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Abstract

We consider time-harmonic scalar transmission problems between dielectric and disper-
sive materials with generalized Lorentz frequency laws. For certain frequency ranges such
equations involve a sign-change in their principle part. Due to the resulting loss of coerciv-
ity properties, the numerical simulation of such problems is demanding. Furthermore, the
related eigenvalue problems are nonlinear and give rise to additional challenges. We present
a new finite element method for both of these types of problems, which is based on a weakly
coercive reformulation of the PDE. The new scheme can handle C!+!-interfaces consisting
piecewise of elementary geometries. Neglecting quadrature errors, the method allows for a
straightforward convergence analysis. In our implementation we apply a simple, but non-
standard quadrature rule to achieve negligible quadrature errors. We present computational
experiments in two and three dimensions both for source and for eigenvalue problems. They
confirm the stability and convergence of the new scheme.
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1 Introduction

The starting point of this work are time-harmonic electromagnetic transmission problems
involving dispersive materials, modeled by Maxwell’s equations. To simplify the setting we
assume that the domain is invariant in one direction and bounded by a perfect conductor in
the other two. Thus the equations are reduced to two uncoupled systems called the transverse
magnetic (TM) and transverse electric (TE) problem. They can be further transformed into two
scalar equations for the electromagnetic field (E,H) in the invariant direction with appropriate
boundary conditions [9]. Both equations have the form

—div(eVu) — o’tu = f

with the temporal frequency w, the dispersive permeability © = pu(w, x) and permittivity
€ = e(w, x),and (0, 7) = (u~ !, €) for the TE problem and (o, 7) = (¢!, ) for the TM
problem [8]. The case where o is real valued and the sign of o changes is of particular
interest since then the arising bilinear forms are no longer (weakly) coercive, and classical
theory fails [9]. On the other hand, the term associated to —w?1(w, -)u constitutes a compact
perturbation for each t(w,-) € L*. Hence, this part is omitted for the Fredholmness and
discretization analysis as its inclusion requires only standard arguments.

An important field where such sign-changing equations appear is the study of surface
plasmons, which are electromagnetic waves that can form along the surface between a con-
ductor and a dielectric material. They are the result of a resonance of light and free electrons
on the surface of the conductor. This resonance of electrons essentially traps the light along
the surface and is only possible if the frequency-dependent permittivities of the two materials
have different signs [4]. These plasmons provide a unique way to concentrate and channel
light and because of their properties there are many potential applications including light har-
vesting [3], the construction of miniaturized photonic circuits, and the detection of molecules
[4].

To obtain numerical solutions to this problem different strategies have been developed.
In the case of piecewise constant coefficients, the problem can be solved using the boundary
element method [29]. Another approach suggested in [1, 2, 17] reduces the problem to a
quadratic optimization problem for functions on the interface. If the optimization problem is
solved iteratively, e.g., by the conjugate gradient method, PDEs with coefficients of constant
signs have to be solved in each iteration step. A further issue is the proper choice of a
stabilization parameter. Standard finite element methods in general only converge if the
contrast (see (10) for a precise definition) is large enough as shown in [7] using 7'-coercivity
techniques. However, the necessary bounds for the contrast are not known explicitly and
simulations computed this way can be treacherous as shown in Fig. 5a and Fig. 5b. Sharp
convergence results, with respect to the contrast, of finite element discretizations have been
shown for polygonal interfaces in [6] if angles are rational multiples of 277, meshes are chosen
symmetric in a neighborhood of the flat parts, and special meshes at the corners are used.
While this approach is promising in two dimensions, the construction of respective corner
meshes in three dimensions is only possible for special cases (the Fichera corner) or leads
to unsharp results. A very recent, new approach is to apply a primal-dual stabilization [10].
The eigenvalue problems associated to dispersive transmission problems are nonlinear and
have received significantly less attention so far; see [12] for results on frozen coefficient
simplifications, [29] for boundary element methods and [21] for a generalization of the finite
element methods for polygonal interfaces in [6] to two-dimensional Maxwell eigenvalue
problems. Concerning additional aspects involving sign-changing materials, we refer to [18,
26] for error estimators and to [14] for localized orthogonal decomposition techniques.
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In summary, the only method for elliptic differential equations with variable sign-changing
coefficients for three-dimensional domains and non-polygonal two-dimensional domains is
the optimization-based approach introduced in [1]. However, the optimization process in [1]
requires a large number of PDE solutions, making this approach computationally signifi-
cantly more costly than a finite element discretization, especially when applied to eigenvalue
problems. The main aim of this work is to propose a finite element type discretization of such
problems for smooth interfaces with only standard requirements on the mesh.

The principle approach of our new scheme is to apply a suitable T-operator to the PDE
yielding a weakly coercive equation and allowing for discretization with standard finite ele-
ment spaces. Thus instead of using a T-operator as a theoretical tool and seeking compatible
finite element spaces, our T -operator enters into the implementation of the numerical method.
This idea already was mentioned briefly in [15, Section 2.3.2], but has not been studied in
detail until now. In addition, our method can naturally be applied to the related eigenvalue
problems. A similar approach for Stokes equations can be found in [16].

The remainder of this article is structured as follows. First we specify the considered
problem. In Sect. 3 we introduce the applied reflection operator and the weakly coercive
reformulation of the PDE. In Sect. 4 we discuss the implementation of the FEM and the used
quadrature rules. In Sect. 5 we present several computational experiments which confirm
the stability and convergence of the new scheme. In Appendix A we include some technical
analysis on the bounds of the used reflection operators.

