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Abstract

KANECS is a 3D multigroup neutronics code based on the Simplified Spherical Harmonics
(SPN) approximation and the Continuous Galerkin Finite Element Method (CGFEM). In
this work, the code is extended to solve the time-dependent neutron kinetics by imple-
menting a fully implicit backward Euler scheme for the neutron transport equation and
an implicit exponential integration for delayed neutron precursors. These schemes ensure
unconditional stability and minimize temporal discretization errors, making the method
suitable for fast transients. The new formulation transforms each time step into a transient
fixed-source problem, which is solved efficiently using the GMRES solver with ILU pre-
conditioning. The kinetics module is validated against established benchmark problems,
including TWIGL, the C5G2 MOX benchmark, and both 2D and 3D mini-core rod-ejection
transients. KANECS shows close agreement with the reference solutions from well-known
neutron transport codes, with consistent accuracy in normalized power evolution, spatial
power distributions, and steady-state eigenvalues. The results confirm that KANECS
provides a reliable and accurate framework for solving neutron kinetics problems.

Keywords: time-dependent neutron transport; SPN approximation; finite element method

1. Introduction
Transient analysis in nuclear reactors [1] is essential for safe operation, as it enables

evaluation of reactor behavior under accident conditions and provides insight into how
the system responds to sudden perturbations. Such transients include reactivity insertions,
steam line break, or control rod movements, all of which can lead to rapid changes in the
neutron population and power distribution. Therefore, accurate prediction of reactor power
evolution determines whether safety limits are exceeded, whether structural damage may
occur, and what other consequences may arise. The ability to perform realistic transient
simulations is thus an essential part of reactor safety assessment and design verification.

The nuclear transient simulations rely on modeling the time-dependent neutron-
kinetics transport equation, which predicts the evolution of the neutron population. To solve
this equation, various advanced methods have been developed to approximate its solution.
Currently, two approaches [2] are used: Monte Carlo and deterministic methods. Monte
Carlo simulations have the advantage of treating very complex three-dimensional geome-
tries without homogenization and of handling the neutron energy spectrum in continuous
form. This leads to highly accurate, high-fidelity solutions that can serve as reference calcu-
lations. However, such accuracy comes at a high computational cost. Even on massively
parallel high-performance computing, fully time-dependent Monte Carlo simulations are
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limited to very short intervals of real reactor time, often just a few seconds [3]. As a result,
they cannot yet be considered practical for the full core transient analysis.

In contrast, deterministic methods provide a more attractive balance between accuracy
and computational efficiency. Deterministic solvers are therefore faster and more practical
for transient analysis [4] when compared to Monte Carlo methods. Among the available
approaches, the Simplified Spherical Harmonics SPN method [5–7] has emerged as a
worthy option. Compared with the traditional diffusion approximation, SPN achieves
superior accuracy in models with strong heterogeneities and high neutron leakage [5],
while remaining within a reasonable computational time. This makes it a competitive
method for transient applications where both accuracy and performance are critical.

Building on this framework, the Karlsruhe Neutronic Core Simulator (KANECS) [8]
has been developed at the Karlsruhe Institute of Technology (KIT) as a multigroup SPN

neutron transport code. KANECS is based on the Continuous Galerkin Finite-Element
Method (CGFEM) [9], which provides accurate spatial resolution and robust stability,
enabling the modeling of three-dimensional Cartesian reactor geometries. In earlier work,
KANECS demonstrated satisfactory results on some steady-state benchmark problems [8],
confirming the confidence in its spatial–angular discretization and multigroup treatment
for modeling nuclear reactors.

Motivated by these results, the code has recently been extended to include time-
dependent capabilities in order to simulate reactor kinetics and transient behavior. In the
present work, the transient SPN equations are integrated using a fully implicit backward
Euler time discretization [10]. This widely used approach transforms the original problem
into a sequence of transient fixed-source problems, which can then be efficiently solved
with a similar steady-state solver. In addition, the delayed neutron precursor equations are
integrated using an implicit–exponential scheme to ensure consistent capture of delayed
neutron contribution. The overall method yields a first-order, unconditionally stable
scheme, making it particularly well-suited for fast transients in which significant changes
in reactor conditions occur over timescales.

KANECS is an in-house deterministic neutron transport code developed for nuclear
reactor analysis employing high spatial–angular resolution. Although the neutron kinetics
equations employed in this work are well established and implemented in several mature
neutron core simulator codes, these tools are typically subject to specific access constraints.
In this context, the development of KANECS supports the maintenance of independent
in-house expertise and methodological know-how, and is intended to complement existing
codes by generating additional reference solutions for verification studies. The present work
addresses the implementation of a fully implicit transient neutron kinetics capability within
this framework through code-to-code comparisons against established reference tools; the
objective is not to introduce a new neutron kinetics formulation, but to rigorously verify the
time-dependent SPN implementation in KANECS using well-known benchmark problems.

The paper is organized as follows. Section 2 describes the derivation of the time-
dependent SPN equations and presents the integration within the KANECS framework.
Section 3 presents numerical results for a set of widely used benchmark problems to
evaluate accuracy and robustness, enabling thorough verification. Finally, a summary,
including conclusions and future research perspectives, is provided in Section 4.

2. Methodology
This section presents the numerical treatment of the time-dependent neutron transport

equation. First, the Boltzmann and precursor equations are introduced, along with their
temporal discretization, where the backward Euler method is used for the neutron flux,
and an implicit–exponential approach is employed for the precursors. The equations are
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then reformulated using the Simplified Spherical Harmonics (SPN) approximation and the
Continuous Galerkin Finite Element method, resulting in a system of coupled algebraic
equations that preserves the structure of the steady-state formulation while enabling
transient integration. Finally, the KANECS framework is described, along with the new
algorithm developed for transient analysis, including the assembly of the time-dependent
operators and the solution strategy.

