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 A B S T R A C T

Similarity measures are commonly applied for a variety of process mining techniques, such as trace clustering, 
conformance checking, and event abstraction. Yet, these measures generally fail to recognize similarity based 
on structural process features, such as the order of activities, loops, skips, choices, and parallelism. To make 
this more explicit, we propose a set of properties that allow to evaluate, what kind of structural features 
are reflected by a similarity measure. We further propose a novel approach leveraging existing graph-based 
algorithms and instance graphs to extract high-level structural features (loops, skips, choices, and parallelism) 
from traces, such that they can be used to extend and improve existing similarity measures. These algorithms 
are well-established in graph theory and can be computed efficiently. Finally, we provide an evaluation of 
the proposed approach based on synthetic and real-world datasets. The evaluation provides evidence that 
the additional graph-based features can substantially improve the similarity comparison of traces in several 
cases. This applies in particular for the comparison of user behavior (e.g., based on eye tracking data) where 
structural features enable the detection of specific behavioral patterns.
1. Introduction

Pairwise comparison of process traces is essential for many process 
mining tasks, such as trace clustering [1–4], conformance checking [5,
6], process discovery [7–9], event log sampling [10], change point 
detection [11], and variety analysis [12,13]. Although the literature 
comprises a wide range of trace similarity measures (for an overview, 
see Back and Simonsen [14]), they generally exhibit several limitations.

The first main limitation of existing trace similarity measures is 
their failure to account for process patterns [7], such as: loops (i.e., the 
repeated execution of activity sequences), choices (i.e., alternative ac-
tivity sequences), skips (i.e., alternative activity sequences that involves 
the omission of activities), and parallelism (i.e., a timely overlap of 
activity sequences). One reason why these patterns are neglected is 
that commonly applied similarity measures in process mining, such as 
edit distance [3,4,6,7,12,13] and sequence alignment [5,8,9], originate 
from other research disciplines and were developed for different pur-
poses, such as the comparison of binary code [15] or the comparison 
of DNA sequences [16]. Yet, the named process patterns are essential 
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for the description of process behavior and for the comparison of the 
traces’ structure [3,4,7,9,17].

A second shortcoming of existing similarity measures is that they do 
not allow for an activity-agnostic comparison between traces. When, 
for example, comparing the two traces 𝜎1 = ⟨𝐴,𝐵,𝐷,𝐴, 𝐶,𝐷,𝐴,𝐷⟩

and 𝜎2 = ⟨𝑊 ,𝑋,𝑍,𝑊 , 𝑌 , 𝑍,𝑊 ,𝑍⟩, none of the commonly applied 
similarity measures in process analysis [14] would identify any sim-
ilarity between them. However, as illustrated in Fig.  1, the ordering 
and repetition of activities within the two traces reveal three common 
process patterns: a loop, a choice, and a skip, each involving activity 
sequences of identical length.

The structural comparison between traces, independent of their 
specific activity labels, can be crucial for process analysis across various 
domains. In this paper we focus on two particular types of processes: 
(unstructured) behavioral processes [18,19] and (well-structured) busi-
ness processes [20]. Behavioral processes document some user behav-
ior, e.g., when interacting with an information system through eye 
tracking [21], or click-streams [22]. They commonly contain minimal 
constraints on the ordering and number of activities. However, the 
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Fig. 1. Graph representations of the traces 𝜎1 = ⟨𝐴,𝐵,𝐷,𝐴, 𝐶,𝐷,𝐴,𝐷⟩ (left 
side) and 𝜎2 = ⟨𝑊 ,𝑋,𝑍,𝑊 , 𝑌 ,𝑍,𝑊 ,𝑍⟩ (right side), where a blue edge 
indicates a loop (denoted by L), a red edge indicates a choice (denoted by C), 
and a green edge indicates a skip (denoted by S). The graph representations are 
derived based on the directly-follows relations between the activities within 
the traces.

structural differences between the user behavior can provide valuable 
insights for the analysis of behavioral processes. For example, a trace 
that represents the scan path of a user’s visual fixations on a screen can 
be analyzed according to the order and reoccurrence of these fixations. 
Here, the activities of the trace are associated with visual fixations 
of a user on a particular area on a screen, e.g., representing specific 
graphical elements [23–25]. The structural analysis of a scan path 
can thereby reveal the cognitive processes of a user. For example, the 
repeated returning of a user to a particular area on a screen, manifested 
as loops within the scan path, might indicate high cognitive effort due 
to the distribution of information [23,24] or due to the ambiguity of the 
information [25]. In order to obtain these insights, we are much more 
interested in the structure of the user behavior, such as the returning 
to particular areas on a screen, rather than what specific areas a user 
looked at, which is indicated by the activity labels.

Business processes refer to administrative processes, which are more 
restrictive in terms of the number and order of activities than behav-
ioral processes. Here, the activity labels might differ especially across 
different business units and countries of operation [20]. Therefore, the 
comparison of traces at a structural level can support the identification 
of deviations related to compliance and performance, e.g., based on 
the rate of rework [26], as well as the level of business process stan-
dardization [13]. Another related example is the analysis of business 
process changes, commonly referred to as concept drift [26]. Business 
process changes caused by the introduction of new digital technologies, 
such as automated technology or AI-based technology, can significantly 
alter the structural properties of a process, while at the same time 
introducing new activities [27]. Similar to the analysis of behavioral 
processes, in all these cases the primary focus of the analysis lies on 
the structural characteristics of the process execution rather than on 
the actual activities denoted by the activity labels.

A third main shortcoming of existing trace similarity measures is 
that their derived similarity values are commonly not transparent and 
are therefore not explainable. This is the case when the structural 
features, i.e., process patterns, of the traces are not made explicit. 
For example, when comparing the edit distances 𝑑(⟨𝐴⟩, ⟨𝐴,𝐴,𝐴⟩) and 
𝑑(⟨𝐴⟩, ⟨𝐴,𝑋, 𝑌 ⟩), both distances yield the same value due to the inser-
tions of two additional activities in the second trace. However, in the 
first case the insertion is necessary due to a loop in the second trace, 
while in the second case the insertion is necessary due to a sequence 
of two alternative activities. This distinction is not considered by the 
similarity measure.

However, such structural differences are for example relevant for 
the analysis of user behavior, as they can potentially reveal different 
causes for comprehension issues, requiring specific user support [23–
25]. Moreover, the transparency of similarity measures can be essential 
to better understand anomalies and deviations in business processes [6,
28].

Finally, a fourth shortcoming is that some similarity measures re-
quire high computational effort [14,29,30], making them impractical 
2 
to apply to large event logs and in online settings, which require timely 
evaluation [31].

To address the four identified challenges, we first conduct a for-
mal comparative analysis of existing similarity measures, considering: 
(1) the extent to which the measures capture different process pat-
terns, (2) their ability to recognize activity-agnostic similarity, (3) the 
degree of transparency and explainability they offer, and (4) their 
computational efficiency. The findings indicate that none of the exist-
ing measures adequately capture the structural similarities and differ-
ences between traces, particularly with respect to the representation of 
process patterns and the transparency of the similarity computation.

Subsequently, we introduce a novel feature-extraction approach 
based on graph-algorithms, which allows to derive high-level structural 
trace features, i.e., loops, skips, and choices, including the length of the 
involved activity sequences. Thus, enabling an activity-agnostic com-
parison between traces. Furthermore, we leverage instance-graphs [17,
19] to also account for parallelism within traces. The parallel execution 
of activity sequences is thereby assumed, when activities occur in 
an interchangeable order within one or multiple traces of a business 
process.

To account for the diverse structural characteristics of traces iden-
tified in the formal comparison, we introduce four aggregated sim-
ilarity measures. Each aggregation combines distinct similarity mea-
sures that reflect distinct structural aspects of the traces, i.e., ac-
tivities, directly-follows relations, and high-level structural features. 
The approach therefore enables a more comprehensive assessment 
of structural similarities and differences between traces than existing 
measures.

The subsequent empirical evaluation demonstrates that incorpo-
rating high-level structural features, as well as aggregating different 
feature types, can substantially enhance the accuracy of trace similarity 
comparisons in various cases. The empirical evaluation involves syn-
thetic datasets, designed to exhibit diverse structural characteristics, 
and real-world datasets that represent business processes and user 
behavior processes.

The main contributions of this paper are as follows:

1. We introduce ten formal properties, which allow for a compre-
hensive comparison of similarity measures, considering struc-
tural properties, activity-agnostic behavior, transparency, and 
computational complexity.

2. Drawing upon the identified limitations of current trace simi-
larity measures, we propose a novel feature-extraction approach 
based on graph algorithms, which enables the detection of loops, 
skips, and choices, along with their respective lengths within 
individual traces. Furthermore, we leverage instance graphs to 
also enable the consideration of parallelism within individual 
traces.

3. Furthermore, we consider different aggregations of similarity 
measures, which allows to address structural similarities and 
differences between traces in a more comprehensive way than 
previous measures.

4. Finally, we conduct a comprehensive empirical evaluation of the 
newly introduced similarity measures. We thereby demonstrate 
the superiority of these measures to existing once in terms of 
correctly detecting similarity among traces, which share com-
mon structural characteristics. We thereby extend the evaluation 
of existing studies on trace similarity measures, by considering 
business processes, as well as behavioral processes.

In the remainder, Section 2 defines the basic notation and defini-
tions used throughout the paper. In Section 3 we introduce related 
work on trace similarity measures, followed by a formal comparison 
of existing measures in Section 4. Section 5 introduces the graph-
based approach used to overcome the identified shortcomings of the 
existing measures, followed by an empirical evaluation in Section 6 and 
a discussion of the results in Section 7. Section 8 concludes the paper.
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2. Preliminaries

Process mining is generally concerned with the analysis of processes 
based on event logs. An event log comprises a set of process instances 
that follow a specific business process or, more broadly, represent 
user interactions with an information system. A process instance is 
represented as a trace, which is defined as an ordered sequence of 
events.

Definition 2.1 (Event). Let  be the set of all possible activities, 
the set of all possible case identifiers, and   the set of all possible 
timestamps. An event is a tuple 𝑒 = (𝑎, 𝑐, 𝑡) consisting of three attributes: 
an activity 𝑎 ∈ , a case id 𝑐 ∈ , and a timestamp 𝑡 ∈  . The event 
universe is denoted by  =  ×  ×  .

We further define the following attribute-value mappings for an 
event 𝑒: #𝑎𝑐𝑡(𝑒) = 𝑎, #𝑐𝑎𝑠𝑒(𝑒) = 𝑐, and #𝑡𝑖𝑚𝑒(𝑒) = 𝑡. A process trace, hence-
forth denoted as trace, can be derived by considering multiple events 
in an ordered fashion based on their timestamp and case identifier.

Definition 2.2 (Trace, Event Log). A trace 𝜎𝑐 = ⟨#𝑎𝑐𝑡(𝑒1), #𝑎𝑐𝑡(𝑒2),… ,
#𝑎𝑐𝑡(𝑒𝑛)⟩ = ⟨𝑎1, 𝑎2,… , 𝑎𝑛⟩ ∈ ∗ is an event sequence corresponding to 
the case 𝑐, where all events in 𝜎𝑐 are mapped to an activity 𝑎 ∈ 𝐴, 
and the order of events respects time, i.e., if 𝑒1, 𝑒2 ∈ 𝜎𝑐 and #𝑡𝑖𝑚𝑒(𝑒1) <
#𝑡𝑖𝑚𝑒(𝑒2), then 𝑒2 ⊀ 𝑒1. An event log 𝐿 is a set of traces over ∗.

The length of a trace is denoted by |𝜎𝑐 | = 𝑛 and 𝑎𝑘 represents the 
𝑘th activity in a trace 𝜎𝑐 , with 1 ≤ 𝑘 ≤ 𝑛.

It is assumed that each event possesses a unique case id, which 
enables a comparison at trace level. Nevertheless, in reality it is also 
possible that an event possesses multiple case ids, e.g., in the case of 
object-centric event logs [32]. In this case it is assumed that the similar-
ity comparison is conducted among identical case notions, e.g., defined 
by a specific object type [33]. Accordingly, a similarity measures for 
two distinct process traces 𝜎𝑖, 𝜎𝑗 ∈ 𝐿 is defined as follows.

Definition 2.3 (Similarity Measure). A similarity measure 𝑠(𝜎𝑖, 𝜎𝑗 ) =
(𝑑◦ℎ)(𝜎𝑖, 𝜎𝑗 ) is a composition of a distance function 𝑑 and a feature-
extraction function ℎ. The function ℎ defines a set of features for each 
trace 𝜎 ∈ 𝐿, such that ℎ ∶ 𝐿 → (𝐹 ), where 𝐹 ⊆  is a set of possible 
trace features and (𝐹 ) denotes its power set. The function 𝑑 defines 
a pairwise distance for all distinct traces 𝜎𝑖, 𝜎𝑗 ∈ 𝐿 according to the 
derived features, i.e., 𝑑 ∶ ℎ(𝐿) × ℎ(𝐿) → R+

0 . 

