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ARTICLE INFO ABSTRACT

Solid-oxide fuel cells (SOFCs) are a promising energy conversion technology, offering a low environmental
impact, low costs and high flexibility regarding the choice of the fuel. However, electrochemical performance
of SOFCs decreases with time as a result of complex structural aging mechanisms of their anodes that are not yet
fully understood. An option to quantitatively investigate this aging behavior could be tomographic imaging of
the 3D microstructure of SOFC anodes for different aging durations, which is expensive and time-consuming.
To overcome this issue, physics-based aging simulations resolving the 3D microstructural evolution can be
exploited, which use tomographic image data of pristine SOFC anodes consisting of nickel, gadolinium-doped
ceria (GDC) and pore space, as initial state. This microstructure simulation method is based on a grand-
chemical potential multi-phase-field approach including surface diffusion. Computations conducted with the
simulation framework are capable to predict the coarsening of the multiphase polycrystalline electrode. A
promising approach to further accelerate the quantitative investigation of SOFC degradation is to combine
physics-based aging simulation with data-driven stochastic 3D microstructure modeling, which is typically less
computationally intensive compared to phase-field simulations. More precisely, an excursion set model based
on Gaussian random fields is used to characterize the 3D microstructure of SOFC anodes by means of a small
number of interpretable model parameters. Moreover, the evolution of the parameter vector of the calibrated
stochastic 3D model over time is modeled by analytical functions that make fast predictive simulations possible.
The prediction robustness is investigated by first assuming that the evolution of the 3D microstructure is known
up to a certain point in time. Then, in a second step, the 3D microstructure of SOFC anodes is predicted for
further future points in time and, through geometrical descriptors, compared with the results of physics-based
aging simulation.
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1. Introduction

Solid oxide fuel cells (SOFCs) offer a promising solution for clean
and efficient energy generation, combining high performance with fuel
flexibility and reduced environmental impact [1,2]. However, several
studies reported some open problems, such as pronounced degrada-
tion effects, such as coarsening of the nickel phase [3-5]. Since the
3D microstructure of SOFC electrodes is known to significantly affect
chemical performance [6,7], a deeper understanding of its evolution
over time is crucial to improving the performance and particularly
the long-term behavior of SOFC electrodes. For SOFC anodes based
on yttrium-stabilized zirconia (YSZ), these degradation effects have al-
ready been investigated in relation to the microstructure [8,9]. Among

* Corresponding author.
E-mail address: sabrina.weber@uni-ulm.de (S. Weber).

https://doi.org/10.1016/j.commatsci.2026.114491

others, a machine learning approach has been developed to predict
the polarization curve based on topological features of microstruc-
ture [10]. However, in recent years, YSZ has been increasingly replaced
by gadolinium-doped cerium (GDC) due to its higher ionic conductivity
at lower temperatures [11-13]. Studies on GDC have also reported
pronounced degradation effects, including decreasing performance and
coarsening of the nickel (Ni) and GDC phases [14-17].

The microstructure of the SOFC anode can be characterized by
computing several geometrical descriptors, such as volume fraction,
triple phase boundary (TPB), specific surface area, and tortuosity [16,
18]. To investigate the temporal evolution of the 3D microstructure of
SOFC anodes, these geometric descriptors must be computed for various
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aging durations. Therefore, experimental aging studies combined with
3D focused ion beam scanning electron microscopy (FIB-SEM) have
been performed [17,19,20]. However, the acquisition of such high-
resolution 3D images is time-consuming and expensive. In order to
address this issue, physics-based aging simulations using a multiphase-
field model can be exploited. In particular, multiphase-field simulations
provide valuable insights into the microstructural changes and their
impact on the performance of SOFCs, where the selection of a suitable
model and its parameters are the most crucial steps.

In computational materials science, the phase-field method [21-24]
is a well-established approach for efficiently simulating microstructure
evolution [25]. Consequently, it has been widely employed on SOFC
anodes [26-31], where the model considered in [32,33] offers several
advantages. It allows for the independent control of interfacial energies
for each binary interface while maintaining equal, finite interfacial
thicknesses and quantitatively capturing interfacial diffusion. Conse-
quently, experimentally measured surface diffusion coefficients and
wetting angles can be directly incorporated. Using this framework, the
coarsening behavior in Ni-YSZ anodes has been investigated in [34]
based on FIB-SEM data.

The multiphase-field studies mentioned above have primarily fo-
cused on Ni-YSZ systems, where the Ni phase evolves while the YSZ
phase remains stable. In contrast, only a few studies have focused on
Ni-GDC systems where both phases evolve, leading to a more com-
plex microstructural evolution. In [35], a mesoscale model has been
developed to predict the morphological and performance degradation
of Ni-GDC during long-term operation. Although informative, this work
relied on synthetic microstructures and performed validation against
data from the literature with limited consideration of microstructural
properties such as mean particle sizes and triple phase boundary den-
sity. Recently, in [36], quantitative 3D multiphase-field simulations of
Ni-GDC coarsening have been performed by employing experimentally
reconstructed 3D FIB-SEM microstructures, and validated them against
aged samples (for aging durations of 240h and 1100h). Their model
predictions of particle sizes, triple phase boundary density, tortuosities,
and specific surface area evolutions corresponded closely to experi-
mental results. Reliable interfacial energies and diffusion parameters,
crucial for accurate degradation prediction, were derived based on a
Bayesian active learning framework [37] to address the scarcity of Ni-
GDC data in the literature. Furthermore, the results obtained in [36]
also revealed the sensitivity of surface and interfacial energies and their
impact on microstructural evolution and anode performance.

