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Abstract

This work is about utilizing the unique true-to-scale 3D sampling properties of air-
borne laser scanning as an active remote sensing technology for automated scene
and data understanding by features extracted from the geometric relations among
the data. This is particularly challenging given the medium pulse density of 5-
20 pulses/m?. Despite recent advances in the application of deep learning technology
on unstructured point cloud data, the practical part of this research focuses on
the traditional domain of machine learning using hand-crafted features, as it was
conducted between 2013 and 2018. This is still highly relevant as a baseline for
comparing and evaluating the use of different deep learning strategies. To this end,
we provide a detailed review and comparison regarding the addressed tasks.

We analysed geometric features both on the more universal level of point-wise
semantic labelling and on a more application-specific level of single tree species
classification. For both of these applications, we implemented a new type of geo-
metric features, each inspired by surface point descriptors from object recognition.
In point-wise semantic labelling (performed on two publicly available benchmark
data sets), we found it beneficial to use an adapted version of shape distributions to
describe local neighbourhoods, and to use multi-scale, multi-type neighbourhoods
as the basis for feature extraction. In single tree species classification (based on
3630 individual tree segments attributed to Scots pine (Pinus sylvestris L.), Nor-
way spruce (Picea abies (L.) Karst.), and Birch (Betula pendula Roth. and Betula
pubescens Ehrh.)), we found it beneficial to capture the geometric distribution
of waveform attributes throughout the tree crown by an adapted version of spin
images. This performed well compared to other geometric features and improved
classification results when combined with statistical incidence metrics of waveform
attributes that do not describe their geometric distribution. In both application
cases, our work marked a significant contribution to the field.

In the case of point-wise semantic labelling, we concluded our review of current
literature by noting the importance of context. Contextual classification can be
achieved by structured prediction, such as conditional random fields in the do-
main of traditional machine learning. But context is also modelled by deep learn-
ing strategies such as convolutional neural networks or transformers. In the case of
tree species classification, we could not find evidence in the field for clear advances
on the task given the type of data we used. This is likely due to the limited number
of classes, the limited amount of training data that can be collected, and the excel-
lent integration of expert knowledge via application-specific hand-crafted features.
In this field, modern advances come rather from high-resolution point densities
enabled by refined sensor technology and unmanned-aerial-vehicle recording, from
multi-spectral laser scanning, or from the combination with other data sources. All
of these are more likely to profit from deep learning data analysis. Future research
is likely going to profit from the collaborative collection of very large databases,
as they are currently being initiated for tree species classification.






Zusammenfassung

In dieser Arbeit werden die charakteristischen mafistabsgetreuen 3D-Abtasteigen-
schaften von Airborne-Laserscanning als aktive Fernerkundungstechnologie fiir ein
automatisiertes Szenen- und Datenverstindnis genutzt, indem Merkmale aus dem
geometrischen Zusammenhang der Daten extrahiert werden. Eine besondere Her-
ausforderung ist dabei die mittlere Pulsdichte von 5-20 Pulsen/m? Trotz jiingster
Fortschritte in der Anwendung von Deep-Learning-Technologien auf unstrukturier-
ten Punktwolkendaten konzentriert sich der praktische Teil dieser Arbeit, wie er
zwischen 2013 und 2018 durchgefithrt wurde, auf traditionelles Machine-Learning
unter Verwendung manuell erstellter Merkmale. Dies ist als Grundlage fiir den Ver-
gleich und die Bewertung verschiedener Deep-Learning-Strategien nach wie vor von
grofler Bedeutung. Fiir die bearbeiteten Anwendungsbereiche erfolgt hierzu jeweils
ein detaillierter Uberblick und Vergleich zu aktuellen Studien.

Geometrische Merkmale wurden einerseits im universelleren Kontext der seman-
tischen Einzelpunktklassifikation, andererseits im anwendungsspezifischen Kon-
text der Einzelbaum-basierten Baumartenklassifikation untersucht. Fiir beide An-
wendungsbereiche wurde jeweils ein neuer Merkmalstyp, inspiriert durch Punkt-
deskriptoren aus der Objekterkennung, implementiert. In der semantischen Einzel-
punktklassifikation zweier offentlich zugénglicher Benchmarkdatenséitze konnten
Verbesserungen durch eine angepasste Implementierung von Shape Distributions
zur Beschreibung lokaler Nachbarschaften, sowie durch die Kombination von Nach-
barschaften unterschiedlicher Gréfle und Form als Basis der Merkmalsextraktion
erzielt werden. Zur Baumartenklassifikation (basierend auf 3630 Einzelbaumseg-
menten der Arten Kiefer (Pinus sylvestris L.), Fichte (Picea abies (L.) Karst.)
und Birke (betula pendula Roth. sowie Betula pubescens Ehrh.)) konnten Verbes-
serungen durch die Beschreibung der geometrischen Verteilung von Waveform-
Attributen innerhalb der Baumkrone, basierend auf einer angepassten Implemen-
tierung von Spin Images, erzielt werden. Diese konnten sich im Vergleich zu an-
deren geometrischen Merkmalen behaupten und verbesserten das Klassifikations-
ergebnis in Kombination mit statistischen Verteilungsmerkmalen von Waveform
Attributen ohne die Beriicksichtigung ihrer geometrischen Verteilung. Auf beiden
Anwendungsgebieten stellt diese Arbeit einen signifikanten wissenschaftlichen Bei-
trag dar.

In der Einzelpunktklassifikation stellte sich unter Betrachtung aktueller Litera-
tur die besondere Bedeutung von Kontextinformation heraus. Im Bereich des
traditionellen Machine-Learnings kann diese durch kontextbasierte Klassifikati-
on, wie z.B. durch Conditional Random Fields integriert werden. Dariiber hinaus
wird Kontextinformation aber auch von einigen Deep-Learning-Ansétzen wie z.B.
Convolutional Neural Networks oder Transformerarchitekturen modelliert. In der
Baumartenklassifikation konnten in aktueller Literatur keine Hinweise auf klare
Fortschritte auf Basis des gegebenen Datentyps festgestellt werden. Dies erklért
sich durch die begrenzte Anzahl zu unterscheidender Klassen, durch die begrenzte
Menge praktisch erhebbarer Trainingsdaten und durch die hervorragende Integra-



tion von Expertenwissen in anwendungsspezifischen, manuell erstellten Merkma-
len. Fortschritte in diesem Anwendungsbereich konnen heutzutage durch besonders
hochauflésende Punktdichten, erméglicht durch Weiterentwicklungen in der Sen-
sorik und der Dronen-gestiitzten Aufzeichnung, verzeichnet werden, sowie durch
multispektrale Laserscanning-Aufnahmen oder die Kombination mit anderen Da-
tenquellen. Diese Herangehensweisen erlauben iiberdies einen gewinnbringenderen
Einsatz von Deep-Learning in der Datenverarbeitung. Besonders zukunftsweisend
sind hierbei aktuelle Bemiithungen, z.B. in der Baumartenklassifikation, sehr grofle
Datenbanken in kollaborativer Anstrengung zusammenzutragen.
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Chapter 1
Introduction

Airborne laser scanning (ALS) for landscape survey has unique strengths. Accu-
rate range measurement leads to an isometric, sampled representation of landscape
structures, independent of external lighting conditions. As an active sensor tech-
nology, it even allows for partial penetration of scattered target structures such
as vegetation, so depth and landscape topography can be inferred from the data
along with land cover structures.

1.1 Goals

The goal of this thesis is to design hand-crafted features to utilize the geometric
strength of ALS data. Discriminative features provide a robust basis for super-
vised classification tasks and semantic per-point labelling, which may then foster
automated scene understanding or robust parameter estimation about the scanned
land cover. At the time when the scientific work of this thesis was taken up in 2014,
the application of deep learning methods had not yet reached point cloud analysis
on a broad level. Today, adaptions of deep learning to the unstructured nature
of point clouds (as opposed to the regular grid structure of image data) have be-
come generally available. However, for application scenarios with limited amounts
of practically obtainable training data, the use of potent hand-crafted features is
still compelling, as the use of expert-knowledge circumvents unnecessary parame-
ter estimation. Therefore, the original goals of this work are still relevant and the
results may be used as a strategic template in other applications.

1.2 Challenges

When working with ALS data, it is crucial to understand the strengths and weak-
nesses of this data type, contingent upon its acquisition process (cf. the ‘Funda-
mentals’ in Section 2.1). In order to deduce scientifically sound results, it is also
important to follow a clear task, such as clear research questions (RQs) or a clear
definition of classes, and to understand possible difficulties inherent in this defi-
nition. Furthermore, there has to be a clear reference (ground truth) for a given
class definition, which often involves huge manual annotation or mapping efforts.

1.3 Objectives

Therefore, we follow a two-step layout. After an initial outline of the technical
fundamentals, the first applicational part of this thesis will focus on a basic, per-



point semantic labelling task to enhance the usability of the geometric information,
unique to point cloud data. Meanwhile in the second applicational part, we will
work with a more complex application scenario, where different qualities of ALS
data have to be merged to improve object-wise classification.

In the field of point-wise semantic labelling on ALS point clouds, urban bench-
mark data sets form a remarkably good basis for comparable research. This data
typically offers per-point annotations in accordance to a class definition of urban
scene objects like Roof or Building, Vegetated Ground, Sealed Ground, Car, or
Fence/Hedge, and depending on the level of annotation detail, maybe Fa¢ade or
Powerline.

We therefore formulate the following RQs for this part of our thesis:

e RQ1: How can geometric properties be used for point-wise semantic labelling
within ALS point clouds? Can we design a novel geometric feature type,
which enables advances compared to existing approaches?

e RQ2: What is the influence of different neighbourhood types and scales on
the descriptiveness of geometric features with respect to different classes?

For our later part on object-wise scene understanding, the in-depth analysis of
vegetation offers particular challenges due to its structural variability and partial
permeability. Seeking for a clear ground truth, the tree species classification of
individual tree segments offers a suitable application case.

Therefore we pose the following RQs for this part our thesis:

e RQ3: Is it possible to design a feature type which can be used to improve tree
species classification of individual tree segments by capturing the geometric
distribution of waveform properties (generated by below-footprint-scale
structures) within tree crowns?

e RQ4: Given the baseline accuracies in tree species classification by detailed
waveform analysis (Hovi et al., 2016), can the accuracy be improved even
further by considering the localization of the waveform attributes within the
tree crown? If so, how big is the gain?

e RQ5: How are the failure cases distributed among tree sizes? Trends are in-
dicative of practical relevance.



Chapter 2

Fundamentals

This chapter aims to summarize the conceptual foundations and fundamental prop-
erties of the technologies applied throughout this thesis. The main components
here are the data type used, which is specified as airborne laser scanning (ALS)
data, and the classification strategies applied for semantic labelling. It is crucial
to understand both the characteristics and limitations of these concepts to deduce
scientifically founded conclusions. Finally, well-recognised evaluation metrics are
introduced here, which enable a differentiated assessment of supervised classifica-
tion results.

2.1 Airborne Laser Scanning Data

Light detection and ranging (LiDAR) is an active remote sensing technology, de-
signed to measure ranges between a sensor unit and backscatter targets. This is
done by emission of a laser pulse or beam and measurement of the time of flight
until the reflection from the target is picked up by the LiDAR receiver. Thus the
distance to the target can be inferred. There are pulsed or (frequency modulated)
continuous wave LiDAR systems, which measure the sensor-target-distance either
by time-of-flight or phase shift measurements. Continuous wave systems may also
measure target velocities by analysing frequency shifts due to the Doppler effect.’
Use-cases of LiDAR include static upward-facing setups for atmospheric measure-
ment of aerosols and clouds, or scanning applications like terrestrial laser scan-
ning (TLS), mobile laser scanning (MLS), airborne laser scanning (ALS), or satel-
lite laser scanning, usually employed either for mapping tasks or for autonomous
driving and navigation purposes.

In this thesis, we will focus on ALS data only. Application scenarios that utilize
the strength of this data type are landscape survey tasks where accurate height
information is relevant, such as urban land cover classification (Yan et al., 2015)
or ecology-oriented surveying, e.g. for estimation of biomass (Zachary and Wynne,
2005) or carbon storage (Stephens et al., 2007) or for biodiversity monitoring (Fuhr
et al., 2022), as well as forest inventories (Latifi et al., 2015) or risk assessment
tasks, e.g. input maps for hydrological models in flood management (Vetter et al.,
2011).

1 A taxonomic overview of active remote sensing technologies, organized along the categories
of setup, measurement, illumination, modulation, detection, field-of-view, and range, is found in
Jutzi (2015).



2.1.1 System Characteristics

In traditional aircraft-mounted scanning applications, there are differences among
LiDAR platforms in scanning patterns, such as conic, oscillating or line-wise scan-
ning patterns, all of which depend on the mirror geometry and frequency, the laser
pulse rate and the speed of movement of the sensor. The sweeping pattern and
sampling rate are therefore crucial components in the representation of the target
in the data. There are also differences in the laser wavelength(s) used in different
LiDAR platforms. As the reflective properties of target surfaces differ depending
on the laser wavelength, different applications use one or several lasers of differ-
ent wavelength (Morsy et al., 2017). Conventional pulsed LiDAR systems — either
discrete return or waveform recording systems — differ in the recording and digi-
talization of the reflected pulse (cf. Section 2.1.5). Single photon counting systems
(Mandelburger and Lehner, 2019; Hong et al., 2024) are currently being developed,
which perform a simultaneous measurement of many partial beams, dramatically
increasing return density and spatial resolution. Different systems may also have
different emitted pulse lengths, pulse energies and beam divergences (which then,
in combination with the flying height?, lead to a difference in so-called footprint
size, meaning the size of the area illuminated in the target plane). Some systems
even offer different pulse-repetition rates, which lead to different values for the
emitted energy per pulse. Traditional aircraft-mounted systems offer point densi-
ties of up to 20 pulses per m?. Recently, with advanced sensor technology, so-called
very high density ALS (ALS-HD) data has been recorded from low-flying platforms
such as drones or helicopters, with return densities ranging from 500 up to 10000
returns per m? (Kellner et al., 2019; Hyyppé et al., 2022).

Those system-specific properties should be kept in mind when working with the
produced data, as all of these properties influence the target’s representation in
the data as well as the applicability of further methods.

2.1.2 Geo-localization of ALS Returns

In ALS and TLS applications, the sensor is usually equipped with a position and
orientation system (inertial measuring unit (IMU) and geolocation system (global
navigation satellite system (GNSS))), which, given a prior calibration of the setup,
allows a coordinate transformation of the registered returns into a georeferenced
point cloud with elements ng

0
XG = XO + ];{yaw7 pitch, roll PG + I{yaw7 pitch, roll * RAw,AqS,An ' Ra,ﬁ . 0 ) (21)
—p

where XG is a returns coordinates in the ground coordinate system, )?0 is the
vector between the ground coordinate system and the IMU coordinate system, ]3(;
is the offset between the LiDAR and IMU coordinate systems and p is the range
measured by the LIDAR. Ryaw, pitch, roll is @ rotation matrix describing the rota-
tional angles of the IMU relative to the ground coordinate system, R A, a¢ A the
boresight rotational angles between the IMU and LiDAR coordinate systems (de-
termined during calibration) and R, g the rotation matrix describing the mirror
scan angles of the laser scanner (Habib et al., 2010). All of these variables, both
those measured during operation, as well as those specified during calibration,
come with errors, which, by error propagation, influence the positioning accuracy
of the measured returns in dependence on acquisition parameters such as sys-

2 Height is typically referred to as the vertical distance between the point of observation and the
Earth’s surface, whereas altitude refers to the vertical distance between the point of observation
and the mean sea level.
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tem parameters, flying height and scan angle (May and Toth, 2007). There are
methods to reduce the bias introduced by errors in the calibration parameters
through post-calibration methods applied after data acquisition. Those so-called
strip adjustment methods use surface elements featured in areas of strip overlay
to identify discrepancies in the repeated acquisition of the same target, and then
estimate (and correct) the system bias by that (Habib et al., 2010). Further ran-
dom errors have been simulated to be in an order of magnitude of 0.1 — 0.4m in
the horizontal and 0.1 — 0.2m in the vertical direction, given a flying height of
1.2 — 2.0km and a scanning angle of 20° (Habib et al., 2009).

2.1.3 Range Normalization

When aiming to interpret the backscattered intensity in a quantitative way, inten-
sity normalization of the received signal is important, but is faced with practical
difficulties.

The received power P,.. depends on the sensor-target-range p, in a way that can
be described by a modified radar equation:

Dr27" . Atarget
g pt

Prec = Ptrans * NsysTatm * (22)

where P;rans is the transmitted power, D, the receiver aperture size, r the target
reflectivity, 5 the beam divergence, {2 the bidirectional scattering properties and
Agarger the illuminated area of the target (Wagner et al., 2006). nsys and 7aem
can be included to denote system and atmospheric attenuation effects (Hofle and
Pfeifer, 2007). D,, 8, and usually 7sys and 7am, can be assumed to be constant
during one acquisition. Pjrans, due to the sensor’s electronics, may be subject to
some random, target-independent variability (Gatziolis, 2011). The largest influ-
ence, apart from the target’s properties, is considered to be the sensor-target-range

p-

Equation 2.2 is sometimes re-written to combine all target parameters, including
the illuminated area, in a so-called backscatter cross-section o (Wagner et al.,
2006):

2
Dr 47TAtarget’r'

Prcc = Ptrans ‘ nsysnatm : 47Tp4ﬂ2 ‘ ,Q (23)
D?
= Ptrans . nsysnatm . W + 0. (24)

This way, it is clear that the backscatter cross-section

g = % AN Atarget (25)
combines different backscattering characteristics of the target, namely its illumi-
nated size Agarget, reflectivity r and the directionality of scattering §2. As for planar
target surfaces of Lambertian reflectance, {2 can be approximated by the cosine of
the angle of incidence «. It has been suggested to use surfaces of in-the-lab mea-
sured reflectivity and bidirectional scattering properties for calibration in the field
(Kaasalainen et al., 2007). In the case of less well-defined targets, e.g. for targets
that overlap or do not fill all of the footprint, the interpretation of the recorded
power is difficult due to the mixture of unknown factors.

The footprint area of the beam however also depends on the sensor-target-range.
It is approximately
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o= (p 1 (2)) o)

and for small angle approximation (tané ~ 0)

LA

Alaser = 4

(2.7)
This means, that the recorded power’s range dependence (cf. Equation 2.2) varies,
depending on the targets illuminated surface area Agarger: the recorded power
is proportional to p~2 for homogeneous targets that cover all of the footprint
(perpendicular to the beam incidence, Atarget = Alaser X p°),

Ptrans (2 8)

ljrec7 planar target X P2 ,

proportional to p= for linear targets (Atarget ¢ p) like cables

Ptrans
Plrec7 linear target X p3 , (29)

or proportional to p=* for point-like targets (Atarget X p)

Pr 11
Plrec7 point target X tpz = (2.10)

In cases of range variation within one data set, in particular for sloping terrain or
different flying heights, but also for slant ranging and overlapping strips, it is of
practical interest to normalize the recorded intensities® range dependence. This is
usually written out as

Irangc norm. — < L ) Jraw ; (211)
Pref

where ppor is either a manually defined reference range or a reference range set
by a certain moment, usually the mean, of all range recordings. a is the range
normalization exponent. As shown in Equations 2.8 to 2.10, a also depends on the
target geometry; it ranges in theory from 2 for planar targets, over 3 for linear
targets and 4 for point-like targets.

2.1.4 Recewver Effects

However, apart from the constant factor nsys, the effects of the receiver and readout
circuits have to be considered. Those vary for different manufacturers and sensors.
While most receivers aim to produce a signal output directly proportional to the
incoming optical power (linear dependence), technical limitations may result in
non-linearities, especially at the high or low end. Those could lead to apparent
deviations from a = 2 even for planar surface targets, depending on the sensor’s
emitted power and pulse repetition settings, as well as the flying height. Other
(especially full waveform (FW)) systems use an (optional) automatic/active gain
control (AGC) circuit to enhance the recording of low-reflectance targets. This
changes the recorded intensity values, so that AGC effects, quantified by an AGC
value for each recording, have to be corrected for when aiming for a quantitative

3 The difference between laser power P and intensity I is that the laser power refers to the total
optical energy over time [J/s], while an optical intensity is the power within a certain transverse
area within the non-uniform beam profile [J/sm?]. The non-uniform irradiance profile of laser
beams, however, is typically not considered in the mathematical representation.
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analysis (Vain et al., 2010; Korpela et al., 2010a). Correction models typically
follow a shape similar to

Irangc & gain norm. = I — (ppf> +b Law - (C - AGC) ) (212)
re

where the values of b and ¢ are determined empirically if AGC is employed (Kor-
pela et al., 2010a).

A number of studies on flat targets could achieve accurate radiometric calibration
assuming the theoretical value of a = 2 (Ahokas et al., 2006; Kaasalainen et al.,
2009). Korpela (2008) used naturally occurring homogeneous targets such as gravel
road, asphalt surfaces, a football field and a barley field as calibration surfaces to
determine the correction model parameters, and found values of a = 2.4 for an
ALS50 and a = 2.5 for an ALTM3100 sensor. Reitberger et al. (2009) suggested
using overlapping LiDAR acquisitions of different flying height to estimate a (in a
sensor without AGC). Their results yielded values slightly smaller than two (1.9
and 1.7 for two different data sets acquired by Riegl LMS-Q560 sensor), which
they suggested could be explained by non-linearities in the sensor. Korpela et al.
(2010a) studied intensity variation among the reflections attributed to crowns of
different tree species (and thereby structural target properties) and found that the
optimum a values minimizing the variation were higher for conifers than hardwood
species, and lower for single returns compared to first or other returns. Gatziolis
(2011) aimed to determine optimal a values by minimalizing the difference among
normalized intensity in pairs of data, where the same target area was sampled by
different flight strips. In grass fields, their computed optimum a value was very
close to 2, while in complex vegetation, the optimum a values were 2.04 for single
returns, 2.34 for first-of-two returns and much higher (> 2.6) for the first-of-three-
or-four returns. Those findings show well how complex target structures (and thus
the probability for later returns) influence the accuracy of range normalization and
intensity values.

Range-dependent intensity normalization is therefore a difficult task due to differ-
ent contributing factors. It is ambiguous if the target geometry is unclear or if the
target only covers an unknown fraction of the footprint, but it may also be mixed
with non-linearity effects of the sensor.

2.1.5 Waveform Analysis

Roughly speaking, for the case of well-defined target surfaces large enough to
fill the LiDAR footprint, the normalized signal’s characteristics correspond to the
sensor-target-range p (elapsed time-of-flight), the reflective properties of the target
surface (recorded amplitude Prec, max), and the elevation variation along the di-
rection of laser incidence (recorded pulse width or shape) (Jutzi and Gross, 2009b).

The temporal shape of the received signal is typically referred to as a (recorded)
waveform. In simple cases like a perpendicular target surface filling the whole laser
footprint, the recorded waveform is simply an attenuated replica of the emitted
waveform (Wagner et al., 2006), delayed by a factor of 2¢/v,, where v, corresponds
to the group velocity of the travelling laser pulse 4:

4 Due to the Heisenberg uncertainty principle, the spectral bandwidth of a laser pulse has to
increase to allow for a short pulse in the time domain. Therefore, the different wavelengths of
the laser pulse travel at different phase velocities in a dispersive medium. The group velocity is
the speed by which the envelope of a wave, consisting of a superposition of different frequencies,
propagates through space.
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Fig. 2.1: Schematic representation of influences on the recorded waveform. * de-
notes the convolution operator, and - the multiplication operator. Physically, the
emitted waveform is first convoluted with the target response function and then
with the receiver response function, but since the convolution operation is commu-
tative, it is more practical to combine emitted waveform and receiver response into
one measurable unit, called the system waveform (SWF). The list of influences is
non-exhaustive. Graphical illustration in analogy to Hovi (2015).

2p 77sys77a1;mD1p2
PreC (t) = Ptrans (t - ’Ug) . W c o, (213)

analogously to Equation 2.4.

Temporal distortion of the waveform occurs whenever there is an along-beam vari-
ation of the target, which involves cases with tilted surfaces or non-nadir incidence
angles, as well as cases with distributed scatterers such as vegetation or sudden
edges within the footprint. A general model is to characterize the sensor by a
so-called system waveform (SWF), which is a convolution of the emitted wave-
form and the receiver response function, as shown in Figure 2.1. This is then,
in a slightly simplified mathematical representation, convoluted with a differen-
tial target backscatter cross-section o; (p) per range interval dp to describe the
target-pulse interaction (Wagner et al., 2006):

_ 77Sys77atmDr2 ) pitdr ( 2p

Prec, i (t) = 4n 32 —  Prrans | £ — > o5 (p)dp (2.14)

pi—Ap Vg

When the spatial extent 2Ap of the distributed cluster of scattering elements is
very small compared to the sensor-target-range p, that is when Ap << p, the
dependency on 1/p* can be approximated as constant during the integration. This
is practically always the case for manned aircraft ALS, as the flying height is much
larger than both the target size and the resolvable distance between distinct target
surfaces (Wagner et al., 2006). Equation 2.14 can therefore be approximated by

2
Pree. 1 () = ’725:;7;‘;3 - Prrans (8) # 0 (2) | (2.15)
where x is the convolution operator and o} (t) = o; (p) is the apparent cross-section.
Care has to be taken here because the early scatterers along the beam direction
may shade potential scatterers later in the signal, so that the second and later
pulses along one ray are only generated by those fractions of the target that have
not been shaded by previous scatterers. Hence the apparent cross-section is not
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necessarily a representation of target matter along the beam direction.

Between distinct, non-overlapping target surfaces (acting like Dirac delta functions
as target response functions), the range resolution depends on the SWF. Since the
refractive index n of air is usually close to 1, the group velocity of the laser pulse
is close to the speed of light (¢ ~ 3 - 108m/s). Due to the fact that the signal has
to travel from sensor to target and back, a time-resolution At corresponds to a
distance Ap along the ray of approximately

c- At

Ap = 2.1
=5 (2.16)

e.g. 1ns in the signal corresponds roughly to 15cm in distance. The minimum
distance, in which two SWFs may be resolved, depends on the SWF’s pulse width,
the rise time and the receiver time resolution. At best, peaks with a minimum
distance of half the waveform pulse width may be resolved, but in other cases (e.g.
for closely spaced targets with different reflected intensity) the required distance
may be larger. Typical SWF pulse widths range from 1 ns for high-resolution ALS
systems to 10ns systems.

Typical LiDAR sensors used in ALS come with either discrete return (DR) or
FW recording hardware and data flow. DR sensors can typically record only a
few returns per emitted pulse (usually about four to five), sometimes with vertical
spacings of several meters due to sensor recovery downtime. However, they usu-
ally provide an extremely high horizontal pulse density, which makes them ideal
for two-dimensional mapping tasks where vertical profiling is less significant. FW
systems, on the other hand, aim to record the full reflection profile with sampling
rates of about 1ns, which has been thought to give a more accurate representa-
tion of multi-layered targets such as vegetation. However, this data type requires a
more complex, typically custom-made data handling, interpretation and analysis
than DR data, which can be delivered in a point cloud format (Ussyshkin and
Theriault, 2011).

Concerning the interpretation of the recorded waveform, the main approaches are
either to fit a superposition of Gaussian distributions to the shape of the waveform
or to split the waveform into return sequences and then to describe the shape of
these return sequences by a number of geometric shape descriptors. In the Gaussian
decomposition approach, the assumption is that the SWF is usually well described
by a Gaussian distribution, and that the apparent cross-section o; can be repre-
sented by a series of Gaussian functions (Wagner et al., 2006; Li, 2008). As the
convolution of one Gaussian with mean p; and variance 7 with another Gaus-
sian of mean py and variance 7o results in another Gaussian with mean p; + o
and variance 71 + 79, a fit of Gaussian components to the received waveform and
knowledge of the SWF allows one to deduce the parameters of a target response
function that is represented by the sum of distinct scatterers, each scatterer influ-
encing the amplitude and temporal stretching of their signal component. This way,
a waveform analysis may result in a larger number of detected returns than a com-
parable DR result. If, however, the apparent backscatter cross section (and hence
the target response function) is more than a sum of a finite number of individual
scatterers, this approach may reach its limits. This may especially be the case for
distributed targets such as vegetation. It has then proven practical to divide the
waveform into noise-exceeding amplitude sequence (NEAS), each treated as one
return. Those could then be described by a series of geometric attributes, such as
peak amplitude A (and the corresponding location), energy E (integral over the
waveform shape), full-width-at-half-maximum FWHM, length L and 50% energy
quantile FQ50 (Hovi et al., 2016). Another concept to overcome the weaknesses of
Gaussian decomposition in vegetation analysis has been to use skew normal distri-
butions for waveform decomposition in order to allow for the modelling of skewed
echoes (Bruggisser et al., 2017). As the same attributes used for the characteri-
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zation of waveform sequences can be used to describe the characteristics of DR
sequences, these representations allow for some comparability among the recoding
types. In the remainder of this work, the term return may therefore either refer to
a DR return, a decomposition component, or a NEAS, depending on the context
of the data used.

Based on individual returns from clear targets, Jutzi and Gross (2009b) developed
a method to estimate surface angles within the data and correct the measured
intensity of the individual returns by this knowledge. The results showed a much
more homogeneous representation of intensity values based on the reflectivity of
the target materials in scenes with planar surfaces, such as roof and ground. With
complex-structured targets such as vegetation, the scan angle has been found to
induce errors in the prediction of vegetation-specific attributes due to the different
sampling direction of the vegetation structure (Ahokas et al., 2005; Morsdorf et al.,
2008; Liu et al., 2018; Dayal et al., 2022), especially for large scan angles above
15 — 20°.

The overlap-problem, meaning that target components which are shaded by ear-
lier target components along one ray can not be recorded, has given rise to the
practical distinction between different return types for individual returns. Returns
may either be characterized as ’only returns’ (whenever there is only one return
from one pulse, we can assume that the reflective target covers all of the footprint),
first of many returns’ (in first returns, the reflected power is not compromised
by shading, but the fact that there are further returns recorded from the same
pulse indicates that the first target component covers only a fraction of unknown
proportion of the footprint) or ’other returns’ (in later returns from one pulse,
both the fraction of the footprint and shading effects influence the waveform in
unresolvable ways) (Holmgren and Persson, 2004; Orka et al., 2009; Hovi et al.,
2016).

2.1.6 Summary of Data Characteristics

In summary, data collected by ALS has unique strengths in terms of absolute
height information. However, system- and acquisition-specific parameters such as
sampling pattern and pulse density, flying height and footprint size, pulse length,
scanning angle, sensor downtime and data acquisition mode, together with atmo-
spheric conditions, all influence the target’s representation in the data, and should
therefore be considered when inferring conclusions from such data. Importantly,
it is not possible to perform an accurate normalization of the intensity’s rage de-
pendence for targets of unknown geometrical structure. Furthermore, occlusion
effects prohibit an unambiguous representation of target mass distribution and
pose additional non-resolvable ambiguities in intensity normalization, when nei-
ther the fraction of the footprint covered nor the reflectivity of the target material
are known.

