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 A B S T R A C T

Solid-oxide fuel cells (SOFCs) are a promising energy conversion technology, offering a low environmental 
impact, low costs and high flexibility regarding the choice of the fuel. However, electrochemical performance 
of SOFCs decreases with time as a result of complex structural aging mechanisms of their anodes that are not yet 
fully understood. An option to quantitatively investigate this aging behavior could be tomographic imaging of 
the 3D microstructure of SOFC anodes for different aging durations, which is expensive and time-consuming. 
To overcome this issue, physics-based aging simulations resolving the 3D microstructural evolution can be 
exploited, which use tomographic image data of pristine SOFC anodes consisting of nickel, gadolinium-doped 
ceria (GDC) and pore space, as initial state. This microstructure simulation method is based on a grand-
chemical potential multi-phase-field approach including surface diffusion. Computations conducted with the 
simulation framework are capable to predict the coarsening of the multiphase polycrystalline electrode. A 
promising approach to further accelerate the quantitative investigation of SOFC degradation is to combine 
physics-based aging simulation with data-driven stochastic 3D microstructure modeling, which is typically less 
computationally intensive compared to phase-field simulations. More precisely, an excursion set model based 
on Gaussian random fields is used to characterize the 3D microstructure of SOFC anodes by means of a small 
number of interpretable model parameters. Moreover, the evolution of the parameter vector of the calibrated 
stochastic 3D model over time is modeled by analytical functions that make fast predictive simulations possible. 
The prediction robustness is investigated by first assuming that the evolution of the 3D microstructure is known 
up to a certain point in time. Then, in a second step, the 3D microstructure of SOFC anodes is predicted for 
further future points in time and, through geometrical descriptors, compared with the results of physics-based 
aging simulation.
1. Introduction

Solid oxide fuel cells (SOFCs) offer a promising solution for clean 
and efficient energy generation, combining high performance with fuel 
flexibility and reduced environmental impact [1,2]. However, several 
studies reported some open problems, such as pronounced degrada-
tion effects, such as coarsening of the nickel phase [3–5]. Since the 
3D microstructure of SOFC electrodes is known to significantly affect 
chemical performance [6,7], a deeper understanding of its evolution 
over time is crucial to improving the performance and particularly 
the long-term behavior of SOFC electrodes. For SOFC anodes based 
on yttrium-stabilized zirconia (YSZ), these degradation effects have al-
ready been investigated in relation to the microstructure [8,9]. Among 
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others, a machine learning approach has been developed to predict 
the polarization curve based on topological features of microstruc-
ture [10]. However, in recent years, YSZ has been increasingly replaced 
by gadolinium-doped cerium (GDC) due to its higher ionic conductivity 
at lower temperatures [11–13]. Studies on GDC have also reported 
pronounced degradation effects, including decreasing performance and 
coarsening of the nickel (Ni) and GDC phases [14–17].

The microstructure of the SOFC anode can be characterized by 
computing several geometrical descriptors, such as volume fraction, 
triple phase boundary (TPB), specific surface area, and tortuosity [16,
18]. To investigate the temporal evolution of the 3D microstructure of 
SOFC anodes, these geometric descriptors must be computed for various 
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aging durations. Therefore, experimental aging studies combined with 
3D focused ion beam scanning electron microscopy (FIB-SEM) have 
been performed [17,19,20]. However, the acquisition of such high-
resolution 3D images is time-consuming and expensive. In order to 
address this issue, physics-based aging simulations using a multiphase-
field model can be exploited. In particular, multiphase-field simulations 
provide valuable insights into the microstructural changes and their 
impact on the performance of SOFCs, where the selection of a suitable 
model and its parameters are the most crucial steps.

In computational materials science, the phase-field method [21–24] 
is a well-established approach for efficiently simulating microstructure 
evolution [25]. Consequently, it has been widely employed on SOFC 
anodes [26–31], where the model considered in [32,33] offers several 
advantages. It allows for the independent control of interfacial energies 
for each binary interface while maintaining equal, finite interfacial 
thicknesses and quantitatively capturing interfacial diffusion. Conse-
quently, experimentally measured surface diffusion coefficients and 
wetting angles can be directly incorporated. Using this framework, the 
coarsening behavior in Ni-YSZ anodes has been investigated in [34] 
based on FIB-SEM data.

The multiphase-field studies mentioned above have primarily fo-
cused on Ni-YSZ systems, where the Ni phase evolves while the YSZ 
phase remains stable. In contrast, only a few studies have focused on 
Ni-GDC systems where both phases evolve, leading to a more com-
plex microstructural evolution. In [35], a mesoscale model has been 
developed to predict the morphological and performance degradation 
of Ni-GDC during long-term operation. Although informative, this work 
relied on synthetic microstructures and performed validation against 
data from the literature with limited consideration of microstructural 
properties such as mean particle sizes and triple phase boundary den-
sity. Recently, in [36], quantitative 3D multiphase-field simulations of 
Ni-GDC coarsening have been performed by employing experimentally 
reconstructed 3D FIB-SEM microstructures, and validated them against 
aged samples (for aging durations of 240 h and 1100 h). Their model 
predictions of particle sizes, triple phase boundary density, tortuosities, 
and specific surface area evolutions corresponded closely to experi-
mental results. Reliable interfacial energies and diffusion parameters, 
crucial for accurate degradation prediction, were derived based on a 
Bayesian active learning framework [37] to address the scarcity of Ni-
GDC data in the literature. Furthermore, the results obtained in [36] 
also revealed the sensitivity of surface and interfacial energies and their 
impact on microstructural evolution and anode performance.

Although these physics-based aging simulations provide valuable 
insight, they are computationally intensive and limited in their ability 
to generate multiple realizations of the 3D microstructure for one and 
the same aging time. To overcome these challenges, we propose a 
hybrid approach that combines physics-based aging simulations with 
a stochastic modeling framework that allows one to quickly generate 
virtual but realistic 3D microstructures, where a promising tool from 
stochastic geometry to model three-phase materials are excursion sets 
of Gaussian random fields [38–41]. More precisely, two excursion sets 
based on two different Gaussian random fields model the three phases. 
However, Gaussian random fields are not always suitable, and more 
general random 𝜒2-fields can be used instead [42,43]. Such stochastic 
3D models can be characterized by a few interpretable parameters, 
which allows for so-called virtual material testing by systematically 
varying the model parameters and thus generating a large number of 
virtual but realistic 3D microstructures [44–47]. In the present paper, 
an excursion set model based on a 𝜒2-field and a Gaussian random 
field with six parameters is used to model the 3D microstructure of 
SOFC anodes, which consists of GDC, nickel and pore space, for various 
aging durations. The model is calibrated using analytical formulas 
that describe the relationships between the model parameters and two 
geometrical descriptors, namely the volume fraction and the two-point 
coverage probability function.
2 
This low-parametric representation enables efficient investigation 
of the microstructure’s evolution over time by calibrating the model 
to the 3D microstructure of SOFC anodes obtained by physics-based 
aging simulations. Then, non-linear regression allows us to quanti-
tatively describe the temporal evolution of model parameters. This 
enables predictive simulations, i.e., to predict the 3D microstructure 
of an SOFC anode for an arbitrary aging duration. The accuracy of the 
model is evaluated by comparing geometrical descriptors computed for 
realizations of the stochastic model with those obtained from physics-
based aging simulations. In addition, the prediction quality of the 
model is investigated. Furthermore, the relationship between the six 
model parameters and various geometrical descriptors is quantitatively 
analyzed for a better understanding of the model.