Although these physics-based aging simulations provide valuable
insight, they are computationally intensive and limited in their ability
to generate multiple realizations of the 3D microstructure for one and
the same aging time. To overcome these challenges, we propose a
hybrid approach that combines physics-based aging simulations with
a stochastic modeling framework that allows one to quickly generate
virtual but realistic 3D microstructures, where a promising tool from
stochastic geometry to model three-phase materials are excursion sets
of Gaussian random fields [38-41]. More precisely, two excursion sets
based on two different Gaussian random fields model the three phases.
However, Gaussian random fields are not always suitable, and more
general random y2-fields can be used instead [42,43]. Such stochastic
3D models can be characterized by a few interpretable parameters,
which allows for so-called virtual material testing by systematically
varying the model parameters and thus generating a large number of
virtual but realistic 3D microstructures [44-47]. In the present paper,
an excursion set model based on a y2-field and a Gaussian random
field with six parameters is used to model the 3D microstructure of
SOFC anodes, which consists of GDC, nickel and pore space, for various
aging durations. The model is calibrated using analytical formulas
that describe the relationships between the model parameters and two
geometrical descriptors, namely the volume fraction and the two-point
coverage probability function.
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This low-parametric representation enables efficient investigation
of the microstructure’s evolution over time by calibrating the model
to the 3D microstructure of SOFC anodes obtained by physics-based
aging simulations. Then, non-linear regression allows us to quanti-
tatively describe the temporal evolution of model parameters. This
enables predictive simulations, i.e., to predict the 3D microstructure
of an SOFC anode for an arbitrary aging duration. The accuracy of the
model is evaluated by comparing geometrical descriptors computed for
realizations of the stochastic model with those obtained from physics-
based aging simulations. In addition, the prediction quality of the
model is investigated. Furthermore, the relationship between the six
model parameters and various geometrical descriptors is quantitatively
analyzed for a better understanding of the model.

The remainder of this paper is organized as follows. In Section 2,
the phase-field method of physics-based aging simulations is briefly
explained. The stochastic 3D model together with the procedure to fit
the model parameters is described in Section 3. Then, in Section 4,
the results obtained with respect to model fitting, regression of model
parameters, and prediction quality are presented. Moreover, the re-
lationship between model parameters and geometrical descriptors is
investigated. Section 5 concludes and provides an outlook for possible
further research.

2. Numerical simulation of aging process

Conventional approaches to investigating the aging behavior of
SOFC anodes are usually based on time-consuming and expensive 3D
imaging for various time points to accurately capture the evolution of
the 3D microstructure. To overcome this issue, numerical simulations of
the aging process are used, which are based on segmented tomographic
image data of sample A from [16]. This data has been acquired via
3D FIB-SEM, as pristine state manufactured by the powder technology,
where the resulting 3D image data of the pristine SOFC anode has a
voxel size of 50 nm and a field of view of 6.4 pm X 37.0 pm X 28.2 pm.

More precisely, a multiphase-field model based on the grand-
potential functional of [32], extended to include surface self-diffusion
[33], is employed to simulate the coarsening of both the Ni and
GDC phases under thermal operating conditions. The porous Ni-GDC
anode system is represented using three distinct order parameters
corresponding to the nickel phase, the GDC phase, and the pore space,
respectively. Each order parameter is a continuous variable defined
over the simulation domain to distinguish between different phases
of the material. The distinct values of 0 and 1 represent the non-
existence and existence of individual bulk phases, while intermediate
values denote the interface regions between the phases. Unlike Ni-
YSZ anodes, where only the Ni phase evolves, Ni-GDC systems exhibit
concurrent Ni and GDC coarsening [14]. Surface diffusion is considered
the dominant mass transport mechanism within the typical range of
SOFC operating temperatures. The model incorporates diffusion along
the Ni-GDC interface, offering a more comprehensive description of
mass transport pathways.

More details on model formulation, validation against experimental
Ni-GDC anode data, and model parameters representing operating
conditions of Ni-GDC at a temperature of 900 °C with a gas composition
of H,-50%/H,0-50% can be found in [36,37]. In continuation of our
previous work, in which we validated the multiphase-field simulation
results against experimentally aged microstructures (imaged by 3D FIB-
SEM) after 240 h and 1100 h under thermal operating conditions [36],
we now perform large-scale phase-field simulations of microstructural
altering over 38000h in the present paper. The simulations employ
a pristine Ni-GDC anode microstructure reconstructed from 3D FIB-
SEM as initial input and model parameters derived from a Bayesian
active learning framework [37]. The model parameters represent op-
erating conditions of Ni-GDC at a temperature of 900°C with a gas
composition of H,-50%/H,0-50%. The evolution and degradation of the
microstructure are predicted over time, with simulation data recorded
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at intervals of 500h up to 38000h. For this work, we employ the
simulation framework Pace3D [48,49], a powerful multiphysics en-
vironment that enables physics-based prediction of microstructural
evolution under a wide range of influencing factors. Its highly efficient
single-instruction multiple-data (SIMD) vectorized solver — described in
detail in Section 4.2 of [50] - forms the computational core of this study
and provides a robust foundation for identifying process-structure—
property relationships within automated workflows for accelerated
materials and process design. Multiphase-field aging simulations can be
performed for different initial configurations characterized by varying
volume fractions and particle sizes of Ni, GDC, and pore phases to
optimize the anode microstructure. Infiltrated microstructures could
also serve as initial configurations; however, their aging predictions are
limited by the high computational costs associated with large-scale sim-
ulations at such fine spatial resolutions and large domain sizes. Since
the model explicitly incorporates interfacial energies and diffusion
coefficients associated with different initial experimental conditions,
aging predictions can also be performed for different experimental
conditions.

