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Highlights

What are the main findings?

e  Recent achievements report on the application of peptide array technology in the
study of tumor microenvironment.

What are the implications of the main findings?

e Peptide chip mapping of tumor microenvironment interactions can help identify
metastasis-related biomarkers.
e  DPeptide arrays enable drug screening for personalized therapies.

Abstract

Peptide arrays represent a powerful tool for investigating a wide application field for
biomedical questions. This review summarizes recent applications of peptide chips in
oncology, with a focus on tumor microenvironment, metastasis, and drug mechanism of
action for various cancer types. These high-throughput platforms enable the simultane-
ous screening of thousands of peptides. We report on recent achievements in peptide
array technology for tumor microenvironments, an enhanced ability to decipher complex
cancer-related signaling pathways, and characterization of cell-adhesion-mediating pep-
tides. Furthermore, we highlight the applications in high-throughput drug screenings for
development of immune therapies, e.g., the development of novel neoantigen therapies
of glioblastoma. Moreover, epigenetic profiling using peptide arrays has uncovered new
therapeutic targets across various cancer types with clinical impact. In conclusion, we dis-
cuss artificial intelligence-driven peptide array analysis as a tool to determine tumor origin
and metastatic state, potentially transforming diagnostic approaches. These innovations
promise to accelerate the development of precision cancer approaches.

Keywords: tumor microenvironment; functional peptide library; drug screening

1. Introduction—Peptide Arrays as Decoders of Tumor Complexity

The global incidence of cancer is rising worldwide, emphasizing the need for a deeper
understanding of the underlying molecular mechanisms. To investigate tumor initiation
and the development of therapeutic resistance, a wide range of biological parameters
must be considered, including genomic alterations, clonal evolution, cell-cell interactions,
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angiogenesis, signaling pathways, and protein networks [1-5]. Analyzing these complex
systems requires advanced high-throughput technologies capable of generating and pro-
cessing large-scale datasets. Various analytical methods, such as peptide chips, enable
the parallel detection of numerous molecular interactions and thereby facilitate compre-
hensive data acquisition [6,7]. In genomic screenings, hundreds of thousands to millions
of spots are typically required, whereas proteomic or peptide screenings often rely on
tens to hundreds of thousands of spots to capture relevant interactions and sequence
combinations [8,9]. Peptide arrays enable, through miniaturization and parallel analysis,
a much higher degree of multiplexing and throughput than conventional single-target
assays such as ELISA (e.g., 10-100x throughputs) [10]. They are more flexible to produce
than mass spectrometry-based methods for identifying ligand-binding sites, neoantigen
sequences [11], or broad tumor sample screening [12,13]. The intricate molecular and
cellular heterogeneity of tumors continues to challenge conventional diagnostic and ther-
apeutic strategies. Peptide chips enable those screenings, e.g., for dynamic cell-cell and
cell-matrix interactions that can drive tumor progression and therapy resistance [14]. By
