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Summary 22 

Multiplexing overcomes limited throughput in single-cell RNA sequencing (scRNA-seq). Commercial 23 

strategies include Parse Biosciences combinatorial barcoding (Parse) and 10x Genomics CellPlex with 24 

microfluidic capture (10x). It is currently unknown how these techniques differ when characterizing 25 

complex tissues. Cerebellar organoids are a highly relevant model for studying cerebellar evolution, 26 

development, and disease. Yet, their extensive characterization through scRNA-seq is ongoing. Therefore, 27 

we compared the two multiplexing techniques using cerebellar organoids. While both strategies 28 

demonstrated technical reproducibility and revealed comparable cellular diversity, we found more 29 

stressed cells in 10x than in Parse. Additionally, Parse covered a higher gene biotype diversity and showed 30 

lower mitochondrial and ribosomal protein-coding transcript fractions. In summary, we demonstrate that 31 

both techniques provide similar insight into cerebellar organoid biology, but the flexibility of experimental 32 

design, capture of long transcripts, and the level of cell stress caused by the two workflows differ. 33 

Keywords 34 

transcriptomics, neurodevelopment, neural organoids, stem cells, multiplexing, bioinformatics 35 

Introduction 36 

Single-cell RNA-sequencing (scRNA-seq) has revolutionized our approach to characterize cell types, states, 37 

and lineages in various biological systems and is increasingly used in drug screening. While biological 38 

replica are essential for robust statistical analysis and the detection of even subtle changes between 39 

experimental conditions, replication has often been limited by technically challenging workflows and high 40 

costs1,2. Additionally, effective cell sampling maximizes the capture of cellular heterogeneity including rare 41 

cell populations3. Recent advances in commercialized kits now allow sample multiplexing, increasing both 42 

the number of cells assayed and the number of possible biological replicates. While combinatorial 43 

barcoding (as provided commercially by Parse Biosciences, hereafter Parse) is inherently multiplexed, 44 

microfluidic approaches (as provided commercially by 10x Genomics, hereafter 10x) require an additional 45 

labeling step for barcoding, mediated by antibodies or lipids4. However, increasing the number of samples 46 

remains technically challenging when working with fresh tissue because dissociation, a highly manual 47 

process, needs to be parallelized5. Fixation of the dissociated cells before capture (as performed in the 48 

Parse workflow) overcomes this obstacle, and different samples, for instance from different experimental 49 

time points, can be sequenced together, thereby avoiding batch effects of the capture. The kits allow 50 

multiplexing of up to 12 (10x) or 96 samples (Parse). The higher the number of multiplexed samples, the 51 

lower are the per-sample costs of cell capture with both strategies.  52 

Since scRNA-seq multiplexing is widely used and datasets from different studies and experimental 53 

approaches are increasingly compared and integrated, it is important to consider the effects of the chosen 54 

multiplexing approach on the results. A recent study comparing both technologies using peripheral blood 55 

mononuclear cells (PBMCs) demonstrated that Parse had a higher sensitivity for detecting rare cell types6. 56 

Furthermore, it was shown that Parse covered a wider range of gene lengths, and that 10x was biased 57 

towards more GC-rich transcripts6. However, it remains unclear, to what extent these differences affect 58 

downstream analysis and highly complex 3D samples that require dissociation such as neural organoids. 59 

Regionalized neural organoids recapitulate the development of specific brain regions with their 60 

specialized neural cell populations, making them a particularly powerful tool to study human 61 

neurodevelopment7, to model neurological disorders8,9, and to test on- and off-target effects of 62 
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pharmaceuticals10,11. The human cerebellum has long been thought to mainly be involved in motor 63 

learning and coordination12, however, more recent insights into cerebellar function, describe its major 64 

contribution to cognitive functions such as attention, task execution, working memory, language and 65 

social behavior13, and a contribution to neurodevelopmental disorders (NDD) such as autism spectrum 66 

disorder (ASD)14,15. Two cerebellar progenitor zones, the ventricular zone (VZ) and the rhombic lip (RL), 67 

arise from the rhombencephalon16,17. The VZ gives rise to all inhibitory neurons of the future cerebellum, 68 

including Purkinje cells (PC) and inhibitory neurons of the deep cerebellar nuclei. The RL generates all 69 

excitatory neurons, including granule cells (GC) and excitatory neurons of the deep cerebellar nuclei18.  70 

Progenitors and neurons from both progenitor zones can now be generated in human cerebellar 71 

organoids, placing them in a unique position to model cerebellar disorders such as cerebellar hypoplasias, 72 

Dandy-Walker Syndrome, ataxias, and medulloblastoma as pioneered in several recent studies9,19,20. 73 

However, the protocols underlying their generation are still being improved21-23, and few single-cell RNA 74 

datasets of selected cell lines are available21,23,24.  75 

Here, we addressed two important gaps in knowledge related to multiplexing in scRNAseq and cerebellar 76 

organoid generation by comparing the technical features between the two multiplexing strategies, Parse 77 

and 10x, in complex tissue-like samples, cerebellar organoids derived from three control iPSC lines at two 78 

time points.  79 

Results 80 

Experimental design and quality assessment 81 

To assess the reproducibility of cerebellar organoid differentiation and comparability of two multiplexed 82 

scRNA-seq methods, we differentiated three iPSC lines (BIONi010-C, BIONi037-A, and KOLF2.1J) into 83 

cerebellar organoids (Fig. 1A). Cell lines were handled in parallel throughout the experimental period. On 84 

day 28 (D28) and day 42 (D42) of differentiation, organoids were collected for quality control assessment 85 

by immunohistochemistry. We observed the expression of Purkinje cell marker SKOR2 at both time points 86 

(Fig. S1A), the granule cell precursor markers BARHL1 and ATOH1 were expressed at D42 (Fig. S2C), and 87 

general neuroectodermal commitment was indicated by the presence of neural precursor marker SOX2 88 

as well as the early pan-neuronal markers  Tuj1 (D28 and D42, Fig. S1C, Fig. S2B) and MAP2 (D42, Fig. S2B). 89 

Further, all cell lines demonstrated cell division at both timepoints, indicated by the expression of Ki-67 90 

(Fig. S1B, Fig. S2A). Samples for scRNA-seq were harvested on day 35 (D35) and day 50 (D50) of 91 

differentiation. Pools of 24 organoids per cell line and time point were dissociated. One aliquot of each 92 

cell suspension was used for 10x, the other for Parse scRNA-seq workflow. This experimental design 93 

minimized the effect of biological variability and focused on technical differences between 10x and Parse. 94 

Libraries were sequenced to achieve over 50,000 reads per cell (Table S1), and raw FASTQ files were 95 

downsampled to 50,000 reads per cell to allow a direct comparison of gene detection sensitivity 96 

(Supplementary Table 1). Alignment of reads was performed through technology-specific pipelines: 97 

cellranger v7.2.0 multi pipeline (10x) and split-pipe v1.1.2 (Parse).  98 

In both technologies, most reads were mapped to the genome (93.2% for 10x, 91.8% for Parse, Fig. S3A, 99 