The current model is primarily applicable to Ni-GDC or Ni-YSZ
anodes that are exposed to high temperatures under thermal aging
open-circuit conditions, where microstructure evolution in the anode
is predominantly governed by coarsening processes. In our earlier
work [36], the validity of the model was demonstrated using re-
constructed electrode microstructures from a cell aged under purely
thermal, humidified conditions at open circuit voltage in a symmetric
configuration. Although anisotropic interfacial energies and diffusion
coefficients can, in principle, be included, their inclusion is limited due
to the high computational costs associated with large-scale simulations
of larger domains. Due to the lack of experimental data characteriz-
ing spatial variations in wetting behavior within Ni-GDC anodes, the
current work assumes uniform wettability across the entire domain.
However, the model permits spatially varying wettability to be incor-
porated once such experimental results become available, allowing for
a more detailed investigation of Ni-GDC redistribution and degradation
phenomena. Extensions of the phase-field approach and simulation
framework Pace3D to account for contributions from volume diffusion
as well as driving forces from electrochemical polarization inducing
evaporation—condensation processes and GDC migration build on al-
ready existing core solutions and can be considered in forthcoming
research work. These model extensions also require particularly suited
experimentally determined input parameters under relevant operating
conditions, as well as precise calibration. Further research is there-
fore necessary to elucidate the underlying mechanisms driving these
morphological changes.

3. Stochastic 3D microstructure modeling

In this section, the stochastic 3D model is introduced, which is used
to generate virtual but realistic 3D microstructures of SOFC anodes
for different aging durations. This model exhibits a small number of
interpretable parameters and allows for fast predictive simulations. For
calibrating and validating this model, various geometrical descriptors
are used, which are briefly introduced first.

3.1. Geometrical descriptors

The geometrical descriptors considered in the present paper are
summarized in Table 1. More information on these descriptors, in-
cluding additional references and a description of their computation
from voxelized 3D image data, can be found in [16]. Note that the
double phase boundary (DPB) denotes the interface area of the GDC
phase and the pore space. The DPB and the TPB are required for the
chemical reaction in the SOFC anode and are therefore particularly
important descriptors of the microstructure. Moreover, due to the poor
connectivity of the nickel phase, see [16], we decided to consider the
mean geodesic tortuosity of the paths starting from the TPB.
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3.2. Model description

The stochastic 3D microstructure model is based on excursion sets
of random fields. In particular, we first consider two independent
standardized Gaussian random fields X = {X(s),t € R’} and Y =
{Y(#),t € R3}. More precisely, we assume that the random variables
X(¢) and Y(¢) follow the law of a univariate standard normal distribu-
tion, i.e., EX(r) = EY(t) = 0 and VarX(¢) = VarY(¢) = 1 for each t € R3.
Besides this, we assume that the Gaussian random fields X and Y
are stationary and isotropic (also called motion-invariant). Under these
assumptions, the distributions of X and Y are uniquely determined by
the underlying covariance functions py, py : [0, ) — [—1, 1], which are
given by py(h) = Cov(X(s), X(1)) and py (h) = Cov(Y(s),Y(?)) for each
h > 0, where s,t,€ R? with |s—¢| = h and | - | denotes the Euclidean
norm. Notice that the values of py(h) and py (k) do not depend on the
specific choice of s and 7, due to the motion invariance of the Gaussian
random fields X and Y. More details on Gaussian random fields can
be found in [51-53]. In the present paper, we assume that py and py
belong to the exponential family, i.e., we assume that

py (h) = exp(—(ay h)’") (€8]

for each h > 0 and some parameters ay,ay € (0, ) and fy, fy € (0,2);
see, e.g., [51].

However, it turns out that excursion sets of Gaussian random fields
are not suitable for adequately modeling the nickel phase. Therefore,
we consider a motion-invariant y?-field Z with two degrees of freedom
based on the Gaussian random field X. This means that the random
field Z = {Z(®),t € R} is defined by Z() = X?(1) + X2(t) for each
t € R, where X; = {X,(),t € R}} and X, = {X,(t),t € R3}
are independent copies of X. Note that the covariance function p, :
[0, 00) — [0,4] of Z can easily be derived from the covariance function
px by

pz(h) =4px(h) @)

for each h > 0, see Eq. (6.155) in [51]. Now, the three phases of the
SOFC anodes can be modeled by excursion sets of the random fields Y
and Z. More precisely, the nickel phase is modeled by the excursion
set Zy; = {t € R’ : Z(r) > A} for some threshold parameter 1, € R,
whereas the pore space is modeled by =, = ci({t € R’ Y(@t) >
Ayin EIEH) for some threshold parameter A, € R, where ¢/ denotes the
topological closure and A® is the complement of the set A c R?. The
GDC phase is given by Zgpe = cl((Zy; U Zp)°). Note that the random
closed sets Zy;, &p and Zgpc are motion invariant, due to the motion
invariance of the Gaussian random fields X and Y. More details on
random closed sets can be found, e.g., in [51,54].

The stochastic 3D model described above exhibits the parameter
vector 6 = (A4, Ay,ay,ay, By, Py), which can be calibrated to tomo-
graphic image data by means of analytical relationships between the
parameters and geometrical descriptors. In particular, we use the fact
that the volume fraction ¢y; of the Ni phase is given by

px(h) = exp(—(ayh)’*)  and

eni = P0 € Egp) = P(Z(0) 2 A7) = 1 = Fz,)(A7), ©)

where Fy, R — [0,1] is the distribution function of the -
distribution with two degrees of freedom and o = (0,0, 0) € R? denotes
the origin [51]. Moreover, due to the independence of the random fields
Y and Z, the volume fraction ¢p of the pore space is given by

ep =P(Y(0) 2 Ay, Z(0) < Az) = Fz(4(A2) = Fz0)(A2) Fy(6)(Ay), 4

where Fy, : R — [0, 1] denotes the distribution function of the stan-
dard normal distribution. Thus, to determine the threshold parameters
Ay and A, the volume fractions ¢y; and ¢p of the Ni phase and the pore
space will be computed from the image data and inserted into Egs. (3)
and (4), see Section 3.3 below.

