagrams with the operator combination Q1 × Q6 and
only massless charm quarks mc = 0, we calculated the bare amplitude using the projector
method presented in Ref. [160] and found agreement with the results produced with the
more efficient method presented in Section 3.3. We also carried out a completely separate
calculation of the contributions from Q1,2 × Q3–6 with mc = 0 using tensor reduction as
presented in Ref. [113], where we also found agreement.

4.2 Input values and renormalisation schemes
In order to predict physical observables from the high-energy matching coefficients calcu-
lated in this thesis, we need to combine our results with low-energy matrix elements and
other input parameters, which are given in this section. Our main focus is the determination
of ∆Γ, which can be calculated either from

∆Γ
∆M = – Re Γ12

M12
(4.3)

with the experimental value of ∆M or from a direct determination

∆Γ = 2|Γ12| cosφ ≈ 2|Γ12| . (4.4)

The dispersive part of the off-diagonal decay matrix is given by

M12 = G2
FM2

W
32π2MBq

λ2tCQ〈Bq|Q|B̄q〉 , (4.5)

where the matching coefficient CQ has been calculated to NLO in Ref. [55]. To leading
order, it is given by

CQ(µ = MW ) = S0(xt) ≡
4xt – 11x2t + x3t

4(1 – xt)2
– 3x3t ln(xt)
2(1 – xt)3

, (4.6)

where xt ≡ m2
t /M2

W and S0 is the Inami-Lim function [161]. The contributions from
virtual up and charm quarks in the full theory diagrams are neglected here since they are
suppressed by the Glashow-Iliopoulos-Maiani (GIM) mechanism [24].

In Tab. 4.1, all input parameters apart from the ΛQCD/mb-suppressed matrix elements and
the CKM factors are listed. For the bag parameters, we quote the values BBq = BBq(µ2)
and B̃S,Bq = B̃S,Bq(µ2) at the scale µ2 = mOS

b . With the value of mb(mb) and the
two-loop relation for the on-shell mass, we obtain mOS

b = 4.758GeV. For the PS mass,
we use the four-loop relation to the MS mass, which yields mPS

b = 4.480GeV with the
factorisation scale µf = 2GeV.
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αs(MZ ) = 0.1180± 0.0009 [162] GF = 1.166 378 7× 10–5 GeV–2 [162]
MW = (80.3629± 0.0133) GeV [162] MZ = (91.1880± 0.0020) GeV [162]
mOS

t = (172.4± 0.7) GeV [162] mb(mb) = (4.163± 0.016) GeV [163]
mc(3GeV) = (0.993± 0.008) GeV [164] fBs /fBd = 1.2109± 0.0039 [41]

MBs = (5366.91± 0.11)MeV [162] MBd = (5279.41± 0.07)MeV [162]
BBs = 0.813± 0.034 [40] BBd = 0.806± 0.041 [40]

B̃S,Bs = 1.31± 0.09 [40] B̃S,Bd = 1.20± 0.09 [40]
fBs = (0.2303± 0.0013) GeV [41–44] fBd = (0.1905± 0.0013) GeV [41–44]

ξ = 1.216± 0.016 [40] ξS = 1.263± 0.020 [40, 41]

Table 4.1: Input parameters for the phenomenological analysis. The mass mOS
t

corresponds to mt(mt) = (162.6± 0.7) GeV in the MS scheme. The
value of ξS was computed using results from the quoted references,
see Eq. (4.9).

For the low-energy matrix elements, we implement two different parametrisations, which
are explained below. When calculating observables in the Bs and Bd systems separately,
we use the bag parameters as calculated on the lattice for each of the mesons. The
respective input values for the leading-power matrix elements

〈Bq|Q|B̄q〉 =
8
3M

2
Bq f

2
BqBBq ,

〈Bq|Q̃S |B̄q〉 =
1
3M

2
Bq f

2
Bq B̃S,Bq (4.7)

are given in Tab. 4.1. In ratios of observables across the two systems, e.g. rds as discussed in
Section 4.5, treating the bag parameters as independent input variables would overestimate
the uncertainty of the observable. Therefore, we use the bag parameters for the Bs system
and relate them to those of the Bd system using the ratio

ξ2 ≡
f 2Bs

BBs

f 2Bd
BBd

(4.8)

as well as the equivalent for the B̃S bag parameters,

ξ2S ≡
f 2Bs

B̃S,Bs

f 2Bd
B̃S,Bd

. (4.9)

While ξ has been determined in Ref. [40], the ratio ξS is not commonly quoted in the
literature. We calculate ξS using the ratio of decay constants fBs/fBd as given in Tab. 4.1
together with the ratio of the bag parameters B̃S , which can be calculated from the results
of Ref. [40]. Here, we note that the bag parameters are defined differently as compared to
this thesis,

B̃S ≡ η3B(3) , (4.10)
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4.2 Input values and renormalisation schemes

so we combine the result from Ref. [40],

B(3)
Bs

B(3)
Bd

= 1.092± 0.034 , (4.11)

with the ratio of the conversion factors
ηs
3
ηd
3
= 0.996 51± 0.000 39 , (4.12)

which was calculated using the input parameters in Tab. I of Ref. [40]. We obtain as an
intermediate result

B̃S,Bs

B̃S,Bs

= 1.088± 0.034 , (4.13)

which yields together with fBs/fBd the value for ξS as given in Tab. 4.1. Note that using
this parametrisation, the decay constants drop out completely from a ratio of Bd to Bs
observables.

For the ΛQCD/mb-suppressed matrix elements, the lattice QCD results for the Bs system
from Refs. [40, 165] read

〈Bs |R0|B̄s〉 = (–0.43± 0.18) f 2BsM
2
Bs ,

〈Bs |R1|B̄s〉 = (0.07± 0.00) f 2BsM
2
Bs ,

〈Bs |R̃1|B̄s〉 = (0.04± 0.00) f 2BsM
2
Bs ,

〈Bs |R2|B̄s〉 = (–0.18± 0.07) f 2BsM
2
Bs ,

〈Bs |R̃2|B̄s〉 = (0.18± 0.07) f 2BsM
2
Bs ,

〈Bs |R3|B̄s〉 = (0.38± 0.13) f 2BsM
2
Bs ,

〈Bs |R̃3|B̄s〉 = (0.29± 0.10) f 2BsM
2
Bs . (4.14)

For the Bd system, we use the value

〈Bd |R0|B̄d 〉 = (–0.35± 0.19) f 2Bd
M2

Bd
(4.15)

from Ref. [40]. For the remaining matrix elements we neglect SU(3)F-breaking effects
beyond factorisation and write

〈Bd |Ri |B̄d 〉 =
f 2Bd

M2
Bd

f 2Bs
M2

Bs

〈Bs |Ri |B̄s〉 , (4.16)

where Ri ∈ {R2, R̃2,R3, R̃3}. The matrix elements of R1 and R̃1 are suppressed by the
ratio md/ms ≈ 0.03, so they are set to zero. For ratios of observables across the Bs and
Bd systems, we use

〈Bq|Ri |B̄q〉 ≡ f 2BqM
2
BqBRi ,Bq , BRi ,Bd ≡

BRi ,Bs
ζ

, (4.17)
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4 Phenomenology of B Meson Mixing

where the parameter
ζ = 1.0± 0.1 (4.18)

encodes the SU(3)F-breaking effects. We choose to set the symmetry breaking effects at
the central value to zero and introduce a 10% uncertainty as these effects have not been
determined on the lattice yet. Using the ratio fBs/fBd , the decay constants drop out of
the ratio of the ΛQCD/mb-suppressed corrections too.

As the last set of input parameters, we present the CKM elements used in the phenomeno-
logical analysis. We use the results from Ref. [166]:

λd
u
λd

t
= (0.0105± 0.0107)+ i (–0.4259± 0.0091) ,

λs
u
λs

t
= (–0.008 77± 0.000 43)+ i (0.018 58± 0.000 38) . (4.19)

For a direct calculation of ∆Γ, the absolute values |λd
t | and |λs

t | are required too. These
depend on the value of |Vcb|, which is obtained from either inclusive or exclusive decays
as [167]

|V incl
cb | = (42.16± 0.51)× 10–3 , [168], (4.20)

|V excl
cb | = (39.45± 0.56)× 10–3 , [B → (D,D∗)`ν] , FLAG avg., [30, 169–177],

(4.21)

where for the inclusive |Vcb| the result from Ref. [178] may also be used and yields a similar
value. Alternatively, we can also use the current SM fit which excludes measurements of
|Vcb| [166],

|V SM fit
cb | = (41.78+0.61

-0.78)× 10–3 . (4.22)

Note that the value cited in Ref. [20] contains a typo and uses the value of |Vcb| = 0.0416
from the full fit. This has been corrected here together with the corresponding plots shown
below. Using these results, we calculate for λq

t :

|λd ,SM fit
t | = (8.56+0.08

-0.34)× 10–3 , |λd ,excl
t | = (8.08+0.18

-0.37)× 10–3 ,
|λs,incl

t | = (41.39± 0.50)× 10–3 , |λs,excl
t | = (38.73± 0.55)× 10–3 . (4.23)

The value for |λd ,SM fit
t | above is obtained from the 1σ best-fit results for |Vtd | and |Vtb|

as calculated by Ref. [166] from a global fit of the CKM parameters. The value for |λd ,excl
t |

is obtained by rescaling |λd ,SM fit
t | with the ratio of the two |Vcb| values from Eq. (4.21)

and Eq. (4.22) since fixing the value of |Vcb| to the result from exclusive semileptonic B
decays would yield a result with a poor p-value [20]. The CKM values in the Bs system are
determined directly from |V incl/excl

cb | since |Vts | = (0.983± 0.001)|Vcb| due to unitarity of
the CKM matrix, and the value of |Vtb| = 0.9991 does not depend on the choice of |Vcb|.
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4.2 Input values and renormalisation schemes

Finally, it is worth remarking on the choice of renormalisation scales and schemes that will
be referenced in the rest of the chapter. After the matching calculation as presented in
Section 2.6, the charm and bottom masses are in the OS scheme. For phenomenological
applications, we transform the squared mass ratio z to the MS scheme, which leads to
the additional scales µc and µb from the renormalisation of the MS masses mc and mb
respectively. For this purpose, we also transform the charm quark mass to the case of
five active quarks, so we obtain z(4.2 GeV) = 0.049540. The overall factor (mOS

b )2 of
Γ12 in Eq. (2.80) can be calculated from different input values of the bottom mass. We
consider three different approaches, which we call schemes. For the pole scheme, the
on-shell bottom mass is substituted directly. In the MS scheme, we use the conversion
of the OS to MS scheme to express the factor in terms of the MS mass. Lastly, the
OS mass is converted to the PS mass, see Section 2.1.2, which we call the PS scheme.
The conversions of different mass schemes are implemented as expansions in αs , and we
truncate the perturbation series after the conversion to the same order in αs as the original
expression obtained in the matching calculation, i.e. to α3s for the contributions from Q8
and to α2s otherwise.

The results in the pole scheme, which use the mOS
b mass directly as an input for the

overall factor of (mOS
b )2, are shown for comparison in the following sections, but we do

not use them to calculate our final averages of the observables. This is because of the
renormalon ambiguity of order ΛQCD, which appears in the definition of the pole mass
and leads to a poor convergence of the perturbative expansion in αs .

Since the matching coefficients of the ΛQCD/mb-suppressed matrix elements are only
known to LO, the conversion between different masses in the overall factor is of higher
orders in αs , i.e. any mass scheme may be used for the bottom mass in the overall factor.
We choose this to be mPS

b in all schemes mentioned above. The LO matching coefficients
have a strong scale dependence; therefore, the perturbative uncertainty stemming from
these matching coefficients is calculated separately.

The observables depend on a number of renormalisation scales for which there is some
freedom of choice, as is explained below. The highest scale we encounter is µ0, the scale
of matching of the |∆B| = 1 Hamiltonian to the Standard Model, which we choose to be
µ0 = 165GeV ≈ mt(mt). Next, we have the scale µ1 of the matching to the |∆B| = 2
transition operator together with the mass renormalisation scales µc and µb. We choose
these scales to be equal to each other and vary them simultaneously between 2.1 GeV and
8.4 GeV to estimate the perturbative uncertainty around the central value of µ1 = 4.2GeV.
Lastly, the lowest scale of the problem is the scale µ2 at which the matrix elements are
defined. We chose µ2 = mOS

b = 4.758GeV.

When results are presented at different orders in perturbation theory, those orders refer to
the matching coefficients H and H̃S only. The coefficients of the ΛQCD/mb-suppressed
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4 Phenomenology of B Meson Mixing

matrix elements are always inserted to LO. Moreover, M12 is always inserted up to NLO
to independently test the convergence of the perturbative series for Γ12.

4.3 The width difference ∆Γ from ∆Γ/∆M
We first present the results for the real part of Γ12, i.e. for the observable ∆Γ. The most
accurate determinations of ∆Γ without using experimental values for ∆M as well as the
ratio ∆Γ/∆M are shown in Fig. 4.1 for the Bs system and in Fig. 4.2 for the Bd system.
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Figure 4.1: Comparison of theoretical determinations for ∆Γs and ∆Ms with their
measurements for different values of |Vcb| according to Eq. (4.23).
The band for ∆Mfit

s corresponds to the 1σ-result given in Ref. [166]
where ∆Ms was excluded from the fit. For ∆Mfit,excl

s , the band
was rescaled by |V excl

cb |2/|V SM fit
cb |2. The experimental values are as

quoted in Eq. (1.43) and Eq. (1.44) except that the uncertainty on
∆Ms was increased by a factor of ten.

In order to identify new physics contributions, the theoretical and experimental bands
in the two plots can be compared. However, there is a sizeable difference in the |Vcb|
measurements, see Eq. (4.21), which impacts our ability to make conclusive statements
about potential disagreement between Standard Model theory and experiment from the
∆Γ or ∆M bands alone. The ratio ∆Γ/∆M does not have the same ambiguity since
the CKM factor λt ∝ |Vcb|2 cancels. This underscores the importance of ∆Γ/∆M as
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Figure 4.2: Comparison of theoretical determinations ∆Γd and ∆Md with their
measured values. The bands were determined in a similar fashion as
for Fig. 4.1 except for ∆Γtheo,fit

d . In this case, the value of |λd ,SM fit
t |

was used. The experimental values shown are as quoted in Eq. (1.46)
and Eq. (1.47).

an observable where new physics contributions can be investigated independently of the
|Vcb| controversy.

In the following sections, the results for ∆Γ as obtained from the ratio ∆Γ/∆M are
discussed in detail, including the uncertainty sources and the size of the novel contributions
calculated in this thesis. The results for the deep expansion of only the current-current
operators at NNLO have been published in Ref. [20] while the updated observables including
penguin operators at NNLO can be found in Ref. [155].

4.3.1 Bs system
Before presenting the results for the ratio ∆Γs/∆Ms , the uncertainty analysis is explained
in brief. For the central value, the input values as given in Section 4.2 are used, and
the scales are chosen as explained in that section. We set the matching and mass scales
to µ1 = µc = µb = 4.2GeV. For the other scales, we choose µ0 = 165GeV and
µ2 = 4.758GeV, which are kept fixed for the central value and the uncertainty analysis.

To determine the contributions to the total uncertainty from each of the input parameters,
they are varied within the given uncertainty, and the symmetrised results are shown below.
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Figure 4.3: Renormalisation scale dependence of ∆Γs/∆Ms at LO (short dashes),
NLO (long dashes) and NNLO (solid). The ΛQCD/mb-suppressed
contributions are kept fixed at the central scale.

We group the input parameter uncertainties into three groups for which the individual
contributions have been added in quadrature. The first, labelled “BB̃S”, contains only
the uncertainty stemming from the leading-power bag parameters. The ΛQCD/mb-
suppressed matrix elements have their uncertainties combined in the term “1/mb”, where
the correlation between the matrix elements of R2, R̃2, R3 and R̃3 has been accounted for,
see Eq. (4.59) in Section 4.7. All remaining input parameter uncertainties are combined in
the “input” term.

The individual contributions to the total uncertainty from the hadronic matrix elements as
well as all other input parameters are shown in Appendix E for all observables discussed in
this chapter, i.e. ∆Γ/∆M and afs in the Bs and Bd systems as well as the double ratio
(∆Γd/∆Md )/(∆Γs/∆Ms).

The perturbative uncertainty, which results from the remaining scale dependence after
truncating the perturbation series, is split into an uncertainty stemming from the leading
(“scale”) and power-suppressed (“scale, 1/mb”) matching coefficients. To determine the
scale uncertainty, we simultaneously vary µ1 = µc = µb between 2.1 GeV and 8.4 GeV.
The scale variation of the matching coefficients for the leading-power matrix elements is
shown in Fig. 4.3. For comparison, the full scale variation including the scale dependence
of the power-suppressed matching coefficients is presented in Fig. 4.4.
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Figure 4.4: Renormalisation scale dependence of ∆Γs/∆Ms at LO (short dashes),
NLO (long dashes) and NNLO (solid) for the leading-power and
ΛQCD/mb-suppressed matching coefficients.

The results obtained at NNLO are

∆Γs
∆Ms

=
(
3.98+0.49
-0.53scale

+0.09
-0.19scale, 1/mb

± 0.11BB̃S
± 0.781/mb ± 0.06input

)
× 10–3 (pole) ,

∆Γs
∆Ms

=
(
4.45+0.19
-0.40scale

+0.09
-0.19scale, 1/mb

± 0.12BB̃S
± 0.781/mb ± 0.05input

)
× 10–3 (MS) ,

∆Γs
∆Ms

=
(
4.38+0.33
-0.35scale

+0.09
-0.19scale, 1/mb

± 0.12BB̃S
± 0.781/mb ± 0.05input

)
× 10–3 (PS) .

(4.24)

We observe that the uncertainty from the ΛQCD/mb-suppressed matrix elements has the
biggest impact, followed by the perturbative uncertainty of the leading-power matching
coefficients, which are the focus of this thesis. The other sources of uncertainty are
less important. For the perturbative uncertainty at leading power, we can confirm that
successive orders in αs reduce the remaining scale uncertainty, as shown in Fig. 4.3
for the MS and PS schemes. The variation of the MS results decreases from 121%
at LO to 33% at NLO and then to 13% at NNLO, all computed over the interval of
2.1 GeV ≤ µ1 ≤ 8.4 GeV. In the PS scheme, the variation at LO is much smaller at
34%, and it is further reduced to 25% at NLO and 16% at NNLO. At NNLO, the MS
and PS schemes lead to very similar results over the entire renormalisation scale interval
considered, which illustrates the stability of the perturbative expansion.
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At the central scale, the size of the successive orders in the perturbative series gives an
indication of the accuracy and convergence of the series. In the PS scheme, the NLO
corrections reduce the LO result by about 22%, and the NNLO corrections are smaller
than those at NLO by about 40%. This shows that successive terms in the series are
indeed decreasing in magnitude. For the MS scheme, the NLO corrections reduce the LO
result by about 10%, but the NNLO corrections are of a similar size. However, at values
of µ1 larger or smaller than the central scale, the NNLO corrections are much smaller,
demonstrating the good convergence of the perturbative expansion. The central scale is
special because the NLO corrections vanish at 5 GeV in the MS scheme.

The agreement with the experimental value is very good at the central scale at NNLO.
Both the MS and PS scheme calculations are within the 1σ uncertainty of the experiment
for a range of about ±1GeV around the central value. Remarkably, the LO and NLO
determinations do not agree well with the experiment for most of the considered scale
range, underscoring the importance of the NNLO corrections. However, the pole scheme
calculation underestimates the true value of the observable, and the renormalisation scale
dependence is worse as well due to the renormalon uncertainty.

Since the inclusion of the penguin operators at NNLO and as a deeper expansion in z
at NLO is a novel result, the size of these corrections and their impact on the scale
uncertainty in comparison with the results from Ref. [20] is worth commenting on. A direct
comparison of the scale uncertainty as visualised in Fig. 4.5 shows that the symmetrised
uncertainty is reduced by about 8%, which is true for both the MS and PS schemes. In
the MS scheme at the central scale, the NLO penguin contributions receive corrections of
about 70% from higher terms in the z expansion, and at NNLO the new penguin operators
contributions make up about 12% of the total NNLO term. Overall, the central value
differs by about 2% between the results in Ref. [20] and the full NNLO calculation.

Before calculating ∆Γ, it is interesting to see how the dependence on the hadronic elements
is reduced when considering the ratio ∆Γ/∆M. The leading term in the ratio does not
depend on any low-energy matrix elements as ∆M is proportional to 〈Bq|Q|B̄q〉, which
subsequently cancels. The ratio therefore only depends on the ratios of the matrix elements
of Q̃S and Ri to the leading term matrix element. Writing the result in the MS scheme as

∆Γs
∆Ms

= 4.45× 10–3 ≈
(
4.27 + 1.70Q̃S/Q – 1.531/mb

)
× 10–3 (MS) , (4.25)

it becomes apparent that the sub-leading terms cancel almost entirely. In the decomposition
above, the first term is independent of any hadronic matrix elements while Q̃S/Q depends
on the ratio of the leading-power matrix elements. The final term contains all contributions
from ΛQCD/mb-suppressed matrix elements. The corrections from the sub-leading terms
are less than 4%.
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Figure 4.5: Renormalisation scale dependence of ∆Γs/∆Ms in the MS scheme
for the leading-power terms with µ1 = µb = µc . The NNLO current-
current result includes the penguin operator contributions at NLO
in an expansion up to z1. The full NNLO result including penguin
operators uses a more accurate expansion of the penguin contributions
up to z10.

The current state-of-the-art prediction for ∆Γs is obtained by multiplying the theoretical
value of ∆Γs/∆Ms by the experimental value for ∆Ms , which is [25]

∆Mexp
s = (17.7656± 0.0057) ps–1 . (4.26)

Hence, our results read

∆Γs =
(
7.06+0.88
-0.94scale

+0.16
-0.34scale, 1/mb

± 0.19BB̃S
± 1.391/mb ± 0.10input

)
× 10–2 ps–1 (pole) ,

∆Γs =
(
7.90+0.34
-0.71scale

+0.16
-0.34scale, 1/mb

± 0.21BB̃S
± 1.391/mb ± 0.09input

)
× 10–2 ps–1 (MS) ,

∆Γs =
(
7.77+0.59
-0.62scale

+0.16
-0.34scale, 1/mb

± 0.20BB̃S
± 1.391/mb ± 0.09input

)
× 10–2 ps–1 (PS) .

(4.27)

To obtain the final result for ∆Γs , the values from the MS and PS schemes are averaged.
The uncertainties are first added in quadrature separately for the upper and lower bounds,
then symmetrised and finally averaged across the renormalisation schemes. The most
accurate prediction for ∆Γs is hence

∆Γs = (0.078± 0.015) ps–1 . (4.28)
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In comparison with the experimental value [26]

∆Γexp
s = (0.0781± 0.0035) ps–1 , (4.29)

we observe that the theoretical uncertainty is about four times as large as that of the
measured value. However, with the perturbative corrections calculated in this thesis, the
theoretical uncertainty is dominated by the ΛQCD/mb-suppressed contributions, more
specifically the corresponding hadronic matrix elements. The perturbative uncertainty of
the leading-power matching coefficients on the other hand is only slightly larger than the
experimental uncertainty.

Finally, it is worth comparing the result obtained in this work with that of Refs. [27, 179],
which calculate ∆Γs = (0.091± 0.015) ps–1 to NLO. Our corresponding NLO prediction
is ∆Γs = (0.091± 0.020) ps–1, which agrees within the given uncertainties. It is perhaps
unexpected that the central values are identical given that the penguin operators were
only considered to LO in Refs. [27, 179]; however, the authors also use different hadronic
matrix elements obtained from QCD sum rules as calculated in Refs. [45, 46]. We note
that the renormalisation scale dependence in Refs. [27, 179] is constructed to be much
smaller, and the same is true for the power-suppressed matrix elements.

4.3.2 Bd system
The phenomenological analysis for the Bd system proceeds in the same way as for the
Bs system discussed in the preceding section. The ratio as calculated in the three
renormalisation schemes by analogy with ∆Γs/∆Ms is

∆Γd
∆Md

=
(
3.83+0.49
-0.53scale

+0.12
-0.20scale, 1/mb

± 0.11BB̃S
± 0.791/mb ± 0.06input

)
× 10–3 (pole) ,

∆Γd
∆Md

=
(
4.29+0.19
-0.40scale

+0.12
-0.20scale, 1/mb

± 0.12BB̃S
± 0.791/mb ± 0.05input

)
× 10–3 (MS) ,

∆Γd
∆Md

=
(
4.22+0.33
-0.35scale

+0.12
-0.20scale, 1/mb

± 0.12BB̃S
± 0.791/mb ± 0.05input

)
× 10–3 (PS) ,

(4.30)

where the uncertainty sources are clustered in the same categories as in Eq. (4.24), and
the individual contributions are given in Appendix E. The variation of the renormalisation
scale for the leading-power matching coefficients is shown in Fig. 4.6. For comparison, the
variation of both the leading-power and ΛQCD/mb-suppressed contributions is presented
in Fig. 4.7. The uncertainties are very similar to what is observed for the Bs system, see
the discussion following Eq. (4.24). Moreover, the impact of the novel contributions from
a deeper expansion in z for the penguin operators at NLO and the inclusion of the penguin
operators at NNLO leads to the same improvements as observed for the Bs system.

Besides the cancellation of the hadronic matrix elements in the ratio ∆Γd/∆Md , we also
observe a similar cancellation among the linear and quadratic terms in λd

u/λd
t for the Bd
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Figure 4.6: Renormalisation scale dependence of ∆Γd/∆Md at LO (short dashes),
NLO (long dashes) and NNLO (solid). The ΛQCD/mb-suppressed
contributions are kept fixed at the central scale.
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Figure 4.7: Renormalisation scale dependence of ∆Γd/∆Md at LO (short dashes),
NLO (long dashes) and NNLO (solid) for the leading-power and
ΛQCD/mb-suppressed matching coefficients.
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system, see Eq. (1.61) on page 12. We confirm the results of Ref. [36], where it was
found that the sum of the aforementioned terms leads to a correction of about 2% at
NLO. With the complete NNLO results presented here, the correction from λd

u/λd
t has a

size of about 1.9%. As the terms proportional to λs
u/λs

t are numerically small too, leading
to corrections of about 0.2%, the ratio ∆Γ/∆M agrees within the uncertainties across
the Bs and Bd systems, see Section 4.5.

Multiplying ∆Γd/∆Md by the experimentally measured value for ∆Md [26],

∆Mexp
d = (0.5065± 0.0019) ps–1 , (4.31)

we obtain ∆Γd in the respective schemes,

∆Γd =
(
1.94+0.25
-0.27scale

+0.06
-0.10scale, 1/mb

± 0.06BB̃S
± 0.401/mb ± 0.03input

)
× 10–3 ps–1 (pole) ,

∆Γd =
(
2.17+0.10
-0.20scale

+0.06
-0.10scale, 1/mb

± 0.06BB̃S
± 0.401/mb ± 0.03input

)
× 10–3 ps–1 (MS) ,

∆Γd =
(
2.14+0.17
-0.18scale

+0.06
-0.10scale, 1/mb

± 0.06BB̃S
± 0.401/mb ± 0.03input

)
× 10–3 ps–1 (PS) .

(4.32)

As for the Bs system, we average the results from the MS and PS schemes together with
the symmetrised uncertainties. These are obtained by first adding the upper and lower
bounds separately in quadrature and then symmetrising for each scheme. The averaged
result is

∆Γd = (0.002 15± 0.000 45) ps–1 . (4.33)

Since ∆Γd is not measured to a high enough precision, the comparison with the theoretical
prediction does not allow us to draw any conclusions. To further reduce the theoretical un-
certainty from this calculation, a more accurate determination of the ΛQCD/mb-suppressed
matrix elements is necessary, similar to what is observed in the Bs system. However,
∆Γd may also be computed from the double ratio discussed in Section 4.5, where the
dependence on the hadronic matrix elements largely cancels and which leads to a more
accurate prediction.

4.4 The flavour-specific CP asymmetry afs
The results of the flavour-specific CP asymmetry for Bs mesons in the three schemes as
defined in Section 4.2 are

as
fs =

(
2.27+0.00
-0.03scale

+0.01
-0.00scale, 1/mb

± 0.01BB̃S
± 0.041/mb ± 0.07input

)
× 10–5 (pole) ,

as
fs =

(
2.24+0.10
-0.18scale

+0.01
-0.00scale, 1/mb

± 0.01BB̃S
± 0.041/mb ± 0.07input

)
× 10–5 (MS) ,

as
fs =

(
2.30+0.03
-0.07scale

+0.01
-0.00scale, 1/mb

± 0.01BB̃S
± 0.041/mb ± 0.07input

)
× 10–5 (PS) .

(4.34)
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The uncertainties are clustered in the same way as for ∆Γ/∆M, and the contributions
from each individual parameter are presented in Appendix E. For afs, the inclusion of
the penguin operators has a smaller impact on the final result when comparing with the
results from Ref. [20], where only the current-current operators are included to NNLO. In
the MS scheme, the overall result changes by about 0.5%. This is because the NNLO
penguin terms only contribute 1% to the NNLO result, mainly since the contributions
stemming from two penguin operators are proportional to λt , so they do not affect the
imaginary part of Γ12. At NLO, the behaviour is the same, and the deeper expansion for
the penguins beyond z1 changes the total NLO contribution by about 3%.

Similarly, for the Bd system, we obtain

ad
fs = –

(
5.18+0.00
-0.08scale

+0.03
-0.01scale, 1/mb

± 0.03BB̃S
± 0.091/mb ± 0.16input

)
× 10–4 (pole) ,

ad
fs = –

(
5.12+0.23
-0.41scale

+0.03
-0.01scale, 1/mb

± 0.03BB̃S
± 0.091/mb ± 0.16input

)
× 10–4 (MS) ,

ad
fs = –

(
5.26+0.07
-0.15scale

+0.03
-0.01scale, 1/mb

± 0.03BB̃S
± 0.091/mb ± 0.16input

)
× 10–4 (PS) .

(4.35)

Also in this case, the inclusion of the penguin operators does not significantly impact the
final result, with the central value in the MS scheme shifting by 0.5% as compared to the
NNLO current-current results from Ref. [20]. This is because of the same reason as for
the Bs system: The contributions from two penguin operator insertions to Γ12/M12 are
purely real.

The scale variation of the leading-power terms is shown in Figs. 4.8 and 4.9 for the Bs
and Bd systems respectively. As for ∆Γ, we add the uncertainties of the upper and lower
bounds in quadrature in the MS and PS scheme, symmetrise the total uncertainty and
then average the results across the schemes to yield

as
fs = (2.27± 0.13)× 10–5 ,
ad
fs = – (5.19± 0.30)× 10–4 . (4.36)

The uncertainties of afs are comparable for Bs and Bd , and the relative size of them is
similar to ∆Γ/∆M apart from the parameter uncertainty. The variation of the parameters
leads to a larger uncertainty for the CP asymmetry since the leading term of afs is
proportional to mc and λu/λt . The uncertainty of the two respective input parameters is
of comparable magnitude, and the total “input” uncertainty is of similar size as that of
the ΛQCD/mb-suppressed matrix elements.

The CP asymmetry vanishes in the limit mc → 0, so it is interesting to see the size of the
contributions from higher-order terms in the z = m2

c/m2
b expansion. The size of those

contributions in the PS and MS schemes is only 13% for both as
fs and ad

fs. Therefore, the
results obtained in this thesis agree within the uncertainty with those of Ref. [29].

