Information Systems 138 (2026) 102671

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Graph-based similarity measures for the structural comparison of process
traces

Clemens Schreiber 2>, Amine Abbad-Andaloussi®, Andrea Burattin ¢, Andreas Oberweis?,

Barbara Weber?

a Karlsruhe Institute of Technology, Karlsruhe, Germany
b University of St. Gallen, St. Gallen, Switzerland
¢ Technical University of Denmark, Lyngby, Denmark

ARTICLE INFO ABSTRACT

Dataset link: Code and Event Logs Similarity measures are commonly applied for a variety of process mining techniques, such as trace clustering,

conformance checking, and event abstraction. Yet, these measures generally fail to recognize similarity based

ds:
I;:Z:; (;2 mining on structural process features, such as the order of activities, loops, skips, choices, and parallelism. To make
Similarity measure this more explicit, we propose a set of properties that allow to evaluate, what kind of structural features

are reflected by a similarity measure. We further propose a novel approach leveraging existing graph-based
algorithms and instance graphs to extract high-level structural features (loops, skips, choices, and parallelism)
from traces, such that they can be used to extend and improve existing similarity measures. These algorithms
are well-established in graph theory and can be computed efficiently. Finally, we provide an evaluation of
the proposed approach based on synthetic and real-world datasets. The evaluation provides evidence that
the additional graph-based features can substantially improve the similarity comparison of traces in several
cases. This applies in particular for the comparison of user behavior (e.g., based on eye tracking data) where

Trace variant analysis

structural features enable the detection of specific behavioral patterns.

1. Introduction

Pairwise comparison of process traces is essential for many process
mining tasks, such as trace clustering [1-4], conformance checking [5,
6], process discovery [7-9], event log sampling [10], change point
detection [11], and variety analysis [12,13]. Although the literature
comprises a wide range of trace similarity measures (for an overview,
see Back and Simonsen [14]), they generally exhibit several limitations.

The first main limitation of existing trace similarity measures is
their failure to account for process patterns [7], such as: loops (i.e., the
repeated execution of activity sequences), choices (i.e., alternative ac-
tivity sequences), skips (i.e., alternative activity sequences that involves
the omission of activities), and parallelism (i.e., a timely overlap of
activity sequences). One reason why these patterns are neglected is
that commonly applied similarity measures in process mining, such as
edit distance [3,4,6,7,12,13] and sequence alignment [5,8,9], originate
from other research disciplines and were developed for different pur-
poses, such as the comparison of binary code [15] or the comparison
of DNA sequences [16]. Yet, the named process patterns are essential

* Correspondence to: Kaiserstrafe 89, 76133 Karlsruhe, Germany.

for the description of process behavior and for the comparison of the
traces’ structure [3,4,7,9,17].

A second shortcoming of existing similarity measures is that they do
not allow for an activity-agnostic comparison between traces. When,
for example, comparing the two traces ¢ = (A,B,D,A,C, D, A, D)
and 0, = (W,X,Z,W,Y, Z,W,Z), none of the commonly applied
similarity measures in process analysis [14] would identify any sim-
ilarity between them. However, as illustrated in Fig. 1, the ordering
and repetition of activities within the two traces reveal three common
process patterns: a loop, a choice, and a skip, each involving activity
sequences of identical length.

The structural comparison between traces, independent of their
specific activity labels, can be crucial for process analysis across various
domains. In this paper we focus on two particular types of processes:
(unstructured) behavioral processes [18,19] and (well-structured) busi-
ness processes [20]. Behavioral processes document some user behav-
ior, e.g., when interacting with an information system through eye
tracking [21], or click-streams [22]. They commonly contain minimal
constraints on the ordering and number of activities. However, the

E-mail addresses: clemens.schreiber@kit.edu (C. Schreiber), amine.abbad-andaloussi@unisg.ch (A. Abbad-Andaloussi), andbur@dtu.dk (A. Burattin),

andreas.oberweis@kit.edu (A. Oberweis), barbara.weber@unisg.ch (B. Weber).

https://doi.org/10.1016/j.is.2025.102671

Received 19 December 2024; Received in revised form 18 December 2025; Accepted 24 December 2025

Available online 26 December 2025

0306-4379/© 2026 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/is
https://www.elsevier.com/locate/is
https://orcid.org/0000-0002-6256-9708
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
mailto:clemens.schreiber@kit.edu
mailto:amine.abbad-andaloussi@unisg.ch
mailto:andbur@dtu.dk
mailto:andreas.oberweis@kit.edu
mailto:barbara.weber@unisg.ch
https://doi.org/10.1016/j.is.2025.102671
https://doi.org/10.1016/j.is.2025.102671
http://creativecommons.org/licenses/by/4.0/

C. Schreiber et al.

Fig. 1. Graph representations of the traces ¢, = (A4, B, D, A,C, D, A, D) (left
side) and o, = (W, X,Z,W,Y,Z,W,Z) (right side), where a blue edge
indicates a loop (denoted by L), a red edge indicates a choice (denoted by C),
and a green edge indicates a skip (denoted by S). The graph representations are
derived based on the directly-follows relations between the activities within
the traces.

structural differences between the user behavior can provide valuable
insights for the analysis of behavioral processes. For example, a trace
that represents the scan path of a user’s visual fixations on a screen can
be analyzed according to the order and reoccurrence of these fixations.
Here, the activities of the trace are associated with visual fixations
of a user on a particular area on a screen, e.g., representing specific
graphical elements [23-25]. The structural analysis of a scan path
can thereby reveal the cognitive processes of a user. For example, the
repeated returning of a user to a particular area on a screen, manifested
as loops within the scan path, might indicate high cognitive effort due
to the distribution of information [23,24] or due to the ambiguity of the
information [25]. In order to obtain these insights, we are much more
interested in the structure of the user behavior, such as the returning
to particular areas on a screen, rather than what specific areas a user
looked at, which is indicated by the activity labels.

Business processes refer to administrative processes, which are more
restrictive in terms of the number and order of activities than behav-
ioral processes. Here, the activity labels might differ especially across
different business units and countries of operation [20]. Therefore, the
comparison of traces at a structural level can support the identification
of deviations related to compliance and performance, e.g., based on
the rate of rework [26], as well as the level of business process stan-
dardization [13]. Another related example is the analysis of business
process changes, commonly referred to as concept drift [26]. Business
process changes caused by the introduction of new digital technologies,
such as automated technology or Al-based technology, can significantly
alter the structural properties of a process, while at the same time
introducing new activities [27]. Similar to the analysis of behavioral
processes, in all these cases the primary focus of the analysis lies on
the structural characteristics of the process execution rather than on
the actual activities denoted by the activity labels.

A third main shortcoming of existing trace similarity measures is
that their derived similarity values are commonly not transparent and
are therefore not explainable. This is the case when the structural
features, i.e., process patterns, of the traces are not made explicit.
For example, when comparing the edit distances d((A), (A, A, A)) and
d({A),{A, X,Y)), both distances yield the same value due to the inser-
tions of two additional activities in the second trace. However, in the
first case the insertion is necessary due to a loop in the second trace,
while in the second case the insertion is necessary due to a sequence
of two alternative activities. This distinction is not considered by the
similarity measure.

However, such structural differences are for example relevant for
the analysis of user behavior, as they can potentially reveal different
causes for comprehension issues, requiring specific user support [23—
25]. Moreover, the transparency of similarity measures can be essential
to better understand anomalies and deviations in business processes [6,
28].

Finally, a fourth shortcoming is that some similarity measures re-
quire high computational effort [14,29,30], making them impractical

Information Systems 138 (2026) 102671

to apply to large event logs and in online settings, which require timely
evaluation [31].

To address the four identified challenges, we first conduct a for-
mal comparative analysis of existing similarity measures, considering:
(1) the extent to which the measures capture different process pat-
terns, (2) their ability to recognize activity-agnostic similarity, (3) the
degree of transparency and explainability they offer, and (4) their
computational efficiency. The findings indicate that none of the exist-
ing measures adequately capture the structural similarities and differ-
ences between traces, particularly with respect to the representation of
process patterns and the transparency of the similarity computation.

Subsequently, we introduce a novel feature-extraction approach
based on graph-algorithms, which allows to derive high-level structural
trace features, i.e., loops, skips, and choices, including the length of the
involved activity sequences. Thus, enabling an activity-agnostic com-
parison between traces. Furthermore, we leverage instance-graphs [17,
19] to also account for parallelism within traces. The parallel execution
of activity sequences is thereby assumed, when activities occur in
an interchangeable order within one or multiple traces of a business
process.

To account for the diverse structural characteristics of traces iden-
tified in the formal comparison, we introduce four aggregated sim-
ilarity measures. Each aggregation combines distinct similarity mea-
sures that reflect distinct structural aspects of the traces, i.e., ac-
tivities, directly-follows relations, and high-level structural features.
The approach therefore enables a more comprehensive assessment
of structural similarities and differences between traces than existing
measures.

The subsequent empirical evaluation demonstrates that incorpo-
rating high-level structural features, as well as aggregating different
feature types, can substantially enhance the accuracy of trace similarity
comparisons in various cases. The empirical evaluation involves syn-
thetic datasets, designed to exhibit diverse structural characteristics,
and real-world datasets that represent business processes and user
behavior processes.

The main contributions of this paper are as follows:

1. We introduce ten formal properties, which allow for a compre-
hensive comparison of similarity measures, considering struc-
tural properties, activity-agnostic behavior, transparency, and
computational complexity.

2. Drawing upon the identified limitations of current trace simi-
larity measures, we propose a novel feature-extraction approach
based on graph algorithms, which enables the detection of loops,
skips, and choices, along with their respective lengths within
individual traces. Furthermore, we leverage instance graphs to
also enable the consideration of parallelism within individual
traces.

3. Furthermore, we consider different aggregations of similarity
measures, which allows to address structural similarities and
differences between traces in a more comprehensive way than
previous measures.

4. Finally, we conduct a comprehensive empirical evaluation of the
newly introduced similarity measures. We thereby demonstrate
the superiority of these measures to existing once in terms of
correctly detecting similarity among traces, which share com-
mon structural characteristics. We thereby extend the evaluation
of existing studies on trace similarity measures, by considering
business processes, as well as behavioral processes.

In the remainder, Section 2 defines the basic notation and defini-
tions used throughout the paper. In Section 3 we introduce related
work on trace similarity measures, followed by a formal comparison
of existing measures in Section 4. Section 5 introduces the graph-
based approach used to overcome the identified shortcomings of the
existing measures, followed by an empirical evaluation in Section 6 and
a discussion of the results in Section 7. Section 8 concludes the paper.

C. Schreiber et al.

2. Preliminaries

Process mining is generally concerned with the analysis of processes
based on event logs. An event log comprises a set of process instances
that follow a specific business process or, more broadly, represent
user interactions with an information system. A process instance is
represented as a trace, which is defined as an ordered sequence of
events.

Definition 2.1 (Event). Let A be the set of all possible activities, C
the set of all possible case identifiers, and 7 the set of all possible
timestamps. An event is a tuple e = (a, ¢, t) consisting of three attributes:
an activity a € A, a case id ¢ € C, and a timestamp ¢ € 7. The event
universe is denoted by £ = AXCXT.

We further define the following attribute-value mappings for an
event e: #,,,(e) = a, #,,,.(e) = ¢, and #,,,.(e) = 1. A process trace, hence-
forth denoted as trace, can be derived by considering multiple events
in an ordered fashion based on their timestamp and case identifier.

Definition 2.2 (Trace, Event Log). A trace o, = (#,.,(e)), #4.,(€2), ...,
#.:(e,)) = (ay,a,,...,a,) € A* is an event sequence corresponding to
the case ¢, where all events in ¢, are mapped to an activity a € A4,
and the order of events respects time, i.e., if ¢;, e, € o, and #,,,.(e;) <
#ime(€2), then e, £ e;. An event log L is a set of traces over A*.

The length of a trace is denoted by |6,| = n and g, represents the
kth activity in a trace o, with 1 <k <n.

It is assumed that each event possesses a unique case id, which
enables a comparison at trace level. Nevertheless, in reality it is also
possible that an event possesses multiple case ids, e.g., in the case of
object-centric event logs [32]. In this case it is assumed that the similar-
ity comparison is conducted among identical case notions, e.g., defined
by a specific object type [33]. Accordingly, a similarity measures for
two distinct process traces o;, o, €Lis defined as follows.

Definition 2.3 (Similarity Measure). A similarity measure s(o;,0;) =
(doh)(o;,0;) is a composition of a distance function d and a feature-
extraction function . The function A defines a set of features for each
trace ¢ € L, such that » : L — P(F), where F C F is a set of possible
trace features and P(F) denotes its power set. The function d defines
a pairwise distance for all distinct traces o;,6; € L according to the
derived features, i.e., d : h(L) X h(L) — Rg.

A similarity measure s and an event log L form a metric space (L, s),
if for all 6;,0;,0, € L the following properties hold:

Property P1. s(c;,0;) > 0 (non-negativity)

Property P2. s(c;,0;) = s(c;,0;) (symmetry)

Property P3. s(c;,0))=00;,=0; (identity of indiscernibles)

Property P4. s(c;,0;) < 5(0;,0;) + s(0;, 0;) (triangle-inequality).

In general, these are considered desirable properties for a similarity
measure, as they ensure its consistency and uniqueness [14,29].

Furthermore, one can distinguish between syntactic and feature-
based similarity measures [1,4,14]. Syntactic similarity measures are
calculated directly using the traces without any transformation. In this
case h can be considered as an identity function. The pairwise distance
d is calculated based on the number of operations required to convert
one trace to the other. We will consider edit distance as one particular
type of syntactic similarity measure [15].

Information Systems 138 (2026) 102671

Definition 2.4 (Edit Distance). The similarity measure 5.(6;,0;) based
on the edit distance between two distinct traces o; and o; is determined
by optimizing a given cost function, taking into account the insertions,
deletions, and substitutions of activities necessary to convert one trace
into the other.