2.1. Multigroup Time-Dependent Neutron Transport Equation

The transient analysis in this work begins with the multi-group, time-dependent
neutron transport equation for the angular flux ψg(r, Ω, t) of the energy group g, defined
for a multiplicative medium without an external source and under the assumption of
isotropic scattering, as written in Equation (1), and it is coupled with the delayed neutron
precursor equations of the precursor families Np, provided by Equation (2).

1
vg

∂ψg(r, Ω, t)
∂t

+ Ω·∇ψg(r, Ω, t) + Σtg ψg(r, Ω, t)

=
G

∑
g′=1

Σsg′→g
ϕg′(r, t) + (1 − βtot)χgp

G

∑
g′=1

νΣ fg′
ϕg′(r, t)

+
Np

∑
i=1

χgd,i λi Ci(r, t); g = 1, . . . G

(1)

∂Ci(r, t)
∂t

= βi

G

∑
g′=1

νΣ fg′
ϕg′(r, t)− λi Ci(r, t); i = 1, . . . Np (2)

where
vg: Neutron speed of group g,
Σx: Macroscopic neutron cross-section of type x, t: total; f: fission; s: scattering,
ν: Average number of neutrons emitted per fission,
ϕg: Neutron scalar flux,
χgp : Prompt fission spectrum of energy group g,
βtot: Delayed neutron total fraction,
χgd,i : Delayed fission spectrum of energy and precursor groups g, i,
λi: Delayed neutron precursor decay constant group i,
Ci: Delayed neutron precursor density group i,
βi: Delayed neutron fraction group i

For the time discretization of the precursor, Equation (2) is integrated into the inter-
val [tk, tk+1], where ∆tk is the time step, the implicit–exponential approach is applied,
from which it is assumed that the fission source varies slowly over each timestep. Un-
der this assumption, the precursor decay term can be integrated exactly, resulting in the
delayed neutron precursor as expressed in Equation (3).

Ctk+1
i (r) = e−λi∆tk Ctk

i (r) +
βi
λi
(1 − e−λi∆tk )

G

∑
g′=1

νΣtk+1
fg′

ϕ
tk+1
g′ (r); i = 1, . . . Np (3)

Subsequently, the time-dependent neutron transport equation is discretized over the same
time interval [tk, tk+1] using the fully implicit backward Euler method [10], yielding the
equation at tk+1. By substituting the precursor concentration from Equation (3) into this
discretized neutron transport equation, Equation (4) is obtained, as shown below.
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Ω·∇ψ
tk+1
g (r, Ω) + (

1
vg∆tk

+ Σtk+1
tg

)ψ
tk+1
g (r, Ω) =

G

∑
g′=1

Σtk+1
sg′→g

ϕ
tk+1
g′ (r)

+ [(1 − βtot)χgp +
Np

∑
i=1

χgd,i βi (1 − e−λi∆tk )]
G

∑
g′=1

νΣtk+1
fg′

ϕ
tk+1
g′ (r)

+
Np

∑
i=1

χgd,i λi e−λi∆tk Ctk
i (r) +

1
vg∆tk

ψ
tk
g (r, Ω); g = 1, . . . G

(4)

From these equations, it can be observed that if ψ0
g and C0

i are provided by the initial
conditions; then, the solution can be obtained over the entire time domain.

2.2. Time-Dependent Simplified Spherical Harmonics Formulation

The time-dependent SPN equations preserve the same structure as the formulations
introduced in Equations (3) and (4). The procedure for applying the SPN method, together
with the CGFEM, to the time-dependent structure follows a similar approach to that
for the steady-state structure, with a detailed derivation described in [8]. Building on
this foundation, the extended SPN time-dependent matrix formulation is presented in
Equation (5) (the introduced notations are given in Appendix A). The resulting semidiscrete
system yields a set of diffusion-like second-order differential equations, which can be
solved using similar methods to those employed for the neutron diffusion equation.

V ∂

∂t
U−∇ ·D∇U+AU = FU+C (5a)

∂

∂t
Ci = RiΦ0 − λiCi; i = 1, . . . Np (5b)

Here, U denotes the stacked vector of physical flux moments, Ci the delayed neutron
precursor concentration density of group i, Ri the precursor production, and Φ0 the zeroth
moment of the neutron flux. With respect to the matrices, D represents the effective
diffusion matrix, A the absorption matrix, F the fission production matrix, V the neutron
velocity matrix, and C the precursor term.

For the spatial discretization, the CGFEM is employed, a well-established method
based on a weak formulation of the differential equations that provides numerical
stability [11] since the shape functions ensure continuity across element boundaries. In this
technique, the neutron flux Φ and the concentration of precursors C are estimated in
Equation (6) as the sum of Lagrange polynomial basis functions N and multiplied by
unknown expansion coefficients (Φ̃, Ci), where Ndo f s corresponds to the number of degrees
of freedom per element. It is worth noting that increasing the polynomial degree of the
shape functions enhances the spatial accuracy of the solution; however, this improvement
comes at a higher computational cost due to the large number of degrees of freedom in the
elemental matrices.