However, when aiming for a quantitative signal analysis, the following calibration
and normalization techniques should be applied as well as possible: intensity-range-
normalization, AGC correction, atmospheric attenuation, and, depending on the
processing possibilities, pulse energy or SWF calibration (especially in systems
with varying pulse-repetition frequencies) as well as incidence angle corrections
(if the scene geometry is suitable). Strip-adjustment strategies furthermore reduce
geometric inaccuracies.
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2.2 Supervised Classification and Semantic Labelling

As for the strategies used to interpret scenes sampled by ALS, the concepts of su-
pervised classification and semantic labelling are essential. Both are specific tasks
within the field of machine learning. A supervised classification task is defined as
the assignment of instances like data points or objects to pre-defined categories
(classes)®. Semantic labelling, more specifically, refers to the assignment of basic
data elements such as image pixels to an object class by using classification algo-
rithms and basic per-element features. The semantic labels assigned to the basic
data elements therefore form a 'map’ which can later aid more complex scene un-
derstanding by modelling relationships between the data elements and classes.

In any supervised classification scenario, the data collected has to fulfil certain
requirements for successful training of a model as well as for reliable, independent
evaluation. Scientific inferences can only be as sound as both the quality and
quantity of the data allow. The data used in the classification therefore has to be
annotated by manual labelling to provide the so-called ground truth. Care has to
be taken, whether this data forms a representative set, or whether it is biased by
representing only a certain sub-set. Furthermore, the data has to be divided into
independent training and testing data fractions, so that models, developed on the
training data, may be tested on independent testing data. Depending both on the
complexity of the applied classification model and the complexity of the given class
definition, the amount of training data required to train a reliable model varies.

2.3 Traditional Machine Learning Methods for Classification

Supervised classification approaches follow different strategies, such as generative
or discriminative approaches. In the following, we will briefly describe the very
most popular algorithms, that are either readily implemented in common software
or can be found in publicly available code sources.

2.3.1 Generative Classifiers

Generative models describe patterns or distributions among their training data
in a way which would allow creating new data of similar characteristics. Among
them are probabilistic models, which aim to describe the distribution of the train-
ing data via joint probability density functions in a d-dimensional feature space (d
being the number of features).

Both linear discriminant analysis (LDA) and quadratic discriminant analysis
(QDA) are examples of probabilistic classifiers. They aim to model the under-
lying probability distributions of the training data and to infer class-wise labelling
probabilities for every novel feature vector. [In LDA], a multivariate Gaussian
distribution is fitted to the [] training data, i.e. the parameters of a Gaussian
distribution are estimated for each class by parameter fitting. Thereby, the same
covariance matrix is assumed for each class and only the means may vary. [In
QDA,] not only the means but also the covariance matrices may vary for different
classes.

5 Whereas unsupervised classification is more closely related to clustering. The aim in clustering
is to group a set of unlabelled data into clusters based on similarities or patterns in the data,
and hence to discover the inherent structure of the data without prior knowledge of the classes.
Clusters may not require a semantic meaning, whereas unsupervised classification aims to find
interpretable categories.
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2.3.2 Discriminative Classifiers

Discriminative models do not assume a joint probability distribution but instead
use conditional probabilities. They model the decision boundaries between classes
rather than the underlying data distribution, making them less constrained by
assumptions about the data’s representation or distribution in feature space. This
makes them especially well-suited for tasks with a complex distribution of classes
or a high number of features.

k-nearest neighbour (k-NN) classification is a well-known example of instance-
based classifiers. Given a certain distance metric, a class label is assigned to a
testing instance by a majority vote among the k most similar training instances in
the feature space. In general, higher values of k reduce the noise on the classifica-
tion result, whereas too large values of k tend to make the class distinctions less
clear. While the simplest and most popular version, known as nearest neighbour
classification, sets k = 1, there are also many adaptions and specialised versions
among this type. Typically, such classifiers depend heavily on the choice of dis-
tance metric and are sensitive to noisy or irrelevant features.

Support vector machines (SVMs) follow a max-margin learning approach. Initially
designed as binary classifiers, they aim to separate two classes by a linear decision
boundary so as to maximize the margin between them. Using the so-called Ker-
nel Trick, they can map data that is not linearly separable into higher-dimensional
feature spaces where linear separation becomes possible. Multinomial classification
may be achieved by either One-against-One or One-against-All adaptions, both of
which combine the results of multiple binary SVMs.

The random forest (RF) classifier is particularly successful by applying the prin-
ciple of ensemble learning. It strategically combine[s] a set of weak [decision tree]
learners to form a single strong learner. [... TJhe combination [ ] is realized in a
rather intuitive way via bagging (Breiman, 1996), which focuses on training a weak
learner of the same type for different subsets of the training data which are ran-
domly drawn with replacement. Accordingly, the weak learners are all randomly
different from each other and, hence, taking the majority vote across the hypothe-
ses of all weak learners results in a generalized and robust hypothesis of a single
strong learner (Breiman, 2001). It incorporates dual randomness in both the train-
ing samples and the selection of features used in constructing each decision tree,
which makes it deal well with a large number of features and renders it particularly
robust against overfitting.

Classic deep learning, such as multi-layer perceptrons, is also part of discriminative
learning. However, because modern deep learning does not follow the traditional
feature-based framework, we will describe this in more detail in Section 2.4).

2.3.3 Structured Prediction

Structured prediction refers to a subset of supervised machine learning techniques
that aim to predict structured outputs rather than single, independent prediction
values. This means that context — such as similarities among neighbouring points
in spatial data — is integrated into the classification procedure. By incorporating
contextual information, structured prediction methods typically produce less noisy
results compared to non-contextual supervised classification.

A common way to model relationships among data elements in structured pre-
diction is through Bayesian networks or random fields. Conditional random fields
(CRFs) (Lafferty et al., 2001; Niemeyer et al., 2011a; Weinmann et al., 2015), for
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example, start with an initial labelling hypothesis, often generated by a SVM or
RF classifier in the form of class probabilities. They then infer an association po-
tential from it and propose an improved labelling by enforcing spatial regularity
among neighbouring points based on the inferred association potential. However,
contextual information may also be considered in other classification approaches,
such as deep learning, where it may be embedded through the use of convolutional
or recurrent networks.

2.4 Deep Learning

With the availability of very large, annotated data sets and the rapid evolution
of powerful GPUs, deep learning has become a powerful and prominent subfield
of machine learning. Deep neural networks with many layers are constructed and
trained to model complex patterns. Training on massive data sets enables non-
manual ’features’ or data patterns to be learned automatically from the input
data. Lately, different frameworks have become more attainable for non-expert
and individual researchers with limited computational resources.

During the active research period of this thesis, deep learning research focused
mainly on segmentation and classification tasks in 2D image data. Recently how-
ever, deep learning methods have more frequently been adapted to 3D data (Toan-
nidou et al., 2017), and adaptions for end-to-end application on point cloud data,
like PointNet, PointNet++ and other extensions have become available (Qi et al.,
2017b,a; Wang et al., 2018; Jiang et al., 2018; Winiwarter et al., 2019; Mao et al.,
2022).

However, deep learning is fundamentally different from the traditional feature-
based classification procedure. This section therefore aims to give a very rough
overview of the working and training principles of neural networks (Nielsen, 2015),
in order to be able to draw a comparison among the results of our work by tradi-
tional supervised classification methods and recent deep learning enabled advances
in the field.

2.4.1 Neural Networks

The basic building block of computational neural networks is a so-called artificial
neuron or perceptron (McCulloch and Pitts, 1943), a mathematical model designed
to produce a binary decision output from input data x;, based on a set of weights
w; and a bias b.
output = {0 %f Zjzjw; 2 b (2.17)
1 if ijjwj <b

A neuron may be visualized as shown in Figure 2.2.

Neural networks are then built as an architecture of several layers of neurons,
where the neurons of one layer take the output of the previous layer neurons as an
input. Such networks may be designed as various network architectures and even
include loops. A very basic example of network architecture is shown in Figure 2.3.

Depending on the respective weights and biases, such networks can make highly
complex decisions. As long as the decisions of each perceptron remain binary how-
ever, the change of one value can cause sudden and unforeseen changes in the
output. To enable networks to learn by optimising their weights and biases based
on training examples, an activation function has to be introduced. The output of
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Fig. 2.2: Visualization of the mathematical concept of an artificial neuron.
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Fig. 2.3: A multi-layer perceptron, serving as an example of a relatively simple
neuronal network architecture.

a non-binary neuron is therefore no longer binary, but the original step function
is replaced by a smoothed version. A typical choice for example is the sigmoid
neuron, which follows a sigmoid activation function:

1

output =
P 1+exp (—Xzjw; —b)

(2.18)

Therefore, the neuron’s output is identical to the binary case in the far ranges of
the input value, but in the transition area, an incremental change in the weight or
bias produces an incremental change in the output. This then enables a tuning of
the weight and bias parameters towards global optimization.

The training of neural networks does not necessarily involve features calculated
manually from the data. A neural network rather forms a complex, yet direct con-
nection between the input and output layer. The input layer may either contain raw
data, or, especially in cases where application specific knowledge can be utilized,
consist of hand-crafted features. Additionally, intermediate layers or the output of
a neural network may also be used as features for subsequent classification tasks,
which is commonly referred to as transfer learning.
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2.4.2 Learning the Weights and Biases

During the training phase, the weights and biases of a chosen network architecture
can be learned by minimising a cost function such as the quadratic cost function,
also referred to as the mean squared error,

1 2
C(w,b) = %lea(x) =yl (2.19)
or the cross-entropy cost function

C (w,b) = —% S [yn(a (@) + (1 - 9) In (1 — a(@))]. (2.20)

x

A cost function quantifies the difference between the training output a (z) based
on the input values  and the true output y defined in the training data. It is, by
definition, non-negative, and close to 0 when a () is close to y for the given values
of w and b. The minimum search can therefore be performed as a gradient descent
search, where a value of 7, called the learning rate, has to be set to specify the
step width of the decent. In order to speed up the process, the gradient search is
also not exhaustively performed on all training samples at once, but stochastically.
The weight and bias values are updated incrementally by performing the gradient
search on randomly sampled subsets of the training data, called batches. During
each epoch, which describes a full cycle through the training data by an itera-
tion of batches, incremental changes to the weight and bias values of the network
are calculated by the means of backpropagation (Rumelhart et al., 1986). When
training a neural network, the number of epochs and their batch size of training
examples have to be specified. Those values, as well as the learning rate n, are
referred to as hyperparameters, and have to be optimised in order to get good
training results.

2.4.3 Towards Deep Neural Networks

Over time, network architecture has become more specialised and increasing com-
putational power has enabled deeper (many-layered) networks. At the same time,
it remained crucial to work against overfitting, since larger models offer many
parameters. Several regularization techniques can be employed during training to
favour more generalized models. Popular options include adding regularization
terms to the cost function (Hanson and Pratt, 1988), early training stop by moni-
toring of the validation error (Morgan and Bourlard, 1990), dropout strategies for
introducing more randomness during training (Srivastava et al., 2014) and batch
normalization (Ioffe and Szegedy, 2015).

Convolutional neural networks (CNNs) (LeCun et al., 1998; Fukushima, 1980)
marked an important development. They use alternating blocks of convolutional
and pooling layers. A convolutional layer applies filters over local receptive fields,
meaning that only a small, locally connected region of the input is linked to a
neuron in the following layer. This enables spatial feature extraction. Successive
convolutional and pooling layers form a hierarchy, which allows the network to
learn features at increasingly contextual scales, such as simple edges and textures
at lower levels and more complex patters or object categories at higher layers. The
weights of a filter stay identical regardless of where the filter is applied within
one convolutional layer. This weight-sharing mechanism reduces the number of
free parameters compared to fully connected layers and contributes to the net-
work’s tolerance to small translations of features or objects. Large translations or
rotations may however not be recognized by this architecture without additional
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mechanisms. Pooling layers further reduce the dimensionality by condensing the
output of a region of neurons into one output, such as the maximum value or
the average value, for example. While this reduction in spacial resolution improves
computational efficiency, some spatial information may be lost in the process. Rec-
tified linear unit (ReLU) activation functions improve the efficient propagation of
the gradient and therefore enhance training efficiency. CNNs have proven highly
effective in image analysis, particularly when trained on large amounts of data with
significant computational resources. As the lower levels of a CNN learn universal
"features’ applicable to a general task (such as image analysis), transfer learning
allows the use of pre-trained nets and re-train only a couple of layers in the end
to adapt them to a different specific task, which will then require less data and
computational power than training the original net. Moreover, pre-trained CNNs
can also be used to extract the output of a late layer and use this as features for
traditional machine learning.

However, many-layered deep CNNs often face the vanishing gradient problem,
meaning that the partial derivative for optimizing the loss function over many lay-
ers gets so small, that early layers can not be updated by training. Skip connections
address this issue by allowing the output of one layer to be directly passed to non-
adjacent layers. This bypass creates alternate paths for gradient flow, mitigating
the vanishing gradient problem, and enabling effective training of deep networks.
Visually, their effect can be viewed as smoothing the funnel-shaped gradient land-
scape (Li et al., 2018). Short skip connections, as implemented in ResNet (He et al.,
2016) for example, work by adding up the gradients and learning a residual function
rather than a direct mapping. This enables the training of hundreds or thousands
of layers, leading to improved accuracy in image recognition. In encoder-decoder
architectures (also called auto-encoders), long skip connections concatenate the
output of encoder layers with decoder layers of matching dimension. This makes
small-scale features with local context accessible at a global scale, and thus helps
reduce artefacts at object boundaries in tasks like semantic segmentation. In nat-
ural language processing, skip connections are used in transformer architectures,
which facilitate modelling of long-range dependencies by maintaining connections
between distant positions in a sequence.

2.4.4 3D Deep Learning

The challenge in deep learning on 3D data is the unstructured nature of point
cloud data, which is typical for LIDAR or radar scanning, as opposed to the reg-
ular grid structure of 2D images. Starting in 2015, attempts have been made to
apply deep learning to 3D data by voxel regularization of the data (Maturana
and Scherer, 2015), or by multi-view projections onto 2D images followed by 2D
semantic segmentation via a CNN and backprojection of the results onto the 3D
point cloud (Su et al., 2015). Both types of adaptions faced some drawbacks, like
quantization artefacts and an increase in data volume due to sparse voxels, or
occlusions and difficulties with complex scenes in the multi-view approach. Both
these approaches are therefore limited due to computational complexity and a pos-
sible loss in structural resolution. A more detailed review of published approaches
in these directions may be found in the work of Xie et al. (2020).

In search of directly applying deep learning on 3D point cloud data, Qi et al.
(2017b) proposed a pioneering network architecture named PointNet, which di-
rectly accepts point clouds as input and provides either a class label for the com-
plete point cloud or class labels on a per-point basis as output. The key features of
this architecture are that it guarantees permutation invariance among the points,
as well as invariance to global rotation or translation. PointNet does not include
a convolution operator. PointNet++ (Qi et al., 2017a) then added a hierarchical
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framework architecture, enabling it to learn local features on increasing contextual
scales. Moreover, set learning layers were included to combine features from mul-
tiple scales, thus making PointNet+-+ robust with regard to varying point density
in the data.

Numerous adaptions have been made since to overcome the limitations of Point-
Net/PointNet++, such as, e.g. the lack of local features based on the distribution
of neighbouring points (pointwise pyramid pooling (Ye et al., 2018), annular convo-
lution (Komarichev et al., 2019), PointSIFT (Jiang et al., 2018) or adaptive feature
adjustment (Zhao et al., 2019)) or to provide an alternative way of handling un-
structured point cloud data in deep learning. A detailed overview of strategies may
again be found in the works of Xie et al. (2020) or Guo et al. (2021).

2.4.5 Characteristics of Deep Learning

Summarizing the advances sketched above, it can be seen how the use of re-
cent neural networks differs from the traditional approach of using hand-crafted,
knowledge-based features combined with classifiers that model an underlying dis-
tribution (cf. Section 2.3.1), search for similarity among the features or apply dis-
criminative learning (cf. Section 2.3.2). In deep learning, instead, the ’art’ is about
designing the architecture of a network in a meaningful way. Once a network is
set up, the solution is left to an automated optimization process. Neural networks
may be set up to generate features and solve specific classification tasks, but the
successive steps of traditional machine learning, such as segmentation, feature de-
velopment and classification, are not necessarily separated in deep learning. This
makes it more difficult to interpret the learning process and also makes it more
difficult to assess confidence-levels for the produced output. Also, the automated
learning process may require huge amounts of training data to optimize a model
with many parameters, rendering it inapplicable to some fields, where these large
amounts of data cannot be provided. The challenge of possible overfitting is there-
fore universal to deep learning, so care has to be taken to include strategies that
favour more generalized models. Additional workarounds include using pre-trained
nets as well as regularization strategies and data augmentation (like rotation, mir-
roring or coordinate jittering) to synthetically extend the diversity of the training
data. Wherever these limitations can be circumvented or accepted, deep learning
typically delivers highly accurate results, proves efficient at handling large data
sets and skips the difficult task of hand-crafted, application-specific feature design
and selection.

2.5 Evaluation

Typically, classification results are evaluated by slightly different yet overlapping
evaluation metrics. Depending on the field of research, different names may refer
to the same metric (e.g. precision — user’s accuracy — correctness), while other
metrics (e.g. Fy-score and quality) describe a similar concept but are calculated
differently. As a general reference for evaluation of our experiments, we give an
overview of the metrics employed throughout this thesis.

2.5.1 Class-Wise FEvaluation Metrics

In machine learning, the measures of precision, recall and Fj-score are widely
established. They are defined, in a binary case, as
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precision = TP FP’ (2.21)
TP
recall = m, (222)

where classification results are pooled as true positives (TP), false positives (FP),
true negatives (TN) and false negatives (FN).

For a confusion matrix C = [c;;], where ), ¢;; is the actual number of entities in
class j and Y jCij 1s the number of entities predicted as belonging to class ¢, the
calculation is as follows:

n=> cj (2.23)
j
Ng = Z Ciis (2.24)
ne = % . Zcij : Zcij7 (2.25)
i j

Cii

precision,; = ) (2.26)
i Cij
Cii

>

recall; = (2.27)

In the context of remote sensing, precision is sometimes also referred to as user’s
accuracy and recall as producer’s accuracy. Precision describes what proportion of
positive identifications was correct, while recall describes what proportion of ac-
tual positives was identified correctly, which is also known as the true positive rate.

The Fi-score is the harmonic mean of precision and recall, and thus a combined
measure for the predictive performance in one class:

__ 2 precision - recall;

Fi;

)

2.28
precision ; + recall; ( )

or, in the binary case,

2TP

F = .
Y7 2TP +FN + FP

(2.29)

Furthermore, the evaluation metrics of completeness, correctness and quality have
been described by Rutzinger et al. (2009). Completeness is the same values oth-
erwise described as recall, while correctness is the same as precision. Quality is a
combined measure calculated as:

. 1
quahtyi B 1/comp ; + 1/Corr ;-1 (230)
or equivalently, in the binary case, as
TP
lity = —————— . 2.31
A = TP T FEN 4+ FP (2:31)

Quality is hence conceptually similar, yet not identical, to the Fj-score.
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2.5.2 Overall Evaluation Metrics

Among metrics describing the performance of a classification result over all classes,
an intuitive way is to calculate the mean class recall (MCR), which describes how
well, on average, instances have been found belonging to the correct class. This
does not account for how reliable instances have been found.

C
1
MCR = - > recall;. (2.32)

i=1

Analogously, the mean class precision (MCP) is a measure of how accurate the
class assignment is on average.

C
1
MCP = — - Z precision ;. (2.33)
i=1

Ql

Furthermore, overall accuracy (OA) can be calculated as the number of correctly
labelled instances n, (as in Equation 2.24) divided by the total number of in-
stances.

OA = 2o | (2.34)
n
In the binary case, this is
TP + TN
A = . 2.
O TP + TN + FP + FN (2:35)

The Cohen’s k coefficient (k) however, is a more balanced measure of overall class
separation, which excludes the rate of correct labelling by chance. It is defined as
Mg — MNe

K= , (2.36)

n— N

where n is the number of instances, n, the number of instances labelled correctly
(as in Equation 2.24) and n. the number of instances labelled correctly by chance
(as in Equation 2.25).
In the binary case, this is equivalent to

2(TP-TN —FN-FP)

"~ (TP + FP)- (FP + TN) + (TP + FN) - (FN + TN) ° (2.37)

Note, that while most measures range from 1 to 0, k ranges from 1 (perfect agree-
ment) over 0 (no agreement beyond chance) to -1 (agreement less than chance).
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Chapter 3
Point-Wise Semantic Labelling

3.1 Introduction

Automated scene interpretation is a topic of broad scientific and applicational in-
terest. It describes the process by which computer systems are trained to interpret
and analyse scenes, based on various types of input data. Those include images, im-
age sequences, or depth sensor data, which can be recorded by various techniques
such as light detection and ranging (LiDAR) systems, stereo cameras, or RGB-D
cameras using infrared illumination with structured light, stereo cameras, or time-
of-flight technology. Similarly, airborne LiDAR is being used for efficient large-scale
land cover analysis, with applications ranging from urban planning, infrastructure
and risk management over topographic mapping and land cover classification for
flood management, agricultural or forestry planning, environmental monitoring of
carbon stocks, coastal processes or glacial retreat up to cultural heritage map-
ping and archaeology, where structures hidden beneath vegetation or soil can be
detected from the airborne LiDAR perspective.

3.1.1 Goals

Most scene interpretation applications rely on semantic labelling. Often, this is
implemented as an initial step, where point-wise semantic labelling of the recorded
point clouds is achieved via point cloud classification. Semantic labels are assigned
to each point of the point cloud, based on a set of per-point features calculated for
every instance and a set of training instances for every class (Chehata et al., 2009;
Shapovalov et al., 2010; Mallet et al., 2011; Niemeyer et al., 2014; Hackel et al.,
2016; Weinmann, 2016; Grilli et al., 2017).

3.1.2 Challenges

To foster scientific exchange on automated scene interpretation in airborne laser
scanning (ALS) data and to compare different approaches in the field, a number
of benchmark data sets have been released. Those data sets typically provide 3D
coordinates of ALS returns as well as a semantic label reference. In urban scenes,
the classes typically comprise roofs, fagades, trees or high vegetation, low vegeta-
tion, sealed surfaces and cars, and sometimes more differentiated classes such as
shrubs, fences, and power lines.

Correctly classifying such data is especially challenging, as the structural resolu-
tion in ALS data is limited both in footprint diameter and sampling rate compared
to point clouds from terrestrial laser scanning (TLS). Moreover, the class defini-
tion may not always be clear from a non-contextual, geometric point of view. For
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example, shrubs, fences or hedges can look geometrically similar to each other, and
the semantic difference may not be apparent from the geometric representation.
Other classes, such as the common class of roofs, may combine instances of very
different geometric appearance, such as pitched roofs and terraced roofs.

3.1.3 Objectives

Our objective is to contribute to the scientific knowledge gain in the field of point-
wise semantic labelling of ALS point clouds, based on geometric properties, as
stated in research question (RQ)1 of this thesis:

RQ1: How can geometric properties be used for point-wise semantic labelling
within ALS point clouds? Can we design a novel geometric feature type, which
enables advances compared to existing approaches?

In this chapter, we explicitly aim not to rely on prior knowledge of the class
properties. Therefore we follow a generalized framework suited to the task, which
breaks down the process into three successive steps:

e neighbourhood definition,
e geometric feature extraction, and
e classification.

Related literature is analysed for each of these steps in Section 3.2. In analysing
related literature, we noticed that most existing geometric features focus on de-
scribing locally homogeneous neighbourhoods. Those features, however, are highly
sensitive to the extent of the neighbourhood considered. Since a complex definition
of classes may contain descriptive structures on scales other than those optimal for
these geometric features, we propose a novel robust feature type drawn by sam-
pling geometric measures from the returns within the considered neighbourhood.
We aim to explore if this feature type is more suited to characterise complex class
structures that extend beyond homogeneous local neighbourhoods.

In the methodology section (Section 3.3), we hence describe our implementations
of each of the steps listed above in detail, while the materials section (Section
3.4) summarizes the characteristics of the data sets which form the basis of our
experiments.

We performed a number of different experiments, using both well established ge-
ometric features types, as well as our novel sampled feature type, to address RQ2
of this thesis:

RQ2: What is the influence of different neighbourhood types and scales on the
descriptiveness of geometric features with respect to different classes?

Those experiments use some of the material (Section 3.4) and methods (Section
3.3) each.

The results (Section 3.5) are therefore structured along different aspects of our
RQs. Section 3.5.1 explores the performance of our novel sampled feature type
in comparison to existing geometric features and analyses respective strengths or
weaknesses. Section 3.5.2 combines both novel and established features and eval-
uates, if there are special requirements on the type of classifier used with those
features. Section 3.5.3 then combines and compares different feature types, neigh-
bourhood types and scales. This section is subdivided into two parts with different
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neighbourhood and feature combinations. A detailed analysis explores the benefit
on the overall result of combining our novel feature type with well established
features, the influence of neighbourhood type and scale, as well as multi-scale,
multi-neighbourhood-type combinations. Moreover our method’s performance is
evaluated on different data sets. In a following step, the differences in performance
are linked to the differences among the data. For some results, there is also a direct
comparison to other literature published on the same data.

For enhanced clarity, every experimental subsection of the results starts out with
a block overview of the neighbourhoods, features, and classifiers used in this ex-
periment. They all start with a first explanation of the experiment, followed by
separate paragraphs describing the results and the discussion of these individual
results.

The major discussion of all experimental results follows in Section 3.6, along with
a comparison to results achieved with deep learning after the publication of our
work. A final conclusion is drawn in Section 3.7.

3.2 Related Work

The following section comprises a summary of related work on point-wise semantic
labelling of ALS point clouds. Some approaches originate from point-wise seman-
tic labelling of TLS or mobile laser scanning (MLS) point clouds too. In general,
those approaches are interchangeable, but due to the different viewing geometries
and spatial resolution of the data types, the results may vary or require additional
adaptions. In TLS or MLS data, for example, the spatial resolution and sampling
density change noticeably for objects at different distances from the sensor. In ALS
data, parts of the data are sampled from a nadir perspective, while other parts
are sampled from off-nadir scan angles, ranging up to ~40°, which largely affects
the target representation (Liu et al., 2018). Depending on the scanning pattern,
scanning angle, and flight path overlap, this results in areas of different target
representation throughout one data set. The different viewing geometries lead to
different typical occlusion cases. Vertical structures, such as fagades, for example,
are much better represented in TLS/MLS data or off-nadir viewing directions in
ALS data due to the sidewards viewing geometry. Those differences matter when
transferring point-wise semantic labelling approaches from one type of data to an-
other.

In accordance with the three steps of the general framework of this task, we struc-
ture this summary along the topics of neighbourhood definition (Section 3.2.1),
geometric feature extraction (Section 3.2.2) and classification (Section 3.2.3).

3.2.1 Neighbourhood Definition

For point-wise semantic labelling based on geometric features, each return' has to
be characterized by features describing the spatial distribution of returns within a
certain neighbourhood around this return. Both size and shape of this neighbour-
hood are critical parameters and can be defined in different ways.

1 As explained in Section 2.1.5, there are different ways of processing ALS data into a point
cloud representation. The term return may therefore either refer to a single return in discrete
return (DR) data or, in the case of waveform-recording sensors, to a decomposition component
of the signal (using either Gaussian or non-symmetric basis functions), or to a noise-exceeding
amplitude sequence (NEAS) of the signal, depending on the context of the data used.
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3.2.1.1 Neighbourhood Types

Many investigations focus on the representation of local point cloud characteristics
at a single scale. For such a single-scale representation, a cylindrical neighbourhood
N, (Filin and Pfeifer, 2005) or a spherical neighbourhood N (Lee and Schenk,
2002; Linsen and Prautzsch, 2001) is commonly used. Thereby, the scale parameter
to describe such a neighbourhood is represented by [] a radius (Filin and Pfeifer,
2005; Lee and Schenk, 2002)[. Sometimes neighbourhoods N}, are also defined by]
the number k of nearest neighbours (Linsen and Prautzsch, 2001)], resulting in a
spherical neighbourhood with a radius dependent on the local point density]. The
value of the scale parameter [(radius or k)] is typically selected heuristically based
on knowledge about the scene and data.

3.2.1.2 Multiple Scales

In contrast to a representation of local point cloud characteristics at a single scale,
a multi-scale representation allows a description of geometric properties at differ-
ent scales and thereby implicitly accounts for the way in which these properties
change across scales. To describe local point cloud characteristics at multiple scales,
Niemeyer et al. (2014) and Schmidt et al. (2014) used a collection of cylindrical
neighbourhoods with infinite extent in the vertical direction and radii of 1 m, 2m,
3m and 5m, respectively. ]

In contrast to these neighbourhood types, it has also been proposed to use a multi-
scale voxel representation (Hackel et al., 2016) or even different entities in the form
of voxels, blocks, and pillars (Hu et al., 2013), in the form of points, planar segments
and mean shift segments (Xu et al., 2014), or in the form of spatial bins, planar
segments and local neighbourhoods (Gevaert et al., 2016). || Yang et al. (2017)
considered local point cloud characteristics on the basis of points, segments, and
objects as well as local context for analysing point clouds.

3.2.1.3 Optimized Scale

To automatically select a suitable [neighbourhood scale parameter] value in a
data-driven approach, [typically in MLS point cloud data,] it has for instance
been proposed to select the optimal scale parameter for each individual point via
dimensionality-based scale selection (Demantké et al., 2011), where a highly dom-
inant behaviour of one of the dimensionality features (i.e. linearity, planarity, and
sphericity) is favoured. A similar approach has been presented with eigenentropy-
based scale selection (Weinmann et al., 2015), where the minimal disorder of 3D
points is favoured.

3.2.2 Geometric Feature Types

Based on a given neighbourhood definition, each point of the point cloud should be
characterized by features describing the geometric properties of the returns within
its surrounding neighbourhood. Therefore the point cloud is being filtered for all
returns that fall within the local neighbourhood of one seed return. This subset
of returns is then used to calculate geometrics features, such as distributions or
moments, which characterise this neighbourhood. The following types of geometric
features can be found in related literature.
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3.2.2.1 Parametric Features

Vosselman et al. (2004) use an approach of fitting geometric primitives, such as
planes, spheres, or cylinders to the local point cloud data. The estimated param-
eters are then used as features.

3.2.2.2 Metrical Features

Many established features describe the local point cloud geometry by evaluating
one single geometric property within a local neighbourhood. We summarize such
features by the term of metrical features. Often, these features can be understood
intuitively (West et al., 2004; Jutzi and Gross, 2009a; Mallet et al., 2011; Wein-
mann et al., 2015; Guo et al., 2015). A typical group of metrical features are the
so-called covariance features, which are based on the eigenvalues of the covariance
matrix. Those eigenvalues represent the variability of the given distribution in an
orthogonal basis and allow the calculation of features such as linearity (is one
eigenvalue way bigger than the other two?) or planarity (are two eigenvalues way
bigger than the other(s)?) for example. Other geometric 3D properties that yield
metrical features are local point density, verticality, standard deviation of height
values or maximum height difference. An exhaustive overview of metrical features
and their calculation is given in Section 3.3.2 of the methodology description.

3.2.2.3 Sampled Features

Before our publication (Blomley et al., 2014), there was to the best of our knowl-
edge no published literature on the use of sampled features for ALS point cloud
semantic labelling. However, both parametric and metrical features are most dis-
criminative when the distribution of returns within the local neighbourhood they
describe follows some degree of local homogeneity, meaning that all of the returns
come from one planar surface, one linear structure, or even volumetric scattering.
In ALS however, the resolution is usually limited and the number of returns per
area may not be sufficient to resolve class-specific geometric primitives.

