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Abstract

Deep Neural Networks have achieved significant success in solving complex
problems across various domains due to their ability to capture complicated
patterns in large datasets; however, they often require large amounts of data to
learn effectively and often lack transparency in their decision-making processes,
relying heavily on correlation rather than causation. Such limitations have led
to incorporating causal Prior Knowledge into neural network models which
stands as a significant advancement in machine learning, such knowledge can
mitigate this data dependency, guide the learning process, and enhance not only
the robustness and generalizability of models but also their interpretability and
explainability. Additionally, it enables models to adapt to new tasks and domains
with greater ease and effectiveness.

This report tackles the importance of incorporating causal prior knowledge into
deep neural networks and the methodologies that facilitate this incorporation.
Fundamental concepts of causality are reviewed, with emphasis on its importance
for advancing AI towards causal representation learning.
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1 Introduction

Although Deep Neural Networks (DNNs) have shown promising results in
diverse domains, they still present limitations in several aspects that are left
to be resolved. The insufficient amount of training data usually hinders its
performance due to the lack of generalization, and the black-box nature of deep
neural networks does not allow for a precise explanation behind its mechanism,
preventing a new scientific discovery. They can discover features hidden within
input data together with their mutual co-occurrence. However, they are weak
at discovering and making explicit hidden causalities between the features. To
overcome these challenges, It is critical to incorporate causality into DNNs
framework [32].

The emergence of causality in AI signifies a paradigm shift from predictive to
prescriptive analytics, where machines not only forecast but also recommend
actions that lead to desired outcomes. Unlike correlation, which captures coinci-
dental patterns, causality delineates a roadmap of cause and effect, empowering
AI with the ability to reason beyond the data it is trained on [25].

Incorporating causal prior knowledge into the architecture of neural networks
contributes to model robustness and generalizability, allowing models to bet-
ter handle changes in data distributions by focusing on causal relationships
rather than correlations [31]. Embedding causal reasoning helps models pro-
vide interpretability and explanations that resonate with real-world causality,
aligning more with human thinking, and extending their use to interventions
and policy-making [32].

The methodologies to incorporate prior knowledge within neural networks are
varied [8]. Designing network architectures that detect complex data patterns.
Imposing informed constraints on the loss function directs the optimization
process towards solutions that respect established relationships and theoretical
frameworks. Employing data augmentation and leveraging the insights from
transfer learning further exploit the breadth of existing data and pre-trained
models, accelerating the learning process. Knowledge graphs are adopted to
enhance neural networks with information about relations between instances [1].
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Figure 1.1: The proposed framework to incorporate causal prior knowledge into neural network.

These strategies encapsulate a concerted move towards data-driven learning with
causal prior knowledge.

Current research focuses on enhancing model performance and explainability
through the incorporating of prior knowledge into the learning process [36, 2, 10].
However, the development of models that incorporate causal prior knowledge
continues to be a challenge. Figure 1.1 is a proposed framework to incorporate
causal prior knowledge into a neural network, such a collaboration system can be
achieved by involving the usual training data and additional prior knowledge that
comes from an independent source, which is given by the causal graph model.

The rest of the report is organized as follows: Section 2 provides an overview
of causality. Section 3 describes incorporation of prior knowledge. Section 4
addresses the related work in causal representation leaarning. Section 5 outlines
some major challenges related to the incorporation of Causal prior knowledge
into DNNs. In this section, we also present insights into potential directions for
future research.
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2 Causality

The study of causality seeks to establish the nature and strength of cause-and-
effect relationships [26]. “Correlation does not imply causation” [25], two
variables y and x could be correlated (statistically dependent) and, therefore,
seeing x allows predicting the value of y, but if y is not caused by x then setting
the value of x won’t affect the distribution of y.

Causal inference is the process of concluding a causal connection based on
the conditions of the occurrence of an effect. It involves establishing that a
change in one variable (the cause) brings about a change in another variable (the
effect). Researchers have developed methodologies to estimate causal effects
from observational data. In this section, we present our interest frameworks that
are introduced to causal inference.