Two particular variants of edit distance commonly applied in pro-
cess analysis are the Levenshtein distance and the normalized Leven-
shtein distance. The Levenshtein distance assigns to each editing opera-
tion an equal cost of one. The normalized Levenshtein distance addition-
ally divides the derived editing costs by the maximum possible number
of required edits, i.e., max(|o;|,|o;]).

Compared to syntactic similarity measures, feature-based similarity
measures first require a transformation of the traces based on some
function h(s;) = F; before calculating a distance. There exist two types
of feature-based similarity measures: set comparison and vector-space
embedding.

Definition 2.5 (Set Comparison). The similarity measure s,(c;, o ;) based
on set comparison is directly calculated based on the extracted sets of

features, i.e., sy(0;,0;) = d(F;, F)).

One similarity measure based on set comparison considered in this
work is the Jaccard similarity [34], defined as the complement of the
Jaccard coefficient, which is the ratio of the size of the intersection of
two sets (| F; N F;|) to the size of their union (| F; U F;|).

In addition to feature extraction, vector-space embedding involves
the transformation of a derived set of trace features into a vector.

Definition 2.6 (Vector-space Embedding). The similarity measure s,(c;,
o;) based on vector-space embedding, involves the mapping of the trace
feature into a vector space v : ¥ — R” and the subsequent calculation
of the distance between the vectors, i.e., 5,(c;,0;) = (dov)(F}, F)).

One particular variant of similarity measure based on vector-space
embedding considered in this work is the cosine distance [34]. The
cosine distance is calculated as the complement of the dot product
of two vectors (F,. . 1:";), divided by the product of their magnitudes
(||E||||F ;1) In addition to cosine distance, this work also considers
the Euclidean distance, which is calculated as the magnitude of the
difference between two vectors (E—F '), obtained by taking the square
root of the sum of squared component-wise differences.

In addition to the different distance functions for the calculation
of feature-based similarity, there exist also different types of feature-
extraction functions A. In process mining, trace features are commonly
derived on the basis of n-grams.

Definition 2.7 (n-gram). n-gram is a feature-extraction function A, :
A* - P(F,) that takes a trace ¢ and returns a set of n-grams of length n:
hy(0) = {(ay,a,...,a,),(az, a3, ...
for 1 <n Aptl Dreees <a|6|—n+l’ AYo|—n+2> -+ > o])}

Based on n-grams it is possible to capture structural properties of a
trace o, such as the activities in ¢ (based on 1-gram), or the directly
follows relations in ¢ (based on 2-gram).

However, identifying high-level structural features (such as loops,
skips, choices, and parallelism) requires the application of a discovery
algorithm [35]. Process discovery is a method used to construct process
models, i.e., graph-based process representations, from event logs, such
that high-level structural features are revealed. While process discovery
algorithms are commonly applied based on event logs that contain
multiple traces, it is also possible to derive graph representations for
single traces [17,19].

To identify parallel executions of activities within traces, we adopt
a process discovery algorithm based on instance graphs [17,19]. This
algorithm infers parallelism within a trace based on the ordering of
activities within the entire event log, that the trace belongs to. The

C. Schreiber et al.

(Ortes(©)

Fig. 2. Graph representations of the traces o, = (A, B,C, D, E) (left side) and
6, =(A,B,C,D,E,A,B,C,D, E) (right side) with R = {B||C,C||D}. The blue
edge (denoted by L) indicates a loop between the activities A and E in o,.

algorithm first detects causal relations between activities, which then
serve as the basis for identifying parallel executions.

Following the definition of causal ordering by Dongen and van der
Aalst [17], causal relations can be derived by applying the feature-
extraction functions 2-gram (#,) and 3-gram (h3).

Definition 2.8 (Causal Relation). Let L be an event log over a set of
Activities A. A causal relation between two activities a;, a ; € A, denoted
as ¢; - a;, is defined in the following way:

- a; >; a; if and only if there is a trace o € L, such that (g;,a;) €
hy(0),

-a; A; a; if and only if there is a trace o € L, such (a;,a;,a;) € h3(c)
where a; = a; and g; # a; and not g; > a;,

-a; = a; if and only if ¢; >, a; and (a; ¥, @; or q; &) a; or
a; Ap a;), O a; = a;.

According to this definition, the causal relation between two activ-
ities a and b, denoted as a —; b, is established if there exists a trace
o € L in which « is directly followed by b, and b is never directly
followed by a. However, this definition may be problematic when « and
b are involved in a loop of length two. To address this, a —; b also holds
true if a trace ¢ € L contains the sequence (a, b, a) or (b, a, b), provided
that neither a nor b can directly follow themselves. If an activity a does
directly follow itself in a trace, then the relation a —; a holds.

The definition of a causal relation is based on the assumption
that if one activity consistently precedes another, it is likely that a
causal dependency exists between them [36]. This assumption enables
the identification of parallelism within traces, even when those traces
represent a strict total ordering of activities.

Definition 2.9 (Parallel Relation). Let ¢ € L be a trace contained in L.
A parallel relation between two activities 4;,a; € o, denoted as 4, || a;,
is defined in the following way:

- a; >, a; if and only if (a;,a;) € hy(0),

- a; || a; if and only if (a; >, a; and a; », a;) or (a; >, a; and
a; »p a).

Following this definition, it is further possible to identify parallelism
between multiple activities.

Definition 2.10 (Set of Parallel Activities). Let 6 € L be a trace
contained in L and let 4, = (a;,...,a,) € o denote an n-gram of
activities contained in o. The n-gram is considered to be a set of parallel
activities, denoted by P, if for all 2-grams (g, q;) € h,(4;) it holds that
a | a.

A set of parallel activities, contains a minimum of two activities and
a maximum of |¢| = n activities. Furthermore, the subscript i represents
its relative position in relation to its proceeding and succeeding activ-
ities. For example, given a set of parallel relations R = {B||C,C| D}
and a trace oy = (A,B,C,D,E) then P, = {B,C, D} is considered as
a set of parallel activities within o,. It is also possible that a set of
parallel activities occurs multiple times within a trace leading to a loop
as depicted in Fig. 2.

To account for additional high-level features that might occur
within an individual trace, i.e., loops, skips, or choices, we introduce
the following graph-based trace abstraction.

Information Systems 138 (2026) 102671

Definition 2.11 (Trace Graph). Let A = [a € ¢] denote the set of all
activities in o, which are not part of a set of parallel activities and
let P = [P, € o] denote the set of all sets of parallel activities in o.
Furthermore, let V' be a set of vertices and D C V x V a set of edges. A
trace graph is a directed graph G (V, D) of a trace o with:

-V =AuUP, and

- the edges respect the order of activities and sets of parallel
activities, i.e., D = {(v;, v)) EV XVIi<j}

By considering the order of activities and the sets of parallel ac-
tivities within a trace, it is possible to identify specific types of edges
within a trace graph.

Definition 2.12 (Edge-type). Edge-type is a feature-extraction function
h, : A* — P(F,), where each feature f, = (w,l,d) € F, carries
information regarding the edge type w € {sequence, skip, choice,loop}
and the edge length / € N of an edge d € G.

The four different edge types are defined according to the order of
the activities within a trace when iteratively exploring the trace from
its start activity a; to its end activity a,.' Following the example of
o6, = (A,B,D,A,C, D, A, D) depicted in Fig. 1, the edge types can be
described as follows:

The edge (g;,a;,,) is of the type sequence, if the activities that
a;,; refers to is explored for the first time when starting from the
activity that a; refers to. For o, this is for example the case for
the egde connecting activity A and activity B.

The edge (q;,a,,) is of the type skip, if the activity that a;,, refers
to has occurred before g;, and can be reached from the activity
that g; refers to by an alternative (already explored) shortest path.
For o, this is the case for the egde connecting activity A and
activity D.

The edge (a;,q,,,) is of the type choice, if the activity that a,,
refers to has occurred before the activity that a; refers to and
a; and g, share a common preceding activity, respectively con-
nected based on distinct shortest paths. For o this is the case for
the egde connecting activity C and activity D with the common
preceding activity A.

The edge (a;, a;,) is of the type loop, if the activity that a;,; refers
to has occurred before the activity that a; refers to and is not
involved in a relation of type sequence, skip, or choice. For o,
this is the case for the egde connecting activity D and activity A.

These edge types represent four distinct structural features com-
monly observed in process traces, i.e., the sequential order of activities
(sequence), the recurrence of activities (loop), the skipping of activities
(skip), and the selection of alternative activities (choice). While the
lengths of loops, skips, and choices can differ (with a minimum length
of one), the length of a sequence is always one.

3. Related work

A foundation for the measurement of trace similarity can be found in
measurement theory [38,39]. A measurement can be formally defined
as a mapping from the domain of the empirical world to a numerical
representation. A critical aspect in constructing such a mapping is its
validity. Three key aspects are commonly considered when assessing
validity [39,40]:

* Construct validity: This evaluates whether a measurement accu-
rately represents the theoretical construct it is intended to mea-
sure. For example, the execution duration of a trace is generally
not suitable for measuring structural similarity.

1 This approach relates to the depth-first search algorithm [37] as will be
shown in Section 5.

C. Schreiber et al.

« Content validity: This refers to the extent to which a measurement
represents the full range of the empirical phenomenon being
studied. For example, to compare the structural similarity be-
tween two traces, a similarity measure should reflect a range of
structural features.

Criterion validity: This is determined by the relationship between
a measure and an external criterion known to be an accurate
indicator of the empirical phenomenon. For example, a struc-
tural similarity measure should accurately reflect the similarity
between traces according to some predefined structural classifi-
cation of these traces, e.g., indicating complex or non-complex
user behavior.

When it comes to the validity of existing similarity measures, one
can make the following observations. Regarding construct validity,
several different features have been discussed in the literature for the
analysis of trace structure, such as n-grams [1,4,7,10,41,42], maxi-
mal repeat alphabets [7,28], and eventually follows relationships be-
tween activities [2]. In this study, we additionally consider edge-types
and parallelism as structural features. These features reflect funda-
mental structural process properties in the context of user behavior
analysis [21,42] and business process analysis [7,20,29,35,43].

The content validity of trace similarity measures has been largely
neglected in research, as these measures have primarily been consid-
ered in conjunction with downstream tasks such as process discovery,
trace clustering, or anomaly detection [14]. However, it has been
recognized that similarity measures originating from other research dis-
ciplines such as natural language processing, control theory, and bioin-
formatics fail to recognize process specific structural properties [14,44].
To address this issue more systematically, we provide a formal compar-
ison of trace similarity measures in the following section, allowing us
to determine which specific structural features are reflected by each
measure.

Criterion validity of trace similarity measures has been initially
addressed by Back and Simon [14]. We build on their evaluation
approach, by additionally introducing synthetic event logs, that allows
a clear classification of traces according to their structural proper-
ties. Additionally, we consider not only business processes, but also
user behavior processes, where the ground truth is determined by the
complexity of user behavior.

In general, one can distinguish between the measurement of pro-
cess similarity at an instance level [1,4,14,41,44-46] and at a model
level [29,41,43,47]. At the instance level, a similarity measure is
directly calculated between two traces. This approach is commonly
applied for the analysis of business processes [1,14,44] as well as be-
havioral processes [21,42]. In business process analysis, these measures
are utilized, for example, in trace clustering or anomaly detection. In
user behavior analysis, these measures are applied, for example, in the
comparison of visual scanpaths, which are detected based on eye track-
ing. A scanpath can be considered as a process trace, which contains the
order of a user’s visual fixation points on a screen. By comparing the
scanpaths, one can identify the similarity in user behavior, e.g., when
the users are solving tasks of different complexity [23,24].

At the model level, a similarity measure is calculated between two
process models, i.e., process graphs. This approach is commonly used
for the analysis of business processes, e.g., to measure the compliance
between a reference and an actual model [6], or to search for models in
a repository [29]. The comparison at the model level has the advantage
that high-level structural features of the process are explicit in the
graph, which is not the case at the trace level. One way to overcome
this issue is to apply process discovery [35] to derive process models
from traces, which subsequently allow to extract additional structural
features for the trace comparison.

In this study we seek to combine both research approaches, based
on trace comparison (Section 3.1) and based on graph comparison
(Section 3.2) by leveraging process discovery (Section 3.3).

Information Systems 138 (2026) 102671

3.1. Trace comparison

The measures used for process comparison at trace level can be
classified as syntactic and feature-based similarity measures [1,14,45,
46].2

3.1.1. Syntactic similarity measures

A commonly applied syntactic similarity measure in process analysis
is edit distance, which includes the two variants: Levenshtein distance
and normalized Levenshtein distance [6,7,44-46,48]. An additional
variant of an edit distance is proposed by Bose and van der Aalst [44],
where editing costs are adjusted according to the context in which they
occur. The cost values are calculated based on the relative frequency of
activity pairs within the traces. The approach, thus, does not explicitly
consider structural features.

An alternative syntactic similarity measure is sequence alignment
[10,14,20,28,45,46]. Similar to the edit distance, sequence alignment
is calculated by optimizing a given scoring function, taking into account
the operations necessary to align one trace with the other. In general,
edit distance and sequence alignment yield equivalent outcomes (cf.
Sellers [49]).

3.1.2. Feature-based similarity measures

A common approach for the calculation of feature-based similarity is
the transformation of traces into sets of n-grams [1,10,20,44,48,50,51].
However, the length of n differs between the different studies. An issue
is that long n-grams (n > 2) can capture more complex structural
properties, e.g. loops of length > 2, but at the same time fail to
capture structural properties in shorter n-grams (n < 2). One solution
is to aggregate similarity measures, considering n-grams of different
lengths. While Delias et al. [2] propose to combine 1 and 2-grams,
Back et al. [12] propose to combine all possible substrings of a trace,
from length one to length n = min(|o;|, |s;|). However, this approach
is computationally expensive and also does not differentiate between
higher-level structural features such as loops, skips, and choices.