Table S2), with exonic reads constituting 56.3% of all reads in 10x, and 30.1% in Parse (Fig. S3A, Table S2). 100 

Valid barcodes were identified for 97.2% of reads for 10x and 79.9% for Parse (Fig. S3A, Table S2). The cell 101 

recovery rate was 42.7% for 10x and 16.5% for Parse (Fig. S3B, Table S2). 102 
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For further comparisons, technology-specific cell-by-gene matrices were merged. We found that 32,408 103 

genes had a non-zero expression in both technologies, while 2,159 and 12,098 genes were uniquely 104 

expressed in 10x and Parse, respectively (Fig. S3C). After merging count matrices from both technologies, 105 

we only retained genes that had a non-zero expression in more than 8 cells, resulting in the count matrix 106 

with 38,580 genes (Fig. S3D). 107 

For further analysis, we used the following combination of metadata parameters to assign cells to samples 108 

unless stated otherwise: (1) technology (10x vs Parse); (2) day of differentiation (D35 vs D50) of cerebellar 109 

organoids; and (3) sequencing library (L1 and L2). Day of differentiation was used as a covariate to 110 

acknowledge both biological differences in the stage of organoid differentiation and technical differences 111 

arising from harvesting D35 and D50 samples on different days. The sequencing library was used as a 112 

covariate to show the reproducibility of the workflow within each technology. 113 

After cell-level quality control (QC), we recovered 87.2% of cells from 10x and 95.6% of cells from Parse 114 

datasets (10x, 29,505 out of 33,951 cells; Parse, 14,542 out of 15,226 cells, Fig. S3E). Interestingly, the 115 

number of genes per cell was higher in Parse both before and after QC (p < 0.001, Fig. 1B). While protein-116 

coding genes were the most abundant in both technologies (Fig. 1B), Parse recovered a higher proportion 117 

of non-coding RNAs (ncRNA) reads, including long non-coding RNA (lncRNA) (Fig. S3F). Additionally, the 118 

percentage of mitochondrial and ribosomal protein-coding transcripts was lower in Parse than in 10x. In 119 

contrast, the percentage of reads originating from transcription factors (TF) among protein-coding genes 120 

was higher in Parse than in 10x (Fig. 1b, Supplementary Fig. 3e). In line with previous findings6, the 121 

correlation of gene expression between the two technologies across cells was only moderate (Pearson’s 122 

r = 0.6) (Fig. 1C), indicating differential gene detection between the two technologies. 123 

Different RNA-seq technologies are known to have biases in gene detection based on gene properties 124 

such as GC content and gene length6,25. To characterize these biases, we analyzed the correspondence 125 

between gene abundance and gene length or GC content (Fig. 1D, Fig. S3F). While using all expressed 126 

genes per technology revealed small but statistically significant differences in these parameters (p < 0.001, 127 

Fig. S3F), gene length and GC content of differentially expressed genes (DEG) per technology (10x, 2,737 128 

DEGs; Parse, 4,055 DEGs) differed to a higher extent (Fig. 1D), reminiscent of previously published results6. 129 

We observed a bias towards detecting longer genes in Parse, both for protein-coding genes and lncRNA 130 

(Fig. S3G). Finally, we performed an extensive analysis of gene detection sensitivity and biases (Table S2) 131 

largely corroborating results from the previous benchmarking study6. We therefore suggest that the 132 

observed differences are characteristic features of 10x and Parse technologies independent of sample 133 

type. 134 

Technical and biological differences between technologies 135 

Next, data normalization revealed highly variable genes for Principal Component Analysis (PCA) as well as 136 

Uniform Manifold Approximation and Projection (UMAP) on unintegrated data (Fig. 2A). As expected from 137 

previous results6 and our QC, both PCA and UMAP revealed major differences between the technologies 138 

(Fig. 2A). We hypothesized that these differences arise from sample preparation where cells for Parse 139 

were immediately fixed and frozen after dissociation, while cells undergoing 10x capture were depleted 140 

of nutrients and passed through microfluidic channels of the instrument before lysis. 141 

Hence, we hypothesized that cellular stress may contribute to differences between samples. We analyzed 142 

the expression of gene ontology (GO) modules involved in different modalities of cellular stress and its 143 
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downstream effects, such as integrated stress response (ISR) (Supplementary Fig. 4a). In hierarchical 144 

clustering of average GO module expression scores, samples from the two technologies clustered apart. 145 

The major differences came from three terms: response to oxidative stress, glycolytic process, and ISR 146 

signaling (Fig. S4A). Using only these three modules and the random set for hierarchical clustering led to 147 

the same results (Fig. 2B, Fig. S4A). 148 

We further determined the number of stressed cells using Gruffi 26 using the top cell stress terms from 149 

the module expression analysis: glycolytic process (GO:0006096) and ISR signaling (GO:0140467). We 150 

found that the percentage of stressed cells varied between technologies but also between days of 151 

organoid differentiation (Fig. 2C,D, Fig. S4B). There were more stressed cells in the 10x data and both 152 

technologies captured more stressed cells in D50 cerebellar organoids (Fig. 2D). This finding can be 153 

explained by the diffusion-based distribution of nutrients in organoids leading to an increasing nutrient 154 

deficiency as organoids grow (D50 vs. D35)27,28. We therefore removed cells that were classified as 155 

stressed by Gruffi (6,595 out of 44,047 cells that passed QC) from further analysis, integrated normalized 156 

counts by sample using reciprocal PCA, and repeated PCA and UMAP. This analysis revealed that the data 157 

from the two technologies can be easily integrated (Fig. 2E). 158 

To analyze the biological reproducibility of the cerebellar organoid protocol between different iPSC lines, 159 

we characterized the cellular diversity. We first aimed to understand whether organoids had neural 160 

identity. We, therefore, performed reference-query mapping of our dataset onto the human 161 

developmental transcriptome using Azimuth29,30. This reference dataset includes cell types from various 162 

tissues, including the nervous system and the cerebellum. We first assigned our cells with cell types from 163 

the reference dataset featuring cells from 15 human organs between 72 and 129 days post-conception29,30 164 

(Fig. S4C). High prediction scores were assigned to the cells annotated as skeletal muscle, bronchiolar and 165 

alveolar epithelial cells, enteric nervous system glia, astrocytes, and some neuronal cells (Fig. S4D). 166 

However, prediction scores varied between cells (0.59 ± 0.26, mean ± SD, Fig. S4D), with most cells not 167 

reaching a high-confidence prediction score of 0.7530. Therefore, we did not rely on the annotation of 168 

certain cell types but grouped the cells into two categories – neural and non-neural (Fig. 2F, Table S3). We 169 

found a considerable portion of cells having non-neural identity (Fig. 2F) with subsets of cells expressing 170 

muscular markers (e.g., MYOD1 and MYOG31) and endo-/mesodermal markers (e.g., FGF1032) (Fig. 2G). 171 

Accordingly, cells expressing muscular markers were annotated as muscular cells with high confidence 172 

(Fig. S4D). In contrast, most cells classified as neural expressed the pan-neuronal marker STMN2 (Fig. 2G). 173 