The remainder of this paper is organized as follows. In Section 2, 
the phase-field method of physics-based aging simulations is briefly 
explained. The stochastic 3D model together with the procedure to fit 
the model parameters is described in Section 3. Then, in Section 4, 
the results obtained with respect to model fitting, regression of model 
parameters, and prediction quality are presented. Moreover, the re-
lationship between model parameters and geometrical descriptors is 
investigated. Section 5 concludes and provides an outlook for possible 
further research.

2. Numerical simulation of aging process

Conventional approaches to investigating the aging behavior of 
SOFC anodes are usually based on time-consuming and expensive 3D 
imaging for various time points to accurately capture the evolution of 
the 3D microstructure. To overcome this issue, numerical simulations of 
the aging process are used, which are based on segmented tomographic 
image data of sample A from [16]. This data has been acquired via 
3D FIB-SEM, as pristine state manufactured by the powder technology, 
where the resulting 3D image data of the pristine SOFC anode has a 
voxel size of 50 nm and a field of view of 6.4 μm × 37.0 μm × 28.2 μm.

More precisely, a multiphase-field model based on the grand-
potential functional of [32], extended to include surface self-diffusion 
[33], is employed to simulate the coarsening of both the Ni and 
GDC phases under thermal operating conditions. The porous Ni–GDC 
anode system is represented using three distinct order parameters 
corresponding to the nickel phase, the GDC phase, and the pore space, 
respectively. Each order parameter is a continuous variable defined 
over the simulation domain to distinguish between different phases 
of the material. The distinct values of 0 and 1 represent the non-
existence and existence of individual bulk phases, while intermediate 
values denote the interface regions between the phases. Unlike Ni–
YSZ anodes, where only the Ni phase evolves, Ni–GDC systems exhibit 
concurrent Ni and GDC coarsening [14]. Surface diffusion is considered 
the dominant mass transport mechanism within the typical range of 
SOFC operating temperatures. The model incorporates diffusion along 
the Ni-GDC interface, offering a more comprehensive description of 
mass transport pathways.

More details on model formulation, validation against experimental 
Ni–GDC anode data, and model parameters representing operating 
conditions of Ni-GDC at a temperature of 900 ◦C with a gas composition 
of H2-50%∕H2O-50% can be found in [36,37]. In continuation of our 
previous work, in which we validated the multiphase-field simulation 
results against experimentally aged microstructures (imaged by 3D FIB-
SEM) after 240 h and 1100 h under thermal operating conditions [36], 
we now perform large-scale phase-field simulations of microstructural 
altering over 38 000 h in the present paper. The simulations employ 
a pristine Ni-GDC anode microstructure reconstructed from 3D FIB-
SEM as initial input and model parameters derived from a Bayesian 
active learning framework [37]. The model parameters represent op-
erating conditions of Ni-GDC at a temperature of 900 ◦C with a gas 
composition of H2-50%∕H2O-50%. The evolution and degradation of the 
microstructure are predicted over time, with simulation data recorded 
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at intervals of 500 h up to 38 000 h. For this work, we employ the 
simulation framework Pace3D [48,49], a powerful multiphysics en-
vironment that enables physics-based prediction of microstructural 
evolution under a wide range of influencing factors. Its highly efficient 
single-instruction multiple-data (SIMD) vectorized solver – described in 
detail in Section 4.2 of [50] – forms the computational core of this study 
and provides a robust foundation for identifying process-structure–
property relationships within automated workflows for accelerated 
materials and process design. Multiphase-field aging simulations can be 
performed for different initial configurations characterized by varying 
volume fractions and particle sizes of Ni, GDC, and pore phases to 
optimize the anode microstructure. Infiltrated microstructures could 
also serve as initial configurations; however, their aging predictions are 
limited by the high computational costs associated with large-scale sim-
ulations at such fine spatial resolutions and large domain sizes. Since 
the model explicitly incorporates interfacial energies and diffusion 
coefficients associated with different initial experimental conditions, 
aging predictions can also be performed for different experimental 
conditions.

The current model is primarily applicable to Ni-GDC or Ni-YSZ 
anodes that are exposed to high temperatures under thermal aging 
open-circuit conditions, where microstructure evolution in the anode 
is predominantly governed by coarsening processes. In our earlier 
work [36], the validity of the model was demonstrated using re-
constructed electrode microstructures from a cell aged under purely 
thermal, humidified conditions at open circuit voltage in a symmetric 
configuration. Although anisotropic interfacial energies and diffusion 
coefficients can, in principle, be included, their inclusion is limited due 
to the high computational costs associated with large-scale simulations 
of larger domains. Due to the lack of experimental data characteriz-
ing spatial variations in wetting behavior within Ni-GDC anodes, the 
current work assumes uniform wettability across the entire domain. 
However, the model permits spatially varying wettability to be incor-
porated once such experimental results become available, allowing for 
a more detailed investigation of Ni-GDC redistribution and degradation 
phenomena. Extensions of the phase-field approach and simulation 
framework Pace3D to account for contributions from volume diffusion 
as well as driving forces from electrochemical polarization inducing 
evaporation–condensation processes and GDC migration build on al-
ready existing core solutions and can be considered in forthcoming 
research work. These model extensions also require particularly suited 
experimentally determined input parameters under relevant operating 
conditions, as well as precise calibration. Further research is there-
fore necessary to elucidate the underlying mechanisms driving these 
morphological changes.

3. Stochastic 3D microstructure modeling

In this section, the stochastic 3D model is introduced, which is used 
to generate virtual but realistic 3D microstructures of SOFC anodes 
for different aging durations. This model exhibits a small number of 
interpretable parameters and allows for fast predictive simulations. For 
calibrating and validating this model, various geometrical descriptors 
are used, which are briefly introduced first.