Φ ≈
Ndo f s

∑
j=1

NjΦ̃j; Ci ≈
Ndo f s

∑
j=1

NjCi,j (6)

As a consequence, matrices from Equation (5) can be constructed into local FEM oper-
ator form, as shown in Equation (7), where Ωc represents the reactor core subdomain,
∂Ωc denotes the subdomain surfaces of the reactor boundary, and Nc is the total number of
partitioned cells.
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Ĥnn =
Nc

∑
c=1

Dnn

∫
Ωc

∇Ni · ∇Nj dV −Dnn

∫
∂Ωc

Ni∇Nj · n̂ dS +Ann

∫
Ωc

NiNj dV (7a)

Ĥnm =
Nc

∑
c=1

Anm

∫
Ωc

NiNj dV m ̸= n (7b)

F̂nm =
Nc

∑
c=1

Fnm

∫
Ωc

NiNj dV (7c)

V̂nm =
Nc

∑
c=1

Vnm

∫
Ωc

NiNj dV (7d)

Ĉn =
Nc

∑
c=1

Cn

∫
Ωc

NiNj dV (7e)

Finally, the weak formulation with implicit time discretization yields the following algebraic
linear system, as shown in Equation (8). At this point, the equation becomes a transient
fixed-source problem at each time step, where the spatial domain boundaries, the Marshak
vacuum, and reflective boundary conditions are employed as described in [8]. For the
initial state, a steady-state calculation is performed to obtain the initial values of the neutron
flux, which, in turn, determine the initial densities of the delayed neutron precursor groups,
allowing the transient calculation to be performed in KANECS.

(
1

∆tk
V̂tk+1 + Ĥtk+1 − F̂tk+1)Utk+1 = Ĉtk +

1
∆tk

V̂tk Utk (8a)

C tk+1
i = C tk

i e−λi∆tk +
1 − e−λi∆tk

λi
RiΦ

tk+1
0 ; i = 1, . . . Np (8b)

The time-dependent neutron kinetics equations may be solved using a variety of
numerical strategies. In the present work, KANECS employs a multigroup SPN angular ap-
proximation combined with a fully implicit time integration scheme. Compared to explicit
or semi-implicit formulations, which may become unstable or require restrictive time-step
limitations for stiff transient problems, the fully implicit approach provides unconditional
numerical stability and enables robust treatment of reactivity-driven transients. With re-
spect to angular discretization, high-fidelity approaches such as discrete ordinates (SN) [12]
or the method of characteristics (MoC) [2] can achieve high accuracy but are typically
associated with substantial computational cost, particularly for time-dependent and high-
resolution reactor simulations. The SPN approximation offers a compromise between
transport fidelity and computational efficiency, retaining improved leakage and hetero-
geneity modeling compared to diffusion theory while avoiding the angular complexity of
full transport methods. Consequently, the combination of a fully implicit formulation with
the SPN approximation provides a balanced and robust framework for time-dependent
neutron kinetics simulations, suitable for high-resolution forward reactor analysis.

2.3. KANECS Framework

The KANECS code framework [8] is developed using a mix of FORTRAN and C++
languages. KANECS is built on top of three main scientific computing libraries deal.II [13],
PETSc [14], and SLEPc [15]. The deal.II finite-element library provides all the frameworks
necessary for solving partial differential equations (PDEs), including mesh generation,
finite-element coefficients, and degree of freedom management. In the KANECS code,
deal.II computes the global indices and the continuous finite-elemental local matrix, which
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will be assembled into the global operators. For the resulting global operators, which
are typically large and sparse for the SPN and CGFEM discretizations, the PETSc library
plays a key role in solving the algebraic system, as it offers scalable vector and matrix data
structures (CRS and matrix-free formats) along with Krylov subspace iterative methods and
preconditioner techniques. Finally, for the steady-state criticality calculations, the neutron
transport equation is transformed into an eigenvalue problem as Equation (9); hence,
the SLEPc library supports eigensolvers, such as the Power Method and the Krylov-Schur
method, to obtain solutions for the neutron flux and the effective multiplication factor (ke f f ).

Ĥu =
1

ke f f
F̂u (9)

The time-dependent solution algorithm in KANECS first involves reading the input data
(geometry and cross-sections) and then solving the steady-state solution from Equation (9).
This step provides the initial flux distribution and the effective multiplication factor; then,
in order to make the system critical, the fission term νΣ f is divided by ke f f . Subsequently,
the input kinetic data (delayed neutron fractions (βi), precursor decay constants (λi),
and delayed spectra (χgd,i ) ) are read. Later on, the initial delayed neutron precursors source
is calculated as Equation (10).

C0
i =

Ri
λi

Φ0
0; i = 1, . . . Np (10)

Thereafter, the transient perturbations are applied (cross-sections updated at tk+1), the right-
hand side (RHS) at tk, and the time-dependent transport matrix operator “T” (left-hand
side) at tk+1 from Equation (8a) are assembled. The resulting linear system is then solved
employing the Generalized Minimal Residual (GMRES) method with the Incomplete LU
(ILU) preconditioner provided by PETSc. Afterwards, the solution for the tk+1 flux is
obtained, and a post-processing step is performed, generating a VTK file containing the
flux and power distributions at the current time. Finally, the precursors source from
Equation (8b) are updated at tk+1, and this procedure is successively repeated until all time
steps are swept and is represented in the flowchart in Figure 1.

Get the steady-state
solution

Make sigma fission critical

Read kinetic parameters

Calculate initial precursors
source (t0)

Calculate the XS at (tk+1)

Calculate RHS vector at
(tk)

Assembly the transport
operator (T) at (tk+1)

Solve with GMRES (Tx=b)

Update the precursors
source at (tk+1)

Has swept all the time
step?

Yes

No

Start

Time-dependent
solution?