Thus probabilistic distributions of geometric properties [] may hold more infor-
mation than locally calculated parameters. Reaching beyond locally homogeneous
neighbourhoods, histogram distributions have already been successfully used in
computer vision sciences (Tombari et al., 2010). In image-based keypoint descrip-
tion, the scale-invariant feature transform (SIFT) algorithm is a prominent exam-
ple [of] robustness and effectiveness achieved by a set of local histograms (Lowe,
2004). In 3D point clouds, existing histogrammetric approaches are limited to sur-
face keypoint description, as they rely on surface normal vectors (Tombari et al.,
2013; Rusu et al., 2009).

[Within our research, we therefore aimed] to introduce novel reliable geometric
features for volumetric point cloud classification, which perform well at multiple
scales. We therefore adopt a proposal from object recognition, using histograms of
randomly sampled geometric measures, called shape distributions (Osada et al.,
2002), as features within [] local neighbourhood]s].

3.2.2.4 Topographical Features
Normalized height above ground is an important feature for each individual return
(Chehata et al., 2009; Mallet et al., 2011). This feature, however, does not require

the consideration of the immediate local neighbourhood in the way that the met-
rical or sampled features types do, but rather relies on a prior step of estimating

31



the scene topography. To do so, a surface created from local minima of the ALS
data has to be filtered in order to remove non-ground objects, such as vegetation
or buildings, from the scene. This step may therefore include other neighbourhood
estimations like rasterization and smoothing operations, as well as ridge detection,
region growing, or morphological operations.

Typical methods of estimating a digital terrain model (DTM) include triangulated
irregular networks, implemented for example in the LAStools package (Isenburg,
2015), weighted linear least squares (Kraus and Pfeifer, 1998), multi-scale cur-
vature calculation (Evans and Hudak, 2007) or progressive morphological filters
(Zhang et al., 2003). Those generally work well on open, vegetated scenes (Silva
et al., 2018). If the scene contains artificial objects such as buildings, it can be chal-
lenging to extract a suitable DTM by rule-based methods. Therefore, object-based
filtering of ground points may be applied (Song and Jung, 2023), which already
requires scene understanding. To extract the normalized height above ground as
a feature for initial scene understanding though, a suitable compromise has to be
sought depending on the level of detail needed and the complexity of the considered
scene.

3.2.3 Classification

[With regard to classification], the straightforward solution consists in select-
ing a standard approach for supervised classification, e.g. a support vector ma-
chine (SVM) classifier (Mallet et al., 2011; Lodha et al., 2006), a random for-
est (RF) classifier (Chehata et al., 2009; Guo et al., 2011; Steinsiek et al., 2017),
an AdaBoost(-like) classifier (Lodha et al., 2007; Guo et al., 2015) or a Bayesian
discriminant analysis classifier (Khoshelham and Oude Elberink, 2012). However,
as these classifiers treat each point of the point cloud individually, they do not
take into account a spatial regularity of the derived labelling, i.e. a visualization
of the classified point cloud might reveal a ‘noisy’ behaviour.

To enforce spatial regularity, local context information can be taken into account.
This means that, instead of treating each point individually by considering only its
corresponding feature vector, the feature vectors and labels of neighbouring points
are taken into account as well. In many cases, such a contextual classification in-
volves a statistical model of context. where particular attention has been paid to
the use of a conditional random field (CRF) (Niemeyer et al., 2014; Schmidt et al.,
2014; Steinsiek et al., 2017; Landrieu et al., 2017a).

In the scope of our work, we focus on standard approaches for supervised clas-
sification, as respective classifiers are [| available in numerous software tools and
rather easy-to-use by non-expert users.

3.3 Methodology

This section describes the methods which were implemented for each step of
our point-wise semantic labelling framework. There are three types of neighbour-
hoods (Section 3.3.1), four types of geometric features (covariance features (Section
3.3.2.1), other 3D geometric properties (Section 3.3.2.2), shape distribution fea-
tures (Section 3.3.3) and normalized height (Section 3.3.4)). Feature values are
normalized in order to ensure improve classification performance, model stability
and ensure a balanced feature contribution (Section 3.3.5) before classification.
Our experiments use the following classifiers: nearest neighbour (NN) classifica-
tion (Section 3.3.6.1), linear discriminant analysis (LDA) classification (Section
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3.3.6.2), quadratic discriminant analysis (QDA) classification (Section 3.3.6.3),
SVM (Section 3.3.6.4), and a RF classifier (Section 3.3.6.5).

3.3.1 Neighbourhoods for Feature Extraction

We argue that cylindrical and spherical neighbourhoods have the benefit that they
rely only on one scale parameter independent of the local point distribution, but
we also advocate that in this case of neighbourhoods with fixed scale parameters,
multiple sizes [] should be considered. In addition to the cylindrical neighbour-
hoods proposed by Niemeyer et al. (2014) and Schmidt et al. (2014), we hence
also use a collection of spherical neighbourhoods as proposed by Brodu and Lague
(2012) in the scope of an investigation focusing on terrestrial laser scanning data.
As we focus on ALS data with a significantly lower point density, we do not con-
sider neighbourhoods with radii in the centimetre scale. Instead, we select the same
radii as used by Niemeyer et al. (2014) and Schmidt et al. (2014) for cylindrical
neighbourhoods. Consequently, we consider a collection of spherical neighbour-
hoods with radii of 1m, 2m, 3m and 5 m, respectively.

In addition to [fixed scale] neighbourhoods, [we] also use a spherical neighbourhood
of locally adaptive size for each [return]. Thereby, the local adaptation is achieved
via eigenentropy-based scale selection (Weinmann et al., 2015), where the optimal
scale parameter is directly related to the minimal disorder of 3D points within a
local neighbourhood.

Fig. 3.1: ][] Neighbourhood definitions used in this work as the basis for extracting
features for a considered 3D point [(return)] X [(red)]: cylindrical neighbourhoods
N, [with different radii and infinite extent in the vertical direction (green)] and
a spherical neighbourhood N, o, formed by an optimal number k,,; of nearest
neighbours [(blue). For the sake of clarity, other spherical neighbourhoods are left
out in this visualization, even though spherical neighbourhoods N of different
fixed radii are sometimes also used.]

The different sets of neighbourhoods considered either individually or as a multi-
scale multi-neighbourhood combination throughout this work are therefore as fol-
lows:

e cylindrical neighbourhoods N, with fixed horizontal radii of 1 m, 2m, 3m and
5m and an infinite extent in the vertical direction,

e spherical neighbourhoods N, with fixed radii of 1m, 2m, 3m and 5m,
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e and one spherical neighbourhood type Nj op¢ formed by an optimal number
kopt of nearest neighbours. This last neighbourhood type has a varying size
for each return in the point cloud, depending both on the local return density
and distribution around this point of interest.

e 2D rasters of coarse grid spacing (20m) and fine grid spacing (0.5 m) are used
as neighbourhoods for the normalized height feature.

3.3.2 Established Features for Comparison

In the scope of this work, we did not use any parametric features as we did not
imply knowledge about the underlying geometric primitives. Instead, we focused
on a more generic description of the geometric distribution of returns within a
given neighbourhood. The features most common in related literature were:

e covariance features, belonging to the group of metrical features and
e other metrical geometric 3D properties, as suggested by Weinmann et al.
(2015).

In order to evaluate the benefit of our novel feature type, those feature types were
implemented for comparison, as explained throughout this section.

3.3.2.1 Covariance Features

Most present approaches using 3D geometric features employ features derived from
the local covariance matrix representing second-order invariant moments within
the [local distribution of returns]. The covariance matrix is calculated from N
observations A, , . as follows:

o, = Sy (A — A - (A - Ay)
1] N )

(3.1)

where i,j € [r,y, 2] and A; holds the mean of all observations in the respective
dimension. Subsequent principal component analysis is used to determine linearly
uncorrelated second-order moments in an orthogonal eigenvector space. The []
eigenvalues A1 2 3 [corresponding to the eigenvectors €7 2 3] then hold a great po-
tential to calculate local features including dimensionality (linearity, planarity, and
sphericity) and other measures such as omnivariance, anisotropy and eigenentropy.
The eigenvalues, sorted as A1 > Ao > A3 > 0 and the measures listed in Equation
3.2, will be referred to as covariance features:

linearity Ly= 2122

planarity Py= 2=

sphericity Sh= 3,
omnivariance Ox= VA1),

anisotropy A= =2 (3.2)

eigenentropy E\=— E?Zl A In(\;),

sum of \s = A1+ A2+ Mg,

A3

change of curvature O\v= 5755

Yet it is especially important for these features to be derived from a suitably chosen
neighbourhood size. It is the nature of second-order moments that the distance of
one element from the mean contributes quadratically (cf. Equation 3.1) and there-
fore elements in the vicinity are far less important than those further away. Since
the principal component analysis is an orthogonal and thereby unitary transfor-
mation, the resulting eigenvalues are sensitive to the original scaling. Demantké
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et al. (2011) and Gressin et al. (2012) show evidence that a suitable spherical
neighbourhood size can be found by minimization of the Shannon entropy, based
on dimensionality-features. Yet it remains to be shown if this optimum neigh-
bourhood size for covariance features corresponds to the characteristic scale of
structure[s characteristic of the given classes]. To advance further research in the
field, other geometrical features more suited to multiple scales are indispensable.

Dittrich et al. (2017) also studied the effect of discretization and noise in point
cloud data on the covariance features in well-defined primitive shape cases (such
as a line, end-of-line, plane, half-plane, etc.). Some covariance features, especially
eigenentropy and the sum of eigenvalues, were found to be subject to significant
relative errors when applied to discretized data. Moreover, when the individual
point measurements were subject to variance (such as noise resulting from the
measurement device, surface properties or scanning geometry), variance propaga-
tion especially affects the features of linearity, planarity and sphericity in a strong
way.

3.3.2.2 Other Geometric 3D Properties
The geometric 3D properties proposed by (Weinmann et al., 2015) are derived from

the spatial arrangement of points within the considered cylindrical or spherical
neighbourhood. The respective features are represented by the

local point density D,

verticality V =é3,, (33)
maximum height difference AH, '
standard deviation of height values oH

[of] those points within the local neighbourhood.

For the spherical neighbourhood [whose scale parameter has been] determined via
eigenentropy-based scale selection [Ny opt], the radius [R] of the local neighbour-
hood is considered as an additional feature.

Similarly to the covariance features described above, these features are sensitive
to outliers.

3.3.3 Shape Distributions

This section describes how we adapted shape distributions (Osada et al., 2002) as
features for semantic ALS point cloud labelling. They constitute a sampled feature
type descriptive of complex local geometries or repeating patterns.

The characteristic scale of complex and partially random structures may not al-
ways be identical to the optimum neighbourhood size of covariance features. Yet to
reveal such patterns, a statistical distribution of randomly sampled values may be
more suitable than single values such as covariance [or other geometric 3D prop-
erty] measures. [] The key idea [by (Osada et al., 2002)] is to use random sampling
of simple geometric measures to obtain a signature of the neighbourhood around
each point [] as a histogrammetric shape distribution. [As in said] reference, we
investigate the following geometric measures|, which are visualized in Figure 3.2]:

e D1: distance between any random point and the centroid of all considered
points,
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e D2: distance between two random points,
e D3: square root of the area of a triangle between any three random points,
e D4: cubic root of the volume of a tetrahedron between any four random points,

e A3: angle between any three random points.

[] The resulting histogram therefore represents the probability distribution of the
taken geometric measures within the [considered neighbourhood] and should re-
veal repeating structures by a more frequent occurrence of some values. By this
approach, feature extraction is reduced to a simple random sampling procedure.
Such features are fast to calculate, mirror- and rotation-invariant, and robust re-
garding outliers, noise and varying point density due to application-specific scan-
ning or flight patterns.

Fig. 3.2: Visualization of the geometric measures taken for the sampling of shape
distributions.

As for the number of random samples taken within each neighbourhood, a com-
promise has to be sought between computational effort and descriptiveness, taking
into account the typical data type and application case considered. We chose to
limit ourselves to 255 pulls of geometric measures within each neighbourhood.
In the Vaihingen data set (Cramer, 2010), where we first tested the shape dis-
tributions, 50 % of all points had 255 neighbours in cylindrical neighbourhoods of
~2.5 m radius, suggesting that this number of pulls would allow for a representative
sample of geometric measures within a neighbourhood. For larger neighbourhoods,
255 samples might represent a random subset, but we consider this to reduce the
danger of over-fitting when reference areas are small with respect to the considered
neighbourhood scale.

Dissenting from the original shape distribution proposal, we use an adaptive his-
togram binning approach to achieve maximum variance of significant observations
from the gross of the total data set. Above all, this step ensures a scale-independent
performance. For this purpose, a simple histogram equalization procedure, known
from image processing applications (Gonzales and Wood, 2002), is adapted. For
all measured values at a linear binning scope my, with £ =0, ..., L — 1 and L the
number of bins, a transformation function 7T'(my) to a non-linear binning scope is
found in such a way that a histogram of any large number of random samples is
equally distributed. The transformation function is defined as

k

T(mi) =3 punlmy). (3.4)

Jj=0

where p,, is defined as the probability of occurrence of a value within m; from a
large number of samples n:
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pm(mk) = %7 (35)

where n;, is the number of occurrences within my.

[However,] the number of bins per shape histogram has to be specified. A large
number of bins will allow for sophisticated neighbourhood descriptions, but [given
the limited point density of ALS data] the signature may then not be descriptive.
Therefore we decided to use 10 bins per shape histogram in [our initial] proposal.
We did not find it necessary to further optimize this later. To determine the his-
togram binning thresholds, 500 random samples were drawn from the training
data for each neighbourhood type. No significant change of the adapted binning
thresholds was observed after this point.

3.3.4 Normalized Height

Normalized height is conceptually simple, and the difficulty in implementation
varies depending on the types of objects in the scene and the accuracy required.
It has shown to be a significant factor in distinguishing between similar structures
at different height above ground, such as impervious surface and building in urban
scenes (Gerke, 2015). This section describes our simple but useful implementation.

The normalized height feature is derived from an approximation of the scene to-
pography and estimated from the point cloud itself, as shown in Figure 3.3. First,
absolute height minima are determined on a large grid with a sampling distance of
20 m. Afterwards, a linear interpolation is performed among those coarsely gridded
minimum values and evaluated on a fine grid of 0.5 m sampling distance. Finally, a
normalized height value is assigned to each 3D point by calculating the difference
of the point’s height value and the topographic height value of the corresponding
grid cell.

3.3.5 Feature Normalization

It is obvious that — by definition — the considered features address different quanti-
ties and may therefore be associated with different units as well as a different range
of values. This, in turn, might have a negative impact on the classification results
as the distribution of single classes in the feature space might be suboptimal. Ac-
cordingly, it is desirable to introduce a normalization which allows the transfer of
the given feature vectors to a new feature space where each feature contributes
approximately the same, independent of its unit and its range of values. For this
purpose, we conduct a normalization of all features.

For the covariance features, the geometric 3D properties and the normalized height,
we use a linear mapping to the interval [0, 1]. To reduce the effect of outliers, the
range of the data is determined by the lst-percentile and the 99th-percentile of
the training data. Only if the absolute minimum is zero, the lower range value is
set to zero too. For shape distributions, normalization is achieved by dividing each
histogram count by the total number of pulls from the local neighbourhood.

37



200 200

3 150 150
{3 100 100
- 50 50
g 0 0

Fig. 3.3: Effects of the scene topography][, colour values indicate the unit of meters
in the legend bar]. The point clouds’ height minima on a 0.5 m grid are shown
on the left, the approximation of the scene topography is plotted in the middle,
and the normalized minima are shown on the right. The top row depicts [area
1& 3] of the Vaihingen data set, while the bottom row shows the test area of
the GML data set A.

3.3.6 Classification

As explained in Section 2.2, classification approaches in machine learning may be
divided into generative or discriminative approaches. Although discriminative ap-
proaches (which focus on the best separation of classes) enable separating more
closely intertwined classes than generative approaches (which focus on a modelling
of underlying probability density functions), it is of interest for feature develop-
ment to see if the devised features enable class separation on a less sophisticated
level. The individual classifiers used in the scope of this work are described in the
following subsections.

3.3.6.1 Nearest Neighbour Classification

This simple NN classification approach (a version of k-nearest neighbour (k-NN)
with k = 1) compares the feature vectors of the test set to those of the training set.
Each feature vector in the test set is directly compared to the feature vectors in the
training set, and the class label of the most similar training example is assigned.
As similarity metric, we use the Euclidean distance. To reduce the detrimental
effect of unbalanced training examples per class, we reduced the training set to
a certain number of examples per class when using this classifier and duplicated
training examples for classes with less than this number of training instances.

3.3.6.2 Linear Discriminant Analysis

LDA assumes that the probability density functions for all classes follow multivari-
ate Gaussian distributions, and that the class covariances are identical, meaning
that the variance within a class is the same across different classes. This leads to
a linear decision boundary between classes. LDA is sensitive to outliers, and the
predictive power decreases if some of the features are correlated. The size of the
smallest class must be larger than the number of features. In our experiments, we
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thus used the same methods as for the nearest neighbour classification to produce
a balanced training set.

3.3.6.3 Quadratic Discriminant Analysis

QDA uses the same approach as LDA in assuming a multivariate Gaussian distri-
bution for each class. However, QDA allows for different class covariances. Thus it
leaves many more free parameters for the classification problem to be fitted, mak-
ing this model more flexible, while at the same time rendering it more prone to
overfitting compared to LDA. QDA thus requires more training data to produce
reliable results compared to LDA. We used this model with the same balanced
training set as the nearest neighbour classification and LDA.

3.3.6.4 Support Vector Machines

Support vector machines (SVMs) belong to the group of discriminative learning
approaches. When testing the shape distributions in 2014, SVMs were a state-of-
the-art classifier with readily available implementations. [We used a] SVM classifier
provided by the LIBSVM package (Chang and Lin, 2011). [This] classifier uses a
radial basis function kernel and depends on two parameters, namely -y, represent-
ing the width of the Gaussian kernel function and C, a soft margin parameter
allowing for some mis-classifications. A grid search for optimal values of + and
C' is completed [for every classification task] by evaluation of the cross-validation
accuracy on a threefold partition of the training data.

3.3.6.5 Random Forest Classifier

Random forests (RFs) are an ensemble learning method used for classification and
regression, and belong to the group of discriminative learning approaches. They
use the principles of bootstrapping and bagging, meaning they draw multiple boot-
strapped samples (random sampling of data subsets drawn with replacement from
the training data) to produce a weak decision tree classifier from each random sub-
set, and later aggregate the predictions of all weak classifiers by a majority vote to
determine a final strong prediction. Thus, the technique has some free parameters,
such as the number of bootstrapped decision trees N7 and the maximum depth
of each decision tree dr, as well as splitting criteria like the minimum number of
samples required for a split ny,i,, or the number of active variables used for the test
in each tree node n,. Random forest decision models are particularly robust, since
they do not require assumptions about the distribution of the data and prevent
overfitting by training on different random subsamples.

3.4 Material

With the Methods described above, several experiments were conducted on two
different ALS benchmark data sets, each comprising urban landscapes.

3.4.1 ISPRS Vaihingen Data Set

The Vaihingen data set, provided by the International Society for Photogrammetry
and Remote Sensing (ISPRS) (Cramer, 2010) is an airborne laser scanning data
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set acquired in August 2008 over Vaihingen, a small village in Germany?. It was
recorded with a Leica ALS50 system at a mean flying height of 500 m with a 45°
viewing angle, 30 % overlap of flight strips and a median point density of 6.7 pts- /m?,
where regions without strip overlay have a mean point density of 4 pts-/m?.

The data set is split into three areas displaying different characteristics. Area 1 con-
tains historic buildings with complex roof shapes and some trees. Area 2 contains
a few high-rise residential buildings surrounded by trees as well as a patch of small
detached houses, while Area 3 is a residential area with small detached houses only.

The Vaihingen data set has been presented in the scope of the ISPRS Test Project
on Urban Classification and 3D Building Reconstruction (Rottensteiner et al.,
2012), and it meanwhile serves as benchmark data set for the ISPRS benchmarks
on 2D and 3D semantic labelling. More details about this data set are provided on
the ISPRS webpages 3. The data set is now fully available for download, whereas
at the time of this research, reference data for Area 3 was withheld, so that par-
ticipants in the benchmark had to submit their results for external evaluation.

In the scope of the ISPRS benchmark on 3D semantic labelling, nine semantic
classes have been defined for the Vaihingen data set, and these classes are given
by Powerline, Low Vegetation, Impervious Surfaces, Car, Fence / Hedge, Roof,
Facade, Shrub and Tree. The point-wise reference labels have been determined
based on (Niemeyer et al., 2014). The Vaihingen data set is split into a training
set and a test set (see Table 3.1). The training set is visualized in Figure 3.4
and contains the spatial XYZ-coordinates, reflectance information, the number of
returns and the reference labels. For the test set, only the spatial XYZ-coordinates,
reflectance information and the number of returns are provided.

class training set test set

num.  perc. num.  perc.
Powerline 546  0.07 600 0.15
Low Vegetation 180850 24.0 98690 24.0
Impervious Surface 193 723  25.7 101986 24.8
Car 4614 0.6 3708 0.9
Fence / Hedge 12070 1.6 7422 1.8
Roof 152045 20.2 109048  26.5
Fagade 27250 3.6 11224 2.7
Shrub 47605 6.3 24818 6.0
Tree 135173 179 54226 13.2
X 753 876 411722

Table 3.1: Number of 3D points per class in the Vaihingen data set. At the time of
publication, the reference labels were only available for the training set, but not for
the test set. Evaluation was therefore conducted externally. The full information
about the test set has only become available later.

2 https://www2.isprs.org/media/komfssn5/complexscenes_revision_v4.pdf (Accessed in

May 2024)

3 https://www.isprs.org/education/benchmarks/UrbanSemLab/default.aspx (Accessed in

May 2024)
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Fig. 3.4: Reference point cloud of the Vaihingen data set Area 2, coloured with
respect to nine semantic classes (Roof: red; Facade: white; Impervious Surfaces:
grey; Car: blue; Tree: dark green; Low Vegetation: bright green; Shrub: yellow;
Fence / Hedge: cyan; Powerline: black)

3.4.2 GML Data Set A

The GML data set A (Shapovalov et al., 2010) is provided by the Graphics and
Media Lab (GML), Moscow State University, and used to be publicly available .
This data set has been acquired with an ALTM 2050 system (Optech Inc.) and
contains about [two million] labelled 3D points, whereby the reference labelling
has been performed with respect to five semantic classes represented by Ground,
Building, Car, Tree, and Low Vegetation. For this data set, a split into a training
scene and a test scene is provided as indicated in [Table 3.2. The reference data
is visualized in Figure 3.5. Note, that the distribution of classes (and hence the
colour scheme) is different to that of the Vaihingen data set.]

class training set test set

num. perc. num. perc.
Ground 557142  51.8 439989  43.9
Building 98 244 9.1 19592 2.0
Car 1833 0.2 3235 0.3
Tree 381677 35.5 531852  53.0
Low Vegetation 35093 3.2 7758 0.8
) 1074569 1002668

Table 3.2: Number of 3D points per class in the GML data set A.

The GML data set A used to be complemented by a second set, the GML data set
B, which is generally similar to data set A, slightly bigger, but less detailed. The
class Car, for example, does not occur in data set B. We considered the GML data
set B together with data set A in our respective publication (Blomley et al., 2016b).
However, the results on the GML data set B did not yield additional information
compared to the results on data set A. For a more streamlined presentation, the
additional results on data set B are therefore not included here.

4 https://graphics.cs.msu.ru/en/science/research/3dpoint/classification, (Accessed in
April 2017)
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Fig. 3.5: Reference point clouds of the GML A data set A ((top: training area;
bottom: testing area), coloured with respect to five semantic classes (Building:
red; Ground: grey; Car: blue; Tree: dark green; Low Vegetation: bright green)

3.5 Results

In line with the RQs of this chapter, different experiments have been carried out
following different objectives. Those objectives are reflected in the three following
subsections. The first subsection (Section 3.5.1) is intended in an investigative style
and explores how different feature types interact with different classes on different
scales. The following subsection (Section 3.5.2) deals with the influence of differ-
ent classifier types. After those experiments yielded promising results, the third
subsection (Section 3.5.3) finally combines different complementary feature types
extracted on different neighbourhood scales in order to perform a joint classifica-
tion on two benchmark semantic labelling challenges. Results in this section are
evaluated either numerically, according to the evaluation metrics given in Section
2.5 or visually, based on manual inspection of point clouds colour-coded according
to the class labels assigned.

3.5.1 Comparison of Shape Distribution and Covariance
Features in Binary Classification of Four Classes on
Varying Scales

Neighbourhoods Features Classification

separate N. at radii of either e balanced training

27/2 m with n € N and —4 < e covariance features 1000 pts /class

n <11 or e binary one-against-all
e shape distributions SVM

e four selected classes

The aim in this section was to investigate, how different feature types, namely
shape distributions and covariance features, are suited to describe class-specific
structures or patterns. As those descriptive structures or patterns may occur on
different class-specific scales, each feature type is extracted separately on cylindri-
cal neighbourhoods of different scales. The experiments in this section are therefore
structured along an investigative line of thought, rather than aiming at producing
coherent point cloud semantic labelling results of good quality.

For the sake of clarity, we focus on the four main classes of Roof, Tree, Vege-
tated Ground, and Sealed Ground. The tests are being performed on the Vaihingen
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data set (Section 3.4.1). Due to the plausible class-dependence of optimal neigh-
bourhood scales, each feature type is tested individually in binary one-against-all
classifications for each class using cylindrical neighbourhoods N, of varying ra-
dius. The neighbourhood radii are chosen as 2"/*m with n € N and —4 < n < 11.
Thereby the radius ranges between 0.25m (within the lateral placement accuracy
of the laser scanner) and 45m (above most object sizes), which should cover all
possibly resolved structural scales. The results of the binary one-against-all clas-
sifications are presented in Section 3.5.1.1. The results achieved for covariance
features are further supported by an analysis of class-wise mean Shannon entropy.
In Section 3.5.1.2, a filter-based feature relevance assessment is performed to com-
pare the different types of shape distributions as well as the covariance features.
To strengthen a qualitative and visual understanding of the shape distributions’
capabilities, the results of the class-wise binary classifications at their respective
best neighbourhood scales are combined in Section 3.5.1.3.

3.5.1.1 Class-Wise Analysis of Neighbourhood Scale Impact

To investigate whether some classes are particularly well described by features
from certain scales, separate one-against-all distinctions are better suited than one
multi-class classification. The identification of each separate class is performed us-
ing a one-against-all binary SVM classifier [as described in Section 3.3.6.4]. To
ensure a smooth classification procedure, all feature data [except for 1% of out-
liers] are scaled to a range between zero and one [as described in Section 3.3.5.]
The grid search and subsequent training of a classifier with the best respective
parameters is performed on a subset containing 1000 data points of each class
to avoid a bias by unbalanced reference data distribution. Afterwards, the per-
formance of any selected classifier is tested on all labelled training data (4.1 - 105
points). Each classification result is then evaluated according to completeness /
recall, correctness / precision, and quality as described in Section 2.5. Results are
plotted in Figures 3.6 and 3.7.

Results

[For the shape distributions,] the resulting graphs [shown in Figure 3.6] are smooth
and generally display an even peak-like distribution|. This indicates,] that shape
distribution features are a suitable choice to evaluate geometrical properties of
point clouds over a wide spatial neighbourhood scale. No prominent peaks occur
to suggest a strong pattern or scale preference for individual classes in this data.
Optimal results are achieved at the following neighbourhood radii:

2.0m for Roof

1.4m for Tree

2.8m for Vegetated Ground
2.8m for Sealed Ground

Interestingly all those maxima fall within a similar range. This generally descrip-
tive size for shape distribution features is significantly higher than the [typical]
neighbourhood size used for covariance features in ALS. The values of 1.0 m used
by Jutzi and Gross (2009a) and 0.75m used by Niemeyer et al. (2012) agree well
with [our findings for covariance features, as shown in Figure 3.7].

Using exclusively covariance features, it is not possible to conduct a cohesive analy-
sis spanning the same scale range as shown for [the shape distributions]. For small
neighbourhoods, the covariance features are not separable by the SVM classifier.
As, at these radii, more than 25 % of all points have four or less neighbours, this
is not surprising, since with less than four elements no three invariant moments
may be calculated. This finding of generally better classification performance at
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Fig. 3.6: Evaluation of [SVM] classification results exclusively employing shape
distributions for different neighbourhood sizes. [Quality measures are calculated
according to Section 2.5 and plotted against the radius of a cylindrical neighbour-

hood.]
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Fig. 3.7: Evaluation of [SVM] classification results exclusively employing covari-
ance features for different neighbourhood sizes. [Quality measures are calculated
according to Section 2.5 and plotted against the radius of a cylindrical neighbour-

hood].
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higher numbers of neighbouring elements agrees well with findings published [by]
Niemeyer et al. (2011b), where covariance features are used among others.

A very intriguing observation is to be seen at large neighbourhood sizes, where
quality increases dramatically. Yet this increase cannot be said to result from a
generally better classification performance. Both C' and v parameters of the SVM
are very high for these results, indicating an over-fitting (Kotsiantis, 2007). This
can be explained by a high overlap between the neighbourhood of points within the
same reference area, as the reference areas are much smaller than the neighbour-
hood for feature calculation. As explained in Section 3.3.2.1, covariance features
are highly influenced by elements far away from the mean of all observations. For a
homogeneous point distribution in the area, the extra number of points in a bigger
circle increases more than quadratically by the increase in radius, and the distance
of all those extra points in turn contributes quadratically to the covariance ma-
trix. Therefore the neighbourhood of relatively close points has a [considerable]
overlap and the resulting features are nearly identical, causing the observed over-
fitting. Further studies, taking only a reduced random subset per neighbourhood
for covariance feature calculation, did not display an increase in completeness and
quality for high neighbourhood radii but were otherwise identical. Therefore in-
creased classification quality for radii above 16 m is regarded as erroneous.

Generally the classification results based on covariance features are less smooth
than those determined from shape distributions. Roof([s] could perform best at
8m, but not as good as the [respective] shape distributions result. Sealed Ground
shows a spike at 2m, reaching a similar result to the shape distributions. Trees
are best detected at lower radii, but not as well as when using shape distributions,
and Vegetated Ground is virtually undetectable.

[To further examine what the ideal neighbourhood size would be for covari-
ance features, we followed] an argument stated [by] Demantké et al. (2011) [on
dimensionality-based scale selection. According to this,] the optimum local neigh-
bourhood size [for covariance features] may be found by minimizing the absolute
value of the Shannon entropy []:

ESILannon = _L)\ -In (Lk) - P)x In (P)\) - S)\ -In (SA) (36)

For radii below 16m the class-wise mean Shannon entropy [of the given data
set], ignoring ill-defined values due to A; = 0, is shown in Figure [3.8]. For trees,
there is no minimum to be found, whereas for [Roof and Sealed Ground, which
are distinguished in their planarity,] a slight minimum occurs at a neighbourhood
radius of 0.5m. Due to the limited point density of the data [the mean entropy
decreases further for smaller neighbourhoods, as there are only few returns within
those neighbourhoods (so there is little entropy). But precisely due to this lack of
returns] no feature separation [could] be achieved on this scale [in the class-wise
binary classification experiments reported in Figure 3.7].