3.1. Geometrical descriptors

The geometrical descriptors considered in the present paper are 
summarized in Table  1. More information on these descriptors, in-
cluding additional references and a description of their computation 
from voxelized 3D image data, can be found in [16]. Note that the 
double phase boundary (DPB) denotes the interface area of the GDC 
phase and the pore space. The DPB and the TPB are required for the 
chemical reaction in the SOFC anode and are therefore particularly 
important descriptors of the microstructure. Moreover, due to the poor 
connectivity of the nickel phase, see [16], we decided to consider the 
mean geodesic tortuosity of the paths starting from the TPB.
3 
3.2. Model description

The stochastic 3D microstructure model is based on excursion sets 
of random fields. In particular, we first consider two independent 
standardized Gaussian random fields 𝑋 = {𝑋(𝑡), 𝑡 ∈ R3} and 𝑌 =
{𝑌 (𝑡), 𝑡 ∈ R3}. More precisely, we assume that the random variables 
𝑋(𝑡) and 𝑌 (𝑡) follow the law of a univariate standard normal distribu-
tion, i.e., E𝑋(𝑡) = E𝑌 (𝑡) = 0 and Var𝑋(𝑡) = Var𝑌 (𝑡) = 1 for each 𝑡 ∈ R3. 
Besides this, we assume that the Gaussian random fields 𝑋 and 𝑌
are stationary and isotropic (also called motion-invariant). Under these 
assumptions, the distributions of 𝑋 and 𝑌  are uniquely determined by 
the underlying covariance functions 𝜌𝑋 , 𝜌𝑌 ∶ [0,∞) → [−1, 1], which are 
given by 𝜌𝑋 (ℎ) = Cov(𝑋(𝑠), 𝑋(𝑡)) and 𝜌𝑌 (ℎ) = Cov(𝑌 (𝑠), 𝑌 (𝑡)) for each 
ℎ > 0, where 𝑠, 𝑡,∈ R3 with |𝑠 − 𝑡| = ℎ and | ⋅ | denotes the Euclidean 
norm. Notice that the values of 𝜌𝑋 (ℎ) and 𝜌𝑌 (ℎ) do not depend on the 
specific choice of 𝑠 and 𝑡, due to the motion invariance of the Gaussian 
random fields 𝑋 and 𝑌 . More details on Gaussian random fields can 
be found in [51–53]. In the present paper, we assume that 𝜌𝑋 and 𝜌𝑌
belong to the exponential family, i.e., we assume that 
𝜌𝑋 (ℎ) = exp(−(𝛼𝑋ℎ)𝛽𝑋 ) and 𝜌𝑌 (ℎ) = exp(−(𝛼𝑌 ℎ)𝛽𝑌 ) (1)

for each ℎ > 0 and some parameters 𝛼𝑋 , 𝛼𝑌 ∈ (0,∞) and 𝛽𝑋 , 𝛽𝑌 ∈ (0, 2); 
see, e.g., [51].

However, it turns out that excursion sets of Gaussian random fields 
are not suitable for adequately modeling the nickel phase. Therefore, 
we consider a motion-invariant 𝜒2-field 𝑍 with two degrees of freedom 
based on the Gaussian random field 𝑋. This means that the random 
field 𝑍 = {𝑍(𝑡), 𝑡 ∈ R3} is defined by 𝑍(𝑡) = 𝑋2

1 (𝑡) + 𝑋2
2 (𝑡) for each 

𝑡 ∈ R3, where 𝑋1 = {𝑋1(𝑡), 𝑡 ∈ R3} and 𝑋2 = {𝑋2(𝑡), 𝑡 ∈ R3}
are independent copies of 𝑋. Note that the covariance function 𝜌𝑍 ∶
[0,∞) → [0, 4] of 𝑍 can easily be derived from the covariance function 
𝜌𝑋 by 
𝜌𝑍 (ℎ) = 4𝜌𝑋 (ℎ)2 (2)

for each ℎ > 0, see Eq. (6.155) in [51]. Now, the three phases of the 
SOFC anodes can be modeled by excursion sets of the random fields 𝑌
and 𝑍. More precisely, the nickel phase is modeled by the excursion 
set 𝛯Ni = {𝑡 ∈ R3 ∶ 𝑍(𝑡) ≥ 𝜆𝑍} for some threshold parameter 𝜆𝑍 ∈ R, 
whereas the pore space is modeled by 𝛯P = 𝑐𝑙({𝑡 ∈ R3 ∶ 𝑌 (𝑡) ≥
𝜆𝑌 } ∩ 𝛯∁

Ni) for some threshold parameter 𝜆𝑌 ∈ R, where 𝑐𝑙 denotes the 
topological closure and 𝐴∁ is the complement of the set 𝐴 ⊂ R3. The 
GDC phase is given by 𝛯GDC = 𝑐𝑙((𝛯Ni ∪ 𝛯P)∁). Note that the random 
closed sets 𝛯Ni, 𝛯P and 𝛯GDC are motion invariant, due to the motion 
invariance of the Gaussian random fields 𝑋 and 𝑌 . More details on 
random closed sets can be found, e.g., in [51,54].

The stochastic 3D model described above exhibits the parameter 
vector 𝜃 = (𝜆𝑍 , 𝜆𝑌 , 𝛼𝑋 , 𝛼𝑌 , 𝛽𝑋 , 𝛽𝑌 ), which can be calibrated to tomo-
graphic image data by means of analytical relationships between the 
parameters and geometrical descriptors. In particular, we use the fact 
that the volume fraction 𝜀Ni of the Ni phase is given by 
𝜀Ni = P(𝑜 ∈ 𝛯Ni) = P(𝑍(𝑜) ≥ 𝜆𝑍 ) = 1 − 𝐹𝑍(𝑜)(𝜆𝑍 ), (3)

where 𝐹𝑍(𝑜) ∶ R → [0, 1] is the distribution function of the 𝜒2-
distribution with two degrees of freedom and 𝑜 = (0, 0, 0) ∈ R3 denotes 
the origin [51]. Moreover, due to the independence of the random fields 
𝑌  and 𝑍, the volume fraction 𝜀P of the pore space is given by 
𝜀P = P(𝑌 (𝑜) ≥ 𝜆𝑌 , 𝑍(𝑜) < 𝜆𝑍 ) = 𝐹𝑍(𝑜)(𝜆𝑍 ) − 𝐹𝑍(0)(𝜆𝑍 )𝐹𝑌 (𝑜)(𝜆𝑌 ), (4)

where 𝐹𝑌 (𝑜) ∶ R → [0, 1] denotes the distribution function of the stan-
dard normal distribution. Thus, to determine the threshold parameters 
𝜆𝑌  and 𝜆𝑍 , the volume fractions 𝜀Ni and 𝜀P of the Ni phase and the pore 
space will be computed from the image data and inserted into Eqs. (3) 
and (4), see Section 3.3 below.