An alternative to trace comparison based on n-grams is the com-
parison based on sequential patterns [7], i.e., ordered sequences of
activities that occur repeatedly within a trace. Sequential pattern min-
ing algorithms are commonly applied in a variety of domains, such
as bioinformatics, e-learning, market basket analysis, and click-stream
analysis of webpages [22]. Although there exist a vast number of
sequential pattern mining algorithms in the literature (for an overview,
see Fournier-Viger et al. [22]), they are not commonly applied in the
context of process analysis. The comparative study by Back and Simon-
sen [14] showed that similarity measures based on sequential patterns
do not perform as well as other measures. One reason for this could
be that the algorithms detect very detailed sequential patterns that are
specific to single traces, and thereby fail to capture structural features
that are common among multiple traces. We therefore restrict our
analysis to similarity measures using 1-grams, 2-grams, and 3-grams.

Beyond the structural trace characteristics, there are additional
features that can be extracted from a trace and used for comparison.
One such feature is the relative frequency of n-grams within a trace,
which can be captured by eventually-follows relations between the
activities. Delias et al. [2] propose an aggregated similarity measure
based on cosine similarity, considering 1-grams and eventually-follows
relations. According to the study by Back et al. [12] this measure yields
a particularly high performance for a number of different event logs.
The measurement approach is therefore also included in our analysis.

2 Back and Simonsen [14] use the distinction between syntactic similarity
measures and vector-space embedding. Our distinction is more generic since
we also include feature-based similarity measures that do not depend on
vector-space embedding, such as Jaccard similarity.

C. Schreiber et al.

Additionally, traces can be compared not only in terms of structural
features, but also based on features representing different process per-
spectives. For business processes, this often includes performance and
resource attributes corresponding to events in a trace [10,20,48,52].
For behavioral analysis based on scanpaths this often includes the
position and duration of a visual fixation on a screen [45,46]. However,
for this study, we will only consider trace similarity measures on the
basis of structural properties, also commonly defined as control-flow
perspective.

Finally, for the calculation of a similarity value based on features,
existing studies either use vector space embedding [1,4,44] or set com-
parison [1,10,11,50]. Vector-space embedding involves the comparison
of trace features represented in a vector space, whereas set comparison
involves the direct comparison between sets of features (cf. Section 2).
To the best of our knowledge, there exists no study with a direct
comparison of the two approaches.

There exist different methods for representing a trace in vector
space. A commonly applied method is to construct a trace vector by
evaluating the frequency of specific trace features [1,4,44]. Another
alternative method involves employing neural networks [20,41,51].
Neural networks thereby learn a vector space representation for a trace
based on a set of training data.

However, neural network-based approaches exhibit three key limi-
tations in the context of structural trace similarity measurement. First,
they require labeled training data, which may not always be readily
available. Second, the resulting vector representations are typically
opaque, making it difficult to interpret the learned features and their
associated weights [41]. Third, the similarity outcomes are sensitive to
the choice of neural network architecture (see [51] for an overview), as
well as to several parameters, including the selection of input features
and the dimensionality of the output vectors.

To the best of our knowledge, these limitations have not yet been
systematically investigated in the context of trace similarity measure-
ment. Nevertheless, for the purpose of empirical evaluation (cf. Sec-
tion 6.4), we include a neural network-based representation using the
Trace2Vec architecture and parameter configuration as proposed by De
Koninck et al. [41].

3.1.3. Aggregation of trace similarity values

Building on feature-based similarity measures, a common approach
to improve the outcome of the structural comparison between traces, is
the aggregation of multiple distinct similarity measures, which reflect
different structural properties of the traces [2,11,50]. This approach
allows to combine different types of feature, such as n-grams of dif-
ferent length, in order to consider structural trace similarities and
differences in a more comprehensive way. A simple example, for the
aggregation of two similarity values based on 1-grams (the set of ac-
tivities) and 2-grams (the set of directly-follows relations) as proposed
by Burattin et al. [11] is shown in Table 1. Other proposed aggre-
gations involve the combination of 1-grams and eventually-follows
relations [2], and the combination of different order relations be-
tween activities, i.e., directly-follows relations, exclusiveness, and par-
allelism [50]. The separate values are thereby either calculated based
on Jaccard similarity [11,50] or cosine distance [2].

The proposed aggregations, always involve the aggregation accord-
ing to the weighted sum of the considered similarity measures. This
allows to weight feature types, according to the context in which the
measurement is applied [2,11,50]. These weights can either by assigned
randomly [50], according to some heuristic [2], or by solving an
optimization problem, e.g., to find an optimal clustering of traces [11].

In Section 5, we extend existing aggregation approaches by com-
bining trace similarity measures that account for activities, directly-
follows relations, and high-level structural features. While context-
specific weighting of these components could potentially improve the
accuracy of the aggregated measures, its definition lies beyond the
scope of this work. Accordingly, all distinct measures are weighted
equally.

Information Systems 138 (2026) 102671

Table 1
Example for the aggregation of the two separate similarity values J1 (Jaccard
similarity based on 1-gram) and J2 (Jaccard similarity based on 2-gram).

J1 J2 J1+J2
s(o) = (A, B.C.,D),0, = (A, B,C. D)) 0 0 0
s(o, = (A, B,C,D),0, = (C,D, A, B)) 0 3 3
s(o) = (A, B.C.D),0, = (W.X.Y,Z)) 1 1 2

3.2. Model-based similarity measures

The measures used for process comparison at model level commonly
leverage structural features, which are explicit in the models (for an
overview, see [29,43,47]). These measures focus on the comparison
of process model elements, such as node types and edges. Their out-
comes depend on the labeling of the nodes and edges, as well as
the applied modeling language. Other measures focus only on the
comparison of the graph structure, without considering specific process
model elements (for an overview on graph similarity measures, see
Emmert-Streib et al. [53]). However, these measures do not reflect the
higher-level structural features (loops, skips, and choices), which are
an important aspect of process analysis.

Finally, some measures are based on the comparison of sets of
traces which can be derived from the execution of process models,
such as trace alignments [6]. These measures are similar to those once
proposed for trace comparison (Section 3.1), except that they focus on
the comparison of sets that contain multiple traces. These measures
also fail to capture higher-level structural features of the traces and
therefore provide little explanation for the derived similarity values.

Overall, it can be stated that the similarity measures developed for
process comparison at model level have several shortcomings when ap-
plied for the comparison at trace level, i.e., the dependency on specific
modeling languages, the comparison between sets of traces rather than
single traces, and the failure to consider high-level structural features.
To overcome these shortcomings, we propose a similarity comparison
based on trace graphs (cf. Section 2). Deriving a respective trace graph
for a trace requires some form of abstraction, which is commonly
achieved based on process discovery.

3.3. Process discovery

Process discovery can be seen as a way to derive structural features
from a set of traces. There exist several process discovery algorithms
that are capable of deriving sequential patterns [17,19,54] and non-
sequential patterns [8], which represent reoccurring structural prop-
erties within an event log. However, these algorithms are based on
the assumption that the process structure can be abstracted from mul-
tiple distinct traces, that arise from multiple executions of the same
process. This generally involves a high level of abstraction in order
to generate comprehensible graphical process representations. Some
of these algorithms thereby focus only on the detection of frequently
reoccurring patterns and neglect non-frequent once [8,54]. Thus, the
detection of all process patterns contained in a single trace is not
guaranteed. Furthermore, some of the discovery algorithms focus on
the discovery of only a single type of pattern, such as the parallel
execution of activities, as in the case of instance graphs [17,19], and
frequent episodes [54].

In particularly, parallelism requires a high level of abstraction, since
the number of possible orderings of activities increases exponentially
with the number of activities that can be executed in parallel. This
makes it difficult to detect parallelism based on a single trace.

Furthermore, due to the abstraction, more fine-granular structural
properties are ignored. E.g., based on ¢, = (4,B,C,D,A,C,B,D), a
process discovery algorithm, such as the local process model miner [8],
would assume that activities B and C can be executed in paral-
lel, suggesting that the structure of o, equals the structure of o, =

C. Schreiber et al.

(A,C,B,D, A, B,C, D). However, this can be particularly misleading
for the comparison of traces describing user behavior [55,56]. For
example, the particular order of clicks can be an indicator for dif-
ferent approaches to process modeling [55], and the order of visual
fixations on a screen can be an indicator for exploratory or goal
oriented behavior [56]. Different behaviors can thereby be associated
with different cognitive processes of a user [24,25,57], which require
different interpretations and potentially different user support.

Nevertheless, parallelism has been consistently considered as a rele-
vant structural feature in the context of business processes [8,17,17,19,
35,36,54,58]. We therefore consider parallelism as an additional high-
level feature for the comparison of the structural similarity between
traces in the context of business processes. To discover parallelism
within a single trace, we leverage a discovery algorithm initially pro-
posed by van Dongen and van der Aalst [17], which explicitly focuses
on the structural analysis of single traces. Furthermore, the algorithm
has been successfully applied in the context of business process anal-
ysis [19]. An additional advantage of the algorithm is its assumption
of a strict total order of activities within a trace, which eliminates the
need for partial ordering, i.e., the documentation of overlapping time
intervals, to identify parallelism [58].

To better distinguish which similarity aspects are considered by
different similarity measures, especially with respect to structural trace
features, we provide a formal comparison on the basis of several
measurement properties in the following section.

4. Formal comparison of trace similarity measures

For the formal comparison of trace similarity measures, we pro-
pose ten desirable properties. These include the already introduced
metric properties in Section 2 (P1-P4), properties concerning the
structural trace features (P5-P7), as well as general similarity prop-
erties (P8-P10).

4.1. Properties related to structure and similarity

Existing studies on trace similarity measures [14,28,41,44] show
that trace similarity measures perform differently depending on the
characteristics of an event log, such as the number of activities, length
of traces, and number of trace classes. While this event log perspective
provides some insights into the applicability of similarity measures, it
does not consider how these measures reflect specific trace character-
istics, such as structural features. To solve this issue, we identify three
desirable properties that a similarity measure should have in order to
reflect the traces’ structure. These properties build on the assumption
that a similarity measure should be monotonically increasing with
respect to the number of structural differences between traces. We
consider three types of structural differences based on (1) activities,
(2) directly-follows relations, and (3) high-level structural features
(loops, skips, and choices). These three types of structural features
provide a comprehensive description of the trace structure and are
commonly deemed relevant in the literature [20,29,35,43]. It is worth
noting that parallelism, which is also commonly deemed a relevant
high-level structural feature in the literature [8,17,17,19,35,36,54,58]
is implicitly captured through differences based on directly-follows
relations.

The first structural property refers to the differences among the
activities. A similarity measure should be strictly increasing with re-
spect to differences in the number of activities. This is based on the
intuitive notion that the more distinct the respective sets of activities
are, the greater the dissimilarity between the traces. For comparison of
the dissimilarity between two sets, we use their symmetric difference
F, A F; = (F, U F; \ F;n F;). The set of activities contained within a
trace can be derived according to the feature-extraction function based
on 1-gram, i.e., h;(c;) = F, ;.

Information Systems 138 (2026) 102671

Property P5. The similarity measure is strictly increasing with an increase
in the number of dissimilar activities between two traces, i.e.: s(F;;, F; ;) <
s(F; 1, Fyy) for all |Fyy & Fp | <|Fpp & Fy gyl

Looking at the traces o, o3 and o, depicted in Fig. 3, according
to Property P5 we would expect s(cy, 03) < s(oy,04) since the sets of
activities contained in o, and o, are more distinct than is the case for
op and o3.

The second structural property refers to the differences among
the directly-follows relations. A similarity measure should be strictly
increasing with respect to the differences in the number of directly-
follows relations. This is based on the intuitive notion that the more
distinct the ordering of activities, with respect to their directly-follows
relations, the greater the dissimilarity between the traces. The set of
directly-follows relations contained within a trace can be derived ac-
cording to the feature-extraction function based on 2-gram, i.e., h,(o;) =
Fi,.

Property P6. The similarity measure is strictly increasing with an increase
in the number of dissimilar directly-follows relations between two traces, i.e.:
s(Fig, Fja) < s(Fj5, Fyp) for dll |Fip & Fjo| <|Fip & Fypl.

Looking at the traces o), o3 and o5 depicted in Fig. 3, according
to Property P6 we would expect s(cy,03) < s(oy, 05), since the sets of
directly-follows relations contained in 6, and o5 are more distinct than
is the case for ¢\ and o3.

In addition to the set of activities and their relative order, a sim-
ilarity measure should also consider high-level structural features of
the traces on the basis of edge-types (cf., Definition 2.12). The set of
edge-types contained within a trace can be derived according to the
feature-extraction function h,,(c;) = F; .
Property P7. The similarity measure is strictly increasing with an in-
crease in the number of dissimilar edge-types between two traces, ie.:
S(Fj o1 Fj o) < 5(Fj o12 Fy 1) for all |F, & Fjotl <|Figr & Figl-

iet et

Looking at the traces depicted in Fig. 3, according to Property P7
we would expect s(g), 03) < s(0y, 6) due to the loop in og. Similarly we
would expect s(6,03) < s(cy,07) due to the loop and skip in ¢, and
s(og, 03) < s(0y, 0g) due to the loop and choice in oy.

In addition to the structure-related properties P5-P7, we define
three additional properties related to general similarity considerations.
A trace similarity measure should also consider the overall size of the
features contained in the traces. For example, the similarity between
oy = (A,B,C,D) and oy = (A, B,C, D, X) should be considered to be
greater than between oy = (A) and 6,3 = (4, X)), although in both cases
the traces differ only based on a single activity. Thus, a new feature
should contribute less to the dissimilarity between two traces, the larger
the overall set of features contained in both traces. This property is also
known as submodularity.

Property P8. For dll (F; U F;) C (F, U F) and f & F, F;, we have that
s(F, F; U f) = s(F, Fy) 2 s(Fy, F U f) = s(Fy, Fp).

However, this property only considers the overall set of features
contained in the traces, but not the ratio between similar and dissimilar
features. From a process analysis perspective, Becker and Laue [29] ar-
gue that a similarity measure should take into account commonalities,
as well as differences between the traces.

Property P9. A similarity measure should consider both commonalities
F; N F; and differences F; A F; between two traces.