A similarity measure 𝑠 and an event log 𝐿 form a metric space (𝐿, 𝑠), 
if for all 𝜎𝑖, 𝜎𝑗 , 𝜎𝑘 ∈ 𝐿 the following properties hold: 

Property P1. 𝑠(𝜎𝑖, 𝜎𝑗 ) ≥ 0 (non-negativity)

Property P2. 𝑠(𝜎𝑖, 𝜎𝑗 ) = 𝑠(𝜎𝑗 , 𝜎𝑖) (symmetry)

Property P3. 𝑠(𝜎𝑖, 𝜎𝑗 ) = 0 ⇔ 𝜎𝑖 = 𝜎𝑗 (identity of indiscernibles)

Property P4. 𝑠(𝜎𝑖, 𝜎𝑘) ≤ 𝑠(𝜎𝑖, 𝜎𝑗 ) + 𝑠(𝜎𝑗 , 𝜎𝑘) (triangle-inequality).

In general, these are considered desirable properties for a similarity 
measure, as they ensure its consistency and uniqueness [14,29].

Furthermore, one can distinguish between syntactic and feature-
based similarity measures [1,4,14]. Syntactic similarity measures are 
calculated directly using the traces without any transformation. In this 
case ℎ can be considered as an identity function. The pairwise distance 
𝑑 is calculated based on the number of operations required to convert 
one trace to the other. We will consider edit distance as one particular 
type of syntactic similarity measure [15].
3 
Definition 2.4 (Edit Distance). The similarity measure 𝑠𝑒(𝜎𝑖, 𝜎𝑗 ) based 
on the edit distance between two distinct traces 𝜎𝑖 and 𝜎𝑗 is determined 
by optimizing a given cost function, taking into account the insertions, 
deletions, and substitutions of activities necessary to convert one trace 
into the other. 

Two particular variants of edit distance commonly applied in pro-
cess analysis are the Levenshtein distance and the normalized Leven-
shtein distance. The Levenshtein distance assigns to each editing opera-
tion an equal cost of one. The normalized Levenshtein distance addition-
ally divides the derived editing costs by the maximum possible number 
of required edits, i.e., 𝑚𝑎𝑥(|𝜎𝑖|, |𝜎𝑗 |).

Compared to syntactic similarity measures, feature-based similarity 
measures first require a transformation of the traces based on some 
function ℎ(𝜎𝑖) = 𝐹𝑖 before calculating a distance. There exist two types 
of feature-based similarity measures: set comparison and vector-space 
embedding.

Definition 2.5 (Set Comparison). The similarity measure 𝑠𝑠(𝜎𝑖, 𝜎𝑗 ) based 
on set comparison is directly calculated based on the extracted sets of 
features, i.e., 𝑠𝑠(𝜎𝑖, 𝜎𝑗 ) = 𝑑(𝐹𝑖, 𝐹𝑗 ). 

One similarity measure based on set comparison considered in this 
work is the Jaccard similarity [34], defined as the complement of the 
Jaccard coefficient, which is the ratio of the size of the intersection of 
two sets (|𝐹𝑖 ∩ 𝐹𝑗 |) to the size of their union (|𝐹𝑖 ∪ 𝐹𝑗 |).

In addition to feature extraction, vector-space embedding involves 
the transformation of a derived set of trace features into a vector.

Definition 2.6 (Vector-space Embedding). The similarity measure 𝑠𝑣(𝜎𝑖,
𝜎𝑗 ) based on vector-space embedding, involves the mapping of the trace 
feature into a vector space 𝑣 ∶  → R𝑛 and the subsequent calculation 
of the distance between the vectors, i.e., 𝑠𝑣(𝜎𝑖, 𝜎𝑗 ) = (𝑑◦𝑣)(𝐹𝑖, 𝐹𝑗 ). 

One particular variant of similarity measure based on vector-space 
embedding considered in this work is the cosine distance [34]. The 
cosine distance is calculated as the complement of the dot product 
of two vectors (𝐹𝑖 ⋅ 𝐹𝑗), divided by the product of their magnitudes 
(‖𝐹𝑖‖‖𝐹𝑗‖). In addition to cosine distance, this work also considers 
the Euclidean distance, which is calculated as the magnitude of the 
difference between two vectors (𝐹𝑖−𝐹𝑗), obtained by taking the square 
root of the sum of squared component-wise differences.

In addition to the different distance functions for the calculation 
of feature-based similarity, there exist also different types of feature-
extraction functions ℎ. In process mining, trace features are commonly 
derived on the basis of n-grams.

Definition 2.7 (n-gram). n-gram is a feature-extraction function ℎ𝑛 ∶
∗ → (𝐹𝑛) that takes a trace 𝜎 and returns a set of n-grams of length 𝑛: 
ℎ𝑛(𝜎) = {⟨𝑎1, 𝑎2,… , 𝑎𝑛⟩, ⟨𝑎2, 𝑎3,… , 𝑎𝑛+1⟩,… , ⟨𝑎

|𝜎|−𝑛+1, 𝑎|𝜎|−𝑛+2,… , 𝑎
|𝜎|⟩}

for 1 ≤ 𝑛 ≤ |𝜎|. 
Based on n-grams it is possible to capture structural properties of a 

trace 𝜎, such as the activities in 𝜎 (based on 1-gram), or the directly 
follows relations in 𝜎 (based on 2-gram).

However, identifying high-level structural features (such as loops, 
skips, choices, and parallelism) requires the application of a discovery 
algorithm [35]. Process discovery is a method used to construct process 
models, i.e., graph-based process representations, from event logs, such 
that high-level structural features are revealed. While process discovery 
algorithms are commonly applied based on event logs that contain 
multiple traces, it is also possible to derive graph representations for 
single traces [17,19].

To identify parallel executions of activities within traces, we adopt 
a process discovery algorithm based on instance graphs [17,19]. This 
algorithm infers parallelism within a trace based on the ordering of 
activities within the entire event log, that the trace belongs to. The 
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Fig. 2. Graph representations of the traces 𝜎1 = ⟨𝐴,𝐵, 𝐶,𝐷,𝐸⟩ (left side) and 
𝜎2 = ⟨𝐴,𝐵, 𝐶,𝐷,𝐸,𝐴, 𝐵, 𝐶,𝐷,𝐸⟩ (right side) with 𝑅 = {𝐵‖𝐶,𝐶‖𝐷}. The blue 
edge (denoted by L) indicates a loop between the activities 𝐴 and 𝐸 in 𝜎2.

algorithm first detects causal relations between activities, which then 
serve as the basis for identifying parallel executions.

Following the definition of causal ordering by Dongen and van der 
Aalst [17], causal relations can be derived by applying the feature-
extraction functions 2-gram (ℎ2) and 3-gram (ℎ3).

Definition 2.8 (Causal Relation). Let 𝐿 be an event log over a set of 
Activities 𝐴. A causal relation between two activities 𝑎𝑖, 𝑎𝑗 ∈ 𝐴, denoted 
as 𝑎𝑖 →𝐿 𝑎𝑗 , is defined in the following way:

- 𝑎𝑖 >𝐿 𝑎𝑗 if and only if there is a trace 𝜎 ∈ 𝐿, such that ⟨𝑎𝑖, 𝑎𝑗⟩ ∈
ℎ2(𝜎),

- 𝑎𝑖 ▵𝐿 𝑎𝑗 if and only if there is a trace 𝜎 ∈ 𝐿, such ⟨𝑎𝑖, 𝑎𝑗 , 𝑎𝑘⟩ ∈ ℎ3(𝜎)
where 𝑎𝑖 = 𝑎𝑘 and 𝑎𝑖 ≠ 𝑎𝑗 and not 𝑎𝑖 >𝐿 𝑎𝑖,

- 𝑎𝑖 →𝐿 𝑎𝑗 if and only if 𝑎𝑖 >𝐿 𝑎𝑗 and (𝑎𝑗 ≯𝐿 𝑎𝑖 or 𝑎𝑖 ▵𝐿 𝑎𝑗 or 
𝑎𝑗 ▵𝐿 𝑎𝑖), or 𝑎𝑖 = 𝑎𝑗 . 

According to this definition, the causal relation between two activ-
ities 𝑎 and 𝑏, denoted as 𝑎 →𝐿 𝑏, is established if there exists a trace 
𝜎 ∈ 𝐿 in which 𝑎 is directly followed by 𝑏, and 𝑏 is never directly 
followed by 𝑎. However, this definition may be problematic when 𝑎 and 
𝑏 are involved in a loop of length two. To address this, 𝑎 →𝐿 𝑏 also holds 
true if a trace 𝜎 ∈ 𝐿 contains the sequence ⟨𝑎, 𝑏, 𝑎⟩ or ⟨𝑏, 𝑎, 𝑏⟩, provided 
that neither 𝑎 nor 𝑏 can directly follow themselves. If an activity 𝑎 does 
directly follow itself in a trace, then the relation 𝑎 →𝐿 𝑎 holds.

The definition of a causal relation is based on the assumption 
that if one activity consistently precedes another, it is likely that a 
causal dependency exists between them [36]. This assumption enables 
the identification of parallelism within traces, even when those traces 
represent a strict total ordering of activities.

Definition 2.9 (Parallel Relation). Let 𝜎 ∈ 𝐿 be a trace contained in 𝐿. 
A parallel relation between two activities 𝑎𝑖, 𝑎𝑗 ∈ 𝜎, denoted as 𝑎𝑖 ∥ 𝑎𝑗 , 
is defined in the following way:

- 𝑎𝑖 >𝜎 𝑎𝑗 if and only if ⟨𝑎𝑖, 𝑎𝑗⟩ ∈ ℎ2(𝜎),
- 𝑎𝑖 ∥ 𝑎𝑗 if and only if (𝑎𝑖 >𝜎 𝑎𝑗 and 𝑎𝑖 ↛𝐿 𝑎𝑗) or (𝑎𝑗 >𝜎 𝑎𝑖 and 

𝑎𝑗 ↛𝐿 𝑎𝑖).

Following this definition, it is further possible to identify parallelism 
between multiple activities.

Definition 2.10 (Set of Parallel Activities). Let 𝜎 ∈ 𝐿 be a trace 
contained in 𝐿 and let 𝜆𝑖 = ⟨𝑎𝑗 ,… , 𝑎𝑛⟩ ∈ 𝜎 denote an n-gram of 
activities contained in 𝜎. The n-gram is considered to be a set of parallel 
activities, denoted by 𝑃𝑖, if for all 2-grams ⟨𝑎𝑘, 𝑎𝑙⟩ ∈ ℎ2(𝜆𝑖) it holds that 
𝑎𝑘 ∥ 𝑎𝑙. 

A set of parallel activities, contains a minimum of two activities and 
a maximum of |𝜎| = 𝑛 activities. Furthermore, the subscript 𝑖 represents 
its relative position in relation to its proceeding and succeeding activ-
ities. For example, given a set of parallel relations 𝑅 = {𝐵‖𝐶,𝐶‖𝐷}
and a trace 𝜎1 = ⟨𝐴,𝐵, 𝐶,𝐷,𝐸⟩ then 𝑃2 = {𝐵,𝐶,𝐷} is considered as 
a set of parallel activities within 𝜎1. It is also possible that a set of 
parallel activities occurs multiple times within a trace leading to a loop 
as depicted in Fig.  2.

To account for additional high-level features that might occur 
within an individual trace, i.e., loops, skips, or choices, we introduce 
the following graph-based trace abstraction.
4 
Definition 2.11 (Trace Graph). Let 𝐴 = [𝑎 ∈ 𝜎] denote the set of all 
activities in 𝜎, which are not part of a set of parallel activities and 
let 𝑃 = [𝑃𝑖 ∈ 𝜎] denote the set of all sets of parallel activities in 𝜎. 
Furthermore, let 𝑉  be a set of vertices and 𝐷 ⊆ 𝑉 × 𝑉  a set of edges. A 
trace graph is a directed graph 𝐺𝜎 (𝑉 ,𝐷) of a trace 𝜎 with:

- 𝑉 = 𝐴 ∪ 𝑃 , and
- the edges respect the order of activities and sets of parallel 

activities, i.e., 𝐷 = {(𝑣𝑖, 𝑣𝑗 ) ∈ 𝑉 × 𝑉 |𝑖 < 𝑗}. 
By considering the order of activities and the sets of parallel ac-

tivities within a trace, it is possible to identify specific types of edges 
within a trace graph.