2 Notations and Problem Setting

For a domain U C RY,d = 2,3 we denote by (-, -)u the scalar product of L2(U) with
associated norm ||-||;. Furthermore we denote by ||~||H01 w) = IV-|ly the norm of HOI(U)

and by ||| g-1¢7) the norm on H~Y(U) thatis given by the dual norm of HO] (U) with respect

to the norm || V-||;;. Unless specified otherwise, all spaces and scalar products are over R.
We consider a bounded Lipschitz domain £2 ¢ R¢ which is decomposed into two disjoint,

nonempty Lipschitz subdomains 24+ C £ with a C!!-interface I' := 952, N 32_ such

that £2_ C £2. We introduce the notation u := u|g, and u_ := u|g_ for the restrictions
of a function u defined on 2. Similarly, for a subdomain X' C £2 we write X := X' N 24
and X¥_ := X N £2_. We define the spaces of restrictions of HO1 on these subdomains by

H' (Z1) := {u|x,: u € H) (2)}.
and on these subspaces we consider the H'-seminorms sy =1V s, -

Source problems: Here we assume that the coefficient function o € L°(£2), |o| is essen-
tially bounded from below by a positive constant and the restrictions of ¢ satisfy o_ < 0
and o4 > 0. Lastly, we restrict ourselves to homogeneous Dirichlet boundary conditions and
consider a source term f € H~'(£2). This leads to the following problem:

Find u € H{ (£2) such that — div(c Vu) = f in £2. )

The former equation can alternatively be formulated in operator form using the operator
B € L(Hy(82)) defined by (Bu, v) i (q) = (0 Vu, V) 12(g):

Find u € Hy (£2) such that Bu = f )
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where f € H(} (£2) is the image of f under the canonical identification of H~!(£2) and
H} ().
0

Eigenvalue problems: We also consider holomorphic eigenvalue problems related to the
dispersive transmission problems. We restrict ourselves to local lossless passive materials
which are nondispersive in £2. Such materials are described by generalized Lorentz laws
[13, Theorem 3.22], and convenient reconstructions from measurement data also take this
form [20], cf. [13] for further discussions on the physical and mathematical requirements
of dispersive material laws. Generalized Lorentz laws are described by coefficients oy, 79 €
L®°(£2) such that op, 79 > 0 and a(;l, T(;l € L*°(£2), and take the form

-1

No 2
C
o(w,x) = 00(X)<1 +1lo () %) No €N, wg1,co0 20, (3a)
[
N2
Cc
(0, x) = ro<x)(1 +1lo. Y ﬁ) Ne €N, s cep>0. (3b)
=1 Yr1 T @

Setting

Ny Ny
A:=C\ <U{iwa,,} U JiZornjUlweC: o) = 0}),

I=1 I=1
we consider the following problem:
Find (w, u) € A x H}(£2,C) \ {0} @
such that — div(o (w)Vu) — wzr(a))u =0in £2.
We rewrite the former as the eigenvalue problem for a holomorphic operator function:
Find (w,u) € A x H(} (£2, C) \ {0} such that B(w)u = 0, (5)
with B(-): A — L(H} (82, C)) defined by
(B(w)u, U)HOI @2.0) = (0@, )Vu, Vv) 2.0 cd) — (@’ T(w, u, V)12(2.0)-
Note that for F Im(w?) > 0 we have
—w?
+Im - | = 0 and + Im(o (w, -)) > 0.
ws; —w?

This shows that for a solution (w,u) to (5) with Im(w?) # 0 it follows from
Im(B(w)u, M)HUI @.c) = 0 that (Tou, u) 2oy = 0 and hence u = 0. Since for Im(w?) # 0
the operator B(w) is weakly coercive, it follows from the Fredholm alternative that the spec-
trum of B(-) is real. The challenging part is then to compute the part of the spectrum contained
inA_:={weRNA:o(w,-) # 0}. Here 0 (w, -) # 0 means that there exists a set 2’ C 2
of positive measure such that o (w, x) < 0 forall x € £2’.

3 The Weakly Coercive Reformulation

As it is an important concept in our analysis, we start with a definition of (weak) coercivity
of an operator.
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Definition 1 ((weak) coercivity) An operator B € L(X) defined on a Hilbert space X is
called coercive if there exists a constant « > O such that

(Bv,v)x > a|v||% forallv e X.

An operator is called weakly coercive if it can be written as the sum of a compact and a
coercive operator.

It is well known that for weakly coercive operators or operator functions Galerkin schemes
yield asymptotically reliable solutions for source problems (see, e.g., [24, (13.7b)]) or for
eigenvalue problems ([22, 23]), respectively. For the problem at hand, the operator B is not
weakly coercive. One technique to deal with problems lacking weak coercivity is the so called
T -coercivity approach that we will briefly review now. The idea is to construct a bijective
operator T € E(HOl (£2)) such that B := T*B is weakly coercive. Then a solution to the
source problem

Find u € H}(£2) such that Bu = T* f (6)

is a solution to the original problem (1) and vice-versa [15, Sect. 2.3.2]. For the eigenvalue
problem we can proceed similarly if we are able to construct an operator 7' for which T* B (w)
is weakly coercive for all @ € A_. In this case we consider the eigenvalue problem:

Find (w, u) € A’ x Hg (£2) \ {0} such that T* B(w)u = 0, 0

where A’ C C is an open neighborhood of A_ for which T*B(w) is weakly coercive.
Since weak coercivity is a continuous property and 7* B (w) is weakly coercive on A_ such
a neighborhood always exists, although to determine its exact shape an inspection of the
frequency law is necessary. Due to our assumptions (3) the operator function B(-) has only
real eigenvalues and since T is bijective the problem above leads to the same eigenvalues
and eigenfunctions as the original problem.

Since T*B or T*B(w) for w € A’, respectively, are now weakly coercive, each Galerkin
scheme yields an approximation that exhibits the usual convergence properties for all approx-
imations which are fine enough specified in [24, (13.7b)] and [22, Thm. 2,Thm. 3], [23,
Thm. 2,Thm. 3] respectively, and any convenient finite element spaces can be used.