113



4 Phenomenology of B Meson Mixing

2 4 6 8 10
µ1 = µb = µc [GeV]

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00
as fs

wi
th

fix
ed

1/
m

b

×10–5

Pole
MS
PS

Figure 4.8: Renormalisation scale dependence of as
fs at LO (short dashes), NLO

(long dashes) and NNLO (solid) for the simultaneous scale variation
of µ1 = µb = µc . The matching coefficients of the ΛQCD/mb-
suppressed matrix elements are kept fixed at the central scale.

Referring to the scale variation plots in Fig. 4.8 and Fig. 4.9, we observe that the
dependence on the renormalisation scale is reduced when higher orders in the perturbative
series are included. In the PS scheme, the size of the NNLO corrections at the central
scale is a factor of three smaller than the NLO corrections, indicating a good convergence
of the perturbative series. The ranges of the scale variation of successive orders also
overlap, which also shows that the perturbative corrections are decreasing and converging
asymptotically. We also note that the pole scheme result, which is shown for comparison,
exhibits a very flat scale dependence and is close to the curve for the PS scheme.

The comparison of the theoretical predictions with experiments is limited by the availability
of accurate measurements. For ad

fs, however, the NNLO predictions agree with the 1σ
uncertainty of the experimental value. Once more accurate measurements become available,
the theoretical results presented here will serve as a benchmark, enabling inferences about
BSM physics. In particular, any non-zero measurement of as

fs will likely point towards new
physics effects due to its small SM value. The measurement of the CP asymmetry in the
Bd system on the other hand can be used in combination with the theoretical prediction
to constrain the apex of the CKM unitarity triangle, see Section 4.6.
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4.5 The double ratio (∆Γd/∆Md )/(∆Γs/∆Ms)
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Figure 4.9: Renormalisation scale dependence of ad
fs at LO (short dashes), NLO

(long dashes) and NNLO (solid) for the simultaneous scale variation
of µ1 = µb = µc . The matching coefficients of the ΛQCD/mb-
suppressed matrix elements are kept fixed at the central scale.

4.5 The double ratio (∆Γd/∆Md)/(∆Γs/∆Ms)
In this section, another observable is discussed, which is a ratio of four observables taken
across the Bs and Bd system,

rds ≡
∆Γd
∆Md

× ∆Ms
∆Γs

. (4.37)

The advantage of calculating this quantity is that many of the uncertainties that impact
accurate predictions of ∆Γd cancel in the ratio. Moreover, ∆Γs , ∆Ms and ∆Md have
been measured precisely, so rds can be combined with those measurements to yield a very
accurate prediction of ∆Γd .

The cancellation of uncertainties in the double ratio rds is due to the fact that the hadronic
matrix elements can be expressed in terms of their ratios in the Bs and Bd systems, which
are more accurately determined. For example, the leading-power matrix elements can be
expressed entirely in terms of the constants ξ and ξS as given in Tab. 4.1 as well as the
corresponding bag parameters BBs and B̃Bs in the Bs system. For the power-suppressed
matrix elements, we used the parametrisation of Eq. (4.17) and manually fix the SU(3)F
breaking beyond factorisation to zero, i.e. we choose ζ = 1. With this and the accurately
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4 Phenomenology of B Meson Mixing

determined ratio of the decay constants fBs/fBd , the quantity rds has a reduced uncertainty
stemming from the bag parameters, which are only needed for the Bs system.

Using this parametrisation, the results for the double ratio in the three different renormali-
sation schemes are

rds = 0.962+0.003
-0.008scale, comb. ± 0.012BB̃S

± 0.0401/mb ± 0.003input (pole) ,

rds = 0.965+0.002
-0.007scale, comb. ± 0.011BB̃S

± 0.0361/mb ± 0.003input (MS) ,

rds = 0.964+0.003
-0.008scale, comb. ± 0.012BB̃S

± 0.0361/mb ± 0.003input (PS) . (4.38)

Note that the perturbative uncertainty for the leading-power and ΛQCD/mb-suppressed
terms has been combined here as both are minor sources of uncertainty. The biggest
source of uncertainty in the above observable stems from the ΛQCD/mb-suppressed matrix
elements in the Bs system and the uncertainty of 10% that was assumed on the symmetry-
breaking effects in ζ. However, this term is actually dominated by ζ, and the uncertainty
from the bag parameters alone is just ±0.008. With a future determination of the ratio
similar to ξ and ξS , we expect this uncertainty to shrink. The other dominant source of
uncertainty is from the leading-power bag parameters in the Bs system. For a detailed
breakdown of the uncertainties, see Appendix E.

In Appendix F, we also present the results for rds without making use of the parametrisation
of the matrix elements in terms of ξ, ξS , fBs/fBd and ζ, using the same input values as
for the separate calculations of the observables in the Bs and Bd systems. This leads to
an increased uncertainty from the matrix elements by about a factor of two.

The remaining scale dependence of rds is shown in Fig. 4.10. The scale dependence from
the truncation of the perturbation series increases at higher orders, which is the opposite
of what one would expect for a converging series. However, this is because the scale
variation of ∆Γ/∆M is almost identical for the Bs and Bd system, see Figs. 4.3 and 4.6.
Therefore, small variations at higher orders lead to a seemingly bad convergence of the
perturbation series. However, we note that the perturbative uncertainty is small compared
to all other sources, and the NNLO predictions are very accurate.

As for the other observables, we average the results from the MS and PS schemes to
obtain the overall result

rds = 0.965± 0.038 . (4.39)
The value of rds is close to one because the dependence on the ratio of the matrix
elements of Q and Q̃S cancels with the power-suppressed matrix elements, see Eq. (4.25).
Additionally, the dependence on the CKM parameters λu/λt is small for Bs and Bd .
Referring to the parametrisation from Eq. (1.61),

Γq
12

Mq
12
≡
[
cq + aq λ

q
u
λ

q
t
+ bq (λq

u)2
(λq

t )2

]
× 10–4 , (4.40)
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Figure 4.10: Renormalisation scale dependence of rds at LO (short dashes), NLO
(long dashes) and NNLO (solid) for the simultaneous scale variation
of µ1 = µb = µc . The matching coefficients of the leading-power
and ΛQCD/mb-suppressed matrix elements are varied together.

this means that the ratio mostly depends on cd/cs , and the values for cd and cs are very
similar due to the cancellation of the sub-leading matrix elements in each constant.

Finally, rds can be combined with the experimental values for the mass differences from
Eqs. (4.26) and (4.31) and ∆Γs from Eq. (4.29) to obtain

∆Γd = (0.002 15± 0.000 13) ps–1 . (4.41)

This is the most accurate prediction of ∆Γd to date, where we note that the uncertainty
has been reduced by about 70% as compared to Eq. (4.33) due to the use of rds , which
suppresses the impact of the hadronic uncertainties on the final result.

4.6 Constraints on the CKM triangle from B meson
observables

The apex of the CKM unitarity triangle can be constrained using B meson mixing
observables to identify sectors with new physics, as presented in this section. The general
strategy for new physics searches in the B meson sector using the mixing observables starts
with the most accurate observable, which is the double ratio rds . Once a deviation from
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4 Phenomenology of B Meson Mixing

the Standard Model is observed here, one can then investigate the ratios ∆Γd/∆Γs and
∆Md/∆Ms to further narrow down the effective operators in which new physics enters.

Since the measurement of ∆Γd is not accurate enough yet, we cannot fully implement this
approach. However, we can examine the effect that precise measurements would have on
the apex of the CKM triangle. For this purpose, both ∆Γd/∆Γs and ad

fs are investigated
to yield constraints in the (ρ̄, η̄)-plane, which can be combined with other measurements
and constraints to draw conclusions about BSM physics. This graphical representation is
hence a convenient tool to compare the constraints from B mixing observables with those
from other measurements.

The apex of the CKM unitarity triangle is precisely determined from other B meson mixing
observables, so the constraints from ∆Γd/∆Γs and ad

fs provide a way to test the Standard
Model using exclusively B meson mixing observables. The length of one of the sides of
the unitarity triangle Rt =

√
ρ̄2 + η̄2 is obtained from measurements of ∆Md/∆Ms while

the angle β at the origin is determined by aCP(Bd (t)→ J/ψKS) ∝ sin(2β).

Before presenting the constraints, the CKM unitarity triangle is defined in terms of the
CKM matrix elements that appear in the B meson mixing. In general, the unitarity of the
CKM matrix implies ∑

k
VikV ∗jk = 0 , (4.42)

where i 6= j denote two different up-type quark flavours. There are six relations of this
type, giving rise to six unitarity triangles. The most commonly considered is the one
stemming from

VudV ∗ub + VcdV ∗cb + VtdV ∗tb = 0 , (4.43)
which is the CKM unitarity triangle that is referred to in the following. We can also write
the equation above in terms of the constants λd

i , normalising to λd
c :

1 + λd
u
λdc

+ λd
t
λdc

= 0 . (4.44)

The triangle constructed in this way has the vertices (0, 0), (1, 0) and (ρ̄, η̄) in the
Wolfenstein parametrisation [35, 180, 181]. This is because λd

u/λd
c = –ρ̄+ i η̄.

The parametrisation of ad
fs that can be used to constrain the CKM triangle is discussed

first. With the definition of Eq. (4.40), we write

ad
fs =

[
ad Imλ

d
u
λd

t
+ bd Im(λd

u )2

(λd
t )2

]
× 10–4 , (4.45)

so ad
fs is expressed in terms of the constants ad , bd and the Wolfenstein parameters A, λ,

ρ̄ and η̄. The ratio λd
u/λd

t is defined in terms of the Wolfenstein parameters as

λd
u
λd

t
≡ –Ru

Rt
eiα = 1 – ρ̄ – i η̄

(1 – ρ̄)2 + η̄2
– 1 . (4.46)
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MS LO NLO NNLO

ad
0 8.20+4.20

-1.94 10.40+0.81
-1.45 11.40+0.55

-0.95
bd
0 0.069+0.037

-0.020 0.112+0.043
-0.020 0.134+0.042

-0.022
cd
0 –69.7+17.7

-35.0 –64.1+14.2
-0.0 –58.3+4.0

-1.9

PS LO NLO NNLO

ad
0 9.53+1.17

-0.39 11.11+0.22
-0.50 11.71+0.15

-0.35
bd
0 0.081+0.011

-0.009 0.122+0.027
-0.008 0.140+0.034

-0.015
cd
0 –81.0+5.2

-9.4 –66.2+8.7
-2.1 –57.6+3.5

-3.3

Table 4.2: Results for ad
0 , bd

0 and cd
0 in the MS (left) and PS (right) schemes.

The perturbative uncertainty is obtained by varying µ1 = µb = µc
simultaneously between 2.1 GeV and 8.4 GeV.

Therefore, a measurement of ad
fs can be used to produce a curve on which the apex (ρ̄, η̄)

of the CKM triangle must lie.

To construct the constraints, the values of ad , bd and cd are calculated to LO, NLO and
NNLO. We give their contributions from the leading-power and ΛQCD/mb-suppressed
matrix elements separately,

a = a0 + a1 ,
b = b0 + b1 ,
c = c0 + c1 , (4.47)

where the subscripts 0 and 1 denote the leading and ΛQCD/mb-suppressed contributions
respectively. The power-suppressed contributions are

ad
1 = 0.622+0.073

-0.020scale, 1/mb
± 0.35param ,

bd
1 = 0.091+0.011

-0.003scale, 1/mb
± 0.031param ,

cd
1 = 15.36+1.98

-1.22scale, 1/mb
± 8.03param , (4.48)

where the uncertainty from varying all input parameters labelled “param” has been
absorbed into the sub-leading contributions, i.e. the constants ad

0 , bd
0 and cd

0 carry only a
perturbative uncertainty. For the perturbative uncertainties, the scales µ1 = µc = µb are
varied simultaneously in the interval [2.1 GeV, 8.4 GeV] around the central scale 4.2 GeV.
The leading-power contributions are given in Tab. 4.2 in the MS and PS schemes with the
perturbative uncertainties at each order.

The results for ad
0 and bd

0 can be compared to a previous determination in Ref. [20]
using only the current-current contributions at NNLO. It is interesting to see that bd

0 is
unchanged because the penguin operators do not contribute to the (λd

u )2/(λd
t )2 term.

Only the mixed contributions from one penguin and one current-current operator insertion
affect ad

fs, and only at the linear λd
u/λd

t order, i.e. ad
0 .
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MS LO NLO NNLO

as
0 8.23+4.21

-1.94 10.43+0.82
-1.46 11.44+0.56

-0.96
bs
0 0.072+0.038

-0.021 0.115+0.043
-0.021 0.137+0.042

-0.022
cs
0 –71.1+18.2

-35.8 –65.4+14.5
-0.0 –59.6+4.0

-1.9

PS LO NLO NNLO

as
0 9.56+1.17

-0.39 11.15+0.23
-0.50 11.76+0.16

-0.35
bs
0 0.083+0.011

-0.009 0.125+0.026
-0.007 0.143+0.034

-0.015
cs
0 –82.6+5.4

-9.6 –67.6+8.9
-2.1 –58.9+3.5

-3.3

Table 4.3: Results for as
0, bs

0 and cs
0 in the MS (left) and PS (right) schemes.

The perturbative uncertainty is obtained by varying µ1 = µb = µc
simultaneously between 2.1 GeV and 8.4 GeV.

The second constraint on the apex of the CKM triangle is constructed from the ratio
∆Γd/∆Γs , which can be parametrised as

∆Γd
∆Γs

= 1
ξ2

MBd
MBs

∣∣∣∣∣
λd

t
λs

t

∣∣∣∣∣

2 cd + ad Re
λd

u
λd

t
+ bd Re

(λd
u )2

(λd
t )2

cs + as Re
λs

u
λs

t
+ bs Re

(λs
u)2

(λs
t )2

, (4.49)

using Eq. (4.5) and Eq. (4.40) . The values of as
0, bs

0 and cs
0 are given in Tab. 4.3, and

the power-suppressed contributions are

as
1 = 0.616+0.074

-0.025scale, 1/mb
± 0.35param ,

bs
1 = 0.090+0.011

-0.004scale, 1/mb
± 0.030param ,

cs
1 = 15.28+1.90

-0.93scale, 1/mb
± 7.90param , (4.50)

where the uncertainties are defined in the same way as for the Bd system above. Since the
constants x s and xd agree within their perturbative uncertainties, the ratio in Eq. (4.49)
can be simplified by identifying the constants of the Bs system with those of the Bd
system, effectively ignoring SU(3)F-breaking corrections to the hadronic matrix elements.
The simplified ratio is hence given by

∆Γd
∆Γs

= 1
ξ2

MBd
MBs

∣∣∣∣∣
λd

t
λs

t

∣∣∣∣∣

2 1 +
ad

cd Re
λd

u
λd

t
+

bd

cd Re
(λd

u )2

(λd
t )2

1 +
ad

cd Re
λs

u
λs

t
+

bd

cd Re
(λs

u)2

(λs
t )2

. (4.51)

In addition to the Wolfenstein parametrisation of λd
u/λd

t given in Eq. (4.46), we need
similar expressions for the ratio in the Bs system as well as the absolute values of λq

t .
These are given by

λs
u
λs

t
= λ2(–ρ̄+ i η̄) + λ4

(
–ρ̄(1 – ρ̄) – η̄2 + i η̄(1 – 2ρ̄)

)
+O(λ6) , (4.52)
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and
∣∣∣λd

t
∣∣∣
2 = A2λ4

(
η̄2 + (1 – ρ̄)2

)
λ2 +O

(
λ10

)
, (4.53)

∣∣∣λs
t
∣∣∣
2 = A2λ4

(
1 – λ2(1 – 2ρ̄)

)
+O

(
λ8
)
, (4.54)

where the common factor A2λ4 = |Vcb|2 drops out in the ratio, eliminating a large source
of uncertainty. The ratio |λd

t /λs
t |2 can hence be expanded as

∣∣∣∣∣
λd

t
λs

t

∣∣∣∣∣

2
= λ2

(
η̄2 + (1 – ρ̄)2

)
×
(
1 + λ2(1 – 2ρ̄)

)
+O

(
λ6
)
. (4.55)

Therefore, only the Wolfenstein parameter λ is needed for ∆Γd/∆Γs , and it is given
by [166]

λ = 0.224 98± 0.000 23 . (4.56)
Substituting Eqs. (4.46), (4.52) and (4.55) into Eq. (4.51) leads to the second constraint
on the apex of the CKM triangle.

In Fig. 4.11, the constraints for the apex of the CKM triangle are shown for two hypothetical
measurements of ad

fs and ∆Γd . The width of the bands is given by the perturbative
uncertainty of the leading-power terms, illustrating the level of accuracy achieved by the
calculations of this thesis. Here, only the PS scheme results are shown since we find
agreement between the PS and MS schemes within the perturbative uncertainties, see
Ref. [20]. The perturbative uncertainty given by the width of the bands in Fig. 4.11 is
obtained from the simultaneous variation of the leading-power and ΛQCD/mb-suppressed
terms, so it is smaller than the uncertainty that would be obtained from adding the scale
variation of xq

0 and xq
1 . However, this difference is not visible in a plot of the constraints

on the unitarity triangle.

Additionally, the constraints with all uncertainties combined are shown in Fig. 4.12. It
is interesting to observe that the width of the bands does not change significantly for
∆Γd/∆Γs . This is because the terms involving ad/cd and bd/cd are small and we have
neglected the SU(3)F-breaking effects in the hadronic matrix elements. This is a good
approximation since those effects are negligible in the ratio and at any rate precisely
determined in ξ and ξS for the leading-power matrix elements. Therefore, we do not
significantly underestimate the uncertainty, as verified in Section 4.7.

Having shown the constraints implied by ad
fs and ∆Γd/∆Md , the significance of the

observables in the context of new physics searches should be stressed again. The flavour-
specific CP asymmetry is an interesting probe of new physics since a small change in the
phase φd

12 in arg(Md
12) will have a much bigger effect on ad

fs than on β as determined
from aCP(Bd (t) → J/ψKS), see the discussion at the beginning of this section. This
is because ad

fs in the SM is suppressed by m2
c/m2

b as the leading terms of Md
12 and Γd

12
have the same phase. However, a new physics contribution affecting the phase leads
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4 Phenomenology of B Meson Mixing

Figure 4.11: Constraints on the apex of the CKM triangle as obtained in the
PS scheme. The width of the bands is given by the perturbative
uncertainty of the leading-power term. The bands are plotted with
ad ,(1)
fs = –5 × 10–4, ad ,(2)

fs = –1 × 10–3, (∆Γd/∆Γs)(1) = 0.029
and (∆Γd/∆Γs)(2) = 0.0145 for reference.

Figure 4.12: Constraints on the apex of the CKM triangle as obtained in the PS
scheme. The width of the bands is given by the full uncertainty on
the predictions, and the measurements are as given in Fig. 4.11.
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4.7 Results independent of hadronic matrix elements and CKM inputs

to a correction of order sinφd
12 at O(m0

c/m0
b) [36, 182]. Meanwhile, the measurement

aCP(Bd (t)→ J/ψKS) ∝ sin(2β + φd
12) does not affect β significantly, so the constraints

from the two different CP asymmetries would be incompatible in the presence of new
physics.

Lastly, let us remark on the use of ∆Γd/∆Γs for constraining the CKM triangle. The
ratio provides an accurate constraint because many input parameters that have large
uncertainties cancel. Most importantly, |Vcb| cancels in the ratio, so there is no ambiguity
in whether the inclusive or exclusive measurement should be used. Additionally, there are
cancellations in the bag parameters and the ΛQCD/mb-suppressed corrections as discussed
in Ref. [36] and shown in Eq. (4.25). Moreover, the CKM-suppressed contributions in
∆Γs are tiny due to the size of λs

u, and in ∆Γd the terms linear and quadratic in λd
u in

Eq. (4.40) cancel by coincidence, see the discussion following Eq. (4.30). This makes it
possible to determine ∆Γd/∆Γs to a very high accuracy and provide better constraints
for the CKM triangle than would be possible with ∆Γd/∆Md . Note also that the overall
factor |λd

t |2/|λs
t |2 is the same for the two ratios, so the constraints have a similar shape.

4.7 Results independent of hadronic matrix elements
and CKM inputs

Since the phenomenological predictions in this chapter are dependent on many input
parameters, which will be determined more accurately in the future, we present our
results for Γ12/M12 in a convenient format that can be used to update phenomenological
predictions without implementing the matching coefficients for Γ12 first. For this purpose,
Γ12/M12 is parametrised as

Γq
12

Mq
12

=
∑

O

[
cO + aO

λ
q
u
λ

q
t
+ bO

(λq
u)2

(λq
t )2

]
〈Bq|O|B̄q〉
〈Bq|Q|B̄q〉

× 10–4 , (4.57)

which generalises Eq. (4.40) by removing the dependence on hadronic matrix elements
from the coefficients aO , bO and cO . As a consequence, the three sets of coefficients are
independent of the light quark flavour, i.e. they are the same for Bs and Bd . The sum in
Eq. (4.57) is over the operators

O ∈ {Q, Q̃S ,R0,R1, R̃1, R̃2, R̃3} , (4.58)

where the operators R2 and R3 were removed from the ratio as they are collinear with the
set above. Their matrix elements are expressed in terms of R̃2 and R̃3 as [47]

R2 = –R̃2 , R3 = R̃3 +
1
2 R̃2 , (4.59)
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where higher orders in ΛQCD/mb have been discarded. Note that these relations also
receive corrections in αs when they are being applied to operator matrix elements. This is
similar to the behaviour of 〈R0〉 at higher orders, see Section 2.4.4, but we can ignore
these corrections since the power-suppressed matching coefficients are only determined to
LO. The results for the leading-power coefficients in the MS and PS schemes are given
in Tabs. 4.4 and 4.5 respectively. The coefficients of the ΛQCD/mb-suppressed matrix
elements are the same across both schemes since they are only known to LO and are
presented in Tab. 4.6.

The perturbative uncertainties are obtained from the variation of µ1 = µb = µc between
2.1 GeV and 8.4 GeV with the central scale at 4.2 GeV. The uncertainties from the
remaining input parameters,

{
αs(MZ ), mb(mb), mc(3 GeV), mOS

t , MW , MZ
}
, (4.60)

are added in quadrature and given separate from the perturbative uncertainty. The
dominant contribution to the total uncertainty stems from the scale variation, so the
values given in Tab. 4.4, Tab. 4.5 and Tab. 4.6 can be used for state-of-the-art predictions
of ∆Γ, afs and constraints on the CKM unitarity triangle until higher-order matching
coefficients become available. We note that the constraints from ∆Γd/∆Γs shown in
Fig. 4.12 were obtained from the simplified parametrisation given in Eq. (4.51); however,
the values quoted here can be used in conjunction with ξ, ξS , fBs/fBd and ζ as explained
in Section 4.5 to obtain almost identical bands when ζ is taken as exactly one.

MS cO aO bO

Q –42.6+4.4
-1.8 ± 0.5 10.9+0.46

-0.90 ± 0.21 0.108+0.038
-0.023 ± 0.005

Q̃S –84.6+0.88
-2.90 ± 0.99 2.66+0.48

-0.28 ± 0.11 0.141+0.023
-0.000 ± 0.011

Table 4.4: Coefficients from Eq. (4.57) in the MS scheme for the leading-power
matrix elements with the one-sided input and two-sided perturbative
uncertainty.

PS cO aO bO

Q –41.9+3.7
-2.7 ± 0.5 11.20+0.08

-0.32 ± 0.23 0.115+0.030
-0.017 ± 0.006

Q̃S –84.4+0.8
-3.0 ± 1.0 2.74+0.39

-0.16 ± 0.11 0.139+0.022
-0.000 ± 0.012

Table 4.5: Coefficients from Eq. (4.57) in the PS scheme for the leading-power
matrix elements with the one-sided input and two-sided perturbative
uncertainty.
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4.7 Results independent of hadronic matrix elements and CKM inputs

1/mb cO aO bO

R0 27.9+4.3
-5.2 ± 0.5 –0.493+0.093

-0.076 ± 0.019 –0.0449+0.0084
-0.0069 ± 0.0024

R1 –55.8+10.5
-8.6 ± 0.9 0.99+0.15

-0.19 ± 0.04 0.090+0.014
-0.017 ± 0.005

R̃1 172+22
-14 ± 2 –3.05+0.25

-0.39 ± 0.11 –0.277+0.023
-0.036 ± 0.015

R̃2 231+31
-25 ± 3 –0.73+0.16

–-0.12 ± 0.02 0.0615+0.0058
-0.0000 ± 0.0036

R̃3 3.89+0.46
-0.12 ± 0.14 4.47+0.53

-0.14 ± 0.17 0.579+0.068
-0.018 ± 0.032

Table 4.6: Coefficients from Eq. (4.57) for the ΛQCD/mb-suppressed matrix ele-
ments with the two-sided perturbative and one-sided input uncertainty.
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5 BSM Effects in B Meson Mixing
from the Chromoelectric Operator

In this chapter, a specific type of BSM models is investigated in the context of B meson
mixing. The impact of an additional contribution to the effective coupling of gluons to b̄q
currents is modelled for a generic BSM operator contribution to the chromoelectric vertex.
For this purpose, the running of the |∆B| = 1 and |∆B| = 2 Hamiltonians is extended by
right-handed operators, and the mixing between the two Hamiltonians is discussed. We
find that the current experimental measurements of ∆Γs and ad

fs provide the strongest
constraint on new physics in the chromoelectric vertex. The chapter concludes with a
presentation of a simple UV completion which highlights the model properties that are
relevant for avoiding the exclusion due to measurements of ∆M. The analysis presented
here will be published in Ref. [183].

5.1 The chromoelectric vertex and its relevance to
BSM models

Before proceeding with the discussion of the Hamiltonians, the particular type of BSM
models studied in this chapter is motivated. While Γ12 is generally considered to be a
probe of light new physics, see e.g. Refs. [31, 184], it is also sensitive to heavy new coloured
particles through the effective b-q-gluon vertex shown in Fig. 5.1. In the following, the
generic case of the down-type quark q ∈ {d , s} is discussed.

qb

Figure 5.1: Effective b-q-gluon vertex with q denoting a down or strange quark.
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5 BSM Effects in B Meson Mixing from the Chromoelectric Operator

The vertex has four form factors, which are the two pairs
mb v̄qσµνPL,RT aub pµ , v̄qγµPL,RT aub

(
p2gµν – pµpν

)
, (5.1)

where the light quark mass has been set to zero so that no corresponding form factors
proportional to mq appear. The momentum pµ is the momentum carried by the gluon
while uq and vb are spinors of the quark fields. A full-theory contribution to the b-q-gluon
vertex can hence be constructed from the four effective operators

Q8 ≡ – gs
16π2 mb (q̄σµνT aPRb) Ga

µν , QL
ce ≡ (q̄γνTaPLb) Dab

µ Gµνb ,

Q′8 ≡ – gs
16π2 mb (q̄σµνT aPLb) Ga

µν , QR
ce ≡ (q̄γνTaPRb) Dab

µ Gµνb . (5.2)

The operator Qce is the chromoelectric operator, alternative terms are chromo-monopole
operator or chromo-anapole moment [185]. Using the equations of motion, this operator
can be replaced with the penguin operator Q4 of the CMM basis,

Q4 ≡
(
q̄γµT aPLb

) ∑

f

(
f̄ γµT af

)
,

Q′4 ≡
(
q̄γµT aPRb

) ∑

f

(
f̄ γµT af

)
, (5.3)

where the operator Q′4 with the opposite chirality as obtained from the Standard Model
diagrams was introduced. The key relation with the chromoelectric operator is

QL(R)
ce = –gsQ(′)

4 + unphysical operators only needed as counterterms . (5.4)
On the level of Feynman diagrams, the chromoelectric operator leads to the form factor
on the right of Eq. (5.1), and the terms in the parentheses which depend on the gluon
momentum p cancel with the gluon propagator when it is connected to a quark line.
Therefore, QL(R)

ce is absorbed into Q(′)
4 . For a discussion of this equivalence beyond leading

order, see Ref. [186].

The chromoelectric vertex as a source of new physics is interesting because its contributions
to M12 are suppressed as compared to the effect on the Wilson coefficient C ′4 of the
corresponding |∆B| = 1 operator. The new physics effects appear as an effective
chromoelectric operator after integrating out heavy new particles of mass MNP, so the
direct contribution to M12 from the diagram in Fig. 5.2 scale as m2

b/M4
NP. Interference

diagrams with one chromoelectric operator and a loop involving a W boson, as discussed
in Section 5.2, also contribute to M12, and are suppressed by m2

b/(M2
NPM2

W ). On the
other hand, the contribution to C4 scales as 1/M2

NP, so it is enhanced compared to the
direct effects in M12, and Γ12 can serve as a probe of heavy new physics.

In the following sections, we will show the effective |∆B| = 1 and |∆B| = 2 Hamiltonians
which result from generic new physics entering the chromoelectric vertex. The RGE
running will also be discussed for two different cases of scale hierarchies: Either the new
physics particles are much heavier than the scale of the W boson and top quark masses,
MNP � µt , or the scales are comparable, MNP ∼ µt .
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q̄

b

q

b̄
Figure 5.2: Direct contribution toM12 from new physics effects due to an effective

chromoelectric vertex, which can be absorbed into a |∆B| = 2
operator.

5.2 Effective Hamiltonians with new physics in the
chromoelectric operator

5.2.1 The |∆B| = 1 Hamiltonian with new physics contributions
To discuss generic heavy new physics in the b-q-gluon vertex using effective operators,
we extend the effective |∆B| = 1 Hamiltonian in the CMM basis from Section 2.2.3 by
additional chirality contributions. In the Standard Model, only the operators introduced
before have non-vanishing Wilson coefficients; however, BSM models may give rise to
non-zero Wilson coefficients for the opposite-chirality operators,

Q′1 ≡
(
q̄γµT aPRc

) (
c̄γµT aPRb

)
, Q′2 ≡

(
q̄γµPRc

) (
c̄γµPRb

)
,

Quu′
1 ≡

(
q̄γµT aPRu

) (
ūγµT aPRb

)
, Quu′

2 ≡
(
q̄γµPRu

) (
ūγµPRb

)
,

Q′3 ≡
(
q̄γµPRb

) ∑

f

(
f̄ γµf

)
,

Q′4 ≡
(
q̄γµT aPRb

) ∑

f

(
f̄ γµT af

)
,

Q′5 ≡
(
q̄γµ1γµ2γµ3PRb

) ∑

f

(
f̄ γµ1γµ2γµ3f

)
,

Q′6 ≡
(
q̄γµ1γµ2γµ3T aPRb

) ∑

f

(
f̄ γµ1γµ2γµ3T af

)
, (5.5)

where f ∈ {u, d , c , s, b}. In addition to the primed chromomagnetic operator in Eq. (5.2),
the electromagnetic penguin operator with quarks of opposite chirality is defined as

Q′7 ≡
e

16π2 mb (q̄σµνPLb) Fµν . (5.6)

The full |∆B| = 1 Hamiltonian is hence

H|∆B|=1
SM+BSM ≡ HCMM + 4GF√

2


–λt

8∑

i=1
C ′i Q′i – λu

2∑

i=1
C ′i (Q′i – Quu′

i )

+ h.c. , (5.7)
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where HCMM is as given in Eq. (2.59) on page 34. At the high-energy scale MNP, all
Wilson coefficients belonging to the operators with the SM chirality are zero, and only
the BSM coefficients appear. In Section 5.5, a model that generates C ′4, C ′7 and C ′8 is
presented, but in the following sections, we focus on models which generate a non-zero
Wilson coefficient exclusively for QR

ce, i.e. contribute only to C ′4.