Among those cells, there were cells annotated as granule neurons and Purkinje neurons, albeit with lower 174 

prediction scores (Fig. S4C,D). Overall, the proportion of neural cells ranged from 46.0% to 60.7% per 175 

sample (Fig. 2H). Importantly, considerable differences were observed between the three iPSC lines that 176 

the organoids were generated from with BIONi010-C cell line having the highest number of neural cells 177 

(Fig. 2I). 178 

To cross-validate this assignment we adapted Gruffi26 for detecting neural and non-neural transcriptomic 179 

signatures. We used GO terms for endoderm (GO:0001706) and mesoderm formation (GO:0001707) for 180 

selecting non-neural cells and GO terms for nervous system development (GO:0007399) and neurogenesis 181 

(GO:0022008) for selecting neural cells (Fig. S4E). The results between reference-query mapping and 182 

Gruffi were mostly coherent (Fig. S4F). Inconsistent annotations were observed for putatively muscular 183 

cells (positive for MYOG and MYOD1), which were incorrectly classified as neural by Gruffi. We suggest 184 

that this discrepancy may be due to the shared excitability between neural and muscular cells. 185 

Jo
urn

al 
Pre-

pro
of



Characterization of neural cell diversity 186 

Utilizing the results of reference-query mapping with the human developmental transcriptome29, we 187 

subset neural cells (19,526 neural cells out of 37,452 cells) and downsampled 10x and Parse datasets to 188 

an equal number of cells (resulting in 7,212 cells per technology) before repeating integration and 189 

dimensionality reduction. Next, we aimed to reveal the brain regional identity of the neural cells within 190 

the cerebellar organoids23 by correlating regional marker gene expression (inferred from E15 mouse brain, 191 

Table S4) with our dataset and human brain transcriptomic data from postconceptional week (PCW) 12-192 

13 from Brain Span33,34. All samples had the highest correlation with the cerebellum (Fig. S5A). However, 193 

when similarity scores were not scaled, they were higher for 10x than for Parse samples (Fig. 3A). Next, 194 

we assigned cell identities to the neural cells by combining cerebellar canonical marker gene 18,35-37 with 195 

differential gene expression (DGE). We identified both RL-derived cellular lineages (RL, granule precursor 196 

cells (GPC), and GC) and VZ-derived newborn PCs (Fig. 3B,C). A subset of neuronal cells was characterized 197 

as hindbrain neurons (Fig. 3B). While overall proportions of cells captured by the two technologies were 198 

similar (Fig. 3D, Fig. S5B), dividing progenitors, PAX6-positive RL and dividing RL cell populations were 199 

significantly enriched in Parse (Fig. 3D, Fig. S5B).  We then visualized the distribution of cell types in 200 

organoids originating from different cell lines (Fig. S5C). This analysis revealed differences in proportions 201 

of different neural cell types between cell lines (Fig. S5C). This highlights the necessity to use multiple cell 202 

lines and batches of differentiation when characterizing the reproducibility of new neural organoid 203 

protocols.  204 

To our knowledge, currently scRNA-seq cerebellar organoid datasets are available for D6021 or D9022 of 205 

differentiation. We hypothesized that our scRNA-seq analysis at D35 and D50 provides insights into the 206 

establishment of cell type diversity during differentiation. Indeed, when we visualized the distribution of 207 

cell types between the two sampling time points, we found that RL-derived populations had higher 208 

proportions in D35 than in D50 of differentiation while several neuronal populations, including newborn 209 

PCs, demonstrated the opposite trend (Fig. S5D,E). Therefore, cerebellar organoids recapitulated the 210 

temporal progression of cell type proportions characteristic of the developing cerebellum18,36. To 211 

characterize the similarity of our cerebellar organoids with the developing human cerebellum, we 212 

performed reference-query mapping with a primary cerebellar transcriptomic dataset, subset to only 213 

include prenatal samples37. While finding general agreement in cell type annotations, we noticed 214 

differences in both assigned cell type identities (Fig. 3E) and prediction scores, which were higher in Parse 215 

than in 10x data (Fig. S5F). We further compared our data with a recent scRNA-seq cerebellar organoids 216 

dataset (Fig. S5G,H)21. The prediction scores were higher than for the comparison with the human 217 

cerebellar developmental transcriptome (Fig. S5F). This time, however, prediction scores were higher for 218 

10x than for Parse cells (Fig. S5I). Interestingly, both reference datasets were generated using 10x.  219 

Therefore, expectedly, our organoid data aligns more with organoid data obtained from a different 220 

protocol than with primary tissue. 221 

In summary, we found that the cerebellar organoids indeed acquired a mid-gestational human cerebellar 222 

regional identity. We also found robust differentiation into both major cerebellar lineages, RL- and VZ-223 

derived cells. Small variances in the different parameters were found between 10x and Parse 224 

technologies.  225 
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Secondary analysis between techniques reveals differences in cell stress signatures and 226 

neurodevelopment-related gene regulatory networks activity 227 

During QC, we found differences in the percentage of reads originating from ribosomal and mitochondrial 228 

protein-coding genes between the two technologies (Fig. 1B). We also found a subset of cells expressing 229 

cell stress-related genes, and this proportion was higher for 10x (Fig. 2D). Therefore, we analyzed whether 230 

the neural cells preserved these transcriptomic features and performed DGE analysis between the 231 

different technologies within individual cell types. For that, we split the dataset by cell type, technology, 232 

cell line, and day of differentiation and pseudobulked cells for DESeq2. DEGs were spread across all cell 233 

types (Fig. 4A, Fig. S6A). Especially mitochondrial and ribosomal protein-coding genes were upregulated 234 

in 10x compared to Parse (Table S5), including GPCs (Fig. 4B). More genes were upregulated in 10x 235 

compared to Parse across all cell types (Fig. S6A). Interestingly, there were a few genes with large fold 236 

change and relatively large p-values upregulated in either of the two technologies (Fig. S6B). To 237 

functionally characterize the differences in gene expression between the techniques, we performed gene 238 

set enrichment analysis (GSEA) and clustered the output in a semantic similarity matrix (Fig. 4C). Here, we 239 

describe findings for GSEA in GPCs, as a representative cell type with relatively high cell numbers and a 240 

medium number of DEGs. In GPCs, the normalized expression score for all statistically significant GO terms 241 

was less than 0, indicating their upregulation in 10x compared with Parse (Table S6). One cluster of 242 

enriched GO terms was related to nucleotide processing, another to mitochondrial respiration. These two 243 

clusters of GO terms included not only mitochondria-encoded protein-coding genes (Fig. 1B), but also 244 

nuclear-encoded genes involved in mitochondrial function (e.g., NDUF, Table S6). Another group of 245 

enriched GO terms in GPCs was described as related to neuron projection assembly (Fig. 4C).  246 

To reveal the upstream mechanisms leading to the transcriptional changes across cell types, we 247 

performed upstream regulator analysis (URA). That predicted a variety of TFs to be differentially active in 248 

either of the technologies, and that these transcriptional changes were coordinated across cell types (Fig. 249 