To determine the remaining four model parameters, two-point cov-
erage probabilities are considered. The two-point coverage probability
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Table 1
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Overview of the geometrical descriptors used for model validation. Here, i, j € {Ni, P, GDC} indicate the given
phase, namely the Ni phase, the pore space (P), and the GDC phase.

Geometrical descriptor Symbol Range Unit
Volume fraction € [0,1] -
Two-point coverage probability C; [0,1] -
Specific surface area (SSA) S; [0, c0) pm~!
Specific length of triple phase boundary (TPB) T [0, c0) pm~2
Specific area of double phase boundary (DPB) D [0, 00) pm~!
Mean geodesic tortuosity of paths starting from TPB u(r) [0, 00) -
Mean chord length u(L;) [0, c0) pm

function C;; : 10,00) — [0,1] is given by Cij(h)=Po € E,ue =) for
any pair i,j € {Ni, P, GDC} and each u € R? such that |u| = h > 0,
see [51]. In particular, we use the following relationships that, as the
volume fractions ey; and €p in Egs. (3) and (4), express the two-point
coverage probability functions Cy; \; and Cp p by the model parameters.
Namely, as shown in [42], we have

Crhini(h) =P(Z(0) > Az, Z(u) > A7) =2ep — 1+ (1 = pg((h))

o 2 iy 2
‘ Z ij(h) /z(l—pé(h)) o exp(—t)dt )
G"% \Jo '

Jj=0

for each u € R> such that |u| = h > 0. Furthermore, from the
independence of the random fields Y and Z we get

Cop(h) = B(Y(0) > Ay, Z(0) < Az, Y(@) > Ay, Z() < A7)
= (Guini(h) + 2Fz0)(A2) = DA + P(Y (0) < Ay, Y () < Ay)
= 2Fy ) (4y)), (6)

for each u € R3? such that [ul = & > 0, where the random vec-

tor (Y (0),Y (1)) has a bivariate standard normal distribution with co-
variance Cov(Y(0),Y(w)) = py(h) given by Eq. (1). Thus, it applies

by Ay
P(Y(0) < Ay, Y () < Ay) = / / @y (s. D dsdt, )

where @, : R? — [0, co0) is the probability density of a two-dimensional
Gaussian random vector with standard normal marginal distributions
and covariance y € [-1, 1].

3.3. Model fitting

We now show how Egs. (3)—(7) can be used to determine the model
parameters A, Ay, ay,ay, fx,fy from voxelized and segmented image
data of SOFC anodes.

Fitting procedure for each aging duration. We first describe a
method to fit the model parameters 1, and iy as well as the co-
variance functions py and py for each aging duration. In particular,
the following steps are applied separately to each 3D image obtained
by the numerical aging simulations explained in Section 2. Therefore,
we first compute appropriately chosen estimators éNi,ﬁp,CA‘NLNi and
C‘p’P for ey;,ep, Cyini @and Cpp from 3D image data. For estimating
the volume fractions ey; and ep, the so-called point-count method is
used [51], whereas the two-point coverage probability functions Cy; y;
and Cpp are estimated from voxelized image data with a Fourier-based
method described in [55]. Then, an estimator /TZ for the threshold
A, is obtained by folving Eq. (3) for Ay, ie., 1, = FE(]O)(I — éni)-
Similarly, plugging 4, and £ into Eq. (4) allows us to get an estimator
Ay by solving Eq. (4) for Ay. Note that the distribution functions
Fy, and Fy are monotonously increasing, which allows us to nu-
merically solve Egs. (3) and (4) for i, and Ay, respectively, using
the bisection method [56]. Moreover, plugging éy; and C‘Ni,Ni(h) into
Eq. (5) provides an estimator py(h) for py(h). As noted in [42], the
values of Cy;yi(h) decrease monotonously with increasing h > 0,
i.e., with decreasing values of py(h) € [0, 1]. Thus, we can again use
the bisection method to compute jy (k) for h > 0. In the next step, the

estimators Cp p(h), Cy;ni(h), A2, Ay are plugged into Eq. (6). As in the
case before, the right-hand side of Eq. (6) is decreasing monotonously
with decreasing values of py(h) € [0,1]. Thus, taking into account
Eq. (7), the bisection method can be used to get an estimate jy (k) for
py (h).

However, the procedure stated above leads to non-parametric esti-

mates py (h), py(h) for the covariance functions py and py. To represent
the estimated covariance functions by the exponential functions given
in Eq. (1), the parameters ay, fy,ay and fy, are estimated by mini-
mizing the mean squared error (MSE) of the non-parametric estimates
Px(h), py(h) obtained from image data and their parametric represen-
tations given in Eq. (1). More precisely, the trust region reflective
algorithm [57] is used to minimize the MSE.
Time-dependent regression of model parameters. Using the previ-
ously described fitting procedure for the aging durations of 0 h, 500h, ...,
38000h, we obtain a parameter vector 6, = (6,,,...,0,5) € RS for
each t € 7 = {0h,500h,...,38000h}. Thus, by means of non-linear
regression, we are able to predict the entries of 6, for an arbitrary
specification + > 0 of the aging duration. The regression functions
fa : [0,00) = (0, ) used for this purpose depend on a four-dimensional
parameter vector a = (a,, a,, a3, a;) € R* and are given by

fa(t) = aj exp(—ayt™) + ay, (8)

for each ¢ > 0. Then, for each j € {I,...,6}, the optimal parameter
vector @ € R* is determined by minimizing the MSE between the
values of f,(#) and the jth model parameter 6, ; for each r € 7. More
precisely, we solve the optimization problem given by

a; = argmin Y (f,() -6, )", ©)
a€R* (e

This optimization problem is numerically solved with the command

scipy.optimize.curve fit in Python using the trust region reflective algo-

rithm [57] for all six model parameters.