To make predictions regarding physical observables, the Wilson coefficients need to be
calculated at the scale µb ∼ mb as the hadronic matrix elements are evaluated at that
scale. Therefore, the solution of the RGE running is used to relate the Wilson coefficients
at µb to those obtained at MNP. This is done in two steps, first for the interval between
MNP and µt , and then for the interval between µt and µb. The running from MNP down
to µt involves six active quark flavours. At the scale µt , the top quark and the W boson
are integrated out, generating the SM effective |∆B| = 1 operators. Finally, the Wilson
coefficients at µb are related to those at µt through the RGE running with five active
quark flavours.

For the scale evolution, Eq. (2.36) from page 28 is used to leading order, i.e.

~C(µ2) = ~C(µ1)T exp
[
– γ02β0

ln
(
αs(µ2)
αs(µ1)

)]
, (5.8)

where γ0 is the one-loop anomalous dimension matrix. The effective operators with
different chiralities do not mix, and the anomalous dimension is the same for the primed
and unprimed set of operators. At leading order, the anomalous dimension is given by

γ0 = 2Z (1,1) , (5.9)

and is hence obtained from the renormalisation constants given in Appendix A.

There are two ways of treating the scale hierarchy, and we find agreement between the two
approaches within the perturbative uncertainty. The first approach considers the scales
MNP ∼ µt to be of similar magnitude, such that the top quark, W boson and all BSM
particles are integrated out at the same scale. In this scenario, only C ′4 is non-zero at the
scale µt . All other primed Wilson coefficients vanish at that scale. In the second approach,
the scale of new physics is assumed to be much larger than the scale of the W boson
and top quark masses, MNP � µt . In this case, the RGE evolution from MNP to µt
generates all primed Wilson coefficients at the scale µt due to the operator mixing. The
evolution between µt and µb is the same in both scenarios; only the starting conditions at
µt differ. Finally, the amplitude can be matched onto a local |∆B| = 2 operator in order
to determine the contribution to Γ12, see Section 2.6.1.

5.2.2 The |∆B| = 2 Hamiltonian with new physics contributions
Since a BSM model contributing to the chromoelectric vertex also contributes to the
effective |∆B| = 2 Hamiltonian, the effect on M12 needs to be considered when discussing
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constraints from measurements of B meson mixing observables on the new physics effects.
The |∆B| = 2 Hamiltonian is given by

H|∆B|=2 = G2
F

16π2M
2
W λ2t

(
CQQ + CLR

1 QLR
1 + CLR

2 QLR
2 + CRR

Q QRR)+ h.c. , (5.10)

where the operators are defined as [187]

Q ≡ 4
(
q̄γµPLb

) (
q̄γµPLb

)
,

QLR
1 ≡ 4

(
q̄γµPLb

) (
q̄γµPRb

)
,

QLR
2 ≡ 4

(
q̄PLb

) (
q̄PRb

)
,

QRR ≡ 4
(
q̄γµPRb

) (
q̄γµPRb

)
. (5.11)

The effective operator Q also appears in the |∆B| = 2 transition operator in Section 2.4;
however, in the following discussion we are considering an effective Hamiltonian and
not just a transition operator. In the definitions of the operators, the colour indices are
contracted within each scalar product of spinors and hence suppressed. The operator Q
receives a non-zero Wilson coefficient from Standard Model diagrams while QLR

1,2 stem
from the interference of new physics with SM particles. The fourth operator in the basis,
QRR , receives a Wilson coefficient from diagrams where the heavy new particles couple to
two right-handed quark pairs.

There are two effects which give rise to |∆B| = 2 Wilson coefficients at the scale µt from
new physics in the chromoelectric vertex. The first contribution arises from the mixing of
the |∆B| = 1 and |∆B| = 2 operators under RGE running, and the second contribution
results from the matching of interference diagrams containing an effective |∆B| = 1
operator from new physics and heavy SM particles to the |∆B| = 2 Hamiltonian. To show
this, we consider the two scenarios of scale hierarchies, MNP ∼ µt and MNP � µt , similar
to the discussion of the |∆B| = 1 Hamiltonian.

In the first scenario, MNP ∼ µt , the SM and BSM particles are integrated out at the
same scale. There are contributions to CRR

Q from the diagram shown in Fig. 5.3, which
are suppressed by m2

b/m2
t . There are also contributions to CLR

1,2 from diagrams with one
BSM and one SM loop, which are suppressed by a factor of m2

b/M2
W . The aforementioned

contributions should be compared to the SM Wilson coefficient CQ , which at the scale
µt is not suppressed by a mass ratio. In conclusion, the contributions from generic new
physics in the chromoelectric vertex to M12 are expected to be negligible when the scale
of new physics is comparable to that of the W boson and top quark masses. However, in
Section 5.5, it is shown that additional direct contributions from UV completions can give
rise to larger effects.

For the second scenario with MNP � µt , there is a contribution to the |∆B| = 2 Wilson
coefficients from the running of the |∆B| = 1 Wilson coefficient C ′4(MNP) that is obtained
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q̄

b

t

q

b̄

Figure 5.3: Contribution to CRR
Q and hence M12 when integrating out heavy SM

and BSM particles at the same scale. The shaded vertices are BSM
loops that contribute to the chromoelectric vertex.

q̄ b̄

b q

W

q′
q̄ b̄

b q
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q′

q̄ b̄
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W

q′
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q̄ b̄

b q

G

q′

q′

q̄ b̄

b qW

q′

q̄ b̄

b qG

q′

Figure 5.4: Diagrams which result in the mixing of the |∆B| = 1 and |∆B| = 2
operators. The orange dot corresponds to Q′3–6.

after integrating out the heavy new particles. This operator mixing contribution stems
from the interference of the primed BSM |∆B| = 1 operators with heavy Standard Model
particles, see Fig. 5.4, which match onto QLR

1,2 . Note that the diagrams with C ′4 give
negligible contributions as they are suppressed by m2

b/M2
W , so the leading BSM effects

in CLR
1,2 come from the mixing into other |∆B| = 1 operators, which then mix into

the |∆B| = 2 operators. This is formally NNLO in the full theory. Out of the primed
BSM operators, only Q′5 and Q′6 need to be considered for the mixing since they have
diagrams which are enhanced by m2

t /m2
W . The operators Q′3, Q′4, and Q′8 lead to diagrams

suppressed by m2
b/M2

W .

The mixing of the |∆B| = 1 and |∆B| = 2 operators is obtained from the LO anomalous
dimension. For the diagrams in Fig. 5.4, counterterms proportional to QLR

1,2 are required
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to render the contributions from Q′5 and Q′6 finite. The anomalous dimension matrix can
hence be written as

γ(0) =



γ
(0)
|∆B|=1 γ

(0)
mix

0 γ
(0)
|∆B|=2


 , (5.12)

where the sub-matrix γ(0)mix generates non-zero |∆B| = 2 Wilson coefficients through the
running of the |∆B| = 1 Wilson coefficients.

To solve the RGE running to LO, the |∆B| = 2 operators that appear in the counterterms
and receive non-zero Wilson coefficients in the running need to be rescaled. This is because
the large logarithm ln(MNP/µt) appears in the combination αn

s lnn+1(MNP/µt), i.e. the
diagrams in Fig. 5.4 are O(α0s ), but the RGE is set up in an expansion in αs . Therefore,
the counterterms should appear with a factor of αs , and the |∆B| = 2 Hamiltonian is
redefined as [188, 189]

H|∆B|=2 ⊃ G2
F

16π2M
2
W λ2t

(
Cct
1 Qct

1 + Cct
2 Qct

2
)
+ h.c. , (5.13)

with
Qct
1,2 = m2

t
M2

W g2s µ2ε
QLR
1,2 . (5.14)

The counterterm operator is rescaled with µ since gs, bare = Zgsgsµε is substituted in the
Hamiltonian. In order to obtain renormalisation constants independent of particle masses,
the counterterm operator is further rescaled by m2

t /M2
W . The Wilson coefficients CLR

1,2
are later obtained from the solution of the RGE by rescaling the Wilson coefficients of the
counterterm operators with g2s M2

W /m2
t .

From the poles of the diagrams in Fig. 5.4, we obtain the renormalisation constants

Z (1,1)
5,Qct

1
= –24 , Z (1,1)

5,Qct
2

= 0 ,

Z (1,1)
6,Qct

1
= 12

Nc
= 4 Z (1,1)

6,Qct
2

= 24 , (5.15)

and all other renormalisation constants Zi ,Qct
1,2

with i 6= 5, 6 as well as ZQct
1,2,i

with
i ∈ {1, . . . , 8} vanish.

The anomalous dimension is obtained from the renormalisation constants where special
attention needs to be paid to the sub-matrix of the counterterm operators. For all other
operators, which do not receive any rescaling, the anomalous dimension is given by

γ = αs
4π γ

(0) +O
(
α2s
)
= –β(αs , ε)

(
d

dαs
Z
)
Z–1

= (2ε+O (αs))
(
αs
4πZ

(1) +O
(
α2s
))

(1+O (αs))

= 2αs
4πZ

(1,1) +O
(
α2s
)
,

(5.16)
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such that γ(0) = 2Z (1,1). However, for the sub-matrix of the anomalous dimension
γ
(0)
|∆B|=2 = γ

(0)
Qct

i ,Qct
j
, it is easier to directly calculate it through the scale variation

µ
dQct

j
dµ = µ

d
dµ

(
ZQct

j ,iO
bare
i

)

µ
d
dµ

(
m2

t
g2µ2εQj

)
= µ

dZQct
j ,Qct

i

dµ Qct,bare
i

µ
d
dµ

(
m2

t
g2µ2ε

)
Qj +

m2
t

g2µ2εµ
dQj
dµ = µ

dZQct
j ,Qct

i

dµ Qct,bare
i

(
2γm – 2µg

dg
dµ – 2ε

)
m2

t
g2µ2εQj +

m2
t

g2µ2ε
dZQj ,Qi

dµ Qbare
i = µ

dZQct
j ,Qct

i

dµ Qct,bare
i

(
2γm – 1

αs
β – 2ε

)
ZQct

j ,Qct
i
Qct,bare

i – γQj ,QkZQk ,QiQ
bare
i

m2
t

g2µ2ε = µ
dZQct

j ,Qct
i

dµ Qct,bare
i

(
2γm δjk – 1

αs
β δjk – 2ε δjk – γQj ,Qk

)
ZQct

k ,Qct
i
Qct,bare

i = µ
dZQct

j ,Qct
i

dµ Qct,bare
i ,

(5.17)
where we used the fact that ZQ(ct),i is only non-zero when i = Q(ct). Therefore, the
sub-matrix is given by

γQct
i ,Qct

j
= γQi ,Qj – 2γm δij +

1
αs
β δij + 2ε δij , (5.18)

where γm ≡ d lnm/d lnµ, and the relevant one-loop anomalous dimension is

γ
(0)
Qct

i ,Qct
j

=



–4 + 4

3Nf 6 + 4
3Nf

–6 + 4
3Nf –22 + 4

3Nf


 . (5.19)

For the original operators operators QLR
1,2 , the anomalous dimension is given by

γ
(0)
Qi ,Qj

=

2 12
0 –16


 , (5.20)

which is in agreement with Ref. [187]. Combining the results from Eqs. (5.15) and
(5.19) with the CMM renormalisation constants from Section A.2, the complete one-loop
anomalous dimension for {Q′1, . . . ,Q′8,Qct

1 ,Qct
2 } can be reconstructed.

The contribution to the Wilson coefficients of the operators QLR
1,2 at the scale µt is obtained

from the running of the Wilson coefficients together with the matching contribution after
integrating out the heavy SM particles. For the running, Eq. (5.8) is used and the Wilson
coefficients of the counterterm operators Qct

1,2 rescaled to obtain CLR
1,2 . The matching

contribution to the Wilson coefficients is obtained from the renormalised contributions
of the diagrams in Fig. 5.4, where only C ′5,6 give sizeable contributions since C ′3,4,8 are
suppressed by m2

b/m2
t .
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5.3 Calculating Γ12 and M12 with new physics
In order to constrain new physics in the chromoelectric vertex, observables need to be
calculated from Γ12 and M12 with the effects from C ′4(MNP) included. For Γ12, we use
the HQE to match the amplitude obtained from the effective |∆B| = 1 Hamiltonian
H|∆B|=1

SM+BSM onto a |∆B| = 2 transition operator, similar to the procedure described in
Section 2.6.1. Compared to the SM case, the operator basis needs to be extended to

{
Q,QLR

1 ,QLR
2 ,QRR , Q̃S , Q̃RR

S
}
, (5.21)

where the operators are as defined in Eq. (5.11) and

Q̃S ≡ 4
(
q̄cPRbd) (q̄dPRbc) ,

Q̃RR
S ≡ 4

(
q̄cPLbd) (q̄dPLbc) . (5.22)

Hence, Γ12 is expressed in terms of the matching coefficients and the hadronic matrix
elements as

Γ12 = G2
Fm2

b
24πMBq


H〈Q〉+ H̃S〈Q̃S〉+ HLR

1 〈QLR
1 〉

+ HLR
2 〈QLR

2 〉+ HRR〈QRR〉+ H̃RR
S 〈Q̃RR

S 〉+O
(

ΛQCD
mb

)
 , (5.23)

which extends Eq. (2.80) to include all possible chirality combinations to leading-power
in ΛQCD/mb. Here, the shorthand notation 〈Bq|O|B̄q〉 ≡ 〈O〉 was used. Note that the
contributions to the different chirality matching coefficients depend on the |∆B| = 1
Wilson coefficients through

H =
∑

i ,j=1,...,6,8
CiCjpij ,

HLR
i (z) =

∑

i ,j=1,...,6,8
CiC ′j pij ,LR ,

HRR (z) =
∑

i=1,...,6,8
C ′i C ′j pij ,RR , (5.24)

and analogous expressions hold for H̃S . The matching coefficients H and H̃S are those
obtained from the Standard Model chiralities, which have been discussed in the phe-
nomenological analysis of Chapter 4. The matching coefficients HLR

i and HRR can be
obtained from the ones appearing in the Standard Model as the coefficient functions pij
do not depend on the chirality of the external quarks. Therefore, the matching coefficients
for QRR and QLR

1 are identical to those of Q while those of QLR
2 are obtained from Q̃S

after a basis transformation. Since the matrix elements are evaluated at a scale µ ∼ mb,
the |∆B| = 1 Wilson coefficients are evolved down to that scale.
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B1
Bq

(mb) B2
Bq

(mb) B3
Bq

(mb) B4
Bq

(mb) B5
Bq

(mb)

Bs 2.168(93) -2.18(10) 0.436(29) 3.65(15) 1.945(76)
Bd 2.15(11) -2.06(11) 0.400(30) 3.82(18) 2.015(92)

Table 5.1: Bag parameters in the SUSY operator basis obtained from lattice QCD
in Ref. [40]. The operators in Ref. [40] are transformed using Fierz
identities to obtain the operator basis defined here.

The contributions to M12 follow directly from the |∆B| = 2 Hamiltonian discussed in
Section 5.2.2. The dispersive part of the off-diagonal decay matrix is given by

M12 = G2
FM2

W λ2t
32π2MBq

[
CQ〈Q〉+ CLR

1 〈QLR
1 〉+ CLR

2 〈QLR
2 〉+ CRR

Q 〈QRR〉
]

=Mq
12,SM + G2

FM2
W λ2t

32π2MBq

[
CLR
1 〈QLR

1 〉+ CLR
2 (µt) 〈QLR

2 〉+ CRR
Q 〈QRR〉

]
. (5.25)

The matrix element 〈QRR〉 is equal to 〈QLL〉 because QCD does not affect the parity of
the particles involved. As numerical input, we use the values computed in Ref. [40] using
lattice QCD, where the bag parameters Bi

Bq
(µ) in

〈Bq|Oi |B̄q〉 (µ) ≡ f 2BqM
2
BqB

i
Bq (µ) (5.26)

are given, see Tab. 5.1

5.4 Constraints on generic new physics models
In this section, the constraints on the allowed values of C ′4(MNP) from the current
experimental status of B meson mixing are discussed. Generic new physics that contributes
to C ′4(MNP) only, with no direct contribution from the UV theory to observables, is
considered. For this purpose, we separately investigate the Bd and Bs systems, adding a
further constraint from the lifetime ratio at the end.

5.4.1 Constraints from the Bd system
The observables which we consider are ∆Md , argMd

12, ∆Γd and ad
fs. For the observables

related to the mass difference, we use the values determined in Ref. [166],

∆Md = (0.5065± 0.0019) ps–1 , (5.27)
sin 2β = 0.708± 0.011 , (5.28)
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which give a small allowed region in the complex Md
12 plane. The Standard Model

contributions are taken from Ref. [166] as well, using the values where the observables
have not been included in the fit,

∆MSM
d =

(
0.534+0.082

-0.078
)
ps–1 , (5.29)

sin 2βSM = 0.742+0.047
-0.050 , (5.30)

where the quoted uncertainty is the 3σ interval. Comparing these values to the full fit
given in Eqs. (5.27) and (5.28), the uncertainties of the full fit can be neglected. The
constraint on the new physics part of Md

12, and consequently on C ′4 (MNP), is obtained by
requiring that

Md
12,SM +Md

12,NP = Md
12 , (5.31)

where the right-hand side is given by the experimental results of the full fit.

The constraint from ∆Γd is obtained in a similar manner, using the experimental values [26]

xd = ∆Γd

Γd
= 0.001± 0.010 , (5.32)

τBd = (1.517± 0.004) ps , (5.33)

which can be combined to obtain ∆Γd . For the CP asymmetry we use the measurement [26]

ad
fs = (–21± 17)× 10–4 . (5.34)

The Standard Model predictions for ∆Γd and ad
fs are given in Eqs. (4.33) and (4.36)

respectively, i.e.

∆ΓSM
d = (0.002 15± 0.000 45) ps–1 , (5.35)

ad ,SM
fs = – (5.19± 0.32)× 10–4 . (5.36)

With the condition that
Γd
12,SM + Γd

12,NP = Γd
12 , (5.37)

we obtain another constraint for C ′4 (MNP).

5.4.2 Constraints from the Bs system
Similar to the Bd system, we obtain constraints from ∆Ms , argMs

12, ∆Γs and as
fs. For

∆MSM
s , the value

∆MSM
s = 18.19 ps–1 (5.38)

is used, where the uncertainty in the literature is quoted as either 3.5% [27] or 6.5% [46], and
the result was calculated with the value for |Vcb| as obtained from inclusive measurements.
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For our analysis, we allow for a relative uncertainty of 5% as well as either inclusive or
exclusive |Vcb| values; therefore,

∆Ms
∆MSMs

∈ [0.95, 1.25] . (5.39)

From the discussion of the combined constraints in Section 5.4.4, it can be seen that the
constraints from Ms

12 are less stringent than from the other observables, so the precise
interval has no consequence for the allowed values of C ′4(MNP). For the SM prediction of
∆Γs and as

fs, we use the results from Eqs. (4.28) and (4.36) respectively, which read

∆ΓSM
s = (0.078± 0.015) ps–1 ,

as,SM
fs = (2.27± 0.14)× 10–5 . (5.40)

We also require the experimental measurements of all observables. For Ms
12, these are

given by [26, 35]

∆Ms = (17.766± 0.006) ps–1 , (5.41)
sin 2βs = 0.03757+0.00057

-0.00054 , (5.42)

and for ∆Γs we use [26]

∆Γs = (0.0781± 0.0035) ps–1 . (5.43)

Lastly, the flavour-specific CP asymmetry is measured to be [26]

as
fs = (–60± 280)× 10–5 . (5.44)

5.4.3 Constraints from the lifetime ratio τ (Bs)/τ (Bd)
An additional constraint on the new physics contributions from the chromoelectric vertex
stems from the lifetime ratio τ(Bs)/τ(Bd ), which depends on the |∆B| = 1 Wilson
coefficients at the hadronic scale µ ∼ mb, see Ref. [190]. We include interference terms
of the right-handed Wilson coefficient C ′4 with Standard Model Wilson coefficients as
well as quadratic terms proportional to |C ′4|2. The LO matching coefficients for the
mixed contributions are obtained from Ref. [190]. Additionally, the part of the matching
coefficients stemming from two insertions of the BSM operator Q′4 are computed from
diagrams shown in Fig. 5.5, which is consistent with the LO matching calculation for B
meson mixing.

The constraint on C ′4 is obtained by setting the LO Standard Model prediction [62]

τ (Bs)
τ (Bd )

– 1
∣∣∣∣∣SM

= 0.0132+0.0070
-0.0072 (5.45)
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q′

q

b̄

q

b̄

qq

b̄

q

b̄q

Figure 5.5: The two Feynman diagrams that need to be computed to obtain the
matching contribution from |C ′4| to the lifetime ratio τ (Bs) /τ (Bd ).
As discussed in Section 2.5, the diagram on the left corresponds to
WA while the one on the right is the PI part. The orange dot denotes
Q′4 with q′ ∈ {u, d , c , s}.

with additional BSM contributions equal to the experimental value [26]

τ (Bs)
τ (Bd )

– 1 = 0.0017± 0.0034 . (5.46)

Note that only one of the two Wilson coefficients C ′,d4 and C ′,s4 was taken to be non-zero at
the same time when computing the constraints from τ (Bs) /τ (Bd ) on the corresponding
Wilson coefficient.

5.4.4 Exclusion plots for the chromoelectric Wilson coefficients
BSM models that generate a contribution to the chromoelectric vertex only are not strongly
constrained by current measurements and may lead to a significant modification of the
decay width ∆Γ with respect to the Standard Model predictions, see Figs. 5.6 and 5.7 for
the Bd and Bs system respectively. The precisely measured mass difference ∆M does not
yield stringent constraints, and it is hence more impactful to focus on the other observables
to exclude BSM models that enter through the chromoelectric vertex. In the following,
we will use the shorthand notation Cq,′

4 ≡ Cq,′
4 (MNP). In the plots shown here, the 2σ

experimental uncertainties are used. The two Bq systems are discussed separately below.

For Bd mesons, we find that the strongest constraints are given by measurements of
ad
fs, see Fig. 5.6, while ∆Γd can vary by a factor of about six. The bounds from ∆Γd
limit the absolute value of Cd ,′

4 for purely real or purely imaginary contributions. We
observe that the constraints from the lifetime ratio τ (Bs) /τ (Bd ) are of the same order
of magnitude as those from ∆Γd and hence do not limit the allowed region further. The
impact on ∆Md is of the sub-percent level, and the constraints from Md

12 are therefore
outside of the plot region. It is interesting to note that at the exclusion limits, the new
physics contributions are dominated by the quadratic effects in Cd ,′

4 . For example, the
term proportional to |Cq,′

4 |2 in the lifetime ratio leads to the circular constraint. For the
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Figure 5.6: Constraints on C ′,d4 from generic new physics in the chromoelectric
vertex. The colour gradient corresponds to the value of ∆Γ/∆ΓSM,
and white regions are excluded through measurements. The exper-
imental bounds are shown as dashed lines, with constraints from
Md

12 in orange (outside the plot region), ∆Γd in blue, ad
fs in red and

τ (Bs) /τ (Bd ) in green. The scale of new physics has been chosen
as MNP = 490GeV. This value is not excluded from bounds shown
in Fig. 8a of Ref. [191], where the masses in axial-vector models have
been constrained.
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Figure 5.7: Constraints on C ′,s4 from generic new physics in the chromoelectric
vertex. The colour gradient corresponds to the value of ∆Γ/∆ΓSM,
and white regions are excluded through measurements. The exper-
imental bounds are shown as dashed lines, with constraints from
Ms

12 in orange (outside the plot region), ∆Γs in blue, as
fs in red and

τ (Bs) /τ (Bd ) in green. The scale of new physics has been chosen
as MNP = 490GeV. This value is not excluded from bounds shown
in Fig. 8a of Ref. [191], where the masses in axial-vector models have
been constrained.
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lifetime difference and the CP asymmetry in flavour-specific decays, the quadratic terms
are

∆ΓBSM
d ∝ Re

((
Cd ,′
4
)2) = Re

(
Cd ,′
4
)2 – Im

(
Cd ,′
4
)2 ,

ad ,BSM
fs ∝ Im

((
Cd ,′
4
)2) = 2Re

(
Cd ,′
4
)
× Im

(
Cd ,′
4
)
. (5.47)

Thus, we obtain the two cross-shaped allowed regions, one aligned with the plot axes, and
one rotated by 45◦.

Overall, we observe that ∆Md is not a good probe for BSM models that contribute
exclusively to the chromoelectric vertex. On the other hand, ∆Γd can be used very
effectively to constrain the new physics contributions in Cd ,′

4 , which motivates more
accurate measurements of this observable.

In the Bs system, the constraints from ∆Γs are the strongest, with as
fs only impacting a

small region of the allowed values for C s,′
4 , see Fig. 5.7. The constraints from the lifetime

ratio are less stringent than those from the mixing observables, except for ∆Ms . The
corresponding constraints from Ms

12 are outside of the plot region and the variation of ∆Ms
is below the percent level in the allowed parameter space. We find that the experimental
bounds on ∆Γs are saturated, and the new physics contributions are dominated by the
terms linear in C ′,s4 throughout the allowed region.

5.5 Ultraviolet completions with an effective
chromoelectric operator

It is necessary to investigate UV completions that give rise to an effective chromoelectric
operator since they will yield a direct contribution to M12 from box diagrams. Therefore,
the constraint from M12 on the new physics models is usually more stringent than the
constraints obtained from only considering an effective |∆B| = 1 operator as shown in
Section 5.4.4. In general, the BSM contributions to M12 and Γ12 scale as

MNP
12

MSM
12
∼ M2

NP
M2

W
,

ΓNP
12

ΓSM
12
∼ M4

W
M4

NP
, (5.48)

which means that M12 receives an enhanced contribution while the corresponding term
for Γ12 is suppressed. This behaviour is demonstrated for a class of BSM models in the
following sections.

5.5.1 A generic model with heavy vector-like quarks
In this section, we introduce a class of theories which produce the desired effective
chromoelectric vertex as well as an effective |∆B| = 2 operator. The model contains
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heavy vector-like quarks Dj , j = 1, 2, 3, which have the same quantum numbers as SM
down-type quarks, i.e. (3, 1, –1/3) for SU(3)C×SU(2)L×U(1)Y. The BSM quarks couple
to a BSM Higgs field φ0, which is a singlet under all symmetry groups, as well as to
right-handed SM quarks. The complete Lagrangian is

LBSM = D̄j(i /D – Mj)Dj + ∂µφ
0†∂µφ0 – M2

φ|φ0|2 + LDd + LSM, (5.49)

LDd = –
3∑

j=1

(
yφ0D̄jdR,j + y∗φ0†d̄R,jDj

)
. (5.50)

The Yukawa coupling in LDd is flavour-blind and preserves the SU(3) flavour symmetry of
simultaneous unitary rotations of Dj and dR,j . Without loss of generality, we can take
y > 0 because its phase can be absorbed into Dj . In order to suppress flavour-changing
neutral current (FCNC) processes of kaons, we assume that M ≡ M1 = M2 6= M3. For
a realistic theory, this Lagrangian would have to be extended by additional interactions
because the lightest particle of the new theory would otherwise be stable; however, this is
not relevant for our discussion.

The UV model is constructed in a way that GIM cancellations in FCNC processes appear.
In the Standard Model, the mass eigenstates dR,i are related to the flavour eigenstates
through a unitary rotation, 


dR,1
dR,2
dR,3


 = U



dR
sR
bR


 , (5.51)

where the matrix U is unphysical in the Standard Model. However, it appears in the
Feynman rules of the BSM Lagrangian:

LDd = –yφ0
3∑

j=1
D̄j
(
Uj1dR + Uj2sR + Uj3bR

)
+ h.c. (5.52)

The unitarity of U gives rise to the aforementioned GIM suppression. For illustration
purposes, consider for example a one-loop FCNC b → q transition as shown in Fig. 5.8.
The corresponding amplitude for q = s will be of the form

∑

j
Uj2U∗j3 f (Mj) = U32U∗33

[
f (M3) – f (M)

]
, (5.53)

where we have used the unitarity of U ,
∑

j
UjkU∗jl = δkl . (5.54)

Similar cancellations are present in the diagrams we will consider later.

After integrating out the heavy new particles at the scale of new physicsMNP, the UV model
gives rise to effective operators. One of these will give a direct contribution to Mq

12 because
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b q
φ0

Dj Dj

Figure 5.8: Sample diagram for a FCNC process in the generic BSM model.

there is a non-zero matching coefficient CRR
Q (MNP) for the |∆B| = 2 operator QRR . The

second contribution is to the matching coefficients CR
ce of the chromoelectric operator QR

ce,
C ′7 of the electromagnetic penguin operator Q′7, and C ′8 of the chromomagnetic operator
Q′8. One would expect the contribution to Mq

12 to be more strongly suppressed:

M12 ∝
|M3 – M|2

M4 ∝ x2 , (5.55)
{
CR
ce,C ′7,C ′8

}
∝ 1

M2
φ

ln M3
M ∝ x , (5.56)

where the dimensionless parameter

x ≡ M2
3 – M2

M2 (5.57)

was introduced. However, M12 is proportional to y4 while the |∆B| = 1 operators are
proportional to y2. Hence the GIM mechanism does not offer an additional lever on the
relative size of the contributions since new physics contributions in both Γ12 and M12 are
governed by the product xy2.

In the following sections, the contributions to the |∆B| = 2 and |∆B| = 1 Hamiltonian
are computed and their implications discussed.

5.5.2 Contributions to the |∆B| = 2 Hamiltonian
The contribution to the |∆B| = 2 operator QRR stems from the box diagrams shown in
Fig. 5.9. Summing the diagrams in the limit M2 → M1 ≡ M and employing unitarity of
the matrix U yields the total amplitude, which is most conveniently expressed in terms of
x and r ,

M̃ = λ23y4 r
96π2M2

φ (r – 1)5
x2
[
–1 – 9r + 9r2 + r3 – 6r (1 + r) ln (r)

]
+O

(
x3
)
, (5.58)
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b q

φ0
Dj

Di

φ0

q̄ b̄

b q

Di
φ0

φ0

Dj

q̄ b̄
Figure 5.9: Two types of box diagrams in the UV theory contribute to the effective

|∆B| = 2 operator.

where r = M2/M2
φ and the dimensionless parameter x defined in Eq. (5.57) were used to

make the GIM-violating terms explicit. Note that the spinor structure [b̄γµPRq]⊗[b̄γµPRq]
has been factored out here, so the contribution of the UV model to the matching coefficient
is given by

CRR
Q = – 2π2

G2
Fm2

W λ2t
M̃ . (5.59)

We can also write down the contribution to Mq
12 directly:

Mq
12(MNP) =

r y4
(
U32U∗33

)2

1536M2
φ (1 – r)5 π2

〈B̄q|QRR |Bq〉 ×


x

2 [r3 + 9 r2 – 9 r – 1
]

+ x2 ln r [–6 r (1 + r)] +O
(
x3
)


 .

(5.60)

Note that Mq
12 shows the expected “hard” quadratic GIM suppression, i.e. its leading term

scales as x2, as suggested in Eq. (5.55).