Discussion

Given these experimental findings, we deduce that covariance features are not
ideally suited to describe the examined classes of Roof, Tree, Vegetated Ground,
and Sealed Ground in ALS data of the given point density. Both the neighbour-
hood scale studies shown in Figure 3.7 and the minimization of the class-wise
mean Shannon entropy shown in Figure 3.8 indicate, that the best neighbourhood
size for these features would be relatively small, possibly around or below 0.5 m.
In neighbourhoods that small however, only relatively few neighbouring returns
(4pts/m? - v - (0.5m)” ~ 3pts) are captured to describe the geometry around one
given return. Shape distributions on the other hand seem to provide a similar if
not superior characterization of geometric structures over a wider range of big-
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Fig. 3.8: Class-wise mean Shannon entropy calculated according to Equation [3.6]
for different neighbourhood sizes. [This indicates, that the optimum scale of co-
variance features is typically small, around 0.50 m.]

ger neighbourhood size scales, as shown in Figure 3.6, peaking at similar sizes
around 2.0 — 2.8 m, where the neighbourhoods’ geometry is described by more
(4Pts/m? - 7 - (2.8m)? & 99 pts) returns. The strength of shape distributions com-
pared to covariance features therefore is closely tied to the point density of the
given data, as shape distributions are rather designed to describe more varied
geometrical structures (which occur in larger neighbourhood sizes) rather than
locally homogeneous distributions (which occur in smaller neighbourhood sizes),
for which covariance features are well suited.

This finding is also linked to an effect described later by Dittrich et al. (2017). They
compared the values of covariance features for simulated, discretized data with
their theoretical value in certain geometric distributions, such as planes, edges,
corners, etc.. As mentioned in Section 3.3.2.1, they found that some covariance
features are subject to significant relative errors (compared to their theoretical
expectation value) as soon as they are calculated from discretized data points.
Also, possible noise in the data, which could stem from measurement inaccuracies
or surface properties, affected some covariance features in a strong way.

3.5.1.2 Comparison of Feature Relevance

To [] evaluate [the different] features’ performance independent of the used clas-
sification scheme, a filter-based feature relevance assessment is performed. The
procedure follows (Weinmann et al., 2013). Seven filter-based feature relevance
measures are evaluated, each resulting in a relevance rating for all elements of
the feature vector. In this case, 61 feature vector elements have to be compared
(5 shape distribution types with 10 feature values each and 11 covariance features).
The applied score functions evaluate the relation between the values of a feature
vector element for all observations and the respective class labels. Tested measures
are c,, from a x? independence test, the Fisher score cpigher describing the ratio of
interclass and intraclass variance, the Gini Index cgin; as a statistical dispersion
measure, the Information Gain measure cjg revealing the dependence in terms of
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mutual information, the Pearson correlation coefficient cpearson derived from the
degree of correlation between a feature and the class labels, the ReliefF measure
CReliefF revealing the contribution of a certain feature to the separability of differ-
ent classes, and the c¢; measure derived from a t-test for checking how effective a
feature is for separating different classes.

Results

Since all relevance measures follow different metrics, the value for relative im-
portance was deduced from the ranking order among all feature vector elements.
Afterwards, the mean of all importance values was taken for every feature vec-
tor element, resulting in a mean importance. A value of one would be achieved
if a feature vector element was rated the most important feature by all relevance
measures, and zero if it was always rated least important. The mean of all mean
importance values belonging to one feature type group is plotted in Figure 3.9. To
avoid any bias by unbalanced reference data, a subset containing 1 000 points per
class is investigated.
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Fig. 3.9: Mean rank of mean feature relevance per feature group for different
neighbourhood sizes. A3, D1, D2, D3 and D4 are the shape distribution[s], and
Cov. the covariance features [].

Discussion

Comparing the five different shape distribution types, all printed as slashed lines,
it is clearly seen that the angle between any three random points A3 is only weakly
descriptive at those neighbourhood radii that showed the best classification per-
formance in Section 3.6. The volume between any four random points D4 is of
great importance here. Obviously the different classes in this test could be best
separated by distinctive probability distributions of random volumetric measures.
However, at very small scales, angular and lower dimensional measures like D1,
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D2 and D3 are of more importance.

As for covariance features, a different behaviour can be observed. Below ~3m the
importance is roughly the same as for the D1, D2 and D3 shape distributions.
The slight peak in importance at 0.71 m corresponds well to the optimum neigh-
bourhood size derived from entropy measures (cf. Figure 3.8). For higher radii a
steep increase followed by high constant importance is measured. This corresponds
directly to the scale at which the performance of shape distributions decreases in
the SVM classifications (cf. Figure 3.6).

3.5.1.3 Combined Results of Class-Wise Binary Classifications

As the approach with varying scales implies that distinctive neighbourhood sizes
may be class-dependent, four separate classification results from different best
neighbourhood sizes ([Section 3.5.1.1]) have to be considered. Combining these
separate results necessitates the choice between complete labelling and higher la-
bel accuracy. Since the chosen subset of classes may not be complete, we choose
only to regard elements with a [SVM-based] label probability higher than 50 % as
labelled. Therefore some elements may not belong to any class. [Moreover|, some
points may be found belonging to two or more classes. In this case, the label prob-
ability is weighted by the quality of the respective binary classifier before choosing
the maximum [score].

Results

[This combination procedure is followed] for both shape distribution and covari-
ance feature [results]. Rejection rate (percentage of unidentified elements) and
overall accuracy of both results each combined from four binary classifications are
shown in Table 3.3.

For a more extensive analysis of the different classes’ performance, the resulting
confusion matrices as well as completeness, correctness, and quality are shown in

Table 3.4 and 3.5.

rejection rate  OA

shape distributions 38.4% 75.6 %
covariance features 56.6 % 63.1%

Table 3.3: Rejection rate and overall accuracy (OA) for [combined binary] classi-
fications based on shape distributions and covariance features.

[In addition to the quantitative evaluation given by the metrics above,] Figures 3.10
and 3.11 depict shape distribution classification results as coloured point clouds
for qualitative analysis in particular areas. Both the gable roof and tree visible in
Figure 3.10 are generally well classified. Only minor errors occur at the ridge of
the roof, where some points are mistaken for vegetated ground, and at the rim of
the roof, where some points are misclassified as tree.
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Fig. 3.10: Gable roof and adjacent trees, generally well labelled [by the combined
binary classification results of shape distributions on four class-specific neighbour-
hood sizes.]

IN)
©
o

Height in m
n n n n
~ ~ @© o<
o (& o (9]

n
2}
@

Fig. 3.11: High-rise buildings[, labelled by the combined binary classification results
of shape distributions or four class-specific neighbourhood sizes.] Without the use
of further features, flat roofs are mistaken as ground [due to the rotation-invariance
of shape distributions.]
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known \ pred.  Roof  Tree Veg. G. Seal. G. Comp.

Roof 77530 10094 4036 6749 78.8%
Tree 1052 61474 80 47 98.1%
Veg. G. 4983 4271 8576 11493 29.2%
Seal. G. 6994 3771 8634 45032 69.9%

Corr. 85.6% T7.2% 402% 71.1%
Quality ~ 69.6% 76.1% 20.4% 54.4%

Table 3.4: Confusion matrix of combined classification results using shape distri-
butions [on four scales optimal for one class each,] ignoring all cases in which an
element could not be detected in any of the classes.

known \ pred.  Roof  Tree Veg. G. Seal. G. Comp.

Roof 31544 37225 0 10993 39.5%
Tree 1040 46941 0 78 97.7%
Veg. G. 2867 7073 0 13101 0%
Seal. G. 4699 10306 0 41953 73.7%
Corr. 78.6% 46.2% - 63.4%
Quality  35.7% 45.7% - 51.7%

Table 3.5: Confusion matrix of combined classification results using [covariance
features on four scales optimal for one class each,] ignoring all cases in which an
element could not be detected in any of the classes.

Discussion

[With regard to rejection rate and overall accuracy (OA),] the shape distributions
[| obviously outperform the covariance features, since the rejection rate is signifi-
cantly lower whilst the overall accuracy is increased. Not only can more elements
be identified, but also more of these elements are identified correctly.

[With regard to completeness, correctness and quality, the] most significant in-
crease is observed for the detection of [| Roofs, where quality almost doubles [for
shape distributions compared to covariance features|, mainly due to an increase in
completeness. The significant quality increase for Trees is mainly due to increased
correctness, whereas Sealed Ground is detected with comparable quality. Vegetated
Ground lacks a comparison, as it cannot be detected at all by covariance features.

[The qualitative analysis according to Figures 3.10 and 3.11] is in good agreement
with the findings of Figure 3.6, indicating that trees are generally covered by great
completeness, but correctness is lacking. The high-rise buildings depicted in Fig-
ure 3.11 show a misclassification of flat roofs as sealed and vegetated ground. This
is not surprising, as shape distributions do not incorporate knowledge about a
predominant direction. Therefore, a flat roof and its edge to the ground have the
very same characteristics as flat ground and the adjoining edge of a house. Except
for the existing confusion between Sealed and Vegetated Ground, those examples
explain all main off-diagonal contributions to the confusion matrix.

In conclusion, the findings presented above show, that shape distributions have a
huge potential as features for ALS point cloud classification. The most frequent
misclassification cases pointed out above should be overcome when combining
shape distributions with other geometric features including verticality information,
which is contained in the geometric 3D properties described in Section 3.3.2.2, or
normalized height above ground, as described in Section 3.3.4.
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3.5.2 Analysis of Class Separability by Simple Classifiers

Neighbourhoods Features Classification
e No (1m,2m, 3m & 5m) e covariance features e balanced training
o Ni,opt e geom. 3D properties 10000 pts /class
e shape distributions e multinomial classifica-
e absolute height tions using NN, LDA,
QDA & RF

Since we focus on feature development, it is interesting to see if those features
already enable a class separation on a simple level, such as by instance-based or
probabilistic classifiers, or if the boundaries between classes are so intertwined that
they must rely on more complex algorithms so as to be separated. Therefore we
perform a test comparing the results of a NN classifier as an example of instance
learning, LDA and QDA as examples of probabilistic learning and a RF classifier
as an example of ensemble learning.

For this case, we use cylindrical neighbourhoods N, of 1m, 2m, 3m and 5m ra-
dius respectively, and one optimized spherical neighbourhood Ny, opt. For each of
these neighbourhoods we calculate covariance features, geometric 3D properties
and shape distributions. This amounts to a total number of 316 feature values per
ALS return.

For the training phase, we take into account that an unbalanced distribution of
training examples per class might have a detrimental effect on the training pro-
cess (Chen et al., 2004; Criminisi and Shotton, 2013). Accordingly, we introduce
a class re-balancing by randomly sampling the same number of training examples
per class to obtain a reduced training set. For our experiments, a reduced training
set comprising 10000 training examples per class has proven to yield results of
reasonable quality. Note that this results in a duplication of training examples
for those classes represented by less than 10000 training examples. For the RF
classifier, several parameters had to be determined via a heuristic grid search. We
use N7 = 2000, npin = 1, n, = 3. The NN classifier as well as LDA and QDA do
not require manually set parameters.

Results

The classification performance for all four classifiers is evaluated according to the
class-wise metrics of precision and recall (cf. Table 3.6) and the Fj-score (cf. Ta-
ble 3.7), as well as the overall evaluation metrics of OA, Cohen’s « coefficient (),
mean class recall (MCR), and mean class precision (MCP) (cf. Table 3.8). The
classification results obtained with all four considered classifiers are also visual-
ized in Figure 3.12.

[The four different classifiers] clearly reveal a different behaviour. [] The classifica-
tion metrics of [OA, k, MCR and MCP] indicate that the LDA classifier achieves
the best performance [(OA = 50.2%, k = 38.3%, MCR = 49.1%, and MCP =
39.7%)] for our application.

The class-wise evaluation indicates that some classes (like Impervious Surface, Roof
and Tree) are better recognized across all classifiers than others (like Powerline or
Fence / Hedge). It is interesting that Cars in particular are better recognized by
the LDA classifier than by other classifiers.
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NN classifier LDA classifier

QDA classifier o RF classifier

NN classifier e LDA classifier

QDA classifier RF classifier

Fig. 3.12: Visualization of classification results using a NN classifier, a LDA clas-
sifier, a QDA classifier and a RF classifier respectively on Areal (top) and Area3
(bottom) of the Vaihingen data set. For clearer discriminability among the
classes, a non-natural colour encoding is chosen (Powerline: violet; Low Vegeta-
tion: yellowish green; Impervious Surfaces: royal blue; Car: cyan; Fence / Hedge:
pink; Roof: crimson; Fagade: white; Shrub: gold; Tree: emerald green)
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NN LDA QDA RF
prec. rec. prec. rec. prec. rec. Prec. rec.

Powerline 76 503 3.0 893 1.5 403 09 743
Low Vegetation 40.7 16.8 53.3 124 444 2.3 50.6 4.5
Impervious Surface 74.3 40.2 84.98 47.6 65.5 69.4 78.2 54.3

class

Car 12.7 114 314 289 6.1 350 13.1 22.1
Fence / Hedge 83 184 132 204 54 455 7.8 218
Roof 479 69.9 486 80.7 59.9 358 479 56.1
Fagade 175 349 36.8 51.3 16.1 50.9 19.3 50.5
Shrub 23.6 31.1 283 384 209 10.2 33.6 21.6
Tree 49.0 70.1 57.5 72.8 37.3 58.4 444 66.6

Table 3.6: Class-wise precision and recall values (in %) for classifications by the
NN, LDA, QDA classifiers, and a RF classifier on the Vaihingen data. Results
published in a similar representation in (Blomley et al., 2016a).

class NN LDA QDA RF

Powerline 132 59 28 1.7
Low Vegetation 23.8 20.1 44 82
Impervious Surface 52.2 61.1 674 64.1

Car 12.0 30.1 10.4 16.5
Fence / Hedge 114 16.0 9.6 114
Roof 56.8 60.7 44.8 51.7
Facade 23.3 42.8 244 28.0
Shrub 26.9 32.6 13.7 26.3
Tree 7.7 64.2 455 53.3

Table 3.7: Class-wise Fj-scores (in %) for classifications by the NN, LDA, QDA
classifiers, and by a RF classifier on the Vaihingen data. Results published in a
similar representation in (Blomley et al., 2016a).

metric NN LDA QDA RF

OA 45.1 50.2 38.1 415
K 32.1 383 27.7 303
MCR 381 49.1 38.7 413
MCP 31.3 39.7 28.6 329

Table 3.8: Overall classification results (in %) by the NN, LDA, QDA classifiers,
and by a RF classifier on the Vaihingen data set, evaluated according to the
metrics of OA, k, MCR, and MCP. Results published in a similar representation
in (Blomley et al., 2016a).

Discussion

Our results with relatively low numbers for different evaluation metrics indicate
that the Vaihingen data set with a labelling with respect to nine semantic classes
represents a rather challenging data set when focusing on a 3D semantic labelling.
To a certain degree, this might be due to the fact that some classes might not be
representatively covered in the training data — e.g. the class Powerline with only
546 given training examples and the class Car with 4614 given training examples
(cf. Table 3.1 in Section 3.4.1) — which, in turn, yields poor classification results
for these classes.

Furthermore, the derived results indicate that [considering only] geometric fea-
tures might not be sufficient for obtaining adequate classification results for all
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considered classes, since some of these classes might have a quite similar geo-
metric behaviour, e.g. the classes Low Vegetation, Fence / Hedge, and Shrub. This
indeed becomes visible in Figure [3.12] where particularly misclassifications among
these three classes may be observed for different classifiers. Yet, also the extracted
geometric features may not be optimal as some of the neighbourhoods used as the
basis for feature extraction are relatively large, e.g. the cylindrical neighbourhoods
with radii of 3m and 5m which have also been used by Niemeyer et al. (2014) and
Schmidt et al. (2014). This, in turn, results in misclassifications [particularly at)
those locations where the cylindrical neighbourhood includes 3D points associated
to the classes Roof and Impervious Surfaces.

A closer look [at] the classification results provided in Figure [3.12] [] reveals seam
effects where borders between roofs and facades or between fagades and ground are
largely categorized into the class Facade, particularly for the QDA classifier and
the RF classifier. Furthermore, the QDA classifier provides the best recognition of
Impervious Surfaces, while the classification results are rather poor for the classes
Low Vegetation, Fence / Hedge and Shrub. In contrast, the LDA classifier provides
a good recognition for the classes Roof and Tree, while problems in the separation
between Impervious Surfaces and Roof become visible. [Those could be related to
the ’error’ (realized later, cf. Section 3.5.3) of using absolute height as a feature,
and not having a normalized height feature instead.]

Overall, LDA performed well in comparison to both QDA and the RF classifier.
This is unexpected, because our total number of features is relatively high com-
pared to other approaches, which typically do not use shape distributions (which
contribute 50 values per neighbourhood, whereas covariance features and 3D geo-
metric properties only constitute 13 or 14 values per neighbourhood), and because
we use a range of different neighbourhoods which multiplies the number of feature
values for each return. High numbers of feature values are typically associated with
a series of disadvantages:

e The ’curse of dimensionality’: in a high-dimensional feature space, the sampling
density is sparse, which reduces the statistical significance of patterns and
typically leads to a loss of predictive power.

e An increased risk of overfitting: redundant or irrelevant features typically cause
the model to memorize the training data, which results in poor generalization
to unseen data.

e Sensitivity to irrelevant features: irrelevant or redundant features can increase
the complexity of the decision boundary, leading to reduced generalization.

e Dimensionality mismatch: if the number of features exceeds the number of
samples, models may fail to converge at all.

Generative classifiers (like k-NN; LDA, and QDA) are generally more prone to
those difficulties, while discriminative classifiers such as SVMs or RF's are more ro-
bust with regard to high feature dimensionality. The unexpected relative strength
of the LDA classifier in this experiment indicates that the relatively high number
of features and their possible redundancy due to repeated characteristics across
different neighbourhood scales do not seem to influence the classification badly.

Concerning the class-wise evaluation in Tables 3.6 and 3.7, we see that the classes
Impervious Surface, Roof and Tree — which are geometrically characteristic within
an urban environment — were detected with an acceptable accuracy. Classes of
rather similar geometric appearance, such as Low Vegetation, Fence / Hedge, and
Shrub are not appropriately assigned in the derived classification results. This
could probably be improved by including further information, such as reflected
intensity, return number, or number of returns as additional features.
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3.5.3 Comparison and Combination of Different Feature
Types, Neighbourhood Types, and Scales

After working solely on the Vaihingen data set up to this point, we study our
method’s performance on the GML data set A in Section 3.5.3.1. Here, we also fo-
cus on evaluating the benefits of combining features from different neighbourhood
types, and scales, as well as the combination benefit of complementing feature

types.

After doing so however, we realized, that the absolute height value we had been us-
ing as a feature (in legacy of adapting the geometric 3D properties from Weinmann
et al. (2015), who had been working on TLS data) introduces errors in variegated
terrain and causes confusion among geometrically similar classes at different nor-
malized heights in the scene, such as flat ground and flat roofs, if they are at
similar absolute height by the effect of topography. We therefore replaced absolute
height by normalized height in Sections 3.5.3.2 and 3.5.3.3. Also, since the results
of Section 3.5.2 did not indicate problems connected to an overall high number
of feature values per entity, and since the multi-scale, multi-feature-type studies
in Section 3.5.3.1 showed improvements for every added group, we extended our
multi-scale, multi-feature-type approach to multiple-neighbourhood-types in Sec-
tion 3.5.3.2 and 3.5.3.3.

With these changes in place, we thoroughly compared our method’s performance
on both data sets in parallel in Section 3.5.3.2. For a more compact overview, the
reader may jump directly to this Section.

In the end, we noticed that we could achieve even better results when training
our classifier with more training entities at the cost of higher duplication rates for
small classes. These results are shown in Section 3.5.3.3, where we also draw a
comparison to comparable work in the field.

3.5.3.1 Tests on the GML Data Set using Multi-Scale Cylindrical
Neighbourhoods and an Optimized Spherical Neighbourhood

Neighbourhoods Features Classification
e No (1m, 2m, 3m & 5m) e covariance features e balanced training
o Ni,opt e geom. 3D properties 1000 pts /class

e shape distributions e multinomial RF

e absolute height

In this section, we aim for a comprehensive analysis of the gains in classification
performance either by combining complementary feature types or by combining
different neighbourhood types and scales. As feature types, we use a group of metri-
cal features (namely covariance features, 3D geometric properties and the absolute
height of the measured return) and shape distributions as a sampled feature type.
As neighbourhoods we used cylindrical neighbourhoods A, with different radii of
1m, 2m, 3m and 5m respectively, and a locally optimized spherical neighbour-
hood Nk,opt. Therefore a total of 21 combinations are tested and analysed. We
used the GML data set A described in Section 3.4.2 as an application scenario.
Using the RF implementation available with Liaw and Wiener (2002), we trained
RF classifiers for each combination using a balanced subset of 1000 training enti-
ties per class, chosen randomly from the training scene. The number of trees Np
for the RF was determined via a standard grid search testing 50, 100, 200 or 500
trees, where classifications using 200 trees yielded the best results.
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Results

First, we focus on a classification based on [the] distinct feature [types for all indi-
vidual neighbourhoods and two combinations (N a1 and Ma)] and, subsequently,
we consider them in combination for the classification task. In order to compare the
classification results obtained with the different approaches on point-level, we con-
sider a variety of measures for evaluation on the respective test data: (i) Cohen’s
k coefficient (k) [and] (i7) overall accuracy (OA) [cf. Table 3.9], () mean class
recall (MCR) and (iv) mean class precision (MCP) [cf. Table 3.10]. Furthermore,
we involve different measures for class-wise evaluation: (7) recall, (i) precision and
(%) Fy-score [cf. Table 3.11]. Figure 3.13 shows a visual representation of the clas-
sification result with both features types and all neighbourhoods A, combined.

General observations of the presented results reveal that the combination of [metri-
cal features] and [sampled features] produces improved classification results com-
pared to both separate groups. Furthermore, it may be observed that features
extracted from multi-scale neighbourhoods of the same type tend to lead to im-
proved classification results. The combination of features derived from multi-scale,
multi-type neighbourhoods does, in general, even lead to further improved classi-
fication results compared to features derived from multi-scale neighbourhoods of
the same type.

A more detailed view on the derived results reveals that, when considering the
evaluation among the single scales, there is no [universal] best neighbourhood
scale among the cylindrical neighbourhoods Ng 1m, Ne 2m, Ne 3m and N 5. For
[the metrical features], N 5m [] perform[s] well in class separability [and in overall
accuracy (Table 3.9)] . For shape distributions, N sm [| show[s] the best results.
The class-wise classification results reveal that different classes favour a different
neighbourhood size [(Table 3.11). Especially small structures such as the class Car
favour smaller cylindrical neighbourhoods among the individual neighbourhood
results.]

When considering features extracted from multiple scales, we [] observe that the
features extracted from multiple cylindrical neighbourhoods N, a1 are usually sim-
ilar to or slightly improved over the best classification result from the individual
neighbourhoods (Table [3.9]). However, since there is a large variation among which
neighbourhood size performs best [], it seems worthwhile to [include] all scales.

When considering multi-scale, multi-type neighbourhoods, we may state that —
even though the spherical neighbourhood selected via eigenentropy-based scale se-
lection does not always perform very well on its own — there is usually a notable
performance increase for the multi-type combination Ny over [the combination of
cylindrical neighbourhoods only J\fc,all].

When inspecting the visual representation of the classification result in Figure 3.13
the most notable observation is a frequent misclassification between Ground and
Building. Both classes are similar in geometry, but usually distinct in height above
ground. In this experiment, there was however no approximation of scene topog-
raphy leading to estimated values of height above ground, but only the absolute
height values, which are no indicator of height above ground in this particular
scene due to the landscape’s topography. Hence, in the following experiments, we
introduced the normalized height feature.
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metrical sampled combination
N features features
k  OA k  OA k  OA

Neim 252 502 341 56.6  35.7 57.9
Neoam 306 555 424 64.1 445 65.7
Neam 322 B7.7 448 66.1 48.6 69.1
Nesm 416 651 421 639 504 70.8
Nigopt 233 41.6 325 51.8 283 47.1
Nean 355 604 484 689  49.6 69.9
Nant 57.3 743 539 722 612 76.8

Table 3.9: k and OA (in %) for different neighbourhood definitions and different
feature sets on the GML data set A. Results published in (Blomley et al., 2016b).

metrical sampled combination
N features features
MCP MCR MCP MCR MCP MCR

Neim 309 459 361 530 356 527
Neom 323 495 382 588  37.9 58.0
Nesm 325 493 387 595 389 60.3
Nesm 343 465 384 566  39.3 58.2
Niopt 358 364 375 474 371 39.2
Nean 339 520 398 648  39.3 65.0
Nan 416 635 414 680 436 702

Table 3.10: MCP and MCR (in %) for different neighbourhood definitions and
different feature sets on the GML data set A. Results published in (Blomley
et al., 2016b).

Fig. 3.13: Visualization of classification results for the GML data set A using N,
and N, opt With covariance features, geometric 3D properties, shape distributions
and absolute height. The colour encoding refers to the classes Ground (grey),
Building (red), Car (blue), Tree (dark green), and Low Vegetation (bright green).
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class N metrical features sampled features combination
prec. rec. Fi prec. rec. Fi prec. rec. Fj

Neim 62.5 50.8 56.1 87.5 34.0 49.0 82.8 43.2 56.7
Ne 2m 64.0 51.3 57.0 92.4 40.3 56.1 88.9 46.1 60.8

T MNesm 628 554 589 935 425 584  89.9 49.6 64.0
S MNesm 707 5701 632 943 375 537 9L1 489 63.7
S MNeopt 915 431 586  89.1 40.1 553 933 444 60.1
Nean 636 571 602 940 464 621 824 55.6 66.4
Nan 85.8 64.6 737 951 524 675 939 629 75.3
Neim 6.8 508 120 53 432 95 6.8 50.6 120
o Megm 65 50.8 11.5 6.3 425 109 7.4 486 129
£ Nogm 80 532 139 6.7 383 114 9.0 481 151
S MNesm 102 564 17.2 75 393 126  10.8 53.8 18.0
& Neopt 71 629 128 57 489 103 7.0 60.1 125
Neall 9.7 605 167 81 457 13.8 10.0 53.8 168
Nan 116 638 197 9.6 53.6 162 11.6 648 19.7
Neim 28 600 54 31 620 59 34 690 65
Neom 47 565 86 39 668 73 52 682 9.6
. MNegm 47 499 86 33 633 63 55 625 10.0
S Nesm 23 189 42 24 525 45 41 386 74
Ni.opt 06 334 12 12 458 23 08 316 15
Nean 69 37.6 117 6.6 735 121 112 71.6 19.3
Nan 115 452 183 78 743 140 128 710 21.7
Neim 811 501 620 813 759 785 828 70.6 76.2
Neom 836 595 69.5 823 846 834  83.6 828 83.2
o MNesm 837 602 70.1 824 86.8 845 838 86.3 85.0
S MNesm 841 729 781 821 866 843 831 89.8 86.3
Neopt 797 401 534 893 61.8 731 841 495 62.3
Nean 849 63.6 727 829 834 855 85.8 825 841
Nan 93.2 83.2 879 874 89.3 883 928 839 90.8
< MNem 14 178 25 35 497 65 22 302 41
S MNeom 29 296 53 62 597 112 45 441 8.1
S Megm 33 280 59 76 666 136 6.1 551 11.0
S Neom 41 273 7.1 57 669 104 7.3 59.9 13.0
. Niopt 01 26 02 22 406 42 05 104 09
S Nean 46 412 83 76 703 137 7.1 617 127
Nan 62 60.7 112 7.3 705 13.1 69 63.1 125

Table 3.11: Class-wise precision, recall and Fy (in %) for different neighbourhood
definitions and different feature sets on the GML data set A. Results published
in similar presentation in (Blomley et al., 2016b).
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Discussion

We realized later, that the majority of misclassifications in the results presented
comes from confusion among the geometrically similar classes of (flat) ground and
(flat) roofs, as they occur to a large proportion of the training data in this set,
as can be seen to the left in the top image in Figure 3.5. These misclassifications
come from the use of absolute height as a feature value. This feature came along
when we adapted the geometric 3D properties from Weinmann et al. (2015), who
had been working with TLS data. In variegated terrain, which is more frequent in
larger-scale ALS data, a normalized height value would be preferable to indicate
the height above ground at a certain point of the topography.

However, the conclusions drawn with the given results are still relevant. The re-
sults accomplished [] are [generally] comparable to the] results of existing research.
The most important comparison is to [the work of] Shapovalov et al. (2010), where
the same [| data set] has] been used as well as a combination of metrical features
and distribution features. While our methodology focuses on [a] characterisation of
3D points via feature extraction from local neighbourhoods of different scale and
type, the methodology presented [by] Shapovalov et al. (2010) focuses on the use
of non-Associative Markov Networks [which perform| a contextual classification.

Shapovalov et al. (2010) use 7 metrical features which describe the local geometry
of the point cloud in a similar way to the covariance features used in our approach,
as they are described in the work of Munoz et al. (2008). Furthermore, they use
27 sampled feature values deduced from spin images (Johnson and Hebert, 1999),
27 sampled feature values deduced from angular spin images (Endres et al., 2009),
and 7 sampled feature values corresponding to a height histogram of the local
neighbourhood. While this collection of feature values is different from the ones
implemented in our approach, it is still comparable as they contain both metrical
and sampled features. However it is important to note, that those features are not
computed per point for local neighbourhoods, but for segments produced in the
first step of their contextual classification procedure.

As our approach only performs point-wise individual classification, we expect that
[the] results of the contextual classification may [not] be matched. Comparing val-
ues of recall and precision [shown in Table 3.12], we find that Ground performs
similar[ly] ([] our inferior recall values are compensated for by a higher precision
[)), Buildings perform slightly better in recall, but worse in precision [], Car [] is
detected with much higher recall, but lower precision, Tree is generally compara-
ble [| and Low Vegetation again shows higher recall, but lower precision values.
Overall, the comparison of the combined F}-score turns out as expected: Ground
and Building suffer from the confusion due to the lack of normalized height infor-
mation, while the classification results for the remaining classes are comparable
and show a slight advantage of the contextual classification.

Furthermore, it is interesting to compare the results from the individual N, neigh-
bourhood scales to the findings for shape distributions in Section 3.5.1.1, conducted
on the Vaihingen data set. There, the class-specific studies of classification per-
formance across different cylinder radii indicated that radii of 1-2m are suitable
for Building and Tree, while slightly larger radii of about 3 m are more suited for
Ground and Low Vegetation. [The] Fy-scores for the single-scale neighbourhoods
Neams Neoms Nesm and Mg sy, [in this experiment] show|] best results for Ground
and Low Vegetation at radii of 3m[, which is in accordance to the findings on the
Vaihingen data set,] but best results for Building and Tree at radii of 3 to 5m [],
which [is larger than those values performing well on the Vaihingen data set. This
could be due to the fact that the landscape in the GML data set A is more open
than the dense urban scene of the Vaihingen data set.]
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A comparison of the classification results derived for cylindrical single-scale neigh-
bourhoods and multi-scale neighbourhoods of the same (cylindrical) type reveals
that the behaviour of the local 3D structure across different scales provides in-
formation which is relevant for the classification task. This becomes visible in
improved classification results for multi-scale neighbourhoods of the same type.
Furthermore, we [see] that the different neighbourhood types capture complemen-
tary information about the local 3D structure. This clearly becomes visible in
the improved classification results obtained for multi-scale, multi-type neighbour-
hoods in comparison to multi-scale neighbourhoods of the same type. Despite the
weak performance of the Ny ope neighbourhood (which has originally been devel-
oped for MLS data) on its own, its combination with the features from cylindrical
neighbourhoods provides a significant improvement over the combined result of all
cylindrical neighbourhoods Nc,all~

class this method Ny Shapovalov 2010
prec. rec. Fj prec. rec. Fi
Ground 93.9 629 746 89.8 96.2 92.7
Building 11.6 64.8 19.7 86.8 585 69.9
Car 12.8 71.0 21.7 370 16.1 224
Tree 92.8 889 90.8 923 99.7 959
Low Vegetation 6.9 63.1 125 71.6 8.9 15.8
OA 76.8 N.A.
P 43.9 59.3

Table 3.12: Comparison of class-wise precision, recall, and F} values (in %), along-
side with OA and F} (in %) of our results on the GML data set A in Section 3.5.3.1
to those achieved by Shapovalov et al. (2010).