Yes No
End

Figure 1. KANECS time-dependent algorithm.
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3. Numerical Results
For the KANECS verification, three widely used transient benchmark problems were

studied, including the TWIGL benchmark, the C5G2 MOX benchmark, and a homoge-
neous rodded-assembly ejection transient (mini-core problem). The KANECS simulations
are performed using an SP3 approximation and a finite element polynomial of degree 2.
In addition, the results are calculated using convergence tolerances of 10−6 for ke f f and
10−8 for the GMRES method. The time-step size for all transients is fixed at ∆t = 10−3 s.
Finally, all calculations were executed on an Intel Core i9-12900 CPU @ 2.40 GHz, 32 GB
RAM, running on Ubuntu GNU/Linux 24.04.2 LTS.

3.1. TWIGL Benchmark

The TWIGL benchmark [16] is a two-dimensional reactor composed of three fuel
materials with two energy groups based on diffusion theory. The geometry has been
simplified with a quarter-core symmetry, and the material distribution and boundary
conditions are illustrated in Figure 2. The spatial discretization employs a mesh with
8 cm × 8 cm nodes. The detailed material on neutron cross-sections (originally formulated
for diffusion-based codes, the equivalent transport ones were calculated) and neutron
delayed data are provided in Tables 1 and 2. The steady-state solution is presented in
Table 3, where the result is compared [17] against other well-known deterministic codes,
MPACT [18] and DeCART [19], showing excellent agreement with differences of less than
8 pcm.

The transient consists of a material change perturbation in material 1, as described
in Table 4. The transient is followed for 0.5 s. The normalized power throughout the
transient analysis is shown in Figure 3. As shown, the power follows the behavior expected
from the perturbation changes and overlaps with the reference values [17], where the
power increases up to its maximum value at 0.2 s and then decreases as a result of the
linear material change, reaching its minimum value at 0.4 s. Finalizing, by returning to
its initial condition, the power recovers its original value. Additionally, Table 5 presents
the region-averaged normalized pin power comparison, in which KANECS agrees well
with MPACT and DeCART results, with errors of less than 0.04%. Finally, Figure 4 displays
the normalized power distribution in the steady-state, and at the transient, it reaches its
maximum value.

Table 1. Neutron cross-section data (cm−1) and velocities (cm/s) for the TWIGL benchmark.

Material g Σtg Σsg→g Σsg→g′ νΣ fg vg

1, 2 1 0.23810 0.21810 0.01000 0.007 1.0 × 107

2 0.83333 0.00000 0.68333 0.200 1.0 × 105

3 1 0.25641 0.23841 0.01000 0.003 1.0 × 107

2 0.66667 0.00000 0.61667 0.060 1.0 × 105

4 1 0.23810 0.21810 0.01000 0.007 1.0 × 107

2 0.81389 0.00000 0.66739 0.200 1.0 × 105

5 1 0.23810 0.21810 0.01000 0.007 1.0 × 107

2 0.85277 0.00000 0.69927 0.200 1.0 × 105

χ1p = 1.00, χ2p = 0.00.

Table 2. Delayed neutron data for the TWIGL benchmark.

i 1

βi 0.0064
λi(s−1) 0.08

χ1d,i = 1.00, χ2d,i = 0.00.
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Table 3. Effective multiplication factors for the TWIGL benchmark.

Code KANECS MPACT DeCART

ke f f 0.91609 0.91601 0.91605
∆ke f f – 8 pcm 4 pcm

Table 4. Transient perturbation for the TWIGL Benchmark.

Time (s) Perturbation

0.0 → 0.2 Linear change: material 1 to 4
0.2 → 0.4 Linear change: material 4 to 5
0.4 → 0.5 Step change: material 5 to 1

Figure 2. 2D TWIGL reactor configuration.

Figure 3. Normalized power results for the TWIGL benchmark.

Table 5. Regional power comparison for the TWIGL benchmark.

Time (s) Region KANECS MPACT Diff. (%) DeCART Diff. (%)

1 1.5700 1.5699 0.01 1.5698 0.01
0.0 2 1.9937 1.9935 0.01 1.9934 0.02

3 0.4505 0.4506 −0.02 0.4507 −0.04

https://doi.org/10.3390/jne7010012
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Table 5. Cont.

Time (s) Region KANECS MPACT Diff. (%) DeCART Diff. (%)

1 1.5938 1.5937 0.01 1.5936 0.01
0.1 2 1.9818 1.9815 0.02 1.9815 0.02

3 0.4489 0.4491 −0.04 0.4491 −0.04
1 1.6184 1.6183 0.01 1.6182 0.01

0.2 2 1.9692 1.9690 0.01 1.9689 0.02
3 0.4474 0.4475 −0.02 0.4476 −0.04
1 1.5364 1.5363 0.01 1.5362 0.01

0.3 2 2.0111 2.0109 0.01 2.0108 0.01
3 0.4525 0.4526 −0.02 0.4527 −0.04
1 1.5256 1.5255 0.01 1.5255 0.01

0.4 2 2.0167 2.0165 0.01 2.0164 0.01
3 0.4531 0.4533 −0.04 0.4533 −0.04
1 1.5700 1.5699 0.01 1.5698 0.01

0.5 2 1.9937 1.9935 0.01 1.9934 0.02
3 0.4505 0.4506 −0.02 0.4507 −0.04

Figure 4. Normalized power distribution for the TWIGL benchmark.

3.2. C5G2 MOX Benchmark

The C5G2 MOX transient benchmark [20] is a two-dimensional configuration based on
a variant of the C5G7 [21]. Although it is a simplified version, it provides a more realistic
reactor configuration, as it still exhibits a strong spatial gradient due to the UO2-MOX
interfaces, making the diffusion approximation inadequate. The geometry configuration,
including material distribution and boundary conditions, is shown in Figure 5. As can be
observed, the core configuration consists of 16 square fuel assemblies (UO2 and MOX types)
surrounded by a reflector region, each with a side length of 21.42 cm. Each fuel assembly
comprises a 17 × 17 square, homogenized pin cells of side length 1.26 cm. The arrangement
of each type of fuel assembly is represented in Figure 6. For the spatial discretization, a pin
mesh with a 1.26 cm × 1.26 cm grid is used.