enabling high-throughput and reproducible screening, peptide arrays overcome many
limitations of conventional biochemical and cell-based assays. Their key advantages in-
clude (i) scalability and miniaturization, allowing simultaneous testing of thousands of
interactions; (ii) minimal sample and reagent consumption; (iii) quantitative and spa-
tially resolved data output; (iv) high reproducibility and automation compatibility; and
(v) seamless integration with multi-omics and imaging approaches [15,16]. While high-
throughput technologies such as single-cell sequencing [17,18], spatial transcriptomics,
and mass-spectrometry-based proteomics have profoundly transformed cancer research,
they predominantly provide correlative or inferential insights into cellular states rather
than direct measurements of functional molecular interactions [19]. Transcriptomic and
spatial approaches capture gene expression patterns [20] with high resolution in 2D and
3D [21], yet they often fail to reflect post-transcriptional regulation, protein activity, or
transient signaling events that critically shape tumor behavior [22]. Similarly, proteomic
workflows offer deep coverage but remain constrained by sample complexity, dynamic
range issues [23], and difficulty in resolving weak, context-dependent interactions that are
critical in tumor microenvironments and adaptive resistance mechanisms [24-27]. Within
the tumor microenvironment, cell behavior is influenced by extracellular matrix cues, short
linear motifs, post-translational modifications, and immunogenic epitopes that are poorly
predicted by gene expression alone [28,29]. Peptide arrays address a complementary niche
by enabling the direct interrogation of molecular binding events, such as receptor-ligand
interactions and epitope recognition, and can discriminate distinct cancer states or perform
scalable multi-disease profiling [30]. Depending on the biological question, we categorize
assays with peptide arrays here in three principal domains: cell-based assays, blood-based
assays, and tumor sample analyses. In cell-based assays, high-density peptide matrices
enable upon the functionality the identification of short peptide motifs [14] governing
cell adhesion, migration, and repulsion. The screenings can be multiplexed with capture
molecules, e.g., DNA oligonucleotides [31], to reveal ligand-receptor interactions that regu-
late focal adhesion [32], integrin signaling, and cytoskeletal dynamics [33]. In blood-based
applications, peptide arrays facilitate high-throughput profiling of circulating biomolecules
such as autoantibodies [34], neoantigens [12,35], and cytokines [36]. In tumor-based as-
says, peptide and proteomic protein arrays provide a platform for analyzing tumor cell
phenotype, immune recognition, and target identification [37] for drug development [38].
However, peptides face technical limitations such as higher-order protein structures and
binding affinity, which need orthogonal methods to fully interpret biological relevance [30].
Peptide arrays bridge the gap between descriptive profiling and actionable functional
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readouts. Their scalability and adaptability position them not only as research tools, but
also as potential components of routine diagnostics and personalized monitoring with
growing market size [39]. In this review, we summarize the technological evolution and
emerging applications of peptide array platforms in oncology.