To determine the remaining four model parameters, two-point cov-
erage probabilities are considered. The two-point coverage probability 
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Table 1
Overview of the geometrical descriptors used for model validation. Here, 𝑖, 𝑗 ∈ {Ni, P, GDC} indicate the given 
phase, namely the Ni phase, the pore space (P), and the GDC phase.
 Geometrical descriptor Symbol Range Unit  
 Volume fraction 𝜀𝑖 [0, 1] –  
 Two-point coverage probability 𝐶𝑖,𝑗 [0, 1] –  
 Specific surface area (SSA) 𝑆𝑖 [0,∞) μm−1 
 Specific length of triple phase boundary (TPB) 𝑇 [0,∞) μm−2 
 Specific area of double phase boundary (DPB) 𝐷 [0,∞) μm−1 
 Mean geodesic tortuosity of paths starting from TPB 𝜇(𝜏𝑖) [0,∞) –  
 Mean chord length 𝜇(𝐿𝑖) [0,∞) μm  
function 𝐶𝑖𝑗 ∶ [0,∞) → [0, 1] is given by 𝐶𝑖𝑗 (ℎ) = P(𝑜 ∈ 𝛯𝑖, 𝑢 ∈ 𝛯𝑗 ) for 
any pair 𝑖, 𝑗 ∈ {Ni, P, GDC} and each 𝑢 ∈ R3 such that |𝑢| = ℎ ≥ 0, 
see [51]. In particular, we use the following relationships that, as the 
volume fractions 𝜀Ni and 𝜀P in Eqs. (3) and (4), express the two-point 
coverage probability functions 𝐶Ni,Ni and 𝐶P,P by the model parameters. 
Namely, as shown in [42], we have
𝐶Ni,Ni(ℎ) = P(𝑍(𝑜) > 𝜆𝑍 , 𝑍(𝑢) > 𝜆𝑍 ) = 2𝜀Ni − 1 + (1 − 𝜌2𝑋 (ℎ))

⋅
∞
∑

𝑗=0

𝜌2𝑗𝑋 (ℎ)

(𝑗!)2

(

∫

𝜆𝑍
2(1−𝜌2𝑋 (ℎ))

0
𝑡𝑗 exp(−𝑡)𝑑𝑡

)2

, (5)

for each 𝑢 ∈ R3 such that |𝑢| = ℎ ≥ 0. Furthermore, from the 
independence of the random fields 𝑌  and 𝑍 we get
𝐶P,P(ℎ) = P(𝑌 (𝑜) > 𝜆𝑌 , 𝑍(𝑜) < 𝜆𝑍 , 𝑌 (𝑢) > 𝜆𝑌 , 𝑍(𝑢) < 𝜆𝑍 )

= (𝐶Ni,Ni(ℎ) + 2𝐹𝑍(0)(𝜆𝑍 ) − 1)(1 + P(𝑌 (𝑜) < 𝜆𝑌 , 𝑌 (𝑢) < 𝜆𝑌 )

− 2𝐹𝑌 (0)(𝜆𝑌 )), (6)

for each 𝑢 ∈ R3 such that |𝑢| = ℎ ≥ 0, where the random vec-
tor (𝑌 (𝑜), 𝑌 (𝑢)) has a bivariate standard normal distribution with co-
variance Cov(𝑌 (𝑜), 𝑌 (𝑢)) = 𝜌𝑌 (ℎ) given by Eq. (1). Thus, it applies 

P(𝑌 (𝑜) < 𝜆𝑌 , 𝑌 (𝑢) < 𝜆𝑌 ) = ∫

𝜆𝑌

−∞ ∫

𝜆𝑌

−∞
𝜑𝜌𝑌 (ℎ)(𝑠, 𝑡)d𝑠d𝑡, (7)

where 𝜑𝛾 ∶ R2 → [0,∞) is the probability density of a two-dimensional 
Gaussian random vector with standard normal marginal distributions 
and covariance 𝛾 ∈ [−1, 1].

3.3. Model fitting

We now show how Eqs. (3)–(7) can be used to determine the model 
parameters 𝜆𝑍 , 𝜆𝑌 , 𝛼𝑋 , 𝛼𝑌 , 𝛽𝑋 , 𝛽𝑌  from voxelized and segmented image 
data of SOFC anodes.
Fitting procedure for each aging duration. We first describe a 
method to fit the model parameters 𝜆𝑍 and 𝜆𝑋 as well as the co-
variance functions 𝜌𝑋 and 𝜌𝑌  for each aging duration. In particular, 
the following steps are applied separately to each 3D image obtained 
by the numerical aging simulations explained in Section 2. Therefore, 
we first compute appropriately chosen estimators 𝜀̂Ni, 𝜀̂P, 𝐶̂Ni,Ni and 
𝐶̂P,P for 𝜀Ni, 𝜀P, 𝐶Ni,Ni and 𝐶P,P from 3D image data. For estimating 
the volume fractions 𝜀Ni and 𝜀P, the so-called point-count method is 
used [51], whereas the two-point coverage probability functions 𝐶Ni,Ni
and 𝐶P,P are estimated from voxelized image data with a Fourier-based 
method described in [55]. Then, an estimator 𝜆̂𝑍 for the threshold 
𝜆𝑍 is obtained by solving Eq. (3) for 𝜆𝑍 , i.e., 𝜆̂𝑍 = 𝐹−1

𝑍(𝑜)(1 − 𝜀̂Ni). 
Similarly, plugging 𝜆̂𝑍 and 𝜀̂P into Eq. (4) allows us to get an estimator 
𝜆̂𝑌  by solving Eq. (4) for 𝜆𝑌 . Note that the distribution functions 
𝐹𝑍(𝑜) and 𝐹𝑌 (𝑜) are monotonously increasing, which allows us to nu-
merically solve Eqs. (3) and (4) for 𝜆𝑍 and 𝜆𝑌 , respectively, using 
the bisection method [56]. Moreover, plugging 𝜀̂Ni and 𝐶̂Ni,Ni(ℎ) into 
Eq. (5) provides an estimator 𝜌̂𝑋 (ℎ) for 𝜌𝑋 (ℎ). As noted in [42], the 
values of 𝐶Ni,Ni(ℎ) decrease monotonously with increasing ℎ > 0, 
i.e., with decreasing values of 𝜌𝑋 (ℎ) ∈ [0, 1]. Thus, we can again use 
the bisection method to compute 𝜌̂ (ℎ) for ℎ > 0. In the next step, the 
𝑋
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estimators 𝐶̂P,P(ℎ), 𝐶̂Ni,Ni(ℎ), 𝜆̂𝑍 , 𝜆̂𝑌  are plugged into Eq. (6). As in the 
case before, the right-hand side of Eq. (6) is decreasing monotonously 
with decreasing values of 𝜌𝑌 (ℎ) ∈ [0, 1]. Thus, taking into account 
Eq. (7), the bisection method can be used to get an estimate 𝜌̂𝑌 (ℎ) for 
𝜌𝑌 (ℎ).