Table 6 contains the two energy group neutron cross-sections for each material. In ad-
dition, the detailed specifications of the eight groups of delayed neutrons are given in [21],
excluding the delayed neutron spectra, as they were collapsed into two groups; therefore,
they are considered equivalent to the prompt spectrum for each precursor. The effective
multiplication factor obtained, along with its comparison [22] with the deterministic FEMF-
FUSION [7] and PARCS [23] codes, is reported in Table 7, with deviations below 10 pcm
and 34 pcm, respectively.

https://doi.org/10.3390/jne7010012
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Figure 5. 2D C5G2 MOX core configuration.

Figure 6. Fuel assemblies configuration for the C5G2 MOX core.

Table 6. Neutron cross-section data (cm−1) and velocities (cm/s) for the C5G2 MOX benchmark.

Material g Σtg Σsg→g Σsg→g′ νΣ fg vg

Moderator 1 0.611 0.560 0.050 0.000 7.73247 × 106

2 2.340 0.000 2.300 0.000 2.87886 × 105

GT 1 0.586 0.560 0.025 0.000 7.68974 × 105

2 1.220 0.000 1.200 0.000 2.88616 × 105

FC 1 0.586 0.560 0.025 1.0 × 10−7 8.73088 × 105

2 1.220 0.000 1.200 3.0 × 10−6 2.62899 × 105

UO2
1 0.570 0.540 0.020 0.0050 7.73247 × 106

2 1.100 0.000 1.000 0.1250 2.87886 × 105

4.3% MOX 1 0.550 0.520 0.015 0.0075 1.22628 × 107

2 1.100 0.000 0.900 0.3000 2.88714 × 105

7.0% MOX 1 0.550 0.520 0.015 0.0075 1.46202 × 107

2 1.010 0.000 0.760 0.3750 2.92249 × 105

8.7% MOX 1 0.550 0.520 0.015 0.0075 1.59499 × 107

2 1.060 0.000 0.760 0.4500 2.93512 × 105

χ1p = 1.00, χ2p = 0.00.

The transient involves a step perturbation, which is defined by replacing the guide tube
material in the MOX assembly (marked by a lime-green color; see Figure 5) with a reflector
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material, and lasts until 0.05 s. Figure 7 depicts the time evolution of the normalized
power. As expected, the power increases because replacing the guide-tube material with
a reflector introduces a positive reactivity step, since the reflector has lower absorption.
From Table 8, it is observed that the results closely match the FEMFFUSION reference
values, with differences below 0.61%, while PARCS-SP3 shows slightly larger deviations,
remaining under 1.20%. Finally, Figure 8 illustrates the normalized power distribution,
where the power increase in the perturbed MOX assembly is noticeable.

Table 7. Effective multiplication factors for the C5G2 MOX benchmark.

Code KANECS PARCS SP3 FEMFFUSION

ke f f 0.97088 0.97054 0.97078
∆ke f f – 34 pcm 10 pcm

Figure 7. Normalized power results for the C5G2 MOX benchmark.

Figure 8. Normalized power distribution for the C5G2 MOX benchmark.

Table 8. Relative power comparison for the C5G2 MOX benchmark.

Time (s) KANECS PARCS SP3 Diff. (%) FEMFFUSION Diff. (%)

0.000 1.00000 1.00000 0.00 1.00000 0.00
0.001 1.05312 1.05164 0.14 1.04671 0.61
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Table 8. Cont.

Time (s) KANECS PARCS SP3 Diff. (%) FEMFFUSION Diff. (%)

0.002 1.08937 1.09221 −0.26 1.08409 0.48
0.005 1.17408 1.18305 −0.76 1.17047 0.30
0.010 1.26053 1.26727 −0.53 1.25854 0.15
0.020 1.33214 1.32679 0.40 1.33150 0.04
0.050 1.36524 1.34898 1.20 1.36499 0.01

3.3. Mini-Core Problem

The mini-core problem [19,24] consists of a reactor core composed of a 3 × 3 of homo-
geneous square assemblies, each with a side length of 21.42 cm. In the 3D configuration,
the active core height is 365.76 cm and is enclosed axially by reflectors, each 21.42 cm
thick. The geometric configuration and the boundary conditions are illustrated in Figure 9.
The two neutron cross-sections and the delayed neutron data are detailed in Tables 9 and 10.

Figure 9. Mini-core problem configuration.

Table 9. Neutron cross-section data (cm−1) and velocities (cm/s) for the mini-core problem.

Material g Σtg Σsg→g Σsg→g′ νΣ fg vg

MOX 1 0.24084 0.21386 0.01485 0.00731 2.8 × 107

2 0.90380 0.00000 0.69877 0.29250 4.4 × 105

UOXF 1 0.24263 0.21520 0.01749 0.00763 2.8 × 107

2 0.87901 0.00000 0.76068 0.15789 4.4 × 105

UOX 1 0.23959 0.21197 0.01705 0.00608 2.8 × 107

2 0.90775 0.00000 0.79258 0.15626 4.4 × 105

UOXR 1 0.23011 0.20051 0.01341 0.00591 2.8 × 107

2 0.88828 0.00000 0.73738 0.16406 4.4 × 105

UOX-2D 1 0.23011 0.20051 0.01341 0.00591 2.8 × 107

2 0.88828 0.00000 0.75998 0.16406 4.4 × 105

REF 1 0.30189 0.27194 0.02753 0.00000 2.8 × 107

2 1.22567 0.00000 1.18843 0.00000 4.4 × 105

χ1p = 1.00, χ2p = 0.00.
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Table 10. Delayed neutron data for the mini-core problem.

i 1 2 3 4 5 6

βi 0.00026 0.00152 0.00139 0.00307 0.00110 0.00026
λi(s−1) 0.01280 0.03180 0.11900 0.31810 1.40270 3.92860

χ1d,i = 1.00, χ2d,i = 0.00.