2.1 Structural Causal Model

Structural Causal Models (SCM) provide a mathematical framework to model
and infer causal relationships [24]. They are based on the idea that causal
relationships can be represented by a set of structural equations and Directed
Acyclic Graphs (DAGs). Each node in the DAG represents a variable, and each
edge represents a causal influence from one variable to another. SCM can be
represented as

X := fX(PAX , UX), (2.1)

a variable X in the causal graph is determined by a function fX that could be
linear or non-linear, whose inputs are its parents PAX and a random variable
UX representing potential chaos and variables unobserved in the causal graph
explicitly.

2.2 Average Treatment Effect

The potential outcomes framework [30] is used to estimate the causal effect
of an intervention. Consider a binary treatment variable T , where T = 1 if
the treatment is given and T = 0 otherwise. For each individual i, there are
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two potential outcomes: Yi(1) is the outcome if the individual i receives the
treatment, and Yi(0) is the outcome if they do not. The Individual Treatment
Effect (ITE) for i would be

ITEi = Yi(1) − Yi(0) (2.2)

However, we never observe both potential outcomes for the same unit. This
problem is known as the ”Fundamental problem of causal inference” [24]. Since
we cannot observe both potential outcomes for the same unit, we often focus
on the average effect of the treatment across all units. The Average Treatment
Effect (ATE) is defined as

ATE = E[Y |do(T = 1)] − E[Y |do(T = 0)], (2.3)

where E[Y |do(T = t)] represents the expectation of the outcome Y under the
intervention do(T = t), do-operator allow for the identification and estimation
of causal effects from observational data under certain conditions.

2.3 Propensity Score Matching

Propensity Score Matching (PSM) is a statistical technique used to estimate the
effect of a treatment, policy, or other intervention by accounting for the covariates
that predict receiving the treatment. The key idea is to match units that received
the treatment with similar units that did not receive the treatment based on their
propensity scores. The propensity score for a unit is the probability of receiving
the treatment given a set of observed covariates. First, the propensity score
e(X) for each unit is estimated, typically using logistic regression for binary
treatments

e(X) = P (T = 1|X) = 1
1 + e−(α+βX) (2.4)

where T represents the treatment assignment, X represents the covariates, α

is the intercept, β is the vector of coefficients, and e is the base of the natural
logarithm. After estimating the propensity scores, units are matched. The goal
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is to find for each treated unit i a control unit j such that their propensity scores
are as close as possible

min
i,j

|e(Xi) − e(Xj)|, (2.5)

where e(Xi) is the propensity score of the treated unit i and e(Xj) is the propen-
sity score of the control unit j.

Estimation of Treatment Effect, the Average Treatment Effect on the Treated
(ATT) is often estimated by comparing the outcomes Y between matched units

ATT = 1
NT

∑
i∈T

(Yi − Yj(i)), (2.6)

where NT is the number of treated units, Yi is the outcome for treated unit i,
and Yj(i) is the outcome for the control unit j that is matched to i.

3 Prior Knowlege Incorporation

The incorporation of prior knowledge into the construction of deep neural net-
works (DNNs), focuses on the nature of input data to a deep neural network,
the loss function employed during training, and the model architecture or its
parameters of the neural network [8, 9]. Ongoing studies are concentrated on
combining methods to guarantee that the embedded prior knowledge effectively
guides the learning process while still permitting the neural network to discover
new data-driven patterns.

3.1 Input Data

Embedding domain knowledge into DNNs by transforming the input data, we
discuss two ways to do this. One way is feature engineering is a key approach,
where additional attributes derived from physics-based models are integrated
with the training data. The training data is processed through domain-specific
functions for embedding prior knowledge into deep learning. Feature engineering
was found to be one of the most common ways of integrating prior knowledge
into deep learning [16].
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The other way is how to represent domain knowledge that takes the form of graph-
based data as input, Knowledge graphs can be directly utilized by specialized
deep network models such as Graph Neural Networks (GNNs), which process
graph-structured data. These networks aggregate and synthesize information
from the knowledge graph to enhance predictive tasks [6, 13, 17].