Finally, we also consider the computational costs of the similarity
measures to ensure that they can be calculated for large event logs and
in online settings (cf. Section 1), which was also proposed by Becker
and Laue [29] as a relevant property for the comparison of similarity
measures.

C. Schreiber et al.

Information Systems 138 (2026) 102671

o0 =(4,B,C,D)

Ond0002s0)

o3 = (C,D, A, B)
Qa0 0220

o5 = (A,B,B,C,C, D)

o4 = (A, X,Y,D)
On 02020

o7 =(A,B,C,D, A, D)

o5 = (C, A, D, B)
00240220,

o8 =(A,B,D,A,C,D)

RN @ GHORO

Fig. 3. Different traces and their representation as trace graph.

Table 2
Overview of the desirable properties for similarity measures.
P1 non-negativity
. P2 Symmetry
Metric . N .
P3 Identity of indiscernibles
P4 Triangle-inequality
P5 Strict monotonicity with an increase in the number of dissimilar activities
Structure P6 Strict monotonicity with an increase in the number of dissimilar directly-follows relations
p7 Strict monotonicity with an increase in the number of dissimilar edge-types
P8 Submodularity
Similarity P9 Consideration of commonalities and differences

P10 Computational efficiency

Table 3
Selection of similarity measures.
Type Measure Label
Syntactic Levenshtein distance LD
Normalized Levenshtein distance N-LD
Euclidean similarity based on MR EMR
Cosine similarity based on MR CMR
Jaccard similarity based on MR JMR
Eventually-Follows EF
Feature-based Euclidean similarity based on 1-gram El
vector-space embedding Euclidean similarity based on 2-gram E2
Euclidean similarity based on 3-gram E3
Cosine similarity based on 1-gram Cl
Cosine similarity based on 2-gram Cc2
Cosine similarity based on 3-gram Cc3
Feature-based Jaccard s%m?lar%ty based on 1-gram J1
set comparison Jaccard s%m%lar%ty based on 2-gram J2
Jaccard similarity based on 3-gram J3

Property P10. The similarity measure can be calculated efficiently.

Table 2 provides an overview of all desirable properties for trace
similarity measures, including the metric properties defined in Sec-
tion 2.

4.2. Formal comparison

Based on the defined properties in Table 2 we will now provide
a comparison of the trace similarity measures shown in Table 3. One
main criterion for selecting these measures is their ability to represent
structural features (cf. Section 3). Furthermore, we consider similarity
measures that are commonly applied in the literature (cf. Section 3) and
can be computed with reasonable computational effort in the context
of both behavioral processes and business processes.

To investigate whether the selected similarity measures reflect the
structural properties defined by P5-P7, we calculate the respective
similarity values between o, and o3 — oy that are shown in Fig. 3.

The traces differ according to the activities, the order of activities,
and high-level structural features. For a measure to accurately dis-
tinguish between traces based on the number of activities (P5), it
should satisfy the condition that s(cy,03) < s(oy,04), since the sets
of activities that can be extracted from ¢, and o; are more similar
compared to those derived from ¢, and o¢,. Similarly, for a measure
to accurately distinguish between traces based on the number directly-
follows relations (P6), it should hold that s(cy, 63) < s(oy,05). Finally,
for a measure to accurately distinguish between traces based on the
number of edge-types (P7), it should hold that s(c(,03) < s(op, 66_g)-
Table 4 shows all calculated similarity values. All similarity values that
are less than or equal to s(cy,03) indicate a violation of one of the
defined properties P5-P7 and are highlighted in gray. The results of
the calculated similarity values are summarized in Table 5.

Table 5 provides an overview of the considered similarity measures
with an indication of whether they adhere to the defined proper-
ties P1-P10. Regarding the metric properties (P1-P4) it can be stated
that the Levenshtein distance (LD), as well as the measures based
on Jaccard similarity (JMR, J1,J2, and J3) and based on Euclidean
similarity (EMR, E1, E2, and E3) adhere to the four metric properties
(cf. Yujian and Bo [59], Kosub [60]). The normalized Levenshtein
distance (N-LD) and the measures based on cosine similarity (CMR,
EF, C1, C2, and C3) cannot be considered a metric since they violate
triangle-inequality (cf. Yujian and Bo [59], Han et al. [34]).

Regarding the structure-related properties (P5-P7), it can be stated
that none of the measures adheres to all defined properties. Only
the measures based on 1-gram (E1, C1, and J1) correctly evaluate
the dissimilarity between the number of activities (P5). Furthermore,
only the measures involving 2-gram (EF, E2, C2, and J2) correctly
evaluate the dissimilarity between the directly-follows relations (P6).
Additionally, the measures that also reflect the relative frequencies of
the activities within the traces (EMR, E1, C1) correctly evaluate the
dissimilarity between the edge-types (P6).

Regarding the general similarity properties (P8-P10) it can be stated
that only measures based on Jaccard similarity (JMR, J1, J2, and J3)
satisfy submodularity (P8), which is characterized by the diminishing
returns condition: for any sets A C B C V and element x € V' \ B, the

C. Schreiber et al.

Table 4

Calculated similarity values for the pairwise comparison between ¢, and
05 —o0g, Where s(cy, 03) is considered as baseline. According to the defined
properties P5-P7, s(c,,0,) should reflect an increase in the number of
activities (P5), s(o, 05) should reflect an increase in the number directly-
follows relations (P6), and s(cy,0s_g) should reflect an increase in the
number of edge-types (P7). Values that are less than or equal to s(cy, 65)
indicate a violation of one of the defined properties P5-P7 and are
highlighted in gray.

s(0y,03) ‘ s(cy.04) ‘ s(oy,05) ‘ s(cy, 0g) s(oy,07) s(oy, 0g)
LD 4.000 2.000 4.000 2.000 2.000 2.000
N-LD 1.000 0.500 1.000 0.333 0.333 0.333
EMR 0.000 0.000 0.000 1.414 1.414 1.414
CMR 0.000 0.000 0.000 0.000 0.000 0.000
JMR 0.000 0.000 0.000 0.000 0.000 0.000
EF 0.179 0.150 0.299 0.169 0.072 0.113
El 0.000 2.000 0.000 1.414 1.414 1.414
E2 2.449 2.449 3.162 1.414 1.414 2.000
E3 2.828 2.828 2.828 2.449 2.000 2.449
C1 0.000 0.500 0.000 0.051 0.051 0.051
Cc2 0.600 0.600 1.000 0.155 0.155 0.324
C3 1.000 1.000 1.000 0.592 0.388 0.592
J1 0.000 0.667 0.000 0.000 0.000 0.000
J2 0.750 0.750 1.000 0.286 0.286 0.500
J3 1.000 1.000 1.000 0.750 0.571 0.75

marginal gain from adding x to A is at least as large as adding it to B
(for a formal proof see Kosub [60]). In contrast, the remaining measures
do not exhibit submodularity. Specifically, the measures based on
Levenshtein distance (LD and N-LD) fail to account for the cardinality
of the feature set, which is essential for satisfying the diminishing
returns property. Furthermore, measures based on cosine similarity
and Euclidean similarity are inherently geometric and depend on the
relative positions of feature vectors in a continuous space [61]. These
measures do not define set functions over discrete subsets and do not
satisfy the submodularity condition, as the returns are not guaranteed
to decrease with increasing set size.

It can be further stated that all similarity measures, except those
based on Levenshtein distance (LD and N-LD), account for both com-
monalities and differences between traces, as required by property
(P9) [29]. In particular, the Jaccard similarity can be reformulated as
J(A,B) =1 — :xﬁ: = llﬁﬁg\l’ where the numerator |4 A B| captures
the symmetric difference, and the denominator |A U B| reflects the
total number of distinct elements, encompassing both shared and non-
shared features [60]. Similarly, cosine similarity and Euclidean distance
are computed based on the relative positions of feature vectors in a
continuous space, where both shared and non-shared features influence
the resulting values [61]. These measures inherently incorporate both
overlap and divergence in feature representation. In contrast, LD and
N-LD focus solely on the edit operations required to transform one
trace into another, without explicitly considering the set of shared
features [15], and therefore do not satisfy (P9).

Finally, it can be stated that all similarity measures can be calcu-
lated in linear time (P10), depending on the length of the traces or the
respective sets of features.

In conclusion, only Jaccard similarity measures (J1 and J2) qualify
as proper metric (P1-P4), satisfying submodularity (P8) and recog-
nizing dissimilarities and similarities between traces (P9). Further-
more, none of the similarity measures considered correctly evaluates all
structural dissimilarities between the traces (P5-P7). In the following
section, we propose a novel approach to solve this problem by incor-
porating different structural features into the similarity evaluation.

5. Similarity measures based on graph-based features

To address the limitations of existing trace similarity measures iden-
tified in the previous chapter, we propose the integration of high-level

Information Systems 138 (2026) 102671

structural features into the comparison of trace similarity. Specifically,
we introduce a novel feature extraction approach based on graph
algorithms, which enables the identification of loops, skips, and choices
within individual traces. In addition, we leverage instance graphs [17,
19] to detect parallelism by analyzing directly-follows relations across
multiple traces. Building on the aggregation approach identified in the
literature (cf. Section 3.1.3), we further present four aggregated similar-
ity measures that incorporate at least two of the structural dimensions
considered in the previous chapter: activities, directly-follows relations,
and high-level structural features. A formal analysis of the introduced
measures in this section, shows that the high-level structural features
and the aggregation can indeed lead to a more complete comparison of
the traces’ structure.

5.1. Identifying parallelism within traces

As discussed in Section 3.1.2, parallelism between activities is com-
monly regarded as a key structural feature in traces representing busi-
ness processes. In contrast, user behavior processes typically exhibit
strictly sequential execution and generally lack parallel activity pat-
terns (cf. Section 1). Therefore, parallelism is treated as an optional
high-level feature and is only considered for traces that represent
business processes.

According to Definition 2.9, parallel relations between activities
are derived by identifying all directly-follows relations (i.e., 2-grams)
within a trace ¢ € L and all causal relations within the event log L.
Once parallel relations have been established, sets of parallel activities
(cf. Definition 2.10) can be derived, which can then be used for the
construction of trace graphs (cf. Definition 2.11).

5.2. Incorporating graph-based features into similarity measures

Identifying loops, skips, and choices within a trace requires the
transformation of a trace into a trace graph G(A, D) (cf. Section 2).
This can be achieved by deriving an adjacency list from a trace. In
an adjacency list, each vertex a € A is linked to a list providing
information of all neighboring vertices connected by an edge d €
D [37]. The transformation of a trace into an adjacency list leads
to some abstraction, e.g., even though loops might be repeated more
than once in a trace, based on the transformation, they are always
considered to have the same frequency. This abstraction allows for
a direct comparison of the trace structure in a computationally effi-
cient manner, independent of process performance aspects, such as the
number of loop repetitions [62].

Based on the adjacency list, one can subsequently derive high-level
structural features, which are implicitly contained in the trace. This can
be achieved by identifying the graph’s edge-types (cf. Section 2). Two
examples of trace graphs with different edge-types are shown in Fig. 1.
In order to identify the edge-types and their respective lengths within a
trace graph, we apply the following graph algorithms: depth-first search
(DFS), breadth-first search (BFS), and lowest-common ancestor (LCA).
Overall, the measurement approach consists of three steps.

5.2.1. Step 1: Identifying edge-types

The DFS [37] is applied to detect the edge-type between the vertices
of the graph. The DFS starts at the first edge between two vertices ac-
cording to the adjacency list and then continues to look at all the other
edges in the list. The algorithm thus considers whether the edge has
been visited before and which other edges have already been visited.
The edge-types are assigned accordingly, as depicted in Algorithm 1.

C. Schreiber et al.

Information Systems 138 (2026) 102671

Table 5
Comparison between similarity measures based on the identified desirable properties
P1 - P10.
Metric Structure Similarity
P1 P2 P3 P4 P5 P6 274 P8 P9 P10
LD yes yes yes yes no no no no no oy | - |oy])
N-LD yes yes yes no no no no no no Oloy| - los])
EMR yes yes yes yes no no yes no yes O(F, g Y F; gl
CMR yes yes yes no no no no no yes O(F, yr Y FyprD
JMR yes yes yes yes no no no yes yes O(F; g Y Fj gD
EF yes yes yes no no yes no no yes O(F,, U F;,)
El yes yes yes yes yes no yes no yes O(IF,; UF;])
E2 yes yes yes yes no yes no no yes O(IF;, U F,))
E3 yes yes yes yes no no no no yes O(F,3 U F;35)
C1 yes yes yes no yes no yes no yes O(F,; UF;,D
Cc2 yes yes yes no no yes no no yes O(IF, U F,))
C3 yes yes yes no no no no no yes O(IF;3 U F3])
J1 yes yes yes yes yes no no yes yes O(F,; UF;,D
J2 yes yes yes yes no yes no yes yes O(IF, U F,))
J3 yes yes yes yes no no no yes yes O(IF;3 U F3])

Algorithm 1 DFS to detect graph-features including length

Algorithm 2 BFS

Input: G(V, D) in the form of adjacency list AdjList
Output: List of tuples (W,N,e) with edge-type and length for all e €
GV, D)

1: main() function

2: i« 0 > initialize counter
3: numList(|v]) « 0 > initialize list with counters of vertex visits
4: recList(|v]) < 0 1 initialize list with vertices currently on recursion stack
5: for all v € AdjList do

6: if numList(v) = 0 then dfs(v) > apply recursive DFS function
7:

8: dfs() function

9: i« i+ 1, numList(v) « i, recList(v) « 1

10: for all w € adj(v) do > adj(v) is the list for v € AdjList
11: if numList(w) = 0 then dfs(w) > (v, w) is a sequence edge
12: else if numList(w) > numList(v) then > (v, w) is a skip edge
13: call BFS(start = v, end = w) > derive length based on Algo. 2
14: return (type = forward, length, (v, w))

15: else if numList(w) < numList(v) then > (v, w) is a choice edge
16: call LCA(w,v) > derive length based on Algo. 3
17: return (fype = cross, length, (v, w))

18: else > (v, w) is a loop edge
19: call BFS(start = w, end = v) > derive length based on Algo. 2
20: return (rype = back, length, (v, w))

21: recList(v) < 0

5.2.2. Step 2: Identifying the length of edge-types

While sequences only indicate a directly-follows relation between
two consecutive activities, loops, skips, and choices can span over
multiple activities. For example, the trace 6, = (A, B, D, A,C, D, A, D)
depicted in Fig. 1 contains a loop of length three, a skip of length one,
and a choice of length one. These lengths are derived based on the first
occurrence of the respective edge-types within the trace, i.e., the loop-
edge between D and A first occurs after the execution of (A, B, D), thus
it is assigned a length of three.