3.3.1. Mini-Core 2D Problem

The mini-core 2D problem comprises 4 mixed oxide fresh (UOXF) assemblies,
4 MOX assemblies, and a central control rod (UOXR) assembly. The spatial discretization is
performed by dividing each fuel assembly into 6 × 6 nodes. The effective multiplication
factor for All Rods Out and All Rods In conditions is listed in Table 11. Compared with
other reference codes [19], such as VARIANT [25] and DeCART [19], KANECS results are
in excellent agreement with both codes, with differences below 4 pcm for all conditions.

Table 11. Effective multiplication factors for the mini-core 2D problem.

Code
All Rods Out (ARO) All Rods In (ARI)

KANECS VARIANT DeCART KANECS VARIANT DeCART

ke f f 1.06335 1.06332 1.06331 1.05648 1.05645 1.05644
∆ke f f – 3 pcm 4 pcm – 3 pcm 4 pcm

The transient perturbation occurs by linearly changing the UOXR material into the
UOX-2D material in 0.1 s, and is then followed until 1.0 s. The normalized power results
are compared with the references [19], as shown in Figure 10, the results align well with
the reference values. Table 12 presents the power comparisons, showing good agreement
and finding differences of less than 0.12%. Lastly, Figure 11 shows the power distribution.

Figure 10. Normalized power results for the mini-core 2D problem.

Table 12. Regional power comparison for the mini-core 2D problem.

Time (s) Region KANECS VARIANT Diff. (%) DeCART Diff. (%)

UOXR 0.5623 0.5617 0.11 0.5620 0.05
0.0 UOXF 1.0322 1.0334 −0.12 1.0330 −0.08

MOX 1.0772 1.0761 0.10 1.0760 0.11
UOXR 0.6603 0.6598 0.08 0.6600 0.05

1.0 UOXF 1.0303 1.0315 −0.12 1.0310 −0.07
MOX 1.0546 1.0536 0.09 1.0540 0.06
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Figure 11. Normalized power distribution for the mini-core 2D problem.

3.3.2. Mini-Core 3D Problem

The mini-core 3D problem features the same spatial mesh radial configuration as the
2D case; however, axially, the UOXR assembly is inserted into half of the assembly size,
with the remaining space filled with UOX assembly material (see Figure 9). The axial spatial
mesh consists of 20 fuel planes, each 18.288 cm in length, which are internally refined by
2 nodes. The effective multiplication factor comparison is provided in Table 13 for ARO and
ARI conditions. The results, once again, are in excellent concordance with the references,
with differences of less than 12 pcm.

Table 13. Effective multiplication factors for the mini-core 3D problem.

Code
All Rods Out (ARO) All Rods In (ARI)

KANECS VARIANT DeCART KANECS VARIANT DeCART

ke f f 1.08668 1.08664 1.08660 1.08031 1.08026 1.08019
∆ke f f – 4 pcm 8 pcm – 5 pcm 12 pcm

The transient consists of a rod-ejection event (super-prompt-critical reactivity),
in which the control rod is fully withdrawn within 0.1 s. The total transient simulation
time is 1.0 s. The resulting normalized power evolution is shown in Figure 12. As ob-
served, the power increases rapidly and continues to increase in the absence of thermal
feedback. Furthermore, the rod-cusping effect [26] is negligible in this case because
the assemblies are homogeneous. The trend predicted by KANECS closely follows the
VARIANT results, but against DeCART, the predictions show a slight deviation while
still in good agreement.

The assembly power comparisons are listed in Table 14. As shown, the results
closely match the references, with discrepancies below 0.1%. Figure 13 illustrates the
power distribution during the rod ejection transient. The power increase is visible
throughout the mini-core as the control rod is withdrawn, with initially strong local
peaking below the rod position that later spreads more uniformly as the transient
progresses. Finally, Figure 14 shows the axial power distribution, which is consistent
with the results from VARIANT.
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Table 14. Regional power comparison for the mini-core 3D problem.

Time (s) Region KANECS VARIANT Diff. (%) DeCART Diff. (%)

UOXR 0.9128 0.9125 0.03 0.9120 0.09
0.0 UOXF 1.0270 1.0279 −0.09 1.0280 −0.10

MOX 0.9948 0.9939 0.09 0.9940 0.08
UOXR 0.9745 0.9743 0.02 0.9750 0.05

1.0 UOXF 1.0259 1.0267 −0.08 1.0270 −0.11
MOX 0.9805 0.9797 0.08 0.9800 0.05

Figure 12. Normalized power results for the mini-core 3D problem.

Figure 13. Normalized power distribution for the mini-core 3D problem.
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Figure 14. Normalized axial power for the mini-core 3D problem.