5.5.3 Contributions to the |∆B| = 1 Hamiltonian
In addition to the effective |∆B| = 2 operator, there are contributions to the matching
coefficients CR

ce, C ′7 and C ′8 from the diagrams shown in Fig. 5.10. The diagrams need to
be expanded in the gluon momentum, which means that we naively expand in the external
quark momenta and retain the quark masses mb and ms in intermediate steps.

In order to perform the calculation in an efficient manner, we first calculate the flavour-
changing self-energies separately before attaching the gluon vertex and summing up all
contributing diagrams. If we consider a general self-energy as shown in Fig. 5.11, the
amplitude will have the form

M = q̄′
(
ΣRR /p PR + ΣLL /p PL + ΣLR PR + ΣRL PL

)
q , (5.61)

but since the UV model couples to right-handed quarks, the only non-zero component of
the self-energy is ΣRR .
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b q
φ0

Dj

b q
φ0

Dj Dj

b q
φ0

Dj

Figure 5.10: A vertex diagram and two types of flavour-changing self-energies in
the UV model contribute to the effective |∆B| = 1 operators.

q q′
p →

Σ = q q′
φ0

Dj

p →

Figure 5.11: The general flavour-changing self-energy insertion for down-type
quarks q and q′, which has one type of one-loop diagram in the
considered UV model.

The general flavour-changing self-energy can be used to calculate the combined contri-
butions from the diagrams on the left and right in Fig. 5.10. The momentum p of the
FCSE diagrams becomes the momentum of the external quark such that p2 = mq,b
and /p = /pq,b, where we have picked the convention for the outgoing gluon momentum
q = pq – pb. As only the right-handed quarks contribute, we drop the subscript RR on
the self-energy component ΣRR and write for the sum of the two diagrams
(
Vj ,se

)µ
a = b̄


–gs Ta γµ

/pq +mb

p2q – m2
b

Σ(mq) /pq PR – Σ(mb) /pb PR
/pb +mq
p2b – m2q

gs Ta γµ

 q

= –gs b̄ Ta
[(

Σ(0) +
(
m2

b +m2
q
)

Σ(1)) γµ PR +mq mb Σ(1) γµ PL
]
q

+O
(
m4

b,m4
q
)
, (5.62)

where we have expanded the flavour-changing self-energies in the quark masses

Σ(m) = Σ(0) +m2 Σ(1) +O
(
m4) . (5.63)

Lastly, we calculate the middle diagram of Fig. 5.10. After naively expanding in the
external momenta pq,b, the remaining integrals are one-loop tadpoles and can be readily
evaluated. To treat the spinor structures, we use an extension of the projector method
shown in Ref. [136] to two different external masses, writing the amplitude in terms of
form factors,
(
Vj
)µ

a = b̄
[
A γµ PR+B γµ PL+C σµν PR+D σµν PL qν+E qµ PR+F qµPL

]
q . (5.64)
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Note that at this point the amplitude is explicitly finite in ε and multiplying with a gluon
propagator does not lead to any poles in q2. The qµ components, i.e. coefficients E and
F , can be discarded because we attach a gluon-quark-antiquark vertex to the gluon, which
means that qµ will be contracted with a γµ on the quark-antiquark line. This will vanish
by the equation of motion of the quark and antiquark. The coefficient B also vanishes
when we take the quark masses to zero and can hence be discarded.

For the chromoelectric operator, only the form factor A is relevant because the chromo-
electric vertex is proportional to γν(qνqµ – q2ηνµ)PR , and the first term contains qµ,
which vanishes as outlined above. Therefore, the Wilson coefficient is simply given by
the coefficient of –Taq2γµ PR . Discarding terms with higher powers of the quark masses
and absorbing the chromoelectric operator into the matching coefficient of the penguin
operator Q′4, we obtain

C ′4 = x –
√
2g2s y2U32U∗33

2304λtGFπ2M2
φ (r – 1)5



 – 7 r4 + 51 r3 – 45 r2 – 11 r + 12

+
(
30r – 54 r2

)
ln r



+O

(
x2
)
.

(5.65)

This makes the linear GIM suppression from Eq. (5.56) explicit.

We can determine the Wilson coefficient for the chromomagnetic operator in a similar
fashion from the coefficient C as it is proportional to σµν PR . Note that the D coefficient
would contribute to the other chromomagnetic operator that scales with ms , but it vanishes
because we take ms → 0. The matching coefficient for the chromomagnetic operator has
the same linear GIM suppression as the chromoelectric operator and reads

C ′8 = x y2U32U∗33
48
√
2GFλtM2

φ (r – 1)5



 – 5 r4 + 33 r3 – 63 r2 + 23 r + 12

+
(
42 r – 18 r2

)
ln r



+O

(
x2
)
.

(5.66)

The matching coefficient of the electromagnetic penguin operator Q′7 is identical to the
matching coefficient of the chromomagnetic operator Q8 since the only difference is in
the associated form factors.

5.5.4 Phenomenology of a generic model with heavy vector-like
quarks

The phenomenology of the UV completion outlined in the previous section follows similar
steps as described in previous sections for an effective theory with only a chromoelectric
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5 BSM Effects in B Meson Mixing from the Chromoelectric Operator

operator. The main differences are as follows: There are additional effective operators
on the |∆B| = 1 side, namely Q′7 and Q′8, which lead to additional constraints from
experiments. Moreover, there is also a direct contribution to the QRR operator on the
|∆B| = 2 side, which impacts the constraints from M12.

On the |∆B| = 1 side, which leads to our prediction of Γ12, the main difference to the
theory used in Section 5.4.4 is that the starting point at MNP now has non-vanishing
contributions from the three Wilson coefficients C ′4, C ′7 and C ′8. This does not change the
numerical value of Γ12 significantly because the corrections from C ′8 are in general small.
A new feature is the impact on b → sγ from C ′7,eff. In B(B → Xsγ) and B(B → K∗γ)
there are no interference terms between the SM contribution and the new physics effective
operators because the right-handed operators produce the photon with the opposite helicity
compared to the left-handed Standard Model ones, so there are no strong constraints
from those decays. However, in the time-dependent CP asymmetry ACP(B(t)→ Xsγ)
the new physics operator contribution to B → K∗γ interferes with the SM contribution to
B̄ → K̄∗γ (and vice versa), if the K∗ is detected in K∗ → π0K0. However, we find that
also this constraint is less stringent than those considered in Section 5.4.4.

The calculation of the |∆B| = 2 Hamiltonian, which leads to M12, differs from that
shown in Section 5.2.2 due to the fact that our UV theory produces a non-zero matching
coefficient CRR

Q (MNP) before integrating out Standard Model particles. This increases
the impact on M12 from the new physics. For the Bs mesons, the constraints from ∆Ms
place stringent bounds on the allowed new physics contributions. This is because the
direct contribution from the box diagrams in Fig. 5.9 is sizeable, which limits the potential
BSM effects in ∆Γs . On the other hand, there is an allowed new physics contribution to
∆Γd of up to 2%, corresponding to |C ′d4 | ∼ O(10–3), while the possible corrections to
ad
fs are of the sub-percent level. Compared to the Bs system, the allowed effects of the
UV model in the Bd system are greater because the bounds from ∆Md are less stringent.
In order to find UV completions with a more sizeable effects on ∆Γd , one needs a more
efficient suppression mechanism for M12.
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Decays

In this chapter, the NNLO results of the lifetime ratios for B mesons, τ(B+)/τ(Bd ),
and Ξb baryons, τ(Ξ0

b)/τ(Ξ–
b), are presented. First, the calculation approach for these

particular observables and the input parameters are discussed. The main part of the chapter
then focuses on the numerical analysis of the lifetime ratios, comparing the theoretical
predictions to measurements and analysing the relative size of different contributions to
the Standard Model predictions. The results presented here will be published in Ref. [192].

6.1 Calculation strategy
In this thesis, the lifetime ratios

τ(B+)
τ(Bd )

and τ(Ξ0
b)

τ(Ξ–
b)

(6.1)

are considered to the first non-trivial order in the HQE. The main focus is on the B meson
ratio, for which the corrections δΓ in Eq. (2.146) are calculated. With these corrections,
the lifetime ratio for the B mesons can be written as
τ(B+)
τ(Bd )

= 1 +
[
δΓ(Bd ) – δΓ(B+)

]
× τ(B+)

= 1 +
[
G2

Fm2
b|Vcb|2
12π f 2BMB

(
|Vud |2~F u + |Vcd |2~F c – ~F d) · ~B

]
× τ(B+) , (6.2)

where the matching coefficients ~F q are calculated in this thesis.

As outlined in Section 3.2.4, the leading-CKM matching coefficients ~F u and ~F d are
calculated from the uc current-current operators up to NNLO while the sub-leading
matching coefficients ~F c are calculated up to NLO from the cc current-current operators.
The penguin operators are included at leading order in diagrams with one penguin and one
current-current operator. They are also sub-leading in the CKM factor. It is necessary to
include the penguin contributions in order to obtain the correct scale-separated matching
coefficients from the solution of the RGE

~F c(µ2) = ~F c(µ1)U(µ1,µ2) , (6.3)
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as the right-hand side would otherwise not be independent of µ1 atO(αs) due to the mixing
of penguin and current-current operators. Doubly Cabibbo-suppressed contributions are
negligible and not considered. Since we do not calculate ~F c at NNLO, the approximation
we use at that order is |Vcd | = 0 and |Vud | = 1.

The lifetime ratio for the Ξb baryons is influenced by the same matching coefficients as
the B mesons; however, the decay of the s valence quark will impact the lifetime through
s → u transitions in decays like Ξ–

b → Λbπ
–, Ξ–

b → Λb ν̄ee– and Ξ0
b → Λbπ

0 [58]. Hence,
we define the modified lifetimes and decay widths

Γ(Ξb) ≡ Γ(Ξb) – Γ(Ξb → ΛbX ) = 1 – B(Ξb → ΛbX )
τ(Ξb)

≡ 1
τ(Ξb)

(6.4)

to remove the decays from s → u transitions with the branching fraction B(Ξb → ΛbX ).
The branching fraction of the decays involving an s → u transition is less than 10–3, so
the modified lifetime is very close to the actual lifetime [162]. The observable we calculate
is

τ(Ξ0
b)

τ(Ξ–
b)

= 1 +
[
G2

Fm2
b|Vcb|2
12π f 2BMB

(
|Vud |2~F u + |Vcd |2~F c – ~F d) · ~BΞb

]
× τ(Ξ0

b) ,

(6.5)

where the bag parameters ~BΞb ≡ (L1, L1S , L2, L2S)T are related to the hadronic matrix
elements through

〈
Ξ0

b
∣∣∣
(
Qu – Qd)∣∣∣Ξ0

b
〉
= f 2B MB MΞb L1 ,〈

Ξ0
b
∣∣∣
(
Qu

S – Qd
S
)∣∣∣Ξ0

b
〉
= f 2B MB MΞb L1S ,

〈
Ξ0

b
∣∣∣
(
T u – T d)∣∣∣Ξ0

b
〉
= f 2B MB MΞb L2 ,〈

Ξ0
b
∣∣∣
(
T u

S – T d
S
)∣∣∣Ξ0

b
〉
= f 2B MB MΞb L2S . (6.6)

Similar to the calculation of the B meson mixing observables, the matching coefficients
are obtained as an expansion in the mass ratio z = m2

c/m2
b up to z10. All undetermined

constants a, b, . . . f in the definitions of the evanescent operators in Section 2.5 have
been set to zero for the numerical analysis. This is consistent with the basis chosen in
Ref. [60], which calculates the hadronic matrix elements for the B mesons. In general, the
basis definitions of the perturbative and non-perturbative calculations must be the same,
but there are more degrees of freedom for the |∆B| = 0 transition operator than for the
|∆B| = 2 transition operator as Fierz symmetry is not required here, see Sections 2.4.2
and 2.5.
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6.2 Power-suppression of the baryonic matrix elements
The hadronic matrix elements of the Ξ baryons are not all independent to leading power
in ΛQCD/mb. Therefore, the perturbative relations between the linearly dependent matrix
elements or, equivalently, bag parameters need to be calculated. The reason for this linear
dependence is rooted in the spin symmetry of the heavy bottom quark. Since there are
no interactions with the spin of the bottom quark in the heavy quark limit, the matrix
element

1
2MΞb

〈
Ξb
∣∣∣
(
b̄aγµγ5bb) (q̄cγµPLqd)∣∣∣Ξb

〉
= O

(
ΛQCD
mb

)
(6.7)

is power-suppressed [57]. The indices a, b, c and d denote colour indices in the equation
above. The power-suppression is applicable to linear combinations of the operators Q, QS ,
T and TS after using a Fierz identity on the expression in Eq. (6.7),
(
b̄aγµγ5bb) (q̄cγµPLqd) = –2

(
b̄aPLqd) (q̄cPRbb) –

(
b̄aγµPLqc) (q̄cγµPLbb) .

(6.8)
Therefore, the matrix elements

〈Ξb|2Qq
S + Qq|Ξb〉 = O

(
ΛQCD
mb

)
,

〈Ξb|2T q
S + T q|Ξb〉 = O

(
ΛQCD
mb

)
, (6.9)

with q ∈ {u, d , s} vanish to leading-power. However, there are perturbative corrections
to the power-suppressed matrix elements, which depend on the renormalisation scheme.
In particular, in the MS scheme, a finite renormalisation is required to ensure the power-
suppression of Eq. (6.9). Since the power suppressed matrix elements are discarded in the
calculation, two of the four operators {Q,QS ,T ,TS} can be removed from the transition
operator. Hence, the finite renormalisation constants are used to eliminate QS and TS up
to leading power. This can be implemented via



〈Ξ0

b|(Qu
S – Qd

S )|Ξ0
b〉MS

〈Ξ0
b|(T u

S – T d
S )|Ξ0

b〉MS


 =

[
A+ αs

4πB +
(
αs
4π

)2
C
]



〈Ξ0
b|(Qu – Qd )|Ξ0

b〉MS

〈Ξ0
b|(T u – T d )|Ξ0

b〉MS

〈Ξ0
b|(~Eu – ~Ed )|Ξ0

b〉MS




,

(6.10)

up to power-suppressed terms. Here, the matrix A corresponds to the LO relation encoded
in Eq. (6.9), and part of B has been calculated in Ref. [58]. The vector on the right-hand
side contains the evanescent operators of the first and second generation for Q and T ,
denoted by ~E , which are needed to remove IR poles of the form 〈E 〉/ε. To obtain the finite
renormalisation constants in A, B and C , the renormalised matrix elements as obtained in
the MS scheme are substituted, and Eq. (6.9) is used for the tree-level matrix elements
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of QS and TS to discard power-suppressed terms. Analogous relations hold for linear
combinations of evanescent operators, i.e.

〈Ξb|2E [OS ] + E [O]|Ξb〉 = O
(

ΛQCD
mb

)
. (6.11)

Since the finite renormalisation constants in A, B and C relate UV-finite quantities, any
IR divergences must cancel. The spurious IR poles we encounter are of the form

b – bS
ε
〈Ξ0

b|(Qu – Qd )|Ξ0
b〉MS and b – bS

ε
〈Ξ0

b|(T u – T d )|Ξ0
b〉MS , (6.12)

where b and bS were introduced in Section 2.5 to parametrise the definitions of the
evanescent operators at higher orders in ε. They must be chosen such that b = bS . This
constraint stems from the use of a Fierz identity in Eq. (6.8). As mentioned before, in
our numerical analysis, we set all constants a, b, . . . f equal to zero, which is a definition
compatible with the power suppression in Eq. (6.9). After cancelling the IR poles, any
tree-level matrix elements of evanescent operators in Eq. (6.10) can be discarded.

While the matrices A, B and C are useful to convert the results of the matching calculation
for the B meson lifetime ratio to the appropriate basis for the Ξb baryons, it is instructive
to connect them to the finite renormalisation constants. By transforming the matrix
elements from the MS scheme to the scheme where the power-suppression of Eq. (6.9)
holds, the finite renormalisation constants Z̃ij are introduced:

〈2Qq
S + Qq〉new = 〈2Qq

S + Qq〉MS + Z̃13〈Qq〉MS + Z̃14〈T q〉MS + ev. = O
(

ΛQCD
mb

)
,

〈2T q
S + T q〉new = 〈2T q

S + T q〉MS + Z̃23〈Qq〉MS + Z̃24〈T q〉MS + ev. = O
(

ΛQCD
mb

)
,

(6.13)

where the shorthand notation 〈O〉 ≡ 〈Ξ0
b|O|Ξ0

b〉 was used and the finite renormalisation
constants multiplying evanescent matrix elements have been omitted for brevity. Setting
the right-hand side to zero and rearranging these equations for 〈Qq

S〉 and 〈T
q
S 〉 leads to

Eq. (6.10), specifically

B = –12



Z̃ (1)
13 Z̃ (1)

14 Z̃ (1)
15 Z̃ (1)

16 Z̃ (1)
17 Z̃ (1)

18

Z̃ (1)
23 Z̃ (1)

24 Z̃ (1)
25 Z̃ (1)

26 Z̃ (1)
27 Z̃ (1)

28


 , (6.14)

C = –12



Z̃ (2)
13 Z̃ (2)

14 Z̃ (2)
15 Z̃ (2)

16 Z̃ (2)
17 Z̃ (2)

18

Z̃ (2)
23 Z̃ (2)

24 Z̃ (2)
25 Z̃ (2)

26 Z̃ (2)
27 Z̃ (2)

28


 , (6.15)

where the superscripts (1) and (2) denote the order in αs , see Section 2.1.2. The operators
corresponding to the indices 5 through 8 are E (1)[Q], E (1)[T ], E (2)[Q] and E (2)[T ]. The
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equations obtained from Eq. (6.10) or equivalently Eq. (6.13) are solved order by order in
αs , and we obtain at leading order

A =

–1/2 0 0 0 0 0

0 –1/2 0 0 0 0


 , (6.16)

and

B =




–283 – 4 `1 –7 – 3 `1 – 10
1263

1283
3368 – 1

10104
1

13472
–149 – 2

3 `1
7
2 + 3

2 `1
1283
15156

1243
20208

1
60624 – 1

80832


 (6.17)

at NLO for Nc = 3. These constants are in agreement with Ref. [58], where the scale
µ1 = mb was chosen. We also provide the explicit scale dependence in the logarithm
`1 ≡ ln(µ21/m2

b), where the mass mb is in the on-shell scheme. The last four columns are
needed to cancel IR poles and to obtain the novel NNLO renormalisation constants, which
read

C11 = –17429715052 – 55π2
18 – 1685

9 `1 – 29 `21 +O
(
mc
mb

)
,

C12 = –359267842 – 367π2
72 – 32π2

3 ln(2) + 16ζ(3) – 1411
6 `1 –

159
4 `21 +O

(
mc
mb

)
,

C21 = –169943789 – 493π2
324 + 224π2

27 ln(2) – 112
9 ζ(3) + 47

27 `1 +
1
6 `

2
1 +O

(
mc
mb

)
,

C22 = 905701
13472 + 1025π2

432 – 40π2
9 ln(2) + 20

3 ζ(3) +
463
24 `1 +

9
8 `

2
1 +O

(
mc
mb

)
, (6.18)

for the physical operators. A cross-check with an IR regulator is required since the definition
of the third generation evanescent operator appears in the renormalisation constants. The
matrix elements are shown here for Nc = 3 and Nf = 5 up to zeroth order in mc/mb, but
all entries have been extracted up to O(m20

c /m20
b ) for the phenomenological analysis.

6.3 Input values and renormalisation scales
In this section, the required inputs for the numerical evaluation of the discussed lifetime
ratios are presented, and the choice of renormalisation scales is discussed. In Tab. 6.1, all
input parameters aside from the bag parameters and CKM elements are summarised. For
the CKM elements, we use the values obtained in Ref. [166] from the global fit with their
1σ uncertainties,

|Vud | = 0.974358+0.000049
-0.000054 ,

|Vcd | = 0.22484+0.00023
-0.00022 ,

|Vcb| = 0.04160+0.00020
-0.00058 . (6.19)
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αs(MZ ) = 0.1180± 0.0009 [162] GF = 1.166 378 7× 10–5 GeV–2 [162]
MW = (80.3629± 0.0133) GeV [162] MZ = (91.1880± 0.0020) GeV [162]
mOS

t = (172.4± 0.7) GeV [162] mb(mb) = (4.163± 0.016) GeV [163]
mc(3GeV) = (0.993± 0.008) GeV [164] MB = (5279.41± 0.07)MeV [162]

fB = (0.1900± 0.0013) GeV [167] τ(B+) = (1.638± 0.004) ps [162]

Table 6.1: Input parameters for the phenomenological analysis.

For the bag parameters of the B mesons, we use the values obtained from QCD sum rules
in Ref. [60],

B1 = 1.013+0.066
-0.059 ,

B2 = 1.004+0.085
-0.081 ,

ε1 = –0.098+0.026
-0.032 ,

ε2 = –0.037+0.019
-0.020 , (6.20)

which are given at the scale mb(mb). For the Ξb baryons only an exploratory lattice QCD
calculation exists [193], which obtains

L1(mb) =



–0.31± 0.03 for amπ = 0.74± 0.04
–0.22± 0.04 for amπ = 0.52± 0.03

L2(mb) =




0.23± 0.02 for amπ = 0.74± 0.04
0.17± 0.02 for amπ = 0.52± 0.03

. (6.21)

The scale of the bag parameters is not precisely defined in Ref. [193], so we choose the
scale-invariant bottom mass mb(mb). Since no continuum extrapolation of the baryonic
bag parameters is available, these input values are used for illustrative purposes only.

Lastly, the choice of renormalisation scales and the chosen schemes for the quark masses
need to be discussed. The renormalisation scales encountered are µ0, the matching scale
of the |∆B| = 1 Hamiltonian, µ1, the matching scale of the |∆B| = 0 transition operator,
µ2, the scale of the hadronic matrix elements, and the mass renormalisation scales µc
and µb. With the exception of µ2, we choose the same scales as for the B meson mixing,
i.e. µ0 = 165GeV and µc = µb = µ1. For the scale of the bag parameters, we use
µ2 = mb(mb) = 4.163GeV since the results of Ref. [60] are given at that scale. The
mass ratio z = m2

c/m2
b is evaluated in the MS scheme with five active flavours, and for

the overall factor of m2
b, we calculate our results in the same three schemes as for the B

meson mixing. The pole scheme refers to the case of substituting the OS mass for mb
while in the MS and PS schemes we first convert the OS mass and then substitute the
corresponding bottom quark mass. To estimate the perturbative uncertainty, the scales
µ1 = µc = µb are varied simultaneously between 2.1 GeV and 8.4 GeV, and the central
value is extracted at 4.2 GeV.
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Figure 6.1: Renormalisation scale dependence of τ(B+)/τ(Bd ) – 1 at LO (short
dashes), NLO (long dashes) and NNLO (solid) for the simultaneous
scale variation of µ1 = µb = µc . The experimental value shown is
τ(B+)/τ(Bd ) = 1.076± 0.004 from Ref. [26].

6.4 The lifetime ratio τ (B+)/τ (Bd)
The scale variation of the lifetime ratio is shown in Fig. 6.1, and we obtain the central
values

τ(B+)
τ(Bd )

= 1.065+0.013
-0.026scale ± 0.017bag ± 0.001|Vcb | ± 0.001input (pole) ,

τ(B+)
τ(Bd )

= 1.072+0.004
-0.024scale ± 0.017bag ± 0.001|Vcb | ± 0.002input (MS) ,

τ(B+)
τ(Bd )

= 1.070+0.009
-0.020scale ± 0.018bag ± 0.001|Vcb | ± 0.001input (PS) . (6.22)

Here, the uncertainties of the bag parameters given in Eq. (6.20) have been combined for the
“bag” uncertainty, and all remaining inputs apart from |Vcb| have been added in quadrature.
The largest source of uncertainty is in the bag parameters while the perturbative uncertainty
of the NNLO result is only sub-leading. All other input uncertainties are negligible in
comparison.

Comparing the LO, NLO and NNLO curves, we observe that the perturbative series has
a reduced scale dependence, confirming the convergence of the expansion in the strong
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coupling. In the MS scheme for example, the variation of the LO result is around 78%
of the central value. This is reduced to 20% at NLO and 19% at NNLO, all computed
over the interval [2.1 GeV, 8.4 GeV]. For the PS scheme, the scale variation decrease from
45% at LO to 7% at NLO before increasing again to 20% at NNLO. However, the results
of the MS and PS schemes are much closer together over the entire interval at NNLO
than at NLO, and they are closer to the experimental value. Therefore, the increased
scale dependence for the PS scheme is not an indication of a bad convergence of the
perturbative series. Moreover, the MS and PS schemes show a smaller scale dependence
and better agreement with the measurement than the pole scheme, confirming that the
former schemes yield better results.

As stated in Section 6.1, the contributions to ~F c are CKM-suppressed, and they only have
a minor impact on the numerical result. In the MS scheme, the contributions make up
0.005% of the central value while for the PS scheme the value is 0.06%. This is well below
the scale uncertainty, which justifies the approximation at NNLO to neglect ~F c , and to
only consider the singly Cabibbo-suppressed contributions. However, this suppression is
not only due to the small value of |Vcd | but also due to cancellations between LO and
NLO since the LO contributions to proportional to |Vcd | make up 0.4% and 0.5% in the
MS and PS scheme respectively. The penguin operators at LO also have a negligible
numerical impact, which is 0.03% and 0.04% for the MS and PS schemes respectively.
This confirms that the penguin operators do not need to be included beyond LO at the
current level of precision.

The central values of the MS and PS scheme results are averaged to compare to experiment.
While the pole scheme is shown for reference in Fig. 6.1, we do not include it in our final
result due to the renormalon ambiguity of order ΛQCD in the pole mass. The uncertainty
of our final theory prediction is obtained by adding the upper and lower bounds separately
in quadrature, symmetrising and then averaging across the two schemes. We obtain

τ(B+)
τ(Bd )

= 1.071± 0.023 , (6.23)

which agrees within the uncertainty with the experimental value [26]
(
τ(B+)
τ(Bd )

)exp
= 1.076± 0.004 . (6.24)

Since any BSM effects in the lifetime ratios are expected to be of the per mille level [27, 32],
the observed agreement between experiment and theory provides evidence for the validity
of the HQE. This is crucial because this expansion forms the basis of many calculations in
flavour physics. Discrepancies between experiment and the prediction obtained from the
HQE could stem from non-perturbative contributions in the case of quark-hadron duality
(QHD) violation [194–196]. Therefore, our results also support the validity of QHD.
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The theoretical prediction is at this point less accurate than the measurement. Further
improvements in the accuracy require more accurate calculations of the bag parameters
as well as a deeper expansion of the perturbative series. Additionally, higher order terms
in the HQE have been neglected and might be required to match the precision of the
experiment. The contribution from dimension-seven operators, i.e. the next order in the
HQE, is calculated to be –0.007 in Ref. [32].

Our results may also be compared to previous calculations using the HQE. Ref. [32] obtains

τ(B+)
τ(Bd )

= 1.086± 0.022 (6.25)

at NLO, using an older determination of the non-perturbative matrix elements and including
power-suppressed contributions from dimension-seven operators. We find agreement within
the respective uncertainties. The uncertainty given in Ref. [32] is smaller than the one
given in Eq. (6.23) since the scale variation was done in a different way and over a smaller
interval in Ref. [32].

To enable future calculations with different bag parameters, the coefficients of each bag
parameter in

τ(B+)
τ(Bd )

– 1 = FB1B1 + FB2B2 + Fε1ε1 + Fε2ε2 (6.26)

are given in the three renormalisation schemes. For the pole scheme, we obtain

F pole
B1

= 0.0184+0.0098
-0.0167scale ± 0.0003|Vcb | ± 0.0006input ,

F pole
B2

= –0.0038+0.0022
-0.0062scale ± 0.0001|Vcb | ± 0.0003input ,

F pole
ε1 = –0.5501+0.0345

-0.0122scale ± 0.0103|Vcb | ± 0.0097input ,
F pole
ε2 = 0.1084+0.0077

-0.0056scale ± 0.0020|Vcb | ± 0.0017input . (6.27)

In the MS scheme, the results read

FMS
B1 = 0.0231+0.0034

-0.0152scale ± 0.0004|Vcb | ± 0.0009input ,

FMS
B2 = –0.0026+0.0022

-0.0076scale ± 0.0000|Vcb | ± 0.0002input ,

FMS
ε1 = –0.5646+0.0275

-0.0011scale ± 0.0106|Vcb | ± 0.0103input ,

FMS
ε2 = 0.1157+0.0019

-0.0032scale ± 0.0022|Vcb | ± 0.0018input , (6.28)

and finally for the PS scheme we have

FPS
B1 = 0.0216+0.0067

-0.0127scale ± 0.0004|Vcb | ± 0.0008input ,
FPS

B2 = –0.0032+0.0020
-0.0056scale ± 0.0001|Vcb | ± 0.0003input ,

FPS
ε1 = –0.5709+0.0137

-0.0011scale ± 0.0107|Vcb | ± 0.0105input ,
FPS
ε2 = 0.1152+0.0049

-0.0031scale ± 0.0022|Vcb | ± 0.0018input . (6.29)
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6 Phenomenology of B Meson Decays

Comparing the results across the three schemes, the pole scheme has the largest perturba-
tive uncertainty for all coefficients, which is consistent with the expected poor convergence
of the perturbative series. For each scheme, the four coefficients differ in the relative size
of the perturbative uncertainty. Interestingly, the coefficients of the larger bag parameters
B1,2 also have a larger relative perturbative uncertainty, with that of B2 exceeding 100%.
The coefficient FB2 is small compared to FB1 because the contribution to F d

S vanishes to
LO whereas it gives a sizeable contribution to F d . Therefore, more accurate results of
the lifetime ratio could be achieved by calculating higher orders in perturbation theory of
selected matching coefficients.