However, the procedure stated above leads to non-parametric esti-
mates 𝜌̂𝑋 (ℎ), 𝜌̂𝑌 (ℎ) for the covariance functions 𝜌𝑋 and 𝜌𝑌 . To represent 
the estimated covariance functions by the exponential functions given 
in Eq. (1), the parameters 𝛼𝑋 , 𝛽𝑋 , 𝛼𝑌  and 𝛽𝑌  are estimated by mini-
mizing the mean squared error (MSE) of the non-parametric estimates 
𝜌̂𝑋 (ℎ), 𝜌̂𝑌 (ℎ) obtained from image data and their parametric represen-
tations given in Eq. (1). More precisely, the trust region reflective 
algorithm [57] is used to minimize the MSE.
Time-dependent regression of model parameters. Using the previ-
ously described fitting procedure for the aging durations of 0 h, 500 h,… ,
38 000 h, we obtain a parameter vector 𝜃𝑡 = (𝜃𝑡,1,… , 𝜃𝑡,6) ∈ R6 for 
each 𝑡 ∈  = {0 h, 500 h,… , 38 000 h}. Thus, by means of non-linear 
regression, we are able to predict the entries of 𝜃𝑡 for an arbitrary 
specification 𝑡 ≥ 0 of the aging duration. The regression functions 
𝑓𝑎 ∶ [0,∞) → (0,∞) used for this purpose depend on a four-dimensional 
parameter vector 𝑎 = (𝑎1, 𝑎2, 𝑎3, 𝑎4) ∈ R4 and are given by 

𝑓𝑎(𝑡) = 𝑎1 exp(−𝑎2𝑡𝑎3 ) + 𝑎4, (8)

for each 𝑡 ≥ 0. Then, for each 𝑗 ∈ {1,… , 6}, the optimal parameter 
vector 𝑎∗𝑗 ∈ R4 is determined by minimizing the MSE between the 
values of 𝑓𝑎(𝑡) and the 𝑗th model parameter 𝜃𝑡,𝑗 for each 𝑡 ∈  . More 
precisely, we solve the optimization problem given by 

𝑎∗𝑗 = argmin
𝑎∈R4

∑

𝑡∈
(𝑓𝑎(𝑡) − 𝜃𝑡,𝑗 )2. (9)

This optimization problem is numerically solved with the command
scipy.optimize.curve_fit in Python using the trust region reflective algo-
rithm [57] for all six model parameters.

To investigate the robustness of predictive simulations of SOFC 
anodes using the stochastic 3D model, we fit the regression func-
tions 𝑓𝑎∗1 ,… , 𝑓𝑎∗6  of the six model parameters 𝜃𝑡,1,… , 𝜃𝑡,6 for different 
time intervals of aging duration. More precisely, we used the re-
sults of the physics-based aging simulation obtained for the following 
time intervals: [0 h, 4000 h], [0 h, 9500 h], [0 h, 19 000 h], [0 h, 28 500 h], and 
[0 h, 38 000 h]. To evaluate the prediction quality of the resulting models, 
we use the geometrical descriptors, which have been introduced in 
Section 3.1.

4. Results

In this section, the results are discussed that have been obtained 
by fitting the stochastic 3D model introduced in Section 3.2 to image 
data generated by the numerical aging simulations of Section 2. In 
particular, in Section 4.2, the predictive potential of the regression 
functions is evaluated which have been introduced in Section 3.3. 
Finally, in Section 4.3, relationships are derived by means of which 
geometrical descriptors of the simulated 3D morphologies of SOFC 
anodes can be expressed by the parameters of the stochastic 3D model.
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Fig. 1. 2D slices (20 μm × 20 μm) and 3D renderings (20 μm × 6.35 μm × 20 μm) of the 3D morphology of SOFC anodes after 500 h, consisting of nickel (blue), GDC 
(red) and pore space (yellow), obtained by physics-based aging simulations (left) and stochastic 3D modeling (right).
Table 2
MAPE-values over all 77 aging durations for the volume fraction 𝜀𝑖, the specific 
surface area 𝑆𝑖, the mean geodesic tortuosity 𝜇(𝜏𝑖), and the mean chord length 
𝜇(𝐿𝑖) of the 𝑖th phase, where 𝑖 ∈ {Ni, P, GDC}.
 MAPE 𝜀𝑖 𝑆𝑖 𝜇(𝜏𝑖) 𝜇(𝐿𝑖)  
 Nickel 0.59 % 7.23 % 4.97 % 22.63 % 
 Pores 0.34 % 8.21 % 5.79 % 2.05 %  
 GDC 0.34 % 8.98 % 3.04 % 19.21 % 

4.1. Evaluation of the stochastic 3D model

We first evaluate the stochastic 3D model introduced in Section 3 
which has been fitted separately to each of the 77 images of SOFC 
anodes obtained for the aging durations of 0 h, 500 h,… , 38 000 h by the 
numerical aging simulations explained in Section 2. In Fig.  1, the 3D 
morphology of an SOFC anode is shown, which has been obtained 
after 500 h of physics-based aging simulations (left), together with a 
realization of the stochastic 3D model fitted to the aforementioned 
image data (right).

To quantitatively evaluate the stochastic 3D model for each duration 
of aging, 10 realizations of the model with a size of 20 μm in each direc-
tion are generated for each of the 77 aging durations considered in this 
paper. Then, in the next step, the volume fraction, the specific surface 
area (SSA), the mean geodesic tortuosity from TPB, and the mean chord 
length are computed for the three phases of each of these realizations. 
Based on these values, the mean absolute percentage error (MAPE) is 
determined with respect to the corresponding values computed from 
the 77 images of SOFC anodes generated by the physics-based aging 
simulations.

More precisely, for each of the four geometrical descriptors stated 
above, let 𝑑phy𝑡  denote the descriptor value obtained from the physics-
based aging simulation at aging duration 𝑡 ∈  , and let 𝑑sto𝑡,𝑘  be the 
corresponding descriptor value obtained from the 𝑘th realization of the 
stochastic 3D model at 𝑡 ∈ 𝑇 , for each 𝑘 ∈ {1,… , 10}. The results 
obtained for the MAPE given by 

MAPE = 1
77

∑

𝑡∈

1
10

10
∑

𝑘=1

|

|

|

|

𝑑phy𝑡 − 𝑑sto𝑡,𝑘

𝑑phy𝑡

|

|

|

|

(10)

are shown in Table  2, where it can be seen that we get small MAPE-
values in most cases. For the volume fraction, the SSA, and the mean 
geodesic tortuosity, the MAPE-values are below 10% for each of the 
three phases. The highest MAPE-values over all 77 aging durations are 
obtained for the mean chord length of the nickel and GDC phases with 
22.63 % and 19.21 %, respectively. However, for the mean chord length 
of the pore space, we obtain a very small MAPE-value of 2%.