2. Evolution and Application of Peptide Arrays in Cancer Research

Early generations of peptide microarrays [40,41] provided the first proof-of-concept
for measuring enzyme activities and protein—protein interactions from tumor lysates,
revealing early insights into oncogenic signaling and potential biomarkers. From
around 2010 onward, high-density peptide arrays produced via electrical fields of high-
voltage CMOS-based laser printing and robotic spotting [42—44] expanded spot densities

to >10* peptides cm 2

, minimizing cross-contamination and allowing reliable quantifi-
cation of low-abundance signaling events. One application is in the field of systematic
molecular analysis, e.g., the investigation of substitution peptide libraries for EPANPSEKN-
SPSTQY [45], which enable the replacement of each amino acid by alternative residues and

identification of antibody binding mechanisms (Figure 1).
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Figure 1. Fluorescence scan of the substitutional array for the cyclized peptide EPANPSEKNSPSTQY
after incubation with rituximab and subsequent immunostaining. The white circles show amino
acids from the original sequence EPANPSEK. The cyclic peptides were formed via the thioether
macrocyclization [45].

Peptide arrays have become powerful platforms for studying tumor signaling com-
plexity, drug—target engagement, and adaptive resistance mechanisms in near-physiological
environments. Recently, the quantitative and functional resolution of peptide microarrays
in tumor systems biology has improved significantly [32]. Modern silicon-based high-
density arrays now support >10° peptides per assay, enabling simultaneous profiling of
kinase activities, receptor-ligand interactions, and autoantibody repertoires across multiple
cancer types with a statistical power sufficient for disease classification and presymp-
tomatic immune monitoring [30]. High-throughput profiling of plasma from early-stage
lung adenocarcinoma patients revealed autoantibody signatures with >85% sensitivity
and 90% specificity, outperforming conventional imaging alone and providing prognos-
tic insight post surgery [46]. Quantitative mapping of post-translationally modified and
non-canonical peptides across tumor immunopeptidomes demonstrates that 25-40% of
presented antigens are not predictable from transcriptomic data, highlighting the unique
functional information captured by peptide arrays [47]. The integration of microfluidics has
further advanced the biological relevance of these systems [48], enabling high-throughput
kinetic measurements, low-volume control, and dynamic signal capture that static spotted
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slides cannot achieve [49]. Closed-system microfluidic peptide chips achieve picoliter-scale
reactions with active sample recirculation, leading to enhanced binding kinetics, improved
signal-to-noise ratios, and reduced assay variability, while requiring orders of magnitude
less sample input than conventional formats, which is a critical advantage for precious
tumor lysates and clinical specimens [50,51]. Controlled flow and dynamic assay formats
permit real-time monitoring of kinase kinetics, ligand binding, and drug-induced signaling
rewiring. Microfluidic peptide platforms have also been applied to physiologically relevant
activity mapping, such as integrated detection of tyrosine kinase auto-phosphorylation
in enzymatic networks [52], confirming that membrane context and microenvironmental
factors quantitatively alter catalytic activity on-chip, bridging in vitro biochemical behavior
with contextual mechanistic insight. In parallel, microfluidic peptide chips are capable of
detecting cell invasion mechanisms of metastatic breast cancer cells and their interplay
with endothelia cells [48]. The arrays present thousands of matrix-derived and modified
peptide motifs [32], enabling mapping of cell-matrix interactions and adhesion pheno-
types [48]. This can provide functional parameters relevant to invasion and metastasis that
complement transcriptomic and proteomic profiles.

Meanwhile, high-density peptide arrays provide thousands of capture molecules,
like extracellular matrix (ECM)-derived fragments, to screen for peptides that modu-
late cancer cell adhesion [32] or reveal novel regulators of cell-matrix interactions [14].
One important point is the design of the library: To build the peptide library for
the chip, one can first derive candidate peptide sequences from resources such as
PeptideAtlas [53] and then use solid-phase peptide synthesis, followed by purification
and quality control. For pre-synthesized libraries, peptides are typically spotted onto
functionalized supports (e.g., NHS-ester glass slides) using robotic microarray printers [54].
The printing buffer and linker or carrier (e.g., biotin-streptavidin, or PEG-linker) can influ-
ence the correct orientation and stable immobilization [54]. Coupling peptide arrays with
information from complementary technologies like mass spectroscopy [55], CRISPR-based
peptide libraries with Al analysis [56], or multi-omics datasets [57], we can investigate
a large research field from discovery to precision medicine. Although CRISPR and Al
approaches can enhance peptide array analyses for kinase-target identification, potential
biases towards understudied kinases may be considered. Al-driven analysis [58,59] has
enabled hierarchical data integration from molecular interaction landscapes to phenotypic
outputs, facilitating tumor antigen landscape identification, dynamic signaling network
rewiring, and drug resistance mechanism elucidation across scales [60,61]. Collectively,
these advances position peptide arrays as quantitative oncological platforms that extend
beyond static binding assays to interrogate in situ kinetics and regulatory networks under
near-physiological conditions [62]. Here, we give an overview on peptide array applica-
tions for cell-based assays, tumor tissue analysis, blood-based assays, drug screening, and
the discovery of mechanisms of drug resistance (Figure 2).
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Figure 2. Overview of the setup of a peptide chip and its applications.
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2.1. Cell-Based Assays: Mapping Adhesion, Migration, and Signaling