6.5 The lifetime ratio τ (Ξ0
b)/τ (Ξ–

b)
The modified lifetime ratio for the Ξb baryons as defined via Eq. (6.4) is given by

τ(Ξ0
b)

τ(Ξ–
b)

= 0.872+0.011
-0.006scale ± 0.017bag ± 0.001|Vcb | ± 0.001input (pole) ,

τ(Ξ0
b)

τ(Ξ–
b)

= 0.867+0.005
-0.000scale ± 0.017bag ± 0.001|Vcb | ± 0.002input (MS) ,

τ(Ξ0
b)

τ(Ξ–
b)

= 0.866+0.006
-0.002scale ± 0.018bag ± 0.001|Vcb | ± 0.001input (PS) , (6.30)

for the bag parameters L1,2 obtained from the lattice configuration in Eq. (6.21) with
amπ = 0.74 ± 0.04. The scale variation is shown in Fig. 6.2. In the case of amπ =
0.52± 0.03, we calculate

τ(Ξ0
b)

τ(Ξ–
b)

= 0.906+0.008
-0.004scale ± 0.017bag ± 0.001|Vcb | ± 0.001input (pole) ,

τ(Ξ0
b)

τ(Ξ–
b)

= 0.902+0.004
-0.000scale ± 0.017bag ± 0.001|Vcb | ± 0.002input (MS) ,

τ(Ξ0
b)

τ(Ξ–
b)

= 0.901+0.004
-0.001scale ± 0.018bag ± 0.001|Vcb | ± 0.001input (PS) , (6.31)

with the scale variation shown in Fig. 6.3. In both cases, the NNLO scale variation of the
PS scheme follows that of the MS scheme below ∼ 5GeV and that of the pole scheme
above ∼ 7GeV. The uncertainties were grouped in the same way as for the B meson
lifetime ratios, and they are similarly dominated by the bag parameters. The uncertainties
of the bag parameters given here only take into account the uncertainties of the individual
results at the two values of amπ in Eq. (6.21). However, the implied uncertainty on physical
observables calculated from these bag parameters is larger since they were obtained in an
exploratory lattice QCD study which did not extrapolate to the continuum.
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b)/τ(Ξ–

b)
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Figure 6.2: Renormalisation scale dependence of τ(Ξ0
b)/τ(Ξ–

b) – 1 at LO (short
dashes), NLO (long dashes) and NNLO (solid) with the bag pa-
rameters at amπ = 0.74 ± 0.04. The experimental value shown is
τ(Ξ0

b)/τ(Ξ–
b) = 0.963± 0.022 from Ref. [26].
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Figure 6.3: Renormalisation scale dependence of τ(Ξ0
b)/τ(Ξ–

b) – 1 analogous to
Fig. 6.2 at amπ = 0.52± 0.03.
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6 Phenomenology of B Meson Decays

As for the B meson lifetime ratios, we observe a good convergence of the perturbative
series from the reduced scale dependence in the interval [2.1 GeV, 8.4 GeV] at higher orders
in the strong coupling. To illustrate this point, consider the results for amπ = 0.52± 0.03.
In the MS scheme, the LO scale variation is close to 50%, which is reduced to 7% at
NLO and 2% at NNLO. For the PS scheme, the behaviour is similar as for the mesonic
lifetime ratios, with the scale variation of 20% at LO decreasing to 2.4% at NLO and
2.6% at NNLO. While the NNLO result in the PS scheme does not exhibit a reduced scale
dependence over the considered interval, the agreement with the MS results is improved
as compared with the NLO results. The renormalisation scale dependence of the pole
scheme is worse, demonstrating the impact of the renormalon uncertainty.

The CKM-suppressed contributions in ~F c are more significant for the Ξb baryon lifetime
ratio than for the B meson lifetime ratio, but they are still small. In the MS and PS
schemes with amπ = 0.52 ± 0.03, these contributions make up 1% of the result for
τ(Ξ0

b)/τ(Ξ–
b) – 1. Therefore, we expect the NNLO contributions from ~F c to be tiny,

justifying our approximation to set |Vcd | = 0 at that order in perturbation theory. The
penguin operators specifically contribute less than 0.1%, so neglecting them at NLO is a
good approximation too.

To compare our predictions with experiment, we average the central values of the MS and
PS scheme results. Similar to the meson lifetime ratios, the uncertainties for the upper
and lower bounds are separately added in quadrature before symmetrising and averaging
across the two schemes. The final results read

τ(Ξ0
b)

τ(Ξ–
b)

=



0.867± 0.018 for amπ = 0.74± 0.04
0.902± 0.018 for amπ = 0.52± 0.03

, (6.32)

which can be compared to the experimental value [26]

(
τ(Ξ0

b)
τ(Ξ–

b)

)exp
= 0.936± 0.022 . (6.33)

The branching fraction of the decays into ΛbX from Ref. [162] less than 10–3, and hence
we do not need to correct for those terms in Eq. (6.4). Moreover, the corrections to
the modified lifetimes largely cancel in the lifetime ratio due to isospin symmetry. The
theoretical prediction obtained from lattice results at amπ = 0.52± 0.03 agrees with the
experimental value within the given 1σ uncertainties. The results calculated with the
lattice configuration of amπ = 0.74± 0.04 only agrees within the 2σ intervals, and in both
cases the theoretical uncertainty is dominated by the uncertainties of the bag parameters.
This clearly shows that more accurate determinations of the bag parameters are required
to make conclusive statements about the agreement with the experiment.
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6.5 The lifetime ratio τ(Ξ0
b)/τ(Ξ–

b)

The results obtained here may also be compared with previous calculations of the baryon
lifetime ratio. In Ref. [33], the NLO result

τ(Ξ0
b)

τ(Ξ–
b)

= 0.929± 0.028 (6.34)

was obtained using the non-relativistic constituent quark model, which agrees within the
1σ uncertainty with our prediction with the bag parameters at amπ = 0.52± 0.03. We
are able to calculate the lifetime ratio to higher accuracy due to the reduced perturbative
uncertainty of the NNLO matching coefficients.

The results obtained in this thesis can be combined with future determinations of the bag
parameters to yield more accurate predictions of the lifetime ratio. For this purpose, the
coefficients F1 and F2 in

τ(Ξ0
b)

τ(Ξ–
b)

– 1 = F1L1 + F2L2 (6.35)

are extracted for each of the three renormalisation schemes. For the pole scheme, we
obtain

F pole
1 = 0.016+0.007

-0.011scale ± 0.000|Vcb | ± 0.001input ,

F pole
2 = –0.534+0.033

-0.015scale ± 0.010|Vcb | ± 0.009input , (6.36)

and in the MS scheme we have

FMS
1 = 0.019+0.002

-0.009scale ± 0.000|Vcb | ± 0.001input ,

FMS
2 = –0.552+0.023

-0.000scale ± 0.010|Vcb | ± 0.010input . (6.37)

Finally, the results in the PS scheme are

FPS
1 = 0.018+0.005

-0.008scale ± 0.000|Vcb | ± 0.001input ,
FPS
2 = –0.557+0.013

-0.002scale ± 0.010|Vcb | ± 0.010input . (6.38)

Similar to the corresponding coefficients for the B meson lifetime ratios, the MS and
PS schemes lead to a reduced perturbative uncertainty as compared to the pole scheme.
Additionally, we observe that the coefficient F2 is about 30 times larger than the coefficient
F1. Therefore, assuming that L1 and L2 are of the same order of magnitude, it is possible to
extract a benchmark for the bag parameter L2 from the current experimental measurement
by neglecting F1. For this purpose, the results for F2 are averaged across the MS and PS
schemes,

F2 = –0.554± 0.019 , (6.39)
and with the experimental result from Eq. (6.33), the prediction for the bag parameter is

L2 = 0.115± 0.040 . (6.40)
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6 Phenomenology of B Meson Decays

The uncertainty here is dominated by the measurement of the lifetime ratio. This result
provides a benchmark for future non-perturbative calculations of the bag parameters.

Overall, we find good agreement of the Standard Model predictions for the lifetime ratios
τ(B+)/τ(Bd ) and τ(Ξ0

b)/τ(Ξ–
b) from the leading-power HQE terms with the values

obtained from experiments. Therefore, the lifetime ratios provide supporting evidence for
the validity of the HQE and do not show signs of the violation of QHD.
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7 Discussion and Conclusion

In this thesis, the NNLO perturbative QCD corrections to the matching coefficients of
the |∆B| = 2 and |∆B| = 0 transition operators relevant for Γ12 and the lifetime ratios
of B mesons and Ξb baryons were calculated. To extract these matching coefficients,
advancements in the technical tools applicable to a broader range of calculations have been
made, e.g. spinor projectors for up to eleven γ matrices on two spin lines were developed
and subtleties regarding the preservation of Fierz symmetry and the renormalisation with
ΛQCD/mb-suppressed operators have been resolved.

The perturbative results were also used to discuss the phenomenology of B meson mixing
and the lifetime ratios. In particular, the most precise predictions of ∆Γ, afs, τ(B+)/τ(Bd )
and τ(Ξ0

b)/τ(Ξ–
b) to date are obtained from the NNLO matching coefficients. Additionally,

the results of this thesis can be used in combination with experimental measurements of
the observables ad

fs and ∆Γd/∆Γs to yield stringent constraints for the apex of the CKM
unitarity triangle. This motivates more precise measurements of these observables, which
can then be used to test the Standard Model from B meson mixing observables alone.

Areas for future research with respect to the theoretical predictions of the observables
considered here lie mainly in the non-perturbative matrix elements and power-suppressed
matching coefficients. For the |∆B| = 2 transition operator, the leading-power matching
coefficients have been fully computed to NNLO, and the next order in perturbation theory
would involve a four-loop calculation of a two-point amplitude with the scales mc and
mb. These corrections are expected to be difficult to calculate in the near future. The
ΛQCD/mb-suppressed contributions are a larger source of uncertainty and should be
prioritised. Here, both the hadronic matrix elements as well as their matching coefficients,
which are only known to leading order, would benefit from more accurate calculations.

For the lifetime ratios, further improvements in the CKM-suppressed leading-power match-
ing coefficients are possible, but the biggest lever to reduce the theoretical uncertainty is
in the non-perturbative matrix elements. Future calculations of non-perturbative matrix
elements can be readily combined with the matching coefficients of this thesis to make
more accurate predictions of the lifetime ratios. For the baryonic matrix elements, non-
perturbative calculations can be checked against the benchmark extracted in this thesis.
Additionally, the matching coefficients obtained for the B meson lifetime ratio can be used
to calculate the corresponding lifetime ratio for D mesons. Since the power-suppressed
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7 Discussion and Conclusion

terms in the HQE of the charm mass have a more pronounced impact on the observables
than for the bottom mass, the size of the power-suppressed contributions can be estimated
by combining the matching coefficients with measurements of the D meson lifetime ratios.

Overall, the results are in good agreement with the Standard Model of particle physics.
Moreover, the Heavy Quark Expansion appears to be a good approximation and quark-
hadron duality holds. In the future, more stringent tests of the Standard Model and different
classes of BSM models will be possible through the combination of the perturbative
coefficients of this thesis, more accurate non-perturbative calculations and updated
experimental measurements.
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A Renormalisation Constants for the
|∆B| = 1 Theory

This appendix contains the renormalisation constants which describe the operator mixing
for the weak effective Hamiltonian up to α2s . The renormalisation matrices are presented in
the CMM basis for all dimension-five and -six operators, which are used for the calculation
of the mixing observables in Chapter 4, and in the historical basis for the current-current
operators, which are used for the calculation of the lifetime ratios in Chapter 6. The
renormalisation constants are given based on the results of Refs. [101, 103, 158]. In
Ref. [103] the transformation between the renormalisation matrices in the historical and
CMM bases are discussed. The renormalisation constants for the particular choice of
evanescent operators in the historical basis follow Ref. [61].

We write the renormalisation constants as a series expansion in αs and ε,

Z =
∞∑

i=0

i∑

k=–∞

(
αs
4π

)i 1
εk

Z (i ,k) , (A.1)

and for the purpose of better visualisation, the sub-matrices for the physical and evanescent
operators are defined via

Z ≡
(
ZQQ ZQE
ZEQ ZEE

)
, (A.2)

which is used to renormalise the Wilson coefficients according to
~C0 = ~CZ . (A.3)

To calculate physical amplitudes with the weak effective Hamiltonian, the renormalisation
constants of the evanescent operators in ZEQ and ZEE are not required, and hence they
are not presented here. The matrices can be found in Refs. [103, 158].

A.1 Renormalisation constants in the historical basis
For the historical basis, we only consider the current-current operator contributions, so we
limit the physical operators to

{O1,O2,Ocu
1 ,Ocu

2 ,Ouc
1 ,Ouc

2 ,Ouu
1 ,Ouu

2 } , (A.4)
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A Renormalisation Constants for the |∆B| = 1 Theory

and for the evanescent operators only
{
Ẽ (1)
1 , Ẽ (1)

2 , Ẽ (1),cu
1 , Ẽ (1),cu

2 , Ẽ (1),uc
1 , Ẽ (1),uc

2 , Ẽ (1),uu
1 , Ẽ (1),uu

2 ,

Ẽ (2)
1 , Ẽ (2)

2 , Ẽ (2),cu
1 , Ẽ (2),cu

2 , Ẽ (2),uc
1 , Ẽ (2),uc

2 , Ẽ (2),uu
1 , Ẽ (2),uu

2
} (A.5)

need to be considered. In the following, the renormalisation matrices will be presented for
the operators

{O1,O2, Ẽ
(1)
1 , Ẽ (1)

2 , Ẽ (2)
1 , Ẽ (2)

2 } (A.6)

only as the matrices are identical across the different up-type quark flavours, and there is
no mixing between them.

The O(α1s ) renormalisation matrix for the current-current operators and their respective
evanescent operators with the number of colours fixed to Nc = 3 is given by

Z (1,1) =




–1 3 7
12

1
4 0 0

3 –1 1
2 – 16 0 0

0 0 – 593 –5 7
12

1
4

0 0 –13 13
3

1
2 – 16

0 0 – 18883 96 41
3 –9

0 0 –288 1568
3 3 – 673




, (A.7)

together with the finite renormalisation of the evanescent operators

Z (1,0) =




0 0 0 0 0 0
0 0 0 0 0 0
16 –48 0 0 0 0
–24 –56 0 0 0 0
512 –1536 0 0 0 0
–768 –1792 0 0 0 0




. (A.8)

The corresponding renormalisation constants Z (2,2) and Z (2,1) at O(α2s ) are shown on
the next page.
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A.1
Renorm

alisation
constantsin

the
historicalbasis

Z (2,2) =




21
2 – Nf

3 – 392 + Nf – 919 + 7Nf
36

Nf
12 – 8

3
67
288

5
96

Nf – 39
2

21
2 – Nf

3
Nf
6 – 143

24 – 1772
Nf
18

5
48

11
144

0 0 229
2 – 59Nf

9
955
6 – 5Nf

3
7Nf
36 – 35

6
Nf
12 – 53

6
0 0 227

6 – 13Nf
3

13Nf
9 – 3

2
Nf
6 – 55

24 – 3524 – Nf
18

0 0 13360
9 – 1888Nf

9
5200
3 + 32Nf

41Nf
9 – 2273

6
907
6 – 3Nf

0 0 1424
3 – 96Nf

1568Nf
9 – 63248

9 Nf – 793
6

1675
6 – 67Nf

9




, (A.9)

Z (2,1) =




– 2324 – Nf
18

Nf
6 – 161

8
323
36 – 7Nf

216
7
12 – Nf

72 – 1
36 – 5

48
55
8 + Nf

6 – 23924 – Nf
18

51
8 – Nf

36
115
72 + Nf

108 – 35
384 – 77

1152
16Nf
3 – 212 252 – 16Nf

353Nf
54 – 1279

24 – 6978 – Nf
18

145
24 – 7Nf

216
49
24 – Nf

72
96 – 8Nf 256 – 56Nf

3
67Nf
18 – 1963

24
2753
24 – 259Nf

54
89
12 – Nf

36 – 1
12 + Nf

108
512Nf

3 – 3968 11904 – 512Nf
32488
9 + 4280Nf

27 1704 – 40Nf
3

9257
24 + 427Nf

54 – 28178 – 3Nf
2

4992 – 256Nf 16768 – 1792Nf
3 80Nf – 12748

3
101644

9 – 3280Nf
27

6985
24 + 7Nf

2
2117
24 – 383Nf

54




. (A.10)
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The finite renormalisation constants for the evanescent operators at O(α2s ) are

Z (2,0) =




0 0 0 0 0 0
0 0 0 0 0 0

202796
115 – 50488Nf

1035
1037132

115 – 25544Nf
345 0 0 0 0

– 15148Nf
345 – 39856

115
46028Nf
1035 + 39904

23 0 0 0 0
4098848
1035 – 1561184Nf

1035
1154912Nf

345 – 1011808
15 0 0 0 0

56192Nf
69 – 34695184

345
6995584Nf

1035 – 282282736
1035 0 0 0 0




. (A.11)

A.2 Renormalisation constants in the CMM basis
The renormalisation matrix for the physical operators with the number of colours Nc = 3
and the number of flavours Nf at order O(α1s ) is given by

Z (1,1)
QQ =




–2 4
3 0 0 0 0 0 0 0 – 19 0 0 167

648
6 0 0 0 0 0 0 0 0 2

3 0 0 19
27

0 0 –2 4
3 0 0 0 0 0 0 0 0 0

0 0 6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 –2 4

3 0 0 0 0 0 0 0
0 0 0 0 6 0 0 0 0 0 0 0 0
0 0 0 0 0 0 –2 4

3 0 – 19 0 0 167
648

0 0 0 0 0 0 6 0 0 2
3 0 0 19

27
0 0 0 0 0 0 0 0 0 – 263 0 1 92

27
0 0 0 0 0 0 0 0 – 209

2Nf
3 – 80

9
2
9

5
12 – 37Nf

216 – 427
324

0 0 0 0 0 0 0 0 0 – 1283 0 10 9Nf + 2192
27

0 0 0 0 0 0 0 0 – 1289
20Nf
3 – 272

9
20
9 – 13

55Nf
27 – 1906

81
0 0 0 0 0 0 0 0 0 0 0 0 2Nf

3 – 19
3




,

(A.12)
where the rows and columns follow the ordering of the operators

{Q1,Q2,Qcu
1 ,Qcu

2 ,Quc
1 ,Quc

2 ,Quu
1 ,Quu

2 ,Q3,Q4,Q5,Q6,Q8} . (A.13)

The current-current operators involving up quarks do not mix with the penguin operators,
and they only mix with the physical and evanescent current-current operators of the same
CKM factor.

At order O(α2s ), the renormalisation matrix for the physical operators is shown on the
next page.
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basis

Z (2,2)
QQ =




17 – 2Nf
3

4Nf
9 – 26

3 0 0 0 0 0 0 10
81

269
162 – 2Nf

27 – 1
81 – 5

216 ∗
2Nf – 39 4 0 0 0 0 0 0 – 2027

4Nf
9 – 188

27
2
27

5
36 ∗

0 0 17 – 2Nf
3

4Nf
9 – 26

3 0 0 0 0 0 0 0 0 ∗
0 0 2Nf – 39 4 0 0 0 0 0 0 0 0 ∗
0 0 0 0 17 – 2Nf

3
4Nf
9 – 26

3 0 0 0 0 0 0 ∗
0 0 0 0 2Nf – 39 4 0 0 0 0 0 0 ∗
0 0 0 0 0 0 17 – 2Nf

3
4Nf
9 – 26

3
10
81

269
162 – 2Nf

27 – 1
81 – 5

216 ∗
0 0 0 0 0 0 2Nf – 39 4 – 2027

4Nf
9 – 188

27
2
27

5
36 ∗

0 0 0 0 0 0 0 0 68
27

1919
27 – 22Nf

9
4
27

Nf
3 – 269

36 ∗
0 0 0 0 0 0 0 0 1550

81 – 40Nf
27

4N2
f

9 – 67Nf
6 + 7046

81
4Nf
27 – 283

162
5Nf
18 – 455

108 ∗
0 0 0 0 0 0 0 0 – 64027

44Nf
9 + 7376

27
172
27

10Nf
3 – 590

9 ∗
0 0 0 0 0 0 0 0 9248

81 – 328Nf
27

40N2
f

9 – 788Nf
9 + 25904

81
40Nf
27 – 1292

81
23Nf
18 – 11

27 ∗
0 0 0 0 0 0 0 0 0 0 0 0 4N2

f
9 – 10Nf + 494

9




, (A.14)

Z (2,1)
QQ =




4Nf
9 + 79

12
10Nf
27 – 205

18 0 0 0 0 0 0 – 353243 – 1567972
67
486 – 35

648 ∗
5Nf
3 + 83

4 3 0 0 0 0 0 0 – 10481
338
81

14
81

35
108 ∗

0 0 4Nf
9 + 79

12
10Nf
27 – 205

18 0 0 0 0 0 0 0 0 ∗
0 0 5Nf

3 + 83
4 3 0 0 0 0 0 0 0 0 ∗

0 0 0 0 4Nf
9 + 79

12
10Nf
27 – 205

18 0 0 0 0 0 0 ∗
0 0 0 0 5Nf

3 + 83
4 3 0 0 0 0 0 0 ∗

0 0 0 0 0 0 4Nf
9 + 79

12
10Nf
27 – 205

18 – 353243 – 1567972
67
486 – 35

648 ∗
0 0 0 0 0 0 5Nf

3 + 83
4 3 – 10481

338
81

14
81

35
108 ∗

0 0 0 0 0 0 0 0 – 111781 – 13Nf
9 – 29129

324
100
81

3493
432 – Nf

18 ∗
0 0 0 0 0 0 0 0 92Nf

81 – 6839
486

667Nf
162 – 79409

972
509
1944 – 2Nf

81
13499
2592 – 5Nf

108 ∗
0 0 0 0 0 0 0 0 – 40Nf

9 – 81280
81 – 730Nf

9 – 127076
81

4Nf
9 + 8659

81
37Nf
9 + 13463

54 ∗
0 0 0 0 0 0 0 0 74840

243 – 316Nf
81 – 634Nf

81 – 222446
243

100Nf
81 – 13001

243
311Nf
54 + 59429

648 ∗
0 0 0 0 0 0 0 0 0 0 0 0 623Nf

108 – 95
9




. (A.15)
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A Renormalisation Constants for the |∆B| = 1 Theory

The entries marked with an asterisk ∗ are unknown and not needed for the calculations in
this thesis since they are O(α3s ) effects due to the mixing of the Wilson coefficient of the
chromomagnetic operator into the other physical operator Wilson coefficients.

The sub-matrix that describes the mixing of the evanescent into physical Wilson coefficients
at O(αs) is

Z (1,1)
QE =




5
12

2
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 5

12
2
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 5

12
2
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 5

12
2
9 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2

9
5
12 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




,

(A.16)
where the ordering of the evanescent operators is

{
E (1)
1 ,E (1)

2 ,E (1),cu
1 ,E (1),cu

2 ,E (1),uc
1 ,E (1),uc

2 ,E (1),uu
1 ,E (1),uu

2 ,E (1)
3 ,E (1)

4 ,

E (2)
1 ,E (2)

2 ,E (2),cu
1 ,E (2),cu

2 ,E (2),uc
1 ,E (2),uc

2 ,E (2),uu
1 ,E (2),uu

2 ,E (2)
3 ,E (2)

4
}
.

(A.17)

At O(α2s ), the matrix is given by the matrices on the following page.
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A.2
Renorm

alisation
constantsin

the
CM

M
basis

Z (2,2)
QE =




5Nf
36 – 25

6
2Nf
27 – 31

18 0 0 0 0 0 0 0 0 19
96

5
108 0 0 0 0 0 0 0 0

Nf
3 – 31

4 0 0 0 0 0 0 0 0 0 5
24

1
9 0 0 0 0 0 0 0 0

0 0 5Nf
36 – 25

6
2Nf
27 – 31

18 0 0 0 0 0 0 0 0 19
96

5
108 0 0 0 0 0 0

0 0 Nf
3 – 31

4 0 0 0 0 0 0 0 0 0 5
24

1
9 0 0 0 0 0 0

0 0 0 0 5Nf
36 – 25

6
2Nf
27 – 31

18 0 0 0 0 0 0 0 0 19
96

5
108 0 0 0 0

0 0 0 0 Nf
3 – 31

4 0 0 0 0 0 0 0 0 0 5
24

1
9 0 0 0 0

0 0 0 0 0 0 5Nf
36 – 25

6
2Nf
27 – 31

18 0 0 0 0 0 0 0 0 19
96

5
108 0 0

0 0 0 0 0 0 Nf
3 – 31

4 0 0 0 0 0 0 0 0 0 5
24

1
9 0 0

0 0 0 0 0 0 0 0 1
9

5
24 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 5
108

19
96 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 – 49
Nf
3 – 5

4 0 0 0 0 0 0 0 0 1
9

5
24

0 0 0 0 0 0 0 0 2Nf
27 – 77

18
5Nf
36 – 137

72 0 0 0 0 0 0 0 0 5
108

19
96

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (A.18)

Z (2,1)
QE =




1531
288 – 5Nf

216 –Nf
81 – 1

72 0 0 0 0 0 0 0 0 1
384 – 35

864 0 0 0 0 0 0 0 0
119
16 – Nf

18
8
9 0 0 0 0 0 0 0 0 – 35

192 – 7
72 0 0 0 0 0 0 0 0

0 0 1531
288 – 5Nf

216 –Nf
81 – 1

72 0 0 0 0 0 0 0 0 1
384 – 35

864 0 0 0 0 0 0
0 0 119

16 – Nf
18

8
9 0 0 0 0 0 0 0 0 – 35

192 – 7
72 0 0 0 0 0 0

0 0 0 0 1531
288 – 5Nf

216 –Nf
81 – 1

72 0 0 0 0 0 0 0 0 1
384 – 35

864 0 0 0 0
0 0 0 0 119

16 – Nf
18

8
9 0 0 0 0 0 0 0 0 – 35

192 – 7
72 0 0 0 0

0 0 0 0 0 0 1531
288 – 5Nf

216 –Nf
81 – 1

72 0 0 0 0 0 0 0 0 1
384 – 35

864 0 0
0 0 0 0 0 0 119

16 – Nf
18

8
9 0 0 0 0 0 0 0 0 – 35

192 – 7
72 0 0

0 0 0 0 0 0 0 0 – 7
72 – 35

192 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 – 35

864
1
384 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 23
18

51
4 – Nf

18 0 0 0 0 0 0 0 0 – 7
72 – 35

192
0 0 0 0 0 0 0 0 7

6 – Nf
81

317
72 – 5Nf

216 0 0 0 0 0 0 0 0 – 35
864

1
384

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




. (A.19)
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B Renormalisation Constants for the
|∆B| = 0 Theory

The renormalisation constants which are needed to renormalise the Wilson coefficients
of the physical operators up to NNLO are given below for Nc = 3 and with the O(ε)
constants in the definition of the evanescent operators kept arbitrary.

At O(αs), the renormalisation matrix in the parametrisation given in Eqs. (2.22) to (2.25)
reads

Z (1,1)
QQ =




0 6 0 0
4
3 –2 0 0
0 0 –8 0
0 0 0 1




, (B.1)

which agrees with the results found in the literature, see for example Ref. [57]. Note that
the matrix indices correspond to the ordered list

{Q,T ,QS ,TS} , (B.2)

where the superscript q was dropped as the renormalisation constants do not depend on
the external quark flavour. To O(α2s ), we require the additional renormalisation constants

Z (2,2)
QQ =




4 2Nf – 39 0 0
4Nf
9 – 26

3 17 – 2Nf
3 0

0 0 76 – 8Nf
3 0

0 0 0 Nf
3 – 5




(B.3)

and

Z (2,1)
QQ =




b–5
9

5b+650
24 + Nf

3 0 0
5b–646
108 + 2Nf

27
19b+904

96 – Nf
9 0 0

0 0 bS–476
9 + 20Nf

9
5bS–1318

24 + 2Nf
0 0 5bS+1274

108 + 4Nf
9

19bS+2716
96 – 17Nf

18




.

(B.4)
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The sub-matrix mixing the Wilson coefficients of the evanescent operators into the Wilson
coefficients of the physical operators has the NLO contributions

Z (1,1)
QE =




0 –1 0 0 0 0 0 0 0 0 0 0
– 29 – 5

12 0 0 0 0 0 0 0 0 0 0
0 0 0 –1 0 0 0 0 0 0 0 0
0 0 – 29 – 5

12 0 0 0 0 0 0 0 0




, (B.5)

where the ordering of the evanescent operators corresponds to

{
E (1)[Q], E (1)[T ], E (1)[QS ], E (1)[TS ],

E (2)[Q], E (2)[T ], E (2)[QS ], E (2)[TS ]
}
,

(B.6)

and only the first generation matters for the renormalisation of the physical operators. For
the NNLO contributions, the second generation becomes relevant, and the renormalisation
constants are

Z (2,2)
QE =




– 209
43
12 – Nf

3 0 0 1
9

5
24 0 0

43
54 – 2Nf

27
5
24 – 5Nf

36 0 0 5
108

19
96 0 0

0 0 – 169
28
3 – Nf

3 0 0 1
9

5
24

0 0 2
27 – 2Nf

27
17
72 – 5Nf

36 0 0 5
108

19
96




(B.7)

and

Z (2,1)
QE =




83
18

Nf
18 + 23

8 0 0 – 7
72 – 35

192 0 0
Nf
81 + 83

36
5Nf
216 + 139

144 0 0 – 35
864

1
384 0 0

0 0 38
9

Nf
18 + 1 0 0 – 7

72 – 35
192

0 0 Nf
81 + 17

9
5Nf
216 + 173

144 0 0 – 35
864

1
384




.