Since the length of a structural construct can be an important aspect
for the comparison of traces, we combine the DFS with two other graph-
algorithms to derive this additional information. First, we use the BFS
algorithm [37] to identify the minimum number of steps required to
get from one vertex a € A to another vertex b € A following the edges
in a graph. Starting from a selected vertex a € A, BFS explores the
neighbor vertices at the present depth before moving on to the vertices
at the next depth level. This process continues until the target vertex
b € A is found. The final depth indicates the minimum number of steps
to get from a to b. In our implementation, we use a queue data structure
to keep track of the vertices that remain to be explored (cf. Algorithm
2).

10

Input: G(V, D) in the form of adjacency list Ad,jList, start vertex a, end
vertex b
Output: Minimum number of steps from a to b, list of all visited vertices

1: bfs() function

2: queuelist « (a, steps = 0) > initialize queue
3: visitedList < 0 > initialize list of visited vertices
4: while queueList not empty do

5: currentVertex, steps « last entry queueList

6: if currentVertex not in visitedList then

7: visitedList « currentVertex

8: if currentVertex = b then

9: steps + sum(parallel activities in visitedList) > adjust length
10: return steps, visitedList

11: for all neighboringVertex of currentVertex € AdjList do

12: queuelist « (neighboringVertex, steps + 1)

13: if neighboringVertex not in visitedList then

14: visitedList « (neighboringVertex, steps)

Algorithm 3 LCA

Input: G(V, D) in the form of adjacency list AdjList, vertex a, vertex b
Output: Lowest-common ancestor of a and b, and the min number of steps

1: remove edge (a, b) from AdjList

2: AdjList’ « invert(AdjList)

3: LCA(Q) function

4: v « startVertex(AdjList’)

5: 11 = BFS(v, a) > derive list of visited vertices with min. steps based on
Algo.2

6: 12 = BFS(v, b) b derive list of visited vertices with min. steps based on
Algo.2

7: X « firstCommonVertex(11,12)
8: return min number of steps between a and x, b and x

While the BFS can identify the length of loops and skips, for choices,
it is necessary to first identify the start vertex of an alternative path.
This can be solved based on the LCA algorithm [37]. As described
by Algorithm 3, before applying the LCA the trace graph needs to be
inverted such that all start vertices become the end vertices of the
graph. The LCA algorithm is subsequently applied to find the lowest-
common ancestor of two given vertices a,b € A. The lowest-common
ancestor is defined as the lowest vertex that has a and b as descendants.

5.2.3. Step 3: Aggregating the features

To leverage the identified high-level features in trace comparison,
we propose six measures, shown in Table 7. The measures are based
on two distinct measurement approaches: cosine similarity based on

C. Schreiber et al.

Table 6

Information Systems 138 (2026) 102671

Example for calculating the similarity between o, = (4, B,C, D, E) and o, = (A, B,C, D, E, A, B,C, D, E) with the parallel relations

R = {B||C,C||D} based on the two measures Cg and Jg.

M. Transformation Calculation
(sequ.) 1 (sequ.) 1
cg F, = (parallel,3)|1| F, = (parallel,3)|1
(loop,4) |0 (loop,4) |1
Jg Fg] = {(sequ.),(parallel,{B,C,D})} ng = {(sequ.), (parallel, {B,C, D}),(loop.4,(A, E))} 1- :"‘Df_”z = %
Table 7 (P1-P10). With regard to the metric properties (P1-P4) it can be stated
Set of proposed trace similarity measures. that the measures based on cosine similarity generally do not adhere to
Type Measure Label triangle-inequality (P4) [34]. Measures based on Jaccard similarity, on
Graph-based cosine similarity Cg the other hand, generally satisfy triangle-inequality (P4) even in their
Vector-space emb. Aggregated cosine similarity Agg(C1,C2) aggregated form [50].

Aggregated graph-based cosine similarity Agg(C1,C2,Cg)

Graph-based Jaccard similarity
Aggregated Jaccard similarity
Aggregated graph-based Jaccard similarity

Jg
Agg(J1,J2)
Agg(J1,J2,Jg)

Set comparison

vector-space embedding, and Jaccard similarity based on set compari-
son. To show that the structural properties P5-P7 can be addressed by
the aggregation of different structural feature types, we consider the fol-
lowing combinations of feature types: (1) high-level structural features,
(2) 1-grams and 2-grams, and (3) 1-grams, 2-grams and high-level
structural features.

Graph-based cosine similarity (Cg) is calculated based on the identi-
fied edge-types with their length and the identified parallelism between
activities with the cardinality of the respective sets of parallel activities
(cf. Definition 2.10). Both types of features are encoded based on
their frequency. Alternatively, graph-based Jaccard similarity (Jg) is
calculated based on the identified directly-follows relations with the
respective edge-type and length and the identified sets of parallel ac-
tivities. The number of edges of the type sequence are not considered, as
they do not indicate any high-level structural feature, and are partially
considered by the length of high-level structural features, as well as
the directly-follows relations of traces. Furthermore, considering the
number of sequences would bias the outcome towards the length of the
traces. Nevertheless, traces that are strictly sequential, i.e., only contain
edges of type sequence, should be considered as structurally similar.
For this reason (sequ.) is added as an edge type (without considering
length or frequency) to any trace that contains at least one edge of
type sequence, i.e., an activity sequence longer than one, which is not
a loop. An example for the calculation of Jg and Cg is provided in Table
6 based on the two traces depicted in Fig. 2.

The aggregated measures, denoted by Agg(), are computed as the
sum of individual similarity measures with uniform weighting applied.
For example, Agg(C1,C2) = C1 + C2 represents the aggregation of Co-
sine similarity values derived from 1-gram and 2-gram representations,
as introduced in Section 4.2. This aggregation approach has already
been applied in related studies (cf. Section 3.1.3).

In the following subsection, we show that the proposed measures
better reflect the similarities and differences between traces based on
structural features (P5-P7) than previous measures.

5.3. Formal comparison

To evaluate the identified similarity measures (cf. Table 7) with
respect to their ability to consider structural features (P5-P7), we first
calculate the respective similarity values between ¢, and o5 —oy (cf. Fig.
1). The calculated similarity values are shown in Table 8. The results
show that the novel measures better reflect structural similarities and
differences between the traces than the measures from the literature
(cf. Section 4.2).

Table 9 provides an overview of the proposed similarity measures
with an indication of whether they adhere to the defined properties

11

Regarding the structure-related properties (P5-P7), it can be stated
that Cg, Jg, and Agg(J1,J2,Jg) correctly reflect the high-level structural
features (P7), which is a clear improvement compared to the measures
in the previous Section 4.2. Furthermore, the proposed aggregations
of feature types (i.e., Agg(C1,C2), Agg(C1,C2,Cg), Agg(J1,J2), and
Agg(J1,J2,Jg)) successfully reflect multiple defined structural prop-
erties. Agg(C1,C2,Cg) and Agg(J1,J2,Jg) in fact reflect all defined
structural properties (P5-P7).

Regarding the general similarity properties (P8-P10) it can be stated
that only measures based on Jaccard similarity can be considered as
submodular functions (P8), while both measures based on Jaccard
similarity and cosine similarity consider similarities as well as dissim-
ilarities between the traces (P9). Regarding computational efficiency
(P10), it can be stated that the additional calculations of the graph-
features based on Algorithm 1 do not add to the time complexity
compared to the similarity measures considered in the previous Sec-
tion 4. Both DFS and BFS have a time complexity of O(|A| +|D|), while
LCA can be computed in O(h), where h represents the length of the
longest distinct path between two vertices in G(4, D).

6. Evaluation

To evaluate the performance of the measures proposed in the pre-
vious section compared to the measures considered in Section 4 we
perform an evaluation based on four synthetic event logs and four real-
life event logs. The performance is evaluated in terms of the accuracy
with which the measures assess the structural similarity between traces
in the respective event logs. Each trace thereby belongs to a unique
class, with traces in the same class being more structurally similar to
each other than to traces in a different class. To quantify the accuracy of
the similarity measures, we apply three different evaluation measures.
Overall, the evaluation seeks to answer two main questions: (1) can
the proposed measures outperform alternative measures in terms of
accuracy, and (2) can the considered high-level structural features
(i.e., edge-types and parallelism) generally improve the accuracy of
similarity measures.

The event logs and a Python implementation of the similarity
measures and evaluation measures are available at:

https://github.com/promilab/InfoSysTraceSim.

6.1. Evaluation measures

Our evaluation of the similarity measures is based on three evalua-
tion measures proposed by Back and Simonsen [14]: Nearest Neighbor,
Precision@k, and Triplet. These measures are well established in the
literature on similarity metric learning [63,64]. Furthermore, Back
and Simonsen [14] present a validation of these measures based on
an extensive comparison of trace similarity measures. The proposed
evaluation measures are deliberately selected to minimize confounding
factors from downstream tasks such as process discovery [28], and
trace clustering [1,2,41,44]. As discussed in Section 3, this enables

https://github.com/promilab/InfoSysTraceSim

C. Schreiber et al.

Table 8

Calculated similarity values for the pairwise comparison between o, and o; — o5,
where s(o, 03) is considered as baseline. According to the defined properties P5-
P7, s(oy,0,) should reflect an increase in the number of activities (P5), s(cy, 05)
should reflect an increase in the number directly-follows relations (P6), and
s(0y,04_g) should reflect an increase in the number of edge-types (P7). Values
that are less than or equal to s(c,,0;) indicate a violation of one of the defined

Information Systems 138 (2026) 102671

properties P5-P7 and are highlighted in gray.

s(oy,03) s(oy,04) s(oy,05) s(oy, 0g) s(oy,07) s(oy, 0g)
Cg 0.000 0.000 0.000 0.553 0.423 0.423
Agg(C1,C2) 0.600 1.100 1.000 0.206 0.206 0.375
Agg(C1,C2,Cg) 0.600 1.100 1.000 0.759 0.629 0.798
Jg 0.000 0.000 0.000 0.667 0.667 0.667
Agg(J1,J2) 0.750 1.417 1.000 0.286 0.286 0.500
Agg(J1,J2,Jg) 0.750 1.417 1.000 0.952 0.952 1.167

Table 9
Comparison between similarity measures based on the identified desirable properties P1 —
P10.
Metric Structure Similarity
P1 P2 P3 P4 P5 P6 p7 P8 P9 P10
Cg yes yes yes no no no yes no yes O(IF, U F,))
Agg(C1,C2) yes yes yes no yes yes no no yes O(IF;, U F,))
Agg(C1,C2,Cg) yes yes yes no yes yes yes no yes O(F,, U F;5)
Jg yes yes yes yes no no yes yes yes O(IF, U Fj,))
Agg(J1,J2) yes yes yes yes yes yes no yes yes O(IF, U F,))
Agg(J1,J2,J8) yes yes yes yes yes yes yes yes yes O(F,, U F;,)

a more direct evaluation of the validity of the similarity measures
with regard to content validity (i.e., the extent to which the measures
capture a broad range of structural features) and criterion validity
(i.e., the degree to which the measures align with predefined trace
classifications).

To evaluate the accuracy of the similarity measures, the evaluation
measures compare the derived similarity values of the in-class data
points with the similarity values of the out-of-class data points. A
similarity measure receives a positive evaluation if the similarity values
between data points within a class are high and the similarity values
between data points belonging to different classes are low.

Based on this idea, the Nearest Neighbor measure calculates the ratio
of data points whose nearest neighbor, i.e., the data point that is nearest
based on some similarity measure, belongs to the same class and the
data points whose nearest neighbor does not belong to the same class.

The Precision@k measure further extends this evaluation by calcu-
lating the ratio of in-class and out-of-class data points for the k-nearest
data points. In accordance with [14], for this study we set k = 10.

The Triplet measure provides an even more precise evaluation of
similarity by considering for each data point all the distances between
in-class and out-of-class data points. Given an anchor data point x, the
measure calculates for each in-class data point y the ratio of out-of-class
data points z with d(x,y) < d(x,z) to out-of-class data points z with
d(x,y) > d(x, z).

6.2. Datasets

For the empirical evaluation of the similarity measures introduced
in Sections 4 and 5, seven different event logs are considered. Table 10
provides an overview of these logs, including four synthetic event logs
(SynL1, SynL2, SynL3, SynL4) and four real-world event logs (WABO,
PO, EyeT1, EyeT2).

These event logs are selected according to two main criteria. First,
for the evaluation it is essential that the traces in the event logs
can be classified according to some trace attribute. Furthermore, the
traces should be equally distributed among the classes to increase the
validity of the evaluation, i.e., if all traces belong to the same class, the
evaluation measures would yield a value of one for every similarity
measure. Secondly, trace classes should be distinguishable based on

12

their structural characteristics, i.e., activities, directly-follows relations,
and edge-types, as defined by properties P5-P7 in Section 4. Especially,
the ability to distinguish trace classes based on edge-types (P7) is
important to evaluate whether the proposed graph-based approach
introduced in Section 5.2 can improve the performance of similarity
measures. For this reason, we first look at four simulated event logs
containing the desired properties and then continue with real-world
datasets.