3.2 Loss Function

DNNs can be enhanced with domain knowledge by adding penalty terms to
the loss function that enforce constraints derived from that knowledge [22,
12]. There are two primary types of constraints: syntactic, which are often
implemented through regularization to control model complexity, and semantic,
which encode domain-specific truths and logic [9]. Syntactic constraints are
implemented by incorporating regularization terms into the loss function to
control model complexity, such as the number of layers or parameters. It also
involves an embedding approach, which is a lower-dimensional representation
of discrete variables. Penalty terms based on regularizing embeddings are used
to encode syntactic constraints on the complexity of embeddings to define prior
parameter distributions using knowledge graphs embeddings [33]. Semantic
constraints are imposed by the domain knowledge and can specify the conditions
that model predictions must satisfy, such as falling within a certain numerical
range.

When learning a function f from data (xi, yi), where xi are input features and
yi are the actual labels, the generic hybrid loss function of the deep learning
model

arg min
f

Loss(Y, Ŷ ) + λR(Y, Ŷ ) + λDLossD(Ŷ ), (3.1)

where Loss(Y, Ŷ ) is the label-based loss, Y, Ŷ are the actual labels and predicted
values, respectively. λR(Y, Ŷ ) is a regularization function used to control model
complexity. LossD(Ŷ ) is the prior knowledge directly incorporated into the NN
loss function and is used to enforce the model to respect the prior knowledge
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while training. λD is a hyper-parameter determining the effect of domain loss
in the objective function.

3.3 Network Architecture

DNNs can be enhanced by incorporating domain knowledge, either through
constraining model parameters or by deliberate architectural choices.

Priors can be introduced on the parameters of a network. Explicitly, these
would take the form of a prior distribution over the values of the weights in the
network. The priors on networks and network weights represent our expectations
about networks before receiving any data and correspond to penalty terms or
regularizes. Two main methods have been used in DNNs, Transfer learning and
Data Augmentation. Transfer learning is a technique to import weight priors in
scenarios where data is scarce for the target problem. This method leverages
existing models from a related source problem to inform the target model’s
structure or parameters, thus embedding the domain knowledge into the target
domain [20, 27].

Data Augmentation based on prior information can effectively extend the original
dataset with synthetic or transformed examples that reflect domain-specific
insights. This method allows the integration of additional contextual or structural
information, informed by prior understanding, to enrich the training process and
improve the robustness and generalization of the neural network models [3].

Further, specialized structures in DNNs are enhanced when the architecture of
the network is informed by domain knowledge, as the way knowledge repre-
sentations are integrated into the network is largely determined by the type of
architecture [16] such as Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), Graph Neural Networks (GNNs).

4 Causal Representation Learning

The work by Deng et al. [11] introduces a deep learning framework for societal
event forecasting that leverages causal inference, and employs Individual Treat-
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ment Effects (ITE) to estimate the influence of various treatments (or events)
on societal outcomes with spatiotemporal environments. The model predicts
potential outcomes for various treatment scenarios, thus incorporating causal
information into event predictions. This process consists of two methods:

Approximation constraints l, u apply to event prediction scores ŷ, ensuring that
the training of event predictors P for a location M at time t + δ takes into
account the potential outcomes estimated by the causal inference model

lt+δ = min(ŷt+δ), ut+δ = max(ŷt+δ). (4.1)

The constraints limit the range of the ITE by enforcing minimum and maximum
values derived from causal knowledge, where ŷt+δ is a set of potential outcomes
for all treatment events, and the defined constraint loss term

LCSTR =
∑
t∈T

∑
i∈M

ReLU(lt+δ
i − ŷt+δ

i ) + ReLU(ŷt+δ
i − ut+δ

i ). (4.2)

By minimizing the total loss while training the predictor

LEVT = LPRED + µ · LCSTR, (4.3)

where LPRED is the loss function defined by the predictor P and µ is a hyperpa-
rameter.