(B.8)
For the renormalisation of the evanescent operators, we will have to consider the set of
operators up to third generation,

{
E (1)[Q], E (1)[T ], E (1)[QS ], E (1)[TS ],E (2)[Q], E (2)[T ], E (2)[QS ], E (2)[TS ]

E (3)[Q], E (3)[T ], E (3)[QS ], E (3)[TS ]
}
,

(B.9)

as the first generation evanescent operators need to be renormalised to NNLO and the
second generation to NLO for the matching of the |∆B| = 0 transition operator. Focusing
on the corresponding rows for the first and second generation only, the relevant off-diagonal
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B Renormalisation Constants for the |∆B| = 0 Theory

sub-matrix at O(αs) is

Z (1,0)
EQ =




64 –b – 16 0 0
– 2b

9 – 32
9 – 5b

12 – 152
3 0 0

0 0 –64 –bS – 112
0 0 – 2bS

9 – 224
9 – 5bS

12 – 8
3

– 64b
3 – 2560

3 –12b – e – 768 0 0
– 24b+2e

9 – 512
3

29b
3 – 5e

12 + 800
3 0 0

0 0 –512 4bS – eS – 512
0 0 8bS–2eS

9 – 1024
9

20bS–5eS
12 + 416

3




,

(B.10)
and at O(α2s ) only the first generation rows need to be considered, which are given on
the next page.
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Z (2,1)
EQ =




– 8b
9 + e

9 + 64Nf
3 – 2720

9 –bNf
3 – 5b

4 + 5e
24 – 16Nf

3 – 192 0 0
– 2bNf

27 + 67b
18 + 5e

108 – 32Nf
27 + 640

3 – 5bNf
36 – 17b

36 + 19e
96 – 152Nf

9 + 2608
9 0 0

0 0 – 20bS
9 + eS

9 – 64Nf
3 + 3424

9 –bSNf
3 – bS

2 + 5eS
24 – 112Nf

3 + 320
0 0 – 2bSNf

27 + 17bS
9 + 5eS

108 – 224Nf
27 + 1792

9 – 5bSNf
36 – 5bS

9 + 19eS
96 – 8Nf

9 – 1424
9



, (B.11)

Z (2,0)
EQ = (Z1 Z2) , (B.12)

where

Z1 =




– 272a
9 + 7b

9 + 4c
9 – 7e

72 + f
9 + 32Nf

9 + 1600
3

8aNf
3 + 64a + bNf

18 – 427b
48 – cNf

3 – 13c
4 – 35e

192 + 5f
24 + 248Nf

9 – 3214
3

16aNf
27 – 664a

9 + bNf
81 – 67b

216 – 2cNf
27 + 77c

18 – 35e
864 + 5f

108 + 496Nf
81 – 1820

27
10aNf

9 – 199a
18 + 5bNf

216 – 821b
288 – 5cNf

36 + c
36 + e

384 + 19f
96 + 244Nf

27 – 2561
9

0 0
0 0



, (B.13)

and

Z2 =




0 0
0 0

32aSNf
9 + 32aS

3 + 35bS
18 – 20cS

9 – 7eS
72 + fS

9 + 224Nf
9 – 4592

9
16aSNf

3 – 154aS
3 + bSNf

18 – 157bS
48 – cSNf

3 + cS
2 – 35eS

192 + 5fS
24 + 392Nf

9 – 2662
3

32aSNf
27 – 308aS

27 + bSNf
81 + 203bS

216 – 2cSNf
27 + cS

9 – 35eS
864 + 5fS

108 + 784Nf
81 – 2444

27 – 2aSNf
9 + 509aS

18 + 5bSNf
216 – 1025bS

288 – 5cSNf
36 – 5cS

36 + eS
384 + 19fS

96 + 28Nf
27 – 1543

9



. (B.14)
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B Renormalisation Constants for the |∆B| = 0 Theory

The renormalisation constants for the mixing between the evanescent operators are needed
for the renormalisation of the first and second generation operators to O(αs), and the
corresponding rows in the final sub-matrix are

Z (1,1)
EE =




0 14 0 0 0 –1 0 0 0 0 0 0
28
9

4
3 0 0 – 29 – 5

12 0 0 0 0 0 0
0 0 8

3 16 0 0 0 –1 0 0 0 0
0 0 32

9
1
3 0 0 – 29 – 5

12 0 0 0 0
1280
3 336 0 0 – 643 –6 0 0 0 –1 0 0

224
3 – 4603 0 0 – 43

23
3 0 0 – 29 – 5

12 0 0
0 0 512

3 144 0 0 –8 4 0 0 0 –1
0 0 32 – 1723 0 0 8

9
8
3 0 0 – 29 – 5

12




,

(B.15)
and at O(α2s ) only the renormalisation constants for the first generation are needed, which
are presented on the next page.
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Z (2,2)
EE =




– 1409
14Nf
3 + 9 0 0 – 89 –Nf

3 – 5
4 0 0 1

9
5
24 0 0

28Nf
27 – 78 4Nf

9 + 179
18 0 0 67

18 – 2Nf
27 – 5Nf

36 – 17
36 0 0 5

108
19
96 0 0

0 0 8Nf
9 + 4

3
16Nf
3 – 106

3 0 0 – 209 –Nf
3 – 1

2 0 0 1
9

5
24

0 0 32Nf
27 – 1076

27
Nf
9 + 407

18 0 0 17
9 – 2Nf

27 – 5Nf
36 – 5

9 0 0 5
108

19
96




, (B.16)

Z (2,1)
EE =




93 – 32Nf
9

293
3 – 73Nf

9 0 0 7
9

Nf
18 – 427

48 0 0 – 7
72 – 35

192 0 0
3358
27 – 146Nf

81
1751
72 – 32Nf

27 0 0 Nf
81 – 67

216
5Nf
216 – 821

288 0 0 – 35
864

1
384 0 0

0 0 346
9 – 52Nf

27
340
3 – 62Nf

9 0 0 35
18

Nf
18 – 157

48 0 0 – 7
72 – 35

192
0 0 1256

27 – 124Nf
81

521
12 – 97Nf

54 0 0 Nf
81 + 203

216
5Nf
216 – 1025

288 0 0 – 35
864

1
384



. (B.17)

177



C Derivation of Fierz Identities

Fierz identities are used in four dimensions to decompose bilinear spinor covariants in
terms of independent basis elements and are therefore required to determine the linear
combination of spinors such that evanescent operators are O(ε). In this appendix, a
derivation of such Fierz identities is presented, following Ref. [72]. We first derive the
general Fierz identity and then apply it to prove the example relation

(PR)αβ(PR)γδ =
1
8(σ

µνPR)αδ(σµνPR)γβ + 1
2(PR)αδ(PR)γβ . (C.1)

The general Fierz identity can be derived directly from the completeness relation of the
Dirac algebra in four dimensions. For chiral relations it is most convenient to work with a
basis of bilinears spanned by ΓA ⊗ ΓA, where

ΓA ∈
{
PR ,PL,PR γ

µ,PL γ
µ,σµν

}
,

ΓA ∈
{
PR ,PL, γµ PR , γµ PL,

1
2σµν

}
. (C.2)

Note that the dual elements with lowered indices have lowered Lorentz indices, a different
ordering of the chirality projectors and a factor of 1/2 for the last element. This is to
preserve the normalisation of the inner product, which is defined as

〈
ΓA,ΓB

〉
≡ 1

2Tr
(
ΓA ΓB

) != δA
B . (C.3)

Equipped with the basis definitions in Eq. (C.2), we can write down a general Fierz relation
for any two basis elements as

ΓA ⊗ ΓB =
∑

C ,D
CAB

CD ΓC ⊗̃ΓD , (C.4)

where the tilde serves as a shorthand notation for the fact that the spinor indices on the
spin lines have been swapped. Explicitly with the spinor indices shown, this relation reads

(
ΓA)

αβ

(
ΓB)

γδ
=
∑

C ,D
CAB

CD
(
ΓC)

αδ

(
ΓD)

γβ
. (C.5)

The coefficients CAB
CD can be determined by multiplying with

(
ΓE

)

δα

(
ΓF

)

βγ
, (C.6)
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and using the definition of the inner product Eq. (C.3), which leads to

CAB
EF = 1

4 Tr
(
ΓE ΓA ΓF ΓB) . (C.7)

Together with Eq. (C.4), this completes the general Fierz identity, which is used in this
thesis to obtain vanishing finite parts in the evanescent operators.

To prove Eq. (C.1), one can start by applying the general Fierz relation from Eqs. (C.4)
and (C.7) to the first term on the right-hand side, which yields

(σµνPR)αδ
(
σµνPR

)
γβ

= 6 (PR)αδ (PR)γβ – (σµν)αδ

(
σµν

)
γβ

–12 (σµ1µ2)αδ
(σµ3µ4)γβ εµ1µ3µ2µ4 .

(C.8)

Applying the general Fierz identity to the second term in Eq. (C.1) leads to

(PR)αδ (PR)γβ = 1
2 (PR)αδ (PR)γβ + 1

4 (σµν)αδ

(
σµν

)
γβ

+1
8 (σµ1µ2)αδ

(σµ3µ4)γβ εµ1µ3µ2µ4 ,
(C.9)

which can be added to Eq. (C.8) with a factor of 4 to give the desired result stated in
Eq. (C.1).
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D Basis Elements of the Spinor
Vector Spaces

When applying the projectors introduced in Section 3.3, we make use of an appropriate
subset of the basis elements listed below. As outlined earlier, three distinct cases must be
treated separately:

(i) The first spin line is longer while the second spin line has length n. In this case, we
select a basis comprising all elements with up to n total γ matrices on each spin
line, together with the structure containing an additional slashed momentum on the
first spin line in addition to the n pure γ matrices; that is, we include all elements
up to and including B4(n+1)–2.

(ii) The second spin line is longer, or both spin lines have equal length, with the first
spin line containing n total γ matrices. Here, the basis includes all elements with
up to n total γ matrices on each spin line, as well as the structure with an extra
slashed momentum on the second spin line in addition to the n pure γ matrices;
that is, we include all elements up to and including B4(n+1)–1 but omit B4(n+1)–2.

(iii) Both spin lines have length eleven and contain at least one slashed momentum.
This represents the most complex structure that must be resolved. To avoid
excessively long traces, we employ a specialised basis that includes all elements up
to and including B45 (generally B4(n+1)+1, where n denotes the maximum number
of pure γ matrices), while excluding B43 (B4(n+1)–1 in general). Although B42
(corresponding to B4(n+1)–2 in the general case) is not required for the projection
itself, it must be retained to ensure the invertibility of the Gram matrix. This
complication arises because the bilinear map φp introduced in Section 3.3.3 is not
positive-definite.

When dealing with tadpole integrals, for example in the calculation of renormalisation
amplitudes, the basis is simplified significantly. Only the basis elements B4k+1 are needed,
where k takes values from zero up to the number of γ matrices on the shorter of the two
spin lines.
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The explicit definition of the basis elements is:

B1 = 1⊗ 1 , B2 = /eq ⊗ 1 ,
B3 = 1⊗ /eq , B4 = /eq ⊗ /eq ,
B5 = γµ1 ⊗ γµ1 , B6 = γµ1/eq ⊗ γµ1 ,
B7 = γµ1 ⊗ γµ1/eq , B8 = γµ1/eq ⊗ γµ1/eq ,
B9 = γµ1γµ2 ⊗ γµ2γµ1 , B10 = γµ1γµ2/eq ⊗ γµ2γµ1 ,
B11 = γµ1γµ2 ⊗ γµ2γµ1/eq , B12 = γµ1γµ2/eq ⊗ γµ2γµ1/eq ,
B13 = γµ1 . . . γµ3 ⊗ γµ3 . . . γµ1 , B14 = γµ1 . . . γµ3/eq ⊗ γµ3 . . . γµ1 ,
B15 = γµ1 . . . γµ3 ⊗ γµ3 . . . γµ1/eq , B16 = γµ1 . . . γµ3/eq ⊗ γµ3 . . . γµ1/eq ,
B17 = γµ1 . . . γµ4 ⊗ γµ4 . . . γµ1 , B18 = γµ1 . . . γµ4/eq ⊗ γµ4 . . . γµ1 ,
B19 = γµ1 . . . γµ4 ⊗ γµ4 . . . γµ1/eq , B20 = γµ1 . . . γµ4/eq ⊗ γµ4 . . . γµ1/eq ,
B21 = γµ1 . . . γµ5 ⊗ γµ5 . . . γµ1 , B22 = γµ1 . . . γµ5/eq ⊗ γµ5 . . . γµ1 ,
B23 = γµ1 . . . γµ5 ⊗ γµ5 . . . γµ1/eq , B24 = γµ1 . . . γµ5/eq ⊗ γµ5 . . . γµ1/eq ,
B25 = γµ1 . . . γµ6 ⊗ γµ6 . . . γµ1 , B26 = γµ1 . . . γµ6/eq ⊗ γµ6 . . . γµ1 ,
B27 = γµ1 . . . γµ6 ⊗ γµ6 . . . γµ1/eq , B28 = γµ1 . . . γµ6/eq ⊗ γµ6 . . . γµ1/eq ,
B29 = γµ1 . . . γµ7 ⊗ γµ7 . . . γµ1 , B30 = γµ1 . . . γµ7/eq ⊗ γµ7 . . . γµ1 ,
B31 = γµ1 . . . γµ7 ⊗ γµ7 . . . γµ1/eq , B32 = γµ1 . . . γµ7/eq ⊗ γµ7 . . . γµ1/eq
B33 = γµ1 . . . γµ8 ⊗ γµ8 . . . γµ1 , B34 = γµ1 . . . γµ8/eq ⊗ γµ8 . . . γµ1 ,
B35 = γµ1 . . . γµ8 ⊗ γµ8 . . . γµ1/eq , B36 = γµ1 . . . γµ8/eq ⊗ γµ8 . . . γµ1/eq ,
B37 = γµ1 . . . γµ9 ⊗ γµ9 . . . γµ1 , B38 = γµ1 . . . γµ9/eq ⊗ γµ9 . . . γµ1 ,
B39 = γµ1 . . . γµ9 ⊗ γµ9 . . . γµ1/eq , B40 = γµ1 . . . γµ9/eq ⊗ γµ9 . . . γµ1/eq ,
B41 = γµ1 . . . γµ10 ⊗ γµ10 . . . γµ1 , B42 = γµ1 . . . γµ10/eq ⊗ γµ10 . . . γµ1 ,
B43 = γµ1 . . . γµ10 ⊗ γµ10 . . . γµ1/eq , B44 = γµ1 . . . γµ10/eq ⊗ γµ10 . . . γµ1/eq ,
B45 = γµ1 . . . γµ11 ⊗ γµ11 . . . γµ1 . (D.1)

Here, the normalised external momentum

/eq ≡
/q√
q2

(D.2)

was used.
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E Individual Uncertainty Sources of
B Meson Mixing Observables

To show the impact of all input values used in the calculation of ∆Γ/∆M, afs and rds in
Chapter 4, we give the individual contributions from each input variable in Tab. E.1 in the
MS scheme.

Parameter ∆Γs/∆Ms ∆Γd/∆Md as
fs ad

fs rds

αs(MZ ) 5.04× 10–6 3.08× 10–6 1.85× 10–7 4.22× 10–6 2.12× 10–4
MW 2.40× 10–7 2.31× 10–7 1.40× 10–7 3.19× 10–8 1.25× 10–7
MZ 2.30× 10–9 1.41× 10–9 8.44× 10–11 1.93× 10–9 9.66× 10–8
mOS

t 2.74× 10–5 2.64× 10–5 1.38× 10–7 3.15× 10–6 1.17× 10–7
mb(mb) 4.02× 10–5 3.92× 10–5 7.96× 10–8 1.81× 10–6 9.64× 10–5
mc(3 GeV) 2.08× 10–5 2.09× 10–5 4.11× 10–7 9.38× 10–6 1.89× 10–4
fBs/fBd 0 0 0 0 2.23× 10–3
ξ 0 0 0 0 2.29× 10–4
ξS 0 0 0 0 1.12× 10–2
ζ 0 0 0 0 3.50× 10–2
BBs 7.38× 10–6 0 8.95× 10–8 0 1.24× 10–3
BBd 0 1.97× 10–6 0 2.43× 10–6 0
B̃S,Bs 1.17× 10–4 0 6.83× 10–8 0 1.00× 10–3
B̃S,Bd 0 1.12× 10–4 0 1.58× 10–6 0
BR0 2.27× 10–4 2.50× 10–4 7.44× 10–8 1.89× 10–6 2.23× 10–3
BR1 7.35× 10–6 0 2.41× 10–9 0 7.20× 10–5
BR̃1

1.15× 10–5 0 3.77× 10–9 0 1.13× 10–4

BR̃2
7.49× 10–4 7.55× 10–4 2.04× 10–8 4.83× 10–7 7.55× 10–3

BR3 1.11× 10–5 1.11× 10–5 2.38× 10–7 5.53× 10–6 9.63× 10–5
BR̃3

2.63× 10–5 2.64× 10–5 5.65× 10–7 1.31× 10–5 2.29× 10–4

Re(λs
u/λs

t ) 5.18× 10–7 0 3.62× 10–10 0 1.12× 10–4
Im(λs

u/λs
t ) 3.20× 10–10 0 4.58× 10–7 0 6.94× 10–8

Re(λd
u/λd

t ) 0 1.28× 10–5 0 2.04× 10–7 2.88× 10–3
Im(λd

u/λd
t ) 0 1.74× 10–7 0 1.09× 10–5 3.91× 10–5

Table E.1: Uncertainties from individual input parameters in the MS scheme.
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F Double Ratio Without Explicit
SU(3)F Breaking

We present the results obtained for the double ratio (∆Γd/∆Md )/(∆Γs/∆Ms) from
Section 4.5 using the same input parameters as for the calculations carried out in the Bs
and Bd systems separately:

rds = 0.963+0.010
-0.014scale, comb. ± 0.039BB̃S

± 0.0851/mb ± 0.003input (pole) ,

rds = 0.965+0.008
-0.008scale, comb. ± 0.037BB̃S

± 0.0761/mb ± 0.003input (MS) ,

rds = 0.964+0.009
-0.010scale, comb. ± 0.037BB̃S

± 0.0761/mb ± 0.003input (PS) . (F.1)

To be explicit, we do not make use of the more accurately determined ratios of the bag
parameters of the leading-power matrix elements or the decay constants. However, we
also do not need to introduce a parametrisation of the SU(3)F-breaking effects in the
ΛQCD/mb-suppressed matrix elements.

183





Bibliography

[1] S. L. Glashow. “Partial Symmetries of Weak Interactions”. In: Nucl. Phys. 22
(1961), pp. 579–588. doi: 10.1016/0029-5582(61)90469-2.

[2] Abdus Salam. “Weak and Electromagnetic Interactions”. In: Conf. Proc. C 680519
(1968), pp. 367–377. doi: 10.1142/9789812795915_0034.

[3] Steven Weinberg. “A Model of Leptons”. In: Phys. Rev. Lett. 19 (1967), pp. 1264–
1266. doi: 10.1103/PhysRevLett.19.1264.

[4] H. Fritzsch, Murray Gell-Mann, and H. Leutwyler. “Advantages of the Color Octet
Gluon Picture”. In: Phys. Lett. B 47 (1973), pp. 365–368. doi: 10.1016/0370-
2693(73)90625-4.

[5] David J. Gross and Frank Wilczek. “Ultraviolet Behavior of Nonabelian Gauge
Theories”. In: Phys. Rev. Lett. 30 (1973). Ed. by J. C. Taylor, pp. 1343–1346. doi:
10.1103/PhysRevLett.30.1343.

[6] H. David Politzer. “Reliable Perturbative Results for Strong Interactions?” In:
Phys. Rev. Lett. 30 (1973). Ed. by J. C. Taylor, pp. 1346–1349. doi: 10.1103/
PhysRevLett.30.1346.

[7] Nora Brambilla et al. “The XYZ states: experimental and theoretical status and
perspectives”. In: Phys. Rept. 873 (2020), pp. 1–154. doi: 10.1016/j.physrep.
2020.05.001. arXiv: 1907.07583 [hep-ex].

[8] S. W. Herb et al. “Observation of a Dimuon Resonance at 9.5 GeV in 400 GeV
Proton-Nucleus Collisions”. In: Phys. Rev. Lett. 39 (1977), pp. 252–255. doi:
10.1103/PhysRevLett.39.252.

[9] F. Abe et al. “The CDF Detector: An Overview”. In: Nucl. Instrum. Meth. A 271
(1988), pp. 387–403. doi: 10.1016/0168-9002(88)90298-7.

[10] A. J. Bevan et al. “The Physics of the B Factories”. In: Eur. Phys. J. C 74
(2014), p. 3026. doi: 10.1140/epjc/s10052-014-3026-9. arXiv: 1406.6311
[hep-ex].

[11] W. Altmannshofer et al. “The Belle II Physics Book”. In: PTEP 2019.12 (2019).
Ed. by E. Kou and P. Urquijo. [Erratum: PTEP 2020, 029201 (2020)], p. 123C01.
doi: 10.1093/ptep/ptz106. arXiv: 1808.10567 [hep-ex].

[12] A. Augusto Alves Jr. et al. “The LHCb Detector at the LHC”. In: JINST 3 (2008),
S08005. doi: 10.1088/1748-0221/3/08/S08005.

185

https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1142/9789812795915_0034
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1016/0370-2693(73)90625-4
https://doi.org/10.1016/0370-2693(73)90625-4
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1016/j.physrep.2020.05.001
https://doi.org/10.1016/j.physrep.2020.05.001
https://arxiv.org/abs/1907.07583
https://doi.org/10.1103/PhysRevLett.39.252
https://doi.org/10.1016/0168-9002(88)90298-7
https://doi.org/10.1140/epjc/s10052-014-3026-9
https://arxiv.org/abs/1406.6311
https://arxiv.org/abs/1406.6311
https://doi.org/10.1093/ptep/ptz106
https://arxiv.org/abs/1808.10567
https://doi.org/10.1088/1748-0221/3/08/S08005


Bibliography

[13] A. Abulencia et al. “Observation of B0
s – B̄0

s Oscillations”. In: Phys. Rev. Lett.
97 (2006), p. 242003. doi: 10.1103/PhysRevLett.97.242003. arXiv: hep-
ex/0609040.

[14] V. Weisskopf and Eugene P. Wigner. “Calculation of the natural brightness of
spectral lines on the basis of Dirac’s theory”. In: Z. Phys. 63 (1930), pp. 54–73.
doi: 10.1007/BF01336768.

[15] T. D. Lee, R. Oehme, and Chen-Ning Yang. “Remarks on Possible Noninvariance
Under Time Reversal and Charge Conjugation”. In: Phys. Rev. 106 (1957), pp. 340–
345. doi: 10.1103/PhysRev.106.340.

[16] Ulrich Nierste. “Three Lectures on Meson Mixing and CKM phenomenology”.
In: Helmholz International Summer School on Heavy Quark Physics. Mar. 2009,
pp. 1–38. arXiv: 0904.1869 [hep-ph].

[17] Ulrich Nierste. “Meson-antimeson mixing”. In: (Oct. 2025). arXiv: 2510.11716
[hep-ph].

[18] Marina Artuso, Guennadi Borissov, and Alexander Lenz. “CP violation in the B0
s

system”. In: Rev. Mod. Phys. 88.4 (2016). [Addendum: Rev.Mod.Phys. 91, 049901
(2019)], p. 045002. doi: 10.1103/RevModPhys.88.045002. arXiv: 1511.09466
[hep-ph].

[19] Ulrich Nierste. “CP asymmetry in flavor-specific B decays”. In: 39th Rencontres de
Moriond on Electroweak Interactions and Unified Theories. June 2004, pp. 445–450.
arXiv: hep-ph/0406300.

[20] Marvin Gerlach, Ulrich Nierste, Pascal Reeck, Vladyslav Shtabovenko, and Matthias
Steinhauser. “Current-current operator contribution to the decay matrix in B-meson
mixing at next-to-next-to-leading order of QCD”. In: JHEP 10 (2025), p. 162. doi:
10.1007/JHEP10(2025)162. arXiv: 2505.22740 [hep-ph].

[21] Nicola Cabibbo. “Unitary Symmetry and Leptonic Decays”. In: Phys. Rev. Lett. 10
(1963), pp. 531–533. doi: 10.1103/PhysRevLett.10.531.

[22] Makoto Kobayashi and Toshihide Maskawa. “CP Violation in the Renormalizable
Theory of Weak Interaction”. In: Prog. Theor. Phys. 49 (1973), pp. 652–657. doi:
10.1143/PTP.49.652.

[23] R. E. Cutkosky. “Singularities and discontinuities of Feynman amplitudes”. In: J.
Math. Phys. 1 (1960), pp. 429–433. doi: 10.1063/1.1703676.

[24] S. L. Glashow, J. Iliopoulos, and L. Maiani. “Weak Interactions with Lepton-Hadron
Symmetry”. In: Phys. Rev. D 2 (1970), pp. 1285–1292. doi: 10.1103/PhysRevD.
2.1285.

[25] R. Aaij et al. “Precise determination of the B0
s –B

0
s oscillation frequency”. In:

Nature Phys. 18.1 (2022), pp. 1–5. doi: 10.1038/s41567-021-01394-x. arXiv:
2104.04421 [hep-ex].

[26] Swagato Banerjee et al. “Averages of b-hadron, c-hadron, and τ -lepton properties
as of 2023”. In: (Nov. 2024). arXiv: 2411.18639 [hep-ex].

186

https://doi.org/10.1103/PhysRevLett.97.242003
https://arxiv.org/abs/hep-ex/0609040
https://arxiv.org/abs/hep-ex/0609040
https://doi.org/10.1007/BF01336768
https://doi.org/10.1103/PhysRev.106.340
https://arxiv.org/abs/0904.1869
https://arxiv.org/abs/2510.11716
https://arxiv.org/abs/2510.11716
https://doi.org/10.1103/RevModPhys.88.045002
https://arxiv.org/abs/1511.09466
https://arxiv.org/abs/1511.09466
https://arxiv.org/abs/hep-ph/0406300
https://doi.org/10.1007/JHEP10(2025)162
https://arxiv.org/abs/2505.22740
https://doi.org/10.1103/PhysRevLett.10.531
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1063/1.1703676
https://doi.org/10.1103/PhysRevD.2.1285
https://doi.org/10.1103/PhysRevD.2.1285
https://doi.org/10.1038/s41567-021-01394-x
https://arxiv.org/abs/2104.04421
https://arxiv.org/abs/2411.18639


[27] Johannes Albrecht, Florian Bernlochner, Alexander Lenz, and Aleksey Rusov. “Life-
times of b-hadrons and mixing of neutral B-mesons: theoretical and experimental
status”. In: Eur. Phys. J. ST 233.2 (2024), pp. 359–390. doi: 10.1140/epjs/
s11734-024-01124-3. arXiv: 2402.04224 [hep-ph].

[28] Marvin Gerlach, Ulrich Nierste, Vladyslav Shtabovenko, and Matthias Steinhauser.
“Width Difference in the B – B̄ System at Next-to-Next-to-Leading Order of QCD”.
In: Phys. Rev. Lett. 129.10 (2022), p. 102001. doi: 10.1103/PhysRevLett.129.
102001. arXiv: 2205.07907 [hep-ph].

[29] Marvin Gerlach. “Meson width differences and asymmetries - Calculations of higher
order contributions to neutral B-meson mixing”. PhD thesis. Karlsruher Institut
für Technologie (KIT), 2022. 163 pp. doi: 10.5445/IR/1000146636.

[30] Yasmine Sara Amhis et al. “Averages of b-hadron, c-hadron, and τ -lepton properties
as of 2021”. In: Phys. Rev. D 107.5 (2023), p. 052008. doi: 10.1103/PhysRevD.
107.052008. arXiv: 2206.07501 [hep-ex].

[31] Gonzalo Alonso-Álvarez, Gilly Elor, and Miguel Escudero. “Collider signals of
baryogenesis and dark matter from B mesons: A roadmap to discovery”. In: Phys.
Rev. D 104.3 (2021), p. 035028. doi: 10.1103/PhysRevD.104.035028. arXiv:
2101.02706 [hep-ph].

[32] Alexander Lenz, Maria Laura Piscopo, and Aleksey V. Rusov. “Disintegration
of beauty: a precision study”. In: JHEP 01 (2023), p. 004. doi: 10 . 1007 /
JHEP01(2023)004. arXiv: 2208.02643 [hep-ph].

[33] James Gratrex et al. “Quark-hadron duality at work: lifetimes of bottom baryons”. In:
JHEP 04 (2023), p. 034. doi: 10.1007/JHEP04(2023)034. arXiv: 2301.07698
[hep-ph].

[34] Alexander Lenz and Ulrich Nierste. “Theoretical update of Bs – B̄s mixing”. In:
JHEP 06 (2007), p. 072. doi: 10.1088/1126- 6708/2007/06/072. arXiv:
hep-ph/0612167.

[35] J. Charles et al. “CP violation and the CKM matrix: Assessing the impact of
the asymmetric B factories”. In: Eur. Phys. J. C 41.1 (2005), pp. 1–131. doi:
10.1140/epjc/s2005-02169-1. arXiv: hep-ph/0406184.

[36] Martin Beneke, Gerhard Buchalla, Alexander Lenz, and Ulrich Nierste. “CP Asym-
metry in Flavor Specific B Decays beyond Leading Logarithms”. In: Phys. Lett.
B 576 (2003), pp. 173–183. doi: 10.1016/j.physletb.2003.09.089. arXiv:
hep-ph/0307344.

[37] Guido Altarelli, G. Martinelli, S. Petrarca, and F. Rapuano. “Failure of local duality
in inclusive nonleptonic heavy flavor decays”. In: Phys. Lett. B 382 (1996), pp. 409–
414. doi: 10.1016/0370-2693(96)00637-5. arXiv: hep-ph/9604202.

[38] Hai-Yang Cheng. “A Phenomenological analysis of heavy hadron lifetimes”. In:
Phys. Rev. D 56 (1997), pp. 2783–2798. doi: 10.1103/PhysRevD.56.2783.
arXiv: hep-ph/9704260.

187

https://doi.org/10.1140/epjs/s11734-024-01124-3
https://doi.org/10.1140/epjs/s11734-024-01124-3
https://arxiv.org/abs/2402.04224
https://doi.org/10.1103/PhysRevLett.129.102001
https://doi.org/10.1103/PhysRevLett.129.102001
https://arxiv.org/abs/2205.07907
https://doi.org/10.5445/IR/1000146636
https://doi.org/10.1103/PhysRevD.107.052008
https://doi.org/10.1103/PhysRevD.107.052008
https://arxiv.org/abs/2206.07501
https://doi.org/10.1103/PhysRevD.104.035028
https://arxiv.org/abs/2101.02706
https://doi.org/10.1007/JHEP01(2023)004
https://doi.org/10.1007/JHEP01(2023)004
https://arxiv.org/abs/2208.02643
https://doi.org/10.1007/JHEP04(2023)034
https://arxiv.org/abs/2301.07698
https://arxiv.org/abs/2301.07698
https://doi.org/10.1088/1126-6708/2007/06/072
https://arxiv.org/abs/hep-ph/0612167
https://doi.org/10.1140/epjc/s2005-02169-1
https://arxiv.org/abs/hep-ph/0406184
https://doi.org/10.1016/j.physletb.2003.09.089
https://arxiv.org/abs/hep-ph/0307344
https://doi.org/10.1016/0370-2693(96)00637-5
https://arxiv.org/abs/hep-ph/9604202
https://doi.org/10.1103/PhysRevD.56.2783
https://arxiv.org/abs/hep-ph/9704260


Bibliography

[39] Toshiaki Ito, Masahisa Matsuda, and Yoshimitsu Matsui. “New possibility of solving
the problem of lifetime ratio τ(Λb)/τ(Bd )”. In: Prog. Theor. Phys. 99 (1998),
pp. 271–280. doi: 10.1143/PTP.99.271. arXiv: hep-ph/9705402.

[40] R. J. Dowdall et al. “Neutral B-meson mixing from full lattice QCD at the physical
point”. In: Phys. Rev. D 100.9 (2019), p. 094508. doi: 10.1103/PhysRevD.100.
094508. arXiv: 1907.01025 [hep-lat].

[41] A. Bazavov et al. “B- and D-meson leptonic decay constants from four-flavor
lattice QCD”. In: Phys. Rev. D 98.7 (2018), p. 074512. doi: 10.1103/PhysRevD.
98.074512. arXiv: 1712.09262 [hep-lat].

[42] C. Hughes, C. T. H. Davies, and C. J. Monahan. “New methods for B meson
decay constants and form factors from lattice NRQCD”. In: Phys. Rev. D 97.5
(2018), p. 054509. doi: 10.1103/PhysRevD.97.054509. arXiv: 1711.09981
[hep-lat].

[43] A. Bussone et al. “Mass of the b quark and B meson decay constants from
Nf =2+1+1 twisted-mass lattice QCD”. In: Phys. Rev. D 93.11 (2016), p. 114505.
doi: 10.1103/PhysRevD.93.114505. arXiv: 1603.04306 [hep-lat].

[44] R. J. Dowdall, C. T. H. Davies, R. R. Horgan, C. J. Monahan, and J. Shigemitsu. “B-
Meson Decay Constants from Improved Lattice Nonrelativistic QCD with Physical
u, d, s, and c Quarks”. In: Phys. Rev. Lett. 110.22 (2013), p. 222003. doi:
10.1103/PhysRevLett.110.222003. arXiv: 1302.2644 [hep-lat].

[45] M. Kirk, A. Lenz, and T. Rauh. “Dimension-six matrix elements for meson mixing
and lifetimes from sum rules”. In: JHEP 12 (2017). [Erratum: JHEP 06, 162 (2020)],
p. 068. doi: 10.1007/JHEP12(2017)068. arXiv: 1711.02100 [hep-ph].

[46] Luca Di Luzio, Matthew Kirk, Alexander Lenz, and Thomas Rauh. “∆Ms theory
precision confronts flavour anomalies”. In: JHEP 12 (2019), p. 009. doi: 10.1007/
JHEP12(2019)009. arXiv: 1909.11087 [hep-ph].

[47] M. Beneke, G. Buchalla, and I. Dunietz. “Width Difference in the Bs – B̄s System”.
In: Phys. Rev. D 54 (1996). [Erratum: Phys.Rev.D 83, 119902 (2011)], pp. 4419–
4431. doi: 10.1103/PhysRevD.54.4419. arXiv: hep-ph/9605259.

[48] A. S. Dighe, T. Hurth, C. S. Kim, and T. Yoshikawa. “Measurement of the lifetime
difference of Bd mesons: Possible and worthwhile?” In: Nucl. Phys. B 624 (2002),
pp. 377–404. doi: 10.1016/S0550-3213(01)00655-1. arXiv: hep-ph/0109088.