3.1 Construction of the Operator T

Several approaches have been suggested to construct T -operators yielding existence and
convergence results, see [6—8]. However, the operators T constructed in these references are
not well suited for numerical implementations. Here we will work with a global reflection
operator similar to [6] for polygons in contrast to the patch-wise approach used in [8]. We
define T € £(H01 (£2)) as either

Uy —2xR_uly_ in 24
T_u:= .
—u_ in £2_
or @)
u4 in .Q+
T+u = . )
—u_+2xRiulx, inf2_

where X is a neighbourhood of I,
R € L(H'(Z1), H'(Z3)) ©)
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are reflection operators which fulfill the so called matching condition (Riu| 5 i) Ir =uxlr
and x € C'(£2,[0, 1]) is a cut-off function with support in X which equals 1 in an open
neighborhood of I". The weak coercivity of 7*B then depends on the operator seminorms
of R with respect to the seminorms on H'!(X) which are defined by

|Rily = sup |ulyis,
il gt 57y =1

and the so called contrasts of o near the interface, that are given by

infyex, o(x) and k_y 1= infres_ |0 (x)]

. (10)
SUP ey o (x)] SUp,cx, 0(x)

ki s =
Furthermore, we define k4 := infx-r k4 x where the infimum is taken over all open
neighborhoods of I'. The precise relationship of the seminorms of the operators and the

contrast is given by the following lemma, the technique of which is well known (see, e.g.,
[6-8]).

Lemma 1 For Ty be defined as above the following implication hold true:

|R+|?> <kix = TiB isweakly coercive.

Proof We will only prove the statement for 7_, and we will write 7 instead of 7_ for
better readability. The statements for 7 can be shown in the same way. To show that T*B
is weakly coercive under the given assumption on the contrast, we define the operators
A, K € L(H}(£2)) via bilinear forms as

(Au, U)HOI(Q) = (lo|Vu, Vv)o — 2(cVu, xVR_v|x_ )o Yu,v € HOI(SZ),
(KM,U)HO](Q) = —2(oVu,VxR_v|x o Vu,veHol(.Q).

Note that due to the boundedness of R_ both bilinear forms are bounded and hence the
operators are well-defined. Then A + K = T*B, and we will show that A is coercive and K
is compact. From the bound on the seminorm of Ry we can derive the coercivity of A with
standard arguments based on Young’s inequality which can be found in the proof of Lemma
2 in [6].

For K we define the following operators to express K as a product of them.
We write «: H{(X_) — L%*(X_) for the compact embedding operator and define
M_zy: (L2(£2))4 — (L*(£2))? and My, : L*(2_) — (L*(£22))? as the multiplication
operators with symbols —2¢ and V x respectively. Additionally, we write Py_: HO1 (£2) -
H'(x_) for the corresponding restriction operator. Because of the definitions of o, x and
Hol, (X-) all these operators are bounded, and we can now use the definition of K to obtain

(Ku,v) (@) = (=20Vu, VXR_v|5z_)q
= (M_2,Vu, MVXLpr);‘,U).Q
= (P5 REOMG, M 25V, v) i ).

This implies
K =P th*MéX M_»;V,

and because ¢ is compact, so is ¢*. This means that K is compact because it is the product of
compact and bounded operators. It follows that 7* B is weakly coercive. O
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Now we will provide an explicit construction of R4 based on the geometry of the interface
and provide upper bounds for their seminorm to clarify how they have to be constructed to
achieve weak coercivity.

3.2 Global Reflection Operators

We construct R4 via a Co*l-homomorphism p: X — X with ¢(¥+) = X+ for some
neighborhood X of I" such that ¢(x) = x forall x € I" by

R w:=wog, Riw:=woog.

Recall that if ¢ € C%!(X), then by the Rademacher theorem the Jacobian D¢ exists
for almost all x € X, and esssup,¢x|Dx¢|pre) < 00. Moreover, if w € H'(Xy), then
wog € H'(X1) (see [30, Theorem 4.1]), and together with the invariance of I" under ¢
this implies the mapping property (9). To explicitly construct ¢ under our assumptions, we
can define the unit normal vector n: I' — S¢~! pointing towards £2_ everywhere on the
interface and consider the functions

D: ' x(=6,8) > 2, (x,1) > x+1tn(x),

(11)
M:T'xR—T xR, (x,t) — (x, —1).

A similar construction also using reflections along normals of curved interfaces was used in
[25]. Since I" is C1-!-smooth by assumption, it follows thatn € CO’I(I", [Rd), and hence @ €
o1 (¥, [Rd). If we can choose § > 0 small enough such that @ is a CO’I—homomorphism,
then we can define ¢ by

p=PoMod L

Subsequently, we define X' := @ (I" x (=4, 8)) and note that p(X'1) = X+~ . As M = M1,
we have ¢ = ¢~ 1. For many practically relevant surfaces such as arcs, lines, planes and parts
of spheres and cylinders an explicit computation of &~ is feasible, but for general surfaces,
one has to resort to numerical inversions. It is now possible to calculate upper bounds for the
seminorms of R4 and R_ which only depend on the geometry of the interface and §.

Theorem 1 In two dimensions the seminorms of the reflection operators are bounded by

>,|R+I*§maX<l, )

where « is the curvature of the interface. In three dimensions the bounds are

1 —§infycp k(x)
14+ dinfyer k(x)

1+ 8sup,cpk(x)

|IR_|, <max| 1,
1 —dsup,crk(x)

1 —§inf e k1 (x) 1 —=68infcp kp(x)
|R_|, <max| 1, - , - )
1+ 68inf e k1(x) 1 +dinfycr k2 (x)
IR, |, < max (1’ 1 + 8 sup,cpki(x) ’ ‘ 1 + 8 sup,cp k2(x) )
I —8sup,cr«1(x) 1 —8sup,er k2(x)

where k1, ky are the principal curvatures of the interface.

Remark 1 In practical applications we want these seminorms to be smaller than the square root

of a given contrast k. Then these inequalities can be rearranged to obtain upper bounds on
1 Vky—1
SUPye K (0) Vg 11

8. E.g., for the seminorm | Ry |, and /k4+ we get§ < forsup, . «(x) > 0.

The proof of these bounds relies on an application of the transformation formula and basic
differential geometry. Itis given in Appendix A. Using these explicit bounds, we can formulate
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conditions on the contrast of o under which the construction of an operator 7" based on global
reflection operators is possible such that 7* B is weakly coercive. For this we just combine
our previous results with the fact that the bounds for the reflection operators decay to 1 when
8 gets smaller.