Tumor-associated changes in cellular communication can shape angiogenesis, metas-
tasis, and tumor immune evasion. Among the different cellular components of the tumor
microenvironment, endothelial cells and macrophages emerge as key regulators of tumor
progression [63-65]. Tumor endothelia cells [66] influence immune cells and immune-
checkpoint pathways due to immunomodulatory ligands [63]. In parallel, macrophages
adapt to their local microenvironment [66] and promote immune suppression and liver
metastases by various mechanisms [67]. Peptide chips further illuminated the endothelial-
macrophage axis in tumor progression. Tie2-targeting peptides [68] enabled inhibition
of Angiopoietin-mediated pro-angiogenic signaling in both endothelial cells and tumor-
associated macrophages, and resulted in reduced vessel formation and limited tumor
growth [69,70]. High-density peptide arrays facilitate the systematic identification of motifs
controlling cell adhesion, migration, and signal transduction, which are critical determi-
nants of metastasis and therapy resistance. Sonnentag et al. identified peptides regulating
tumor cell clustering and motility [32], directly linking extracellular patterns to resistance
mechanisms. A particularly impactful example is the work by Sonnentag et al. [18], which
moved beyond descriptive screening by linking specific extracellular peptide motifs to
functional phenotypes such as tumor cell clustering, migration, and repulsion. By systemati-
cally correlating peptide—cell interactions with downstream cytoskeletal reorganization and
migratory behavior, this study demonstrated how short extracellular motifs can actively
shape resistance-associated phenotypes. Importantly, the work illustrates a key strength
of peptide arrays: the ability to connect molecular binding events with emergent cellular
behavior under controlled conditions [32]. This level of mechanistic insight is difficult to
achieve with other approaches, e.g., flow cytometry would require the analysis of single
cells in suspension and microscope assays would still require the functionalized surface
and cannot be used as a standalone technique. The authors identified endothelia cell motifs
that enhance adhesion and angiogenic spreading by vascular remodeling supporting tumor
survival [71]. Kinome-focused arrays extend this analysis to cell lysates, capturing intracel-
lular adaptations [72]. Cellular interactions are very complex [73,74], especially within the
tumor microenvironment, which can lead to immune cell exhaustion and altered cellular
composition by metabolic reprogramming or mitochondrial dysfunction [75]. Furthermore,
tumor-associated ECM remodeling and cellular interaction with ECM molecules can drive
tumor progression by influencing pathway crosstalk [73,74,76]. Peptide arrays allow the
systematic screening of extracellular motifs that regulate cell-matrix interactions, as shown
by Kanie et al. [77]. The authors used a SPOT peptide microarray to identify tripeptides
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selectively binding collagen IV. Building on this platform, automated microtiter-plate syn-
thesis of (phospho)peptide arrays enables efficient probing of commercially available kinase
substrates which play an important role in intracellular signaling and could be further
developed to investigate cellular responses [78].

However, surface-immobilized short motifs can lead to misleading cell interactions
that depend normally on the full-length protein binding [15]. Furthermore, surface chem-
istry, ligand density, and molecular orientation can change affinity and cell adhesion
strength. Another limitation is the nonspecific adsorption of cells, which can result in strong
signal background or incorrect data especially for complex samples composed of multiple
cell types [79]. These limitations need to be taken into account for data interpretation.

2.2. Blood-Based Assays: Detecting Circulating Biomarkers

Peptide arrays also support high-throughput profiling of circulating molecules directly
from blood (Figure 2), including tumor-associated antigens [49], autoantibodies [80-83],
neoantigens with more than 400,000 peptides [49,84], and low-abundance proteins, offering
minimally invasive windows into systemic tumor-host interactions [85]. Electrochemical
peptide arrays can detect femtomolar concentrations of tumor peptides from microliter-
scale serum samples, achieving sensitivity comparable to ELISA [85]. Iyer et al. [86] and
Cao & Chen [87] demonstrated that miniaturized lab-on-chip systems integrate sample
routing, multiplexed detection, and automated analysis, enabling point-of-care testing.
Peptide arrays also provide functional insights into signaling dynamics. Studies showed
that arrays map SH2 and SH3 interactions and phosphorylation events, revealing ligand
accessibility and conformational changes induced by growth factors or oncogenic sig-
naling [88-90]. However, reproducing the full complexity of tumor microenvironments,
cellular heterogeneity, and extracellular matrix dynamics remains a limitation. Further-
more, early detection of cancer remains a critical challenge in oncology, as tumors are often
asymptomatic in initial stages, limiting the effectiveness of current imaging-based screening
approaches. Tumor-associated autoantibodies (TAAbs) arise in the patient’s blood years
before clinical manifestation, serving as sensitive biosensors of early tumorigenesis [90-103].
These autoantibodies can provide non-invasive, blood-based biomarkers that complement
existing imaging modalities, improving early diagnosis and patient outcomes (Table 1).