6.2.1. SynL1, SynL2, SynL3, and SynL4.

These synthetic event logs are generated with the PLG tool [65]. The
traces in the event logs can be clearly distinguished based on (a) edge
types (loops, skips, or choice), (b) length of the edge types (short, or
long) and (c) the set of activities (4; = {4, ..., H}, or A, = {K, ..., R}).
To test different scenarios for the application of similarity measures,
we apply four different classifications of the traces, resulting in four
different event logs. In SynL1 the traces are classified only according
to the edge types, leading to three classes: loops, skips, and choices.
In each class the traces additionally differ in terms of (b) the length of
the edge types and (c) the set of activities involved. This scenario is
closely related to the example provided in Fig. 1, since in some cases
the affiliation of the traces with one class can only be detected based
on the edge types.

In SynL2, the trace classes are additionally separated by the edge
type length, leading to six classes (loops-short, loops-long, skips-short,
skips-long, choices-short, choices-long). In each class the traces addi-
tionally differ in terms of (c) the set of activities involved. In this way,
the similarity measures are additionally evaluated on the basis of their
ability to distinguish between the length of the edge types.

In SynL3, the trace classes are separated by the edge types and the
set of activities, also leading to six classes (loops-A;, loops-A4,, skips-4,,
skips-A,, choices-A|, choices-A,). In each class the traces additionally
differ in terms of (b) length of the edge types. In this scenario, the
effectiveness of the similarity measures is evaluated according to their
ability to differentiate between edge types and distinct sets of activities.

In SynL4, an additional trace class is added to SynL1. This new
class comprises traces that exhibit combinations of multiple edge types,
resulting in four distinct classes: loops, skips, choices, and mixed.
In each class the traces additionally differ in terms of (b) length of

C. Schreiber et al.

Table 10

Information Systems 138 (2026) 102671

Overview of the event logs including the number of activities, number of traces, the minimum and maximum length of traces, number of classes, number of

traces per class, class type and their origin.

Activity Trace Min Max Class T./C. Class Type Origin
SynL1 16 300 8 194 3 100 edge-type Simulation
SynL2 16 300 8 202 6 50 edge-type and length Simulation
SynL3 16 300 8 179 6 50 edge-type and activity Simulation
SynL4 16 320 8 202 4 80 edge-type and activity Simulation
WABO 465 350 1 110 5 70 process type Administration
PO 42 300 8 324 3 100 process type Administration
EyeT1 1194 349 27 1152 8 43-44 task type Eye tracking
EyeT2 1194 349 27 1152 2 174-175 task complexity Eye tracking
the edge types and (c) the set of activities involved. Compared to 6.4. Results

SynL1, SynL4 presents a more realistic scenario, enabling the evalua-
tion of whether similarity measures can effectively identify traces that
incorporate heterogeneous edge types.

6.2.2. WABO and PO.

These event logs were originally published for BPI Challenges
2015 [66] and 2019 [67]. Both datasets are derived from real-world
business processes. WABO consists of five sublogs coming from five
separate municipalities in the Netherlands, documenting their adminis-
tration process for providing environmental permissions. PO documents
a purchase order handling process of a large multinational company
in the Netherlands, which can be classified into four types of flows.
The classification of the traces in both cases is based on their process
structure, making them suitable for our evaluation and allowing us
to test whether graph-based features can also improve the similarity
measurement of traces in the context of business processes.

6.2.3. EyeT1 and EyT2.

The two event logs EyeT1 and EyeT2 contain eye tracking data,
collected during an experiment on process model comprehension [23,
24] using the eye tracking data collection tool EyeMind [68]. The
data allows to analyze at which point in time during the experiment a
person was looking at a specific process model element on a computer
screen. This results in an event log, where each trace reflects the
number and order of elements that a person looked at during a given
comprehension task. Hence, the traces contain structural patterns, such
as loops, skips, and choices, depending on the order in which a person
looked at the different elements. 349 such traces could be recorded
from 44 participants. The experiment is designed in such a way that
each participant has to answer eight different comprehension tasks
that can be divided into two complexity classes (low and high task
complexity). In Schreiber et al. [24], the authors showed that the par-
ticipants exhibit different information search and integration behaviors
depending on the given tasks and its complexity, which is also reflected
in the recorded traces. We therefore create the two trace logs EyeT1 and
EyeT2 to evaluate how well the similarity measures can differentiate
(a) between traces belonging to the eight different task types (EyeT1)
and (b) between traces belonging to the two different task complexity
classes (EyeT2).

6.3. Sampling strategy

Due to the computational complexity of the evaluation measures,
specifically the Triplet evaluation measure with O(|L|*), we restrict the
number of traces per event log. This is in line with the comparative
study on traces similarity measures by Back and Simonson [14]. While
the eye tracking event logs (EyeT1, EyeT2) are sufficiently small for the
evaluation, the synthetic event logs (SynL1, SynL2, SynL3, SynL4) and
the event logs derived from real-world business processes (WABO, PO)
require some additional sampling. To prevent a sampling bias, traces
are sampled randomly. Furthermore, they are sampled in such a way
that they are equally distributed among the classes, in order to ensure
the effectiveness of the evaluation measures (cf. Section 6.2).

13

Fig. 4 provides an overview of the three calculated evaluation
measures for the similarity measures in Section 4.2 and the novel
similarity measures proposed in Section 5. Additionally, three similarity
measures are included in the evaluation, each computed as the cosine
similarity between vector representations learned using Trace2Vec [41]
(as described in Section 3.1.2). These representations differ in dimen-
sionality, comprising vectors with 32 (T2V-32), 64 (T2V-64), and 128
(T2V-128) features, respectively.

Looking at the Triplet, which is the most elaborate evaluation mea-
sure included in the evaluation (cf. Section 6.1), it can be stated that
the novel distance measures, marked in gray, consistently outperform
the other similarity measures, except for the event log EyeT1. This ob-
servation is partially confirmed by Nearest Neighbor and Precision@10.

It should be noted that, in particular, the commonly applied LD
and N-LD (cf. Section 3) are consistently outperformed by the other
measures. The same holds true for the measures based on Trace2Vec
(T2V-32, T2V-64, and T2V-128). It is also worth mentioning that the
similarity measures based on 2-gram (C2 and J2) consistently perform
well across the evaluation measures, especially for Precision@10.

It can also be stated that the aggregation of separate similarity
measures leads in several cases to an improvement of the similarity
evaluation (indicated by the underlined values in Fig. 4). This is
particularly true for Agg(C1,C2) in the case of the two administrative
processes (WABO and PO). Again looking at the Triplet, the similarity
measures involving edge-type features perform in particular well with
respect to the synthetic event logs (SynL1, SynL2, SynL3, SynL4) and
EyeT2. This is also partially confirmed by Nearest Neighbor.

Regarding evaluation question 1, it can be stated that in terms of
accuracy, the proposed measures (Cg, Agg(Cl, C2), Agg(C1,C2,Cg),
Jg, Agg(J1, J2), Agg(J1,J2,Jg)) outperform the other trace similarity
measures with respect to the synthetic event logs (SynL1, SynL2, SynL3,
and SynL4) based on all three evaluation measures, except for SynL4
based on Precision@10. Furthermore, the aggregation of 1-gram and 2-
gram (Agg(C1,C2) and Agg(J1,J2)) consistently outperform the other
trace similarity measures on the business process event logs (WABO
and PO) across all four evaluation measures, except for PO based on
Precision@10.. For the user behavior processes (EyeTl and EyeT2)
the measures J3 and Jg (excluding parallelism) achieved the best
performance with respect to the Triplet evaluation measure.

Regarding evaluation question 2, it can be stated that the high-
level features (edge-types and parallelism) lead to improvements in
the similarity evaluation in several cases. For the synthetic event logs
(SynL1, SynL2, SynL3, and SynL4) this is especially true with regard
to Agg(J1,J2,Jg) when considering Triplet. Furthermore, for the busi-
ness process PO the additional consideration of high-level features
(including parallelism) could even improve similarity evaluation when
calculating Agg(J1,J2,Jg). Only for the user behavior processes (EyeT1l
and EyeT2) no improvement could be observed, even though Jg (ex-
cluding parallelism) yielded the highest performance with respect to
the Triplet evaluation measure for EyeT2.

C. Schreiber et al.

Information Systems 138 (2026) 102671

Nearest Neighbor Precision@10
SynLl | SynL2 SynL3 | Synl4 | WABO PO EyeTl EyeT2 SynLl SynL2 SynL3 | Synl4 | WABO PO EyeTl | EyeT2
LD| 0.970 | 0.940 | 0.967 | 0.950 | 0.603 | 0.873 | 0.897 | 0.940 0.863 | 0.758 | 0.874 | 0.836 | 0.398 | 0.832 | 0.762 | 0.851
N-LD| 0.970 | 0.933 | 0.967 | 0.953 | 0.600 | 0.910 | 0.937 | 0.971 0.875 | 0.800 | 0.892 | 0.861 | 0.400 | 0.850 | 0.865 | 0.917
EMR| 0.963 | 0.917 | 0.927 | 0.965 | 0.200 | 0.710 | 0.785 | 0.871 0.871 | 0.782 | 0.831 | 0.853 | 0.200 | 0.757 | 0.621 | 0.736
CMR| 0.977 | 0.957 | 0.987 | 0.978 | 0.203 | 0.333 | 0.957 | 0.971 0.941 | 0.884 | 0.926 | 0.932 | 0.199 | 0.299 | 0.903 | 0.937
JMR| 0.977 | 0.957 | 0.983 | 0.978 | 0.194 | 0.730 | 0.954 | 0.971 0.946 | 0.878 | 0.931 | 0.930 | 0.198 | 0.790 | 0.901 | 0.937
EF| 1.000 | 1.000 | 0.990 | 1.000 | 0.457 | 0.900 | 0.461 | 0.662 0.991 | 0.974 | 0.988 | 0.990 | 0.359 | 0.854 | 0.455 | 0.706
T2v-32| 0.343 | 0.167 | 0.000 | 0.250 | 0.183 | 0.397 | 0.000 | 0.507 0.337 | 0.172 | 0.000 | 0.250 | 0.185 | 0.296 | 0.000 | 0.483
T2v-64| 0.333 | 0.167 | 0.000 | 0.250 | 0.197 | 0.413 | 0.000 | 0.477 0.335 | 0.167 | 0.000 | 0.250 | 0.186 | 0.328 | 0.001 | 0.443
T2v-128| 0.333 | 0.193 | 0.000 | 0.250 | 0.200 | 0.380 | 0.000 | 0.471 0.337 | 0.167 | 0.000 | 0.250 | 0.193 | 0.317 | 0.001 | 0.453
E1l 0.930 | 0.900 | 0.913 | 0.941 | 0.629 | 0.860 | 0.954 | 0.974 0.808 | 0.730 | 0.830 | 0.824 | 0.433 | 0.857 | 0.862 | 0.916
E2| 0.997 | 0.973 | 0.990 | 0.981 | 0.466 | 0.910 | 0.885 | 0.946 0.917 | 0.858 | 0.931 | 0.927 | 0.307 | 0.859 | 0.708 | 0.801
E3| 0.997 | 0.970 | 0.987 | 0.988 | 0.366 | 0.890 | 0.676 | 0.811 0.924 | 0.874 | 0.937 | 0.938 | 0.251 | 0.848 | 0.524 | 0.673
C1| 0.990 | 0.980 | 0.987 | 0.988 | 0.643 | 0.890 | 0.977 | 0.980 0.933 | 0.891 | 0.919 | 0.932 | 0.439 | 0.875 | 0.924 | 0.957
C2(1.000 | 0.990 | 0.997 | 0.997 | 0.611 | 0.917 | 0.952 | 0.966 0.962 | 0.938 | 0.962 | 0.967 | 0.393 | 0.876 | 0.842 | 0.900
€3(1.000 | 0.980 | 0.990 | 1.000 | 0.609 | 0.900 | 0.868 | 0.917 0.959 | 0.936 | 0.953 | 0.963 | 0.386 | 0.877 | 0.753 | 0.835
Cg| 1.000 | 1.000 | 0.493 | 1.000 | 0.226 | 0.577 | 0.172 | 0.653 0.993 | 0.986 | 0.482 | 0.980 | 0.245 | 0.643 | 0.157 | 0.622
Agg(€1,c2)[1.000 | 0.993 | 0.997 | 1.000 | 0.643 | 0.917 | 0.971 | 0.977 0.962 | 0.938 | 0.964 | 0.969 | 0.424 | 0.881 | 0.895 | 0.938
Agg(€1,€2,Cg)[1.000 | 0.997 | 1.000 | 1.000 | 0.563 | 0.900 | 0.957 | 0.971 0.995 | 0.986 | 0.993 | 0.992 | 0.360 | 0.879 | 0.898 | 0.942
J1| 0.403 | 0.290 | 0.333 | 0.316 | 0.646 | 0.863 | 0.966 | 0.980 0.367 | 0.222 | 0.333 | 0.379 | 0.437 | 0.864 | 0.905 | 0.952
J2| 1.000 | 0.997 | 1.000 | 0.997 | 0.611 | 0.910 | 0.983 | 0.991 0.996 | 0.986 | 0.990 | 0.995 | 0.387 | 0.875 | 0.958 | 0.982
J3| 1.000 | 0.993 | 1.000 | 1.000 | 0.606 | 0.920 | 0.986 | 0.994 0.987 | 0.968 | 0.982 | 0.991 | 0.379 | 0.880 | 0.966 | 0.987
Jg| 0.997 | 0.993 | 1.000 | 0.994 | 0.471 | 0.883 | 0.960 | 0.980 0.964 | 0.953 | 0.963 | 0.943 | 0.327 | 0.845 | 0.924 | 0.962
Agg(J1,)2) 1.000 | 0.997 | 1.000 | 0.997 | 0.683 | 0.933 | 0.989 | 0.997 0.996 | 0.986 | 0.990 | 0.967 | 0.444 | 0.880 | 0.936 | 0.968
Agg(J1,52,)g) 1.000 | 0.997 | 1.000 | 1.000 | 0.563 | 0.923 | 0.957 | 0.971 0.995 | 0.986 | 0.993 | 0.992 | 0.360 | 0.896 | 0.898 | 0.942
Triplet