4D). For example, we found ER stress-induced TFs XBP1, ATF4 and ATF6, and NFE2L2 and NRF1, which 250 

mediate oxidative stress response and are involved in maintaining mitochondria redox homeostasis38-40 251 

to be upregulated in 10x. These predictions are in line with our previous findings (Fig. 2B, Fig. S4A), 252 

demonstrating a higher proportion of stressed cells in 10x than Parse. Since we found that the Parse 253 

dataset had a larger proportion of reads originating from TFs (Fig. 1B), we decided to extend our analysis 254 

to gene regulatory network (GRN) analysis using SCENIC41. Average area under the curve (AUC) scores per 255 

cell type and technology were z-score normalized and subjected to k-means clustering (Fig. 4E). We found 256 

that, albeit overall small z-scores, the two technologies clustered apart (column clusters 1 and 3 for 10x, 257 

and 2 and 4 for Parse) but also cell types divided into two meta groups based on the activity of GRNs 258 

(column clusters 1 and 2 were enriched in neurons, while column clusters 3 and 4 contained 259 

predominantly progenitor cell types, Fig. 4E, Figure S6C). Additional examples of cell type-associated 260 

regulon activity can be found in Fig. S6C. In summary, transcriptional differences between technologies 261 

did not mask transcriptional differences between cell types. 262 

Discussion 263 

In this study, we compared two broadly used and commercialized approaches for sample multiplexing of 264 

scRNA-seq: 10x and Parse using cerebellar organoids, as an example of a complex 3D sample that requires 265 

dissociation. Regionalized neural organoids, such as cerebellar organoids, are commonly used in 266 

neuroscience research but can be challenging due to heterogeneity between samples, batches, and iPSC 267 

lines and require in-depth characterization 7,42. To compare scRNA-seq datasets across experiments and 268 
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to differentiate technical and biological causes of variance, it is essential to understand artefacts and 269 

biases introduced by experimental pipelines of cell capture techniques. We generated cerebellar 270 

organoids23 from three iPSC lines, dissociated the samples at D35 and D50, subjected them to 10x and 271 

Parse cell capture, and sequenced the resulting libraries. We compared the methods based on library 272 

efficiency, differential transcript capture, cell type enrichment, and secondary analysis insights. 273 

Sample preparation differs considerably between the two technologies: Parse samples are fixed after 274 

dissociation, whereas cells are kept alive until lysis in 10x. Consequently, Parse provides more flexibility in 275 

sample processing and allows handling higher sample numbers in one sequencing run, which is 276 

advantageous for larger experiments. Further, we observed differences in the cell recovery rates—42.7% 277 

for 10x and 16.5% for Parse (Fig. S3B), and for scarce samples, higher recovery is beneficial to maximize 278 

data output. The downside of fixation may be decreased RNA quality, reflected in a lower number of 279 

recovered genes43. Next, there are substantial differences in library preparation protocols. Namely, one 280 

important difference is that Parse, in addition to oligo(dT) primers, uses random hexamer primers for 281 

reverse transcription, thus allowing multipriming. Since both technologies rely on reverse transcription of 282 

mRNA up to its 5’ end, multipriming may allow for more robust recovery of longer transcripts. Random 283 

hexamer primers also allow capturing transcripts devoid of polyA tails, non-coding RNAs, and nascent 284 

transcripts. Other steps of library preparation, albeit different, rely on reactions that should be either 285 

immune to transcript-specific biases or whose effect is difficult to predict.   286 

For alignment and generation of count tables, we used technology-specific pipelines, thus leveraging 287 

optimal settings for both library construction protocols. Both approaches use the same tools for data 288 

processing with minor changes, thus potentially introducing minor variations into the resulting count 289 

tables. 290 

Consistent with previous findings6 and suggested effects of different sample processing and library 291 

generation protocols, we observed differences in the number of detected genes and their properties. 292 

Namely, 10x resulted in a higher number of genes, a higher number of protein-coding genes, including 293 

mitochondrial and ribosomal protein-coding genes compared to Parse (Fig. 1B, Fig. S3E). Furthermore, 294 

10x captured transcripts with higher GC content, while Parse captured longer transcripts (Fig. 1B, Fig. 295 

S3E,H). Previous studies showed a connection between gene length and neurodevelopment and NDDs44,45. 296 

Interestingly, BCL11b (CTIP2) (102,911 bps), a TF crucial for neuronal maturation and differentiation, is 297 

predicted to be upregulated in Parse in DAB1/CALB1/CALB2 HindN in our data (Fig. 4D). The clinical 298 

features of BCL11b-associated NDDs include ASD, intellectual disability, and cerebellar hypoplasia45, which 299 

have been previously modeled in organoids8,9. These findings highlight transcript length as an important 300 

factor, suggesting Parse may be better suited for studying long transcripts upon experimental 301 

manipulations. 302 

Further, Parse covered more transcripts encoding TFs among protein-coding genes (Fig. 1B, Fig. S3E). To 303 

investigate if this bias had effects on GRN activity, we employed SCENIC analysis. Interestingly, Parse 304 

showed higher z-scores for neurodevelopment and maturation-related regulons (Fig. 4E), in contrast to 305 

the upregulation of neuron processes assembly-related terms in 10x in GSEA (Fig. 4C). Additionally, we 306 

identified cell type- and technique-specific differences in regulon activity. For instance, NFIA regulon had 307 

higher z-scores in RL derivates in Parse (Fig. 4E), a TF relevant for GC maturation and linked to NDDs and 308 

gliomas46,47. Taken together, the GRN analysis reveals not only cell type but also technique-driven 309 

differences in regulon activity of identical biological samples. 310 
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During QC, we found that the percentage of mitochondrial and ribosomal protein-coding genes was higher 311 

in 10x samples (Fig. 1B), corroborating previous findings6. DGE analysis revealed the upregulation of 312 

mitochondrial protein-coding genes and other genes involved in mitochondrial function (Fig. 4B). Hence, 313 

the differences in mitochondrial transcripts might be partially explained by higher cell stress in the 10x 314 

data and mitochondrial involvement in stress response pathways48.  315 

We analyzed stress-specific modulators and identified three modules (oxidative stress, glycolysis, and ISR) 316 

that separated the two technologies. 10x showed stronger stress module expression overall, particularly at 317 

D50. Regionalized neural organoids have been reported to show high expression of stress pathway-related 318 

transcripts due to in vitro culturing conditions and insufficient oxygen supply26-28,49. The cascade of events 319 

unfolding upon persistent hypoxia may explain the elevated stress response-associated transcriptional 320 

signature at D50 compared to D35 of differentiation (Fig. 2B)50. Additionally, tissue dissociation for single-321 

cell capture can induce stress response51. Since stressed cells are common in scRNA-seq organoid 322 

datasets, a bioinformatic approach called Gruffi was developed to remove these cells26.  Using Gruffi, we 323 

found a noticeably higher percentage of stressed cells in the 10x compared to the Parse dataset at both 324 

time points (Fig. 2D). Immediate fixation of cells after the dissociation in Parse may limit the induction of 325 

stress-related genes, in contrast to live cells processing in 10x. These findings suggest that identical 326 

samples of cerebellar organoids show a technology- and time point-specific stress response reflected in 327 

transcriptional signature and striking differences in the number of cells identified as stressed (Fig. 2D).  328 