Definition 2.12 (Edge-type). Edge-type is a feature-extraction function 
ℎ𝑒 ∶ ∗ → (𝐹𝑒), where each feature 𝑓𝑒 = (𝑤, 𝑙, 𝑑) ∈ 𝐹𝑒 carries 
information regarding the edge type 𝑤 ∈ {𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑠𝑘𝑖𝑝, 𝑐ℎ𝑜𝑖𝑐𝑒, 𝑙𝑜𝑜𝑝}
and the edge length 𝑙 ∈ N of an edge 𝑑 ∈ 𝐺. 

The four different edge types are defined according to the order of 
the activities within a trace when iteratively exploring the trace from 
its start activity 𝑎1 to its end activity 𝑎𝑛.1 Following the example of 
𝜎1 = ⟨𝐴,𝐵,𝐷,𝐴, 𝐶,𝐷,𝐴,𝐷⟩ depicted in Fig.  1, the edge types can be 
described as follows:

• The edge (𝑎𝑖, 𝑎𝑖+1) is of the type sequence, if the activities that 
𝑎𝑖+1 refers to is explored for the first time when starting from the 
activity that 𝑎𝑖 refers to. For 𝜎1 this is for example the case for 
the egde connecting activity 𝐴 and activity 𝐵.

• The edge (𝑎𝑖, 𝑎𝑖+1) is of the type skip, if the activity that 𝑎𝑖+1 refers 
to has occurred before 𝑎𝑖, and can be reached from the activity 
that 𝑎𝑖 refers to by an alternative (already explored) shortest path. 
For 𝜎1 this is the case for the egde connecting activity 𝐴 and 
activity 𝐷.

• The edge (𝑎𝑖, 𝑎𝑖+1) is of the type choice, if the activity that 𝑎𝑖+1
refers to has occurred before the activity that 𝑎𝑖 refers to and 
𝑎𝑖 and 𝑎𝑖+1 share a common preceding activity, respectively con-
nected based on distinct shortest paths. For 𝜎1 this is the case for 
the egde connecting activity 𝐶 and activity 𝐷 with the common 
preceding activity 𝐴.

• The edge (𝑎𝑖, 𝑎𝑖+1) is of the type loop, if the activity that 𝑎𝑖+1 refers 
to has occurred before the activity that 𝑎𝑖 refers to and is not 
involved in a relation of type sequence, skip, or choice. For 𝜎1
this is the case for the egde connecting activity 𝐷 and activity 𝐴.

These edge types represent four distinct structural features com-
monly observed in process traces, i.e., the sequential order of activities 
(sequence), the recurrence of activities (loop), the skipping of activities 
(skip), and the selection of alternative activities (choice). While the 
lengths of loops, skips, and choices can differ (with a minimum length 
of one), the length of a sequence is always one.

3. Related work

A foundation for the measurement of trace similarity can be found in 
measurement theory [38,39]. A measurement can be formally defined 
as a mapping from the domain of the empirical world to a numerical 
representation. A critical aspect in constructing such a mapping is its
validity. Three key aspects are commonly considered when assessing 
validity [39,40]:

• Construct validity : This evaluates whether a measurement accu-
rately represents the theoretical construct it is intended to mea-
sure. For example, the execution duration of a trace is generally 
not suitable for measuring structural similarity.

1 This approach relates to the depth-first search algorithm [37] as will be 
shown in Section 5.
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• Content validity : This refers to the extent to which a measurement 
represents the full range of the empirical phenomenon being 
studied. For example, to compare the structural similarity be-
tween two traces, a similarity measure should reflect a range of 
structural features.

• Criterion validity : This is determined by the relationship between 
a measure and an external criterion known to be an accurate 
indicator of the empirical phenomenon. For example, a struc-
tural similarity measure should accurately reflect the similarity 
between traces according to some predefined structural classifi-
cation of these traces, e.g., indicating complex or non-complex 
user behavior.

When it comes to the validity of existing similarity measures, one 
can make the following observations. Regarding construct validity, 
several different features have been discussed in the literature for the 
analysis of trace structure, such as n-grams [1,4,7,10,41,42], maxi-
mal repeat alphabets [7,28], and eventually follows relationships be-
tween activities [2]. In this study, we additionally consider edge-types 
and parallelism as structural features. These features reflect funda-
mental structural process properties in the context of user behavior 
analysis [21,42] and business process analysis [7,20,29,35,43].

The content validity of trace similarity measures has been largely 
neglected in research, as these measures have primarily been consid-
ered in conjunction with downstream tasks such as process discovery, 
trace clustering, or anomaly detection [14]. However, it has been 
recognized that similarity measures originating from other research dis-
ciplines such as natural language processing, control theory, and bioin-
formatics fail to recognize process specific structural properties [14,44]. 
To address this issue more systematically, we provide a formal compar-
ison of trace similarity measures in the following section, allowing us 
to determine which specific structural features are reflected by each 
measure.

Criterion validity of trace similarity measures has been initially 
addressed by Back and Simon [14]. We build on their evaluation 
approach, by additionally introducing synthetic event logs, that allows 
a clear classification of traces according to their structural proper-
ties. Additionally, we consider not only business processes, but also 
user behavior processes, where the ground truth is determined by the 
complexity of user behavior.

In general, one can distinguish between the measurement of pro-
cess similarity at an instance level [1,4,14,41,44–46] and at a model 
level [29,41,43,47]. At the instance level, a similarity measure is 
directly calculated between two traces. This approach is commonly 
applied for the analysis of business processes [1,14,44] as well as be-
havioral processes [21,42]. In business process analysis, these measures 
are utilized, for example, in trace clustering or anomaly detection. In 
user behavior analysis, these measures are applied, for example, in the 
comparison of visual scanpaths, which are detected based on eye track-
ing. A scanpath can be considered as a process trace, which contains the 
order of a user’s visual fixation points on a screen. By comparing the 
scanpaths, one can identify the similarity in user behavior, e.g., when 
the users are solving tasks of different complexity [23,24].

At the model level, a similarity measure is calculated between two 
process models, i.e., process graphs. This approach is commonly used 
for the analysis of business processes, e.g., to measure the compliance 
between a reference and an actual model [6], or to search for models in 
a repository [29]. The comparison at the model level has the advantage 
that high-level structural features of the process are explicit in the 
graph, which is not the case at the trace level. One way to overcome 
this issue is to apply process discovery [35] to derive process models 
from traces, which subsequently allow to extract additional structural 
features for the trace comparison.

In this study we seek to combine both research approaches, based 
on trace comparison (Section 3.1) and based on graph comparison 
(Section 3.2) by leveraging process discovery (Section 3.3).
5 
3.1. Trace comparison

The measures used for process comparison at trace level can be 
classified as syntactic and feature-based similarity measures [1,14,45,
46].2

3.1.1. Syntactic similarity measures
A commonly applied syntactic similarity measure in process analysis 

is edit distance, which includes the two variants: Levenshtein distance
and normalized Levenshtein distance [6,7,44–46,48]. An additional 
variant of an edit distance is proposed by Bose and van der Aalst [44], 
where editing costs are adjusted according to the context in which they 
occur. The cost values are calculated based on the relative frequency of 
activity pairs within the traces. The approach, thus, does not explicitly 
consider structural features.

An alternative syntactic similarity measure is sequence alignment
[10,14,20,28,45,46]. Similar to the edit distance, sequence alignment 
is calculated by optimizing a given scoring function, taking into account 
the operations necessary to align one trace with the other. In general, 
edit distance and sequence alignment yield equivalent outcomes (cf. 
Sellers [49]).

3.1.2. Feature-based similarity measures
A common approach for the calculation of feature-based similarity is 

the transformation of traces into sets of n-grams [1,10,20,44,48,50,51]. 
However, the length of n differs between the different studies. An issue 
is that long n-grams (𝑛 > 2) can capture more complex structural 
properties, e.g. loops of length > 2, but at the same time fail to 
capture structural properties in shorter n-grams (𝑛 ≤ 2). One solution 
is to aggregate similarity measures, considering n-grams of different 
lengths. While Delias et al. [2] propose to combine 1 and 2-grams, 
Back et al. [12] propose to combine all possible substrings of a trace, 
from length one to length 𝑛 = 𝑚𝑖𝑛(|𝜎𝑖|, |𝜎𝑗 |). However, this approach 
is computationally expensive and also does not differentiate between 
higher-level structural features such as loops, skips, and choices.

An alternative to trace comparison based on n-grams is the com-
parison based on sequential patterns [7], i.e., ordered sequences of 
activities that occur repeatedly within a trace. Sequential pattern min-
ing algorithms are commonly applied in a variety of domains, such 
as bioinformatics, e-learning, market basket analysis, and click-stream 
analysis of webpages [22]. Although there exist a vast number of 
sequential pattern mining algorithms in the literature (for an overview, 
see Fournier-Viger et al. [22]), they are not commonly applied in the 
context of process analysis. The comparative study by Back and Simon-
sen [14] showed that similarity measures based on sequential patterns 
do not perform as well as other measures. One reason for this could 
be that the algorithms detect very detailed sequential patterns that are 
specific to single traces, and thereby fail to capture structural features 
that are common among multiple traces. We therefore restrict our 
analysis to similarity measures using 1-grams, 2-grams, and 3-grams.

Beyond the structural trace characteristics, there are additional 
features that can be extracted from a trace and used for comparison. 
One such feature is the relative frequency of n-grams within a trace, 
which can be captured by eventually-follows relations between the 
activities. Delias et al. [2] propose an aggregated similarity measure 
based on cosine similarity, considering 1-grams and eventually-follows 
relations. According to the study by Back et al. [12] this measure yields 
a particularly high performance for a number of different event logs. 
The measurement approach is therefore also included in our analysis.

2 Back and Simonsen [14] use the distinction between syntactic similarity 
measures and vector-space embedding. Our distinction is more generic since 
we also include feature-based similarity measures that do not depend on 
vector-space embedding, such as Jaccard similarity.
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Additionally, traces can be compared not only in terms of structural 
features, but also based on features representing different process per-
spectives. For business processes, this often includes performance and 
resource attributes corresponding to events in a trace [10,20,48,52]. 
For behavioral analysis based on scanpaths this often includes the 
position and duration of a visual fixation on a screen [45,46]. However, 
for this study, we will only consider trace similarity measures on the 
basis of structural properties, also commonly defined as control-flow 
perspective.

Finally, for the calculation of a similarity value based on features, 
existing studies either use vector space embedding [1,4,44] or set com-
parison [1,10,11,50]. Vector-space embedding involves the comparison 
of trace features represented in a vector space, whereas set comparison 
involves the direct comparison between sets of features (cf. Section 2). 
To the best of our knowledge, there exists no study with a direct 
comparison of the two approaches.

There exist different methods for representing a trace in vector 
space. A commonly applied method is to construct a trace vector by 
evaluating the frequency of specific trace features  [1,4,44]. Another 
alternative method involves employing neural networks [20,41,51]. 
Neural networks thereby learn a vector space representation for a trace 
based on a set of training data.

However, neural network-based approaches exhibit three key limi-
tations in the context of structural trace similarity measurement. First, 
they require labeled training data, which may not always be readily 
available. Second, the resulting vector representations are typically 
opaque, making it difficult to interpret the learned features and their 
associated weights [41]. Third, the similarity outcomes are sensitive to 
the choice of neural network architecture (see [51] for an overview), as 
well as to several parameters, including the selection of input features 
and the dimensionality of the output vectors.

To the best of our knowledge, these limitations have not yet been 
systematically investigated in the context of trace similarity measure-
ment. Nevertheless, for the purpose of empirical evaluation (cf. Sec-
tion 6.4), we include a neural network-based representation using the 
Trace2Vec architecture and parameter configuration as proposed by De 
Koninck et al. [41].

3.1.3. Aggregation of trace similarity values
Building on feature-based similarity measures, a common approach 

to improve the outcome of the structural comparison between traces, is 
the aggregation of multiple distinct similarity measures, which reflect 
different structural properties of the traces [2,11,50]. This approach 
allows to combine different types of feature, such as n-grams of dif-
ferent length, in order to consider structural trace similarities and 
differences in a more comprehensive way. A simple example, for the 
aggregation of two similarity values based on 1-grams (the set of ac-
tivities) and 2-grams (the set of directly-follows relations) as proposed 
by Burattin et al. [11] is shown in Table  1. Other proposed aggre-
gations involve the combination of 1-grams and eventually-follows 
relations [2], and the combination of different order relations be-
tween activities, i.e., directly-follows relations, exclusiveness, and par-
allelism [50]. The separate values are thereby either calculated based 
on Jaccard similarity [11,50] or cosine distance [2].