3.5.3.2 Tests on the GML A and Vaihingen Data Sets Using
Multi-Scale Cylindrical & Spherical as well as Optimized
Neighbourhoods and the Normalized Height Feature

Neighbourhoods Features Classification

e No. (1m, 2m, 3m & 5m) e covariance features e balanced training
e N;(lm,2m, 3m & 5m) e geom. 3D properties 10000 pts/class

o N opt e shape distributions e multinomial RF

e horizontal binning for nor- e normalized height

malized height

The first multi-scale, multi-neighbourhood-type and multi-feature-type results pre-
sented in Section 3.5.3.1 were promising in a way that they yielded results compa-
rable to existing research in the field, even though we focused on individual point
classification without spatial regularization in the classification process. However,
our detailed analysis revealed critical points for further improvement. Therefore,
in this section, we aim to improve our method by the following aspects:

e We suspected that the huge influence of topography on the absolute height
could explain the frequent misclassifications between Building and (sealed)
Ground, since those man-made surfaces otherwise share a similar geometry.
Therefore we implemented a rough estimation of the scene’s topography to
produce a normalized height above ground feature.
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e In our analysis, we found that every additional neighbourhood and feature
type further improved the classification result. Hence in this section, we de-
cided to add features from spherical neighbourhoods from different scales (N
(Im, 2m, 3m & 5m)) too.

e Aswe noticed that similar classes behaved differently across the neighbourhood
scales in the GML data set A results in Section 3.5.3.1 compared to earlier
results for the Vaihingen data set in Section 3.5.1.1, we decided to evaluate
our method on both data sets in this section.

Therefore, in these experiments, we used features from both cylindrical and spher-
ical neighbourhoods (N. and N with radii of 1m, 2m, 3m and 5m each) and a
spherical neighbourhood of locally optimized scale Ny op¢. Since the k-optimized
neighbourhood is of spherical shape too, we include it in N ai. For each of these
neighbourhoods, we calculated covariance features, geometric 3D properties and
shape distributions. Furthermore, we implemented an approximation of the scene’s
topography to deduce a point-wise normalized height feature as described in Sec-
tion 3.3.4. This feature does not rely on the chosen neighbourhood around the
point of interest. However, the rasterization of the point cloud on a large sam-
pling distance (20m) for minima calculation and subsequent interpolation on a
fine sampling distance (0.5m) does give some lateral neighbourhood effect’ for
this feature’s calculation. We trained multinomial random forest classifiers on a
balanced subset containing 10 000 training entities of each class (chosen randomly,
resampled if necessary).

Results

The achieved values for the global evaluation metrics represented by OA and F,
are provided in Table [3.15] for the Vaihingen data set and the GML data set A.
It can be observed that the combination of features extracted from all neighbour-
hoods yields the best classification results. [This confirms the respective finding
in Section 3.5.3.1.] For the combined cylindrical neighbourhoods [(NVe.an)], the
combined spherical neighbourhoods [(N an)], and the combination of all defined
neighbourhoods (Nay), the class-wise evaluation metrics of recall, precision and
F-score are provided in Table [3.13] for the Vaihingen data set and in Table [3.14]
for the GML data set A. For the Vaihingen data set, it can be observed that the
classes Impervious Surfaces, Roof, and Tree can be well-detected, whereas particu-
larly the classes Powerline and Fence / Hedge are not appropriately identified. For
the GML dataset A, the classes Ground and Tree can be well-detected, whereas
particularly the classes Car and Low Vegetation are not appropriately identified.
The classification results relying on the use of all defined neighbourhoods (M)
are visualized in Figure [3.14] for the Vaihingen data set and in Figure [3.15] for
the GML data set A.

Discussion

A comparison of the derived classification results with the ones presented in Sec-
tion 3.5.3.1 on the GML data set A reveals a significant gain. We can observe
an improvement > 10% in OA and F} as a result from including the normalized
height feature and the additional spherical neighbourhoods. Table 3.17 summa-
rizes both the overall measures and the class-wise F} results. Both the classes Roof
and Ground experience a significant gain, which is likely attributed to the normal-
ized height feature, while there is additional improvement across all classes, which
could be attributed either to the benefits of the normalized height feature or to
the broadening of the neighbourhoods considered.

The visualization in Figure 3.15 shows that some slight errors remained in the
classification result, such as small patches labelled as Building within an other-

62



class rec. prec. Fy OA F

Powerline 68.7 3.7 7.1
Low Vegetation 49.2 62.0 54.9
Imp. Surfaces 724 83.0 77.4

Car 51.2 27.2 35.5
Nean Fence / Hedge 234 1277 16.5 622 452
Roof 66.2 84.5 74.2
Facade 49.2 32.0 38.7
Shrub 51.7 27.9 36.2
Tree 72.0 61.0 66.1
Powerline 88.5 22.5 35.8

Low Vegetation 52.6 68.9 59.7
Imp. Surfaces  78.2 84.5 81.2

Car 58.0 33.1 42.1
./\/S,an Fence / Hedge 239 15.2 18.6 67.4 51.9
Roof 73.8 86.4 79.6
Fagade 59.0 28.6 38.5
Shrub 59.3 32.7 42.2
Tree 73.1 65.8 69.3
Powerline 92.0 19.5 32.1

Low Vegetation 50.7 67.5 57.9
Imp. Surfaces  77.6 82.7 80.0

Car 57.5 35.7 44.1
Nan  Fence / Hedge 23.0 14.1 17.5 68.1 52.6
Roof 77.8 86.3 81.8
Facade 58.6 39.9 475
Shrub 58.4 32.2 41.5
Tree 75.4 66.9 70.9

Table 3.13: Class-wise recall, precision and Fy-score (in %) as well as OA and [F]
(in %) for the Vaihingen data set.

class rec. prec. F; OA Fi
Ground 84.0 94.8 89.1
Building 58.1 36.7 45.0

Nean  Car 714 12.7 21.5 87.6 53.3
Tree 92.0 98.4 95.1
Low Vegetation 73.8 89 15.9
Ground 84.0 98.6 90.7
Building 74.9 47.8 584

Nan  Car 82.6 15.8 26.5 88.3 57.1
Tree 92.4 98.6 954
Low Vegetation 82.1 8.0 14.6
Ground 86.3 97.5 91.6
Building 73.7 472 575

Nai  Car 76.2 17.2 28.1 90.5 58.5
Tree 94.9 98.7 96.8

Low Vegetation 76.0 10.8 18.8

Table 3.14: Class-wise recall, precision and Fj-score (in %) as well as OA and [F]
(in %) for the GML data set A.
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Vaihingen data set GML data set A

N OA I3 OA P
Neim  56.5 40.3 81.0 454
Neom 579 41.3 82.7 46.8
Negm 544 37.3 84.3 AT
Nesm  52.9 34.9 86.6 49.3
Niim 60.4 42.8 784 452
Niom 62.4 44.5 815 483
Nesm 60.3 42.9 844  50.5
Nesm 559 37.5 86.7 517
Niopt  61.7 43.2 83.0  49.1
Nean  62.2 45.2 87.7 533
Nean 674 51.9 88.3 57.1
Nan 681 52.6 90.5 58.5

Table 3.15: OA and mean Fj-score (in %) achieved for different neighbourhood
definitions on the Vaihingen data set and the GML data set A.

wise empty ground surface (which appears to be a field in the front middle) as
well as the blue stripe in the middle of what is perceived as a main road to the
right of the field, which is labelled as Car but appears to be a central reservation
(maybe Low Vegetation or another kind of fence or barrier) on the road.

A comparison of the now improved results to those of the contextual classification
achieved by Shapovalov et al. (2010) is shown in Table 3.16. Despite the fact that
no value of OA is available for Shapovalov’s results, they seem to be almost on
par. This is remarkable, as we would expect the contextual classification to per-
form better than a point-wise classification.

For the Vaihingen data set, we can compare the results of this section with those
from Section 3.5.2. Compared to the RF classifier results presented there, the ex-
periments in this section have added additional neighbourhoods N, (1m, 2m, 3m
& 5m) and the normalized height feature. The results improve dramatically by
> 20% in OA and F} as seen in Table 3.17. In this case it is difficult to reason

Fig. 3.14: Visualization of classification results for the Vaihingen data set Areal
(left) and Area3 (right) using N, Ny and Ny ope with covariance features, ge-
ometric 3D properties, shape distributions, and normalized height. The colour
encoding refers to the classes Roof (red), Fagade (white), Impervious Surfaces
(grey), Car (blue), Tree (dark green), Low Vegetation (bright green), Shrub (yel-
low), Fence / Hedge (cyan), and Powerline (black).
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Fig. 3.15: Visualization of classification results for the GML A using N., N,
and N opt with covariance features, geometric 3D properties, shape distributions,
and normalized height. The colour encoding refers to the classes Ground (grey),
Building (red), Car (blue), Tree (dark green), and Low Vegetation (bright green).

class this method Ny Shapovalov 2010
prec. rec. Fj prec. rec. Fy
Ground 97.5 86.3 91.6 89.8 96.2 92.7
Building 472 73.7 57.5 86.8 585 69.9
Car 172 76.2 28.1 370 16.1 224
Tree 98.7 949 96.8 923 99.7 95.9
Low Vegetation 10.8 76.0 18.8 71.6 8.9 15.8
OA 90.5 N.A.
Fy 58.5 59.3

Table 3.16: Comparison of class-wise precision, recall, and F values (in %), along-
side with OA and Fy (in %) of our results on the GML data set A in Section 3.5.3.2
to those achieved by Shapovalov et al. (2010).

about which classes profit most of those additional features, since the improve-
ments are rather significant throughout all classes.

[Comparing the results on the two data sets, the] derived classification results re-
veal that the GML data set A with five semantic classes is not too challenging,
as an overall accuracy of about 87-91% can be achieved when using the combined
neighbourhoods. This is due to the fact that the dominant classes Ground and
Tree can be accurately classified, whereas the problematic classes Car and Low
Vegetation do not occur that often. In contrast, the Vaihingen data set with nine
semantic classes is much more challenging, which can be verified by an overall accu-
racy of about 62-68%. The reason for the lower numbers is that most of the classes
occur rather often, and they are furthermore characterized by a higher geomet-
ric similarity. Particularly the classes Low Vegetation, Shrub, and Fence / Hedge
exhibit a similar geometric behaviour and misclassifications among these classes
therefore occur [rather frequently]. However, this is in accordance with other inves-
tigations involving the Vaihingen data set (Blomley et al., 2016a; Steinsiek et al.,
2017). Furthermore, the classes Powerline and Car reveal lower detection rates,
but this might partly also be due to the fact that they are probably not covered
representatively in the training data, where they are represented by 546 and 4614
examples, respectively.

Furthermore, Table 3.17 provides a chance to compare the results among the two
data sets with respect to similar classes, although care has to be taken due to the
different proportions of occurrence in the different data sets. Cars are naturally
the same class in both data sets, and so are Trees. Cars occur to roughly the
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GML data set A Vaihingen data set
Section 3.5.3.1 here Section 3.5.2 here

OA 76.8 90.5 41.5 68.1
Fy 44.0 58.5 29.0 52.6
Py Car 21.7 28.1 16.5 441
Fy Tree 90.8 96.8 53.3 66.9
Fy Low Veg. 12.5 18.8 8.2 57.9
Fy Fence / Hedge — — 114 17.5
Fy Shrub — — 26.3 41.5
Fy; Ground 75.3 91.6 — —
Fy Imperv. Surf — — 64.1 80.0
Fy Building 19.7 57.5 — —
F1 Roof — — 51.7 81.8
Fy Fagade — — 28.0 47.5
Fy Powerline — — 1.7 32.1

Table 3.17: Comparison of the improvements in this section over previous exper-
iments. Class-wise Fj-scores (in %) as well as OA and Fy (in %) for the GML
data set A in comparison to Section 3.5.3.1 (left) as well as the Vaihingen data
set in comparison to the RF results from Section 3.5.2 (right).

same proportion in both data sets (0.2 and 0.3% on the GML data set A and 0.6
and 0.9% on the Vaihingen data set), but are better identified on the Vaihingen
data set. This might be due to the fact that objects, which could be the source
of misclassifications, are better defined as additional classes like Fence / Hedge or
Shrub on the Vaihingen data set. Trees occur more frequently on the GML data
set A (35.5 and 53.0% vs. 17.9 and 13.2% on the Vaihingen data set), and are
better detected on the GML data set A. Ground makes out a large proportion
of the GML data set A (51.8 and 43.9%), and could be compared to the class
of Impervious Surfaces (25.7 and 24.8%) on the Vaihingen data set. Both yield
comparable results. Buildings occur much less frequent on the GML data set A
(9.1 and 2.0%) and are subdivided into the classes Roof (20.2 and 26.5%) and
Fagade (3.6 and 2.7%) on the Vaihingen data set. Roof is better identified and
Fagade slightly worse on the Vaihingen data set than the common group of Building
on the GML data set A.

3.5.3.3 Tests on the Vaihingen Data Set with All Features and
Neighbourhoods and an Increased Number of Training

Examples
Neighbourhoods Features Classification
e No. (1m,2m, 3m & 5m) e covariance features e balanced training
e N; (Ilm,2m, 3m & 5m) e geom. 3D properties 100 000 pts /class
o N opt e shape distributions e multinomial RF
e horizontal binning for nor- e normalized height

malized height

We later noticed (Weinmann et al., 2018), that the choice to use only 10000 train-
ing points per class apparently posed an unnecessary restriction on the Vaihingen
data set with the given methodology. When allowing for 100 000 instead of 10000
training entities per class, we could observe a significant improvement in the clas-
sification results. For classes with less than 100000 training entities, the available
training entities were duplicated as in the previous experiments.
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Results

Table 3.18 shows the class-wise precision, recall and F; improvements. Since Sec-
tion 3.5.3.2 indicated that misclassifications were more frequent in classes with
few elements in the training data, training data incidence was denoted in an ad-
ditional column. It can be seen, that the four smallest classes of Powerline, Car,
Fence / Hedge and Fagade actually show a decrease in recall due to the increase
in training examples used, while precision is improved throughout all classes. The
class-wise Fj-score improved in all classes except Car.

class training incidence rec. prec. I

Powerline 0.07% 92.0 /720 19.5/64.0 32.1/67.8
Low Vegetation 24.0%  50.7 / 56.8 67.5/68.1 57.9/61.9
Imp. Surfaces 25.7% 77.6 /78.6 827 /835 80.0/81.0
Car 06% 57.5/29.2 357/674 44.1 /40.7
Fence / Hedge 16% 23.0/163 141/221 17.5/18.8
Roof 202% 778 /834 86.3/86.6 81.8/84.9
Fagade 3.6% 586 /505 39.9/545 475 /524
Shrub 6.3% 584 /619 32.2/332 415 /43.2
Thee 17.0% 754 /803 66.9 /680 70.9/73.6

Table 3.18: Class-wise recall, precision and Fj-score (in %), comparing the results
of a RF with 10000 (first value) and a RF with 100000 (second value) training
examples per class on the Vaihingen data set. OA increased from 68.1% to 71.5%,
while F} improved from 52.6% to 58.3%.

The confusion matrix shown in Figure 3.16 indicates the typical misclassification
cases. Most notably, elements of both the classes of Car and Fence / Hedge are
often mislabelled as belonging to the class Shrub. While the class Tree is generally
well detected, elements of many other classes such as Facade, Powerline or Shrub
are often misclassified as Tree too. Similarly, elements of the classes Impervious
Surface, Car, Fence / Hedge or Shrub are prone to be misclassified as Low Vege-
tation.

Discussion

As the comparison among the GML A and Vaihingen data sets in Section 3.5.3.2
made clear, the geometric and ontological similarities among classes such as
Fence / Hedge, Shrub and Low Vegetation are certainly a contribution for mis-
classifications. The improvement observed in this section however shows that on
the Vaihingen data set, annotated with the nine given classes, our fine-grained
features reproduce the high degree of within-class variability well that big classes
such as Roof, Tree and Impervious Surface show. The increased number of train-
ing examples apparently allows for a better representation of this variability by
the classifier, which results in relatively few misclassifications for entities of these
classes.

[The] results of [our] point-wise classification [achieved in this section] are compa-
rable to the ones presented in [recent literature at the time of writing by] Steinsiek
et al. (2017) for RF-based classification. While our results are [only 0.5% higher in
OA, they are 8.3% higher in F}]. The latter indicates that our framework allows
for a better classification of the different classes, while the approach presented
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Powerline 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0%

Low Veg. | 0% 20 19% | 17% [13% | 1% | 3% |13% | 1%

Imp. Surf. | 0% | 15% 3% | 1% | 0% | 0% | 1% | 0%

Car | 0% [ 0% | 0% [29% | 1% | 0% | 0% | 1% | 0%

Fence / Hedge | 0% | 2% | 0% |12% [16% | 0% | 1% | 5% | 1%

Roof | 7% | 9% | 1% | 3% | 4%

Facade | 3% | 1% | 0% | 0% | 1%

Shrub | 0% |14% | 1% 35%

Tree |17% | 2% | 0% | 1% |10%
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Fig. 3.16: Confusion matrix of the RF classification result using 100000 training
entities per class on the Vaihingen data set. Percentage and colour coding are
given as percentage of the ground truth reference. The confusion matrix shows,
that elements of both the classes of Car and Fence / Hedge (column 4 and 5) are
often mislabelled as belonging to the class Shrub (row 8).

by Steinsiek et al. (2017) allows for [a similarly good classification result for a
majority of returns. A detailed comparison is shown in Table 3.19.]

Further improvements in the classification results can be achieved by spatial reg-
ularization (cf. Section 2.3.3). This has been taken into account by Steinsiek et al.
(2017) by employing a CRF, which refines the RF’s initial probabilistic labelling
output by enforcing spatial regularity among neighbouring data elements via an
interaction potential learned from the initial labelling.

Steinsiek et al. (2017) report that an increase in the number of training examples
would in their case not enhance the classification results. However, they used a
slightly different set of features and neighbourhoods. Apart from the eight covari-
ance features and five other geometric 3D properties that were calculated identi-
cally to our approach, and a normalized height feature similar to ours, they used
three features produced from a 2D projection of each neighbourhood and three
features from a 2D projection into quadratic, spatial bins of 1.25 m width that we
did not use. They did not however implement shape distribution features. They
considered three spherical neighbourhoods (N with fixed radii of 0.5m, 1.0m and
2.0m) as well as an eigenentropy-based optimized spherical neighbourhood Ny opt-
We used a similar slightly wider range of neighbourhoods (1m, 2m, 3m and 5m)
as well as cylindrical neighbourhoods N, they did not use. We can therefore only
assume, that the benefit from further training examples that we could observe for
our RF results must stem from our additional shape distribution features and/or
our additional cylindrical neighbourhoods N.. The effect of different neighbour-
hood types however is likely smaller than that of the additional shape distribution
features, as could be seen in Table 3.13 in the comparison of different neighbour-
hood combinations.
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this method NV,  Steinsiek 2017 Niemeyer 2016

Class RF10000 RFi00000 RF1000 CRF H-CRF
Powerline 32.1 67.8 14.3 69.8 59.6
Low Vegetation 57.9 61.9 65.8 73.8 77.5
Impervious Surfaces 80.0 81.0 86.1 91.5 91.1
Car 44.1 40.7 24.9 58.2 73.1
Fence / Hedge 17.5 18.8 19.8 299 34.0
Roof 81.8 84.9 84.8 91.6 94.2
Facade 47.5 52.4 43.9 54.7 56.3
Shrub 41.5 43.2 40.8 47.8 46.6
Tree 70.9 73.6 69.5  80.2 83.1
OA 68.1 71.5 71.0  80.5 81.6
F 52.6 58.3 50.0 66.4 68.4

Table 3.19: Class-wise Fy-scores (in %) as well as OA and F (in %) for the Vaihin-
gen data set, comparing our RF results with 10 000 and 100 000 training examples
per class respectively. Furthermore we list the results achieved by Steinsiek et al.
(2017) in point-wise classification (RF) or with contextual classification (CRF),
as well as the results achieved by Niemeyer et al. (2016) with a hierarchical CRF.
Some of these values were presented in a similar comparison in (Weinmann et al.,
2018).

Niemeyer et al. (2016) also proposed a hierarchical two-layer CRF. The first layer
of the CRF performs point-wise labelling using a 2D-k-connected graph and the
following 12 features per node (return): return intensity, echo ratio, a subset of
covariance features (linearity, planarity, scatter, anisotropy), verticality, the ratio
of the sums of the eigenvalues in a 2D and a 3D neighbourhood, and normal-
ized height. This output is used to produce segments via clustering, which then
form the entities for the second layer of the CRF. This second layer uses features
computed for each segment, and thus incorporates a larger scale context among
the segments. As seen in Table 3.19, this hierarchical CRF setup yields improved
results in comparison to the single-layer CRF result presented by Steinsiek et al.
(2017).

3.6 Discussion

As explained in the Personal Framing (cf. page 1) at the beginning of this the-
sis, the work reported in Section 3.5 was conducted before 2018 with traditional,
non-contextual classification methods. Due to significant advances in the field of
deep learning, especially concerning its’ application on unstructured 3D data, and
a widened availability of frameworks designed for end users, this section will dis-
cuss the results achieved by the traditional methods first (Section 3.6.1), before
contrasting it with more recent developments in the field enabled by deep learning
methods (Section 3.6.2).

3.6.1 Own Work

In Section 3.5.1, we analysed the weaknesses of traditional covariance features in
their application on ALS data (the low ALS point density requires larger neigh-
bourhoods, which are then less likely to be homogeneous and more likely to include
elements of other classes too) and instead proposed an implementation of a sam-

69



pled feature type, shape distributions (similar to the original proposal by Osada
et al. (2002), designed for shape matching of 3D polygonal object models). We
tested the shape distributions’ respective behaviour across different neighbour-
hood scales for four classes in Section 3.5.1.1 and evaluated the respective feature
relevance in Section 3.5.1.2. Finally, we combined those class-wise binary classifica-
tion results in Section 3.5.1.3 to pin down applicational strengths and weaknesses
of this feature type. We found that shape distributions are better suited than
traditional covariance features to deal with the relatively sparse sampling density
that prevails in many ALS data sets. While the results are very promising, it is
still important to combine shape distributions with other feature types, as they
are naturally rotation invariant and do not capture directional information such
as height, height distribution, or verticality.

In Section 3.5.2 we analysed whether the relatively high number of feature val-
ues produced by shape distributions relies on a complex classifier for separability.
This is not the case. A simple LDA classifier performed well in our experiments
compared to both QDA and a RF classifier. We deduce that our features provide
a good discriminability in the given application case, which does not rely on pow-
erful modelling of complex decision boundaries by the classifier.

In Section 3.5.3, we finally put the different feature types, neighbourhood types and
neighbourhood scales together to evaluate their joint performance. Section 3.5.3.1
gives a fine-grained comprehensive analysis of the combination-effect for multiple
feature types, neighbourhood types, and scales. These findings indicate that multi-
feature-type performs better than single-feature-type, multi-scale better than
single-scale and multi-neighbourhood-type better than single-neighbourhood-type.
Each addition results in a further improvement of the overall result, antagonizing
the 'curse of dimensionality’. A comparison with the results from Section 3.5.1.1
also shows, that no clear ’best neighbourhood scale’ can be found for a class in
general, since there are noticeable differences between different data sets for sim-
ilarly defined classes. The results in this section also show, how detrimental the
use of an ill-defined feature such as the absolute height value can be, which has
little real-live correlation to the desired classes compared to a normalized height
approximation.

In Section 3.5.3.2, we used this finding and added a normalized height feature
instead of the absolute height value. This additional feature seems to be of par-
ticular importance, as the results are drastically improved in comparison to Sec-
tion 3.5.3.1. However, the normalized height estimation requires an additional
continuous neighbourhood consideration apart from the per-point neighbourhoods
used for all other features.

The approximation method for the scenes’ topography used in the results provided
in Section 3.5.3.2 is very rough. It relies on the fact that in the scenes considered,
no objects exceeded the rough sampling distance of 20 m in size. In further (unpub-
lished) experiments we enhanced this method further by employing edge detection
to identify elevated regions. However, this did not provide additional benefits for
the given application case here.

Further enhancements of the given methodology can be achieved by employing a
regularized, contextual classification scheme like a CRF (Niemeyer et al., 2014;
Weinmann et al., 2015; Steinsiek et al., 2017) instead of the RF classifier used
throughout this work. A comparison to the results achieved by Steinsiek et al.
(2017) and Niemeyer et al. (2016) can be found in Table 3.19 of Section 3.5.3.2.
Alternatively, the results of non-contextual individual semantic labelling may be
refined by a structured regularization or smoothing framework after the initial
labelling (Landrieu et al., 2017b).
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3.6.2 Comparison to Deep Learning

As elaborated in Section 2.4, traditional machine learning and modern deep learn-
ing approaches are not directly comparable, primarily for three reasons:

e Feature design: Modern deep learning does not rely on manually hand-crafted
features designed to be relevant for the given application case, which is the
focus of our approach within the traditional machine learning framework. In-
stead, 'features’ or 'patterns in the data’ are automatically learned via gradient
optimization and backpropagation.

e Integration of steps: In modern deep learning, the traditional steps of feature
extraction, relevance assessment, and classification are inseparable and jointly
optimized, making it harder to interpret the results with respect to these com-
ponents.

e Data dependency: Modern deep learning generally requires larger amounts of
training data due to reduced reliance on application-specific knowledge. Con-
sequently, there is an increased need to mitigate overfitting and ensure model
generalization. This is sometimes achieved by generating synthetic training
data from existing training data.

A number of deep learning approaches have been studied on the Vaihingen bench-
mark data set. Zhihai and Zhishuang (2018) as well as Zhao et al. (2018) used pro-
jections onto a horizontal raster to produce artificial-valued images from certain
properties of the point cloud, and to produce features by training a convolutional
neural network (CNN) on the basis of these images. Those were then used as input
for a different classification method. Others, like Winiwarter et al. (2019), Yu et al.
(2022) and Nong et al. (2023), employed deep learning architectures like PointNet
and PointNet++, which are designed to handle 3D point cloud data directly, while
integrating own adaptions to make those methods more fit to the characteristics
of LiDAR point cloud data. In the following, we will briefly describe each of these
approaches and compare their results in Table 3.20.

Zhihai and Zhishuang (2018) extracted five features for every return as in
traditional feature extraction: intensity (1), eigenvalue-based features (2), normal-
vector-based feature (1) and height above ground (1), using a Nj op¢ neighbour-
hood. They then produced a 2D image projection from the point cloud, where
every pixel was assigned artificial RGB values calculated from a mapping of a
combination of the above features assigned to the return closest to the centre of
each 2D image pixel. They then used a CNN for training and classification and
re-mapped the output onto the point cloud.

Similarly, Zhao et al. (2018) used normalized height, intensity and roughness
attributes to produce square 2D projection images of varying extent for the sur-
roundings of each return. They then employed a CNN to produce features from
each set of images, which were then used in a softmax regression classifier for
point-wise classification.

PointNet (Qi et al., 2017b) is a pioneering network architecture, which enables
a semi-convolution operation on unstructured point clouds. However, it cannot
capture local context at different scales, as it uses a single max-pooling oper-
ation to aggregate the whole point set. PointNet+4 (Qi et al., 2017a) is an
encoder-decoder extension to PointNet, which during the encoding layers, aggre-
gates features on different neighbourhood scales by repeated subsampling (which
produces increasingly sparse point clouds), grouping, and feature extraction. Af-
terwards, the features of the different scales are backpropagated (decoded) using
inverse-distance-weighted interpolation, and subsequently concatenated for point-
wise labelling.
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Winiwarter et al. (2019) performed point-wise semantic labelling by applying
the strategy of mini-batch training to a PointNet++-based network, while the
batches were chosen as spatially aggregated subsets (rather than random subsets)
so as to preserve neighbourhood information. Furthermore, they also append fur-
ther sensor information, such as return intensity (or full waveform attributes in
another data set) to the feature vector.

Yu et al. (2022) added a double self-attention mechanism to PointNet++, con-
sisting of an efficient channel attention bock in the encoder layers and a context-
guided aggregation module in the decoder layers. Besides improvements in the
point-wise semantic labelling result compared to their PointNet++ result, this
approach is reported to improve point cloud segmentation. Furthermore, they also
provide an additional CRF optimization for their result.

Nong et al. (2023) enrich PointNet++’s local neighbourhood information by
additional features (describing the relationship among neighbours as well as the
centroid point information) throughout the encoder layers, while embedding eleva-
tion information (apart from the inverse distance information used in PointNet-++)
in the upsampling interpolation of the decoder layers. They also introduce a class-
balancing to the loss function to deal better with the uneven class distribution in
typical ALS semantic labelling challenges.

For all the approaches listed above that have been applied to the Vaihingen bench-
mark data set, OA, I} and class-wise F} are listed in comparison to our results as
well as the results of traditional feature-based contextual classification (Steinsiek
et al., 2017; Niemeyer et al., 2016) in Table 3.20.

Interestingly, Yu et al. (2022) and Nong et al. (2023) achieved different results
when applying the PointNet or PointNet++ networks respectively on the Vaihin-
gen data set. This may be due to the differences in training procedure, as Yu et al.
(2022) used training data augmentation on densely sampled training blocks to
reduce overfitting of the model. This apparently improved results for PointNet es-
pecially, while the differences in the PointNet++4 results are less significant. Their
own adaptions of PointNet++ perform similarly well compared to each other.

Overall, the results listed in Table 3.20 indicate that the improvements deep learn-
ing achieves over the contextual feature-based approach (to which we compared
our results in Table 3.19) are not always that significant. PointNet alone does not
match the Steinsiek et al. (2017) and Niemeyer et al. (2016) CRF contributions,
but is comparable if not inferior to the results of our method. PointNet++, Zhihai
and Zhishuang (2018) and Winiwarter et al. (2019) perform similarly well as the
Steinsiek et al. (2017) CRF contribution. Contributions by Zhao et al. (2018), Yu
et al. (2022) and Nong et al. (2023) do mark an improvement over the feature-
based contextual classification approach. The gain however is not as big as that
achieved by contextual CNN classification compared to point-wise RF results in
the feature-based methods. This indicates the importance of contextual relation-
ships for reliable interpretations of ALS data. Consequentially, the result provided
by Yu et al. (2022) for an additional CRF optimization of their deep learning net-
work result is the overall leader in this comparison, while the improvement over
their already excellent PointNet++ adaption is only by one percent in OA and
none in F. This hints that most of the contextual information is already exploited
by the encoder-decoder structured network equipped with double self-attention.