To assess the biological reproducibility of organoid differentiation, we assessed the percentage of neural 329 

cells29, revealing neural commitment of 52.1% of all cells, suggesting the initial tissue specification could 330 

be improved. Different neural organoid protocols52,53 and a recently published protocol for cerebellar 331 

organoids21 use dual SMAD inhibition during initiation of differentiation to prevent meso- and endodermal 332 

fates thus promoting neural induction54. In contrast, the cerebellar differentiation protocol used in this 333 

study employs only one SMAD pathway inhibitor23, and dual SMAD inhibition could improve 334 

neuroectodermal commitment. Furthermore, we noticed substantial differences in differentiation 335 

efficiencies between the iPSC lines, with the KOLF2.1J-derived cerebellar organoids demonstrating the 336 

lowest proportion of neural cells. This suggests that iPSC line-inherent mechanisms influence the 337 

differentiation efficiency55, underscoring the importance of using isogenic control iPSCs when analyzing 338 

pathogenic variants56. A recent study suggests adjusting small molecule and growth factor concentrations 339 

in cortical organoids for individual iPSC lines to reduce off-target tissue40. This approach could reduce line-340 

to-line variability. Further, a recent preprint demonstrates structural variants in neurodevelopmental 341 

genes in KOLF2.1 line that could affect neural differentiation57. Despite the differences between the three 342 

iPSC lines used in this study, our cerebellar organoids generated cerebellar cells of both RL and VZ lineage. 343 

Comparing our data set with a recently published cerebellar organoid transcriptomic dataset21 revealed 344 

similar cell populations. 345 

In conclusion, our comparison of Parse and 10x encompassed library efficiency, differential transcript 346 

capture, cell type preferences, and secondary analysis outcomes, showing distinct strengths of each 347 

method. While 10x provided higher cell recovery and gene detection rates, Parse captured longer 348 

transcripts and a wider range of transcript lengths and resulted in lower cell stress—important for 349 

regionalized neural organoids, in which cell stress may be a key artifact27. These technical differences have 350 

relevant biological implications, making it essential to choose the appropriate method based on specific 351 

research goals. Future studies should consider these factors to improve the accuracy and biological 352 

relevance of single-cell transcriptomic analyses. Finally, we demonstrated cerebellar organoid 353 
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differentiation and in-depth characterization on three iPSC lines, highlighting the importance of using 354 

diverse cell lines to capture line-to-line variability. 355 

Limitations of the study 356 

In the current study, we used cerebellar organoids as a model system to showcase technical differences 357 

arising from two single-cell capturing and multiplexing techniques. Our experimental design has several 358 

limitations. First, the study relied on one differentiation per line, reducing our ability to separate protocol 359 

effects from batch- and line-specific variability. Next, although the organoids produced relevant cerebellar 360 

lineages, neural commitment was incomplete, and a substantial fraction of cells adopted non-neural fates, 361 

indicating that early tissue specification was not fully optimized. More recent cerebellar organoid 362 

differentiation protocols21,58,59 may better suppress meso-/endodermal trajectories and improve neural 363 

induction through dual SMAD inhibition, and should be evaluated in future work. In addition, 364 

differentiation efficiency differed markedly across cell lines, with the KOLF2.1J line showing the lowest 365 

neural yield, suggesting that line-inherent properties may confound direct comparisons57,60. Finally, some 366 

technical features of the single-cell workflows may introduce differences in count tables due to 367 

bioinformatic processing. In our analysis, we generated count tables using technology-specific pipelines, 368 

ensuring optimal settings. While most of the bioinformatic tools are shared between pipelines, some 369 

minor differences exist. For example, while both Cell Ranger and split-pipe perform UMI demultiplexing, 370 

only Cell Ranger reports further UMI correction and exclusion of low-quality UMIs. 371 

Resource availability 372 

Lead contact 373 

Further information and requests for resources and reagents should be directed to and will be fulfilled 374 

by the Lead Contact, Simone Mayer (simone.mayer@kit.edu). 375 

Materials availability 376 

This study did not generate new unique reagents or new iPSC cell lines. 377 

Data and code availability 378 

• Single-cell RNA sequencing data are available at CellXGene (link: 379 

https://cellxgene.cziscience.com/collections/0dd101f7-9829-44b3-a323-18b113eabeb4). 380 

• Code: This study did not generate novel code, and the required functions for the analysis and 381 

data visualization are described in the STAR Methods section. 382 

• All other items: Further requests for additional information should be directed to the lead 383 

contact, Simone Mayer (simone.mayer@kit.edumailto:). 384 
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Figure titles and legends 417 

Fig. 1. Study design, quality control, and potential biases in the data. A, Three iPSC lines (BIONi010-C, 418 

BIONi037-A, and KOLF2.1J) were differentiated to cerebellar organoids until days 35 and 50. The organoids 419 

generated from the same cell line were pooled and dissociated into single cells when each single-cell 420 

suspension was split into two portions. One set of single-cell suspensions was immediately subjected to 421 

sample multiplexing with CellPlex and processed in 10x Genomics 3’GEX+FB pipeline. The second set of 422 

single-cell suspensions was frozen until all samples were available. The samples were further processed 423 

though Parse Biosciences Evercode v2 pipeline. Libraries were sequenced, and the resulting FASTQ files 424 

were processed with technology-specific computational pipelines. Count matrices were further analyzed. 425 

Graphic was created with BioRender.com. B, Quality statistics after quality control. Color represents 426 

sample identity with respect to technology (10x or Parse), day of differentiation (D35 or D50), and library 427 

(L1 or L2). 10x, n = 29,505, Parse, n = 14,542 cells. Three-way ANOVA, p-values represent differences 428 

between technologies, *** p < 0.001. C, Left, density scatter plot showing correlation of average gene 429 

expression between the two technologies. Right, scatter plot showing correlation of average gene 430 

expression between the two technologies. Color represents gene group. D, Distributions of gene GC 431 

content and gene length for differentially expressed genes between technologies. Two-sided t-test, *** p 432 

< 0.001. See also Figure S1-3 and Table S1 and S2.  433 

Fig. 2. Assessment of neural lineage identity. A, PCA and UMAP plots for globally normalized and 434 

unintegrated data. B, Heatmap representing mean module expression scores of gene ontology terms 435 

related to aspects of cell stress. C, UMAP plot representing cell stress status of cells based on Gruffi 436 

assessment. D, Percentage of stressed cells based on Gruffi assessment. E, RPCA and UMAP plots for 437 

globally normalized and RPCA-integrated data originating from non-stressed cells. F, UMAP plot 438 

representing neural lineage status of cells based on reference-query integration with human 439 

developmental transcriptome29. G, Feature plots showing expression of selected genes to highlight 440 

developmental lineages. H, Percentage of neuroectodermal cells based on reference-query integration 441 

with human developmental transcriptome. I, Percentage of neuroectodermal cells per cell line based on 442 

reference-query integration with human developmental transcriptome. For A, D, E, H, I, color represents 443 

sample identity with respect to technology (10x or Parse), day of differentiation (D35 or D50), and library 444 