[49] M. Beneke, G. Buchalla, C. Greub, A. Lenz, and U. Nierste. “Next-to-leading
order QCD corrections to the lifetime difference of Bs mesons”. In: Phys. Lett.
B 459 (1999), pp. 631–640. doi: 10.1016/S0370-2693(99)00684-X. arXiv:
hep-ph/9808385.

[50] M. Ciuchini, E. Franco, V. Lubicz, F. Mescia, and C. Tarantino. “Lifetime differences
and CP violation parameters of neutral B mesons at the next-to-leading order in
QCD”. In: JHEP 08 (2003), p. 031. doi: 10.1088/1126-6708/2003/08/031.
arXiv: hep-ph/0308029.

188

https://doi.org/10.1143/PTP.99.271
https://arxiv.org/abs/hep-ph/9705402
https://doi.org/10.1103/PhysRevD.100.094508
https://doi.org/10.1103/PhysRevD.100.094508
https://arxiv.org/abs/1907.01025
https://doi.org/10.1103/PhysRevD.98.074512
https://doi.org/10.1103/PhysRevD.98.074512
https://arxiv.org/abs/1712.09262
https://doi.org/10.1103/PhysRevD.97.054509
https://arxiv.org/abs/1711.09981
https://arxiv.org/abs/1711.09981
https://doi.org/10.1103/PhysRevD.93.114505
https://arxiv.org/abs/1603.04306
https://doi.org/10.1103/PhysRevLett.110.222003
https://arxiv.org/abs/1302.2644
https://doi.org/10.1007/JHEP12(2017)068
https://arxiv.org/abs/1711.02100
https://doi.org/10.1007/JHEP12(2019)009
https://doi.org/10.1007/JHEP12(2019)009
https://arxiv.org/abs/1909.11087
https://doi.org/10.1103/PhysRevD.54.4419
https://arxiv.org/abs/hep-ph/9605259
https://doi.org/10.1016/S0550-3213(01)00655-1
https://arxiv.org/abs/hep-ph/0109088
https://doi.org/10.1016/S0370-2693(99)00684-X
https://arxiv.org/abs/hep-ph/9808385
https://doi.org/10.1088/1126-6708/2003/08/031
https://arxiv.org/abs/hep-ph/0308029


[51] H. M. Asatrian, Artyom Hovhannisyan, Ulrich Nierste, and Arsen Yeghiazaryan.
“Towards next-to-next-to-leading-log accuracy for the width difference in the Bs –B̄s
system: fermionic contributions to order (mc/mb)0 and (mc/mb)1”. In: JHEP 10
(2017), p. 191. doi: 10.1007/JHEP10(2017)191. arXiv: 1709.02160 [hep-ph].

[52] Hrachia M. Asatrian et al. “Penguin contribution to the width difference and
CP asymmetry in Bq-B̄q mixing at order α2sNf ”. In: Phys. Rev. D 102.3 (2020),
p. 033007. doi: 10.1103/PhysRevD.102.033007. arXiv: 2006.13227 [hep-ph].

[53] Artyom Hovhannisyan and Ulrich Nierste. “Addendum to: Towards next-to-next-
to-leading-log accuracy for the width difference in the Bs–Bs system: fermionic
contributions to order (mc/mb)0 and (mc/mb)1”. In: JHEP 06 (2022), p. 090.
doi: 10.1007/JHEP06(2022)090. arXiv: 2204.11907 [hep-ph].

[54] Marvin Gerlach, Ulrich Nierste, Vladyslav Shtabovenko, and Matthias Steinhauser.
“The width difference in B – B̄ mixing at order αs and beyond”. In: JHEP 04 (2022),
p. 006. doi: 10.1007/JHEP04(2022)006. arXiv: 2202.12305 [hep-ph].

[55] Andrzej J. Buras, Matthias Jamin, and Peter H. Weisz. “Leading and Next-to-
leading QCD Corrections to ε Parameter and B0 – B̄0 Mixing in the Presence of a
Heavy Top Quark”. In: Nucl. Phys. B 347 (1990), pp. 491–536. doi: 10.1016/
0550-3213(90)90373-L.

[56] Martin Lang, Alexander Lenz, Ali Mohamed, Maria Laura Piscopo, and Aleksey V.
Rusov. “B-meson decay width up to 1/m3

b corrections within and beyond the
Standard Model”. In: (Dec. 2025). arXiv: 2512.14635 [hep-ph].

[57] M. Neubert and Christopher T. Sachrajda. “Spectator effects in inclusive decays of
beauty hadrons”. In: Nucl. Phys. B 483 (1997), pp. 339–370. doi: 10.1016/S0550-
3213(96)00559-7. arXiv: hep-ph/9603202.

[58] Martin Beneke, Gerhard Buchalla, Christoph Greub, Alexander Lenz, and Ulrich
Nierste. “The B+ – B0

d Lifetime Difference Beyond Leading Logarithms”. In: Nucl.
Phys. B 639 (2002), pp. 389–407. doi: 10.1016/S0550-3213(02)00561-8.
arXiv: hep-ph/0202106.

[59] E. Franco, V. Lubicz, F. Mescia, and C. Tarantino. “Lifetime ratios of beauty
hadrons at the next-to-leading order in QCD”. In: Nucl. Phys. B 633 (2002),
pp. 212–236. doi: 10.1016/S0550-3213(02)00262-6. arXiv: hep-ph/0203089.

[60] Matthew Black, Martin Lang, Alexander Lenz, and Zachary Wüthrich. “HQET
sum rules for matrix elements of dimension-six four-quark operators for meson
lifetimes within and beyond the Standard Model”. In: JHEP 04 (2025), p. 081.
doi: 10.1007/JHEP04(2025)081. arXiv: 2412.13270 [hep-ph].

[61] Manuel Egner, Matteo Fael, Kay Schönwald, and Matthias Steinhauser. “Non-
leptonic B-meson decays to next-to-next-to-leading order”. In: JHEP 10 (2024).
[Erratum: JHEP 02, 147 (2025)], p. 144. doi: 10.1007/JHEP10(2024)144. arXiv:
2406.19456 [hep-ph].

189

https://doi.org/10.1007/JHEP10(2017)191
https://arxiv.org/abs/1709.02160
https://doi.org/10.1103/PhysRevD.102.033007
https://arxiv.org/abs/2006.13227
https://doi.org/10.1007/JHEP06(2022)090
https://arxiv.org/abs/2204.11907
https://doi.org/10.1007/JHEP04(2022)006
https://arxiv.org/abs/2202.12305
https://doi.org/10.1016/0550-3213(90)90373-L
https://doi.org/10.1016/0550-3213(90)90373-L
https://arxiv.org/abs/2512.14635
https://doi.org/10.1016/S0550-3213(96)00559-7
https://doi.org/10.1016/S0550-3213(96)00559-7
https://arxiv.org/abs/hep-ph/9603202
https://doi.org/10.1016/S0550-3213(02)00561-8
https://arxiv.org/abs/hep-ph/0202106
https://doi.org/10.1016/S0550-3213(02)00262-6
https://arxiv.org/abs/hep-ph/0203089
https://doi.org/10.1007/JHEP04(2025)081
https://arxiv.org/abs/2412.13270
https://doi.org/10.1007/JHEP10(2024)144
https://arxiv.org/abs/2406.19456


Bibliography

[62] Manuel Egner et al. “Total decay rates of B mesons at NNLO-QCD”. In: JHEP 04
(2025), p. 106. doi: 10.1007/JHEP04(2025)106. arXiv: 2412.14035 [hep-ph].

[63] Alexey A. Petrov and Andrew E. Blechman. Effective Field Theories. WSP, 2016.
doi: 10.1142/8619.

[64] Andrzej Buras. Gauge Theory of Weak Decays. Cambridge University Press, June
2020. doi: 10.1017/9781139524100.

[65] Thomas Appelquist and J. Carazzone. “Infrared Singularities and Massive Fields”.
In: Phys. Rev. D 11 (1975), p. 2856. doi: 10.1103/PhysRevD.11.2856.

[66] Kenneth G. Wilson. “Nonlagrangian models of current algebra”. In: Phys. Rev. 179
(1969), pp. 1499–1512. doi: 10.1103/PhysRev.179.1499.

[67] K. G. Wilson and W. Zimmermann. “Operator product expansions and composite
field operators in the general framework of quantum field theory”. In: Commun.
Math. Phys. 24 (1972), pp. 87–106. doi: 10.1007/BF01878448.

[68] Edward Witten. “Short Distance Analysis of Weak Interactions”. In: Nucl. Phys. B
122 (1977), pp. 109–143. doi: 10.1016/0550-3213(77)90428-X.

[69] Wolfhart Zimmermann. “Normal products and the short distance expansion in the
perturbation theory of renormalizable interactions”. In: Annals Phys. 77 (1973),
pp. 570–601. doi: 10.1016/0003-4916(73)90430-2.

[70] Enrico Fermi. “Tentativo di una teoria dell’emissione dei raggi beta”. In: Ric. Sci.
4 (1933), pp. 491–495.

[71] E. Fermi. “An attempt of a theory of beta radiation. 1.” In: Z. Phys. 88 (1934),
pp. 161–177. doi: 10.1007/BF01351864.

[72] Michael E. Peskin and Daniel V. Schroeder. An Introduction to quantum field
theory. Reading, USA: Addison-Wesley, 1995. doi: 10.1201/9780429503559.

[73] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn. “Quark Mass and Field Anomalous
Dimensions to O(α5s )”. In: JHEP 10 (2014), p. 076. doi: 10.1007/JHEP10(2014)
076. arXiv: 1402.6611 [hep-ph].

[74] Thomas Luthe, Andreas Maier, Peter Marquard, and York Schröder. “Five-loop
quark mass and field anomalous dimensions for a general gauge group”. In: JHEP 01
(2017), p. 081. doi: 10.1007/JHEP01(2017)081. arXiv: 1612.05512 [hep-ph].

[75] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn. “Five-loop fermion anomalous
dimension for a general gauge group from four-loop massless propagators”. In:
JHEP 04 (2017), p. 119. doi: 10.1007/JHEP04(2017)119. arXiv: 1702.01458
[hep-ph].

[76] Thomas Luthe, Andreas Maier, Peter Marquard, and York Schroder. “Complete
renormalization of QCD at five loops”. In: JHEP 03 (2017), p. 020. doi: 10.1007/
JHEP03(2017)020. arXiv: 1701.07068 [hep-ph].

[77] K. G. Chetyrkin, G. Falcioni, F. Herzog, and J. A. M. Vermaseren. “Five-loop
renormalisation of QCD in covariant gauges”. In: JHEP 10 (2017). [Addendum:

190

https://doi.org/10.1007/JHEP04(2025)106
https://arxiv.org/abs/2412.14035
https://doi.org/10.1142/8619
https://doi.org/10.1017/9781139524100
https://doi.org/10.1103/PhysRevD.11.2856
https://doi.org/10.1103/PhysRev.179.1499
https://doi.org/10.1007/BF01878448
https://doi.org/10.1016/0550-3213(77)90428-X
https://doi.org/10.1016/0003-4916(73)90430-2
https://doi.org/10.1007/BF01351864
https://doi.org/10.1201/9780429503559
https://doi.org/10.1007/JHEP10(2014)076
https://doi.org/10.1007/JHEP10(2014)076
https://arxiv.org/abs/1402.6611
https://doi.org/10.1007/JHEP01(2017)081
https://arxiv.org/abs/1612.05512
https://doi.org/10.1007/JHEP04(2017)119
https://arxiv.org/abs/1702.01458
https://arxiv.org/abs/1702.01458
https://doi.org/10.1007/JHEP03(2017)020
https://doi.org/10.1007/JHEP03(2017)020
https://arxiv.org/abs/1701.07068


JHEP 12, 006 (2017)], p. 179. doi: 10.1007/JHEP10(2017)179. arXiv: 1709.
08541 [hep-ph].

[78] Peter Marquard, Alexander V. Smirnov, Vladimir A. Smirnov, and Matthias Stein-
hauser. “Quark Mass Relations to Four-Loop Order in Perturbative QCD”. In: Phys.
Rev. Lett. 114.14 (2015), p. 142002. doi: 10.1103/PhysRevLett.114.142002.
arXiv: 1502.01030 [hep-ph].

[79] Matteo Fael, Kay Schönwald, and Matthias Steinhauser. “Exact results for ZOS
m

and ZOS
2 with two mass scales and up to three loops”. In: JHEP 10 (2020), p. 087.

doi: 10.1007/JHEP10(2020)087. arXiv: 2008.01102 [hep-ph].
[80] M. Beneke. “A Quark mass definition adequate for threshold problems”. In: Phys.

Lett. B 434 (1998), pp. 115–125. doi: 10.1016/S0370-2693(98)00741-2.
arXiv: hep-ph/9804241.

[81] Alexander V. Smirnov, Vladimir A. Smirnov, and Matthias Steinhauser. “Three-loop
static potential”. In: Phys. Rev. Lett. 104 (2010), p. 112002. doi: 10.1103/
PhysRevLett.104.112002. arXiv: 0911.4742 [hep-ph].

[82] C. Anzai, Y. Kiyo, and Y. Sumino. “Static QCD potential at three-loop order”.
In: Phys. Rev. Lett. 104 (2010), p. 112003. doi: 10.1103/PhysRevLett.104.
112003. arXiv: 0911.4335 [hep-ph].

[83] Florian Herren and Matthias Steinhauser. “Version 3 of RunDec and CRunDec”. In:
Comput. Phys. Commun. 224 (2018), pp. 333–345. doi: 10.1016/j.cpc.2017.
11.014. arXiv: 1703.03751 [hep-ph].

[84] M. Beneke, A. Maier, J. Piclum, and T. Rauh. “The bottom-quark mass from
non-relativistic sum rules at NNNLO”. In: Nucl. Phys. B 891 (2015), pp. 42–72.
doi: 10.1016/j.nuclphysb.2014.12.001. arXiv: 1411.3132 [hep-ph].

[85] Andrzej J. Buras and Peter H. Weisz. “QCD Nonleading Corrections to Weak
Decays in Dimensional Regularization and ’t Hooft-Veltman Schemes”. In: Nucl.
Phys. B 333 (1990), pp. 66–99. doi: 10.1016/0550-3213(90)90223-Z.

[86] J. S. R. Chisholm. “Relativistic scalar products of γ matrices”. In: Il Nuovo
Cimento (1955-1965) 30.1 (Oct. 1963), pp. 426–428. issn: 1827-6121. doi:
10.1007/BF02750778.

[87] Stefan Herrlich and Ulrich Nierste. “Evanescent operators, scheme dependences and
double insertions”. In: Nucl. Phys. B 455 (1995), pp. 39–58. doi: 10.1016/0550-
3213(95)00474-7. arXiv: hep-ph/9412375.

[88] Michael J. Dugan and Benjamin Grinstein. “On the vanishing of evanescent
operators”. In: Phys. Lett. B 256 (1991), pp. 239–244. doi: 10.1016/0370-
2693(91)90680-O.

[89] Mikolaj Misiak and Jorg Urban. “QCD corrections to FCNC decays mediated
by Z penguins and W boxes”. In: Phys. Lett. B 451 (1999), pp. 161–169. doi:
10.1016/S0370-2693(99)00150-1. arXiv: hep-ph/9901278.

191

https://doi.org/10.1007/JHEP10(2017)179
https://arxiv.org/abs/1709.08541
https://arxiv.org/abs/1709.08541
https://doi.org/10.1103/PhysRevLett.114.142002
https://arxiv.org/abs/1502.01030
https://doi.org/10.1007/JHEP10(2020)087
https://arxiv.org/abs/2008.01102
https://doi.org/10.1016/S0370-2693(98)00741-2
https://arxiv.org/abs/hep-ph/9804241
https://doi.org/10.1103/PhysRevLett.104.112002
https://doi.org/10.1103/PhysRevLett.104.112002
https://arxiv.org/abs/0911.4742
https://doi.org/10.1103/PhysRevLett.104.112003
https://doi.org/10.1103/PhysRevLett.104.112003
https://arxiv.org/abs/0911.4335
https://doi.org/10.1016/j.cpc.2017.11.014
https://doi.org/10.1016/j.cpc.2017.11.014
https://arxiv.org/abs/1703.03751
https://doi.org/10.1016/j.nuclphysb.2014.12.001
https://arxiv.org/abs/1411.3132
https://doi.org/10.1016/0550-3213(90)90223-Z
https://doi.org/10.1007/BF02750778
https://doi.org/10.1016/0550-3213(95)00474-7
https://doi.org/10.1016/0550-3213(95)00474-7
https://arxiv.org/abs/hep-ph/9412375
https://doi.org/10.1016/0370-2693(91)90680-O
https://doi.org/10.1016/0370-2693(91)90680-O
https://doi.org/10.1016/S0370-2693(99)00150-1
https://arxiv.org/abs/hep-ph/9901278


Bibliography

[90] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn. “Five-Loop Running of the
QCD coupling constant”. In: Phys. Rev. Lett. 118.8 (2017), p. 082002. doi:
10.1103/PhysRevLett.118.082002. arXiv: 1606.08659 [hep-ph].

[91] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt. “The five-loop
beta function of Yang-Mills theory with fermions”. In: JHEP 02 (2017), p. 090.
doi: 10.1007/JHEP02(2017)090. arXiv: 1701.01404 [hep-ph].

[92] Thomas Luthe, Andreas Maier, Peter Marquard, and York Schroder. “The five-
loop Beta function for a general gauge group and anomalous dimensions beyond
Feynman gauge”. In: JHEP 10 (2017), p. 166. doi: 10.1007/JHEP10(2017)166.
arXiv: 1709.07718 [hep-ph].

[93] P. Breitenlohner and D. Maison. “Dimensionally Renormalized Green’s Functions
for Theories with Massless Particles. 1.” In: Commun. Math. Phys. 52 (1977),
p. 39. doi: 10.1007/BF01609070.

[94] P. Breitenlohner and D. Maison. “Dimensionally Renormalized Green’s Functions
for Theories with Massless Particles. 2.” In: Commun. Math. Phys. 52 (1977),
p. 55. doi: 10.1007/BF01609071.

[95] P. Breitenlohner and D. Maison. “Dimensional Renormalization and the Action
Principle”. In: Commun. Math. Phys. 52 (1977), pp. 11–38. doi: 10.1007/
BF01609069.

[96] Guy Bonneau. “Consistency in Dimensional Regularization With γ5”. In: Phys.
Lett. B 96 (1980), pp. 147–150. doi: 10.1016/0370-2693(80)90232-4.

[97] Guy Bonneau. “Preserving Canonical Ward Identities in Dimensional Regularization
With a Nonanticommuting γ5”. In: Nucl. Phys. B 177 (1981), pp. 523–527. doi:
10.1016/0550-3213(81)90185-1.

[98] Gerard ’t Hooft and M. J. G. Veltman. “Regularization and Renormalization of
Gauge Fields”. In: Nucl. Phys. B 44 (1972), pp. 189–213. doi: 10.1016/0550-
3213(72)90279-9.

[99] Warren Siegel. “Supersymmetric Dimensional Regularization via Dimensional Re-
duction”. In: Phys. Lett. B 84 (1979), pp. 193–196. doi: 10 . 1016 / 0370 -
2693(79)90282-X.

[100] Gerhard Buchalla, Andrzej J. Buras, and Markus E. Lautenbacher. “Weak Decays
beyond Leading Logarithms”. In: Rev. Mod. Phys. 68 (1996), pp. 1125–1144. doi:
10.1103/RevModPhys.68.1125. arXiv: hep-ph/9512380.

[101] Konstantin G. Chetyrkin, Mikolaj Misiak, and Manfred Munz. “|∆F | = 1 nonlep-
tonic effective Hamiltonian in a simpler scheme”. In: Nucl. Phys. B 520 (1998),
pp. 279–297. doi: 10.1016/S0550-3213(98)00131-X. arXiv: hep-ph/9711280.

[102] Christoph Bobeth, Mikolaj Misiak, and Jorg Urban. “Photonic penguins at two
loops and mt dependence of BR[B → Xs l+l–]”. In: Nucl. Phys. B 574 (2000),
pp. 291–330. doi: 10.1016/S0550-3213(00)00007-9. arXiv: hep-ph/9910220.

192

https://doi.org/10.1103/PhysRevLett.118.082002
https://arxiv.org/abs/1606.08659
https://doi.org/10.1007/JHEP02(2017)090
https://arxiv.org/abs/1701.01404
https://doi.org/10.1007/JHEP10(2017)166
https://arxiv.org/abs/1709.07718
https://doi.org/10.1007/BF01609070
https://doi.org/10.1007/BF01609071
https://doi.org/10.1007/BF01609069
https://doi.org/10.1007/BF01609069
https://doi.org/10.1016/0370-2693(80)90232-4
https://doi.org/10.1016/0550-3213(81)90185-1
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0370-2693(79)90282-X
https://doi.org/10.1016/0370-2693(79)90282-X
https://doi.org/10.1103/RevModPhys.68.1125
https://arxiv.org/abs/hep-ph/9512380
https://doi.org/10.1016/S0550-3213(98)00131-X
https://arxiv.org/abs/hep-ph/9711280
https://doi.org/10.1016/S0550-3213(00)00007-9
https://arxiv.org/abs/hep-ph/9910220


[103] Martin Gorbahn and Ulrich Haisch. “Effective Hamiltonian for non-leptonic |∆F | =
1 decays at NNLO in QCD”. In: Nucl. Phys. B 713 (2005), pp. 291–332. doi:
10.1016/j.nuclphysb.2005.01.047. arXiv: hep-ph/0411071.

[104] Mikolaj Misiak and Matthias Steinhauser. “Three loop matching of the dipole
operators for b → sγ and b → sg”. In: Nucl. Phys. B 683 (2004), pp. 277–305.
doi: 10.1016/j.nuclphysb.2004.02.006. arXiv: hep-ph/0401041.

[105] Martin Gorbahn, Ulrich Haisch, and Mikolaj Misiak. “Three-loop mixing of dipole
operators”. In: Phys. Rev. Lett. 95 (2005), p. 102004. doi: 10.1103/PhysRevLett.
95.102004. arXiv: hep-ph/0504194.

[106] Matthias Neubert. “Heavy quark symmetry”. In: Phys. Rept. 245 (1994), pp. 259–
396. doi: 10.1016/0370-1573(94)90091-4. arXiv: hep-ph/9306320.

[107] Martin Gorbahn, Sebastian Jager, Ulrich Nierste, and Stephanie Trine. “The
supersymmetric Higgs sector and B – B̄ mixing for large tan β”. In: Phys. Rev. D
84 (2011), p. 034030. doi: 10.1103/PhysRevD.84.034030. arXiv: 0901.2065
[hep-ph].

[108] Robert V. Harlander and Fabian Lange. “Effective electroweak Hamiltonian in
the gradient-flow formalism”. In: Phys. Rev. D 105.7 (2022), p. L071504. doi:
10.1103/PhysRevD.105.L071504. arXiv: 2201.08618 [hep-lat].

[109] Matthew Black et al. “Using Gradient Flow to Renormalise Matrix Elements
for Meson Mixing and Lifetimes”. In: PoS LATTICE2023 (2024), p. 263. doi:
10.22323/1.453.0263. arXiv: 2310.18059 [hep-lat].

[110] Matthew Black et al. “Gradient Flow Renormalisation for Meson Mixing and
Lifetimes”. In: PoS LATTICE2024 (2025), p. 243. doi: 10.22323/1.466.0243.
arXiv: 2409.18891 [hep-lat].

[111] Daniel King, Alexander Lenz, and Thomas Rauh. “SU(3) breaking effects in B and D
meson lifetimes”. In: JHEP 06 (2022), p. 134. doi: 10.1007/JHEP06(2022)134.
arXiv: 2112.03691 [hep-ph].

[112] Daniel James King. “Three loop corrections to HQET Sum Rules for the Bag
Parameter”. PhD thesis. Durham U., 2022.

[113] Pascal Reeck, Vladyslav Shtabovenko, and Matthias Steinhauser. “B meson mixing
at NNLO: technical aspects”. In: JHEP 08 (2024), p. 002. doi: 10 . 1007 /
JHEP08(2024)002. arXiv: 2405.14698 [hep-ph].

[114] Paulo Nogueira. “Automatic Feynman Graph Generation”. In: J. Comput. Phys.
105 (1993), pp. 279–289. doi: 10.1006/jcph.1993.1074.

[115] Marvin Gerlach, Florian Herren, and Martin Lang. “tapir: A tool for topologies,
amplitudes, partial fraction decomposition and input for reductions”. In: Comput.
Phys. Commun. 282 (2023), p. 108544. doi: 10.1016/j.cpc.2022.108544.
arXiv: 2201.05618 [hep-ph].

[116] J. A. M. Vermaseren. “New features of FORM”. In: (Oct. 2000). arXiv: math-
ph/0010025.

193

https://doi.org/10.1016/j.nuclphysb.2005.01.047
https://arxiv.org/abs/hep-ph/0411071
https://doi.org/10.1016/j.nuclphysb.2004.02.006
https://arxiv.org/abs/hep-ph/0401041
https://doi.org/10.1103/PhysRevLett.95.102004
https://doi.org/10.1103/PhysRevLett.95.102004
https://arxiv.org/abs/hep-ph/0504194
https://doi.org/10.1016/0370-1573(94)90091-4
https://arxiv.org/abs/hep-ph/9306320
https://doi.org/10.1103/PhysRevD.84.034030
https://arxiv.org/abs/0901.2065
https://arxiv.org/abs/0901.2065
https://doi.org/10.1103/PhysRevD.105.L071504
https://arxiv.org/abs/2201.08618
https://doi.org/10.22323/1.453.0263
https://arxiv.org/abs/2310.18059
https://doi.org/10.22323/1.466.0243
https://arxiv.org/abs/2409.18891
https://doi.org/10.1007/JHEP06(2022)134
https://arxiv.org/abs/2112.03691
https://doi.org/10.1007/JHEP08(2024)002
https://doi.org/10.1007/JHEP08(2024)002
https://arxiv.org/abs/2405.14698
https://doi.org/10.1006/jcph.1993.1074
https://doi.org/10.1016/j.cpc.2022.108544
https://arxiv.org/abs/2201.05618
https://arxiv.org/abs/math-ph/0010025
https://arxiv.org/abs/math-ph/0010025


Bibliography

[117] M. Tentyukov and J. A. M. Vermaseren. “The Multithreaded version of FORM”.
In: Comput. Phys. Commun. 181 (2010), pp. 1419–1427. doi: 10.1016/j.cpc.
2010.04.009. arXiv: hep-ph/0702279.

[118] J. Kuipers, T. Ueda, J. A. M. Vermaseren, and J. Vollinga. “FORM version 4.0”.
In: Comput. Phys. Commun. 184 (2013), pp. 1453–1467. doi: 10.1016/j.cpc.
2012.12.028. arXiv: 1203.6543 [cs.SC].

[119] Ben Ruijl, Takahiro Ueda, and Jos Vermaseren. “FORM version 4.2”. In: (July
2017). arXiv: 1707.06453 [hep-ph].

[120] R. Harlander, T. Seidensticker, and M. Steinhauser. “Complete corrections of
O(ααs) to the decay of the Z boson into bottom quarks”. In: Phys. Lett. B
426 (1998), pp. 125–132. doi: 10.1016/S0370- 2693(98)00220- 2. arXiv:
hep-ph/9712228.

[121] T. Seidensticker. “Automatic application of successive asymptotic expansions of
Feynman diagrams”. In: 6th International Workshop on New Computing Techniques
in Physics Research: Software Engineering, Artificial Intelligence Neural Nets,
Genetic Algorithms, Symbolic Algebra, Automatic Calculation. May 1999. arXiv:
hep-ph/9905298.

[122] T. van Ritbergen, A. N. Schellekens, and J. A. M. Vermaseren. “Group theory
factors for Feynman diagrams”. In: Int. J. Mod. Phys. A 14 (1999), pp. 41–96.
doi: 10.1142/S0217751X99000038. arXiv: hep-ph/9802376.

[123] F. V. Tkachov. “A Theorem on Analytical Calculability of Four Loop Renor-
malization Group Functions”. In: Phys. Lett. B 100 (1981), pp. 65–68. doi:
10.1016/0370-2693(81)90288-4.

[124] K. G. Chetyrkin and F. V. Tkachov. “Integration by Parts: The Algorithm to
Calculate beta Functions in 4 Loops”. In: Nucl. Phys. B 192 (1981), pp. 159–204.
doi: 10.1016/0550-3213(81)90199-1.

[125] T. Gehrmann and E. Remiddi. “Differential equations for two-loop four-point
functions”. In: Nucl. Phys. B 580 (2000), pp. 485–518. doi: 10.1016/S0550-
3213(00)00223-6. arXiv: hep-ph/9912329.

[126] Philipp Maierhöfer, Johann Usovitsch, and Peter Uwer. “Kira—A Feynman integral
reduction program”. In: Comput. Phys. Commun. 230 (2018), pp. 99–112. doi:
10.1016/j.cpc.2018.04.012. arXiv: 1705.05610 [hep-ph].

[127] Jonas Klappert, Fabian Lange, Philipp Maierhöfer, and Johann Usovitsch. “Integral
reduction with Kira 2.0 and finite field methods”. In: Comput. Phys. Commun.
266 (2021), p. 108024. doi: 10.1016/j.cpc.2021.108024. arXiv: 2008.06494
[hep-ph].

[128] Fabian Lange, Johann Usovitsch, and Zihao Wu. “Kira 3: integral reduction
with efficient seeding and optimized equation selection”. In: (May 2025). arXiv:
2505.20197 [hep-ph].

[129] R. H. Lewis. Computer Algebra System Fermat. https://home.bway.net/lewis.

194

https://doi.org/10.1016/j.cpc.2010.04.009
https://doi.org/10.1016/j.cpc.2010.04.009
https://arxiv.org/abs/hep-ph/0702279
https://doi.org/10.1016/j.cpc.2012.12.028
https://doi.org/10.1016/j.cpc.2012.12.028
https://arxiv.org/abs/1203.6543
https://arxiv.org/abs/1707.06453
https://doi.org/10.1016/S0370-2693(98)00220-2
https://arxiv.org/abs/hep-ph/9712228
https://arxiv.org/abs/hep-ph/9905298
https://doi.org/10.1142/S0217751X99000038
https://arxiv.org/abs/hep-ph/9802376
https://doi.org/10.1016/0370-2693(81)90288-4
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/S0550-3213(00)00223-6
https://doi.org/10.1016/S0550-3213(00)00223-6
https://arxiv.org/abs/hep-ph/9912329
https://doi.org/10.1016/j.cpc.2018.04.012
https://arxiv.org/abs/1705.05610
https://doi.org/10.1016/j.cpc.2021.108024
https://arxiv.org/abs/2008.06494
https://arxiv.org/abs/2008.06494
https://arxiv.org/abs/2505.20197
https://home.bway.net/lewis


[130] Jonas Klappert and Fabian Lange. “Reconstructing rational functions with FireFly”.
In: Comput. Phys. Commun. 247 (2020), p. 106951. doi: 10.1016/j.cpc.2019.
106951. arXiv: 1904.00009 [cs.SC].

[131] Jonas Klappert, Sven Yannick Klein, and Fabian Lange. “Interpolation of dense
and sparse rational functions and other improvements in FireFly”. In: Comput.
Phys. Commun. 264 (2021), p. 107968. doi: 10.1016/j.cpc.2021.107968.
arXiv: 2004.01463 [cs.MS].