Fig.  2 shows the volume fraction, the specific surface area, the 
mean geodesic tortuosity from TPB, and the mean chord length of the 
three phases nickel, pores, and GDC after every 4000 h of aging for 
10 realizations of the stochastic 3D model, where the results obtained 
are displayed as violin plots. These plots allow for an intuitive inter-
pretation of the data distribution, as the shape of the violin directly 
shows where values are clustered or rare. In addition, results are shown 
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that are obtained for these geometrical descriptors by physics-based 
aging simulations. Note that even in the latter case the results are 
computed only at discrete time points, but they are represented here 
as a continuous line for better visualization.

It turns out that for the nickel phase and the pore space, the specific 
surface areas (SSAs) computed from the stochastic model realizations 
coincide well with the corresponding results obtained from the physics-
based aging simulations, see Fig.  2b and f, while the SSA of the GDC 
phase is slightly underestimated by the stochastic 3D model. Similarly, 
the mean geodesic tortuosity of the pore space and the GDC phase 
is slightly underestimated but all in all reproduced well with a small 
MAPE as can be seen in Table  2. Furthermore, as can be seen in Fig.  2c, 
the mean geodesic tortuosity of the nickel phase fluctuates over various 
aging durations and no particular trend can be seen in physics-based 
aging either. This is caused by the poor connectivity of the nickel phase. 
In particular, the average volume fraction of the percolating phase of 
the 77 physics-based aging simulations has a share of 4.48%.

In Fig.  3, results are visualized that have been obtained for the 
specific length of the TPB and the SSA of the DPB. As shown in Fig. 
3a, the stochastic 3D model captures the general decline in the specific 
length of the TPB, where it tends to slightly underestimate the TPB 
length, with MAPE of 6.67% across all aging durations, compared to the 
results obtained by the physics-based aging simulations. However, the 
values for the SSA of DPB obtained by the stochastic 3D model coincide 
quite well with those of the physics-based aging simulations, see Fig. 
3b, with MAPE of 2.60% across all aging durations.

All in all, with respect to most geometrical descriptors, the real-
izations drawn from the stochastic 3D model coincide well with the 
images obtained by physics-based aging simulations. Larger deviations 
can only be observed in the mean chord length of the nickel and 
GDC phases. Given the small number of model parameters and the 
fact that the same model type is used for all aging durations, the 
stochastic model achieves satisfactory results based on the remaining 
geometric descriptors, i.e, the SSA, the mean geodesic tortuosity, the 
specific length of TPB and the SSA of DPB. Thus, the low-parametric 
model introduced in Section 3.2 is suitable for fast simulation of 3D 
morphologies of SOFC anodes for all relevant aging durations.

4.2. Predictive simulation

We now show how the stochastic model introduced in Section 3.2 
can be used to generate 3D morphologies of SOFC anodes for aging 
durations for which no physics-based aging simulations have been per-
formed. This is achieved using the regression functions given in Eq. (8) 
and solving the optimization problem stated in Eq. (9). To evaluate 
the robustness of the prediction, the four-dimensional parameter vector 
𝑎 = (𝑎1, 𝑎2, 𝑎3, 𝑎4) ∈ R4 of the regression function 𝑓𝑎 is adjusted based on 
numerical aging simulations for different aging durations. Specifically, 
we use the (optimized) parameter vector 𝑎∗ derived from physics-based 
aging simulations up to 4000 h, 9500 h, 19 000 h, 28 500 h and 38 000 h, 
respectively, and compare the geometrical descriptors of the 3D images 
drawn from the correspondingly fitted stochastic models with those 
obtained by physics-based aging simulations.
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Fig. 2. Comparison of volume fraction (first column), specific surface area (second column), mean geodesic tortuosity from TPB (third column), and mean chord 
length (fourth column) of the three phases, i.e. nickel (top row), pore space (middle row) and GDC (bottom row), computed for the image data obtained by 
physics-based aging simulations (red), and for 10 realizations drawn from the stochastic 3D model for various duration of aging (blue).
Fig. 3. Comparison of the specific length of the TPB (a) and the SSA of 
the DPB (b) obtained by physics-based aging simulations (red), and for 10 
realizations drawn from the stochastic 3D model for various duration of aging 
(blue).

To fit the regression function given in Eq. (8), the parameters 
𝜃𝑡,1,… , 𝜃𝑡,6 ∈ R for all 𝑡 ∈   of the stochastic 3D models, which 
are calibrated by the outputs of each of the 77 physics-based aging 
simulations, are used as ground truth. Although these parameters are 
determined only for discrete time points 𝑡 ∈  , they are represented in 
Fig.  4 as continuous (red) lines for better visualization. In particular, 
as the model parameter 𝛽𝑋 (= 𝜃𝑡,5) of the covariance function 𝜌𝑋
introduced in Eq (1), which equals the fifth entry of the six-dimensional 
parameter vector of the stochastic 3D microstructure model, is almost 
constant over time (see Fig.  4d), we use the mean of the observed values 
of 𝛽𝑋 for all aging durations 𝑡 ∈  .

To determine the evolution of the remaining five model parameters 
in continuous time, the regression function given in Eq. (8) is applied. 
Thus, the parameter vector 𝑎∗ derived from physics-based aging sim-
ulations up to 4000 h, 9500 h, 19 000 h, 28 500 h, 38 000 h, respectively, 
is used to construct a time-continuous representation of the evolution 
of the 𝑗th model parameter via 𝜃𝑡,𝑗 = 𝑓𝑎∗ (𝑡) for all 𝑡 ≥ 0 and 𝑗 ∈
{1,… , 4} ∪ {6}, see Fig.  4. For the threshold 𝜆𝑍 (= 𝜃𝑡,1) and the covari-
ance parameter 𝛼𝑋 (= 𝜃𝑡,3) only small differences can be seen for the 
different aging durations up to 4000 h, 9500 h, 19 000 h, 28 500 h, 38 000 h, 
respectively. The differences for 𝜆 , 𝛼 , 𝛽  are more pronounced, where 
𝑌 𝑌 𝑌
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the results for 𝛽𝑌  are particularly striking, as a different trend appears 
during the initial hours. However, for physics-based aging simulations 
up to longer aging durations, the regression function 𝑓𝑎∗  approximates 
the ground truth increasingly well.

To get a visual impression of the situation for subsequent aging 
durations, we simulated 3D morphologies of SOFC anodes up to an 
aging duration of 45 000 h, using stochastic 3D models based on the 
parameter vector 𝑎∗ derived from physics-based aging simulations up to 
different aging durations; see Fig.  5. For better visualization, 2D slices 
of these 3D morphologies are also shown.