(L1 or L2). See also Figure S3 and Table S3. 445 

Fig. 3. Assessment of regional identity and cell type annotation. A, Heatmap of similarity metric of 446 

VoxHunt algorithm comparing samples with human neocortical RNA-seq data from BrainSpan using brain 447 

regional markers obtained from Mouse Brain Atlas at E13. B, UMAP plots for globally normalized and 448 

RPCA-integrated neural data with manually annotated clusters. C, Violin plots for expression of canonical 449 

markers of hindbrain development. D, Stacked bar plot representing average proportion of individual cell 450 

types between technologies. E, UMAP plot representing cell type identity as assigned based on reference-451 

query integration with human cerebellar transcriptome37. F, Feature plots showing prediction score based 452 

on reference-query integration with human cerebellar transcriptome. See also Figure S5 and Table S4. 453 

Fig. 4. Differential gene expression between technologies. A, Strip plot displaying DEGs between 454 

technologies per cell type. Genes represented in grey are not differentially expressed. Color represents 455 

log10 adjusted p-value for differentially expressed genes (absolute log2 fold change > 1, FDR < 10-4). B, 456 

Volcano plot representing differential gene expression in GPC cluster. C, Heatmap representing semantic 457 

similarity between GO terms identified as significantly deregulated in GPC cluster by GSEA analysis. D, 458 
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Heatmap representing z-scores for SCENIC regulon activity calculated based on AUC scores. See also 459 

Figure S6 and Table S5 and S6. 460 

  461 
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STAR★METHODS 462 

Key resources table 463 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

CORL2 (SKOR2) Atlas Antibodies Cat# HPA046206; RRID:AB_2679588 
Sox2 R&D Systems Cat# AF2018; RRID:AB_355110 
BARHL1 Atlas Antibodies Cat# HPA004809; RRID:AB_1078266 
ATOH1 Sigma-Aldrich Cat# WH0000474M1; RRID:AB_1839957 
Ki67 Merck Cat# AB9260; RRID: AB_2142366 
Tuj1 (TUBB3) Atlas Antibodies Cat# AMAb91394; RRID: AB_2716670 
Map2 Abcam Cat# ab32454; RRID:AB_776174 

Bacterial and virus strains  

N/A N/A N/A 

Biological samples   

N/A N/A N/A 

Chemicals, peptides, and recombinant proteins 

N/A N/A N/A 

Critical commercial assays 

Chromium Next GEM Single Cell 3’ kit 
v3.1 

10x Genomics Cat# 1000268 

Evercode WT Mini v2 Parse 
Biosciences 

Cat# ECW02110 

Deposited data 

scRNA-seq data of hiPSC-derived 
cerebellar organoids 

This paper https://cellxgene.cziscience.com/collections/
0dd101f7-9829-44b3-a323-18b113eabeb4 

Human fetal development scRNA-seq Cao et al.29 DOI: 10.1126/science.aba7721 

BrainSpan human developmental 
transcriptome 

Miller et al.34 DOI: 10.1038/nature13185 

Human cerebellar development 
scRNA-seq 

Sepp et al.37 DOI: 10.1038/s41586-023-06884-x 

hiPSC-dericed cerebellar organoids 
scRNA-seq 

Atamian et al.21 DOI: 10.1016/j.stem.2023.11.013 

Experimental models: Cell lines 

BIONi010-C (male) EBiSC hiPSC 

BIONi037-A (female) EBiSC hiPSC 

KOLF2.1J (male) Jackson 
Laboratory 

hiPSC 

Experimental models: Organisms/strains 

N/A N/A N/A 

Oligonucleotides 

N/A N/A N/A 

Recombinant DNA 

N/A N/A N/A 

Software and algorithms 

Cell Ranger v.7.2.0  10x Genomics https://www.10xgenomics.com/support/softw
are/cell-ranger/downloads 
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Split-pipe v.1.1.2 Parse 
Biosciences 

https://www.parsebiosciences.com/ 

Other 

N/A N/A N/A 

 464 

Experimental model and study participant details 465 

iPSC culture  466 

Commercially available iPSC lines BIONi010-C (EBiSC), BIONi037-A (EBiSC) and KOLF2.1J (Jackson 467 

Laboratory) were cultured under standard conditions (37°C, 5% CO2, and 100% humidity) in E8 Flex 468 

medium (BIONi010-C and BIONi037-A, Gibco, Cat. no. A2858501) and mTeSR plus (KOLF2.1J, STEMCELL 469 

Technologies, Cat. no 100-0276) on hESC-qualified growth factor-reduced Matrigel-coated (Corning, Cat. 470 

no. 354277) cell culture dishes (Greiner, Cat. no. 657160). Passaging was performed using Gentle 471 

Dissociation Reagent (STEMCELL Technologies, Cat. no. 07174) once cells reached 80%-90% confluency. 472 

Medium was supplemented with Thiazovivin (Sigma-Aldrich, Cat. no. 420220) upon passaging for one day. 473 

All cell lines were kept under passage 20 and tested for mycoplasma using PCR Mycoplasma Detection Set 474 

(TaKaRa, Cat. no. 6601) and pluripotency by immunocytochemistry against OCT4 (rabbit, 1:500, Abcam, 475 

Cat. no. ab19857). 476 

Generation of cerebellar organoids 477 

Cerebellar organoids were generated as previously described23,61 with some modifications: 80-90% 478 

confluent iPSCs were dissociated using Accutase (Merck, Cat. no. A6964), and 4,500 cells per well were 479 

seeded into 96 well plates (S-bio, Cat. no. MS-9096VZ) in culture medium (Gibco, Cat. no. A2858501), 480 

supplemented with 10 μM Y-27632 (Cayman Chemical, Cat. no. 10005583). Once aggregates reached 250 481 

μm in diameter, medium was changed to growth factor-free chemically defined medium (gfCDM) 482 

supplemented with 50 ng/ml FGF2 (PeproTech, Cat. no. 100-18B) and 10 μM SB-431542 (Tocris, Cat. No. 483 

1614). At D7, FGF2 and SB-431542 were reduced to 33.3 ng/ml and 6.67 μM, respectively. At D14, media 484 

was supplemented with 100 ng/ml FGF19 (PeproTech, Cat. No. 100-32). The medium was changed to 485 

Neurobasal Medium at D21, supplemented with 300 ng/ml SDF-1 from D28 to D34. From D35 onwards, 486 

media was changed to complete BrainPhys (StemCell Technologies, Cat. no. 5793), supplemented with 10 487 

μg/ml BDNF (PeproTech, Cat. no. 450-02), 100 μg/ml GDNF (PeproTech, Cat. no. 450-10), 100 mg/ml 488 

dbcAMP (PeproTech, Cat. no. 1698950) and 250 mM ascorbic acid (Tocris, Cat. no. 4055). All three cell 489 

lines were processed in parallel throughout the experiments. 490 

Method details 491 

Immunohistochemistry on organoids 492 

Organoids were fixed at the respective time points in 4% PFA in PBS for 45-60 min at room temperature62. 493 