To investigate the robustness of predictive simulations of SOFC
anodes using the stochastic 3D model, we fit the regression func-
tions f,«,..., f,« of the six model parameters 6, ,...,0, s for different
time intervals of aging duration. More precisely, we used the re-
sults of the physics-based aging simulation obtained for the following
time intervals: [0h,4000h], [0h, 9500h], [0h, 19000 h], [0 h, 28 500 h], and
[0h,38000h]. To evaluate the prediction quality of the resulting models,
we use the geometrical descriptors, which have been introduced in
Section 3.1.

4. Results

In this section, the results are discussed that have been obtained
by fitting the stochastic 3D model introduced in Section 3.2 to image
data generated by the numerical aging simulations of Section 2. In
particular, in Section 4.2, the predictive potential of the regression
functions is evaluated which have been introduced in Section 3.3.
Finally, in Section 4.3, relationships are derived by means of which
geometrical descriptors of the simulated 3D morphologies of SOFC
anodes can be expressed by the parameters of the stochastic 3D model.
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physics based aging simulation

e Nickel
e GDC
Pore

realization of the stochastic model

Fig. 1. 2D slices (20 pm X 20 um) and 3D renderings (20 pm X 6.35 pm X 20 pm) of the 3D morphology of SOFC anodes after 500 h, consisting of nickel (blue), GDC
(red) and pore space (yellow), obtained by physics-based aging simulations (left) and stochastic 3D modeling (right).

Table 2

MAPE-values over all 77 aging durations for the volume fraction ¢;, the specific
surface area S;, the mean geodesic tortuosity u(z;), and the mean chord length
u(L,) of the ith phase, where i € {Ni, P, GDC}.

MAPE £ S, ult) H(Ly)
Nickel 0.59 % 7.23 % 4.97 % 22.63 %
Pores 0.34 % 8.21 % 5.79 % 2.05 %
GDC 0.34 % 8.98 % 3.04 % 19.21 %

4.1. Evaluation of the stochastic 3D model

We first evaluate the stochastic 3D model introduced in Section 3
which has been fitted separately to each of the 77 images of SOFC
anodes obtained for the aging durations of 0 h,500h, ...,38 000 h by the
numerical aging simulations explained in Section 2. In Fig. 1, the 3D
morphology of an SOFC anode is shown, which has been obtained
after 500h of physics-based aging simulations (left), together with a
realization of the stochastic 3D model fitted to the aforementioned
image data (right).

To quantitatively evaluate the stochastic 3D model for each duration
of aging, 10 realizations of the model with a size of 20 ym in each direc-
tion are generated for each of the 77 aging durations considered in this
paper. Then, in the next step, the volume fraction, the specific surface
area (SSA), the mean geodesic tortuosity from TPB, and the mean chord
length are computed for the three phases of each of these realizations.
Based on these values, the mean absolute percentage error (MAPE) is
determined with respect to the corresponding values computed from
the 77 images of SOFC anodes generated by the physics-based aging
simulations.

More precisely, for each of the four geometrical descriptors stated
above, let dtphy denote the descriptor value obtained from the physics-
based aging simulation at aging duration ¢+ € 7, and let dffk0 be the
corresponding descriptor value obtained from the kth realization of the
stochastic 3D model at ¢+ € T, for each k € {1,...,10}. The results
obtained for the MAPE given by

Lo 1w -
MAPE = — — _ (10)

772;4 10;‘ &P '
are shown in Table 2, where it can be seen that we get small MAPE-
values in most cases. For the volume fraction, the SSA, and the mean
geodesic tortuosity, the MAPE-values are below 10% for each of the
three phases. The highest MAPE-values over all 77 aging durations are
obtained for the mean chord length of the nickel and GDC phases with
22.63 % and 19.21 %, respectively. However, for the mean chord length
of the pore space, we obtain a very small MAPE-value of 2 %.

Fig. 2 shows the volume fraction, the specific surface area, the
mean geodesic tortuosity from TPB, and the mean chord length of the
three phases nickel, pores, and GDC after every 4000 h of aging for
10 realizations of the stochastic 3D model, where the results obtained
are displayed as violin plots. These plots allow for an intuitive inter-
pretation of the data distribution, as the shape of the violin directly
shows where values are clustered or rare. In addition, results are shown

that are obtained for these geometrical descriptors by physics-based
aging simulations. Note that even in the latter case the results are
computed only at discrete time points, but they are represented here
as a continuous line for better visualization.

It turns out that for the nickel phase and the pore space, the specific
surface areas (SSAs) computed from the stochastic model realizations
coincide well with the corresponding results obtained from the physics-
based aging simulations, see Fig. 2b and f, while the SSA of the GDC
phase is slightly underestimated by the stochastic 3D model. Similarly,
the mean geodesic tortuosity of the pore space and the GDC phase
is slightly underestimated but all in all reproduced well with a small
MAPE as can be seen in Table 2. Furthermore, as can be seen in Fig. 2c,
the mean geodesic tortuosity of the nickel phase fluctuates over various
aging durations and no particular trend can be seen in physics-based
aging either. This is caused by the poor connectivity of the nickel phase.
In particular, the average volume fraction of the percolating phase of
the 77 physics-based aging simulations has a share of 4.48 %.