Table 1. Overview of autoantibody detection techniques.

Cancer Type Autoantibody Detection Technique

High-density peptide microarray profiled
Lung adenocarcinoma plasma to identify peptide autoantibody
signatures [91]

Protein array and ELISA validation screening
Lung cancer (general) of cancer-driver proteins, developed 7-TAAb
decision-tree panel [92]

Engineered glycopeptide probes (not array)

Pancreatic cancer peptide—antibody confirmed by SPR [93]

High-throughput protein microarrays screened

Pancreatic ductal adenocarcinoma sera to identify an 11-autoantibody panel [94]

Protein-array workflow for serum screen of

Colorectal cancer autoantibody signatures [95]
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Table 1. Cont.

Cancer Type Autoantibody Detection Technique

Whole-proteome high-density peptide array

Melanoma (mouse model) epitope mapping in mice [96]

Peptide microarray assessing IgG/IgM

Glioblastoma autoantibodies [97]
Human proteome microarray to examine the
Renal cancer differences in IgG and IgM autoantibodies in
sera [98]
Prostate cancer High-throughput protein arrays [99]

High-density peptide microarrays for detection
Colon cancer of autoantibody biomarkers of colon
cancer [100]

Protein microarray to evaluate autoantibodies
Ovarian Cancer and tumor-associated antigens (GNAS, NPM1,
p53) [101]

High-density protein microarrays were
functionalized with 4988 candidate tumor
antigens of patients with early-stage breast
cancer and IgG [102]

Breast cancer

Human Proteome Microarray was used to
detect autoantibodies to a panel of six
tumor-associated antigens (RAD23A, CAST,
RUNXI1T1, PAIP1, SARS, PRKCZ) [103,104]

Proteome microarrays enabled the detection of
Hepatitis B-related autoantibodies against tumor-associated
hepatocellular carcinoma antigens (TAAbs) and a candidate biomarker
panel (APEX2, RCSD1, and TP53). [105,106]

Protein microarray screens found PCDHGC5
autoantibodies as an independent negative
prognostic factor and ARMS as a marker for
immune response [107]

Hepatocellular carcinoma

Alveolar rhabdomyosarcoma

Serological analysis of recombinant cDNA

expression libraries was used to generate a list
Soft tissue sarcoma of tumor-associated antigens as potential

biomarkers and therapy targets (DLG?,

JUN) [108]

High-density peptide arrays have been developed for profiling autoantibody reper-
toires. In landmark studies, arrays containing over 130,000 synthetically synthesized
peptides, representing mimotopes of tumor-associated antigens, were used to capture
autoantibodies from plasma of early-stage lung adenocarcinoma patients [91]. The cohorts
included 377 samples, enabling systematic identification of disease-specific immune sig-
natures. Notably, when combined with low-dose computed tomography, autoantibody
profiling improved the positive predictive value from 50% to 78.3%, demonstrating how
immunoprofiling can complement imaging [91]. Beyond predictive accuracy, peptide
arrays showed higher sensitivity than conventional tumor markers, detecting 72-81% of
cases versus 22% for markers such as CYFRA21.1, NSE, SCC, and ProGRP. This sensitivity
highlights their potential to identify tumors at an earlier, clinically actionable stage [91].
The study by Luo et al. [109] represents a conceptual advance in blood-based cancer diag-
nostics by demonstrating that autoantibody signatures derived from large-scale peptide
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libraries can outperform conventional tumor markers in sensitivity and temporal resolu-
tion. Notably, the technique significantly improved the predictive value, which can be
clinically relevant. This work highlights how peptide arrays can capture early immune
surveillance events that precede radiologically detectable disease, positioning them as
promising tools for population-level screening strategies when combined with established
imaging modalities [109]. High-density peptide arrays now provide a scalable platform
for mapping disease-specific autoantibody repertoires, supporting early diagnosis, pa-
tient stratification, and integration into precision screening workflows. However, careful
validation and replication are essential to minimize false-positive signals, particularly in
low-prevalence cohorts [110].