The organoids were washed three times for 15 min with 1× PBS and then incubated in 30% sucrose (Sigma-494 

Aldrich, S7903) in PBS solution at 4°C until they sunk to the bottom of the dish. The organoids were 495 

embedded in a 1:1 v/v mixture of 30% sucrose in PBS and optimal cutting temperature (OCT) compound 496 

(Sakura, 4583) and sectioned on Superfrost Plus slides (R. Langenbrinck GmbH, 03-0060) with a cryostat 497 

at 20 µm (Leica). The slides were stored at −80°C.  498 

For immunohistochemistry, slides were thawed for 15 min at room temperature, and the embedding 499 

solution was rinsed off with PBS. A hydrophobic pen (PAP pen, Abcam, ab2601) was used to circle the 500 

sections to prevent the blocking solution from spilling during incubation. Permeabilization and blocking 501 
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were performed with 1% Triton X-100, 0.2% gelatin (Sigma-Aldrich, G1890) and 10% normal donkey serum 502 

in PBS for 1 h at room temperature. Primary antibodies were diluted in permeabilization and blocking 503 

solution and applied to the sections overnight at 4°C. Subsequently, the slides were rinsed with PBS three 504 

times for 15 min, then secondary antibodies were diluted in permeabilization and blocking solution and 505 

applied for 3 h at room temperature. The sections were rinsed in PBS three times for 15 min and nuclei 506 

were stained with DAPI (1:5000) diluted in PBS for 4 min. The sections were then rinsed in PBS and 507 

mounted using ProLong Gold (Invitrogen, P36930). Image acquisition was performed at 20X magnification 508 

using ECHO Revolution Hybrid Automated Microscope (DISCOVER ECHO INC.). 509 

Single-cell dissociation of cerebellar organoids, library preparation, and sequencing 510 

On D35 and D50, 24 organoids per cell line were pooled and dissociated using the Papain dissociation kit 511 

(Worthington, Cat.No. LK003150) following a published protocol with minor modifications52. Cells were 512 

counted and divided into aliquots for further processing. 513 

For the 10x Genomics pipeline cells were labeled with cell multiplexing oligos (CMO, 10x Genomics, Cat. 514 

no. 1000261) and subsequently pooled at an equal ratio. Cells were counted and loaded onto two lanes 515 

of a Chromium Next Gen Chip G (10x Genomics, Cat. no. 1000120) with a targeted cell recovery of 12,000 516 

(D35) and 14,000 (D50) cells per lane. Library preparation was performed with the Chromium Next GEM 517 

Single Cell 3’ kit v3.1 (10x Genomics, Cat. no. 1000268), and sequencing was performed on NovaSeq 6000 518 

with S1 flow cell kit and 100 cycles (Illumina, Cat. no. 20028319). 519 

Samples for Parse Bioscience workflow were fixed using the Evercode fixation kit for cells (Parse 520 

Bioscience, Cat. No. WF300). Fixed samples were stored at –80°C. Samples were characterized by day of 521 

differentiation (D35 or D50) and cell line (BIONi010-C, BIONi037-A, or KOLF2.1J). Every sample was loaded 522 

as a technical duplicate into 2 independent wells, with all samples spanning wells 1-12. Sequencing was 523 

performed using a molarity of 62.4 nM and 3% PhiX spike-in on the Nova Seq 6000 with SP flow cell kit 524 

and 200 cycles (Illumina). 525 

Quantification and statistical analysis 526 

Data downsampling, preprocessing, and quality control 527 

Initially, the datasets from 10x and Parse pipelines had different sequencing depths (Supplementary Table 528 

1). To ensure fair comparison, we downsampled both datasets to an average of 50,000 reads per cell. The 529 

FASTQ files were downsampled with the seqtk sample tool using the same seed for forward and reverse 530 

reads. Parse FASTQ files from each of the 2 sub-libraries were demultiplexed into 6 samples and processed 531 

split-pipe (v1.1.2), resulting in a count matrix. The 2 sub-libraries were merged with combine mode of 532 

split-pipe. For 10x data, read downsampling was performed for individual libraries. Afterwards, 533 

downsampled FASTQ files were processed with cellranger (v.7.2.0) multi pipeline, assigning their cell line 534 

of origin based on CMO. 535 

Gene names in count matrices between the two technologies were harmonized as follows: First, ENSEMBL 536 

gene identifiers were used to merge expression matrices. Secondly, ENSEMBL identifiers were replaced 537 

by HGCN identifiers wherever possible (41,980 genes), and ENSEMBL identifiers were used in other cases 538 

(20,930 genes). The merged count matrix was converted into a Seurat object (Seurat v.5.1.0). Gene 539 

biotypes were retrieved from bioMart using ENSEMBL identifiers. Ribosomal and mitochondrial protein-540 

coding genes were identified by HGCN names starting with RPS/RPL and MT-, respectively. The percentage 541 

of gene expression for ribosomal and mitochondrial protein-coding genes as well as for individual gene 542 

Jo
urn

al 
Pre-

pro
of



biotypes were calculated using PercentageFeatureSet(). For transcription factors (TF) among protein-543 

coding genes, the count matrix was first subset to protein-coding genes, and PercentageFeatureSet() was 544 

applied using the human TFs list63. 545 

Next, QC was performed on cell and gene levels. Cells were excluded if they met any of the following 546 

criteria: (1) number of genes per cell ≤ 2,000 or ≥ 13,000; (2) number of genes per UMI ≤ 0.8; or (3) 547 

percentage of mitochondrial genes ≥ 8%. Genes were excluded if their cumulative expression across all 548 

cells was ≤ 8. 549 

Data normalization, clustering, integration, and dimensionality reduction 550 

After QC, data were normalized using Seurat’s NormalizeData() function with default parameters. 551 

Normalized data were then scaled, and principal component analysis (PCA) was performed on the z-scaled 552 

expression of the 2,000 most variable features (FindVariableFeatures()). Additionally, normalized counts 553 

were integrated using IntegrateData() function with reciprocal PCA (RPCA). Dimensionality reduction and 554 

clustering were performed using both un- and integrated data. RunUMAP() function was used for 555 

dimensionality reduction with 30 neighbors and 30 principal components (PC). Louvain clustering was 556 

performed using FindClusters() function. 557 

Technology-specific analyses: correlation analysis, transcript length, and GC content 558 

To analyze the correlation of gene expression between technologies, we used cells that passed QC, 559 

averaged the gene expression for each technology, and calculated Pearson’s correlation coefficient. DEGs 560 

between technologies were identified using the MAST algorithm in FindMarkers() function as previously 561 

described6 with the following cutoffs: absolute log2 fold change (log2FC) > 1, adjusted p-value < 0.01. 562 

Gene length and GC content were retrieved from bioMart. 563 

Cellular stress assessment 564 

Normalized unintegrated counts were used to analyze the expression of cell stress-related GO terms using 565 