[132] A. V. Smirnov and V. A. Smirnov. “How to choose master integrals”. In: Nucl.
Phys. B 960 (2020), p. 115213. doi: 10.1016/j.nuclphysb.2020.115213.
arXiv: 2002.08042 [hep-ph].

[133] Matteo Fael, Fabian Lange, Kay Schönwald, and Matthias Steinhauser. “A semi-
analytic method to compute Feynman integrals applied to four-loop corrections to
the MS-pole quark mass relation”. In: JHEP 09 (2021), p. 152. doi: 10.1007/
JHEP09(2021)152. arXiv: 2106.05296 [hep-ph].

[134] Matteo Fael, Fabian Lange, Kay Schönwald, and Matthias Steinhauser. “Massive
Vector Form Factors to Three Loops”. In: Phys. Rev. Lett. 128.17 (2022), p. 172003.
doi: 10.1103/PhysRevLett.128.172003. arXiv: 2202.05276 [hep-ph].

[135] Matteo Fael, Fabian Lange, Kay Schönwald, and Matthias Steinhauser. “Singlet
and nonsinglet three-loop massive form factors”. In: Phys. Rev. D 106.3 (2022),
p. 034029. doi: 10.1103/PhysRevD.106.034029. arXiv: 2207.00027 [hep-ph].

[136] Matteo Fael, Fabian Lange, Kay Schönwald, and Matthias Steinhauser. “Massive
three-loop form factors: Anomaly contribution”. In: Phys. Rev. D 107.9 (2023),
p. 094017. doi: 10.1103/PhysRevD.107.094017. arXiv: 2302.00693 [hep-ph].

[137] Xiao Liu and Yan-Qing Ma. “AMFlow: A Mathematica package for Feynman
integrals computation via auxiliary mass flow”. In: Comput. Phys. Commun. 283
(2023), p. 108565. doi: 10.1016/j.cpc.2022.108565. arXiv: 2201.11669
[hep-ph].

[138] Inc. Wolfram Research. Mathematica, Version 14.3. Champaign, IL, 2025. url:
https://www.wolfram.com/mathematica.

[139] Matthias Steinhauser. “MATAD: A Program package for the computation of
MAssive TADpoles”. In: Comput. Phys. Commun. 134 (2001), pp. 335–364. doi:
10.1016/S0010-4655(00)00204-6. arXiv: hep-ph/0009029.

[140] Marvin Gerlach, Ulrich Nierste, Vladyslav Shtabovenko, and Matthias Steinhauser.
“Two-loop QCD penguin contribution to the width difference in Bs–Bs mixing”. In:
JHEP 07 (2021), p. 043. doi: 10.1007/JHEP07(2021)043. arXiv: 2106.05979
[hep-ph].

[141] M. Beneke and Vladimir A. Smirnov. “Asymptotic expansion of Feynman integrals
near threshold”. In: Nucl. Phys. B 522 (1998), pp. 321–344. doi: 10.1016/S0550-
3213(98)00138-2. arXiv: hep-ph/9711391.

195

https://doi.org/10.1016/j.cpc.2019.106951
https://doi.org/10.1016/j.cpc.2019.106951
https://arxiv.org/abs/1904.00009
https://doi.org/10.1016/j.cpc.2021.107968
https://arxiv.org/abs/2004.01463
https://doi.org/10.1016/j.nuclphysb.2020.115213
https://arxiv.org/abs/2002.08042
https://doi.org/10.1007/JHEP09(2021)152
https://doi.org/10.1007/JHEP09(2021)152
https://arxiv.org/abs/2106.05296
https://doi.org/10.1103/PhysRevLett.128.172003
https://arxiv.org/abs/2202.05276
https://doi.org/10.1103/PhysRevD.106.034029
https://arxiv.org/abs/2207.00027
https://doi.org/10.1103/PhysRevD.107.094017
https://arxiv.org/abs/2302.00693
https://doi.org/10.1016/j.cpc.2022.108565
https://arxiv.org/abs/2201.11669
https://arxiv.org/abs/2201.11669
https://www.wolfram.com/mathematica
https://doi.org/10.1016/S0010-4655(00)00204-6
https://arxiv.org/abs/hep-ph/0009029
https://doi.org/10.1007/JHEP07(2021)043
https://arxiv.org/abs/2106.05979
https://arxiv.org/abs/2106.05979
https://doi.org/10.1016/S0550-3213(98)00138-2
https://doi.org/10.1016/S0550-3213(98)00138-2
https://arxiv.org/abs/hep-ph/9711391


Bibliography

[142] Vladimir A. Smirnov. Analytic tools for Feynman integrals. Vol. 250. 2012. doi:
10.1007/978-3-642-34886-0.

[143] V. A. Smirnov. Feynman integral calculus. Berlin, Heidelberg: Springer, 2006.
[144] Tiziano Peraro and Lorenzo Tancredi. “Tensor decomposition for bosonic and

fermionic scattering amplitudes”. In: Phys. Rev. D 103.5 (2021), p. 054042. doi:
10.1103/PhysRevD.103.054042. arXiv: 2012.00820 [hep-ph].

[145] Lorenzo Tancredi. “Tensor decomposition for multiloop, multileg helicity ampli-
tudes”. In: PoS LL2022 (2022), p. 020. doi: 10.22323/1.416.0020.

[146] Oliver Schnetz. “Notes on color reductions and γ traces”. In: (Apr. 2025). arXiv:
2504.05853 [hep-ph].

[147] A. N. Vasiliev, Sergey E. Derkachov, and N. A. Kivel. “A Technique for calculating
the gamma matrix structures of the diagrams of a total four fermion interaction
with infinite number of vertices in d = (2 + ε)-dimensional regularization”. In:
Theor. Math. Phys. 103 (1995), pp. 487–495. doi: 10.1007/BF02274026.

[148] J. Fleischer and M. Yu. Kalmykov. “ON-SHELL2: FORM based package for the
calculation of two loop selfenergy single scale Feynman diagrams occurring in the
standard model”. In: Comput. Phys. Commun. 128 (2000), pp. 531–549. doi:
10.1016/S0010-4655(99)00532-9. arXiv: hep-ph/9907431.

[149] Johannes M. Henn. “Multiloop integrals in dimensional regularization made simple”.
In: Phys. Rev. Lett. 110 (2013), p. 251601. doi: 10.1103/PhysRevLett.110.
251601. arXiv: 1304.1806 [hep-th].

[150] Roman N. Lee. “Reducing differential equations for multiloop master integrals”. In:
JHEP 04 (2015), p. 108. doi: 10.1007/JHEP04(2015)108. arXiv: 1411.0911
[hep-ph].

[151] Christoph Meyer. “Transforming differential equations of multi-loop Feynman
integrals into canonical form”. In: JHEP 04 (2017), p. 006. doi: 10.1007/
JHEP04(2017)006. arXiv: 1611.01087 [hep-ph].

[152] Andrei I. Davydychev and Vladimir A. Smirnov. “Threshold expansion of the sunset
diagram”. In: Nucl. Phys. B 554 (1999), pp. 391–414. doi: 10.1016/S0550-
3213(99)00269-2. arXiv: hep-ph/9903328.

[153] Kirill Melnikov. Private communication. 2023.
[154] Manuel Egner, Matteo Fael, Kay Schönwald, and Matthias Steinhauser. “Revisiting

semileptonic B meson decays at next-to-next-to-leading order”. In: JHEP 09 (2023),
p. 112. doi: 10.1007/JHEP09(2023)112. arXiv: 2308.01346 [hep-ph].

[155] Ulrich Nierste, Pascal Reeck, Vladyslav Shtabovenko, and Matthias Steinhauser.
“Complete next-to-next-to-leading order QCD corrections to the decay matrix in
B-meson mixing at leading power”. In: (Dec. 2025). arXiv: 2512.07949 [hep-ph].

[156] Andrzej J. Buras, Matthias Jamin, M. E. Lautenbacher, and Peter H. Weisz.
“Effective Hamiltonians for ∆S = 1 and ∆B = 1 nonleptonic decays beyond the
leading logarithmic approximation”. In: Nucl. Phys. B 370 (1992). [Addendum:

196

https://doi.org/10.1007/978-3-642-34886-0
https://doi.org/10.1103/PhysRevD.103.054042
https://arxiv.org/abs/2012.00820
https://doi.org/10.22323/1.416.0020
https://arxiv.org/abs/2504.05853
https://doi.org/10.1007/BF02274026
https://doi.org/10.1016/S0010-4655(99)00532-9
https://arxiv.org/abs/hep-ph/9907431
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1103/PhysRevLett.110.251601
https://arxiv.org/abs/1304.1806
https://doi.org/10.1007/JHEP04(2015)108
https://arxiv.org/abs/1411.0911
https://arxiv.org/abs/1411.0911
https://doi.org/10.1007/JHEP04(2017)006
https://doi.org/10.1007/JHEP04(2017)006
https://arxiv.org/abs/1611.01087
https://doi.org/10.1016/S0550-3213(99)00269-2
https://doi.org/10.1016/S0550-3213(99)00269-2
https://arxiv.org/abs/hep-ph/9903328
https://doi.org/10.1007/JHEP09(2023)112
https://arxiv.org/abs/2308.01346
https://arxiv.org/abs/2512.07949


Nucl.Phys.B 375, 501 (1992)], pp. 69–104. doi: 10.1016/0550-3213(92)90345-
C.

[157] Andrzej J. Buras, Matthias Jamin, Markus E. Lautenbacher, and Peter H. Weisz.
“Two loop anomalous dimension matrix for ∆S = 1 weak nonleptonic decays
I: O(α2s )”. In: Nucl. Phys. B 400 (1993), pp. 37–74. doi: 10 . 1016 / 0550 -
3213(93)90397-8. arXiv: hep-ph/9211304.

[158] Paolo Gambino, Martin Gorbahn, and Ulrich Haisch. “Anomalous dimension matrix
for radiative and rare semileptonic B decays up to three loops”. In: Nucl. Phys.
B 673 (2003), pp. 238–262. doi: 10.1016/j.nuclphysb.2003.09.024. arXiv:
hep-ph/0306079.

[159] Marco Ciuchini, E. Franco, V. Lubicz, and F. Mescia. “Next-to-leading order QCD
corrections to spectator effects in lifetimes of beauty hadrons”. In: Nucl. Phys.
B 625 (2002), pp. 211–238. doi: 10.1016/S0550-3213(02)00006-8. arXiv:
hep-ph/0110375.

[160] Marvin Gerlach. “Meson width differences and asymmetries - Calculations of higher
order contributions to neutral B-meson mixing”. PhD thesis. KIT, Karlsruhe, EKP,
2022.

[161] T. Inami and C. S. Lim. “Effects of Superheavy Quarks and Leptons in Low-
Energy Weak Processes KL → µµ̄, K+ → π+νν̄ and K0 ↔ K̄0”. In: Prog.
Theor. Phys. 65 (1981). [Erratum: Prog.Theor.Phys. 65, 1772 (1981)], p. 297.
doi: 10.1143/PTP.65.297.

[162] S. Navas et al. “Review of particle physics”. In: Phys. Rev. D 110.3 (2024),
p. 030001. doi: 10.1103/PhysRevD.110.030001.

[163] K. Chetyrkin et al. “Precise Charm- and Bottom-Quark Masses: Theoretical and
Experimental Uncertainties”. In: Theor. Math. Phys. 170 (2012), pp. 217–228.
doi: 10.1007/s11232-012-0024-7. arXiv: 1010.6157 [hep-ph].

[164] Konstantin G. Chetyrkin et al. “Addendum to “Charm and bottom quark masses:
An update””. In: (Oct. 2017). [Addendum: Phys.Rev.D 96, 116007 (2017)]. doi:
10.1103/PhysRevD.96.116007. arXiv: 1710.04249 [hep-ph].

[165] Christine T. H. Davies et al. “Lattice QCD matrix elements for the B0
s – B̄0

s width
difference beyond leading order”. In: Phys. Rev. Lett. 124.8 (2020), p. 082001.
doi: 10.1103/PhysRevLett.124.082001. arXiv: 1910.00970 [hep-lat].

[166] CKMfitter Group (J. Charles et al.) “Updated results and plots available at:
http://ckmfitter.in2p3.fr”. In: Eur. Phys. J C41 (2005), pp. 1–131. arXiv:
hep-ph/0406184.

[167] Y. Aoki et al. “FLAG Review 2024”. In: (Nov. 2024). arXiv: 2411.04268 [hep-lat].
[168] Marzia Bordone, Bernat Capdevila, and Paolo Gambino. “Three loop calculations

and inclusive Vcb”. In: Phys. Lett. B 822 (2021), p. 136679. doi: 10.1016/j.
physletb.2021.136679. arXiv: 2107.00604 [hep-ph].

197

https://doi.org/10.1016/0550-3213(92)90345-C
https://doi.org/10.1016/0550-3213(92)90345-C
https://doi.org/10.1016/0550-3213(93)90397-8
https://doi.org/10.1016/0550-3213(93)90397-8
https://arxiv.org/abs/hep-ph/9211304
https://doi.org/10.1016/j.nuclphysb.2003.09.024
https://arxiv.org/abs/hep-ph/0306079
https://doi.org/10.1016/S0550-3213(02)00006-8
https://arxiv.org/abs/hep-ph/0110375
https://doi.org/10.1143/PTP.65.297
https://doi.org/10.1103/PhysRevD.110.030001
https://doi.org/10.1007/s11232-012-0024-7
https://arxiv.org/abs/1010.6157
https://doi.org/10.1103/PhysRevD.96.116007
https://arxiv.org/abs/1710.04249
https://doi.org/10.1103/PhysRevLett.124.082001
https://arxiv.org/abs/1910.00970
https://arxiv.org/abs/hep-ph/0406184
https://arxiv.org/abs/2411.04268
https://doi.org/10.1016/j.physletb.2021.136679
https://doi.org/10.1016/j.physletb.2021.136679
https://arxiv.org/abs/2107.00604


Bibliography

[169] Jon A. Bailey et al. “B→D`ν form factors at nonzero recoil and |Vcb| from 2+1-
flavor lattice QCD”. In: Phys. Rev. D 92.3 (2015), p. 034506. doi: 10.1103/
PhysRevD.92.034506. arXiv: 1503.07237 [hep-lat].

[170] Heechang Na, Chris M. Bouchard, G. Peter Lepage, Chris Monahan, and Junko
Shigemitsu. “B → Dlν form factors at nonzero recoil and extraction of |Vcb|”. In:
Phys. Rev. D 92.5 (2015). [Erratum: Phys.Rev.D 93, 119906 (2016)], p. 054510.
doi: 10.1103/PhysRevD.93.119906. arXiv: 1505.03925 [hep-lat].

[171] A. Bazavov et al. “Semileptonic form factors for B → D∗`ν at nonzero recoil
from 2+ 1-flavor lattice QCD: Fermilab Lattice and MILC Collaborations”. In: Eur.
Phys. J. C 82.12 (2022). [Erratum: Eur.Phys.J.C 83, 21 (2023)], p. 1141. doi:
10.1140/epjc/s10052-022-10984-9. arXiv: 2105.14019 [hep-lat].

[172] Y. Aoki et al. “B → D∗`ν` semileptonic form factors from lattice QCD with
Möbius domain-wall quarks”. In: Phys. Rev. D 109.7 (2024), p. 074503. doi:
10.1103/PhysRevD.109.074503. arXiv: 2306.05657 [hep-lat].

[173] Bernard Aubert et al. “Measurement of |Vcb| and the Form-Factor Slope in
B̄ → D`–ν̄` Decays in Events Tagged by a Fully Reconstructed B Meson”. In: Phys.
Rev. Lett. 104 (2010), p. 011802. doi: 10.1103/PhysRevLett.104.011802.
arXiv: 0904.4063 [hep-ex].

[174] R. Glattauer et al. “Measurement of the decay B → D`ν` in fully reconstructed
events and determination of the Cabibbo-Kobayashi-Maskawa matrix element |Vcb|”.
In: Phys. Rev. D 93.3 (2016), p. 032006. doi: 10.1103/PhysRevD.93.032006.
arXiv: 1510.03657 [hep-ex].

[175] E. Waheed et al. “Measurement of the CKM matrix element |Vcb| from B0 →
D∗–`+ν` at Belle”. In: Phys. Rev. D 100.5 (2019). [Erratum: Phys.Rev.D 103,
079901 (2021)], p. 052007. doi: 10.1103/PhysRevD.100.052007. arXiv: 1809.
03290 [hep-ex].

[176] M. T. Prim et al. “Measurement of differential distributions of B → D∗`ν̄`
and implications on |Vcb|”. In: Phys. Rev. D 108.1 (2023), p. 012002. doi:
10.1103/PhysRevD.108.012002. arXiv: 2301.07529 [hep-ex].

[177] I. Adachi et al. “Determination of |Vcb| using B̄0 → D∗+`–ν̄` decays with Belle II”.
In: Phys. Rev. D 108.9 (2023), p. 092013. doi: 10.1103/PhysRevD.108.092013.
arXiv: 2310.01170 [hep-ex].

[178] Florian Bernlochner et al. “First extraction of inclusive Vcb from q2 moments”. In:
JHEP 10 (2022), p. 068. doi: 10.1007/JHEP10(2022)068. arXiv: 2205.10274
[hep-ph].

[179] Alexander Lenz and Gilberto Tetlalmatzi-Xolocotzi. “Model-independent bounds
on new physics effects in non-leptonic tree-level decays of B-mesons”. In: JHEP 07
(2020), p. 177. doi: 10.1007/JHEP07(2020)177. arXiv: 1912.07621 [hep-ph].

[180] Lincoln Wolfenstein. “Parametrization of the Kobayashi-Maskawa Matrix”. In: Phys.
Rev. Lett. 51 (1983), p. 1945. doi: 10.1103/PhysRevLett.51.1945.

198

https://doi.org/10.1103/PhysRevD.92.034506
https://doi.org/10.1103/PhysRevD.92.034506
https://arxiv.org/abs/1503.07237
https://doi.org/10.1103/PhysRevD.93.119906
https://arxiv.org/abs/1505.03925
https://doi.org/10.1140/epjc/s10052-022-10984-9
https://arxiv.org/abs/2105.14019
https://doi.org/10.1103/PhysRevD.109.074503
https://arxiv.org/abs/2306.05657
https://doi.org/10.1103/PhysRevLett.104.011802
https://arxiv.org/abs/0904.4063
https://doi.org/10.1103/PhysRevD.93.032006
https://arxiv.org/abs/1510.03657
https://doi.org/10.1103/PhysRevD.100.052007
https://arxiv.org/abs/1809.03290
https://arxiv.org/abs/1809.03290
https://doi.org/10.1103/PhysRevD.108.012002
https://arxiv.org/abs/2301.07529
https://doi.org/10.1103/PhysRevD.108.092013
https://arxiv.org/abs/2310.01170
https://doi.org/10.1007/JHEP10(2022)068
https://arxiv.org/abs/2205.10274
https://arxiv.org/abs/2205.10274
https://doi.org/10.1007/JHEP07(2020)177
https://arxiv.org/abs/1912.07621
https://doi.org/10.1103/PhysRevLett.51.1945


[181] Andrzej J. Buras, Markus E. Lautenbacher, and Gaby Ostermaier. “Waiting for the
top quark mass, K+ → π+νν̄, B0

s – B̄0
s mixing and CP asymmetries in B decays”.

In: Phys. Rev. D 50 (1994), pp. 3433–3446. doi: 10.1103/PhysRevD.50.3433.
arXiv: hep-ph/9403384.

[182] Sandrine Laplace, Zoltan Ligeti, Yosef Nir, and Gilad Perez. “Implications of the
CP asymmetry in semileptonic B decay”. In: Phys. Rev. D 65 (2002), p. 094040.
doi: 10.1103/PhysRevD.65.094040. arXiv: hep-ph/0202010.

[183] M. Lang, U. Nierste, and P. Reeck. (In preparation).
[184] Carlos Miró, Miguel Escudero, and Miguel Nebot. “How large could the CP

violation in neutral B-meson mixing be? Implications for baryogenesis and upcoming
searches”. In: Phys. Rev. D 110.11 (2024), p. 115033. doi: 10.1103/PhysRevD.
110.115033. arXiv: 2410.13936 [hep-ph].

[185] Chung Kao, David Atwood, and Amarjit Soni. “Parity violation in bottom quark pair
production at polarized hadron colliders”. In: Phys. Lett. B 395 (1997), pp. 327–
333. doi: 10.1016/S0370-2693(97)00082-8. arXiv: hep-ph/9608383.

[186] H. Simma. “Equations of motion for effective Lagrangians and penguins in rare B
decays”. In: Z. Phys. C 61 (1994), pp. 67–82. doi: 10.1007/BF01641888. arXiv:
hep-ph/9307274.

[187] Andrzej J. Buras, Mikolaj Misiak, and Jorg Urban. “Two loop QCD anomalous
dimensions of flavor changing four quark operators within and beyond the standard
model”. In: Nucl. Phys. B 586 (2000), pp. 397–426. doi: 10.1016/S0550-
3213(00)00437-5. arXiv: hep-ph/0005183.

[188] Frederick J. Gilman and Mark B. Wise. “Effective Hamiltonian for ∆S = 1 Weak
Nonleptonic Decays in the Six Quark Model”. In: Phys. Rev. D 20 (1979), p. 2392.
doi: 10.1103/PhysRevD.20.2392.

[189] Stefan Herrlich and Ulrich Nierste. “The Complete |∆S| = 2 Hamiltonian in the
next-to-leading order”. In: Nucl. Phys. B 476 (1996), pp. 27–88. doi: 10.1016/
0550-3213(96)00324-0. arXiv: hep-ph/9604330.

[190] Yong-Yeon Keum and Ulrich Nierste. “Probing penguin coefficients with the
lifetime ratio τ(Bs)/τ(Bd )”. In: Phys. Rev. D 57 (1998), pp. 4282–4289. doi:
10.1103/PhysRevD.57.4282. arXiv: hep-ph/9710512.

[191] Georges Aad et al. “Search for new phenomena in events with an energetic jet and
missing transverse momentum in pp collisions at √s =13 TeV with the ATLAS
detector”. In: Phys. Rev. D 103.11 (2021), p. 112006. doi: 10.1103/PhysRevD.
103.112006. arXiv: 2102.10874 [hep-ex].

[192] F. Moretti, U. Nierste, P. Reeck, and M. Steinhauser. (In preparation).
[193] Massimo Di Pierro, Christopher T Sachrajda, and Christopher Michael. “An Ex-

ploratory lattice study of spectator effects in inclusive decays of the Λb baryon”.
In: Phys. Lett. B 468 (1999). [Erratum: Phys.Lett.B 525, 360–360 (2002)], p. 143.
doi: 10.1016/S0370-2693(99)01166-1. arXiv: hep-lat/9906031.

199

https://doi.org/10.1103/PhysRevD.50.3433
https://arxiv.org/abs/hep-ph/9403384
https://doi.org/10.1103/PhysRevD.65.094040
https://arxiv.org/abs/hep-ph/0202010
https://doi.org/10.1103/PhysRevD.110.115033
https://doi.org/10.1103/PhysRevD.110.115033
https://arxiv.org/abs/2410.13936
https://doi.org/10.1016/S0370-2693(97)00082-8
https://arxiv.org/abs/hep-ph/9608383
https://doi.org/10.1007/BF01641888
https://arxiv.org/abs/hep-ph/9307274
https://doi.org/10.1016/S0550-3213(00)00437-5
https://doi.org/10.1016/S0550-3213(00)00437-5
https://arxiv.org/abs/hep-ph/0005183
https://doi.org/10.1103/PhysRevD.20.2392
https://doi.org/10.1016/0550-3213(96)00324-0
https://doi.org/10.1016/0550-3213(96)00324-0
https://arxiv.org/abs/hep-ph/9604330
https://doi.org/10.1103/PhysRevD.57.4282
https://arxiv.org/abs/hep-ph/9710512
https://doi.org/10.1103/PhysRevD.103.112006
https://doi.org/10.1103/PhysRevD.103.112006
https://arxiv.org/abs/2102.10874
https://doi.org/10.1016/S0370-2693(99)01166-1
https://arxiv.org/abs/hep-lat/9906031


Bibliography

[194] E. C. Poggio, Helen R. Quinn, and Steven Weinberg. “Smearing the Quark Model”.
In: Phys. Rev. D 13 (1976), p. 1958. doi: 10.1103/PhysRevD.13.1958.

[195] Mikhail A. Shifman. “Quark hadron duality”. In: 8th International Symposium on
Heavy Flavor Physics. Vol. 3. Singapore: World Scientific, July 2000, pp. 1447–1494.
doi: 10.1142/9789812810458_0032. arXiv: hep-ph/0009131.

[196] Ikaros I. Y. Bigi and Nikolai Uraltsev. “A Vademecum on quark hadron du-
ality”. In: Int. J. Mod. Phys. A 16 (2001), pp. 5201–5248. doi: 10 . 1142 /
S0217751X01005535. arXiv: hep-ph/0106346.

200

https://doi.org/10.1103/PhysRevD.13.1958
https://doi.org/10.1142/9789812810458_0032
https://arxiv.org/abs/hep-ph/0009131
https://doi.org/10.1142/S0217751X01005535
https://doi.org/10.1142/S0217751X01005535
https://arxiv.org/abs/hep-ph/0106346


Acknowledgments

Completing a PhD thesis is a challenging endeavour, but I was lucky to have the support
of many people along the way. First of all, I would like to thank my supervisor, Matthias
Steinhauser, for putting his trust in me, presenting me with interesting physics problems,
and always being there to answer all of my questions. I particularly enjoyed the close
collaboration on the papers underlying the research presented in this thesis. I am also
grateful for Ulrich Nierste who helped shape the direction of the research in relation to
the field theoretic aspects and phenomenological applications.

I would like to thank my colleagues with whom I spent many hours discussing physics
problems. When it came to anything related to B meson mixing, I was glad to be able to
ask Vladyslav Shtabovenko for advice, who also patiently produced many cross-checks of
my work. For the work done on the lifetime ratios, I want to thank Francesco Moretti for
the fruitful collaboration, which lead to the completion of the project in record time. Last
but not least I want to express my gratitude to Martin Lang for the collaboration on the
BSM project as well as his invaluable advice when it came to field theories or coding.

One person whom I simply cannot thank enough for all of his support is Manuel Egner. It
has been a lot of fun sharing an office together, and even the toughest days were filled
with laughter in office 11/18. Manuel, you been one of the best friends I have ever had;
thank you for the countless runs, dinners and pub crawls over the last couple of years!

During my time at KIT, I have made extensive use of the computing facilities, pressure
testing them at times. Therefore, I would like to express my gratitude to all the IT admins
over the years, whether it was for advice or for providing first aid to a cluster machine.
Thank you Manuel Egner, Dominik Grau, Martin Lang, Fabian Lange and Jonas Matuszak!

This thesis has seen many iterations, and I am indebted to a number of people who have
proofread parts of it: Manuel Egner, Martin Lang, Francesco Moretti, Ulrich Nierste,
Vladyslav Shtabovenko, Matthias Steinhauser and Eike Stolze. I am incredibly grateful for
all the feedback.

Finally, I want to thank my parents for supporting me throughout this journey not just
during my PhD but ever since I decided to pursue my interest in physics. I would not have
made it this far without you both.

201


	Abstract
	Zusammenfassung
	Introduction and Motivation
	B mesons in the Standard Model
	Particle-antiparticle mixing in B meson systems
	Decays of B mesons
	The need for precision physics
	Current status of B meson mixing
	Current status of B and b lifetime ratios
	Phenomenological importance of the observables

	Reducing the theoretical uncertainty on B meson observables
	Overview of theoretical determinations of B meson mixing
	Extending the B meson mixing calculations of 12
	Overview of theoretical determinations of lifetime ratios
	Increasing the precision of lifetime ratios

	Summary and overall approach

	Operator Product Expansions and Effective Field Theories
	Fundamentals of operator product expansions and effective field theories
	Describing low-energy physics with effective operators
	Renormalisation of the QCD Lagrangian
	Renormalisation of EFTs and evanescent operators
	Renormalisation group equations for Wilson coefficients
	The choice of scheme for 5

	The effective B = 1 Hamiltonian
	The historical basis of the B = 1 Hamiltonian
	Fierz transformations at diagram level
	The CMM basis of the B = 1 Hamiltonian

	Derivation of the Heavy Quark Expansion for the decay matrix
	The B = 2 transition operator
	Physical operators
	Using Fierz symmetry to obtain a basis of evanescent operators
	Definition of evanescent operators
	Renormalisation with the R0 operator

	The B = 0 transition operator
	Matching procedure
	Matching to the B = 2 transition operator
	Matching to the B = 0 transition operator


	Calculation of Amplitudes
	Overview of workflow
	Calculation of individual diagrams
	Evaluation of the full amplitude

	Setup and kinematics
	General considerations for four-point interactions
	Setup of the B mixing amplitudes
	Linear charm mass dependence in B meson mixing
	Setup of the B meson decay amplitudes

	Spinor projector algorithm
	Dirac chains in amplitudes
	Vector spaces over  matrices
	Constructing projectors with inner products
	A different view on pure  matrix chains
	A practical algorithm for generic Dirac chains
	Future improvements to the spinor projector algorithm

	Calculation of scalar integrals
	Differential equations for master integrals
	Solving the differential equations with ``expand and match''


	Phenomenology of bold0mu mumu BBreferenceBBBB Meson Mixing
	Included matching coefficients and comparison with previous calculations
	Input values and renormalisation schemes
	The width difference  from /M
	Bs system
	Bd system

	The flavour-specific CP asymmetry afs
	The double ratio (d/Md)/(s/Ms)
	Constraints on the CKM triangle from B meson observables
	Results independent of hadronic matrix elements and CKM inputs

	BSM Effects in bold0mu mumu BBreferenceBBBB Meson Mixing from the Chromoelectric Operator
	The chromoelectric vertex and its relevance to BSM models
	Effective Hamiltonians with new physics in the chromoelectric operator
	The B = 1 Hamiltonian with new physics contributions
	The B = 2 Hamiltonian with new physics contributions

	Calculating 12 and M12 with new physics
	Constraints on generic new physics models
	Constraints from the Bd system
	Constraints from the Bs system
	Constraints from the lifetime ratio (Bs)/(Bd)
	Exclusion plots for the chromoelectric Wilson coefficients

	Ultraviolet completions with an effective chromoelectric operator
	A generic model with heavy vector-like quarks
	Contributions to the B = 2 Hamiltonian
	Contributions to the B = 1 Hamiltonian
	Phenomenology of a generic model with heavy vector-like quarks


	Phenomenology of bold0mu mumu BBreferenceBBBB Meson Decays
	Calculation strategy
	Power-suppression of the baryonic matrix elements
	Input values and renormalisation scales
	The lifetime ratio (B+)/(Bd)
	The lifetime ratio (b0)/(b-)

	Discussion and Conclusion
	Renormalisation Constants for the bold0mu mumu B = 1B = 1referenceB = 1B = 1B = 1B = 1 Theory
	Renormalisation constants in the historical basis
	Renormalisation constants in the CMM basis

	Renormalisation Constants for the bold0mu mumu B = 0B = 0referenceB = 0B = 0B = 0B = 0 Theory
	Derivation of Fierz Identities
	Basis Elements of the Spinor Vector Spaces
	Individual Uncertainty Sources of bold0mu mumu BBreferenceBBBB Meson Mixing Observables
	Double Ratio Without Explicit SU(3)bold0mu mumu FFreferenceFFFF Breaking
	Bibliography
	Acknowledgments