Feature reweighting involves using the ITE estimated from the causal inference
model to reweight event frequency features. This reweighting is essential for
capturing the importance of features for predicting events. The approach defines
a gating feature ρt+δ based on ITE, where for the j-th treatment event, the
estimated ITE of a location at time t + δ is computed as follows

τ̂ t+δ
(j) = ŷt+δ

(j) (1) − ŷt+δ
(j) (0), (4.4)

where ŷt+δ
(j) (1), ŷt+δ

(j) (0) are the predicted potential outcomes with and without
the treatment, respectively. The gating variables are applied to the original event
frequency features through a sigmoid function σ to obtain a soft gated signal

ρt+δ = σ(fτ (τ̂ t+δ)). (4.5)
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The event frequency features x are reweighted using the causal feature gates.
The new feature vector is the element-wise product of the original feature vector
xt and the gating variables ρt+δ

x̃t = xt � ρt+δ + xt (4.6)

Such features are fed into a predictor to perform event prediction. They conducted
extensive experiments on several real-world event datasets and showed that their
approach achieves the best results in ITE estimation and robust event prediction
involvingmultiple treatments and outcomes, which is considered an advancement
over traditional correlation-based forecasting methods.

It is essential to recognize the expanding number of research that highlights the
integration of causal regularization strategies into the framework of predictive
modeling [19, 14, 15].

The paper by Teshima [35] introduces a model-independent method for data
augmentation that leverages the conditional independencies relations in the data
distribution encoded in causal graphs to enhance supervised learning.

Richens et al. [29] introduces the concept of counterfactual diagnosis, which
uses counterfactual reasoning to evaluate the likelihood of a disease-causing the
patient’s symptoms. Structural causal models (SCMs) are discussed as methods
for encoding the relationships between diseases, symptoms, and risk factors
for more accurate diagnostic reasoning. The authors show that incorporating
knowledge into machine learning can be effective in assisting medical diagnosis
to reduce diagnostic errors.

Kyono et al. [18] demonstrates the utilization of causal graphs as prior knowl-
edge to enhance model selection to enhance the robustness of neural network
performance. By embedding this knowledge within a Structural Causal Model,
derive a score that assesses the compatibility of a model’s predictions with the
SCM and input variables.

A recent work by Terziyan and Vitko [34] presents an approach for enhancing
Convolutional Neural Networks (CNNs) by incorporating causality-awareness
into the architecture. The authors introduce an architecture that includes an
additional layer of neurons that is engineered to estimate asymmetric causality
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in images using causal disposition [21] by using convolutional layers to cap-
ture features from images and then using these features to estimate conditional
probabilities of the presence of one feature given another to improve image clas-
sification and generation. The causality map which is the calculated causality
estimates is integrated into the CNN architecture, and the content of this map is
calculated using

P (F i|F j) =

(
maxl,r=1,n F i

l,r

)
·
(

maxl,r=1,n F j
l,r

)
∑n

l,r=1 F j
l,r

(4.7)

where P (F i|F j) is the causality map of size k × k (k - number of features), the
features F 1, F 2, F k represented by n × n feature maps. The causality map pro-
vides additional inputs to the network, which are used during backpropagation,
enabling the network to discover which features have significant causal relation-
ships. They also use it as a component within Generative Adversarial Networks
(GANs) to enable the generation of images with respect to causalities. They
demonstrated that their suggested model not only enhances the classification
effectiveness of traditional CNNs but also improves the interpretability of the
model’s results.

5 Challenges and Future Prospects

Current research tends to address data-driven that is independent and identically
distributed (IID). However, when dealing with spatiotemporal data that does not
follow this IID assumption, the task of incorporating causal models that cope
with strongly correlated values over time is not trivial [7].

The utilization of deep learning within manufacturing systems remains at an
early stage, not only because of its solely data-driven nature, but also due to the
limited research conducted on embedded causal knowledge into deep learning
models by domain experts in the field.

Figure 1.1 raises some open research questions: incorporating causal prior
knowledge requires modifications to the loss function, formulating an appropriate
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term for the loss function can be complex. Introducing such a term frequently
leads to complex optimization problems [5, 4].

New combinations of approaches are possible which have not been investi-
gated yet, for example, by merging the causal prior knowledge with the DNNs
architecture using the attention mechanism, the model iteratively processes the
knowledge by selecting the relevant content at each step. The knowledge-based
attention layer helps improve the prediction and the performance of the model.

Another prospective framework is to incorporate a causal graph model with an
embedding graph layer, which would then serve as input to Bayesian Neural
Networks (BNNs). This integration aims to enhance causal prior knowledge
by refining the prior distribution during model training. This probabilistic
approach reflects uncertainty in the model’s predictions, where understanding
the confidence level of a prediction is as important as the prediction itself [23,
28].
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