It is noteworthy however, that contextual classification, such as CRFs applied to
the output of a probabilistic classifier supplied with traditional hand-crafted fea-
tures, can produce results which are comparable to those of a number of deep
learning applications on the same problem.
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Some core concepts that have proven to be significant in ALS data interpretation
throughout both manual feature design and deep learning include:

e The importance of distance metric interaction among neighbouring points to
describe point cloud structures alongside with a general permutation invariance
among the elements of the point cloud. This is the case for covariance and shape
distribution features, as long as calculated from a symmetrical neighbourhood,
and these are also the core prerequisites considered in the development of the
PointNet architecture.

e An aspiration for generalized models, as in bootstrap aggregating classifiers
such as the RF classifier, or as in the batch training of neural networks.

e The distinction between transformation invariance of point cloud elements
within the horizontal context, but the importance of preserved verticality or
normalized height information, as found in Section 3.5.3.2 compared to Sec-
tion 3.5.3.1, or as considered in the contributions of Zhihai and Zhishuang
(2018), Zhao et al. (2018), and Nong et al. (2023).

e Increasing scales for feature extraction (as in our multi-scale feature extraction)
or a hierarchical contextual setup (as in all PointNet++-based approaches
compared to PointNet).

Compared to the traditional feature-based approach, modern deep learning how-
ever has the main advantage that neural networks can adapt extraordinarily well
to variable structures, more so than individually targeted, hand-crafted features
can do. The ’features’ extracted by deep learning on hierarchical contextual levels
vary in their degree of abstraction, meaning that lower levels learn basic structures
or patterns while higher layers can recognize more complex shapes. The manual
feature-based approach on the other hand is confined to ideas and concepts which
can be applied to different neighbourhood scales, but can not usually be adapted
to complex class definitions and their representation across varying scales in the
data to any similar degree.

3.7 Conclusion

In conclusion, we were able to answer the research questions stated for this chapter
(cf. Section 3.1.3) in a satisfactory way.

To answer RQ1, we analysed existing approaches in the ‘Related Work’ section
of this chapter (Section 3.2) and proposed a comprehensive framework in the
‘Methodology’ section (Section 3.3) for point-wise semantic labelling of ALS point
clouds. Our framework consists of 10 neighbourhood definitions (cylindrical neigh-
bourhoods on four scales, spherical neighbourhoods on four scales, a spherical
neighbourhood on an adaptively chosen scale and a neighbourhood defined by
spatial binning and interpolation to approximate the scene’s topography), 4 fea-
ture types (covariance features, geometric 3D properties, our novel feature type
of shape distributions, and normalized height, with 8 + 4(5) + 50 + 1 = 63(64)
feature values) and subsequent classification and evaluation. Both the different
neighbourhood and novel feature type definitions comprise scientific innovations
compared to the literature that already existed at the time of writing, and the fea-
ture type of shape distributions is a valuable addition in the field, complementing
earlier feature types.

RQ2 is about a more detailed analysis of the strengths and weaknesses of the cho-
sen approach and is answered by a number of thorough experiments presented in
Section 3.5. In Section 3.5.1 we were able to show considerable strengths of our
novel shape distribution feature type compared to covariance features in terms of
descriptiveness in four typical major classes in an urban environment as well as
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in applicability over multiple neighbourhood scales. Meanwhile we could show in
Section 3.5.2, that this did not come at the expense of difficult separability due to
the higher overall number of features, but that the problem remained solvable by
traditional classification methods such as LDA. In Section 3.5.3 we demonstrated
the beneficial effect of multi-scale and multi-neighbourhood-type combinations,
and showed how a combination of shape distributions with well established fea-
tures clearly and markedly improved the results achieved. We compare our results
with other publications in the field and found comparable if not superior results,
except for approaches utilizing contextual classification instead of point-wise classi-
fication. Both contextual classification, which implies spatial regularization during
the classification process, as well as object-based approaches could further improve
the level of detail and quality in scene interpretation. A comparison among Sec-
tions 3.5.3.1 and 3.5.3.2 showed the paramount importance of a normalized height
feature for individual returns. Last but not least, we analysed the differences among
our results on two different data sets, which showed that the definition of classes is
generally of importance to the classification performance, while some of the differ-
ences between identically defined classes could be related to their different degree
of prevalence in the training data sets.

We acknowledge the improved classification potential in applying contextual clas-
sification strategies such as CRFs (Steinsiek et al., 2017; Niemeyer et al., 2016),
especially in challenging scenes. Due to the time elapsed between the scientific
work and publishing, and the writing of this thesis, we are also able to evaluate
our work in hindsight by comparing it to the modern advances in the field enabled
by deep learning. Concerning the interpretation of unstructured 3D point clouds in
the context of semantic labelling in urban scenes, multi-view-projection-based ap-
proaches could only produce results comparable or inferior to those of traditional
approaches applying structured prediction. Point-based deep learning strategies
show a higher potential, but have to be adapted to the given case. Especially
adaptions focusing on attention mechanisms or the propagation of neighbourhood
relationship throughout the layers of an encoder-decoder architecture have proven
effective on the Vaihingen 3D semantic labelling challenge. This highlights the
importance of contextual learning that is implemented both in the structured pre-
diction and the best-performing deep learning implementations.
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Chapter 4

Object-Wise Classification of Tree
Species for Individual Tree Segments

4.1 Introduction

While Chapter 3 focused on discriminating different classes within a scene, this
Chapter focuses on analysing vegetation, and forest trees in particular, at a higher
level of detail. In Europe, forests have become more heterogeneous over the past
decades, partly due to increasing disturbances such as windthrows, bark beetle in-
festations or wildfires, but partly also because forest planning is increasingly taking
an ecological, diversity-oriented perspective into account, which further contributes
to structural heterogeneity. This challenges established manual forest inventory
practices (Latifi et al., 2015). Gradually, remote sensing technologies are therefore
becoming more important to support the assessment of existing resources while
keeping the manual effort manageable. Airborne small-footprint pulsed light de-
tection and ranging (LiDAR) is an important measurement tool for forest canopies
with good estimation of biomass and height (Vauhkonen et al., 2014a).

4.1.1 Goals

Generally, forest inventories aided by LiDAR data may either use area-based meth-
ods or single tree identification (Latifi et al., 2015). In both cases, however, [] tree
species identification is important since different species have different allomet-
ric dependencies ['] , which influence the accuracy of timber volume estimation
(Packalén and Maltamo, 2008). [Moreover, species information as such is also im-
portant for forestry decisions such as treatment schedules and growth predictions.]
Accurate tree species identification [in LIDAR-based forest inventories] however is
very challenging. It is to some degree possible from structural and intensity fea-
tures calculated from discrete-return LiDAR data (Orka et al., 2009), but is more
accurate in combination with aerial imagery (Holmgren et al., 2008; Orka et al.,
2012), hyperspectral data (Kandare et al., 2017) or with attributes derived from
waveform-recording LiDAR data (Yao et al., 2012; Hovi et al., 2016). If LiDAR
data alone could provide a reliable species discrimination, acquisition costs would
be reduced and economic feasibility stimulated. Prospectively, precision forestry
could be stimulated, whereby forestry decisions are made and valuable timber is
collected at demand based on precise inventory data from remote sensing surveys.

1 Allometry is the study of the relative size of parts of organisms. In forestry, it is very important
to study allometric relationships in order to estimate tree measurements, such as timber volume,
from an easily measured attribute such as diameter at breast height (DBH) or height.
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4.1.2 Challenges

For tree-level inventories, the detection of individual trees traditionally relies on
a raster-based canopy height model (CHM) interpolated from the airborne laser
scanning (ALS) height data (Persson et al., 2002; Popescu et al., 2003), individ-
ual stem detection (Reitberger et al., 2007), point-based segmentation techniques
(Strimbu and Strimbu, 2015) or layer-wise analysis (Ayrey et al., 2016; Hamraz
et al., 2017). Since trees with interlacing crown or trees below the dominant canopy
can be difficult to detect (Vauhkonen et al., 2012), there have also been approaches
of combining the tree-level inventory scheme with area-based approaches to min-
imize errors in timber volume estimation, caused by undetected trees as well as
errors in the stand-specific allometric model predictions (Lindberg et al., 2010).
Recently, deep learning methods have also been applied successfully on drone-
recorded very high density LiDAR point clouds (Zhang et al., 2023; Xiang et al.,
2024), which solve the segmentation task alongside with the automated retrieval
of tree parameters and stand structure.

4.1.3 Objective

During the main research period of this thesis (cf. Personal Framing on page 1),
tree-level inventories could only be envisaged as a succession of tree detection
and segmentation, followed by a subsequent description and classification of each
segment. This is why, throughout this Chapter, a prior step of individual tree
segmentation is assumed. Some tree and timber attributes are directly linked to
the geometrical distribution of the returns among a segment (like height distribu-
tions, alpha-shapes, crown characteristics, etc.), while other tree characteristics,
especially tree species, are more difficult to infer from the LiDAR point cloud. Up
until the recent advances brought by higher resolution LiDAR sensors and deep
learning, full-waveform analysis of the returns (Hovi et al., 2016; Bruggisser et al.,
2017) has been the best option for this attribution so far.

The idea in this thesis was to combine geometric and waveform information per
segment and see if this combination improves the tree species class separability.
Hence, we formulated the following research questions (RQs)3-5 for this thesis:

e RQ3: Is it possible to design a feature type which can be used to improve tree
species classification of individual tree segments by capturing the geometric
distribution of waveform properties (generated by below-footprint-scale
structures) within tree crowns?

e RQ4: Given the baseline accuracies in tree species classification by detailed
waveform analysis (Hovi et al., 2016), can the accuracy be improved even
further by considering the localization of the waveform attributes within the
tree crown? If so, how big is the gain?

e RQ5: How are the failure cases distributed among tree sizes? Trends are in-
dicative of practical relevance.
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4.2 Related Work

Different approaches have been taken in tree species identification so far, yet the
comparison between different studies is intricate. Different feature types may be
more or less descriptive, depending on the context such as the local biome (boreal,
temperate), the species composition, the number of species and the classification
depth (like a limitation on the number of classes to be distinguished, e.g. classi-
fying tree genera rather than species, or classifying deciduous vs. coniferous trees
(Heinzel and Koch, 2011)), the season (Kim et al., 2009; Hovi et al., 2016), age
distribution, site fertility, sensor characteristics and settings and stand type (ho-
mogeneous or mixed (Korpela et al., 2010b)). The final results in classification
performance may furthermore depend on the amount of and the variability within
the validation data as well as on the validation scheme, and are therefore [quite]
case-specific. Furthermore, many algorithms require parameter selections that may
have to be optimized. Thus, generic methods are eligible.

In the following, the current state of the art is assessed. Sections [4.2.1, 4.2.2 and
4.2.3] cover the general topics of segmentation, classification and feature design
for LiDAR point clouds, while different approaches in tree species classification
are summarized according to their scale of operation in Sections [4.2.4, 4.2.5 and
4.2.6]. Finally, multi-scale approaches are reviewed in Section [4.2.7].

4.2.1 Single-Tree Segmentation

Despite the fact, that there are area-based approaches for species-specific timber
volume estimation (Raty et al., 2016), we focus on single-tree species classification
in order to obtain [a] reliable evaluation []. Thus, crown segmentation is a crucial
prerequisite, and failures of the single-tree extraction reduce the quality of the
species classification result (Vauhkonen et al., 2014b). Solutions include, but are
not limited to, crown-surface-based approaches (Persson et al., 2002), k-means
clustering (Morsdorf et al., 2004), algorithms using both the crown surface and
volumetric normalized cuts (Reitberger et al., 2009) and graph-based solutions
(Strimbu and Strimbu, 2015). In (Vauhkonen et al., 2012), different single-tree
detection algorithms were compared on different testing sites, showing that the
stand density and spatial complexity (clustering or regular patterns) affect the
quality of the segmentation more than differences among the algorithms and that
most algorithms perform better in the environment they were developed in. This
sensitivity of segmentation algorithms to local allometry indeed holds true to the
current date, as Cao et al. (2023) show. Also, tree segmentation algorithms are
still only accurate for canopy trees, while detecting understory trees has remained
a common difficulty.

4.2.2 Tree Species Classification

In single-tree species classification, the different methods of discrimination include
both statistical classifiers and [discriminative classifiers]. Since one cannot usu-
ally assume linear separability or an easy-to-model distribution of features, non-
linear and non-parametric classification algorithms are especially popular (Vauhko-
nen et al., 2014b). Highly efficient algorithms such as support vector machines
(Scholkopf, 1997) and random forest classifiers (Breiman, 2001) are available in a
variety of software packages. With these classifiers, the most important prerequisite
for a successful classification is a good feature design that condenses class-specific
[characteristics| in the data into discriminant features, so that the different classes
are represented differently in the feature space. Lately, deep learning techniques
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such as [multi-view] convolutional neural networks (CNNs)[(Hamraz et al., 2019;
Marinelli et al., 2022), sparse 3D CNNs (Xiang et al., 2024) or PointNet-based
approaches (Briechle et al., 2019)] are becoming more and more popular, where
the filtering for class-specific patterns in the data is autonomously learned via
backpropagation. However, [streamlined application of these techniques remains]
intricate.

4.2.3 Feature Design

Generally, [the] design [of hand-crafted features| for point cloud classification is
highly application-specific and depends on both the data and object properties
[such as point density, geometry or surface structure, occlusions and many more].
However, some general concepts are noteworthy. For objects with densely sampled
surfaces, signatures of histograms of orientations (SHOT) (Tombari et al., 2010)
and spin images (Johnson and Hebert, 1999) have been used as descriptors of local
surface patches in object recognition (Velizhev et al., 2012). Since these descrip-
tors require a surface to define a normal vector, more general descriptors such as
3D shape contexts (Frome et al., 2004) or point feature histograms (Rusu et al.,
2009) have been designed. Furthermore, shape distributions (Osada et al., 2002)
enable a parametrization of the overall object shape. [| In ALS, the sparsity of
the data (usually 5-[50] pts/m?), the geometric imprecision and object complexity
limit the feature choice. Apart from waveform attributes describing the shape of
the recorded signal, geometric features such as point height and [statistical dis-
tribution measures| as well as the eigenvalues of the 3D covariance matrix are
usually applied (Mallet et al., 2011; Chehata et al., 2009; West et al., 2004). [Dur-
ing the course of our work in point-wise semantic labelling], shape distributions
[describing the local neighbourhood of individual returns] have also been shown to
be successful in urban scene classification of airborne LiDAR data (Blomley and
Weinmann, 2017). Apart from point-wise classification, object-based strategies in
remote sensing include shape parametrizations similar to 3D Hough transforma-
tions (Vosselman et al., 2004) and model-based segmentation (Polewski et al.,
2014).

In tree species classification, [| existing research can be grouped by three scales
of interest. The spatial distribution of backscattering within a tree segment has
been studied on a large (overall) or medium (within-crown) scale. Small structures
below the footprint size contribute to the shape and amplitude of the recorded
waveform (small scale) (see Figure 4.1).

Ve
measures
of crown shape waveform analysis
for each pulse
8 & sequence
é " or
2 a-sh
= —— clustering & N
e p distribution A k
g analysis .
= e
B
L . N N\
M i o
Large Scale Medium Scale Small Scale
N tree & crown geometry J N within-crown geometry J N within-footprint characteristics J

Fig. 4.1: Concepts used in related work on tree species classification.
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4.2.4 Large-Scale Structures

Both on individual tree and stand level, the vertical distribution of backscatter-
ing is a key observation. For individual tree species classification, independence
from the naturally varying absolute tree height is often sought by normalization
of the vertical profile (Brandtberg, 2007). However, factors such as age and site
fertility influence the species-specific rate and cessation of apical growth and thus
the crown morphology. A single species (e.g. Scots pine) may change its shape and
appearance throughout its lifetime (young pines have tapered crowns, while older
pines have a rounded apex) or take entirely different shapes depending on their
site’s conditions (pines can be small and bushy in peat bogs or mountainous re-
gions, while they can grow tall under favourable conditions). Height normalization
can therefore not eliminate the height-related effects entirely. Mostly, statistical
metrics such as moments, deciles or ratios above and below thresholds are cho-
sen to describe the height and intensity (peak amplitude) distribution of LiDAR
returns (QDrka et al., 2009; Suratno et al., 2009). In (Kim et al., 2011), length-
to-width ratios of upper percentiles of the tree segment point cloud are added
as features describing the overall shape of the crown. There are, however, more
specialized methods to assess the shape and volume of the crown. Holmgren and
Persson (2004) used features from a 3D parabolic surface fit together with sta-
tistical height and intensity features. [] Barilotti et al. (2009) [also fit] the crown
surface of individual trees [] by second-order polynomials. Dong (2009) character-
ized crown shapes by the D2 shape distribution and found no noticeable difference
in the distribution when using all returns in the segments or only those that lay on
a (15cm) surface model. Vauhkonen et al. (2009) successfully used a-shape met-
rics, a technique carving out empty space from a point cloud by a ’spherical eraser’
of radius «, for individual tree species classification. a-shape features performed
well compared to statistical height and intensity features as well as to textural fea-
tures of the crown surface model. However, it must be noted the trees in this study
were from sparse stands. a-shape features (Vauhkonen et al., 2010) and implicit
surface reconstruction (Kato et al., 2009) were also used to estimate other individ-
ual tree parameters such as crown base height (CBH) or crown volume. CBH has
also been determined by a voxel-based approach (Popescu and Zhao, 2008) and
may, under certain conditions, be informative of the tree species (Holmgren and
Persson, 2004).

In 2018, Axelsson et al. (2018) also published a geometric feature definition to
describe the large-scale distribution of returns within a tree crown by defining
concentric ellipsoidal layers within the tree crown with a fixed layer thickness
of 0.5 m. Relative return densities within ellipsoidal layers, the percentage of all
returns that fall outside of the outermost ellipsoid, and the ratio of horizontal and
vertical ellipsoid radii were then used as feature values. This approach is motivated
as identifying the variation between species with large leaves and a dense crown of
limited permeability, and other species with thinner foliage constituting a sparser
Crown.

4.2.5 Medium-Scale Structures

Within the tree crown, the spatial distribution of the 3D return coordinates may
be analysed in densely sampled LiDAR data. Ko et al. (2012) identified two within-
crown feature groups that perform well in tree species classification. One feature
group relies on segments generated by a merge-and-split algorithm, which approx-
imately follows linear branching structures, while the other feature group is based
on cluster analysis by 3D buffering (Ko et al., 2013). Both these feature groups ac-
quire results similar to those of large-scale approaches such as convex hull, a-shape
and vertical distribution features. Li et al. (2013) described four groups of within-
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crown structural features. First, they used 3D Haralick texture features deduced
from the co-occurrence matrix of the number of returns in a sub-meter voxel rep-
resentation. The remaining three groups analyse clustering and gap distribution
within horizontal slices of the tree crown. The relative degree of clustering was
quantified by the variance-to-mean ratio of the number of returns in sub-meter
quadrants. The relative scale of clustering was quantified by characteristics of the
L-function, which maps the deviation of the number of returns within a certain
radius from even distribution. Finally the gap distribution was quantified by the
variance of the frequency distribution of Delaunay-triangulation edge distances.
Feature selection indicated that features from the top layers (roughly within 6 m
from the tree top) showed the strongest structural differences between mature and
over 15m height trembling aspen, sugar maple, jack pine and white pine.

Lin and Hyyppé (2016) suggested a crown-internal feature type, that is based on
eight vertical projection profiles, aligned with the vertical centre of the tree crown
and covering a 45° rotational segment each. Partitioning each projection into 1 m
spaced grid, they then calculated 11 measures based on these values for the tree
crown.

Using ALS data of higher density, generated by repeated flight over the same
area with a typical ALS laser scanner, Harikumar et al. (2017) even managed
to model the internal branch structure of conifers and produce features such as
average branch slope, branch length, branch compactness, branch width, branch
symmetry and branch density. Those features, combined with convex hull features
describing the external shape of the crown, enabled a classification among different
coniferous species.

4.2.6 Small-Scale Structures

Below the footprint diameter, small structures such as the size, shape, orientation
and spatial arrangement of the leaves and needles affect the differential backscatter
cross-section. These target properties largely determine the time-dependent signal
from the vegetation entering the receiver, while the receiver characteristics further
influence the recorded waveform (Korpela et al., 2013) [cf. Section 2.1.5]. Thus,
the interpretation of the waveform is highly non-trivial in vegetation. Geometric
optical models have been employed to explore relationships between the waveform
shape, sensor and acquisition settings and the canopy structure (Ni-Meister et al.,
2001; Morsdorf et al., 2009; Disney et al., 2010; Hancock et al., 2012; Hovi and
Korpela, 2014).

Many studies use the intensity statistics of the raw recorded data for tree species
classification (@Orka et al., 2009; Kim et al., 2009; Yu et al., 2014). In the pres-
ence of range variation however, the raw intensities need a range normalization
(Korpela, 2008; Suratno et al., 2009; Yao et al., 2012). In linear receivers, the
normalization, using the radar equation, can be done for well-defined intersection
geometries such as even surfaces and linear or point-like targets (Wagner et al.,
2006). In vegetation however, the non-uniform irradiance field of the laser beam
falls on tilted surfaces of varying size, reflectance and spatial arrangement. The
vegetation structure varies for example with tree species, which results in different
normalization coefficients, making range normalization ambiguous (Brandtberg,
2007; Korpela et al., 2010a). Also, LIiDAR sensors need a high dynamic range,
because the signal is strongly influenced by range variation (Wagner et al., 2006).
Therefore, sensor-specific receiver gain and linearity corrections may have to be
considered in order to reach accurate radiometry [cf. Section 2.1.3].
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When analysing the shape of a recorded waveform, the most physically motivated
approach is to use a deconvolution technique using both the transmitted and the re-
ceived waveform for retrieval of the target’s differential backscatter cross-section,
sometimes also called surface response (Jutzi and Stilla, 2006). Using this ap-
proach, the discrimination of surfaces closely spaced in depth is improved, but
still limited by the bandwidth of the receiver unit [cf. Section 2.1.5]. There are
also numerous approaches that aim at modelling the received waveform by fit-
ting functions into it (see Mallet and Bretar (2009) and Hancock et al. (2015) for
reviews of different methods). This enables deconvolution analytically, but [also
has] other benefits. Peaks corresponding to individual reflectors can be detected
accurately, and attributes describing [the] target’s shape can be calculated from
the fitted functions. The method most commonly referred to in literature is to de-
compose the waveform into a sum of n Gaussian components (Persson et al., 2005;
Wagner et al., 2006; Reitberger et al., 2008). Because the assumptions made for
decomposition models are not necessarily valid in complex tree canopies or with
sensors that have varying shapes of emitted pulse and/or receiver response, others
prefer to directly use the raw waveform (Litkey et al., 2007; Yu et al., 2014; Hovi
et al., 2016).

Furthermore, when scanning tree canopies, many partially overlapping reflectors
occur within one beam path. Disambiguations arise when the illumination inci-
dence, target reflectance and the fraction of the footprint covered are unknown.
Upper ’preceding’ canopy may attenuate or even shield the laser scanners light
before reaching lower layers. To estimate the amount of pulse reflecting vegetation
from the waveform, Lindberg et al. (2012) found it was best to assume a constant
ratio between reflectance and attenuation and normalize the shape of the wave-
form by an iterative algorithm based on the Beer-Lambert attenuation law, while
Romanczyk (2015) and Richter et al. (2015) later developed both a discrete at-
tenuation correction, assuming individual interactions with clusters of scattering
material, and an integral attenuation correction, assuming a continuous non-linear
attenuation for the beam’s propagation through the canopy. For rays penetrating
to the ground, a constant ratio of canopy and ground reflectance has to be as-
sumed (Armston et al., 2013; Richter et al., 2015), which may not always be valid,
depending on the ground cover, tree species composition and laser wavelength.

Another solution that has been proven beneficial in tree species classification is a
practical distinction between only, first[,] and other (subsequent) reflections along
a beam path (Orka et al., 2009). First and only echoes, as opposed to subse-
quent echoes, are less influenced by attenuation, and only echoes, which are al-
ways strong, as opposed to first echoes, can be assumed to come from dense foliage
that covers the whole laser beam diameter. However, observing only one echo can
also be due to dark targets further along the beam absorbing the signal without
triggering the receiver.

Waveform attributes inferred directly from the signal shape have been compared
to Gaussian fitting (Neuenschwander et al., 2009; Lindberg et al., 2012). [It] has
been found that descriptive waveform attributes of noise exceeding sequences may
significantly contribute to the distinction of individual tree species (Yu et al., 2014;
Hovi et al., 2016).

Lately waveform decomposition has also been performed using a skew normal dis-
tribution function that allows for higher order statistical moments such as skewness
and kurtosis (as compared to Gaussian decomposition, which is restricted to a sym-
metrical basis function). The benefit observed for waveform attributes calculated
directly from the signal shape (which implicitly describe skewness and kurtosis)
is retained in this type of waveform decomposition (Bruggisser et al., 2017). This
indicates the importance of distributed scattering elements (such as foliage) and
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multiple scattering along the beam path for tree species discrimination in ALS
data.

4.2.7 Multi-Scale Approaches

In applications concerned with natural targets, geometric multi-scale approaches
show promising results. Using a terrestrial laser scan, Brodu and Lague (2012)
showed that the classification of natural structures benefits from evaluating
covariance-based eigenvalue features at multiple scales, arguing that the character-
istics of different structures (twigs, ground) are best captured at different scales.
[Our earlier work in the scope of this thesis] show([s] that land cover and urban
classification tasks also benefit from the combination of features from multiple
scales (Niemeyer et al., 2014; Schmidt et al., 2014; Blomley et al., 2016b).

4.3 Methodology

Overall, we follow a standard classification procedure. First, the raw recorded
waveforms are processed into individual returns, which are each described by a
position and a set of six waveform attributes as described in Section [4.3.1]. Similar
to previous studies (Holmgren and Persson, 2004; Orka et al., 2009; Hovi et al.,
2016), we distinguish between only, first-of-many and subsequent returns along
the beam path, and group them into three return type groups: only, first-or-only
or all returns. Only returns provide the clearest data, as they occur when the full
laser footprint is covered by pulse-reflecting matter, yet they include little spatial
distribution information as they mostly occur at the dense top of the crowns.
The groups of first-or-only and all returns are incrementally more permissive and
could possibly lead to a loss of information due to the mixture of different return
types, yet they might also lead to an information gain due to the improved spatial
coverage of canopy parts, that cannot be measured without preceding occlusions.
The three groups of return types used in this study are chosen to reflect this
natural trade-off. Secondly, [both established feature types as well as our novel spin
image feature type] are calculated separately for all three return type groups per
tree segment, as summarized in Sections [4.3.2 and 4.3.3]. Finally, we employ the
classifier and evaluation scores described in Sections [4.3.4 and 4.3.5] respectively.

4.3.1 Waveform Processing

Waveform attributes are extracted using the same implementation documented in
(Hovi et al., 2016), who implemented a waveform decomposition strategy which
achieved a very good species separability for pine, spruce and birch in a boreal
forest environment. In short, the recorded waveforms are divided into returns, each
of which represents a continuous noise-exceeding amplitude sequence (NEAS). The
noise threshold was determined from empty tail-parts of the waveform recordings
that fall below ground level. The parameters are the degree of low-pass filtering,
the noise threshold and the minimum plausible length, which were adopted from
Hovi et al. (2016), except for the length, which was reduced from 5ns to 1ns,
which slightly increased the number of first-of-many and subsequent returns. Each
return is then spatially assigned to the coordinate of the highest amplitude in the
sequence. The coordinates are used in assigning the return to a tree segment as
well as in calculating geometric features. Six descriptive attributes are calculated
from the shape of the sequence. Those attributes include the amplitude A of the
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highest peak, the total energy F integrated over the sequence, the length L of
the sequence, the full-width half maximum [| FWHM [of the sequence], the length
EQ50 of the sequence after which 50% of the total sequence’s energy has been
deposited at the sensor, and the number # P of peaks in the sequence.

4.3.2 Established Features for Comparison

Pursuing [RQ3], [we aimed to design a feature type which would capture the
geometric distribution of waveform attributes among a tree crown. For this purpose
we chose to adapt the feature type of spin images (Johnson and Hebert, 1999),
proposed originally as surface point descriptors on densely meshed object model
surfaces. Our implementation of this] feature type can [produce| both [] purely
geometric feature[s (as in their original implementation)], when the local return
density is evaluated (spin images of the local return density), as well as [] feature][s]
describing the geometric distribution of waveform attributes within the crown
(spin images of waveform attributes). The spin image features are compared both
to geometric a-shape features and to non-spatial waveform attribute features.

4.3.2.1 a-Shape Features

The a-shape features are calculated according to Vauhkonen et al. (2009) as the
volumes inside and outside of a-shape components divided by the cubic of the
tree’s height and as the number of a-shape components divided by the tree’s
height. We used all relative height sections (except for those falling below 10 %
and only above 98 %) and « values of the above-mentioned reference, resulting
in 486 feature values per tree segment. Due to the large number of parameter
variations, some redundancy is to be expected among the feature values.

4.3.2.2 Non-Spatial Waveform Attribute Features

Non-spatial statistical metrics of waveform attributes are calculated according to
Hovi et al. (2016) from those returns that fall within the top 40% of the tree
segment. They comprise the first four statistical moments and the deciles. If cal-
culated separately for only, first-or-only or all returns within the tree segment,
they amount to 42 feature values per waveform attribute. Some of them may hold
redundant information, as the moments and deciles are alternate descriptors of
the shape of the distribution.

4.3.3 Spin Image Features

The aim in developing spin image features for tree species classification was to
capture the geometric distribution of values within the crown in relatively few
features, while maintaining a high descriptiveness. The number of feature values is
adaptively chosen according to the degree of variability in a set of representative
data.

The procedure of calculating spin image features is adapted from a technique,
which was originally proposed as descriptors of local properties for meshed object
model surfaces (Johnson and Hebert, 1999). In the following paragraph, we will
first discuss model assumptions about the tree crown structure and explain the
motivation of adopting spin image features for tree species classification. After-
wards, the three main processing steps of the method, visualized in Figure [4.2],
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are explained in detail. As a first step, an image plane is spun around a defined axis,
collecting the number of returns or the mean value of waveform attributes per pixel
as respective values. In the second step, a principal component analysis (PCA) is
used to identify the components of highest variability that this representation has
among a set of library trees. Those components are given by the eigenvectors €;
of the PCA, that may be visualized as eigen-spin images. As a third step, feature
values are extracted for every individual tree segment by projecting the individual
tree’s data onto the most relevant eigen-spin images.
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Fig. 4.2: Overview of the [proposed] spin image method. Returns are first sampled
to a rotating image plane for each tree, producing a data vector d. Sampled data
is then collected from sample trees to form a library L. By principal component
analysis, variable components within the library are identified as eigenvectors €;.
Finally, the original data d is projected into the eigenvector space, producing a
single feature value (linear combination) f; for each eigenvector é;.

4.3.3.1 Motivation

A tree’s shape and internal structure are the result of both intrinsic growth be-
haviour and reactions to external conditions and forces, such as local lighting or
mechanical stress. While external conditions are highly variable throughout in-
dividual cases, feature development is interested in those structural traits which
apply universally due to intrinsic growth behaviour and which may hold informa-
tion relevant for species distinction.

Generally, tree growth is governed by a set of botanical mechanisms. Negative
gravitropism (growth against the direction of gravity) and phototropism (growth
towards the light) cause branches to grow upwards, but they are counteracted by
epinastical suppression of subordinate branches (hormone-induced outward and
downward bend of older branches lower down the tree). Therefore, the optimum
compromise of branch angles, and thus the internal structure of the tree crown
changes with both the vertical distance from the tree apex and the horizontal dis-
tance from the stem (Mattheck, 1991, page 10). Structural traits should therefore
be on average invariant under a rotation transformation, while the axis of rota-
tional symmetry is vertical due to the effect of negative gravitropism.