In Fig. 3, results are visualized that have been obtained for the
specific length of the TPB and the SSA of the DPB. As shown in Fig.
3a, the stochastic 3D model captures the general decline in the specific
length of the TPB, where it tends to slightly underestimate the TPB
length, with MAPE of 6.67 % across all aging durations, compared to the
results obtained by the physics-based aging simulations. However, the
values for the SSA of DPB obtained by the stochastic 3D model coincide
quite well with those of the physics-based aging simulations, see Fig.
3b, with MAPE of 2.60 % across all aging durations.

All in all, with respect to most geometrical descriptors, the real-
izations drawn from the stochastic 3D model coincide well with the
images obtained by physics-based aging simulations. Larger deviations
can only be observed in the mean chord length of the nickel and
GDC phases. Given the small number of model parameters and the
fact that the same model type is used for all aging durations, the
stochastic model achieves satisfactory results based on the remaining
geometric descriptors, i.e, the SSA, the mean geodesic tortuosity, the
specific length of TPB and the SSA of DPB. Thus, the low-parametric
model introduced in Section 3.2 is suitable for fast simulation of 3D
morphologies of SOFC anodes for all relevant aging durations.

4.2. Predictive simulation

We now show how the stochastic model introduced in Section 3.2
can be used to generate 3D morphologies of SOFC anodes for aging
durations for which no physics-based aging simulations have been per-
formed. This is achieved using the regression functions given in Eq. (8)
and solving the optimization problem stated in Eq. (9). To evaluate
the robustness of the prediction, the four-dimensional parameter vector
a = (ay,a,,a3,a,) € R* of the regression function f, is adjusted based on
numerical aging simulations for different aging durations. Specifically,
we use the (optimized) parameter vector a* derived from physics-based
aging simulations up to 4000h, 9500h, 19000h, 28500h and 38000 h,
respectively, and compare the geometrical descriptors of the 3D images
drawn from the correspondingly fitted stochastic models with those
obtained by physics-based aging simulations.



S. Weber et al.

Computational Materials Science 264 (2026) 114491

2.8

26 12
A —— physiscs-based aging 11 b d
mmm stochastic model 2.6 11
: : £ i
o | SERTIO
S ‘ \ 22 o
= g 09{ |\ e =
=22 = - < =09
= = — | E 20 ] iz 0. ‘
& z ’ S S [
2 %08 “.“ 18 o8 /
0.7 L6 0.7
6 12000 24000 36000 0 12000 24000 36000 0 12000 24000 36000 6 12000 24600 36000
hours [h] hours [h] hours [h] hours [h]
0 ¢ f 135 8 1.0 h
4 2.0 .
. 130 M
_ 38 Tasf\ ¢ 125) ——| £ 09 4
E Hm 2.\ B, = ool /*
36 = 1 ' —
o 16 - = o 08
& , =0 4 ‘ [ ’ ' ‘ ‘ ‘ &
. S S Teeeys | S LUp
1.4 — 1.10 0.7
32 1.05
6 12000 24000 36000 0 12000 24000 36000 0 12000 24000 36000 0 12000 24000 36000
hours [h] hours [h] hours [h] hours [h]
i 130
4611 22 k 11
1.25 . ¢
. =20 g 10 ’&0"
S = sy R = *
= ER g . ‘ ~ 09 ¢
: e IS i TR T N T R I
U 40 a 3 5y 0.8 —
w T 16 . 110 e
“ teeoy =t
38 s 1.05 0.7
6 12000 24000 36000 0 12000 24000 36000 0 12000 24000 36000 0 12000 24000 36000
hours [h] hours [h] hours [h] hours [h]

Fig. 2. Comparison of volume fraction (first column), specific surface area (second column), mean geodesic tortuosity from TPB (third column), and mean chord
length (fourth column) of the three phases, i.e. nickel (top row), pore space (middle row) and GDC (bottom row), computed for the image data obtained by
physics-based aging simulations (red), and for 10 realizations drawn from the stochastic 3D model for various duration of aging (blue).
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Fig. 3. Comparison of the specific length of the TPB (a) and the SSA of
the DPB (b) obtained by physics-based aging simulations (red), and for 10
realizations drawn from the stochastic 3D model for various duration of aging
(blue).

To fit the regression function given in Eq. (8), the parameters
6,1,....0, € R for all t+ € T of the stochastic 3D models, which
are calibrated by the outputs of each of the 77 physics-based aging
simulations, are used as ground truth. Although these parameters are
determined only for discrete time points ¢ € 7, they are represented in
Fig. 4 as continuous (red) lines for better visualization. In particular,
as the model parameter fy(= 6,5) of the covariance function py
introduced in Eq (1), which equals the fifth entry of the six-dimensional
parameter vector of the stochastic 3D microstructure model, is almost
constant over time (see Fig. 4d), we use the mean of the observed values
of fy for all aging durations r € 7.

To determine the evolution of the remaining five model parameters
in continuous time, the regression function given in Eq. (8) is applied.
Thus, the parameter vector «* derived from physics-based aging sim-
ulations up to 4000h, 9500h, 19000h, 28 500h, 38000 h, respectively,
is used to construct a time-continuous representation of the evolution
of the jth model parameter via 6,; = f,.(t) forallr > 0 and j €
{1,...,4} U {6}, see Fig. 4. For the threshold i,(= 6, ) and the covari-
ance parameter ay(= 6,;) only small differences can be seen for the
different aging durations up to 4000 h, 9500 h, 19 000 h, 28 500 h, 38 000 h,
respectively. The differences for Ay, ay, #y are more pronounced, where

the results for gy are particularly striking, as a different trend appears
during the initial hours. However, for physics-based aging simulations
up to longer aging durations, the regression function f,. approximates
the ground truth increasingly well.

To get a visual impression of the situation for subsequent aging
durations, we simulated 3D morphologies of SOFC anodes up to an
aging duration of 45000h, using stochastic 3D models based on the
parameter vector a* derived from physics-based aging simulations up to
different aging durations; see Fig. 5. For better visualization, 2D slices
of these 3D morphologies are also shown.