2.3. Tumor-Sample-Based Methods

Tumor progression and therapeutic resistance are shaped by complex interactions
among cancer cells, stromal cells, and immune components, as well as by extracellular
matrix remodeling and nutrient gradients [111-114]. Peptide arrays are a powerful tool to
identify tumor binding peptides, screen tumor cells, and profile immune reactions [46,88].
Key molecular and cellular determinants include cell adhesion motifs, migration regulators,
angiogenic signals, cytokine secretion, and kinase—substrate networks [2,115]. Accurate
detection and functional mapping of these factors are essential to understand how tumors
adapt, evade therapy, and metastasize. High-throughput peptide screens have revealed mo-
tifs regulating tumor cell adhesion, migration, and clustering, directly linked to metastatic
potential and therapy resistance [32,116]. To systematically interrogate these determinants,
researchers have employed high-density peptide arrays [38] and tumor-on-a-chip systems.
Peptide arrays provide direct readouts of extracellular ligand-receptor interactions and
motif-specific signaling [32]. These arrays capture dynamic cell-cell and cell-matrix in-
teractions under controlled microenvironmental conditions, offering mechanistic insights
that are difficult to obtain with traditional techniques. The method can be combined with
CODEX [117,118], spatial transcriptomics [119], or single-cell sequencing [120], which
often provide static snapshots rather than functional activity. Integration of spatial tran-
scriptomics and single-cell profiling complements peptide array analysis, illuminating
the spatial-functional organization of immune subsets such as macrophages and NK cells
within tumors [120].

2.3.1. Multi-Omics and Computational Integration: From Motifs to Mechanistic Models

Integration with multi-omics data and computational modeling is expected to en-
hance predictive power and accelerate adoption in early cancer detection. Zhang
et al. [121] demonstrated that integrating array-based readouts with proteomic datasets
identifies cancer-type-specific signaling signatures, highlighting tumor heterogeneity. In-
tegration of peptide array data with transcriptomics, proteomics, and Al-driven model-
ing [122] enables prediction of kinase-substrate interactions [115], tumor-specific epitopes,
and signaling network rewiring [123]. Integration with multi-omics datasets [124,125] fur-
ther enhances mechanistic insight. Coupling arrays with mass spectrometry [55], microchip
electrophoresis, and deep learning models predicts kinase-substrate relationships and
pathway rewiring under perturbations such as drug treatment, immune activation, or
metabolic stress [126,127]. Computational modeling has enabled patient-specific signal-
ing reconstruction [121]. Coupling peptide-binding landscapes with gene expression and
post-translational modifications provides a multimodal view of tumor biology, accelerating
biomarker discovery, immune epitope mapping, and characterization of tumor heterogene-
ity. Novel studies [123,128] showed that network-based models identify unique protein
subnetworks in individual tumors, guiding tailored therapeutic strategies. Peptide arrays
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are designed to probe functionally relevant regions of the proteome. The PeptideAtlas
resource [53] plays a central role in this process, as it compiles high-confidence, experimen-
tally observed peptides across multiple proteomes, including post-translational modifica-
tions. By leveraging this repository, researchers can select biologically validated peptide
sequences for array synthesis, ensuring coverage of disease-relevant proteins and motifs.
This strategy is particularly valuable for neoantigen discovery [11] and personalized cancer
immunotherapy, where arrays must capture patient-specific antigenic determinants to eval-
uate immune recognition efficiently. A key challenge remains the interoperability of peptide
array data with other omics layers, such as transcriptomics and proteomics [129,130]. An-
other limitation is the 3D structure and multicellular composition [131].