It is known, that there are differences among tree species concerning their strategy
of biomass allocation, crown structure and leaf morphology (Menalled and Kelty,
2001; Alves and Santos, 2002; Koike et al., 2001). Those differences will affect both
the shape of the recorded waveform — and thus the attributes derived (Korpela
et al., 2013; Hovi and Korpela, 2014) — as well as the returns’ distribution among
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the crown. It should therefore prove beneficial for species identification to evaluate
the returns’ waveform attributes with regard to their relative position to the origin
of symmetry. This is equivalent to the evaluation on a rotated image plane, where
the spinning axis corresponds to the natural axis of symmetry. Note, that every
individual tree is not assumed to fulfil the rotational symmetry, as uneven lighting
conditions or mechanical stress may cause each individual tree to grow differently.
The species-specific structural traits however are on average symmetrical.

By exploiting the rotational symmetry, the spatial complexity is reduced by one
dimension and the observations are presented in a dense representation without a
general loss of their descriptiveness regarding the tree species. This dense represen-
tation is particularly valuable for ALS data, as the tree may be partially occluded
from some directions and sparsity is a general constraint, given that lower flying
height and more overlap increase acquisition costs.

4.3.3.2 Geometric Sampling

The first step of the spin image method is therefore to use a vertical spinning axis
and sample the attributes within each individual tree segment to the pixels of an
image plane rotated around the axis (Figure [4.2], left box). This results in a data
vector d of length d = #pixels for each waveform attribute per tree.

In our implementation, the horizontal position of the vertical spinning axis is de-
termined by the highest return in the segment. Quality measures for the goodness
of this positioning are not generally attainable. Holmgren and Persson (2004),
in a similarly rotation-symmetric approach, used the highest return as an origin
for their parabolic crown surface fit and validated these positions against field-
measured stem positions. However, it is to be noted that the position of the sym-
metry axis does not necessarily coincide with the stem position measured at the
ground, since possible curvature of the stem would have to be considered. Therefore
we compare the placement of our spinning axes to positions of tree tops measured
manually in airborne images during our method’s evaluation in Section [4.5.1].

Parameters, which have to be set for the geometric sampling on a rotating image
plane, are both the image’s horizontal and vertical dimension as well as its pixel
size. In the original spin image approach, Johnson and Hebert (1999) evaluated the
descriptiveness of spin images of varying pixel size. Their findings suggested that
spin images were most descriptive when the pixel size was approximately equal
to the surface mesh resolution of the model. Experiments, presented is Section
[4.5.2], evaluate if an equivalent relation holds true in the case of ALS data for
tree segments. The horizontal image dimension is kept at a fixed value of 5m,
because very few trees are expected to exceed this range. If crowns are generally
smaller, the peripheral areas of the spin images will sample very few returns due
to the previous tree segmentation. Therefore, this parameter is non-critical. The
influence of the image’s vertical dimension is evaluated in Section [4.5.2] too.

4.3.3.3 Principal Component Analysis

As a second step (Figure [4.2], middle box), the most variable components of the
data on the spinning image planes are identified by PCA. To do so, a library
of n representative sample trees is required, whilst the variability among the li-
brary data should cover the species-specific differences in a representative manner.
Therefore, the library trees are chosen as a balanced sample of species and age
classes.

87



—

The mean of all library data vectors afl, ..., dy is first subtracted from each data

vector d:
S . 1 S
d=d- = 4.1
>3 (41)

i=1

All n mean-subtracted data vectors d’ of length d of the library trees then form a
d x n library data matrix L:

L= [J’l,...,c?n} . (4.2)

The eigenvalue decomposition of the d x d covariance matrix Cov (L) = L-LT now
yields a set of linearly uncorrelated eigenvectors €; and eigenvalues \;:

Each eigenvector €; represents one dimension of variability in the library data.
The magnitude of the eigenvalues ); indicates the proportion of variance in L
that is covered by the corresponding eigenvector €;. Since the eigenvectors of the
library data matrix are of the same dimension as the spinning images, they may
be visualized as an image (as in Figure [4.2], right box) and are hereafter referred
to as eigen-spin images.

4.3.3.4 Projection to Feature Values

Finally, feature values are generated by projecting the data d of an individual
spinning image onto the most relevant eigen-spin images (Figure [4.2], right box).
As projections onto those eigen-spin images, which represent only little variability
in the library data — indicated by small corresponding A\;s — may be omitted, the
total number of feature values is greatly reduced. We use only those eigen-spin
images for feature calculation, whose \;, starting with the largest \;, sum up to
50% of the sum of all \;s. The projection

CZ’ é; = Z (dpx . eipx) = fz (44)

px

is the sum over all image pixels weighted with the corresponding entry of the
eigen-spin image. Image areas which generally lie outside of the crowns or return
constant values have eigen-spin image entries close to zero and therefore contribute
less to the feature’s values than areas which experience high variability among the
library data.

4.3.4 Classtfication

Segment-wise classification is performed by a random forest (RF) classifier (Breiman,
2001). [As explained in Section 2.3.2, the] RF is a representative of [| ensemble
learning methods (Schindler, 2012), that provides a good trade-off between classi-
fication accuracy and computational effort (Weinmann et al., 2015). [... In our ex-
periments,] neither the depth of the individual decision trees nor the total number
of decision trees show[ed] a significant influence on the classification performance].
Therefore,] no exhaustive parameter optimization [was| required.
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4.3.5 Fvaluation

Evaluation is performed with respect to standard evaluation metrics, as given in
Section 2.5.

4.4 Material

The proposed method is tested for the classification of individual trees in a bo-
real forest environment. This section introduces the study site (Section [4.4.1]),
field data (Section [4.4.2]) and two ALS datasets (Section [4.4.3]) alongside the
radiometric corrections applied to them (Section [4.4.4]). Finally, statistics of the
individual tree segments used are given (Section [4.4.5]).

4.4.1 Study Area

The study area is located in Hyytiala (62° N, 24° E), Finland and represents boreal,
mostly even-aged and commercially managed forests. Scots pine (Pinus sylvestris
L.) and Norway spruce (Picea abies (L.) Karst.) are the prevailing species, mixed
with a small degree of deciduous trees, most of which are birches (Betula pendula
Roth. and Betula pubescens Fhrh.). The study area extends over 2km x 6 km and
contains 175 permanent forest plots, within which each tree has been mapped and
described. Among the plots, there are 35 % pine, 49 % spruce and 13 % birch trees.
The plots vary in complexity and represent a variety of forest types: managed
and pristine forests, mineral and peat soils as well as pristine and drained mires.
More information on the site can be found in related publications (Korpela, 2006;
Korpela et al., 2010b).

4.4.2 Field Data

The initial mapping of the trees was done either by real-time kinematic positioning
(RTK) [] or by a combination of photogrammetric treetop positioning, followed by
field triangulation/trilateration (Korpela et al., 2007). The positioning accuracy
of stems is generally better than 25-30 cm (Hovi et al., 2016). The tree data used
in this study belongs to 115 plots, for which species, crown status and stem DBH
were re-measured in May-July 2013. An estimate of tree age was available from
historic records and bore core samples (Korpela et al., 2010b).

4.4.3 ALS Data

For our investigations, two leaf-on early summer waveform-recording LiDAR
datasets with only two and a half weeks between the acquisitions are used. Ta-
ble [4.1] summarizes the LiDAR data characteristics. Both sensors differ in re-
ceiver and amplifier technology, which is important as it affects the likelihood to
detect first-of-many and subsequent returns. The different pulse lengths further
determine if consecutive targets along the ray will be recorded as one or several
returns. Furthermore, the different scanning technology results in a different sam-
pling geometry, which may also affect the within crown distribution of waveform
returns. Thus, the sensor setup has a significant effect on both the geometrical dis-
tribution of waveform returns and the deduced waveform attributes [as explained
in Section 2.1].
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The Riegl LMS-Q680i sensor uses a rotating polygonal mirror setup, which results
in a line-wise scanning pattern. To record the waveform information, this sensor
samples returning pulses at a 1ns rate. The triggering mechanism of the wave-
form storage is unknown for this instrument, but up to four 80 ns-long sequences
were observed per pulse. The LMS-Q680i has two fixed receiver gain channels, and
for the lower range of intensities (below 150 units) the amplitude scale is linear
with respect to power entering the receiver. As the data were recorded from a
relatively high [flying height] with high pulse repetition frequency, all recorded
data were within the lower half of the receiver range. The full width half maxi-
mum (FWHM) of the system waveform (SWF) (as defined in (Hovi and Korpela,
2014)) was measured to be 4.5ns at perpendicular incidence on a flat target.

The Leica ALS60 uses an oscillating mirror setup, which results in a scanning
pattern of sinusoidal shape. Here, a constant fraction discriminator is employed to
detect the first echo within each pulse. This first echo then triggers a 256 ns-long
continuous waveform recording at a 1ns sampling rate. The ALS60 employs an
automatic/active gain control (AGC) circuit that changes the receiver gain on the
fly by up to 3dB. Therefore the resulting amplitude values have to be corrected
for the varying gain. For this instrument, the FWHM of the SWF was measured
as 7.8 ns, while that of the transmitted pulse is only 4 ns according to the system
manufacturer.

Riegl LMS-Q680i Leica ALS60

date May 28th, 2013 June 15th, 2013
time 08-09 GTM 21-00 GTM
flying height 760 m 700 m
divergence (1/e?) <0.5mrad 0.22 mrad
footprint diameter (1/e?) 40 cm 15cm

scan zenith angle 30° 15°

strip overlap 75 % 55 %

pulse density 20 1/m? 101/m2
laser wavelength 1550 nm 1064 nm
FWHMswr 4.5ns 7.8 ns
waveform sampling rate 1ns 1ns

# of samples per sequence multiples of 80 single 256

# of receivers, type 2, low & high gain 1, AGC controlled
scanning pattern lines sinusoidal

Table 4.1: Main characteristics of the two datasets.

4.-4.4 Radiometric Correction

Both a range-dependent physical [correction] and [a] sensor-specific correction were
employed to achieve accurate radiometry.

Physical Range-Dependent Correction
Since the scanning laser beam is divergent and the receiver aperture is of constant

size, the incident power is dependent on the range distance ([p]) between laser
scanner and target. We therefore normalize the recorded signal Sj,. across the
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dataset to obtain range-normalized data Scopr:

a
Seorr = (Sine — ) - < L > . (4.5)
Pref

c is a constant, set to the average noise level in the waveform recording data,
and [pref] is the average scanning range. The exact relation depends on the target
geometry [cf. Section 2.1.3]. According to theory, the exponent a can take values
between 2 and 4, where 2 is valid for flat surfaces, 3 for linear structures and 4
for point targets (Wagner et al., 2006). Studies by Gatziolis (2009) and Korpela
et al. (2010a) in discrete return intensity data indicated that a value between 2
and 3 provided best fits for different vegetation types. We therefore use a = 2.5.
The exact optimum for a is in fact species-dependent (Korpela et al., 2010a), but
since there is less than 5 % range variation in our data, this effect is small.

Sensor-Specific Amplitude Correction

Furthermore, sensor-specific amplitude corrections are necessary if the amplitude
response is non-linear. For the LMS-Q680i, no correction is necessary, as all am-
plitudes are within the linear part of [the] input range, and therefore the recorded
signal S;ec is proportional to the incoming signal Siyc:

Sinc ~ Srec~ (46)

For the ALS60 however, the impact of the AGC circuit has to be taken into
account. We use the model provided by Hovi and Korpela (2014) to correct the

recorded signal S;ec:
1
Sinc ~ ° Srec, 4.7
1+ AGCvoltage b ( )
where the parameter b has been derived from well-defined homogeneous surfaces
of varying reflectance.

4.4.5 Tree Segments

Autonomous individual tree segmentation (Reitberger et al., 2009; Vauhkonen
et al., 2012; Strimbu and Strimbu, 2015) is not aimed for in the scope of this
work. Instead, we use very conservatively chosen segments while also aiming for
consistency with a comparable study on the same ALS60 data (Hovi et al., 2016).
There, the segments are generated by a watershed algorithm aided by ground truth
measurements to optimize the segmentation to produce single tree segments. This
process results in a slight selection bias towards larger than average individuals
and yields 3630 segments in total. Segments with less than three returns among
the group of only returns are excluded from classification, since some non-spatial
waveform attribute features are ill-defined in these cases. To ensure full compara-
bility to the above-mentioned reference, identical segment boundaries are used for
both datasets in this study.

Table [4.2] gives an overview of the number of segments available per species and
age class. Furthermore, Table [4.3] gives an overview of the mean number of returns
per segment and return type in both datasets. For comparative classification, a
fixed set of training segments is used. The same total number of segments is chosen
at random from each of the three tree species, corresponding to 75% of all trees
in the smallest class (cf. Table [4.2]). In total, 849 tree segments are chosen for
training, while the evaluation of the classification results is performed on all 2353
remaining tree segments.
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premature mature old total

Pine 826 157 196 1179
Spruce 740 477 443 1660
Birch 284 45 34 363

Table 4.2: Distribution of the tree segments according to species and three differ-
ent age classes, representing different periods of tree life (premature: 30-60 years;
mature: 60-100 years; old: >100 years).

return type  Riegl LMS-Q680i Leica ALS60

only 135 104
first-of-many 213 78
subsequent 346 101
only 135 104
first-or-only 348 182
all 694 283

Table 4.3: Mean number of returns per tree segment for different return types
(top) and the defined return type groups (bottom).

4.5 Results

To evaluate and optimize the feature design presented in Section [4.3.3], we un-
dertook a series of different experiments. As these experiments are concerned with
the way that geometric distribution is captured, they are performed using spin
images of local return density and not one particular waveform attribute. First,
we challenge the validity of the positioning of the spinning axis (Section [4.5.1]),
secondly we evaluate the effect of free parameters (Section [4.5.2]), and finally we
evaluate the performance of the spin images of local return density in comparison
with a-shape features (Section [4.5.3]).

After this thorough testing and adjustment of the spin image method, we further
tested whether the geometric distribution of waveform attributes, captured by spin
images of waveform attributes, could indeed provide improvements in tree species
classification (Section 4.5.4) and analysed the failure cases which remain in the
classification (Section 4.5.5) to see whether there is a certain trend in this method
to miss particular types of trees.

4.5.1 Choice of Symmetry Axis Compared to Manual Tree
Top Measurement

The placement of the spinning axis is of crucial importance to the spin image
method. However, as the tree stems are not necessarily straight and the stem po-
sition is not necessarily identical to the centre of the crown, the tree positions at
ground are no reliable validation data.
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In the Hyytiéla study area, the tree top position of most of the trees, which are
used in this study, had been measured semi-manually by photogrammetric mono-
plotting for a different study in 2011 (Korpela et al., 2011). We assume now that
any changes between the acquisition of the aerial image and LiDAR campaigns
in 2011 and the LiDAR campaigns in 2013 are mainly related to vertical tree
growth, by which the horizontal position is largely unaffected. Figure [4.3] shows
species-wise cumulative histograms of the horizontal distance between the 2011
monoplotting positions and the positions of the highest LiDAR returns within a
tree segment, which we use to define the rotational axis.

It can be seen, that the median displacements for spruce and pine are 27 cm and
32 cm respectively, while the distributions are almost identical[] in the two datasets.
For birch however, the median displacement is 42 cm in the ALS60 data and 58 cm
in the LMS-Q680i data. Possible causes, why the results among the two datasets
differ only for birches could either be the different prevailing wind conditions on
the two acquisition days, as birches sway more in the wind than pine or spruce
(Korpela, 2004), the circadian movement of birch branches and foliage (Puttonen
et al., 2016), or planimetric offsets in LiDAR data in those parts of the study
area, where the birch-rich plots are. The average (per-minute) wind speed was less
than 1m/s for the ALS60 and about 4m/s for the LMS-Q680i acquisition (Junninen
et al., 2009), which supports the theory of wind sway.

Both the manual tree top measurement and the positioning by the highest LiDAR
return are subject to random and systematic errors. The standard deviation of
the planimetric monoplotting positions is 10-30 cm, while strip and campaign level
offsets in LiDAR have been in the order of 10-20 cm in Hyytiéld. The horizontal
tree top displacement in Figure [4.3] is moderately higher than the combination of
those two uncertainties. Furthermore, the displacement is mostly below the chosen
pixel sizes of the spin images. Therefore, we conclude that the placement of the
spinning axis at the highest return of the segment is uncritical and, despite its
simplicity, a valid choice.
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Fig. 4.3: Cumulative histogram of horizontal displacement between tree top posi-
tion measured manually by photogrammetric monoplotting (2011) and the position
of the highest LIDAR return (2013).
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Fig. 4.4: Classification results for spin images of local return density. Results are
plotted for varying pixel size and constant vertical reach of 14 m. The diagrams
show the k classification results as grey values for different pixel size and a varying
number of features. The left diagram shows results based on LMS-Q680i data,
while the right shows those based on ALS60 data.

4.5.2 Effect of Parameter Choices

As explained in Section 4.3.3.2, the three free parameters of the spin image method
are the rotating image’s pixel size, horizontal and vertical reach, whereas the hor-
izontal reach is uncritical and can be kept as a fixed value of 5m. The other two
parameters’ influence on the classification performance however are evaluated in
this section.

The Rotating Image’s Pixel Size

The question arose during feature development (cf. Section [4.3.3]), if there is an
optimum pixel size which depends on the mean sampling distance (cf. (Johnson
and Hebert, 1999)) of the input data. Thus, we define the mean sampling distance
d, for ALS data from the 2D pulse density p and evaluate the influence of pixel
size for a range of k = 2"/ with i = —2, ..., 6.

ds =15 (4.8)
pixel size = k - ds (4.9)

Smaller pixel sizes maintain a higher spatial resolution on the rotating image plane
and produce more eigen-spin images, therefore leading to a larger number of spin
image features per tree, while larger pixel sizes introduce a higher degree of spatial
averaging and condense the distribution information to fewer spin image features
per tree. A compromise has to be sought, where the distribution information is
captured well without introducing redundancy among the features [or loss of in-
formation].

Therefore, the number of features used in classification has to be taken into ac-
count in the optimization process. If this was disregarded, an optimization of the
total classification accuracy is likely to introduce a bias towards small pixel sizes
and a large number of features, while the quality of the single features may actu-
ally be reduced. In Figure [4.4],  classification results are therefore plotted for one
to ten features (added in descending A;’s order) for all pixel sizes in the given range.
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Fig. 4.5: Classification results for spin images based on the number of returns.
Results are plotted for a varying vertical dimension of the spin images. The left
diagram uses data from the LMS-Q680i data with a pixel size of ~89cm, while
the right diagram shows ALS60 data with a pixel size of ~127 cm.

In Figure [4.4], it can be seen that very small pixel sizes are detrimental, while
only a slight decrease is observed for the larger pixel sizes in the given range. These
findings are in good agreement with the study of pixel size over mesh resolution by
Johnson and Hebert (1999) in Figure 6 ibidem. For the LMS-Q680i (Figure [4.4],
left) an optimum in the k for classifications with ten features is found at a pixel
size of 89 cm, while this pixel size also performs well at lower numbers of features,
indicating that the individual features are descriptive. For the ALS60 (Figure [4.4],
right), an optimum pixel size is found at 127 cm, which again performs well for
lower numbers of features. Therefore, pixel sizes of 89 cm and 127 cm are chosen
throughout our other experiments.

The Rotating Image’s Vertical Dimension

As the rotating image’s vertical dimension is of lesser influence to the number of
features available (the dependence is only linear, as compared to the quadratic
dependence in pixel size), the effect of this parameter is presented in Figure [4.5]
by classification results for ten features per classification only. k increases notably
for an increase in the vertical dimension from 6 m to 12m, while a slight decline
is observed again for 16 m. The optimum, which is used in further experiments, is
14m for the LMS-Q680i and 12 m for the ALS60.

4.5.3 Geometric Descriptiveness of Spin Images Compared
to a-Shape Features

To finally evaluate if the spin image method proposed is a good choice to capture
geometric distributions within the tree crown, we compare them to a-shape fea-
tures, which are commonly viewed as potent descriptors of crown geometry (Ko
et al., 2012; Vauhkonen et al., 2010). Table [4.4] compiles the respective classi-
fication results. It can be seen that the classification results using all available
features (all 70/40 spin image features or all 486 a-shape features) are on par.
While the spin image features perform slightly better than the a-shape features
on the LMS-Q680i data, the situation is the opposite on the ALS60 data. This
is probably due to the fact that the LMS-Q680i data, compared to the ALS60
data, has more subsequent returns that fall within the tree crown and spin image
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Fig. 4.6: k classification results, when spin image features (solid lines) of local
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one by one. The order is given by an importance measure estimated by the RF
classifier.

Riegl LMS-Q680i Leica ALS60
features # kin % # kin %
spin image best 3 47.6 best 3 44.9

best 10 54.0 best 10 55.9

all 70 59.0 all 40 57.6
a-shape best 3 37.8 best 3 41.8

best 10 47.1 best 10 42.6
all 486 56.8 all 486 61.7

Table 4.4: Comparison of k classification results using either the three best, ten
best or all spin image and a-shape features.

features evaluate the return density throughout the crown, while a-shape features
are more descriptive of the hull of the point cloud.

However, the aim in using spin image features for tree species classification is not
only to build a good descriptor of tree crown geometry, but to utilize the geo-
metric distribution of waveform attributes. As there are always several waveform
attributes to be considered, this multiplies the total number of features, while very
large numbers of features are known to be potentially detrimental to the classifi-
cation performance (Hughes, 1968). Therefore, it is important that the geometric
distribution is characterized well by a small number of features. Figure [4.6] shows,
how the classification result develops, when features are added one by one in the
order of importance estimated by the RF classifier. It can be seen both from the
results in Table [4.4] and Figure [4.6], that the spin image features excel in compar-
ison to the a-shape features by a higher descriptiveness when only a few features
are allowed in the classification.
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4.5.4 Species Classification I'mprovement

To evaluate if the tree species classification accuracy can be improved by consid-
ering the spatial distribution of waveform attributes within the crown as captured
by spin image features, a detailed comparison is conducted. Classifications are
performed using spin image features, non-spatial statistical features and the com-
bination of both feature groups. Each of these are tested for one waveform attribute
at a time, as well as for the combination of all waveform attributes. Cohen’s k co-
efficient (k) classification results for only, first-or-only and all returns as well as
for the combination of features from all three groups are reported in Table [4.6].
Meanwhile, Table [4.5] gives the overall accuracy (OA) for classification results
with all waveform attributes.

These results show that the classification with all 70 (ALS60) / 40 (LMS-Q680i)
spin images of waveform attributes alone does not perform as well as the classifi-
cation with all 42 non-spatial waveform attribute features, but that the combina-
tion of both feature types yields an overall improvement. The spin image features
therefore hold some information complementary to the non-spatial [per segment
metrics].

Among the results of individual waveform attributes, the variability among the
spin image results is lower than that among the non-spatial results. The gain
however, from the combination result of all waveform attribute features, over the
mean of the individual results, is always higher for the non-spatial features. This
suggests, that the spin image features of the different waveform attributes contain
some common or correlated information (e.g. the geometric distribution).

To evaluate the performance of different species in the classification results, Ta-
ble [4.7] gives an overview of precision, recall and Fj-score. Those results indicate
that for pine there is no improvement in the LMS-Q680i data and a small improve-
ment in the ALS60 data. For spruce, some improvement is seen for both datasets.
For birch, which is generally much more difficult to classify than the other species,
a substantial improvement is observed when spin image features are added. Among
both datasets, this improvement is mainly due to an increased precision, but recall
values are also slightly improved.

Riegl LMS-Q680i Leica ALS60
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only, first-or-only and all 82.6 94.5 95.1 0.6 829 94.8 959 1.1

only 79.6 92.9 929 0.0 79.7 939 95.0 1.1
first-or-only 78.0 92.1 935 1.4 81.1 94.1 954 1.3
all 80.2 91.0 93.6 2.6 81.0 93.6 94.7 1.1

Table 4.5: OA in % for classification with waveform attributes for different groups
of returns. Improvements are marked in bold.
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Riegl LMS-Q680i Leica ALS60
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only, first-or-only and all
All 69.6 90.1 91.2 1.1 70.0 90.5 924 2.0
A 63.1 67.5 774 9.9 65.0 78.6 84.3 5.7
E 63.9 64.1 789 14.8 63.3 87.0 89.1 2.1
L 66.4 68.6 76.7 8.1 51.3 57.1 67.0 9.9

EQ50 58.2 70.5 771 6.5 504 43.2 63.7 20.5
FWHM 649 71.0 776 6.6 54.6 69.8 74.6 4.8

#P 53.1 35.2 60.8 25.7 51.6 23.5 52.5 29.0
only

All 65.2 87.1 87.1 0.0 64.7 88.9 91.6 2.8

A 57.9 51.9 70.6 18.7 56.8 72.7 80.4 7.8

E 58.5 57.6 73.8 16.2 55.5 84.1 87.7 3.6

L 58.9 56.6 68.8 12.2 48.2 49.7 62.8 13.1

EQ50 52,5 63.7 71.3 7.6 43.6 36.5 59.6 23.1
FWHM 60.1 626 71.8 9.2 46.9 59.9 68.2 8.3

#P 52.8 21.2 54.6 33.4 43.6 23.4 48.4 25.1
first-or-only

All 61.7 85.8 88.2 2.4 67.0 89.3 91.6 2.3

A 55.2 62.4 73.5 11.1 59.3 76.5 82.1 5.7

F 52.2 56.1 70.5 14.4 60.2 85.2 87.5 2.3

L 53.5 63.5 72.0 85 45.2 49.5 61.1 11.6

EQ50 45.3 56.3 68.3 11.9 39.6 354 56.1 20.8
FWHM 532 57.7 71.1 13.3 424 56.6 68.4 11.7

#P 44.8 38.2 51.0 12.8 37.9 14.0 43.6 29.6
all

All 65.2 83.8 88.3 4.6 66.9 88.4 90.3 1.9

A 57.0 54.3 73.0 18.7 51.6 75.7 81.9 6.3

E 58.1 50.3 71.6 21.3 58.1 84.1 87.6 3.5

L 58.0 60.8 73.5 12.7 45.3 45.5 58.3 12.8

EQ50 33.4 53.2 66.1 12,9 276 31.2 49.2 18.0
FWHM 423 57.0 68.5 11.5 39.3 54.7 66.0 11.3
#P 37.3 37.0 52.7 15.7 32.7 14.0 39.9 25.9

Table 4.6: x in % for classification with waveform attributes for different groups
of returns. The improvements using all attribute types are marked in bold.
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Riegl LMS-Q680i Leica ALS60

Improvement
Spin Images
Non-spatial
Combination
Improvement

Spin Images
Non-spatial
Combination

Pine
I 79.1 944 944 0.0 84.3 95.6 96.3 0.7
precision 83.5 95.0 95.3 0.3 84.1 95.5 96.0 0.5
recall 75.1 93.9 93.6 -0.3 84.6 95.7 96.7 1.0
Spruce
Fy 91.8 97.1 97.8 0.7 87.4 958 96.8 1.0
precision 94.9 98.2 98.6 0.4 92.0 96.5 97.4 0.9
recall 88.8 96.0 97.1 1.1 83.3 95.1 96.3 1.2
Birch
Py 473 76.8 79.1 2.3 51.5 82.5 85.6 3.1
precision 35.0 69.1 71.7 2.6 40.5 783 83.1 4.8
recall 73.0 86.5 88.2 1.7 70.8 87.1 83.2 1.1

Table 4.7: Precision, recall and Fi-score in % for all three species in classifications
with all waveform attributes of only, first-or-only and all returns. Improvements
in the Fi-score are marked in bold.

4.5.5 Failure Cases

The given approach is chosen to be sensitive towards the overall crown shape and
size, which of course also varies within a species. Indicators linked to this vari-
ability may be age as well as environmental factors like stand density or climate.
To check if the overall tree size has an effect on the misclassification likelihood,
species-wise histograms of correctly and incorrectly classified trees are plotted over
the tree’s DBH in Figures [4.7] and [4.8]. Furthermore, the percentages of these
trees classified as either of the three species are denoted by red lines (spin image
features), green lines (non-spatial features) and blue lines (combination of spin
image and non-spatial features).

For spruce, the classification performs generally very well across all DBH sizes in
both data sets, while occasionally small spruces between 11 and 14 cm are mis-
taken for pine. Pines are generally classified correctly at those DBH sizes that
occur most frequently in the given data (approximately 11-35cm). Small pines
are, in this case, often misclassified as spruce, which is hardly significant though
given the very small number of individuals (only 8 pines in total [have a DBH]
smaller than 11 cm). Larger pines, however, tend to be mistaken for birches, an
effect that grows significantly larger for pines above 29 cm DBH in both data sets,
while being slightly more severe in the LMS-Q680i data compared to the ALS60
data.

Birches are generally classified correctly, while there is a stronger confusion with
pine among very small trees under 14 cm DBH. Large birches, even though not
so frequent in the given data, are largely classified correctly. However, all of the
misclassification cases are largely improved in the classification scenario with both
spin image and non-spatial waveform attribute features combined. Compared to
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Spin Images:
Pine 75.10 5.75 19.15 84.58 837 7.06
Spruce 7.64 88.81 3.55 8.87 83.29 7.84
Birch 19.66 7.30 73.03 16.29 12.92 70.79
Non-spatial:
Pine 93.85 2.32 3.83 95.67 3.53 0.81
Spruce 1.91 95.98 2.11 252 95.09 2.39
Birch 11.8 1.69 86.52 449 8.43 87.08
Combination:
Pine 93.55 1.81 4.64 96.67 242 0.91
Spruce 1.84 97.07 1.09 2.18 96.25 1.57
Birch 10.67 1.12 88.20 449 7.30 88.20

Table 4.8: Confusion matrices normalized to ground truth in % in classifications
with all waveform attributes of only, first-or-only and all returns.

the non-spatial waveform attribute features alone, the combination with spin image
features especially improves the misclassification cases of medium to large pines
in both data sets.

4.6 Discussion

During the first part of our Discussion in Section 4.6.1, we discuss the work pre-
sented so far. We start out with the thorough testing of our method and its appli-
cational performance, and continue to compare our results to other publications
that were released shortly after (Bruggisser et al., 2017; Shi et al., 2018). These
partly covered similar ground in terms of (waveform) feature analysis and relevance
assessment. We were able to find congruent results and could relate differences to
differences in the respective study sites and sensor technology. We could also in-
tegrate our work with other studies in the field on the basis of a comprehensive
review paper published in 2021 (Michatowska and Rapiriski, 2021). In Section 4.6.2
we further researched the field from a current perspective, trying to evaluate the
possible benefit that could be achieved by deep learning technology. Other than in
our chapter on point-wise semantic labelling (cf. Section 3.6.2), we could only find
two publications that used deep learning strategies on the problem of tree species
classification in data of similar characteristics as ours. Neither of them could show
a clear advantage compared to studies using advanced application-specific man-
ual features with an appropriate discriminative classifier. However, the years that
passed since the initial publication of our work did also bring about new advances
in sensor technology, which in turn facilitate the use of more detailed strategies of
data analysis. Those are discussed later during Section 4.6.2.
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Fig. 4.7: DBH histogram of trees classified according to only, first-or-only and all
returns of the LMS-Q680i data. Light grey bars denote the total number of trees,
medium grey those classified incorrectly by spin image features alone, dark grey
those classified incorrectly by non-spatial features alone and black those classified
incorrectly by the combination of both feature types.
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Fig. 4.8: DBH histogram of trees classified according to only, first-or-only and all
returns of the ALS60 data. Light grey bars denote the total number of trees,
medium grey those classified incorrectly by spin image features alone, dark grey
those classified incorrectly by non-spatial features alone and black those classified
incorrectly by the combination of both feature types.
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4.6.1 Own Work

In the light of our results presented in [Section 4.5.3], we can say that we succeeded
[in developing] a feature type, which is efficient at condensing the geometrical dis-
tribution information within tree crowns [into] very few feature|[ values]. It may
be used with both discrete data (return positions) as well as semi-continuous data
([such as] waveform attribute[s]) and performs well compared to a-shape features,
which are generally regarded as very potent geometrical features to describe the
distribution of discrete data.