AddModuleScore() function. A random set of genes with mean GO term size was used as an internal 566 

control for module expression analysis. Hierarchical clustering was performed on mean module 567 

expression of cell stress-related GO terms across samples. Gruffi cell stress analysis was performed using 568 

normalized unintegrated counts following the authors’ instructions26. Two GO terms were chosen for 569 

negative selection: glycolytic process (GO:0006096) and integrated stress response signaling 570 

(GO:0140467); and one for positive selection: neurogenesis (GO:0022008). 571 

Germ layer assessment 572 

Normalized integrated counts were used to perform Azimuth reference-query mapping30 of our dataset 573 

with human fetal development transcriptome29. Cells were further classified as “neural” and “non-neural” 574 

based on cell type assignment from Azimuth (Supplementary Table 3). Gruffi differentiation lineage 575 

analysis was performed using normalized integrated counts. Two GO terms were chosen for negative 576 

selection: endoderm (GO:0001706) and mesoderm (GO:0001707) formation; and two for positive 577 

selection: nervous system development (GO:0007399) and neurogenesis (GO:0022008). 578 

Neural data processing and cell type annotation 579 

After germ layer assessment, the dataset was subset to neural cells by labels originating from Azimuth 580 

reference-query mapping and downsampled to retain the equal number of cells in 10x and Parse datasets 581 

(7,212 cells per technology). Data normalization, clustering, integration, and dimensionality reduction 582 

workflow steps were repeated as previously described.  583 
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VoxHunt33 was used to analyze the brain region identity of cells. 10 genes with the highest AUC scores per 584 

brain region in the developing mouse brain at E15 were retrieved, resulting in 186 unique regional marker 585 

genes. These marker genes were used to assess the similarity of gene expression profiles between our 586 

samples and BrainSpan human developmental transcriptome34 at postconceptional weeks 12 and 13.  587 

Cell type annotation was performed for clusters at resolution 0.9 by a combination of approaches: (1) 588 

retrieving cluster marker genes by FindAllMarkers() with MAST (normalized counts provided as input) and 589 

ROC (raw counts provided as input) algorithms; (2) visualizing canonical marker gene expression for cell 590 

types in the developing mouse and human cerebellum. 591 

Reference-query mapping with published primary cerebellar development and cerebellar 592 

organoids transcriptomic datasets 593 

For reference-query mapping of neural-classified cells, we first used human cerebellar development 594 

transcriptomic dataset37 as a reference, downsampling it to 1,000 cells per cell type as defined by the 595 

metadata (author_cell_type column). Both the reference and query datasets were normalized, variable 596 

features identified, scaled, and PCA was performed using Seurat’s default parameters. Integration was 597 

performed using FindTransferAnchors() function with the “pcaproject” option and 30 PCs. Predicted cell 598 

types and prediction scores were obtained from TransferData(), wrapped into MapQuery(), with default 599 

parameters and “author_cell_type” as the reference label. For integration with the cerebellar organoids 600 

transcriptomic dataset21, the same method was used with two adjustments: (1) the complete reference 601 

dataset was used for mapping; (2) the reference label was “final.clusters”. 602 

Differential gene expression analysis and functional enrichment analysis 603 

For DGE analysis, raw counts from neural cells were used. Cells were grouped by cell type, technology, 604 

cell line, and day of differentiation, excluding groups with fewer than 20 cells. Gene counts were 605 

aggregated by technology, cell line, and day of differentiation using AggregateExpression() function with 606 

default settings to sum raw counts per group. No further downsampling was applied to equalize cell group 607 

sizes. The aggregated counts were used for DESeq2 (v.1.42.1) DGE analysis between technologies within 608 

individual cell types64. Log2FC were shrunk using apeglm shrinkageestimator65. Volcano plots were 609 

generated using EnhancedVolcano library (v.1.20.0). 610 

GSEA with GO terms was performed by clusterProfiler (v.4.10.1)66 using Biological Processes gene 611 

ontology, gene set size of 50 to 500 genes, false discovery rate (FDR) for p-value adjustment with a q-612 

value threshold of 0.05. For significantly deregulated GO terms, similarity matrices were calculated and 613 

simplified using the binary cut approach implemented in simplifyEnrichment (v.1.12.0) package67. 614 

Upstream regulator analysis 615 

Upstream regulator analysis was conducted using IPA software (Qiagen). Cell type-specific DESeq2 output 616 

matrices were used for IPA core analysis with the following cutoffs: (1) absolute log2FC > 1; (2) q-value < 617 

0.0001. For visualizations, molecule type was restricted to transcription regulators, and bias-corrected z-618 

scores across cell types were used for hierarchical clustering using the ComplexHeatmap package 619 

(v.2.18.0). When z-scores were not available, they were set to 0. 620 

Gene regulatory network activity analysis  621 

We performed GRN analysis closely following the official pySCENIC protocol41,68. The annotated raw count 622 

matrix from Seurat and the list of human TFs were processed, inferring importance values of regulatory 623 

interactions between TFs and their target genes. The inferred interactions ("adjacencies") were searched 624 
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in the cisTarget databases to identify enriched binding motifs. TFs and target genes indicated by the 625 

enriched motifs were grouped into regulons, and their enrichment was assessed in each cell. Cells were 626 

assigned AUC scores representing activity levels of regulons. Z-scores were calculated based on AUC 627 

scores, and k-means clustering of z-scores was performed to reveal groups of co-regulated regulons. 628 

Regulon target genes and GO BP were used for gene set overrepresentation analysis (ORA) by 629 

clusterProfiler (v.4.10.1) with gene set size of 5 to 500 genes, FDR for p-value adjustment method, and a 630 

q-value threshold of 0.1. 631 

Statistics 632 

R v.4.3.2 was used for statistical analysis. Statistical tests are described in text and figure legends, and 633 

results are documented in Table S7. Two-sided unpaired t-tests were used to compare two groups. For 634 

comparisons with more than two groups, we used three-way ANOVA. Within a set of comparisons (e.g., 635 

for quality control metrics), the Benjamini-Hochberg method of p-value adjustments was used. 636 

  637 

Jo
urn

al 
Pre-

pro
of



Supplemental information 638 

Document S1. Figure S1-S6. 639 

Table S1. Sequencing statistics. Related to Figure 1. 640 

Table S2. Summary of sequencing statistics. Related to Figure 1. 641 

Table S3. Assignment of neural vs non-neural cell fate to the human developmental transcriptome 642 

dataset. Related to Figure 2. 643 

Table S4. Cerebellar regional marker genes. Related to Figure 3.  644 

Table S5. Differentially expressed genes between 10x and Parse. Related to Figure 4. 645 

Table S6. GSEA results for GPC cluster. Related to Figure 4. 646 

Table S7. Detailed statistical results related to Figures 1, 3, S3, and S5. 647 
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Highlights 

10x yields more ribosomal, mitochondrial, and nuclear gene reads than Parse  

The Parse workflow results in lower cell stress than 10x. 

Data from both technologies can be successfully integrated. 

10x and Parse capture the same cellular diversity in human cerebellar organoids. 
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