The proposed aggregations, always involve the aggregation accord-
ing to the weighted sum of the considered similarity measures. This 
allows to weight feature types, according to the context in which the 
measurement is applied [2,11,50]. These weights can either by assigned 
randomly [50], according to some heuristic [2], or by solving an 
optimization problem, e.g., to find an optimal clustering of traces [11].

In Section 5, we extend existing aggregation approaches by com-
bining trace similarity measures that account for activities, directly-
follows relations, and high-level structural features. While context-
specific weighting of these components could potentially improve the 
accuracy of the aggregated measures, its definition lies beyond the 
scope of this work. Accordingly, all distinct measures are weighted 
equally.
6 
Table 1
Example for the aggregation of the two separate similarity values J1 (Jaccard 
similarity based on 1-gram) and J2 (Jaccard similarity based on 2-gram).
 J1 J2 J1 + J2
 𝑠(𝜎1 = ⟨𝐴,𝐵, 𝐶,𝐷⟩, 𝜎2 = ⟨𝐴,𝐵, 𝐶,𝐷⟩) 0 0 0  
 𝑠(𝜎1 = ⟨𝐴,𝐵, 𝐶,𝐷⟩, 𝜎2 = ⟨𝐶,𝐷,𝐴, 𝐵⟩) 0 1

3
1
3

 
 𝑠(𝜎1 = ⟨𝐴,𝐵, 𝐶,𝐷⟩, 𝜎2 = ⟨𝑊 ,𝑋, 𝑌 ,𝑍⟩) 1 1 2  

3.2. Model-based similarity measures

The measures used for process comparison at model level commonly 
leverage structural features, which are explicit in the models (for an 
overview, see [29,43,47]). These measures focus on the comparison 
of process model elements, such as node types and edges. Their out-
comes depend on the labeling of the nodes and edges, as well as 
the applied modeling language. Other measures focus only on the 
comparison of the graph structure, without considering specific process 
model elements (for an overview on graph similarity measures, see 
Emmert-Streib et al. [53]). However, these measures do not reflect the 
higher-level structural features (loops, skips, and choices), which are 
an important aspect of process analysis.

Finally, some measures are based on the comparison of sets of 
traces which can be derived from the execution of process models, 
such as trace alignments [6]. These measures are similar to those once 
proposed for trace comparison (Section 3.1), except that they focus on 
the comparison of sets that contain multiple traces. These measures 
also fail to capture higher-level structural features of the traces and 
therefore provide little explanation for the derived similarity values.

Overall, it can be stated that the similarity measures developed for 
process comparison at model level have several shortcomings when ap-
plied for the comparison at trace level, i.e., the dependency on specific 
modeling languages, the comparison between sets of traces rather than 
single traces, and the failure to consider high-level structural features. 
To overcome these shortcomings, we propose a similarity comparison 
based on trace graphs (cf. Section 2). Deriving a respective trace graph 
for a trace requires some form of abstraction, which is commonly 
achieved based on process discovery.

3.3. Process discovery

Process discovery can be seen as a way to derive structural features 
from a set of traces. There exist several process discovery algorithms 
that are capable of deriving sequential patterns [17,19,54] and non-
sequential patterns [8], which represent reoccurring structural prop-
erties within an event log. However, these algorithms are based on 
the assumption that the process structure can be abstracted from mul-
tiple distinct traces, that arise from multiple executions of the same 
process. This generally involves a high level of abstraction in order 
to generate comprehensible graphical process representations. Some 
of these algorithms thereby focus only on the detection of frequently 
reoccurring patterns and neglect non-frequent once [8,54]. Thus, the 
detection of all process patterns contained in a single trace is not 
guaranteed. Furthermore, some of the discovery algorithms focus on 
the discovery of only a single type of pattern, such as the parallel 
execution of activities, as in the case of instance graphs [17,19], and 
frequent episodes [54].

In particularly, parallelism requires a high level of abstraction, since 
the number of possible orderings of activities increases exponentially 
with the number of activities that can be executed in parallel. This 
makes it difficult to detect parallelism based on a single trace.

Furthermore, due to the abstraction, more fine-granular structural 
properties are ignored. E.g., based on 𝜎1 = ⟨𝐴,𝐵, 𝐶,𝐷,𝐴, 𝐶, 𝐵,𝐷⟩, a 
process discovery algorithm, such as the local process model miner [8], 
would assume that activities 𝐵 and 𝐶 can be executed in paral-
lel, suggesting that the structure of 𝜎  equals the structure of 𝜎 =
1 2
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⟨𝐴,𝐶, 𝐵,𝐷,𝐴, 𝐵, 𝐶,𝐷⟩. However, this can be particularly misleading 
for the comparison of traces describing user behavior [55,56]. For 
example, the particular order of clicks can be an indicator for dif-
ferent approaches to process modeling [55], and the order of visual 
fixations on a screen can be an indicator for exploratory or goal 
oriented behavior [56]. Different behaviors can thereby be associated 
with different cognitive processes of a user [24,25,57], which require 
different interpretations and potentially different user support.

Nevertheless, parallelism has been consistently considered as a rele-
vant structural feature in the context of business processes [8,17,17,19,
35,36,54,58]. We therefore consider parallelism as an additional high-
level feature for the comparison of the structural similarity between 
traces in the context of business processes. To discover parallelism 
within a single trace, we leverage a discovery algorithm initially pro-
posed by van Dongen and van der Aalst [17], which explicitly focuses 
on the structural analysis of single traces. Furthermore, the algorithm 
has been successfully applied in the context of business process anal-
ysis [19]. An additional advantage of the algorithm is its assumption 
of a strict total order of activities within a trace, which eliminates the 
need for partial ordering, i.e., the documentation of overlapping time 
intervals, to identify parallelism [58].

To better distinguish which similarity aspects are considered by 
different similarity measures, especially with respect to structural trace 
features, we provide a formal comparison on the basis of several 
measurement properties in the following section.

4. Formal comparison of trace similarity measures

For the formal comparison of trace similarity measures, we pro-
pose ten desirable properties. These include the already introduced 
metric properties in Section 2 (P1–P4), properties concerning the 
structural trace features (P5–P7), as well as general similarity prop-
erties (P8–P10).

4.1. Properties related to structure and similarity

Existing studies on trace similarity measures [14,28,41,44] show 
that trace similarity measures perform differently depending on the 
characteristics of an event log, such as the number of activities, length 
of traces, and number of trace classes. While this event log perspective 
provides some insights into the applicability of similarity measures, it 
does not consider how these measures reflect specific trace character-
istics, such as structural features. To solve this issue, we identify three 
desirable properties that a similarity measure should have in order to 
reflect the traces’ structure. These properties build on the assumption 
that a similarity measure should be monotonically increasing with 
respect to the number of structural differences between traces. We 
consider three types of structural differences based on (1) activities, 
(2) directly-follows relations, and (3) high-level structural features 
(loops, skips, and choices). These three types of structural features 
provide a comprehensive description of the trace structure and are 
commonly deemed relevant in the literature [20,29,35,43]. It is worth 
noting that parallelism, which is also commonly deemed a relevant 
high-level structural feature in the literature [8,17,17,19,35,36,54,58] 
is implicitly captured through differences based on directly-follows 
relations.

The first structural property refers to the differences among the 
activities. A similarity measure should be strictly increasing with re-
spect to differences in the number of activities. This is based on the 
intuitive notion that the more distinct the respective sets of activities 
are, the greater the dissimilarity between the traces. For comparison of 
the dissimilarity between two sets, we use their symmetric difference 
𝐹𝑖 ▵ 𝐹𝑗 = (𝐹𝑖 ∪ 𝐹𝑗 ⧵ 𝐹𝑖 ∩ 𝐹𝑗 ). The set of activities contained within a 
trace can be derived according to the feature-extraction function based 
on 1-gram, i.e., ℎ (𝜎 ) = 𝐹 . 
1 𝑖 𝑖,1
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Property P5.  The similarity measure is strictly increasing with an increase 
in the number of dissimilar activities between two traces, i.e.: 𝑠(𝐹𝑖,1, 𝐹𝑗,1) <
𝑠(𝐹𝑖,1, 𝐹𝑘,1) for all |𝐹𝑖,1 ▵ 𝐹𝑗,1| < |𝐹𝑖,1 ▵ 𝐹𝑘,1|.

Looking at the traces 𝜎0, 𝜎3 and 𝜎4 depicted in Fig.  3, according 
to Property  P5 we would expect 𝑠(𝜎0, 𝜎3) < 𝑠(𝜎0, 𝜎4) since the sets of 
activities contained in 𝜎0 and 𝜎4 are more distinct than is the case for 
𝜎0 and 𝜎3.

The second structural property refers to the differences among 
the directly-follows relations. A similarity measure should be strictly 
increasing with respect to the differences in the number of directly-
follows relations. This is based on the intuitive notion that the more 
distinct the ordering of activities, with respect to their directly-follows 
relations, the greater the dissimilarity between the traces. The set of 
directly-follows relations contained within a trace can be derived ac-
cording to the feature-extraction function based on 2-gram, i.e., ℎ2(𝜎𝑖) =
𝐹𝑖,2. 

Property P6.  The similarity measure is strictly increasing with an increase 
in the number of dissimilar directly-follows relations between two traces, i.e.: 
𝑠(𝐹𝑖,2, 𝐹𝑗,2) < 𝑠(𝐹𝑖,2, 𝐹𝑘,2) for all |𝐹𝑖,2 ▵ 𝐹𝑗,2| < |𝐹𝑖,2 ▵ 𝐹𝑘,2|.

Looking at the traces 𝜎0, 𝜎3 and 𝜎5 depicted in Fig.  3, according 
to Property  P6 we would expect 𝑠(𝜎0, 𝜎3) < 𝑠(𝜎0, 𝜎5), since the sets of 
directly-follows relations contained in 𝜎0 and 𝜎5 are more distinct than 
is the case for 𝜎0 and 𝜎3.

In addition to the set of activities and their relative order, a sim-
ilarity measure should also consider high-level structural features of 
the traces on the basis of edge-types (cf., Definition  2.12). The set of 
edge-types contained within a trace can be derived according to the 
feature-extraction function ℎ𝑒𝑡(𝜎𝑖) = 𝐹𝑖,𝑒𝑡. 

Property P7.  The similarity measure is strictly increasing with an in-
crease in the number of dissimilar edge-types between two traces, i.e.: 
𝑠(𝐹𝑖,𝑒𝑡, 𝐹𝑗,𝑒𝑡) < 𝑠(𝐹𝑖,𝑒𝑡, 𝐹𝑘,𝑒𝑡) for all |𝐹𝑖,𝑒𝑡 ▵ 𝐹𝑗,𝑒𝑡| < |𝐹𝑖,𝑒𝑡 ▵ 𝐹𝑘,𝑒𝑡|.

Looking at the traces depicted in Fig.  3, according to Property  P7 
we would expect 𝑠(𝜎0, 𝜎3) < 𝑠(𝜎0, 𝜎6) due to the loop in 𝜎6. Similarly we 
would expect 𝑠(𝜎0, 𝜎3) < 𝑠(𝜎0, 𝜎7) due to the loop and skip in 𝜎7, and 
𝑠(𝜎0, 𝜎3) < 𝑠(𝜎0, 𝜎8) due to the loop and choice in 𝜎8.

In addition to the structure-related properties P5–P7, we define 
three additional properties related to general similarity considerations. 
A trace similarity measure should also consider the overall size of the 
features contained in the traces. For example, the similarity between 
𝜎0 = ⟨𝐴,𝐵, 𝐶,𝐷⟩ and 𝜎9 = ⟨𝐴,𝐵, 𝐶,𝐷,𝑋⟩ should be considered to be 
greater than between 𝜎9 = ⟨𝐴⟩ and 𝜎10 = ⟨𝐴,𝑋⟩, although in both cases 
the traces differ only based on a single activity. Thus, a new feature 
should contribute less to the dissimilarity between two traces, the larger 
the overall set of features contained in both traces. This property is also 
known as submodularity. 

Property P8.  For all (𝐹𝑖 ∪ 𝐹𝑗 ) ⊆ (𝐹𝑘 ∪ 𝐹𝑙) and 𝑓 ∉ 𝐹𝑘, 𝐹𝑙 we have that 
𝑠(𝐹𝑖, 𝐹𝑗 ∪ 𝑓 ) − 𝑠(𝐹𝑖, 𝐹𝑗 ) ≥ 𝑠(𝐹𝑘, 𝐹𝑙 ∪ 𝑓 ) − 𝑠(𝐹𝑘, 𝐹𝑙).