Theorem 2 (Conditions for weak coercivity) For an interface that is C' and piecewise C?
there exists an operator T which can be constructed via a global reflection operator as in
(8) such that T* B is weakly coercive if the following conditions are satisfied:

1. There exists 60 > 0 such that the map @ : I" x (—dp, 69) — $2 defined by (11) is a
CO'-homomorphism.

2. The curvature of I" for the two dimensional case or the two principal curvatures of I' for
the three dimensional case are bounded.

3. One of the contrasts ky or k_ of o is strictly greater than 1.

Proof We only prove the case where ky > 1. The other case can be proven in the same
way. From the second condition we know that the principal curvatures or the curvature is
bounded in absolute value by a constant which we call k.. Now, since ky > 1 we can
choose § € (0, §p) small enough such that

1<M< [k

T 1 = kmaxd

Next we consider the map @s: I' x (—4,8) — £2, (x,t) — x + tn(x) which is a cO-1.
homomorphism due to the first assumption. Therefore, as in Sect. 3.2, we can construct the
global reflection operator R.. Then we can use Theorem 1 and obtain

1 )
)= e <

T 1 = kmaxd

for the three dimensional case. Now Lemma 1 implies that the operator T} B is weakly
coercive with T constructed via R. O

1 +d8sup,rk(x)
1 —dsup,pk(x)

|Rt], < max (1,

for the two dimensional case and
1 +6sup,crk1(x)
1 —8sup,cpxi(x)

1 5
< Hhmard

1 = Kimax

|R4], < max (1,

‘ 1+ 8sup,cp k2(x)
11— 8 sup,cp k2(x)

Remark 2 From the proof we can see that the last condition can be slightly weakened. In
general it is enough to require one of the contrasts k4 x or k_ 5 to be bounded from below
by 1 where X' contains all points that are closer to I" than a fixed distance § > 0 which
can be arbitrary small. Furthermore, it may seem to be advantageous to choose § as small as
possible, but this comes with the price of a large gradient of the cut-off function.

Remark 3 We also note that the required bounds on the contrast in the two dimensional case
coincide with the ones in [8] where the optimality of these bounds has been shown.

For simple geometries where the interface consists of circular arches and straight lines in two
dimensions or planes, parts of spheres and cylinders in three dimensions the operator 7' can
be implemented and used for finite element methods. Precise bounds for the necessary size
of § for a given contrast are presented in Appendix A. With such a suitable § the convergence
is then established by the weak coercivity using standard theory [24, (13.7b)] for source
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problems and [22, 23] for eigenvalue problems respectively as mentioned at the beginning
of this section.

However there is one further challenge. For the full discretization the entries of the system
matrix have to be computed numerically where integrals are approximated by quadrature
rules. Usually this does not pose a major problem as long as the finite element functions and
coefficient functions are smooth enough, because the Bramble-Hilbert lemma can be used to
show that the quadrature error converges to zero for decreasing mesh sizes. Unfortunately,
this is not the case for this method, because here we also have to consider integrals of finite
element basis functions which have non-intersecting supports and numerically approximate
integrals of the form

f o(Vu) ' V(vog)dx = / o (Vi) "V (v 0 @) Ly(suppv) dx,
D D

where we have left out the cut-off function x for simplicity. The problem with the numerical
approximation of such integrals is that even in the simplest case where ¢ is an affine transfor-
mation and Vu and Vv are constant, the function 1y(supp v) is only in L°(D) and therefore
the classical methods fail. Additionally even if the jump of this function only occurs along
a polygonal line, the quadrature approximation still does not get better with decreasing h
because the function gets scaled as well. Finally the exact computation of the intersection of
D and ¢(supp v) is to costly especially if the boundary is curved and the mapping distorts
the mesh geometry. We therefore cannot hope to achieve convergence of the quadrature error
to zero for decreasing 2. We can however see that the quadrature error decreases if a larger
number of quadrature nodes is taken. Note that this generally is not true for L functions.
For this we consider the simple example of a grid of quadrature nodes (x;) je;s such that a
function f is approximated by a piece-wise constant function ) jeJ S (xj)1c; where (Cj);
are cells around the x;. For our method, we need to numerically approximate integrals of
the form fDref Sf1g(D,) dx where all possible f are equicontinuous and bounded and ¢ is a
combination of ¢ and the affine transformations mapping the reference element to the ele-
ment in the mesh and vice-versa. Therefore all ¢ we need to consider are equicontinuous and
bounded as well. Due to these equicontinuity properties, we can choose a quadrature with
cells C; small enough, such that the total area of cells which intersect the boundary of any
@(Drer) is arbitrarily small, and such that any possible f is arbitrarily well approximated
on cells which do not intersect the boundary of ¢(Dyer). Such an approximation then pro-
duces an arbitrarily small quadrature error. To still get the usual convergence behaviour, we
have to increase precision of our quadrature, when decreasing our mesh size /. The practical
implications of this are explained further in the forthcoming sections.

4 Implementation

We implemented our method using the finite element library NGSolve [28]. The main effort
lies in the implementation of the custom assemble procedure for the calculation of the stiffness
matrix. To explain its details we recall in the following the convenient framework of a finite
element implementation.

Let 7, = |J,, D be amesh consisting of elements D,,. Even though it is not necessary for
our implementation, we assume that all elements are images of a single reference element D to
simplify the presentation. Let us denote the corresponding transformations by ¥, : D — Dy,.
The finite element space V}, is then implemented by providing a collection of shape functions
sq: D — Rfora = 1,..., Ny on the reference element. For H !_finite elements we can
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additionally use the gradients of the shape functions to calculate the gradient of a finite
element function via the chain rule.