4. Conclusions
The time-dependent implementation with explicit representation of delayed neutrons

employing the fully backward Euler method was developed into the KANECS neutron code.
The kinetics module is validated with well-established benchmarks, such as TWIGL, C5G2
MOX, and Mini-core. Based on numerical solutions from KANECS using the SP3 approxima-
tion and a finite-element polynomial of degree 2, the steady-state and transient predictions
demonstrate accurate behavior. Overall, the results show excellent agreement with those
from other neutron transport codes, such as MPACT, DeCART, PARCS-SP3, FEMFFUSION,
and VARIANT. The findings demonstrate that KANECS can be considered a promising tool
for simulating transient kinetic problems. Future work will include extending a cross-section
module in NEMTAB format for coupling with a thermal–hydraulic code for multi-physics
simulations, and adding parallelization features to enable full 3D pin-by-pin calculations.
In addition, adjoint formulations consistent with time-dependent neutron-kinetics models
will be developed to enable sensitivity analysis and support the evaluation of integral kinetics
parameters (reactivity, effective delayed-neutron fraction, neutron generation time), as well as
subsequent uncertainty quantification and data assimilation studies.
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Appendix A
The notations introduced in Equations (5) and (7) are listed below; these correspond

to the multi-group SP7 approximation and were adopted from [6–8].

U = (Um
1 , · · · , Um

G )T (A1)

U0 = Φ0 + 2Φ2; U1 = 3Φ2 + 4Φ4; U2 = 5Φ4 + 6Φ6; U3 = 7Φ6 (A2)

D = diag (
1

3Σ1
,

1
7Σ3

,
1

11Σ5
,

1
15Σ7

) (A3)

Σn =


Σt1 − Σn

s11
−Σn

s12
· · · −Σn

s1G
...

...
. . .

...
−Σn

sG1
−Σn

sG2
· · · ΣtG − Σn

sGG

 (A4)

Anm =
4

∑
i=1

c(i)nm Σi; Fnm = c(1)nm F; Vnm =
4

∑
i=1

c(i)nm V ; Cn = dn ⊗ IG

Np

∑
i=1

Mi Ci e−λi∆tk (A5)

c(1) =



1 −2
3

8
15

−16
35

−2
3

4
9

−16
45

32
105

8
15

−16
45

64
225

−128
525

−16
35

32
105

−128
525

256
1225


c(2) =



0 0 0 0

0
5
9

−4
9

8
21

0 −4
9

16
45

− 32
105

0
8
21

− 32
105

64
245



c(3) =



0 0 0 0
0 0 0 0

0 0
9
25

− 54
175

0 0 − 54
175

324
1225


c(4) =


0 0 0 0
0 0 0 0

0 0 0 0

0 0 0
13
49



(A6)

νΣcrit
fg

=
1

ke f f
νΣ fg (A7)

F =


χ

e f f
1 νΣcrit

f1
· · · χ

e f f
1 νΣcrit

fG
...

. . .
...

χ
e f f
G νΣcrit

f1
· · · χ

e f f
G νΣcrit

fG

 (A8)

χ
e f f
g = (1 − βtot)χgp +

Np

∑
i=1

βi(1 − e−λi∆tk )χgd,i (A9)

V = diag (
1
v1

, · · · ,
1

vG
); d = ( 1, −2

3
,

8
15

, −16
35

)T

Mi = ( λi χ1d,i , · · · , λi χGd,i )
T Ri = ( βi νΣcrit

f1
, · · · , βi νΣcrit

fG
)

(A10)

https://doi.org/10.3390/jne7010012

https://doi.org/10.3390/jne7010012


J. Nucl. Eng. 2026, 7, 12 18 of 18

References
1. Cacuci, D.G. (Ed.) Handbook of Nuclear Engineering; Springer: New York, NY, USA, 2010. [CrossRef]
2. Azmy, Y.; Sartori, E. Nuclear Computational Science: A Century in Review; Springer: Dordrecht, The Netherlands, 2010. [CrossRef]
3. Jaradat, M.K.; Schunert, S.; Gleicher, F.N.; Labouré, V.M.; DeHart, M.D. Forward and inverse predictive transient models of

TREAT using surrogate reactivity models. Ann. Nucl. Energy 2024, 201, 110449. [CrossRef]
4. Böröczki, Z.I.; Klujber, G.; Tolnai, G.; Molnár, B.; Légrády, D.; Gabrielli, F.; Rineiski, A.; Szieberth, M. Simulation of a research reactor

reactivity transient with deterministic and GPU-assisted Monte Carlo reactor kinetics codes. Eur. Phys. J. Plus 2020, 135, 281. [CrossRef]
5. Brantley, P.S.; Larsen, E.W. The Simplified P3 Approximation. Nucl. Sci. Eng. 2000, 134, 1–21. [CrossRef]
6. Hamilton, S.P.; Evans, T.M. Efficient solution of the simplified PN equations. J. Comput. Phys. 2015, 284, 155–170. [CrossRef]
7. Fontenla, Y.; Vidal-Ferràndiz, A.; Carreño, A.; Ginestar, D.; Verdú, G. FEMFFUSION and its verification using the C5G7

benchmark. Ann. Nucl. Energy 2024, 196, 110239. [CrossRef]
8. Duran-Gonzalez, J.; Campos-Muñoz, A.; Sanchez-Espinoza, V.H. Development of the 3D SPN transport solver KANECS for

nuclear reactor analysis. Front. Energy Res. 2025, 13, 1498331. [CrossRef]
9. Zienkiewicz, O.; Taylor, R.; Zhu, J. The Finite Element Method: Its Basis and Fundamentals; Butterworth-Heinemann: London, UK, 2005.
10. Stacey, W.M. Space-Time Nuclear Reactor Kinetics; Academic Press: New York, NY, USA, 1969; Volume 5. [CrossRef]
11. Hughes, T.J.R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis; Dover Publications: New York,

NY, USA, 2000.
12. Duran-Gonzalez, J.; del Valle-Gallegos, E.; Reyes-Fuentes, M.; Gomez-Torres, A.; Xolocostli-Munguia, V. Development, verifica-

tion, and validation of the parallel transport code AZTRAN. Prog. Nucl. Energy 2021, 137, 103792. [CrossRef]
13. Arndt, D.; Bangerth, W.; Davydov, D.; Heister, T.; Heltai, L.; Kronbichler, M.; Maier, M.; Pelteret, J.P.; Turcksin, B.; Wells, D. The

deal.II finite element library: Design, features, and insights. Comput. Math. Appl. 2021, 81, 407–422. [CrossRef]
14. Balay, S.; Abhyankar, S.; Adams, M.F.; Benson, S.; Brown, J.; Brune, P.; Buschelman, K.; Constantinescu, E.; Dalcin, L.; Dener, A.; et al.