2.3.2. Drug Screening

Peptide arrays provide a functional platform for targeted drug discovery and re-
sistance mechanism mapping. Screening peptide-drug interactions identifies binding
epitopes and pathways contributing to therapy failure. Microfluidic metastasis-on-chip
studies [132] were performed. Those experiments can show that fibroblast-driven in-
flammation and ECM remodeling enhances invasion. Differences in the ECM molecule
composition, such as collagen I, can drive angiogenesis and cancer progression [133]. These
examples illustrate the functional detection of cellular behavior and therapeutic vulnerabil-
ity. Compared to conventional spatial or single-cell approaches, peptide arrays provide
high-resolution, functional interrogation of extracellular motifs, allow direct testing of drug
response and signaling adaptation, and can quantitatively link molecular signatures to
multicellular behavior. However, peptide arrays cannot fully capture the three-dimensional
organization, mechanical properties, or dynamic gradients of the tumor microenvironment
and soluble biomarkers, which are critical for drug response [134]. Another issue might be
low binding events, which could be washed away during sample processing.

3. Discussion

Collectively, the studies discussed in this review indicate that peptide microarrays
have evolved from exploratory screening tools into hypothesis-generating and mechanism-
resolving platforms [39,50,109,122]. Their main conceptual strength lies in the direct inter-
rogation of functional molecular interactions, enabling insights into signaling plasticity,
microenvironmental adaptation, and therapy resistance. However, the interpretation of pep-
tide array data requires careful consideration of biological context [39], as linear peptides
may not fully recapitulate conformational epitopes or higher-order protein structures [30].
Thus, peptide arrays are most powerful when embedded within integrative experimen-
tal workflows rather than used as standalone discovery tools. Peptide microarrays have
emerged as versatile analytical platforms that enable high-resolution insights into tumor
biology, offering unique opportunities to dissect molecular mechanisms underlying metasta-
sis and cell migration. The technology has made significant progress during the last decade
(Figure 3), enabling a broad biological application to answer tumor-related questions.
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Figure 3. Technological advances of peptide arrays [40,43,44,49,56,57].

Firstly, peptide chips enable the subsequent analysis of parts of a protein and the effect
on drug or antibody binding affinities, which are difficult to study with other techniques.
The native biological function and effect of molecular architecture can be investigated
for short motifs as well as whole proteins [45,82]. Those proteome arrays serve as high-
throughput tools for analyzing the target architecture of antibodies and cellular receptors.
Through the targeted isolation of low-molecular-weight proteins, authors such as Brouwers
et al. [135] identified distinct protein signatures between metastatic and benign tumors,
supporting early detection and improved prognosis [136,137]. However the experimental
approaches are limited by linear peptides, nonspecific binding, and underrepresentation of
understudied targets, necessitating orthogonal validation [138].

Secondly, the combination with complementary techniques broadens the scope of
applications. Integrating peptide chips with high-resolution mass spectrometry allows
spatial mapping of biomarkers and extracellular interactions within tumor lesions [139,140].
However, for investigation of gene expression patterns at cellular resolution, spatial tran-
scriptomics is commonly used [119,120].