SynL1l SynL2 SynL3 SynL4 | WABO PO EyeTl | EyeT2

LD| 0.523 | 0.545 0.803 | 0.530 | 0.504 | 0.728 | 0.669 | 0.584

N-LD| 0.418 | 0.432 0.864 | 0.431|0.515| 0.825 | 0.873 | 0.613

EMR| 0.537 | 0.585 0.719 | 0.564 | 0.019| 0.654 | 0.662 | 0.524

CMR| 0.428 | 0.450 0.863 | 0.439 | 0.149| 0.584 | 0.891 | 0.598

JMR| 0.428 | 0.450 0.864 | 0.439 | 0.133| 0.581 |0.885 | 0.617

EF| 0.435 | 0.469 0.886 | 0.451 | 0.525| 0.776 | 0.829 | 0.610

T2v-32| 0.462 | 0.459 0.157 | 0.462 | 0.469| 0.292 | 0.065 | 0.375

T2v-64| 0.461 | 0.462 0.160 | 0.461 | 0.469| 0.311 | 0.067 | 0.354

T2v-128| 0.462 | 0.465 0.162 | 0.466 | 0.473 | 0.309 | 0.071 | 0.350

E1| 0.547 | 0.573 0.806 | 0.559 | 0.512| 0.747 | 0.765 | 0.580

E2| 0.563 | 0.598 0.818 | 0.586 | 0.504 | 0.712 | 0.680 | 0.540

E3| 0.574 | 0.616 0.808 | 0.602 | 0.496 | 0.666 | 0.614 | 0.513

C1] 0.422 | 0.456 0.870 | 0.445 | 0.524| 0.853 | 0.890 | 0.565

C2| 0.438 | 0.462 0.891 | 0.458 | 0.526 | 0.837 | 0.822 | 0.556

€3/ 0.439 | 0.461 0.890 | 0.457 | 0.407 | 0.636 | 0.762 | 0.533

Cg| 0.816 | 0.917 0.724 | 0.814 | 0.500 | 0.573 | 0.533 | 0.577

Agg(C1,C2)| 0.434 | 0.462 0.886 | 0.456 | 0.529 | 0.857 | 0.862 | 0.561

Agg(€1,€2,cg)| 0.653 | 0.700 | 0.910 | 0.666 | 0.526 | 0.817 | 0.863 | 0.582

J1/0.278 | 0.282 0.631 | 0.311 | 0.524| 0.799 | 0.847 | 0.607

J2/ 0.419 | 0.469 0.854 | 0.437 | 0.526 | 0.827 | 0.915 | 0.627

J3/0.428 | 0.468 0.873 | 0.445 | 0.407 | 0.635 |0.919 | 0.629

Jg| 0.618 | 0.637 0.782 | 0.623 | 0.468 | 0.692 | 0.903 | 0.663

Agg(J1,J2)| 0.416 | 0.463 0.849 | 0.429 | 0.529 | 0.839 | 0.878 | 0.619

Agg()1,)2,)g)| 0.653 | 0.700 | 0.910 | 0.666 | 0.526 | 0.840 | 0.863 | 0.582

Fig. 4. The tables show the calculated evaluation measures for the similarity measures on the basis of eight different event logs. The proposed similarity measures
based on the formal comparison in Section 5 are marked in gray. Values that indicate best-performing similarity evaluations are marked in bold, performance

improvement due to aggregations are underlined.

7. Discussion

The results confirm the comparative analysis in Sections 4.2 and
5.3. The evaluation across all event logs shows that the aggregation
of distinct similarity measures can substantially improve the similarity
evaluation between the traces. The evaluation further shows that the
consideration of high-level structural features can substantially improve
the similarity evaluation between traces in several cases, and there-
fore provides a validation of the measurement approach proposed in
Section 5.

Furthermore, the identified properties P1-P10 (cf. Table 3) help
to better evaluate trace similarity measures. More specifically, P5-P7
provide insights on the content validity of similarity measures, i.e., to
which extent they reflect different structural features. This aspect has
been largely neglected by existing studies on trace similarity measures.

The empirical evaluation in Section 6 shows that the structural
distinction between traces on the basis of activities (P5), directly-
follows relations (P6), and high-level structural features (P7) appears
to be particularly valuable for (unstructured) behavioral processes,
as well as (structured) business processes. In practice the proposed

14

C. Schreiber et al.

similarity measures could help to differentiate more nuanced structural
similarities and differences between traces, which, subsequently might
improve the performance of downstream tasks, such as anomaly detec-
tion and trace clustering. Moreover, the proposed aggregated measures
potentially provide more transparency, as similarities and differences
can be attributed to specific structural features. However, it should
be noted that the aspect of transparency has not been empirically
examined within the scope of this study.

From a research perspective, our study suggests that an assessment
of trace similarity measures should not merely rely on empirical com-
parison, but should also consider formal properties of these measures
to gain a better understanding of what trace features are respectively
considered.

Integrating high-level structural features into the similarity compar-
ison between traces opens up a variety of new opportunities for future
research. It allows for investigating the role of structural features in
more detail and could therefore potentially improve a variety of process
mining techniques, such as trace clustering, conformance checking,
event abstraction, event log sampling, change point detection, and
variety analysis (cf. Section 1).

The empirical evaluation further shows that there is not a single
similarity measure dominating the others. Rather, it is the case that
event logs require different similarity measures according to their
structural features. One way to solve this issue is to apply aggregation
and assign different weights to the distinct measures, focusing on
different features. This can, for example, be solved by using domain
knowledge to assign appropriate weights. Another approach would be
to automatically assign weights based on feature learning [41,63,64].

When analyzing user behavior through data, e.g., based on eye
tracking, edge types can provide better differentiation between traces
that exhibit various behavioral patterns, such as repetitive actions,
skipping, or choices. This differentiation can, for example, be useful in
identifying whether a user is searching for information or integrating
it [23,24].

7.1. Limitations

The evaluation stresses some limitations of the applied evaluation
measures. Nearest Neighbor and Precision@10 only consider a small
number (respectively two and ten) of the most similar data points
within a class, thereby ignoring the similarity between the rest of the
class’s data points. This also explains the relative similarity of the
outcomes in comparison to Triplet, which offers greater distinction
among the considered similarity measures (cf. Fig. 4).

Moreover, due to the computational complexity of the evaluation
measure Triplet (with ©(|L|*)) the evaluation contains only event logs
with a relatively small number of traces. This introduces some limita-
tion regarding the generalizability of the results. However, this concern
is partially mitigated by the diversity of event logs included in the eval-
uation, spanning a wide range of structural trace characteristics based
on synthetic processes, eye tracking, and real-world business processes.

Additionally, there exist some validity risk from the applied sam-
pling of the synthetic event logs (SynL1, SynL2, SynL3) and the event
logs derived from real-world business processes (WABO, PO). This
risk is mitigated by the employed sampling strategy, i.e., traces were
randomly sampled in such a way that they are equally distributed
among the trace classes.

A further potential limitation arises from the extraction of the
edge types based on the transformation of the traces into a graph
representation, which inevitably leads to some abstraction of the pro-
cess behavior. So far, we have, for example, not considered relative
frequencies of the occurring sequences in the traces, which could lead
to some bias in the pairwise trace comparison. In future work, graph-
based features could be weighted according to their relative frequency,
thereby emphasizing the stochastic properties of the traces [6].

15

Information Systems 138 (2026) 102671

Similarly, aggregating activities into sets of parallel activities based
on causal relations (cf. Definition 2.10) introduces an abstraction of
the trace structure. For example, when considering the trace o, =
(A,B,C, D, E) with R = {B||C,C|| D} (as shown in Fig. 2), {B,C, D}
is defined as a set of parallel activities within o;, even though no
direct parallel relation exists between B and D, i.e., the information
regarding the causality between B and D is lost. Similarly, the causality
between B and D is ignored for the traces 6, = (A,C, B, D, E) and 63 =
(A, B, D, C, E). Addressing this limitation would require refining the no-
tion of a vertex in the trace graph (cf. Definition 2.11) to represent more
complex parallel structures than simple sets of activities. Nevertheless,
this abstraction is arguably reasonable, in order to detect additional
high-level structural features, such as loops, skips, and choices, which
is for example not possible based on instance graphs [17,19].

Furthermore, deriving parallelism from causal relations between
activities is sensitive to noise in the event log, which may intro-
duce incorrect directly-follows relations. A common mitigation strategy
is to apply data pre-processing techniques to filter out noisy traces
before deriving parallelism between activities [17,19]. An alterna-
tive approach would be to consider partially ordered traces, assuming
correctly recorded timestamps [58].

Finally, certain similarity measures proposed in the literature,
specifically optimal alignments [14] and generic edit distance [44],
were excluded from the comparison due to their computational infea-
sibility when applied to the eye tracking data. This limitation arises
from the considerable length of these traces and the increased number
of distinct activities involved.

8. Conclusion and future work

In this paper, we show the relevance of different structural features
for the measurement of the similarity between two traces. We propose a
novel approach to extract additional high-level structural features from
the traces, reflecting loops, skips, choices, and parallelism. We further
propose a set of novel similarity measures, which incorporate these
structural features. The formal comparison in Section 5.3 and the eval-
uation in Section 6 show that these features can improve the similarity
measurement, without an increase in computational time complexity.

As future work, we plan to further extend the proposed similarity
measures to incorporate additional process perspectives, such as re-
sources or data. For this purpose, the suggested graph-based approach
could be employed on event knowledge graphs as detailed in [69],
which encompass different process perspectives beyond their structural
properties.

Furthermore, it would be interesting to investigate how the iden-
tified structural trace features can improve the training of neural
networks and thus improve subsequent tasks, such as similarity mea-
surement [41].

CRediT authorship contribution statement

Clemens Schreiber: Writing — review & editing, Writing — original
draft, Visualization, Software, Project administration, Formal analysis,
Data curation, Conceptualization. Amine Abbad-Andaloussi: Writing
- review & editing, Writing — original draft, Software, Formal analysis,
Data curation, Conceptualization. Andrea Burattin: Writing — review &
editing, Writing — original draft, Software, Methodology, Formal analy-
sis, Conceptualization. Andreas Oberweis: Writing — review & editing,
Writing — original draft, Supervision, Formal analysis, Conceptualiza-
tion. Barbara Weber: Writing — review & editing, Writing — original
draft, Supervision, Methodology, Formal analysis, Conceptualization.

Declaration of Generative AI and Al-assisted technologies in the
writing process

During the preparation of this work, the authors used ChatGPT in
order to polish sentences and ensure correct spelling. After using this
service, the authors reviewed and edited the content as needed and take
full responsibility for the content of the publication.

C. Schreiber et al.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Code and event logs are available in the accompanying repository.

Code and Event Logs (GitHub)

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

M. Song, C.W. Giinther, W.M.P. van der Aalst, Trace clustering in process
mining, in: Business Process Management Workshops: BPM 2008 International
Workshops, Milano, Italy, September 1-4, 2008. Revised Papers 6, Springer,
2009, pp. 109-120.

P. Delias, M. Doumpos, E. Grigoroudis, P. Manolitzas, N. Matsatsinis, Sup-
porting healthcare management decisions via robust clustering of event logs,
Knowl.-Based Syst. 84 (2015) 203-213.

M. Boltenhagen, T. Chatain, J. Carmona, Generalized alignment-based trace
clustering of process behavior, in: International Conference on Applications and
Theory of Petri Nets and Concurrency, Springer, 2019, pp. 237-257.

F. Zandkarimi, J.-R. Rehse, P. Soudmand, H. Hoehle, A generic framework for
trace clustering in process mining, in: 2020 2nd International Conference on
Process Mining, ICPM, IEEE, 2020, pp. 177-184.

A. Adriansyah, J. Munoz-Gama, J. Carmona, B.F. van Dongen, W.M. van der
Aalst, Alignment based precision checking, in: International Conference on
Business Process Management, Springer, 2012, pp. 137-149.

S.J. Leemans, W.M.P. van der Aalst, T. Brockhoff, A. Polyvyanyy, Stochastic
process mining: Earth movers’ stochastic conformance, IS 102 (2021) 101724.
R.J.C. Bose, W.M.P. van der Aalst, Abstractions in process mining: A taxonomy of
patterns, in: International Conference on Business Process Management, Springer,
2009, pp. 159-175.

N. Tax, N. Sidorova, R. Haakma, W.M.P. van der Aalst, Mining local process
models, J. Innov. Digit. Ecosyst. 3 (2) (2016) 183-196.

C. Diamantini, L. Genga, D. Potena, W. van der Aalst, Building instance graphs
for highly variable processes, Expert Syst. Appl. 59 (2016) 101-118.

M. Kabierski, H.L. Nguyen, L. Grunske, M. Weidlich, Sampling what matters:
relevance-guided sampling of event logs, in: 2021 3rd International Conference
on Process Mining, ICPM, IEEE, 2021, pp. 64-71.

A. Burattin, H.A. Lopez, L. Starklit, Uncovering change: A streaming approach for
declarative processes, in: International Conference on Process Mining, Springer,
2022, pp. 158-170.

C.0. Back, S. Debois, T. Slaats, Entropy as a measure of log variability, J. Data
Semant. 8 (2019) 129-156.

C. Schreiber, A. Abbad-Andaloussi, Structural process variety and standardiza-
tion, in: 2024 6th International Conference on Process Mining, ICPM, IEEE, 2024,
pp. 153-160.

C.O. Back, J.G. Simonsen, Comparing trace similarity metrics across logs and
evaluation measures, in: International Conference on Advanced Information
Systems Engineering, Springer, 2023, pp. 226-242.

V.I. Levenshtein, Binary codes capable of correcting deletions, insertions, and
reversals, in: Soviet Physics Doklady, vol. 10, Soviet Union, 1966, pp. 707-710.
S.B. Needleman, C.D. Wunsch, A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J. Mol. Biol. 48 (3)
(1970) 443-453.

B.F. Van Dongen, W.M.P. van der Aalst, Multi-phase process mining: Building in-
stance graphs, in: Conceptual Modeling-ER 2004: 23rd International Conference
on Conceptual Modeling, Shanghai, China, November 8-12, 2004. Proceedings
23, Springer, 2004, pp. 362-376.