With these tools we are able to outline the calculation of the stiffness matrix B :=
(b;, )i, j=1,..,n and the right-hand side vector f = (f;);=1,..., 5 defined by

,,,,

b j = (Bvj, Tv) i () = / o(Vvj) ' V(Tv)dx,
£2

fl' ::/ fTv,- dx
2

for finite element functions v;, v; € Vj C HO1 (£2).In the following part we will only consider
the case where T is defined by

Uy —2xR_u|yx_ on 24
T_u:= s
—u_ on £2_

because the implementation of the other case is essentially the same. We will also write R
instead of R_. With this definition of 7" we have

b; ; =/ o (Vv;) " V(Tv;)dx
2

:/ a(Vv_,)TV(u,-—szu,»|g,)dx+/ o (V) V(—v;)dx
24 Q

/|U|(ij)TVv,'dx—2/ o (V) "V(xRui|s )dx
Q ol

_.pD @

=:b; ) — 2b/")

sowe get B = B() —2B®  In the same way we can define £V, £@ with f = £ —2f® We
note that B(!) is the stiffness matrix of a bilinear form without any special operators, so it can
be calculated the usual way. The same is true for f(1). Additionally, we see that the domain
of integration required for B is just X, so for its calculation we only have to consider
finite element functions with support in X'. To make use of this and to generally simplify
the implementation and further calculations, we subdivide X =: U1L:1 »® according to the
type of the interface by lines or planes which are perpendicular to the interface. An example
of such a setup is depicted in Fig. 1. We then generate the mesh such that each element lies
eitherin 2\ X,in XY NX_orin X® N X, forsomel = 1, ..., L. This is easy to achieve
by standard mesh generators and simplifies the bookkeeping of the transformations. The
additional subdivision based on the interface geometry X~ = U1L=1 >® could be avoided by
implementing one global map ¢ for the whole interface instead.
This subdivision allows us to write R as

(Rv)(x) = (v o 9®)(x) forx € £

where ¢: ¥ — 5O s a predefined transformation based on the interface geometry.
Because the mesh respects this subdivision, on each finite element only one transformation
has to be considered and transformations only have to be considered for elements in X.
Due to the presence of the transformation ¢ the assembly of B is non-standard and poses
the main challenge for the application of the method. This is mainly caused by the fact that
usual assembly procedures assume that only finite element functions which are supported on
a common element contribute to the entries of the matrix. In our case functions v; and v; o ¢
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Fig. 1 Example for subdivided
domain based on interface
geometry

Fig.2 Example for subdivided
element with quadrature points

° .
e °
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° e e °
. ° .
. e
. . . . ° .

can have intersecting supports even though the corresponding finite element functions have
disjoint supports. Additionally the intersection of the supports is usually not a finite element.
To tackle these problems, the main idea is to reduce the problem to contributions from single
quadrature points which can then be calculated explicitly.

For this let D,, be an element of 7, in X' and let v;, v; € Vj be such that suppv; N
supp v; o9 ND,, # (. For the sake of simplicity we confine our presentation to the case that
on any element Dy, a basis function v; is given by a single shape function and can therefore
be written as

V1D, = Sa; 0 Yy (12)
(We may formally introduce a shape function so = O for the case the supp v; and D,, are
disjoint.)

The contribution of the element D,, to the entry bl(zj) corresponding to v; and v; is then
given by

2 . -1 T
bi,j’m .=/D o(x)V(saj,m oW, )(x) V(x - Rvj)(x)dx

= /D oWV (Sa;, 0 ¥ D@ () TV (x - RV) (P () [det Dy, | dy,
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with the Jacobian Dy ¥, of ¥, at y. Approximating the integral over the reference element
D by a quadrature rule

/ g dy ~ > wig(w),
p Kk
the contribution of the quadrature point yy is given by

bk = Wko (W GOV (5ar;,, © W )W (310) T V(X - RUi) (W (30)) | det Dy W]

Overall, we have

UYEDIL Y FED BB e
m k

m

@

i,jm,k?

© ¥ (Yk)) € Dngn,ky- Then (12) implies v; D, 1) = Sepmi) © U/n_(,lrl,k), and we obtain

To compute b we have to find the element which ¢ (¥, (yx)) belongs to: Suppose that

(RUD) W (31)) = (01 0 9) (U 0) = (S0t © Ui © #) @ (30)
and hence
b® . ¢ = wk |det Dy, W] 0 (W (50)) (V50 © T ) ) -

i,j,m,
V(X Gotpinir © Y © 9) En 01))-

This can be explicitly calculated via the chain rule as long as the values and derivatives of ¢
and x can be computed.

To optimize the assembly procedure and make it more flexible, in practice all shape
functions on an element can be considered at the same time, and the implementation is done

in a way that the calculation of bfz; .k can be easily replaced to allow for the computation

of different integrands. For example,

by =Wk [det Dy W | ((Sa; 0 W) (Wi (30)))

(X Gt © Egy ©9)) Fn (030)

can be used for L>-terms.

To cope with the errors related to the quadrature one needs to use a high number of
quadrature points. This could be done by just using higher quadrature orders but they are
adapted to high order polynomials and do not work particularly well for piece-wise continuous
functions. We therefore use a composite quadrature rule which is based on dividing an element
into many smaller similar elements and then using a standard Gauss-Legendre quadrature
rule on each smaller element [19]. An example for this is shown in Fig. 2.

Note that this specialized quadrature is only necessary in the small part ¥+ C §2. The
required additional effort only mildly increases the asymptotic complexity of the total assem-
ble procedure. The most expensive step for each element consists in finding the elements
where the individual quadrature points get mapped to which can be done in O(log N) using
search trees. This leads to a total complexity of O(N log N).
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For the linear forms we can use a simple transformation to significantly simplify the
calculations:

fia) = / F)x (x) (i 0 9)(x)dx
P2

- /E FoNx (@) ()] det Dyg| dy.

In this new form the transformation ¢ is now no longer composed with a finite element
function so the calculation of £® can then be performed by implementing a coefficient
function h(y) = f (@) x(¢(y))|det Dyg| and then defining and assembling the linear
form as usual.

As a last step we have to solve a linear system. Because of the incorporation of the
operator 7' the matrix B is not symmetric and it is also has an unusual sparsity pattern as
it is more dense for elements near the interface. Direct solvers which are not used to this
setting therefore sometimes are not able to handle this problem and we use iterative methods
instead. The fastest and most reliable solver which we have found so far and which is used in
all numerical experiments is the generalized minimal residual method (GMRES) paired with
a simple diagonal preconditioner. The loss of the symmetry and the reduction of sparsity
is one of the main disadvantages of our approach. In particular, it limits the use of direct
solvers to small problem instances, and it reduces the efficiency of standard direct solvers.
For larger systems solving the linear system with diagonally preconditioned GMRES takes
much longer than using a direct solver for the symmetric system. For example, for a circular
domain and about 500,000 degrees of freedom diagonally preconditioned GMRES takes 50
times as long as a direct solver for a symmetric system, and this ratio becomes worse the
larger the system gets. In general, the time needed for the solution is hard to estimate and
varies depending on the geometry and the mesh size as this greatly impacts the sparsity of
the matrix.