However, this property only considers the overall set of features 
contained in the traces, but not the ratio between similar and dissimilar 
features. From a process analysis perspective, Becker and Laue [29] ar-
gue that a similarity measure should take into account commonalities, 
as well as differences between the traces.

Property P9.  A similarity measure should consider both commonalities 
𝐹𝑖 ∩ 𝐹𝑗 and differences 𝐹𝑖 ▵ 𝐹𝑗 between two traces.

Finally, we also consider the computational costs of the similarity 
measures to ensure that they can be calculated for large event logs and 
in online settings (cf. Section 1), which was also proposed by Becker 
and Laue [29] as a relevant property for the comparison of similarity 
measures. 
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Fig. 3. Different traces and their representation as trace graph.
Table 2
Overview of the desirable properties for similarity measures.
 
Metric

P1 non-negativity  
 P2 Symmetry  
 P3 Identity of indiscernibles  
 P4 Triangle-inequality  
 
Structure

P5 Strict monotonicity with an increase in the number of dissimilar activities  
 P6 Strict monotonicity with an increase in the number of dissimilar directly-follows relations 
 P7 Strict monotonicity with an increase in the number of dissimilar edge-types  
 
Similarity

P8 Submodularity  
 P9 Consideration of commonalities and differences  
 P10 Computational efficiency  
Table 3
Selection of similarity measures.
 Type Measure Label 
 Syntactic Levenshtein distance LD  
 Normalized Levenshtein distance N-LD 
 

Feature-based
vector-space embedding

Euclidean similarity based on MR EMR  
 Cosine similarity based on MR CMR  
 Jaccard similarity based on MR JMR  
 Eventually-Follows EF  
 Euclidean similarity based on 1-gram E1  
 Euclidean similarity based on 2-gram E2  
 Euclidean similarity based on 3-gram E3  
 Cosine similarity based on 1-gram C1  
 Cosine similarity based on 2-gram C2  
 Cosine similarity based on 3-gram C3  
 Feature-based
set comparison

Jaccard similarity based on 1-gram J1  
 Jaccard similarity based on 2-gram J2  
 Jaccard similarity based on 3-gram J3  

Property P10.  The similarity measure can be calculated efficiently.
Table  2 provides an overview of all desirable properties for trace 

similarity measures, including the metric properties defined in Sec-
tion 2.

4.2. Formal comparison

Based on the defined properties in Table  2 we will now provide 
a comparison of the trace similarity measures shown in Table  3. One 
main criterion for selecting these measures is their ability to represent 
structural features (cf. Section 3). Furthermore, we consider similarity 
measures that are commonly applied in the literature (cf. Section 3) and 
can be computed with reasonable computational effort in the context 
of both behavioral processes and business processes.

To investigate whether the selected similarity measures reflect the 
structural properties defined by P5–P7, we calculate the respective 
similarity values between 𝜎  and 𝜎 − 𝜎  that are shown in Fig.  3. 
0 3 8

8 
The traces differ according to the activities, the order of activities, 
and high-level structural features. For a measure to accurately dis-
tinguish between traces based on the number of activities (P5), it 
should satisfy the condition that 𝑠(𝜎0, 𝜎3) < 𝑠(𝜎0, 𝜎4), since the sets 
of activities that can be extracted from 𝜎0 and 𝜎3 are more similar 
compared to those derived from 𝜎0 and 𝜎4. Similarly, for a measure 
to accurately distinguish between traces based on the number directly-
follows relations (P6), it should hold that 𝑠(𝜎0, 𝜎3) < 𝑠(𝜎0, 𝜎5). Finally, 
for a measure to accurately distinguish between traces based on the 
number of edge-types (P7), it should hold that 𝑠(𝜎0, 𝜎3) < 𝑠(𝜎0, 𝜎6−8). 
Table  4 shows all calculated similarity values. All similarity values that 
are less than or equal to 𝑠(𝜎0, 𝜎3) indicate a violation of one of the 
defined properties P5–P7 and are highlighted in gray. The results of 
the calculated similarity values are summarized in Table  5.

Table  5 provides an overview of the considered similarity measures 
with an indication of whether they adhere to the defined proper-
ties P1–P10. Regarding the metric properties (P1–P4) it can be stated 
that the Levenshtein distance (LD), as well as the measures based 
on Jaccard similarity (JMR, J1,J2, and J3) and based on Euclidean 
similarity (EMR, E1, E2, and E3) adhere to the four metric properties 
(cf. Yujian and Bo [59], Kosub [60]). The normalized Levenshtein 
distance (N-LD) and the measures based on cosine similarity (CMR, 
EF, C1, C2, and C3) cannot be considered a metric since they violate 
triangle-inequality (cf. Yujian and Bo [59], Han et al. [34]).

Regarding the structure-related properties (P5–P7), it can be stated 
that none of the measures adheres to all defined properties. Only 
the measures based on 1-gram (E1, C1, and J1) correctly evaluate 
the dissimilarity between the number of activities (P5). Furthermore, 
only the measures involving 2-gram (EF, E2, C2, and J2) correctly 
evaluate the dissimilarity between the directly-follows relations (P6). 
Additionally, the measures that also reflect the relative frequencies of 
the activities within the traces (EMR, E1, C1) correctly evaluate the 
dissimilarity between the edge-types (P6).

Regarding the general similarity properties (P8–P10) it can be stated 
that only measures based on Jaccard similarity (JMR, J1, J2, and J3) 
satisfy submodularity (P8), which is characterized by the diminishing 
returns condition: for any sets 𝐴 ⊆ 𝐵 ⊆ 𝑉  and element 𝑥 ∈ 𝑉 ⧵ 𝐵, the 
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Table 4
Calculated similarity values for the pairwise comparison between 𝜎0 and 
𝜎3−𝜎8, where 𝑠(𝜎0, 𝜎3) is considered as baseline. According to the defined 
properties P5-P7, 𝑠(𝜎0, 𝜎4) should reflect an increase in the number of 
activities (P5), 𝑠(𝜎0, 𝜎5) should reflect an increase in the number directly-
follows relations (P6), and 𝑠(𝜎0, 𝜎6−8) should reflect an increase in the 
number of edge-types (P7). Values that are less than or equal to 𝑠(𝜎0, 𝜎3)
indicate a violation of one of the defined properties P5-P7 and are 
highlighted in gray.

𝑠(𝜎0 , 𝜎3) 𝑠(𝜎0 , 𝜎4) 𝑠(𝜎0 , 𝜎5) 𝑠(𝜎0 , 𝜎6) 𝑠(𝜎0 , 𝜎7) 𝑠(𝜎0 , 𝜎8)

LD 4.000 2.000 4.000 2.000 2.000 2.000 
N-LD 1.000 0.500 1.000 0.333 0.333 0.333 
EMR 0.000 0.000 0.000 1.414 1.414 1.414 
CMR 0.000 0.000 0.000 0.000 0.000 0.000 
JMR 0.000 0.000 0.000 0.000 0.000 0.000 
EF 0.179 0.150 0.299 0.169 0.072 0.113 
E1 0.000 2.000 0.000 1.414 1.414 1.414 
E2 2.449 2.449 3.162 1.414 1.414 2.000 
E3 2.828 2.828 2.828 2.449 2.000 2.449 
C1 0.000 0.500 0.000 0.051 0.051 0.051 
C2 0.600 0.600 1.000 0.155 0.155 0.324 
C3 1.000 1.000 1.000 0.592 0.388 0.592 
J1 0.000 0.667 0.000 0.000 0.000 0.000 
J2 0.750 0.750 1.000 0.286 0.286 0.500 
J3 1.000 1.000 1.000 0.750 0.571 0.75 

marginal gain from adding 𝑥 to 𝐴 is at least as large as adding it to 𝐵
(for a formal proof see Kosub [60]). In contrast, the remaining measures 
do not exhibit submodularity. Specifically, the measures based on 
Levenshtein distance (LD and N-LD) fail to account for the cardinality 
of the feature set, which is essential for satisfying the diminishing 
returns property. Furthermore, measures based on cosine similarity 
and Euclidean similarity are inherently geometric and depend on the 
relative positions of feature vectors in a continuous space [61]. These 
measures do not define set functions over discrete subsets and do not 
satisfy the submodularity condition, as the returns are not guaranteed 
to decrease with increasing set size.

It can be further stated that all similarity measures, except those 
based on Levenshtein distance (LD and N-LD), account for both com-
monalities and differences between traces, as required by property 
(P9) [29]. In particular, the Jaccard similarity can be reformulated as 
𝐽 (𝐴,𝐵) = 1 − |𝐴∩𝐵|

|𝐴∪𝐵| = |𝐴▵𝐵|
|𝐴∪𝐵| , where the numerator |𝐴 ▵ 𝐵| captures 

the symmetric difference, and the denominator |𝐴 ∪ 𝐵| reflects the 
total number of distinct elements, encompassing both shared and non-
shared features [60]. Similarly, cosine similarity and Euclidean distance 
are computed based on the relative positions of feature vectors in a 
continuous space, where both shared and non-shared features influence 
the resulting values [61]. These measures inherently incorporate both 
overlap and divergence in feature representation. In contrast, LD and 
N-LD focus solely on the edit operations required to transform one 
trace into another, without explicitly considering the set of shared 
features [15], and therefore do not satisfy (P9).

Finally, it can be stated that all similarity measures can be calcu-
lated in linear time (P10), depending on the length of the traces or the 
respective sets of features.

In conclusion, only Jaccard similarity measures (J1 and J2) qualify 
as proper metric (P1–P4), satisfying submodularity (P8) and recog-
nizing dissimilarities and similarities between traces (P9). Further-
more, none of the similarity measures considered correctly evaluates all 
structural dissimilarities between the traces (P5–P7). In the following 
section, we propose a novel approach to solve this problem by incor-
porating different structural features into the similarity evaluation.

5. Similarity measures based on graph-based features

To address the limitations of existing trace similarity measures iden-
tified in the previous chapter, we propose the integration of high-level 
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structural features into the comparison of trace similarity. Specifically, 
we introduce a novel feature extraction approach based on graph 
algorithms, which enables the identification of loops, skips, and choices 
within individual traces. In addition, we leverage instance graphs [17,
19] to detect parallelism by analyzing directly-follows relations across 
multiple traces. Building on the aggregation approach identified in the 
literature (cf. Section 3.1.3), we further present four aggregated similar-
ity measures that incorporate at least two of the structural dimensions 
considered in the previous chapter: activities, directly-follows relations, 
and high-level structural features. A formal analysis of the introduced 
measures in this section, shows that the high-level structural features 
and the aggregation can indeed lead to a more complete comparison of 
the traces’ structure.

5.1. Identifying parallelism within traces

As discussed in Section 3.1.2, parallelism between activities is com-
monly regarded as a key structural feature in traces representing busi-
ness processes. In contrast, user behavior processes typically exhibit 
strictly sequential execution and generally lack parallel activity pat-
terns (cf. Section 1). Therefore, parallelism is treated as an optional 
high-level feature and is only considered for traces that represent 
business processes.

According to Definition  2.9, parallel relations between activities 
are derived by identifying all directly-follows relations (i.e., 2-grams) 
within a trace 𝜎 ∈ 𝐿 and all causal relations within the event log 𝐿. 
Once parallel relations have been established, sets of parallel activities 
(cf. Definition  2.10) can be derived, which can then be used for the 
construction of trace graphs (cf. Definition  2.11).

5.2. Incorporating graph-based features into similarity measures

Identifying loops, skips, and choices within a trace requires the 
transformation of a trace into a trace graph 𝐺(𝐴,𝐷) (cf. Section 2). 
This can be achieved by deriving an adjacency list from a trace. In 
an adjacency list, each vertex 𝑎 ∈ 𝐴 is linked to a list providing 
information of all neighboring vertices connected by an edge 𝑑 ∈
𝐷 [37]. The transformation of a trace into an adjacency list leads 
to some abstraction, e.g., even though loops might be repeated more 
than once in a trace, based on the transformation, they are always 
considered to have the same frequency. This abstraction allows for 
a direct comparison of the trace structure in a computationally effi-
cient manner, independent of process performance aspects, such as the 
number of loop repetitions [62].

Based on the adjacency list, one can subsequently derive high-level 
structural features, which are implicitly contained in the trace. This can 
be achieved by identifying the graph’s edge-types (cf. Section 2). Two 
examples of trace graphs with different edge-types are shown in Fig.  1. 
In order to identify the edge-types and their respective lengths within a 
trace graph, we apply the following graph algorithms: depth-first search 
(DFS), breadth-first search (BFS), and lowest-common ancestor (LCA). 
Overall, the measurement approach consists of three steps.