Thirdly, peptide chip-based dynamic studies are performed, e.g., for investigation
of cell migration, which can reveal key signaling pathways, such as integrin, VEGFR,
or CXCL12/CXCR4, that promote cell migration and the epithelial-mesenchymal transi-
tion [141]. Further studies demonstrated that functional on-chip assays yield quantitative
information about cell motility, enabling the identification of potential therapeutic tar-
gets [32]. Combinations with microfluidic and metastasis-on-chip models further revealed
that the interaction between tumor and stromal cells actively governs invasion and extra-
cellular matrix remodeling, while MEK inhibitors such as imatinib stabilize the endothelial
barrier and inhibit intravascular migration [142,143]. Overall, the findings confirm that
peptide chips provide mechanistic insights into metastasis and tumor progression and
peptide-based cell selection to functional migration assays. Beyond descriptive profiling,
the integration of peptide arrays with microfluidic control and computational modeling
enables interrogation of binding kinetics, force-dependent interactions, and context-specific
signaling responses under near-physiological conditions [49,50,86]. In combination with
machine learning-based analysis [60,61,144], these high-dimensional datasets allow hier-
archical integration of molecular interaction patterns with functional phenotypes, sup-
porting the identification of metastasis-associated antigens, adaptive signaling rewiring,
and therapy-induced resistance mechanisms. Consequently, peptide chip technologies are
evolving to quantitative systems-biology platforms [49,132]. They complement classical
omics approaches and open translational potential, for example, for personalized therapies
or CAR-T strategies targeting metastasis-associated antigens [145]. By translating subtle
immune recognition patterns into measurable diagnostic signatures, these platforms bridge
molecular profiling and clinical oncology. To realize clinical translation, challenges such
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as standardization of peptide selection, array fabrication, and data interpretation, as well
as validation in larger, diverse patient cohorts, need to be addressed. To ensure robust
conclusions bias, study quality should be assessed, for example, using tools such as ROBIS,
which evaluates the risk of bias across multiple methodological domains [146]. For investi-
gation of cross-reactivity, key variables governing peptide array performance and repro-
ducibility include peptide length and density [147], orientation/linkers, surface chemistries
(e.g., NHS-ester, epoxide, aldehyde), blocking buffers, sample type and handling, dynamic
range, replicate design, lot-to-lot variability, normalization, and FDR control [148,149].
For all experiments, comparative data, quantitative evidence for hit quality or in vivo
predictivity, and detailed consideration of clinical translation should be validated carefully
with orthogonal techniques. We suggest combining peptide-array-based profiling with
complementary techniques [150-153] to validate tumor-stroma and tumor-immune in-
teractions, thereby enhancing our understanding of tumor heterogeneity and therapeutic
response [151]. Recently, Qian et al. [154] demonstrated mitochondria-targeting theranostic
platforms as a promising complementary approach to peptide-array-based profiling, en-
abling targeted delivery and real-time monitoring of therapeutic efficacy at the subcellular
level. This will help in designing personalized optimal treatments [155]. However, peptide
microarrays are often limited by linear peptides, nonspecific binding, target underrepre-
sentation, and design variability, and require validation and standardization for robust
biological and clinical use.

4. Conclusions and Future Perspectives

Future developments in peptide array technology are expected to converge on several
interrelated directions that collectively enhance biological relevance and translational
impact. Integration of peptide arrays with three-dimensional culture systems and organ-
on-chip models will enable functional interrogation of multicellular tumor niches under
physiologically meaningful conditions, as microfluidic tumor-on-chip platforms have
emerged as advanced systems for modeling tumor—-ECM interactions, drug response,
and resistance mechanisms beyond conventional two-dimensional cultures [26,132,151].
Overall, peptide chips provide a high-resolution platform to dissect tumor-stroma cell
crosstalk, the epithelial-mesenchymal transition, and metastatic progression. They bridge
molecular and functional phenotypes, offering actionable insights for therapy. While
challenges such as standardization, reproducibility, and clinical validation remain, the
technology complements existing omics approaches and advanced models. Integration
of peptide chips with microfluidics, spatial proteomics, CRISPR screens, and Al-driven
peptide design accelerates personalized anti-metastatic strategies. Al-driven peptide library
design and advanced data analysis approaches are poised to accelerate the identification
of context-specific binding motifs [156], resistance-associated interaction signatures [157],
and patient-tailored therapeutic targets [144]. Recent advances in machine learning-based
peptide design demonstrate that computational frameworks can efficiently explore large
peptide sequence spaces [158,159]. These screens hold promise for integration into precision
oncology workflows. Future studies should address ethical and translational hurdles,
including Al-driven data analysis of peptide array technologies, 3D models, and steps
toward clinical translation, such as patient validation and therapeutic implementation.
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