After an initial visual impression, we further investigate the influ-
ence of the regression functions shown in Fig.  4 on the 3D morphologies 
of SOFC anodes generated by the correspondingly fitted stochastic 
3D models. For this, we compute the geometrical descriptors given 
in Table  1 every 2000 h up to 38,000 h, where the averages of 10 
model realizations with a size of 20 μm in each direction are used. 
In addition, the geometrical descriptors for the physics-based aging 
simulations are computed (red lines); see Fig.  6. Here, the results for 
the volume fraction, specific surface area, mean geodesic tortuosity 
from TPB, and mean chord length of the three phases nickel, pores, 
and GDC are shown. Note that in all cases, the geometrical descriptors 
are computed only for a few discrete time points. However, like in the 
previous figures, continuous lines are used in Fig.  6 for visualization 
purposes. For most geometrical descriptors, the differences between the 
stochastic models based on different aging simulations are small. But, 
as can be seen in Fig.  6f and h for the specific surface area and mean 
chord length of the pore space, longer physics-based aging simulations 
up to 28 500 h lead to better results. After that, no more differences 
between these geometrical descriptors of the stochastic 3D models can 
be observed. In contrast, surprisingly enough, it turns out that for the 
specific surface area and the mean chord length of the GDC phase, 
shorter aging durations lead to better results; see Fig.  6j and l. Note 
that the large deviations for the mean geodesic tortuosity of the nickel 
phase starting from TPB (see Fig.  6c) can again be attributed to the 
poor connectivity of the nickel phase.

In Fig.  7, the results of the specific length of the TPB and the specific 
surface area of DPB of the stochastic 3D models based on the regression 
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Fig. 4. Time-continuous representation of the evolution of model parameters by regression functions fitted to physics-based aging simulations up to 4000 h, 9500 h, 
19 000 h, 28 500 h (blue lines, with increasing darkness) and 38 000 h (dark), respectively.
Fig. 5. Predictive simulation of 3D morphology (20 μm × 6.35 μm × 20 μm) and 2D slices (20 μm × 20 μm) after 45 000 h of the stochastic model calibrated to aging 
durations up to 4000 h (a), 9500 h (b), 19 000 h (c), 28 500 h (d) and 38 000 h (e).
parameter vectors 𝑎∗ derived from physics-based aging simulations up 
to 4000 h, 9500 h, 19 000 h, 28 500 h and 38 000 h are visualized. In both 
cases, longer physics-based aging simulations tend to lead to better 
results. However, the stochastic 3D models calibrated for aging dura-
tions up to 28 500 h and 38 000 h, respectively, exhibit only negligible 
differences. Moreover, the model calibrated up to 19 000 h shows only 
small variations in the geometrical descriptors compared to the models 
calibrated up to 28 500 h and 38 000 h. This means that the physics-based 
aging simulation up to an aging duration of 19 000 h is sufficient to 
accurately predict the microstructure evolution up to 38 000 h. Most 
model parameter changes take place within the first 19 000 h, allowing 
for a reliable estimation of the following exponential behavior.

4.3. Regression formulas for expressing geometrical descriptors by model 
parameters

In this section, regression formulas are derived for 𝑆𝑖, 𝜇(𝜏𝑖), and 
𝜇(𝐿𝑖), where 𝑖 ∈ {Ni, P, GDC}, as well as for 𝑇  and 𝐷, based on the 
parameters of the stochastic 3D model. Therefore, we generate a large 
set of different virtual microstructures, drawing samples from the given 
stochastic 3D model and systematically varying the model parameters.

However, note that for the volume fractions 𝜀Ni, 𝜀P and 𝜀GDC we do 
not derive analytical regression formulas to express these geometrical 
descriptors by parameters of the stochastic 3D model. For simplicity, 
we systematically vary the volume fractions 𝜀Ni and 𝜀𝑃  and convert 
them to the corresponding threshold values using Eqs. (3) and (4), 
instead of directly varying the threshold parameters 𝜆𝑍 and 𝜆𝑌 . More 
precisely, candidates for the volume fractions of the three phases are 
drawn from a uniform distribution on the interval [0.1, 0.8] and then 
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normalized by their sum, which ensures that the sum of the volume 
fractions equals 1. If one of the volume fractions is below 0.1, the 
simulated values are discarded. Otherwise, the volume fractions are 
used to determine the thresholds 𝜆𝑍 and 𝜆𝑌  via Eqs. (3) and (4). Finally, 
the model parameters 𝛼𝑋 and 𝛼𝑌  are uniformly drawn from [0.045, 0.15], 
while 𝛽𝑋 and 𝛽𝑌  are uniformly drawn from [1.6, 1.99]. In this way, we 
generate 2000 different virtual 3D microstructures with a size of 20 μm
in each direction.

To derive the regression formulas mentioned above, we employ 
symbolic regression [58], which is a machine learning approach that 
identifies analytical formulas best fitting the data. More precisely, we 
split the set of simulated microstructures, together with the correspond-
ing geometrical descriptors, into training and test sets containing 1340 
and 660 cases, respectively. Then, we use the algorithm given in [58] 
to fit regression formulas for each geometrical descriptor and each 
complexity up to 15. Note that a lower complexity leads to simpler 
regression formulas. However, the algorithm used does not guarantee 
that the units of geometrical descriptors are correctly maintained by the 
(preliminary) regression formulas. It should be noted that the model 
parameters 𝛼𝑋 and 𝛼𝑌  have the unit μm−1, while all other model 
parameters are unitless. That is why we exclude all regression formulas 
that do not match the correct unit. For the remaining formulas, the 
Akaike information criterion (AIC) [59] is used on the test set, i.e., for 
each geometrical descriptor, the regression formula with the smallest 
AIC value is chosen; see Table  3.

Fig.  8 shows how well the regression formulas fit the data for 
the specific surface area, the mean geodetic tortuosity from TPB, and 
the mean chord length on the test set. Specifically, the geometrical 
descriptors 𝑆 , 𝜇(𝜏 ) and 𝜇(𝐿 ) computed from simulated image data 
𝑖 𝑖 𝑖
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Fig. 6. Evaluation of the robustness of predictive simulations of the 3D morphology of SOFC anodes, using regression functions fitted to physics-based aging 
simulations up to 4000 h, 9500 h, 19 000 h, 28 500 h (blue lines, with increasing darkness) and 38 000 h (dark), respectively, where the geometrical descriptors are 
computed for nickel (top row), pore space (middle row) and GDC (bottom row). The red lines show the descriptors computed for the physics-based aging 
simulations.
Fig. 7. Evaluation of the robustness of predictive simulations of TPB and 
DPB, using regression functions fitted to physics-based aging simulations up 
to 4000 h, 9500 h, 19 000 h, 28 500 h (blue lines, with increasing darkness) and 
38 000 h (dark), respectively, where the geometrical descriptors are computed 
for nickel (top row), pore space (middle row) and GDC (bottom row). The red 
lines show the descriptors computed for the physics-based aging simulations.

are presented, along with their corresponding estimates 𝑆𝑖, 𝜇(𝜏𝑖) and 
𝜇(𝐿̂𝑖) obtained by the regression formulas given in Table  3, for 𝑖 ∈
{Ni, P, GDC}. The resulting values of the coefficient of determination 
(𝑅2) as well as the MAPE can also be found in Fig.  8.