5.2.1. Step 1: Identifying edge-types
The DFS [37] is applied to detect the edge-type between the vertices 

of the graph. The DFS starts at the first edge between two vertices ac-
cording to the adjacency list and then continues to look at all the other 
edges in the list. The algorithm thus considers whether the edge has 
been visited before and which other edges have already been visited. 
The edge-types are assigned accordingly, as depicted in Algorithm 1.
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Table 5
Comparison between similarity measures based on the identified desirable properties 
𝑃 1 − 𝑃10.

Metric Structure Similarity
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

LD yes yes yes yes no no no no no (|𝜎1| ⋅ |𝜎2|)
N-LD yes yes yes no no no no no no (|𝜎1| ⋅ |𝜎2|)
EMR yes yes yes yes no no yes no yes (|𝐹𝑖,𝑀𝑅 ∪ 𝐹𝑗,𝑀𝑅|)
CMR yes yes yes no no no no no yes (|𝐹𝑖,𝑀𝑅 ∪ 𝐹𝑗,𝑀𝑅|)
JMR yes yes yes yes no no no yes yes (|𝐹𝑖,𝑀𝑅 ∪ 𝐹𝑗,𝑀𝑅|)
EF yes yes yes no no yes no no yes (|𝐹𝑖,2 ∪ 𝐹𝑗,2|)
E1 yes yes yes yes yes no yes no yes (|𝐹𝑖,1 ∪ 𝐹𝑗,1|)
E2 yes yes yes yes no yes no no yes (|𝐹𝑖,2 ∪ 𝐹𝑗,2|)
E3 yes yes yes yes no no no no yes (|𝐹𝑖,3 ∪ 𝐹𝑗,3|)
C1 yes yes yes no yes no yes no yes (|𝐹𝑖,1 ∪ 𝐹𝑗,1|)
C2 yes yes yes no no yes no no yes (|𝐹𝑖,2 ∪ 𝐹𝑗,2|)
C3 yes yes yes no no no no no yes (|𝐹𝑖,3 ∪ 𝐹𝑗,3|)
J1 yes yes yes yes yes no no yes yes (|𝐹𝑖,1 ∪ 𝐹𝑗,1|)
J2 yes yes yes yes no yes no yes yes (|𝐹𝑖,2 ∪ 𝐹𝑗,2|)
J3 yes yes yes yes no no no yes yes (|𝐹𝑖,3 ∪ 𝐹𝑗,3|)
Algorithm 1 DFS to detect graph-features including length
Input: 𝐺(𝑉 ,𝐷) in the form of adjacency list 𝐴𝑑𝑗𝐿𝑖𝑠𝑡
Output: List of tuples (𝑊 ,N, 𝑒) with edge-type and length for all 𝑒 ∈
𝐺(𝑉 ,𝐷)

1: main() function
2: 𝑖 ← 0 ⊳ initialize counter
3: 𝑛𝑢𝑚𝐿𝑖𝑠𝑡(|𝑣|) ← 0 ⊳ initialize list with counters of vertex visits
4: 𝑟𝑒𝑐𝐿𝑖𝑠𝑡(|𝑣|) ← 0 ⊳ initialize list with vertices currently on recursion stack
5: for all 𝑣 ∈ 𝐴𝑑𝑗𝐿𝑖𝑠𝑡 do
6:  if 𝑛𝑢𝑚𝐿𝑖𝑠𝑡(𝑣) = 0 then dfs(𝑣) ⊳ apply recursive DFS function
7:
8: dfs() function
9: 𝑖 ← 𝑖 + 1, 𝑛𝑢𝑚𝐿𝑖𝑠𝑡(𝑣) ← 𝑖, 𝑟𝑒𝑐𝐿𝑖𝑠𝑡(𝑣) ← 1
10: for all 𝑤 ∈ 𝑎𝑑𝑗(𝑣) do ⊳ 𝑎𝑑𝑗(𝑣) is the list for 𝑣 ∈ 𝐴𝑑𝑗𝐿𝑖𝑠𝑡
11:  if 𝑛𝑢𝑚𝐿𝑖𝑠𝑡(𝑤) = 0 then dfs(w) ⊳ ⟨𝑣,𝑤⟩ is a sequence edge
12:  else if 𝑛𝑢𝑚𝐿𝑖𝑠𝑡(𝑤) > 𝑛𝑢𝑚𝐿𝑖𝑠𝑡(𝑣) then ⊳ ⟨𝑣,𝑤⟩ is a skip edge
13:  call BFS(𝑠𝑡𝑎𝑟𝑡 = 𝑣, 𝑒𝑛𝑑 = 𝑤) ⊳ derive length based on Algo. 2
14:  return (𝑡𝑦𝑝𝑒 = 𝑓𝑜𝑟𝑤𝑎𝑟𝑑, length, ⟨𝑣,𝑤⟩)
15:  else if 𝑛𝑢𝑚𝐿𝑖𝑠𝑡(𝑤) < 𝑛𝑢𝑚𝐿𝑖𝑠𝑡(𝑣) then ⊳ ⟨𝑣,𝑤⟩ is a choice edge
16:  call LCA(w,v) ⊳ derive length based on Algo. 3
17:  return (𝑡𝑦𝑝𝑒 = 𝑐𝑟𝑜𝑠𝑠, length, ⟨𝑣,𝑤⟩)
18:  else ⊳ ⟨𝑣,𝑤⟩ is a loop edge
19:  call BFS(𝑠𝑡𝑎𝑟𝑡 = 𝑤, 𝑒𝑛𝑑 = 𝑣) ⊳ derive length based on Algo. 2
20:  return (𝑡𝑦𝑝𝑒 = 𝑏𝑎𝑐𝑘, length, ⟨𝑣,𝑤⟩)
21:  𝑟𝑒𝑐𝐿𝑖𝑠𝑡(𝑣) ← 0

5.2.2. Step 2: Identifying the length of edge-types
While sequences only indicate a directly-follows relation between 

two consecutive activities, loops, skips, and choices can span over 
multiple activities. For example, the trace 𝜎1 = ⟨𝐴,𝐵,𝐷,𝐴, 𝐶,𝐷,𝐴,𝐷⟩

depicted in Fig.  1 contains a loop of length three, a skip of length one, 
and a choice of length one. These lengths are derived based on the first 
occurrence of the respective edge-types within the trace, i.e., the loop-
edge between 𝐷 and 𝐴 first occurs after the execution of ⟨𝐴,𝐵,𝐷⟩, thus 
it is assigned a length of three.

Since the length of a structural construct can be an important aspect 
for the comparison of traces, we combine the DFS with two other graph-
algorithms to derive this additional information. First, we use the BFS
algorithm [37] to identify the minimum number of steps required to 
get from one vertex 𝑎 ∈ 𝐴 to another vertex 𝑏 ∈ 𝐴 following the edges 
in a graph. Starting from a selected vertex 𝑎 ∈ 𝐴, BFS explores the 
neighbor vertices at the present depth before moving on to the vertices 
at the next depth level. This process continues until the target vertex 
𝑏 ∈ 𝐴 is found. The final depth indicates the minimum number of steps 
to get from 𝑎 to 𝑏. In our implementation, we use a queue data structure 
to keep track of the vertices that remain to be explored (cf. Algorithm 
2).
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Algorithm 2 BFS
Input: 𝐺(𝑉 ,𝐷) in the form of adjacency list 𝐴𝑑𝑗𝐿𝑖𝑠𝑡, start vertex a, end 
vertex b
Output: Minimum number of steps from a to b, list of all visited vertices

1: bfs() function
2: queueList ← (𝑎, 𝑠𝑡𝑒𝑝𝑠 = 0) ⊳ initialize queue
3: visitedList ← 0 ⊳ initialize list of visited vertices
4: while queueList not empty do
5:  currentVertex, steps ← last entry queueList
6:  if currentVertex not in visitedList then
7:  visitedList ← currentVertex
8:  if currentVertex = b then
9:  steps + sum(parallel activities in visitedList) ⊳ adjust length
10:  return steps, visitedList
11:  for all neighboringVertex of currentVertex ∈ 𝐴𝑑𝑗𝐿𝑖𝑠𝑡 do
12:  queueList ← (neighboringVertex, steps + 1)
13:  if neighboringVertex not in visitedList then
14:  visitedList ← (neighboringVertex, steps)

Algorithm 3 LCA
Input: 𝐺(𝑉 ,𝐷) in the form of adjacency list 𝐴𝑑𝑗𝐿𝑖𝑠𝑡, vertex a, vertex b
Output: Lowest-common ancestor of a and b, and the min number of steps

1: remove edge ⟨𝑎, 𝑏⟩ from AdjList
2: AdjList’ ← invert(AdjList)
3: LCA() function
4: v ← startVertex(AdjList’)
5: l1 = BFS(v, a) ⊳ derive list of visited vertices with min. steps based on 
Algo.2

6: l2 = BFS(v, b) ⊳ derive list of visited vertices with min. steps based on 
Algo.2

7: x ← firstCommonVertex(l1,l2)
8: return min number of steps between a and x, b and x

While the BFS can identify the length of loops and skips, for choices, 
it is necessary to first identify the start vertex of an alternative path. 
This can be solved based on the LCA algorithm [37]. As described 
by Algorithm 3, before applying the LCA the trace graph needs to be 
inverted such that all start vertices become the end vertices of the 
graph. The LCA algorithm is subsequently applied to find the lowest-
common ancestor of two given vertices 𝑎, 𝑏 ∈ 𝐴. The lowest-common 
ancestor is defined as the lowest vertex that has 𝑎 and 𝑏 as descendants.

5.2.3. Step 3: Aggregating the features
To leverage the identified high-level features in trace comparison, 

we propose six measures, shown in Table  7. The measures are based 
on two distinct measurement approaches: cosine similarity based on 
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Table 6
Example for calculating the similarity between 𝜎1 = ⟨𝐴,𝐵, 𝐶,𝐷,𝐸⟩ and 𝜎2 = ⟨𝐴,𝐵, 𝐶,𝐷,𝐸,𝐴, 𝐵, 𝐶,𝐷,𝐸⟩ with the parallel relations 
𝑅 = {𝐵||𝐶,𝐶||𝐷} based on the two measures Cg and Jg.
 M. Transformation Calculation  

 Cg 𝐹𝜎1 =
(𝑠𝑒𝑞𝑢.)

(𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙, 3)
(𝑙𝑜𝑜𝑝, 4)

⎡

⎢

⎢

⎣

1
1
0

⎤

⎥

⎥

⎦

𝐹𝜎2 =
(𝑠𝑒𝑞𝑢.)

(𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙, 3)
(𝑙𝑜𝑜𝑝, 4)

⎡

⎢

⎢

⎣

1
1
1

⎤

⎥

⎥

⎦

1 −
⃗𝐹𝜎1

⋅ ⃗𝐹𝜎2

‖

⃗𝐹𝜎1
‖‖

⃗𝐹𝜎2
‖

= 1 − 2
√

6
 

 Jg 𝐹𝜎1 = {(𝑠𝑒𝑞𝑢.), (𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙, {𝐵,𝐶,𝐷})} 𝐹𝜎2 = {(𝑠𝑒𝑞𝑢.), (𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙, {𝐵,𝐶,𝐷}), (𝑙𝑜𝑜𝑝, 4, ⟨𝐴,𝐸⟩)} 1 −
𝐹𝜎1

∩𝐹𝜎2

𝐹𝜎1
∪𝐹𝜎2

= 1
3

 

Table 7
Set of proposed trace similarity measures.
 Type Measure Label  
 
Vector-space emb.

Graph-based cosine similarity Cg  
 Aggregated cosine similarity Agg(C1,C2)  
 Aggregated graph-based cosine similarity Agg(C1,C2,Cg) 
 
Set comparison

Graph-based Jaccard similarity Jg  
 Aggregated Jaccard similarity Agg(J1,J2)  
 Aggregated graph-based Jaccard similarity Agg(J1,J2,Jg)  

vector-space embedding, and Jaccard similarity based on set compari-
son. To show that the structural properties P5–P7 can be addressed by 
the aggregation of different structural feature types, we consider the fol-
lowing combinations of feature types: (1) high-level structural features, 
(2) 1-grams and 2-grams, and (3) 1-grams, 2-grams and high-level 
structural features.