After an initial visual impression, we further investigate the influ-
ence of the regression functions shown in Fig. 4 on the 3D morphologies
of SOFC anodes generated by the correspondingly fitted stochastic
3D models. For this, we compute the geometrical descriptors given
in Table 1 every 2000 h up to 38,000 h, where the averages of 10
model realizations with a size of 20um in each direction are used.
In addition, the geometrical descriptors for the physics-based aging
simulations are computed (red lines); see Fig. 6. Here, the results for
the volume fraction, specific surface area, mean geodesic tortuosity
from TPB, and mean chord length of the three phases nickel, pores,
and GDC are shown. Note that in all cases, the geometrical descriptors
are computed only for a few discrete time points. However, like in the
previous figures, continuous lines are used in Fig. 6 for visualization
purposes. For most geometrical descriptors, the differences between the
stochastic models based on different aging simulations are small. But,
as can be seen in Fig. 6f and h for the specific surface area and mean
chord length of the pore space, longer physics-based aging simulations
up to 28500h lead to better results. After that, no more differences
between these geometrical descriptors of the stochastic 3D models can
be observed. In contrast, surprisingly enough, it turns out that for the
specific surface area and the mean chord length of the GDC phase,
shorter aging durations lead to better results; see Fig. 6j and 1. Note
that the large deviations for the mean geodesic tortuosity of the nickel
phase starting from TPB (see Fig. 6¢) can again be attributed to the
poor connectivity of the nickel phase.

In Fig. 7, the results of the specific length of the TPB and the specific
surface area of DPB of the stochastic 3D models based on the regression
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Fig. 4. Time-continuous representation of the evolution of model parameters by regression functions fitted to physics-based aging simulations up to 4000 h, 9500 h,
19000, 28500 h (blue lines, with increasing darkness) and 38000 h (dark), respectively.

Fig. 5. Predictive simulation of 3D morphology (20 pm X 6.35 pm X 20 pm) and 2D slices (20 pm X 20 pm) after 45000h of the stochastic model calibrated to aging

durations up to 4000h (a), 9500h (b), 19000h (c), 28500h (d) and 38000h (e).

parameter vectors a* derived from physics-based aging simulations up
to 4000h, 9500h, 19000h, 28 500h and 38000 h are visualized. In both
cases, longer physics-based aging simulations tend to lead to better
results. However, the stochastic 3D models calibrated for aging dura-
tions up to 28500h and 38000h, respectively, exhibit only negligible
differences. Moreover, the model calibrated up to 19000h shows only
small variations in the geometrical descriptors compared to the models
calibrated up to 28 500 h and 38 000 h. This means that the physics-based
aging simulation up to an aging duration of 19000h is sufficient to
accurately predict the microstructure evolution up to 38 000h. Most
model parameter changes take place within the first 19000h, allowing
for a reliable estimation of the following exponential behavior.

4.3. Regression formulas for expressing geometrical descriptors by model
parameters

In this section, regression formulas are derived for S;, u(r;), and
u(L;), where i € {Ni, P, GDC}, as well as for T and D, based on the
parameters of the stochastic 3D model. Therefore, we generate a large
set of different virtual microstructures, drawing samples from the given
stochastic 3D model and systematically varying the model parameters.

However, note that for the volume fractions ey;, €p and egpc we do
not derive analytical regression formulas to express these geometrical
descriptors by parameters of the stochastic 3D model. For simplicity,
we systematically vary the volume fractions ey; and ¢p and convert
them to the corresponding threshold values using Egs. (3) and (4),
instead of directly varying the threshold parameters 1, and 1,. More
precisely, candidates for the volume fractions of the three phases are
drawn from a uniform distribution on the interval [0.1,0.8] and then

normalized by their sum, which ensures that the sum of the volume
fractions equals 1. If one of the volume fractions is below 0.1, the
simulated values are discarded. Otherwise, the volume fractions are
used to determine the thresholds A, and 4, via Egs. (3) and (4). Finally,
the model parameters ay and ay are uniformly drawn from [0.045, 0.15],
while gy and gy are uniformly drawn from [1.6,1.99]. In this way, we
generate 2000 different virtual 3D microstructures with a size of 20 pm
in each direction.

To derive the regression formulas mentioned above, we employ
symbolic regression [58], which is a machine learning approach that
identifies analytical formulas best fitting the data. More precisely, we
split the set of simulated microstructures, together with the correspond-
ing geometrical descriptors, into training and test sets containing 1340
and 660 cases, respectively. Then, we use the algorithm given in [58]
to fit regression formulas for each geometrical descriptor and each
complexity up to 15. Note that a lower complexity leads to simpler
regression formulas. However, the algorithm used does not guarantee
that the units of geometrical descriptors are correctly maintained by the
(preliminary) regression formulas. It should be noted that the model
parameters ay and a, have the unit pm~!, while all other model
parameters are unitless. That is why we exclude all regression formulas
that do not match the correct unit. For the remaining formulas, the
Akaike information criterion (AIC) [59] is used on the test set, i.e., for
each geometrical descriptor, the regression formula with the smallest
AIC value is chosen; see Table 3.