5 Numerical Experiments
In this section we present different examples that illustrate our method for different domains.

We consider the convergence rates, analyze the errors, and for settings which allow the
application of classical finite elements we compare our results with those.

5.1 Examples in Two Dimensions

Our first example is a two dimensional domain, that consists of a ring and a disc by defining
o : B — Rin polar coordinates by

—1 forr <1
o(r):= ,
3 else

where B, :i{x € R?: |x| < r). This leads to the subdomains 2_ = B; C R? and
24 = B\ B;.
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L2-err. p=1
H'-err. p=1
—@— L%-err. p=2
-B- H'-err. p=2
-4 - L%-err. std. p=1
¢ H'-err. std. p=1
4 - L%-err. std. p=2
9 H'-err. std. p=2

+ e 1071

1072 4
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error
error

1073 107° 7
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Fig. 3 Numerical results for solution of —div(cVu) = f for a disc-shaped inclusion. (a) Influence of the
custom quadrature rule for p = 2. The usual quadrature rule leads to a stagnation of the H !_errors and erratic
convergence of the L2 errors. (b) Expected linear (for H 1) and quadratic (for L2) decay of convergence errors
forp=1

We define the right hand-side f also in polar coordinates as

for r <1

48 forl <r <2

fr) =

which corresponds to the solution urr € H(} (£2) given by

2_2 for r<1

r
Uret(r) = | ; 3

13
1r—2)?% forl<r=<2 (13

According to Corollary 2 we can choose § = 0.2 in (11) because the squared norm of R is
then bounded by 2.25, which is smaller than the contrast k_ = 3.

With this setup we now compute the solutions using H !-conforming finite element spaces
of order p = 1 and p = 2 for meshes with varying mesh sizes. At the boundary and the
interface we use curved elements with a quadratic geometry approximation. In Fig. 3a we
compare for our new method the achieved errors with standard quadrature rules vs. quadrature
rules with subdivision, where each element is divided into 5 smaller similar elements for
h > 0.04 and 625 smaller elements for 2 < 0.04. We observe in Fig. 3a that the adapted
quadrature rule becomes necessary to achieve small H !-errors. Henceforth, a quadrature rule
with subdivision into 9 smaller elements is used for all following calculations using the new
method, as this is enough in the following examples. We also do this for p = 1 even though in
our experiments the finite element approximation error still dominates the quadrature error.
Fig. 3b shows a log-log-plot of the relative errors in H!'- and in L?-norm with respect to the
reference solution. We compare our new method with a classical finite element method using
the same meshes. We observe that the errors are of comparable size and converge with the
same rate.

For the smaller examples, we also computed the condition numbers of the resulting linear
systems. The results in Tab. 1 show that the unusual structure of the matrices in our method
does not significantly impact their condition numbers. This underlines the stability of our
method.

After we have investigated the convergence for a simple domain, we will now move
on to a more complicated domain to show and inspect the applicability of the method for
more realistic configurations. To this end we consider an equilateral triangle with rounded
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Table 1 Comparison of condition p=1 p=2
numbers for the linear systems
occurring in our method and the h std. new std. new
standard finite element method
0.2 64.78 65.35 717.68 757.98
0.1 284.77 292.13 804.39 804.42
0.08 469.12 475.63 789.56 884.68
0.06 894.35 910.12 903.76 1140.88
0.04 1920.35 1948.11 - -
107t M-
. T
B
e 05
T 0.5
5 u..
5 1073
<M L2-err. std.
10-4 - H'-err. std.
49 L2-err.
-4- Hl-err.
T T T T
0.5 0.2 0.1 0.05

(a)

Fig.4 Numerical results for solution of — div(c Vu) = 1 for arounded triangle-shaped inclusion. (a) Expected
linear (for H 1) and quadratic (for L2) decay of errors, (b) Example solution u for A = 0.04 and k— = 1.1

corners inside a square. Here §2 is the square with corners (0, 0), (10, 0), (10, 10) and (0, 10).
Now we consider the equilateral triangle D inside this square with corners (2, 2), (8, 2) and
(5,2 + 3+/3) and define £2_ := {x: dist(x, D) < 1}. This leads to a shape with a boundary
that is comprised of three circular arcs with radius 1 connected by three straight lines. As
usual we then set 2, := £2 \ £2_ and we define o to be piecewise constant such that
olg. = —lando|g, = 10. This enables us to choose § = 0.5. Finally, we choose f = 1 as
right hand-side and compare our solutions to a reference solution that was computed using
the usual finite element method on a finer mesh (2 = 0.008).

The resulting errors for finite elements of order 1 are depicted in Fig. 4a. There we observe
that the usual method and our method converge with approximately the same rates, which
shows that the new method also performs well for more complicated interface geometries. In
Fig. 4b we plot a computed solution for a contrast that is much closer to 1, which is obtained
by using § = h = 0.04. While we have no analytical reference solution to compare with, we
can still see the absence of singularities and the expected symmetry.
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"
10° AR
u--g
e -
10— -
: "w
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1072 T
<M L2-err. std.
s - H'-err. std.
10777 4 L2-err.
-49- H'-err.
T T T
0.5 0.2 0.1 -1.0e+00 0 1 2 3 4 5.0e+00

Fig.5 Numerical results for solution of —div(cVu) = o OX1=9 o 4 sphere-shaped inclusion. (a) Decay of
errors for p = 1 with notable instabilities for the standard method, (b) Cross-section of solution computed
using the standard method (2 = 0.08) exhibiting artifacts near the interface

5.2 Example in Three Dimensions
We also present an example for a three dimensional domain. Again, to have an explicit
reference solution we choose a domain that consists of a smaller ball inside a bigger one.
This leads to the following domains

Q:={x:|x| <4}, Q_:={x:|x|]<2}, 2,:=02\2_
Thence we use the right hand-side

6r —9

f@r)=o(r)

corresponding to the solution
1
Uref(r) = —g(r3 — 32— 16)

in spherical coordinates, where o|o_ := —1 and 0|, := 2. We then choose § = 0.2 and
compute the relative errors which are depicted in Fig. Sa.