F. Zerbato, R. Seiger, G. Di Federico, A. Burattin, B. Weber, Granularity in process
mining: Can we fix it? in: International Workshop on BPM Problems To Solve
before We Die, CEUR-WS, 2021, pp. 40-44.

C. Diamantini, L. Genga, D. Potena, Behavioral process mining for unstructured
processes, J. Intell. Inf. Syst. 47 (2016) 5-32.

F. Taymouri, M. La Rosa, M. Dumas, F.M. Maggi, Business process variant
analysis: Survey and classification, Knowl.-Based Syst. 211 (2021) 106557.

K. Holmgqvist, M. Nystrom, R. Andersson, R. Dewhurst, H. Jarodzka, J. Van de
Weijer, Eye tracking: A comprehensive guide to methods and measures, oup
Oxford, 2011.

P. Fournier-Viger, J.C.-W. Lin, R.U. Kiran, Y.S. Koh, R. Thomas, A survey of
sequential pattern mining, Data Sci. Pattern Recognit. 1 (1) (2017) 54-77.

C. Schreiber, A. Abbad-Andaloussi, B. Weber, On the cognitive effects of
abstraction and fragmentation in modularized process models, in: International
Conference on Business Process Management, Springer, 2023, pp. 359-376.

16

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Information Systems 138 (2026) 102671

C. Schreiber, A. Abbad-Andaloussi, B. Weber, On the cognitive and behavioral
effects of abstraction and fragmentation in modularized process models, Inf. Syst.
125 (2024) 102424.

M. Franceschetti, A. Abbad-Andaloussi, C. Schreiber, H.A. Lépez, B. Weber,
Exploring the cognitive effects of ambiguity in process models, in: International
Conference on Business Process Management, Springer, 2024, pp. 493-510.

W. Van der Aalst, Process Mining: Data Science in Action, Springer, Heidelberg.,
2016.

B. Pentland, L. Ping, W. Kremser, T. Harem, The dynamics of drift in digitized
processes, MIS Q. (2020).

R.J.C. Bose, W.M.P. van der Aalst, Trace clustering based on conserved patterns:
Towards achieving better process models, in: Business Process Management
Workshops: BPM 2009 International Workshops, Ulm, Germany, September 7,
2009. Revised Papers 7, Springer, 2010, pp. 170-181.

M. Becker, R. Laue, A comparative survey of business process similarity measures,
Comput. Ind. 63 (2) (2012) 148-167.

R. Dijkman, M. Dumas, L. Garcia-Bafuelos, Graph matching algorithms for
business process model similarity search, in: Business Process Management: 7th
International Conference, BPM 2009, Ulm, Germany, September 8-10, 2009.
Proceedings 7, Springer, 2009, pp. 48-63.

A. Burattin, Streaming process mining, in: Process Mining Handbook, vol. 349,
Springer Cham, 2022.

W.M.P. van der Aalst, Object-centric process mining: dealing with divergence and
convergence in event data, in: Software Engineering and Formal Methods: 17th
International Conference, SEFM 2019, Oslo, Norway, September 18-20, 2019,
Proceedings 17, Springer, 2019, pp. 3-25.

J.N. van Detten, P. Schumacher, S.J. Leemans, A framework for advanced case
notions in object-centric process mining, in: International Conference on Process
Mining, Springer, 2024, pp. 402-414.

J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, Morgan
Kaufmann Publishers, 2012.

W.M.P. van der Aalst, Process mining: a 360 degree overview, in: Process Mining
Handbook, Springer, 2022, pp. 3-34.

W. Van der Aalst, T. Weijters, L. Maruster, Workflow mining: Discovering process
models from event logs, IEEE Trans. Knowl. Data Eng. 16 (9) (2004) 1128-1142.
T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to algorithms,
MIT Press, 2022.

D. Krantz, D. Luce, P. Suppes, A. Tversky, Foundations of measurement, Vol. I:
Additive and polynomial representations, New York Academic Press, 1971.

J. Mendling, Metrics for process models: empirical foundations of verification,
error prediction, and guidelines for correctness, vol. 6, Springer Science &
Business Media, 2008.

G.R. Marczyk, D. DeMatteo, D. Festinger, Essentials of research design and
methodology, vol. 1, John Wiley & Sons, 2005.

P. De Koninck, S. vanden Broucke, J. De Weerdt, Act2vec, trace2vec, log2vec,
and model2vec: Representation learning for business processes, in: Business
Process Management: 16th International Conference, BPM 2018, Sydney, NSW,
Australia, September 9-14, 2018, Proceedings 16, Springer, 2018, pp. 305-321.
G. Wang, X. Zhang, S. Tang, H. Zheng, B.Y. Zhao, Unsupervised clickstream
clustering for user behavior analysis, in: Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, 2016, pp. 225-236.

R. Dijkman, M. Dumas, B. Van Dongen, R. Kéadrik, J. Mendling, Similarity
of business process models: Metrics and evaluation, Inf. Syst. 36 (2) (2011)
498-516.

R.J.C. Bose, W.M.P. van der Aalst, Context aware trace clustering: Towards
improving process mining results, in: Proceedings of the 2009 SIAM International
Conference on Data Mining, SIAM, 2009, pp. 401-412.

R. Dewhurst, M. Nystrom, H. Jarodzka, T. Foulsham, R. Johansson, K. Holmgqvist,
It depends on how you look at it: Scanpath comparison in multiple dimensions
with MultiMatch, a vector-based approach, Behav. Res. Methods 44 (2012)
1079-1100.

N.C. Anderson, F. Anderson, A. Kingstone, W.F. Bischof, A comparison of
scanpath comparison methods, Behav. Res. Methods 47 (2015) 1377-1392.

A. Schoknecht, T. Thaler, P. Fettke, A. Oberweis, R. Laue, Similarity of business
process models—a state-of-the-art analysis, ACM CSUR 50 (4) (2017) 1-33.

N. Tax, N. Sidorova, R. Haakma, W.M.P. van der Aalst, Event abstraction for
process mining using supervised learning techniques, in: Proceedings of SAI
Intelligent Systems Conference (IntelliSys) 2016: Volume 1, Springer, 2018, pp.
251-269.

P.H. Sellers, On the theory and computation of evolutionary distances, SIAM J.
Appl. Math. 26 (4) (1974) 787-793.

M. Kunze, M. Weidlich, M. Weske, Behavioral similarity-a proper met-
ric, in: Business Process Management: 9th International Conference, BPM
2011, Clermont-Ferrand, France, August 30-September 2, 2011. Proceedings 9,
Springer, 2011, pp. 166-181.

G.M. Tavares, R.S. Oyamada, S.B. Junior, P. Ceravolo, Trace encoding in process
mining: A survey and benchmarking, Eng. Appl. Artif. Intell. 126 (2023) 107028.
J. Pflug, S. Rinderle-Ma, Process instance similarity: Potentials, metrics, applica-
tions, in: On the Move To Meaningful Internet Systems: OTM 2016 Conferences,
Springer, 2016, pp. 136-154.

https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
https://github.com/promilab/InfoSysTraceSim
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb1
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb1
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb1
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb1
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb1
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb1
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb1
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb2
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb2
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb2
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb2
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb2
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb3
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb3
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb3
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb3
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb3
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb4
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb4
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb4
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb4
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb4
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb5
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb5
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb5
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb5
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb5
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb6
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb6
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb6
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb7
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb7
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb7
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb7
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb7
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb8
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb8
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb8
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb9
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb9
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb9
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb10
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb10
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb10
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb10
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb10
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb11
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb11
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb11
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb11
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb11
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb12
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb12
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb12
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb13
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb13
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb13
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb13
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb13
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb14
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb14
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb14
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb14
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb14
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb15
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb15
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb15
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb16
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb16
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb16
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb16
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb16
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb17
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb17
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb17
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb17
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb17
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb17
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb17
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb18
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb18
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb18
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb18
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb18
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb19
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb19
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb19
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb20
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb20
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb20
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb21
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb21
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb21
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb21
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb21
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb22
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb22
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb22
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb23
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb23
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb23
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb23
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb23
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb24
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb24
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb24
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb24
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb24
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb25
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb25
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb25
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb25
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb25
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb26
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb26
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb26
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb27
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb27
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb27
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb28
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb28
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb28
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb28
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb28
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb28
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb28
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb29
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb29
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb29
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb30
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb30
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb30
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb30
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb30
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb30
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb30
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb31
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb31
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb31
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb32
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb32
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb32
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb32
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb32
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb32
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb32
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb33
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb33
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb33
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb33
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb33
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb34
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb34
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb34
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb35
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb35
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb35
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb36
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb36
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb36
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb37
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb37
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb37
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb38
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb38
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb38
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb39
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb39
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb39
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb39
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb39
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb40
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb40
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb40
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb41
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb41
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb41
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb41
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb41
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb41
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb41
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb42
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb42
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb42
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb42
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb42
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb43
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb43
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb43
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb43
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb43
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb44
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb44
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb44
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb44
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb44
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb45
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb45
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb45
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb45
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb45
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb45
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb45
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb46
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb46
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb46
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb47
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb47
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb47
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb48
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb48
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb48
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb48
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb48
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb48
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb48
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb49
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb49
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb49
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb50
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb50
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb50
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb50
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb50
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb50
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb50
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb51
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb51
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb51
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb52
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb52
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb52
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb52
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb52

C. Schreiber et al.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

F. Emmert-Streib, M. Dehmer, Y. Shi, Fifty years of graph matching, network
alignment and network comparison, Inform. Sci. 346 (2016) 180-197.

M. Leemans, W.M.P. van der Aalst, Discovery of frequent episodes in event logs,
in: International Symposium on Data-Driven Process Discovery and Analysis,
Springer, 2014, pp. 1-31.

A. Abbad Andaloussi, J. Buch-Lorentsen, H.A. Lépez, T. Slaats, B. Weber,
Exploring the modeling of declarative processes using a hybrid approach, in:
International Conference on Conceptual Modeling, Springer, 2019, pp. 162-170.
A. Abbad Andaloussi, F. Zerbato, A. Burattin, T. Slaats, T.T. Hildebrandt, B.
Weber, Exploring how users engage with hybrid process artifacts based on
declarative process models: a behavioral analysis based on eye-tracking and
think-aloud, Softw. Syst. Model. 20 (2021) 1437-1464.

P. Bera, P. Soffer, J. Parsons, Using eye tracking to expose cognitive processes
in understanding conceptual models, MIS Q. 43 (4) (2019) 1105-1126.

S.J. Leemans, S.J. van Zelst, X. Lu, Partial-order-based process mining: a survey
and outlook, Knowl. Inf. Syst. 65 (1) (2023) 1-29.

L. Yujian, L. Bo, A normalized levenshtein distance metric, IEEE Trans. Pattern
Anal. Mach. Intell. 29 (6) (2007) 1091-1095.

17

[60]

[61]

[62]

[63]
[64]
[65]
[66]

[67]
[68]

[69]

Information Systems 138 (2026) 102671

S. Kosub, A note on the triangle inequality for the jaccard distance, Pattern
Recognit. Lett. 120 (2019) 36-38.

A. Levy, B.R. Shalom, M. Chalamish, A guide to similarity measures and their
data science applications, J. Big Data 12 (1) (2025) 188.

H. Zha, J. Wang, L. Wen, C. Wang, J. Sun, A workflow net similarity measure
based on transition adjacency relations, in: Computers in Industry, vol. 61,
Elsevier, 2010.

A. Bellet, A. Habrard, M. Sebban, A survey on metric learning for feature vectors
and structured data, 2013, ArXiv Preprint ArXiv:1306.6709.

M. Kaya, H.S. Bilge, Deep metric learning: A survey, in: Symmetry, 11, MDPI,
2019.

A. Burattin, Plg2: Multiperspective process randomization with online and offline
simulations., in: BPM (Demos), 2016, pp. 1-6.

B.F. van Dongen, Bpi challenge 2015, in: 4TU.ResearchData. Dataset, 2015.
B.F. van Dongen, Bpi challenge 2019, in: 4TU.ResearchData. Dataset, 2019.

A. Abbad-Andaloussi, D. Liibke, B. Weber, Conducting eye-tracking studies on
large and interactive process models using EyeMind, SoftwareX 24 (2023)
101564.

D. Fahland, Process mining over multiple behavioral dimensions with event
knowledge graphs, in: Process Mining Handbook, Springer, 2022, pp. 274-319.

http://refhub.elsevier.com/S0306-4379(25)00157-7/sb53
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb53
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb53
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb54
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb54
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb54
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb54
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb54
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb55
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb55
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb55
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb55
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb55
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb56
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb56
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb56
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb56
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb56
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb56
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb56
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb57
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb57
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb57
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb58
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb58
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb58
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb59
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb59
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb59
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb60
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb60
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb60
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb61
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb61
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb61
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb62
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb62
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb62
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb62
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb62
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb63
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb63
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb63
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb64
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb64
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb64
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb65
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb65
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb65
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb66
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb67
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb68
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb68
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb68
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb68
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb68
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb69
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb69
http://refhub.elsevier.com/S0306-4379(25)00157-7/sb69

	Graph-based similarity measures for the structural comparison of process traces
	Introduction
	Preliminaries
	Related Work
	Trace Comparison
	Syntactic Similarity Measures
	Feature-based Similarity Measures
	Aggregation of Trace Similarity Values

	Model-based Similarity Measures
	Process Discovery

	Formal Comparison of Trace Similarity Measures
	Properties Related to Structure and Similarity
	Formal Comparison

	Similarity Measures Based on Graph-based Features
	Identifying Parallelism within Traces
	Incorporating Graph-based Features into Similarity Measures
	Step 1: Identifying Edge-types
	Step 2: Identifying the Length of Edge-types
	Step 3: Aggregating the Features

	Formal Comparison

	Evaluation
	Evaluation Measures
	Datasets
	SynL1, SynL2, SynL3, and SynL4.
	WABO and PO.
	EyeT1 and EyT2.

	Sampling Strategy
	Results

	Discussion
	Limitations

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Data availability
	References