Fig. 8 shows how well the regression formulas fit the data for
the specific surface area, the mean geodetic tortuosity from TPB, and
the mean chord length on the test set. Specifically, the geometrical
descriptors S;, u(r;) and pu(L;) computed from simulated image data
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Fig. 6. Evaluation of the robustness of predictive simulations of the 3D morphology of SOFC anodes, using regression functions fitted to physics-based aging
simulations up to 4000h, 9500h, 19000h, 28 500h (blue lines, with increasing darkness) and 38 000h (dark), respectively, where the geometrical descriptors are
computed for nickel (top row), pore space (middle row) and GDC (bottom row). The red lines show the descriptors computed for the physics-based aging
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Fig. 7. Evaluation of the robustness of predictive simulations of TPB and
DPB, using regression functions fitted to physics-based aging simulations up
to 4000h, 9500h, 19000h, 28 500h (blue lines, with increasing darkness) and
38000h (dark), respectively, where the geometrical descriptors are computed
for nickel (top row), pore space (middle row) and GDC (bottom row). The red
lines show the descriptors computed for the physics-based aging simulations.

are presented, along with their corresponding estimates §,-, u(z;) and
u(L,) obtained by the regression formulas given in Table 3, for i €
{Ni, P, GDC}. The resulting values of the coefficient of determination
(R?) as well as the MAPE can also be found in Fig. 8.

As can be seen in Fig. 8, the smallest value of R? is 0.81 when
considering the mean geodesic tortuosity from TPB of the pore space,
and the largest value of the MAPE is 11.75 %, which is obtained for the
specific surface area of the GDC phase. Thus, all regression formulas
given in the upper part of Table 3 capture the relationships between
model parameters and geometrical descriptors quite well. Particularly
accurate results can be observed for the specific surface area and the
mean chord length of the nickel phase. It is also noticeable that the
regression formulas for the mean geodesic tortuosity from TPB lead to
small MAPE and relatively small R? values for all three phases, see Fig.
8b, e and h. This effect is due to the limited variability of the tortuosity
values in the test data, which are mostly in a range between 1 and
2. As a result of this low variability, all models with tortuosity values
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Fig. 8. Scatter plots visualizing the values of the geometrical descriptors and
their estimates obtained by regression formulas for the nickel phase (top), pore
space (middle) and GDC phase (bottom).

within this interval have good predictive performance. However, larger
errors occur when the tortuosity values to be predicted are outside this
range.
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through comparison of geometrical descriptors of model realizations
and image data obtained by the physic-based aging simulations. The
results achieved in this way show that physics-based aging simulations
up to 19000h are sufficient to reach a sufficiently accurate prediction
quality up to 38 000 h. In addition, symbolic regression is used to derive
regression formulas that express various geometrical descriptors by the
parameters of the underlying stochastic 3D model. This provides a
deeper understanding of the relationship between the parameters of the

Table 3
Regression formulas to express geometrical descriptors by the parameters of the stochastic 3D
model.
Phase Geometrical descriptor Regression formula
Syi ay(dy —6.30 +70.82/py)
Nickel H(rn) exp((Ay + 11.41/ explexp(A — 3.18)By) — 3.07)71)
M(Ly;) 0.90/4, + fx — 1.29)/ax
Sp (y = By +4.17)(5.40 — 2)(ay + ay)
Pore u(tp) (g + By )(1.68 — (242 — Ay)Ay )™ + 1.02
H(Lp) By /(exp(Ay)ay — ax /(A7 (Bx —0.29)))
Sepe (ay + ay)((exp(dy) +22.55)/By)
GDC H(tene) exp(1.11/(6.75 exp(Ay) + A5 — 2.69))
#(Lgpe) Py [(ay [ exp(Ay) + ay /(0.524,))
D ay (A7 + 147/ exp((A3, — 2.23)/y))
T 5627.85((ay /((By + Az)/ay))/(By + 13))
3
MAPE = 10.32 % MAPE = 7.61 %
R?=0.95 R? = 0.96 .
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Fig. 9. Scatter plots visualizing the specific length T of the TPB and the
specific area D of the DPB, together with their estimates 7" and D obtained by
the regression formulas.

As the specific length of the TPB and the specific area of the DPB
are geometrical descriptors that are crucial for the electrochemical
performance of SOFC anodes, it is important to understand the impact
the model parameters have on them. According to the formulas given in
Table 3, the specific length of the TPB and the specific area of the DPB
are influenced by all model parameters. This indicates a rather complex
relationship between these two geometrical descriptors and the model
parameters. However, as can be seen in Fig. 9, the estimates 7 and D
obtained by the regression formulas lead to accurate results for both T
and D.

5. Conclusions

In this paper, we combine physics-based aging simulations using a
phase-field approach with a stochastic 3D model to generate a wide
spectrum of virtual but realistic 3D morphologies of SOFC anodes
comprised of nickel, pores, and GDC for different aging durations.
This hybrid approach reduces computational costs and imaging effort.
The developed stochastic 3D model is built by excursion sets of two
random fields, i.e., a y>-field and a Gaussian random field, resulting in
six model parameters. For model calibration, formulas are used that
express the volume fractions of the three phases and the two-point
coverage probabilities by the model parameters. Since the geometri-
cal descriptors appearing in these formulas can be easily computed
from image data generated by the physics-based aging simulations, a
fast and efficient model calibration is possible. The goodness of the
model fit is evaluated by comparing various geometrical descriptors
computed from physics-based aging simulations with those obtained for
realizations of the stochastic 3D model.

As the model is calibrated for various aging durations, an exponen-
tial regression function is used to determine the model parameters in
continuous time. This enables us to perform simulations of the 3D mor-
phology of SOFC anodes for unobserved aging durations and also allows
for predictive simulations. To quantify the quality of such predictive
simulations, different aging durations are assumed and the 3D mor-
phologies generated by the fitted stochastic 3D models are evaluated

Thus, in the present paper, a comprehensive computational frame-
work of combined physics-based and a time-continuous stochastic mod-
eling is developed to predict the 3D morphology of GDC-based SOFC
anodes for various aging durations. In a forthcoming paper, this frame-
work will be used for virtual materials testing, i.e., to quantitatively
investigate process-structure-property relationships, which correlate
the processing conditions, 3D morphology of SOFC anodes with their
effective functional properties.
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