[As shown in Section 4.5.2], our feature type is robust with regard to the choice of
its two parameters. The parameter values for the best performing pixel sizes corre-
spond to the same value of k = 4 in [Equation 4.9], indicating that the difference in
pixel size between the two data sets is likely attributed to the different pulse den-
sities (Table [4.1]). For pixel sizes below 45 cm, a decline in classification accuracy
is seen in both data sets. This decline is more significant for the less dense ALS60
data, in which the longer SWF also results in a lower number of returns compared
to the LMS-Q680i (Table [4.3]). The values of the vertical dimension parame-
ter are relatively large compared to the findings reported by (Li et al., 2013), who
state that the structural features from medium-scales were most descriptive within
the top 6 m of the tree crown. However, these features were generated from hori-
zontal crown slices, while our features capture the vertical and radial distribution.

Furthermore, Section 4.5.1 shows that the assumptions made when positioning the
axis of rotational averaging at the highest return from the tree segment appears
to be a valid choice by comparison to manually selected tree top positions in pho-
togrammetric monoplotting. While we found that Holmgren and Persson (2004)
and Lin and Hyyppéa (2016) used similar assumptions about the general rotation
symmetry, our critical evaluation of this assumption as well as that of the grid size
and dimension parameters has remained unparalleled.

Last but not least, our tests confirmed that [our feature type] yields similar results
on two datasets of different [FWHMgwr]|, footprint diameter, and pulse density,
ergo is robust with regard to those sensor characteristics. This also is not common
in the field due to limited availability of such data.

[With regards to tree species classification (cf. Section 4.5.4),] the results for the
[non-spatial waveform attribute features of the] ALS60 data are in good agreement
with results for the same tree segments and LiDAR data in (Hovi et al., 2016),
where a k of 91 % was reported. The difference is mainly due to differences in the
training and validation procedure (leave-one-plot-out), but there were also differ-
ences in the classifier (quadratic discriminant analysis [(QDA)]) and the features’
choice (restricted exhaustive feature search) and the parameters of the waveform
processing. In our experiments, a « of 95.8% is achieved for ALS60 data with
the non-spatial metrics using all waveform attributes and return type groups by
a RF classifier, when we apply the same leave-one-plot-out scenario. The relative
performance of the waveform attributes also matches the findings in (Hovi et al.,
2016), where E is the most important and A the second most important attribute
for the ALS60 data. The waveform attribute calculation and the general training
and validation procedure therefore compare well to existing research. However, one
has to bear in mind that the performance of the waveform attributes may vary,
e.g. with changes in the tree phenology throughout the seasons (Hovi et al., 2016).

The baseline given by the non-spatial metrics is already very high (90.1 % for the
LMS-Q680 and 90.5% for the ALS60) and since k naturally saturates at 100 %,
an overall improvement in the combined case of 1.1% for the LMS-Q680i data
and of 2.0% for the ALS60 data is significant. This shows that the localization
information contained in the spin image features is of additional value to the clas-
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sification, [but] it cannot replace the non-spatial metrics, which give a detailed
statistical frequency analysis of waveform attributes within the top 40 % of the
tree crown. The combination of spin images and non-spatial metrics provides an
improved classification performance in spruce and birch classification on the LMS-
Q6801 data and in all three species on the ALS60 data.

By using data acquired by two different sensors, we tried to infer how different
sensor characteristics (cf. Table [4.1]) impact our method. Due to the different
strip overlay, with which the two campaigns had been flown, the pulse density is
about twice as high in the LMS-Q680i data than in the ALS60 data. However,
due to a larger footprint diameter and shorter FWHMgwr, which both increase
the likelihood for subsequent returns, the mean total number of returns recorded
per tree segment (cf. Table [4.3]) is about 2.5 times as high (694 vs. 283) for the
LMS-Q680i data to the ALS60 data. The likelihood [of receiving] an only return
from the LMS-Q680i is thus reduced compared to the ALS60, as only returns oc-
cur when the footprint diameter is densely filled. Since these dense foliage patches
generally occur at the top of trees only, their location information is less valuable,
explaining why there is no improved classification accuracy for only returns in the
LMS-Q680i data in Tables [4.6 and 4.5]. The likelihood for first-of-many and sub-
sequent returns, however, is higher in the LMS-Q680i data compared to the ALS60
data, making their location information more valuable, which is why all returns
show a higher improvement in this data. Note however, that the combined classifi-
cation results using the return type group of all returns is lower in the LMS-Q680i
data compared to the ALS60 data. This could either be due to the more diverse
conditions within the footprint under which returns are recorded, or due to the
different reflectivity of the species’ material at the respective scanner wavelengths.
In summary, the trends of classification improvements achieved among different
return type groups follow the respective strengths of the two sensors: the strength
of the LMS-Q680i instrument with the wider footprint and narrower FWHMgwp
is to record more returns, in particular more first-of-many and subsequent returns,
leading to higher classification improvements by considering spin image features
in the first-or-only and all return type groups. The strength of the ALS60 in-
strument with the narrower footprint is to record more only returns (which stem
from more standardized conditions within the footprint compared to first-of-many
or subsequent returns), leading to a larger classification improvement in the only
return type group compared to first-or-only or all. When combining the different
return type groups, these effects seem to even out, while the total classification
improvement of considering spin image features is higher for the ALS60 data set.

We expect that the magnitude of the gain is dependent on a number of additional
factors, such as the forest complexity. Species and age composition do have an
effect as shown in Section [4.5.5], and the density of the stand is important for
both the shape and structure of the tree crowns as well as for the segmentation
quality. Since the segmentation quality influences the detection rate, it is of crucial
applicational importance, but beyond the scope of this study to explore.

The misclassification of large pines [found in Section 4.5.5] is a severe issue from
the applicational point of view, since those large trees provide valuable timber.
This shortcoming in the performance of the spin images of waveform attributes
may be due to the different shape that old pines have compared to younger ones,
as they have shorter and more round[ed], dense and asymmetric crowns compared
to less than 80-100-year-old pines that [are] still grow[ing] in height. However, as
seen in Table [4.8] and in Figures [4.7 and 4.8] (blue lines), the misclassification
of (large) pines is significantly reduced in both data sets when the combination of
spin image and non-spatial waveform attribute features is used in the classification.

Around the time of publication of our results Bruggisser et al. (2017) found, that
in their data (recorded with a LMS-Q680i scanner) the mean energy of the first

104




returns, the mean amplitude of the first returns, and the mean skewness (in a
skew normal distribution waveform decomposition) of all returns from one tree
crown contribute most significantly to the tree species classification result. In our
experience, recorded in Table 4.6, this depends on the sensor used: while for the
ALSG60 the total energy FE of the waveform sequence produced best results in only,
first-or-only and all returns per segment, this was less clear for the LMS-Q680i
data. There, FQ50, FW HM, and a combination of spin images and non-spatial
features of E' showed the best results for only returns, A and L showed the best
results for first-or-only returns, and L and FE, as well as a combination of spin
images and non-spatial features of A, performed particularly well when consider-
ing all echo classes. The difference between our findings and those reported by
Bruggisser et al. (2017) might stem from a different species composition in the
data set. Their study area contained a majority of deciduous trees (90%), while
the Hyytidla study area only contained very few deciduous trees (11%). In their
classification (based on A alone, the combination of A, E, and FWHM, or the
full set) between deciduous and coniferous trees, Bruggisser et al. (2017) reported
much better precision and recall for the deciduous class than for the coniferous
class.

Similarly, Shi et al. (2018) analysed the importance and correlation among dif-
ferent geometric and radiometric metrics from airborne LiDAR under leaf-on and
leaf-off conditions for individual tree species classification. They, too, found that
radiometric features contributed a higher accuracy compared to geometric fea-
tures, and that the combination of complementary features and data, such as data
from leaf-on and leaf-off conditions, improved results. They specifically mentioned
the intensity of first-or-only returns as well as echo width (using a LMS-Q680i
laser scanner) as robust features for tree species classification. In our LMS-Q680i
data, A was particularly successful in first-or-only returns too, and FW HM pro-
duced good results throughout all echo class combinations too. These findings are
therefore in agreement. Their site contained 69% deciduous trees.

In 2021, Michalowska and Rapiriski (2021) published a review of 44 tree species
classification studies on ALS data (including our work) in order to identify the most
efficient group of LiDAR derived features. Our results scored high throughout their
comparisons. They found, that features extracted from full-waveform data yielded
the highest overall accuracies, and that both RF and support vector machine
(SVM) classifiers produced good results. Concerning geometric features for tree
species classification, their review confirmed former analyses (Suratno et al., 2009;
Li et al., 2013; Yu et al., 2014) according to which the effectiveness of geometric
features depends largely on the point density, and that species classification by
geometric features alone is rarely very successful. In general, Michalowska and
Rapinski (2021) state that there is no specific group of features, that, when used
with a suitable classifier, guarantees high overall accuracy. Instead, it is always
required to combine multiple features for good classification results. This agrees
with our findings too.

4.6.2 Comparison to Deep Learning and High-Resolution
Data

In using data of similar characteristics to ours, we only know of two publications
that study the effect of deep learning. As forests are very variable depending on
their location and species composition, a quantitative comparison of our method
to their results is not necessarily possible due to the differences in study site
and data characteristics. Therefore, relevant approaches have to be discussed in
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higher detail to attempt a qualitative comparison. In the following, we will list
and describe the relevant publications that apply deep learning to individual tree
species classification in ALS data.

Hamraz et al. (2019) produced multi-view projections for pre-segmented tree
crowns to train CNNs on, in order to classify tree crowns as either coniferous or
deciduous. Their projection approach actually shares some qualities of our spin im-
age approach. After segmenting individual tree segments and co-registering them
with field data, they used one leaf-on and one leaf-off data set of the same region
to produce the following projections and supporting features for each segment:

o Horizontal projections onto a 16m x 16m square with 12.5cm pixel size,
recording the height above ground of the highest return and the normalized
return intensity of the highest return (both for leaf-on and leaf-off conditions).
The horizontal projections were complemented by the 2D crown area inferred
from the segmentation result.

o Two side profile projections of a ’slice’ of 75 cm thickness through the crown
apex (positioned in the top middle pixel), measuring 16 m x 16 m with a pixel
size of 25 cm, recording the mean intensity in the profile pixel (both for leaf-on
and leaf-off conditions). These projections were complemented by the features
of tree height and crown width.

In producing these projections, Hamraz et al. (2019) share assumptions we made
for our spin images about the theoretically rotation-invariant nature of the tree
crown and the accuracy of apex location. To increase the training data size for
deep learning however, they did not perform rotational averaging as we did, but
sampled over 180 rotational variations of their projections. This might be a crucial
point, as we at some point tried to apply a CNN to the spin image representation
of our tree segment data too, but without success.

After applying five-to-six-layered CNNs to their different projections, which pro-
duce 16 output units, they combined those with the supplementary features for
the respective projection, and passed this combination through two more dense
layers and a final softmax layer. After excluding cases of mismatch between the
LiDAR segments and the field data, they compared different combinations of their
approach to traditional feature-based classifiers such as LDA, QDA, SVMs or
RFs. The hand-crafted features chosen for this comparison were tree height, crown
width, mean intensity for both leaf-on and leaf-off conditions, and the proportion
of leaf-on returns to leaf-off returns.

In this comparison the deep learning methods showed only slightly better accu-
racies for conifers, and statistically more significant improvements for deciduous
trees. This could be an effect of conifers being highly underrepresented in the data
set, as the authors suggest. It is noteworthy however, that no geometric features
for the tree crowns were being used in the comparison to hand-crafted features
and traditional classifiers.

Briechle et al. (2019) adapted the PointNet++ architecture to perform a tree
species mapping for spruce (coniferous) and beech (deciduous). The basis of their
work is a well-established normalized cut segmentation algorithm (Reitberger
et al., 2009). In order to generate sufficient training data, they had to use a RF
classifier using traditional features (height dependent features, density dependent
features and crown shape features) to label a set of 97000 tree segments based on
a manually labelled reference of 918 trees. The RF classification was evaluated on
a test data set of 529 tree segments with manual reference. This yielded values of
precision = 93%, recall = 80% for coniferous trees, and precision = 82%, recall =
92% for deciduous trees. An application of this classifier to the large set of 97 000
tree segments (without field-measured reference) was used as a reference basis for
the PointNet++ application. After hyperparameter adjustment and batch training
of 20m square blocks within epoch blocks of 60 m edge length, this then yielded
results of precision = 90%, recall = 79% for coniferous trees and precision = 81%,
recall = 91% for deciduous trees. The authors had expected superior results from
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the PointNet++ application, and attributed its limited performance to errors in
the artificially generated training data and edge effects in batch training. In our
opinion this is an impressive and interesting feasibility analysis, yet the use of
the RF result as basis for training and evaluation of the PointNet++ application
limits the quantitative analysis.

Overall, neither of these studies could prove a clear advantage of deep learning
approaches over a technically advanced implementation using different subsidiary
hand-crafted features with a discriminant classifier on the type of data we were
using. There are other data types however, on which deep learning has proven
beneficial to tree species classification.

A large body of research has been dedicated to extracting tree attributes from ter-
restrial laser scanning (TLS) data. A good visualization of the difference in point
density and structural detail among data from TLS and ALS (~10pulses/m? | as in
our ALS60 data) can be found in the work of Lin and Hyyppa (2016), Figure 1 ibid.
There the difference in level of detail is distinctly represented. Due to this deeper
level of detail, TLS data has already provided impressive possibilities outside of
deep learning approaches for advanced feature extraction of tree structures, e.g.
by quantitative structural models (QSMs) that approximate the branching struc-
ture and store geometric and topological properties for individual trees (Akerblom
et al., 2017; Terryn et al., 2020). Features, that can be extracted from this kind
of representation include not only tree height and crown volume distributions,
but also stem characteristics such as volume, verticality and curvature, as well as
branching structure or branch characteristics such as length, radii and verticality
measures. Xi et al. (2020) extracted 32 such hand-crafted features from TLS scans
of 771 individual trees from different sites, assigned to nine different species. They
compared an impressive number of different machine learning and deep learning
classifiers on this data set. RF and AdaBoost classifiers utilising the hand-crafted
features performed similarly well as the highest-ranking deep learning classifiers
on the species classification task. Among them were Inception-ResNet-v2, which is
a voxel-based network that did not require information other than the raw point
cloud, and PointNet++, which was supplied with point-wise training data for a
wood vs. foliage classification alongside with the per-segment tree species classifi-
cation.

Since the early 2000s, unmanned aerial vehicle laser scanning (UAVLS) has
emerged as a new option for LIDAR mapping. Down-sized laser scanners, iner-
tial measuring unit (IMU), and global positioning system (GPS), mounted on a
drone or low-flying helicopter, enable dense point cloud recordings from an aerial
perspective. UAVLS therefore offers a cost-effective alternative to manned aircraft
laser scanning for small-to-medium projects, provides higher point density, and
is particularly useful in forestry, disaster management and archaeological applica-
tions. In forestry, the enhanced structural resolution enables a wider use of deep
learning technology or hand-crafted feature extraction. While UAVLS data does
not quite reach the accuracy and point density of TLS data, it is much less labour-
intensive to acquire over a larger area and in difficult terrain, and still delivers 5-10
times higher point densities than typical ALS. Therefore, this type of data is more
suitable for deep learning analysis. Consistent point or pulse density information
however is more difficult to achieve for this type of data recording, as the low flying
height, the more sideward facing geometry and the less systematic flying patterns
are more difficult to quantify. Also, the resulting point density depends largely
on the vegetation structure examined, as dense foliage or low stands produce less
returns than more permeable or higher stands. A good example of this is Table 2
in an article by Fan et al. (2023), where the number of points recorded per segment
for different species is shown. Apart from offering new options by enabling deep
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learning, this type of high-resolution data is also valuable for explicit modelling
and measurement, such as measurements of stem curvature and timber volume
(Hyyppé et al., 2022).

Chen et al. (2021) compared tree species classification by deep learning on both
TLS and UAVLS recordings of the same sites. They worked directly on the point
clouds of semi-manually segmented individual trees, using T-net elements from
PointNet and different methods of down-sampling in their network architecture.
They also included the radiometric intensity information of each return as a fourth
dimension for each point. They found that for TLS data, the overall classification
accuracy improved with a down-sampled point cloud, while for UAVLS data, the
highest point density available yielded the best results. This indicates that the
lower point density of UAVLS compared to TLS might not be a big obstacle com-
pared to the benefits in terms of data acquisition.

Marinelli et al. (2022) too used data acquired by UAVLS. Unfortunately they do
not specify the resulting point density in their paper. They apply a multi-view
projection CNN approach, based on the projections described in the work of Lin
and Hyyppé (2016) (cf. Section 4.2.5). Using the best performing manual features
calculated according to Lin and Hyyppé (2016) as a baseline comparison, they re-
ported incremental improvements using PointNet++, a CNN from scratch, and a
pre-trained CNN respectively. Unfortunately they did not specify which classifier
they used in the traditional machine learning experiment and did not comment on
whether those results could be optimized by using more than the unclear number
of best-performing hand-crafted features.

Since 2023, a novel UAVLS benchmark data set for semantic labelling and in-
stance segmentation of individual trees is available (Puliti et al., 2023). It com-
prises UAVLS data from five locations around the globe, representing various forest
types. The data is annotated into individual trees (instances) and different seman-
tic classes (e.g. stem, woody branches, live branches, terrain, low vegetation). This
data set is intended to foster research in the field by providing easily accessible data
which is otherwise costly to acquire and labour-intensive to annotate, and to en-
hance scientific comparability. Xiang et al. (2024) for example worked on this data
and presented a network setup, that would jointly perform stand segmentation
(canopy layers, ground), individual tree segmentation and semantic tree compo-
nent segmentation (stem, live, and dead branches), which allows the retrieval of
both tree and stand-wise inventory parameters. Apart from showing impressive
proof-of-concept results, they also studied the effect of point density by artificial
downsampling and concluded, that their 3D deep learning method is challenged
by point densities below 100 pts/m?.

As of 2024, an even larger benchmark data set for tree species classification has
been released (Puliti et al., 2024), aiming to track progress in deep learning model
development and to support convergence towards a best practice for species classifi-
cation. Both point-wise and projection-based frameworks (including data augmen-
tation) have been compared on the basis of this benchmark. The results indicate
a general superiority of the projection-based approaches compared to those work-
ing directly on the point cloud. The authors promote further efforts to collect an
even more extensive database to cover most European species in order to enable
very generalized model training, which could prospectively be applied to unknown
stands (not included in the model training). There are of course some limitations
to this approach, such as possible differences in the quality of the tree segmenta-
tion and sensor platform-specific representations.

Last but not least, multispectral LiDAR is promising for species identification. In
mounting three laser scanners of different wavelengths on a helicopter, flown at
80m above ground level, Hakula et al. (2023) acquired a dense multispectral point
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cloud for tree species classification. They used a novel, hand-crafted layer-wise seg-
mentation algorithm (similar to layer-stacking by Ayrey et al. (2016)) with good
results, and a RF classification based on hand-crafted geometric, single-channel
reflectance and multi-channel reflectance features. In doing so they could show a
substantial gain in overall tree species classification accuracy by the use of multi-
spectral reflectance features, as well as prove that the detection and segmentation
of understory trees is also attainable by refining traditional clustering segmenta-
tion. Similarly, Axelsson et al. (2023) also showed the benefits of multispectral
ALS, while working from an 800 m flying height perspective with point densities
around 50Pts/m?. They estimated both species composition and species-specific
stem volumes at the level of individual trees. Notably, they also followed the tradi-
tional machine learning procedure of successive segmentation, feature extraction,
feature selection and classification for this purpose. The use of the green laser
channel in addition to the more common near-infrared channel proved especially
beneficial for the detection and timber volume estimation of deciduous species.

Other approaches of course also focus on the combination of different data types,
for example by combining conventional ALS in terms of LiDAR derived metrics
per area or pixel with supplementary data such as multispectral aerial imagery. In
this case, deep learning is shown to produce improved results compared to tradi-
tional machine learning (Gahrouei et al., 2024).

4.7 Conclusion

Overall, the work we did 8 years ago to answer the RQs posed for this thesis was
successful. The results document the development of a novel feature type, as pro-
posed in RQ3 for this thesis, that is designed to capture the spatial distribution
of laser scanning returns or their waveform attributes within the tree crown to
aid in tree species classification in ALS data. To the best of our knowledge, these
features [were among] the first to include both the vertical and lateral distribu-
tion relative to a central axis of rotational symmetry, as well as [the only ones to
date] to allow an analysis of the geometrical distribution of waveform attributes.
[(Some modern approaches include intensity as a fourth chanel in the data (Chen
et al., 2021), but we have not encountered another encompassing integration of
geometry and waveform analysis.)] In a detailed evaluation, we demonstrated that
these features perform well in comparison to renowned descriptors of tree crown
geometry [at the time], but can also include continuous data values (e.g. waveform
attribute values) that are assigned to the geometrical positions. They are robust
with regard to sensor characteristics or parameter choices].]

Our detailed analysis of classification results in Tables 4.6 and 4.5 serves as an
answer to RQ4: despite the excellent performance of the non-spatial signal proper-
ties captured by waveform attributes derived by (Hovi et al., 2016), our novel spin
image feature type could still provide a significant improvement. The detailed per
waveform attribute analysis in Table 4.6 also allowed a comparison to indepen-
dent (later) research which studied the relative importance of different waveform
qualities for species classification.

Concerning RQ5, Section 4.5.5 shows how failure cases are distributed across tree
size measured in DBH. In both data sets, the correct classification of large pines
is fraught with some difficulty when using spin image features only (red lines in
Figures 4.7 and 4.8), but this does not show in the combined results (blue lines).

From an applicational point of view, comprising frameworks from field- and ALS
data towards a full-stand inventory end-product are desirable. Modern examples
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towards this end are the work of Axelsson et al. (2023) or Xiang et al. (2024).
They comprise both solutions with multispectral ALS or UAVLS data recordings,
and techniques from either deep learning or following the hand-crafted feature
development approach. The new methods of data acquisition, such as UAVLS
and sensor development, as well as the rise of big data techniques, open huge
possibilities for automated assessment of vegetation and forest resources. However,
our review of current literature in the field indicated, that there were no major
improvements that could have been achieved given the kind of data we were using.
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Chapter 5

Summary

The layout of this thesis follows along a set of RQs posed in the introduction
(page 7). These build upon each other and aim at enhanced scene and data under-
standing in ALS point clouds of medium pulse density (roughly 5 — 20 pulses/n?)
by the means of geometric features in feature-based supervised classification.

In RQ1 we focused on designing, implementing and testing a geometric sampling
feature type for point-wise semantic labelling (inspired by shape distributions (Os-
ada et al., 2002)) that reaches beyond locally homogenous neighbourhoods. Those
are presently favoured by the prevailing feature type of covariance features, but
the point density of the given data is often not sufficient for a statistically sound
representation of homogeneous neighbourhoods in urban surroundings. This be-
came clear in a class-wise analysis of different neighbourhood sizes (cf. Figure 3.7),
an analysis of optimum neighbourhood size by minimization of the Shannon en-
tropy (cf. Figure 3.8), and was later supported by complementing literature, which
has analysed the weaknesses of covariance features in sampled data on an analyt-
ical level (Dittrich et al., 2017). Our sampled feature type of shape distributions
instead provides better results as well as an even distribution when tested for dif-
ferent neighbourhood sizes, peaking at a reasonable neighbourhood radius around
2m (cf. Figure 3.6). Classification accuracy improved throughout our various tests
whenever we added shape distribution features (cf. Table 3.9).

In RQ2, we focused on evaluating the effect of different neighbourhood types and
scales with respect to different classes. We provided a detailed and insightful
analysis which helped optimize classification results (multi-feature-type is bet-
ter than single-feature-type, multi-scale and multi-neighbourhood-type are better
than single-scale or single-neighbourhood-type, and there is no significant pref-
erence for a best scale in a multinomial classification task, cf. Table 3.11) and
were able to achieve good overall results (cf. Figure 3.16). However, context in the
sense of structured prediction (Niemeyer et al., 2016; Steinsiek et al., 2017) can
have a substantial impact on the classification results, especially on challenging
data such as the Vaihingen benchmark data (cf. Table 3.19). On the less challeng-
ing GML data set A however, our results were roughly comparable to those of
non-Associative Markov Networks (Shapovalov et al., 2010) (cf. Table 3.16). This
could be either due to the different complexity of the data sets and the number of
classes considered, or due to differences among the contextual classifiers.

Furthermore, modern data analysis that evolved from deep learning in the mean-
time has more powerful means of adaptively describing textures and structures
on a deeper level of scale understanding than we could model by hand-crafted
features from different neighbourhood types and sizes. Our summary of results for
the Vaihingen benchmark (cf. Table 3.20) relates our work to these results, while
we draw a more detailed qualitative comparison in Section 3.6.2.
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On a next level, we explored the possibilities of geometric features in the context
of complex vegetation analysis, using tree species classification as a reliable refer-
ence. The absence of clear geometric structures in vegetation and a large degree of
stand-specific variability make this a challenging field. Also, small-scale structures,
such as the quality and distribution of foliage within the laser footprint and its
influence on the shape of the reflected waveform, are important indicators of tree
species (Hovi et al., 2016; Bruggisser et al., 2017).

Therefore, RQ3 aimed at capturing the geometric distribution of those radiomet-
ric waveform properties in few, descriptive features, which led us to implement a
feature type inspired by spin images (Johnson and Hebert, 1999). We thoroughly
tested the assumptions therein (cf. Section 4.5.1 and 4.5.2) and measured our suc-
cess in terms of geometric descriptiveness by comparison to a-shape features (Ko
et al., 2012; Vauhkonen et al., 2010) (cf. Figure 4.6). From a current point of view,
we found other approaches which used similar assumptions on the symmetry of
species-related properties for projection-based feature extraction (Lin and Hyypp4,
2016; Marinelli et al., 2022), but could not find a similarly thorough testing of the
assumptions elsewhere.

Answering RQ4, we proved the benefits of this feature type for tree species clas-
sification (cf. Table 4.5) and analysed the impact both for different return types,
waveform attributes and species (cf. Table 4.6 and 4.7). Our review of many sources
after the publication of our work (Lin and Hyyppa, 2016; Bruggisser et al., 2017;
Michatowska and Rapinski, 2021) indicates that the combination of different fea-
ture groups indeed seems to improve tree species classification beyond the scope
of any singular feature group.

An analysis of failure cases, as in RQ5, yielded weaknesses related to the rounded
shape of old pines compared to young pines, which were therefore mistaken as
birch, but only in the absence of non-spatial statistical incidence metrics of wave-
form attributes (cf. Figures 4.7 and 4.8).

Following along the traditional maxim of feature development for discriminant
classifiers, our feature design aimed for a reduction of dimensionality to achieve
a more generalized representation. Modern deep learning methods however prefer
more variable training data to learn their features, so instead of condensing the
information in specific features as we did, they rather work with many different
projections or data augmentation to diversify their training set, before having the
network learn the generalization. Still, our thorough review of modern literature
found clearly superior solutions to the tree species classification problem only for
point cloud data of higher pulse densities or for combinations with other data. A
study on point density with a successful deep learning framework (Xiang et al.,
2024) further indicates that deep learning reaches its limits at the point densities
we had available in our data set. Given the data we used, our work would therefore
still be difficult to improve on.
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Chapter 6

Conclusions and Outlook

Apart from covering its original RQs (cf. Chapter 1 and 5) and at the same time
anchoring them within the technical foundations (cf. Chapter 2), this work con-
tains added value by a thorough review of current literature as well as the detailed
evaluation of our work from a current hindsight perspective due to the years be-
tween publications and writing up.

The original goals of course were set at the time following the traditional maxim
of feature development. We brought forward an argument, that sampled geometric
features from larger neighbourhoods were more suitable for practical ALS point
densities at the time than geometric features targeting homogeneous structures,
and supported this argument by experimental evidence. The new sampled feature
type allowed us to produce top-performing results in point-wise semantic labelling
of urban benchmark data. From today’s point of view, our motivation and anal-
ysis was later supported by statistical modelling of covariance feature behaviour
(Dittrich et al., 2017).

However, the impact of contextual relationships as opposed to point-wise seman-
tic labelling can have a substantial impact in complicated labelling situations, as
we found by a comparison of our results to those employing conditional random
fields (CRFs) (Niemeyer et al., 2016; Steinsiek et al., 2017). On less challenging
data the difference might be less pronounced.

From our in-depth review of deep learning enabled results on the Vaihingen data
set we conclude that the main advantage of deep learning algorithms for point-wise
semantic labelling seems to be linked to the level of context that can be included
via transformer architectures such as an encoder-decoder layout including atten-
tion mechanisms. When trying to improve such results further by a subsequent
CRF classification, the effect is small (Yu et al., 2022).

It would still be interesting to see for comparison how the result of our multi-scale
multi-neighbourhood(type) results, including shape distribution features as well
as the more typical feature groups, would perform if combined with a CRF clas-
sification.

On our more application-specific topic of tree species classification in ALS data,
the review of current literature concludes that good results are best achieved by a
combination of data or feature types, and that the performance of geometric fea-
tures is clearly linked to the point density of the data. This supports our intuition
in the setting of our research aims: we aimed at capturing not only the geometric
features of the point cloud, but the geometric distribution of waveform properties.
This enabled improved species classification results based on a high baseline of
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statistical waveform attribute features for the pre-segmented dominant trees used
in our study. Thorough parameter testing and failure case analysis supported the
strength of our method.

Especially our comparison of tree top positioning to photogrammetric monoplot-
ting is highly relevant to date, as other approaches too have followed in projecting
returns onto a plane centred around the top of the tree, while not having the means
to test and support the tree top positioning accuracy as we did (Lin and Hyyppa,
2016; Marinelli et al., 2022).

A review of current tree species classification approaches, using either deep learn-
ing or other methods for data analysis, did not show fundamental improvements
compared to our approach when using ALS data of the type we used. In partic-
ular, deep learning for tree species classification typically requires higher return
densities in the point cloud data (Xiang et al., 2024). In tree species classification
and vegetation analysis beyond the individual stand level, deep learning could
also provide significant applicational opportunities when large databases are col-
lected throughout a climatic region (Puliti et al., 2024). Practical improvements in
LiDAR-based forest inventories are currently being attained using higher resolution
laser scanning data with or without deep learning in data analysis (Hyyppé et al.,
2022; Xiang et al., 2024) or using multispectral LiDAR recordings (Axelsson et al.,
2023; Hakula et al., 2023).

The challenge of tree segmentation, which is the second most important challenge
in the field, was not covered by our work. Substantial improvements of classifi-
cation accuracy in our test cases for the echo class of all returns (as opposed to
those of early scatterers only) are promising. But since the tree segments used
in our study were largely dominant trees, it would require further testing if the
geometry of understory trees would support our approach. Difficulties in segmen-
tation, however, pervade and challenge most approaches in the field. In our view,
the possibility to train for both segmentation and classification by a joint deep
learning architecture is a promising development.
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