We observe that the L2- and H'-errors for our method mostly decay with the expected
rates apart from a small plateau in the L?-error, which is most likely caused by the use of
anisotropic meshes for # > §. In contrast, we notice that the errors for the standard method
do not converge. This phenomenon is caused by the appearance of local singularities near
the interface depicted in Fig. 5b, which may occur regardless of the mesh size and have
been observed previously, see, e.g., [6]. Finally, we also present an example for the more
complicated pill shaped inclusion depicted in Fig. 6a. A slice of the solution computed by
our method is shown in Fig. 6b. Note that it has the expected symmetries and does not exhibit
any singularities.
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0.0e+00 002 004 006 008 0.1 0.12 1.4e01
| |

(a) (b)

Fig.6 Numerical results for the solution of — div(o Vu) = 1 for pill-shaped inclusion. (a) Sketch of domain
geometry, (b) Cross-section of the solution # = 0.06 exhibiting expected symmetry and no artifacts

5.3 Example of a Dispersive Eigenvalue Problem

We use the same disc shaped geometry, which we considered in the very first example. Its
symmetry allows us to compute the eigenvalues semi-analytically using Bessel functions
and this enables us to obtain accurate reference solutions. We then consider the following
eigenvalue problem:

Find (w, u) € C x Hy (£2) \ {0} such that — div(o () Vi) — w*u =0

where

2
o(w) = oz ¥ €2 .
1 else

Our finite element method discretizes this problem into a holomorphic eigenvalue problem
for a matrix, which is subsequently solved using the contour integral method proposed by
Beyn [5]. As the contour we choose a circle with radius 0.65 centered at 4.0. For comparison,
the same method is also used for the discrete system obtained via a standard FEM. In Fig. 7a
we observe that both methods find the same 4 eigenvalues which are depicted in Fig. 7b and
coincide with eigenvalues obtained by the semi-analytic method. We see that both methods
reliably compute the eigenvalues with similar convergence rates.

6 Conclusions

We have presented a new numerical approach for solving both source problems and holo-
morphic eigenvalue problems with sign-changing coefficients in the leading order term and
¢! !_smooth interfaces, which is based on a finite element-type discretization. Our method
does not impose any restrictions on the finite element mesh, except that it has to respect the
interface and the neighborhood X' of the interface. We have demonstrated the practicality
and that the quadrature rule can be chosen such that the expected convergence rates (i.e., the
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Fig. 7 Numerical results for the solution of a dispersive eigenvalue problem for a disc-shaped inclusion.
(a) Decay of errors for p = 1 with similar or smaller errors compared to standard method, (b) Sketch of
eigenvalues and contour used for their computation

order of the finite element interpolation error) for examples in two and three dimensions are
achieved (Figs. 3b, 4a.)

The proposed method requires numerical quadrature on unfitted reflected meshes near
the interface. Whereas for low order methods this can efficiently be achieved by standard
quadratures on uniformly refined meshes, it poses a major challenge for high order methods.
The assembly procedure, although non-standard, is of log-linear complexity and can be
implemented using tools available in many finite element packages. Compared to standard
finite element discretizations, the numerical solution of the linear system is complicated by
the loss of symmetry and a denser and non-standard matrix structure. But we did not observe
a significant increase of condition numbers and could reliably solve the linear systems using
iterative methods. However, the proposed method is very flexible, and in contrast to some
competing methods, the overall numerical effort is still of the same order of magnitude as
standard finite element discretizations.

Appendix A Reflection Operator Bounds

In this appendix we present explicit bounds for the seminorms of the global reflection opera-
tors Ry, which are solely based on the curvature of the interface and 8. The analysis consists
of two main steps. First we prove the following lemma:

Lemma 2 Consider the operators Ry : HY(Xy) - H! (X+) defined via ¢ as in Sect. 3.2.
Then the seminorm of R defined by

IRl = sup |ulgi(z,
Il g1 gy =1
is bounded by
Rel, < sup [Py ®)(DyM)Dy®) ™ | gy - (14)
yed~1(5y)
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Proof Forw € H'(X.) the chain rule yields
2
|Riw|§_11(2 ) :f [Vwo®oMod ()| dx
¥ P

:/E ‘[(Vw)((b oMo @)D" (Dyrop-1(0)®P)
¥

(D1 0y M) (D@ )[* dx

Now we use the transformation formula for y := &~ !(x) and get

IRew|3 5 | = /
D Jom1mp)

|det Dy@| dy

2
(V)@ o MONTT Dyt @)Dy M) (Do) )|

2
_ f \[(Vw)(@ o M(YNI" (D) @) (DyM)(Dy @)™ ‘
o-1(Z3)
|det Dy@| dy
< / [(Vw)(@ 0 M) [[(Da () @) (Dy M)(Dy @)~ 17 )
-1(Z5)
|det Dy@| dy

Denoting the right hand side of (14) by C+ and applying the transformation formula two
more times yields

Rawp, p. | < CZ/ (V) (@ o M(y)[? |det Dy dy
HI(ETF) + ¢—1(E;) | y |

Ci/ |(Vw)(® (y’))|2 |det Dy @ | dy’
Mod—1(Z5)

2
¢ [ [vwe)f o = il s,
pES
O

As a second step we parameterize the interface and calculate the spectral norm of the matrix
given by the lemma to get an explicit bound. This part is split into different sections based
on the dimension.

A.1 Bounds in Two Dimensions

In case of two dimensions, the interface is a curve that is C!*!. Hence, by the Rademacher
theorem the second derivative of parameterizations exists almost everywhere and is uniformly
bounded, so we can define the signed curvature «: I" — R corresponding to the normal
vector. We then obtain the following bounds for R .