PETSc/TAO Users Manual; Technical Report ANL-21/39—Revision 3.23; Argonne National Laboratory: Lemont, IL, USA, 2025. [CrossRef]
15. Hernandez, V.; Roman, J.E.; Vidal, V. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans.

Math. Softw. 2005, 31, 351–362. [CrossRef]
16. Hageman, L.A.; Yasinsky, J.B. Comparison of Alternating-Direction Time-Differencing Methods with Other Implicit Methods for

the Solution of the Neutron Group-Diffusion Equations. Nucl. Sci. Eng. 1969, 38, 8–32. [CrossRef]
17. Zhu, A.; Xu, Y.; Graham, A.; Young, M.; Downar, T.; Cao, L. Transient Methods For Pin-Resolved Whole Core Transport Using

The 2D-1D Methodology In MPACT. In Proceedings of the M&C 2015, Nashville, TN, USA, 19–23 April 2015; American Nuclear
Society: Westmont, IL, USA, 2015.

18. Kochunas, B.; Collins, B.; Jabaay, D.; Downar, T.J.; Martin, W.R. Overview of Development and Design of MPACT: Michigan
Parallel Characteristics Transport Code. In Proceedings of the M&C 2013, London, UK, 3–5 July 2013; American Nuclear Society:
Westmont, IL, USA, 2013.

19. Cho, J.Y.; Kim, K.S.; Lee, C.C.; Zee, S.Q. Transient Capability of the DeCART Code; Technical Report KAERI/TR-2930/2005; Korea
Atomic Energy Research Institute: Daejeon, Republic of Korea, 2005.

20. Capilla, M.; Talavera, C.; Ginestar, D.; Verdú, G. Validation of the SHNC time-dependent transport code based on the spherical
harmonics method for complex nuclear fuel assemblies. J. Comput. Appl. Math. 2020, 375, 112814. [CrossRef]

21. Hou, J.; Ivanov, K.N.; Boyarinov, V.F.; Fomichenko, P.A. OECD/NEA benchmark for time-dependent neutron transport calculations
without spatial homogenization. Nucl. Eng. Des. 2017, 317, 177–189. [CrossRef]

22. Carreño, A.; Vidal-Ferràndiz, A.; Ginestar, D.; Verdú, G. Time-dependent simplified spherical harmonics formulations for a
nuclear reactor system. Nucl. Eng. Technol. 2021, 53, 3861–3878. [CrossRef]

23. Downar, T.; Xu, Y.; Seker, V. PARCS v3.0: U.S. NRC Core Neutronics Simulator—Theory Manual; Technical Report NUREG/CR-7302;
U.S. Nuclear Regulatory Commission: Rockville, MD, USA, 2012.

24. Rahman, A. A Comparison Study of the Predictor-Corrector Quasi-static Method and CMFD-based Transient Fixed Source
Problem for Transient Analysis. Ph.D. Thesis, Department of Nuclear Engineering, Ulsan National Institute of Science and
Technology, Ulsan, Republic of Korea, 2023.

25. Rineiski, A.; Doriath, J.Y. Time Dependent Neutron Transport with Variational Nodal Method. In Proceedings of the Joint Interna-
tional Conference Mathematical Methods and Supercomputing for Nuclear Applications, Saratoga Springs, NY, USA, 5–9 October 1997;
American Nuclear Society: Westmont, IL, USA, 1997.

26. Joo, H.S. Resolution of the Control Rod Cusping Problem for Nodal Methods. Ph.D. Thesis, Department of Nuclear Engineering,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1984.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/jne7010012

http://doi.org/10.1007/978-0-387-98149-9
http://dx.doi.org/10.1007/978-90-481-3411-3
http://dx.doi.org/10.1016/j.anucene.2024.110449
http://dx.doi.org/10.1140/epjp/s13360-020-00280-4
http://dx.doi.org/10.13182/NSE134-01
http://dx.doi.org/10.1016/j.jcp.2014.12.014
http://dx.doi.org/10.1016/j.anucene.2023.110239
http://dx.doi.org/10.3389/fenrg.2025.1498331
http://dx.doi.org/10.1002/9783527812318.ch16
http://dx.doi.org/10.1016/j.pnucene.2021.103792
http://dx.doi.org/10.1016/j.camwa.2020.02.022
http://dx.doi.org/10.2172/2565610
http://dx.doi.org/10.1145/1089014.1089019
http://dx.doi.org/10.13182/NSE38-8
http://dx.doi.org/10.1016/j.cam.2020.112814
http://dx.doi.org/10.1016/j.nucengdes.2017.02.008
http://dx.doi.org/10.1016/j.net.2021.06.010
https://doi.org/10.3390/jne7010012

	Introduction
	Methodology
	Multigroup Time-Dependent Neutron Transport Equation
	Time-Dependent Simplified Spherical Harmonics Formulation
	KANECS Framework

	Numerical Results
	TWIGL Benchmark
	C5G2 MOX Benchmark
	Mini-Core Problem
	Mini-Core 2D Problem
	Mini-Core 3D Problem


	Conclusions
	Appendix A
	References