Graph-based cosine similarity (Cg) is calculated based on the identi-
fied edge-types with their length and the identified parallelism between 
activities with the cardinality of the respective sets of parallel activities 
(cf. Definition  2.10). Both types of features are encoded based on 
their frequency. Alternatively, graph-based Jaccard similarity (Jg) is 
calculated based on the identified directly-follows relations with the 
respective edge-type and length and the identified sets of parallel ac-
tivities. The number of edges of the type sequence are not considered, as 
they do not indicate any high-level structural feature, and are partially 
considered by the length of high-level structural features, as well as 
the directly-follows relations of traces. Furthermore, considering the 
number of sequences would bias the outcome towards the length of the 
traces. Nevertheless, traces that are strictly sequential, i.e., only contain 
edges of type sequence, should be considered as structurally similar. 
For this reason (sequ.) is added as an edge type (without considering 
length or frequency) to any trace that contains at least one edge of 
type sequence, i.e., an activity sequence longer than one, which is not 
a loop. An example for the calculation of Jg and Cg is provided in Table 
6 based on the two traces depicted in Fig.  2.

The aggregated measures, denoted by 𝐴𝑔𝑔(), are computed as the 
sum of individual similarity measures with uniform weighting applied. 
For example, 𝐴𝑔𝑔(𝐶1, 𝐶2) = 𝐶1 + 𝐶2 represents the aggregation of Co-
sine similarity values derived from 1-gram and 2-gram representations, 
as introduced in Section 4.2. This aggregation approach has already 
been applied in related studies (cf. Section 3.1.3).

In the following subsection, we show that the proposed measures 
better reflect the similarities and differences between traces based on 
structural features (P5-P7) than previous measures.

5.3. Formal comparison

To evaluate the identified similarity measures (cf. Table  7) with 
respect to their ability to consider structural features (P5–P7), we first 
calculate the respective similarity values between 𝜎0 and 𝜎3−𝜎8 (cf. Fig. 
1). The calculated similarity values are shown in Table  8. The results 
show that the novel measures better reflect structural similarities and 
differences between the traces than the measures from the literature 
(cf. Section 4.2).

Table  9 provides an overview of the proposed similarity measures 
with an indication of whether they adhere to the defined properties 
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(P1–P10). With regard to the metric properties (P1–P4) it can be stated 
that the measures based on cosine similarity generally do not adhere to 
triangle-inequality (P4) [34]. Measures based on Jaccard similarity, on 
the other hand, generally satisfy triangle-inequality (P4) even in their 
aggregated form [50].

Regarding the structure-related properties (P5–P7), it can be stated 
that Cg, Jg, and Agg(J1,J2,Jg) correctly reflect the high-level structural 
features (P7), which is a clear improvement compared to the measures 
in the previous Section 4.2. Furthermore, the proposed aggregations 
of feature types (i.e., Agg(C1,C2), Agg(C1,C2,Cg), Agg(J1,J2), and 
Agg(J1,J2,Jg)) successfully reflect multiple defined structural prop-
erties. Agg(C1,C2,Cg) and Agg(J1,J2,Jg) in fact reflect all defined 
structural properties (P5–P7).

Regarding the general similarity properties (P8–P10) it can be stated 
that only measures based on Jaccard similarity can be considered as 
submodular functions (P8), while both measures based on Jaccard 
similarity and cosine similarity consider similarities as well as dissim-
ilarities between the traces (P9). Regarding computational efficiency 
(P10), it can be stated that the additional calculations of the graph-
features based on Algorithm 1 do not add to the time complexity 
compared to the similarity measures considered in the previous Sec-
tion 4. Both DFS and BFS have a time complexity of (|𝐴|+ |𝐷|), while 
LCA can be computed in (ℎ), where ℎ represents the length of the 
longest distinct path between two vertices in 𝐺(𝐴,𝐷).

6. Evaluation

To evaluate the performance of the measures proposed in the pre-
vious section compared to the measures considered in Section 4 we 
perform an evaluation based on four synthetic event logs and four real-
life event logs. The performance is evaluated in terms of the accuracy 
with which the measures assess the structural similarity between traces 
in the respective event logs. Each trace thereby belongs to a unique 
class, with traces in the same class being more structurally similar to 
each other than to traces in a different class. To quantify the accuracy of 
the similarity measures, we apply three different evaluation measures. 
Overall, the evaluation seeks to answer two main questions: (1) can 
the proposed measures outperform alternative measures in terms of 
accuracy, and (2) can the considered high-level structural features 
(i.e., edge-types and parallelism) generally improve the accuracy of 
similarity measures.

The event logs and a Python implementation of the similarity 
measures and evaluation measures are available at:

https://github.com/promilab/InfoSysTraceSim.

6.1. Evaluation measures

Our evaluation of the similarity measures is based on three evalua-
tion measures proposed by Back and Simonsen [14]: Nearest Neighbor, 
Precision@k, and Triplet. These measures are well established in the 
literature on similarity metric learning [63,64]. Furthermore, Back 
and Simonsen [14] present a validation of these measures based on 
an extensive comparison of trace similarity measures. The proposed 
evaluation measures are deliberately selected to minimize confounding 
factors from downstream tasks such as process discovery [28], and 
trace clustering [1,2,41,44]. As discussed in Section 3, this enables 

https://github.com/promilab/InfoSysTraceSim


C. Schreiber et al. Information Systems 138 (2026) 102671 
Table 8
Calculated similarity values for the pairwise comparison between 𝜎0 and 𝜎3 −𝜎8, 
where 𝑠(𝜎0, 𝜎3) is considered as baseline. According to the defined properties P5-
P7, 𝑠(𝜎0, 𝜎4) should reflect an increase in the number of activities (P5), 𝑠(𝜎0, 𝜎5)
should reflect an increase in the number directly-follows relations (P6), and 
𝑠(𝜎0, 𝜎6−8) should reflect an increase in the number of edge-types (P7). Values 
that are less than or equal to 𝑠(𝜎0, 𝜎3) indicate a violation of one of the defined 
properties P5-P7 and are highlighted in gray.

𝑠(𝜎0 , 𝜎3) 𝑠(𝜎0 , 𝜎4) 𝑠(𝜎0 , 𝜎5) 𝑠(𝜎0 , 𝜎6) 𝑠(𝜎0 , 𝜎7) 𝑠(𝜎0 , 𝜎8)

Cg 0.000 0.000 0.000 0.553 0.423 0.423
Agg(C1,C2) 0.600 1.100 1.000 0.206 0.206 0.375
Agg(C1,C2,Cg) 0.600 1.100 1.000 0.759 0.629 0.798
Jg 0.000 0.000 0.000 0.667 0.667 0.667
Agg(J1,J2) 0.750 1.417 1.000 0.286 0.286 0.500
Agg(J1,J2,Jg) 0.750 1.417 1.000 0.952 0.952 1.167
Table 9
Comparison between similarity measures based on the identified desirable properties 𝑃1 −
𝑃 10.

Metric Structure Similarity
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Cg yes yes yes no no no yes no yes (|𝐹𝑖,2 ∪ 𝐹𝑗,2|)
Agg(C1,C2) yes yes yes no yes yes no no yes (|𝐹𝑖,2 ∪ 𝐹𝑗,2|)
Agg(C1,C2,Cg) yes yes yes no yes yes yes no yes (|𝐹𝑖,2 ∪ 𝐹𝑗,2|)
Jg yes yes yes yes no no yes yes yes (|𝐹𝑖,2 ∪ 𝐹𝑗,2|)
Agg(J1,J2) yes yes yes yes yes yes no yes yes (|𝐹𝑖,2 ∪ 𝐹𝑗,2|)
Agg(J1,J2,Jg) yes yes yes yes yes yes yes yes yes (|𝐹𝑖,2 ∪ 𝐹𝑗,2|)
a more direct evaluation of the validity of the similarity measures 
with regard to content validity (i.e., the extent to which the measures 
capture a broad range of structural features) and criterion validity 
(i.e., the degree to which the measures align with predefined trace 
classifications).

To evaluate the accuracy of the similarity measures, the evaluation 
measures compare the derived similarity values of the in-class data 
points with the similarity values of the out-of-class data points. A 
similarity measure receives a positive evaluation if the similarity values 
between data points within a class are high and the similarity values 
between data points belonging to different classes are low.

Based on this idea, the Nearest Neighbor measure calculates the ratio 
of data points whose nearest neighbor, i.e., the data point that is nearest 
based on some similarity measure, belongs to the same class and the 
data points whose nearest neighbor does not belong to the same class.

The Precision@k measure further extends this evaluation by calcu-
lating the ratio of in-class and out-of-class data points for the k-nearest 
data points. In accordance with [14], for this study we set 𝑘 = 10.

The Triplet measure provides an even more precise evaluation of 
similarity by considering for each data point all the distances between 
in-class and out-of-class data points. Given an anchor data point 𝑥, the 
measure calculates for each in-class data point 𝑦 the ratio of out-of-class 
data points 𝑧 with 𝑑(𝑥, 𝑦) < 𝑑(𝑥, 𝑧) to out-of-class data points 𝑧 with 
𝑑(𝑥, 𝑦) > 𝑑(𝑥, 𝑧).

6.2. Datasets

For the empirical evaluation of the similarity measures introduced 
in Sections 4 and 5, seven different event logs are considered. Table  10 
provides an overview of these logs, including four synthetic event logs 
(SynL1, SynL2, SynL3, SynL4) and four real-world event logs (WABO, 
PO, EyeT1, EyeT2).

These event logs are selected according to two main criteria. First, 
for the evaluation it is essential that the traces in the event logs 
can be classified according to some trace attribute. Furthermore, the 
traces should be equally distributed among the classes to increase the 
validity of the evaluation, i.e., if all traces belong to the same class, the 
evaluation measures would yield a value of one for every similarity 
measure. Secondly, trace classes should be distinguishable based on 
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their structural characteristics, i.e., activities, directly-follows relations, 
and edge-types, as defined by properties P5–P7 in Section 4. Especially, 
the ability to distinguish trace classes based on edge-types (P7) is 
important to evaluate whether the proposed graph-based approach 
introduced in Section 5.2 can improve the performance of similarity 
measures. For this reason, we first look at four simulated event logs 
containing the desired properties and then continue with real-world 
datasets.

6.2.1. SynL1, SynL2, SynL3, and SynL4.
These synthetic event logs are generated with the PLG tool [65]. The 

traces in the event logs can be clearly distinguished based on (a) edge 
types (loops, skips, or choice), (b) length of the edge types (short, or 
long) and (c) the set of activities (𝐴1 = {𝐴,… ,𝐻}, or 𝐴2 = {𝐾,… , 𝑅}). 
To test different scenarios for the application of similarity measures, 
we apply four different classifications of the traces, resulting in four 
different event logs. In SynL1 the traces are classified only according 
to the edge types, leading to three classes: loops, skips, and choices. 
In each class the traces additionally differ in terms of (b) the length of 
the edge types and (c) the set of activities involved. This scenario is 
closely related to the example provided in Fig.  1, since in some cases 
the affiliation of the traces with one class can only be detected based 
on the edge types.

In SynL2, the trace classes are additionally separated by the edge 
type length, leading to six classes (loops-short, loops-long, skips-short, 
skips-long, choices-short, choices-long). In each class the traces addi-
tionally differ in terms of (c) the set of activities involved. In this way, 
the similarity measures are additionally evaluated on the basis of their 
ability to distinguish between the length of the edge types.

In SynL3, the trace classes are separated by the edge types and the 
set of activities, also leading to six classes (loops-𝐴1, loops-𝐴2, skips-𝐴1, 
skips-𝐴2, choices-𝐴1, choices-𝐴2). In each class the traces additionally 
differ in terms of (b) length of the edge types. In this scenario, the 
effectiveness of the similarity measures is evaluated according to their 
ability to differentiate between edge types and distinct sets of activities.

In SynL4, an additional trace class is added to SynL1. This new 
class comprises traces that exhibit combinations of multiple edge types, 
resulting in four distinct classes: loops, skips, choices, and mixed. 
In each class the traces additionally differ in terms of (b) length of 
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Table 10
Overview of the event logs including the number of activities, number of traces, the minimum and maximum length of traces, number of classes, number of 
traces per class, class type and their origin. 
 Activity Trace Min Max Class T./C. Class Type Origin  
 SynL1 16 300 8 194 3 100 edge-type Simulation  
 SynL2 16 300 8 202 6 50 edge-type and length Simulation  
 SynL3 16 300 8 179 6 50 edge-type and activity Simulation  
 SynL4 16 320 8 202 4 80 edge-type and activity Simulation  
 WABO 465 350 1 110 5 70 process type Administration 
 PO 42 300 8 324 3 100 process type Administration 
 EyeT1 1194 349 27 1152 8 43–44 task type Eye tracking  
 EyeT2 1194 349 27 1152 2 174–175 task complexity Eye tracking  
the edge types and (c) the set of activities involved. Compared to 
SynL1, SynL4 presents a more realistic scenario, enabling the evalua-
tion of whether similarity measures can effectively identify traces that 
incorporate heterogeneous edge types.