Theorem 3 In two dimensions the reflection operators are bounded by

) » |R4], < max <1,

1 —§infyer k(x)
14 8infyer k(x)

1 +dsup,rk(x)

|[R_|, <max|1,
I —dsup,pk(x)

).
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Proof We take x € I' fixed and choose a coordinate system such that n(x) = (0, DT. Now
we can parameterize I” around x by y : [—«, o] — I" such that

@ =x, y'(0)=(,0".

Next we use the identity %[n(y ()] = «(y(s))y’(s) [11, Chapter 1.5] to calculate D® at
(x, 10):

Driy® = (L[y (8) + tn(y (5))]s=0.1=1 | < [y () + tn.(y () ]s=0,1=1 )
= (¥(0) + to [n(y (s)]s=0|n (¥ (0)))

_ (141ok(x) 0
= 0 L)

Because this formula is independent of the parametrization y, we can now calculate

(Dm0 @)Dy MY (D 1y @) ™" = (D(x,—y @) (D, y M) (D 1y @)

C(1=tk(x) 0\ (1 0 (1+tk(x)0) "
= o 1)lo-1 0 1
1—tx(x
— 1+;I/§(x; 0
0 -1

1Dy, @) (D ey MY (Dixe,ty @)~ £ 2y = max <‘

and get

1—1tx(x)
14 tc(x)

, 1) .
Using Lemma 2, this leads to the following bound:

R, < sup I(Dwean @)Dy MDDy ®) oy
(x,ned~1(xy)

1 —tk(x) I — 1tk (x)
= sup — | = —.
(x,f)e¢_1(2+) 1 +ZK(X) xerl,te[0,8) 1 +[K()C)
If k (x) > 0, we always have that ‘ };;Zg ; attains its maximum at ¢t = 0 and the maximum is

1. If k (x) < 0, the expression is monotonically increasing in ¢ and its maximum is attained
at t = §. With this, we can eliminate the dependence of the supremum on ¢ and obtain that

1 —48inf
|R_|, <max (1, m—XEFK(x) .
1+ 8infyer x(x)
The result for Ry can be derived in the same way. O

A.2 Bounds in Three Dimensions

Similar to the two dimensional case, we will again derive a bound for the operator based on
the curvature of the surface. For this, we consider the two principal curvatures k1, k2 : I" > R
corresponding to the sign convention in the previous definition of the normal vector. In the
three dimensional case the map n is known as the Gauss map and we will use its properties
to prove the following theorem.
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Theorem 4 [n three dimensions the reflection operators are bounded by

1 —=§infyerk1(x)| |1 —8infyer k2 (x)
|IR_|, <max|1, - , ; )
14+ 68infyerk1(x)| |14 §infier k2 (x)
R+, < max (1, L4 0 Supeer 1Y) ,'IHSUPXEF“(X) )
1 —dsup,cr k1(x) 1 —8sup,crk2(x)

Proof The proof is very similar to the two dimensional case. We again consider a fixed point
p € I'" and choose a coordinate system and a parametrization y : (—«, o) X (—f8,8) = I’
such that

d 1 d 0 0
y©0,00=p, —v0,00=|0], —yO,0)=|1], na(p)=1{0
dx 0 dy 0 1

As in the two dimensional case, we then calculate

Dy ® = ((&Ly (o) + ny (e |y (e, ) + 1y (e, )|
Ly (x, )+ iy (e, 1)
=(&ve|dEyE e e )

+ 1o (d—clcn()/(x7 y))‘d%,n(y(x» y))‘())

100

=[010] +1(Ent e |gn@ o).
001

Now, we use that the derivative of the Gauss map n at p is given by the Weingarten map
w: T,I" = T,I" where T, I" is the tangent space of I" at p. Next we use that in our chosen
coordinate system w can be represented by a matrix W. Then we can write the second
summand in the previous equation using the Weingarten map as

100

w0 1+1W|0
Dpiy®=1010 +t0< >:< )
p-fo 001 010 0 |1

‘We can now calculate

L (1—tw|o\ [I]O
(Dut((p.0 @) (Dip.y MY(D .y @)~ :< 0 )(0 )

1+iw[o)™
0 |1

(T =W +W)~' 0
- 0 -1)"

The Weingarten map is diagonalizable and its eigenvalues are the two principal curvatures
of I' at p [11, Chapter 3.2]. We can therefore write it as W =: SD,,S~! with

_(xi(p) O
Dw '_< 0 Kz(P))
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and S being orthonormal. Inserting this into the equation above leads to

— 18D, S™HU +1tSD,S™H71 0
0 -1

_ I
(Dm(p.iy®@)(D(p.yM)(Dpy®) ™" = <(

SU —tDy)S™'SU +1Dy)"'S7H 0
0 -1
<S(1 - tDw)(I +1Dy)"'S7! 0
|—1

(I—sz)(1+er) o -1
-1

I
951}

I+1x1(p) -
1— tfcz(p) S
1+tK2(P)

-1

(1 tkr(p) 0

with

This implies that

(DM @)Dy MY D,y )l o3y = max (

1 — tki(p) ‘l—tlcz(p) 1)
L+ter(p) | |1 +tca(p)|” )

Now the same calculations as in the two dimensional case lead to the claimed bounds. O

A.3 Bounds for Special Geometries

Finally, we apply the previous results to specific geometries which are used in our numerical
experiments.

Corollary 1 (Line or Plane) If the interface is a plane, the bounds are given by |R+|, < 1.

Corollary 2 (Part of a circle, sphere or cylinder) If the interface is a part of a sphere or
cylinder with radius r and § < r, we have to distinguish if the vector pointing inwards points
towards $2_ or 2. Then the following bounds hold:

r+46
Towards $2_ : IR_|, <1 and Ryl < LS’
r—
r+4
Towards §2 - [R_|, < 5 and IRy, < 1.
r—

Proof For the simple geometries considered in the corollaries above, the principal curvatures
are constant and either ﬂ:% or 0. By inserting these values into the bound from Theorem 4
the given bounds then follow immediately. O

Note that it is possible to combine these different parts to achieve interfaces which are rounded
polygons or polyhedra.
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Data Availability The code needed for reproducing all the numerical examples is available at https://doi.org/
10.25625/BPODPY (ref. [27]).
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