As can be seen in Fig.  8, the smallest value of 𝑅2 is 0.81 when 
considering the mean geodesic tortuosity from TPB of the pore space, 
and the largest value of the MAPE is 11.75%, which is obtained for the 
specific surface area of the GDC phase. Thus, all regression formulas 
given in the upper part of Table  3 capture the relationships between 
model parameters and geometrical descriptors quite well. Particularly 
accurate results can be observed for the specific surface area and the 
mean chord length of the nickel phase. It is also noticeable that the 
regression formulas for the mean geodesic tortuosity from TPB lead to 
small MAPE and relatively small 𝑅2 values for all three phases, see Fig. 
8b, e and h. This effect is due to the limited variability of the tortuosity 
values in the test data, which are mostly in a range between 1 and 
2. As a result of this low variability, all models with tortuosity values 
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Fig. 8. Scatter plots visualizing the values of the geometrical descriptors and 
their estimates obtained by regression formulas for the nickel phase (top), pore 
space (middle) and GDC phase (bottom).

within this interval have good predictive performance. However, larger 
errors occur when the tortuosity values to be predicted are outside this 
range.
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Table 3
Regression formulas to express geometrical descriptors by the parameters of the stochastic 3D 
model.
 Phase Geometrical descriptor Regression formula  
 
Nickel

𝑆Ni 𝛼𝑋 (𝜆𝑍 − 6.30 + 70.82∕𝛽𝑋 )  
 𝜇(𝜏Ni) exp((𝜆𝑍 + 11.41∕ exp(exp(𝜆𝑍 − 3.18)𝛽𝑋 ) − 3.07)−1) 
 𝜇(𝐿Ni) (0.90∕𝜆𝑍 + 𝛽𝑋 − 1.29)∕𝛼𝑋  
 
Pore

𝑆P (𝜆𝑌 − 𝛽𝑌 + 4.17)(5.40 − 𝜆2𝑌 )(𝛼𝑋 + 𝛼𝑌 )  
 𝜇(𝜏P) ((𝜆𝑍 + 𝛽𝑌 )(1.68 − (2.42 − 𝜆𝑌 )𝜆𝑌 ))−1 + 1.02  
 𝜇(𝐿P) 𝛽𝑌 ∕(exp(𝜆𝑌 )𝛼𝑌 − 𝛼𝑋∕(𝜆𝑍 (𝛽𝑋 − 0.29)))  
 
GDC

𝑆GDC (𝛼𝑌 + 𝛼𝑋 )((exp(𝜆𝑌 ) + 22.55)∕𝛽𝑋 )  
 𝜇(𝜏GDC) exp(1.11∕(6.75 exp(𝜆𝑌 ) + 𝜆𝑍 − 2.69))  
 𝜇(𝐿GDC) 𝛽𝑌 ∕(𝛼𝑌 ∕ exp(𝜆𝑌 ) + 𝛼𝑋∕(0.52𝜆𝑍 ))  
 𝐷 𝛼𝑌 ((𝜆𝑍 + 1.47)∕ exp((𝜆2𝑌 − 2.23)∕𝛽𝑌 ))  
 𝑇 5627.85((𝛼𝑋∕((𝛽𝑌 + 𝜆𝑍 )∕𝛼𝑌 ))∕(𝛽𝑋 + 𝜆2𝑌 ))  
Fig. 9. Scatter plots visualizing the specific length 𝑇  of the TPB and the 
specific area 𝐷 of the DPB, together with their estimates 𝑇̂  and 𝐷̂ obtained by 
the regression formulas.

As the specific length of the TPB and the specific area of the DPB 
are geometrical descriptors that are crucial for the electrochemical 
performance of SOFC anodes, it is important to understand the impact 
the model parameters have on them. According to the formulas given in 
Table  3, the specific length of the TPB and the specific area of the DPB 
are influenced by all model parameters. This indicates a rather complex 
relationship between these two geometrical descriptors and the model 
parameters. However, as can be seen in Fig.  9, the estimates 𝑇  and 𝐷̂
obtained by the regression formulas lead to accurate results for both 𝑇
and 𝐷.

5. Conclusions

In this paper, we combine physics-based aging simulations using a 
phase-field approach with a stochastic 3D model to generate a wide 
spectrum of virtual but realistic 3D morphologies of SOFC anodes 
comprised of nickel, pores, and GDC for different aging durations. 
This hybrid approach reduces computational costs and imaging effort. 
The developed stochastic 3D model is built by excursion sets of two 
random fields, i.e., a 𝜒2-field and a Gaussian random field, resulting in 
six model parameters. For model calibration, formulas are used that 
express the volume fractions of the three phases and the two-point 
coverage probabilities by the model parameters. Since the geometri-
cal descriptors appearing in these formulas can be easily computed 
from image data generated by the physics-based aging simulations, a 
fast and efficient model calibration is possible. The goodness of the 
model fit is evaluated by comparing various geometrical descriptors 
computed from physics-based aging simulations with those obtained for 
realizations of the stochastic 3D model.

As the model is calibrated for various aging durations, an exponen-
tial regression function is used to determine the model parameters in 
continuous time. This enables us to perform simulations of the 3D mor-
phology of SOFC anodes for unobserved aging durations and also allows 
for predictive simulations. To quantify the quality of such predictive 
simulations, different aging durations are assumed and the 3D mor-
phologies generated by the fitted stochastic 3D models are evaluated 
9 
through comparison of geometrical descriptors of model realizations 
and image data obtained by the physic-based aging simulations. The 
results achieved in this way show that physics-based aging simulations 
up to 19 000 h are sufficient to reach a sufficiently accurate prediction 
quality up to 38 000 h. In addition, symbolic regression is used to derive 
regression formulas that express various geometrical descriptors by the 
parameters of the underlying stochastic 3D model. This provides a 
deeper understanding of the relationship between the parameters of the 
stochastic model and the geometric descriptors.

Thus, in the present paper, a comprehensive computational frame-
work of combined physics-based and a time-continuous stochastic mod-
eling is developed to predict the 3D morphology of GDC-based SOFC 
anodes for various aging durations. In a forthcoming paper, this frame-
work will be used for virtual materials testing, i.e., to quantitatively 
investigate process-structure–property relationships, which correlate 
the processing conditions, 3D morphology of SOFC anodes with their 
effective functional properties.
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