6.2.2. WABO and PO.
These event logs were originally published for BPI Challenges 

2015 [66] and 2019 [67]. Both datasets are derived from real-world 
business processes. WABO consists of five sublogs coming from five 
separate municipalities in the Netherlands, documenting their adminis-
tration process for providing environmental permissions. PO documents 
a purchase order handling process of a large multinational company 
in the Netherlands, which can be classified into four types of flows. 
The classification of the traces in both cases is based on their process 
structure, making them suitable for our evaluation and allowing us 
to test whether graph-based features can also improve the similarity 
measurement of traces in the context of business processes.

6.2.3. EyeT1 and EyT2.
The two event logs EyeT1 and EyeT2 contain eye tracking data, 

collected during an experiment on process model comprehension [23,
24] using the eye tracking data collection tool EyeMind [68]. The 
data allows to analyze at which point in time during the experiment a 
person was looking at a specific process model element on a computer 
screen. This results in an event log, where each trace reflects the 
number and order of elements that a person looked at during a given 
comprehension task. Hence, the traces contain structural patterns, such 
as loops, skips, and choices, depending on the order in which a person 
looked at the different elements. 349 such traces could be recorded 
from 44 participants. The experiment is designed in such a way that 
each participant has to answer eight different comprehension tasks 
that can be divided into two complexity classes (low and high task 
complexity). In Schreiber et al. [24], the authors showed that the par-
ticipants exhibit different information search and integration behaviors 
depending on the given tasks and its complexity, which is also reflected 
in the recorded traces. We therefore create the two trace logs EyeT1 and 
EyeT2 to evaluate how well the similarity measures can differentiate 
(a) between traces belonging to the eight different task types (EyeT1) 
and (b) between traces belonging to the two different task complexity 
classes (EyeT2).

6.3. Sampling strategy

Due to the computational complexity of the evaluation measures, 
specifically the Triplet evaluation measure with (|𝐿|3), we restrict the 
number of traces per event log. This is in line with the comparative 
study on traces similarity measures by Back and Simonson [14]. While 
the eye tracking event logs (EyeT1, EyeT2) are sufficiently small for the 
evaluation, the synthetic event logs (SynL1, SynL2, SynL3, SynL4) and 
the event logs derived from real-world business processes (WABO, PO) 
require some additional sampling. To prevent a sampling bias, traces 
are sampled randomly. Furthermore, they are sampled in such a way 
that they are equally distributed among the classes, in order to ensure 
the effectiveness of the evaluation measures (cf. Section 6.2).
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6.4. Results

Fig.  4 provides an overview of the three calculated evaluation 
measures for the similarity measures in Section 4.2 and the novel 
similarity measures proposed in Section 5. Additionally, three similarity 
measures are included in the evaluation, each computed as the cosine 
similarity between vector representations learned using Trace2Vec [41] 
(as described in Section 3.1.2). These representations differ in dimen-
sionality, comprising vectors with 32 (T2V-32), 64 (T2V-64), and 128 
(T2V-128) features, respectively.

Looking at the Triplet, which is the most elaborate evaluation mea-
sure included in the evaluation (cf. Section 6.1), it can be stated that 
the novel distance measures, marked in gray, consistently outperform 
the other similarity measures, except for the event log EyeT1. This ob-
servation is partially confirmed by Nearest Neighbor and Precision@10.

It should be noted that, in particular, the commonly applied LD 
and N-LD (cf. Section 3) are consistently outperformed by the other 
measures. The same holds true for the measures based on Trace2Vec 
(T2V-32, T2V-64, and T2V-128). It is also worth mentioning that the 
similarity measures based on 2-gram (C2 and J2) consistently perform 
well across the evaluation measures, especially for Precision@10.

It can also be stated that the aggregation of separate similarity 
measures leads in several cases to an improvement of the similarity 
evaluation (indicated by the underlined values in Fig.  4). This is 
particularly true for Agg(C1,C2) in the case of the two administrative 
processes (WABO and PO). Again looking at the Triplet, the similarity 
measures involving edge-type features perform in particular well with 
respect to the synthetic event logs (SynL1, SynL2, SynL3, SynL4) and 
EyeT2. This is also partially confirmed by Nearest Neighbor.

Regarding evaluation question 1, it can be stated that in terms of 
accuracy, the proposed measures (Cg, Agg(C1, C2), Agg(C1,C2,Cg), 
Jg, Agg(J1, J2), Agg(J1,J2,Jg)) outperform the other trace similarity 
measures with respect to the synthetic event logs (SynL1, SynL2, SynL3, 
and SynL4) based on all three evaluation measures, except for SynL4 
based on Precision@10. Furthermore, the aggregation of 1-gram and 2-
gram (Agg(C1,C2) and Agg(J1,J2)) consistently outperform the other 
trace similarity measures on the business process event logs (WABO 
and PO) across all four evaluation measures, except for PO based on 
Precision@10.. For the user behavior processes (EyeT1 and EyeT2) 
the measures J3 and Jg (excluding parallelism) achieved the best 
performance with respect to the Triplet evaluation measure.

Regarding evaluation question 2, it can be stated that the high-
level features (edge-types and parallelism) lead to improvements in 
the similarity evaluation in several cases. For the synthetic event logs 
(SynL1, SynL2, SynL3, and SynL4) this is especially true with regard 
to Agg(J1,J2,Jg) when considering Triplet. Furthermore, for the busi-
ness process PO the additional consideration of high-level features 
(including parallelism) could even improve similarity evaluation when 
calculating Agg(J1,J2,Jg). Only for the user behavior processes (EyeT1 
and EyeT2) no improvement could be observed, even though Jg (ex-
cluding parallelism) yielded the highest performance with respect to 
the Triplet evaluation measure for EyeT2.
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Fig. 4. The tables show the calculated evaluation measures for the similarity measures on the basis of eight different event logs. The proposed similarity measures 
based on the formal comparison in Section 5 are marked in gray. Values that indicate best-performing similarity evaluations are marked in bold, performance 
improvement due to aggregations are underlined.
7. Discussion

The results confirm the comparative analysis in Sections 4.2 and
5.3. The evaluation across all event logs shows that the aggregation 
of distinct similarity measures can substantially improve the similarity 
evaluation between the traces. The evaluation further shows that the 
consideration of high-level structural features can substantially improve 
the similarity evaluation between traces in several cases, and there-
fore provides a validation of the measurement approach proposed in 
Section 5.
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Furthermore, the identified properties P1–P10 (cf. Table  3) help 
to better evaluate trace similarity measures. More specifically, P5-P7 
provide insights on the content validity of similarity measures, i.e., to 
which extent they reflect different structural features. This aspect has 
been largely neglected by existing studies on trace similarity measures.

The empirical evaluation in Section 6 shows that the structural 
distinction between traces on the basis of activities (P5), directly-
follows relations (P6), and high-level structural features (P7) appears 
to be particularly valuable for (unstructured) behavioral processes, 
as well as (structured) business processes. In practice the proposed 
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similarity measures could help to differentiate more nuanced structural 
similarities and differences between traces, which, subsequently might 
improve the performance of downstream tasks, such as anomaly detec-
tion and trace clustering. Moreover, the proposed aggregated measures 
potentially provide more transparency, as similarities and differences 
can be attributed to specific structural features. However, it should 
be noted that the aspect of transparency has not been empirically 
examined within the scope of this study.

From a research perspective, our study suggests that an assessment 
of trace similarity measures should not merely rely on empirical com-
parison, but should also consider formal properties of these measures 
to gain a better understanding of what trace features are respectively 
considered.

Integrating high-level structural features into the similarity compar-
ison between traces opens up a variety of new opportunities for future 
research. It allows for investigating the role of structural features in 
more detail and could therefore potentially improve a variety of process 
mining techniques, such as trace clustering, conformance checking, 
event abstraction, event log sampling, change point detection, and 
variety analysis (cf. Section 1).

The empirical evaluation further shows that there is not a single 
similarity measure dominating the others. Rather, it is the case that 
event logs require different similarity measures according to their 
structural features. One way to solve this issue is to apply aggregation 
and assign different weights to the distinct measures, focusing on 
different features. This can, for example, be solved by using domain 
knowledge to assign appropriate weights. Another approach would be 
to automatically assign weights based on feature learning [41,63,64].

When analyzing user behavior through data, e.g., based on eye 
tracking, edge types can provide better differentiation between traces 
that exhibit various behavioral patterns, such as repetitive actions, 
skipping, or choices. This differentiation can, for example, be useful in 
identifying whether a user is searching for information or integrating 
it [23,24].

7.1. Limitations

The evaluation stresses some limitations of the applied evaluation 
measures. Nearest Neighbor and Precision@10 only consider a small 
number (respectively two and ten) of the most similar data points 
within a class, thereby ignoring the similarity between the rest of the 
class’s data points. This also explains the relative similarity of the 
outcomes in comparison to Triplet, which offers greater distinction 
among the considered similarity measures (cf. Fig.  4).

Moreover, due to the computational complexity of the evaluation 
measure Triplet (with (|𝐿|3)) the evaluation contains only event logs 
with a relatively small number of traces. This introduces some limita-
tion regarding the generalizability of the results. However, this concern 
is partially mitigated by the diversity of event logs included in the eval-
uation, spanning a wide range of structural trace characteristics based 
on synthetic processes, eye tracking, and real-world business processes.

Additionally, there exist some validity risk from the applied sam-
pling of the synthetic event logs (SynL1, SynL2, SynL3) and the event 
logs derived from real-world business processes (WABO, PO). This 
risk is mitigated by the employed sampling strategy, i.e., traces were 
randomly sampled in such a way that they are equally distributed 
among the trace classes.

A further potential limitation arises from the extraction of the 
edge types based on the transformation of the traces into a graph 
representation, which inevitably leads to some abstraction of the pro-
cess behavior. So far, we have, for example, not considered relative 
frequencies of the occurring sequences in the traces, which could lead 
to some bias in the pairwise trace comparison. In future work, graph-
based features could be weighted according to their relative frequency, 
thereby emphasizing the stochastic properties of the traces [6].
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Similarly, aggregating activities into sets of parallel activities based 
on causal relations (cf. Definition  2.10) introduces an abstraction of 
the trace structure. For example, when considering the trace 𝜎1 =
⟨𝐴,𝐵, 𝐶,𝐷,𝐸⟩ with 𝑅 = {𝐵‖𝐶,𝐶‖𝐷} (as shown in Fig.  2), {𝐵,𝐶,𝐷}
is defined as a set of parallel activities within 𝜎1, even though no 
direct parallel relation exists between 𝐵 and 𝐷, i.e., the information 
regarding the causality between 𝐵 and 𝐷 is lost. Similarly, the causality 
between 𝐵 and 𝐷 is ignored for the traces 𝜎2 = ⟨𝐴,𝐶, 𝐵,𝐷,𝐸⟩ and 𝜎3 =
⟨𝐴,𝐵,𝐷, 𝐶,𝐸⟩. Addressing this limitation would require refining the no-
tion of a vertex in the trace graph (cf. Definition  2.11) to represent more 
complex parallel structures than simple sets of activities. Nevertheless, 
this abstraction is arguably reasonable, in order to detect additional 
high-level structural features, such as loops, skips, and choices, which 
is for example not possible based on instance graphs [17,19].

Furthermore, deriving parallelism from causal relations between 
activities is sensitive to noise in the event log, which may intro-
duce incorrect directly-follows relations. A common mitigation strategy 
is to apply data pre-processing techniques to filter out noisy traces 
before deriving parallelism between activities [17,19]. An alterna-
tive approach would be to consider partially ordered traces, assuming 
correctly recorded timestamps [58].

Finally, certain similarity measures proposed in the literature,
specifically optimal alignments [14] and generic edit distance [44], 
were excluded from the comparison due to their computational infea-
sibility when applied to the eye tracking data. This limitation arises 
from the considerable length of these traces and the increased number 
of distinct activities involved.

8. Conclusion and future work

In this paper, we show the relevance of different structural features 
for the measurement of the similarity between two traces. We propose a 
novel approach to extract additional high-level structural features from 
the traces, reflecting loops, skips, choices, and parallelism. We further 
propose a set of novel similarity measures, which incorporate these 
structural features. The formal comparison in Section 5.3 and the eval-
uation in Section 6 show that these features can improve the similarity 
measurement, without an increase in computational time complexity.

As future work, we plan to further extend the proposed similarity 
measures to incorporate additional process perspectives, such as re-
sources or data. For this purpose, the suggested graph-based approach 
could be employed on event knowledge graphs as detailed in [69], 
which encompass different process perspectives beyond their structural 
properties.

Furthermore, it would be interesting to investigate how the iden-
tified structural trace features can improve the training of neural 
networks and thus improve subsequent tasks, such as similarity mea-
surement [41].
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