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Summary

Multiplexing overcomes limited throughput in single-cell RNA sequencing (scRNA-seq). Commercial
strategies include Parse Biosciences combinatorial barcoding (Parse) and 10x Genomics CellPlex with
microfluidic capture (10x). It is currently unknown how these techniques differ when characterizing
complex tissues. Cerebellar organoids are a highly relevant model for studying cerebellar evolution,
development, and disease. Yet, their extensive characterization through scRNA-seq is ongoing. Therefore,
we compared the two multiplexing techniques using cerebellar organoids. While both strategies
demonstrated technical reproducibility and revealed comparable cellular diversity, we found more
stressed cells in 10x than in Parse. Additionally, Parse covered a higher gene biotype diversity and showed
lower mitochondrial and ribosomal protein-coding transcript fractions. In summary, we demonstrate that
both techniques provide similar insight into cerebellar organoid biology, but the flexibility of experimental
design, capture of long transcripts, and the level of cell stress caused by the two workflows differ.

Keywords
transcriptomics, neurodevelopment, neural organoids, stem cells, multiplexing, bioinformatics

Introduction

Single-cell RNA-sequencing (scRNA-seq) has revolutionized our approach to characterize cell types, states,
and lineages in various biological systems and is increasingly used in drug screening. While biological
replica are essential for robust statistical analysis and the detection of even subtle changes between
experimental conditions, replication has often been limited by technically challenging workflows and high
costs2, Additionally, effective cell sampling maximizes the capture of cellular heterogeneity including rare
cell populations®. Recent advances in commercialized kits now allow sample multiplexing, increasing both
the number of cells assayed and the number of possible biological replicates. While combinatorial
barcoding (as provided commercially by Parse Biosciences, hereafter Parse) is inherently multiplexed,
microfluidic approaches (as provided commercially by 10x Genomics, hereafter 10x) require an additional
labeling step for barcoding, mediated by antibodies or lipids®. However, increasing the number of samples
remains technically challenging when working with fresh tissue because dissociation, a highly manual
process, needs to be parallelized®. Fixation of the dissociated cells before capture (as performed in the
Parse workflow) overcomes this obstacle, and different samples, for instance from different experimental
time points, can be sequenced together, thereby avoiding batch effects of the capture. The kits allow
multiplexing of up to 12 (10x) or 96 samples (Parse). The higher the number of multiplexed samples, the
lower are the per-sample costs of cell capture with both strategies.

Since scRNA-seq multiplexing is widely used and datasets from different studies and experimental
approaches are increasingly compared and integrated, it is important to consider the effects of the chosen
multiplexing approach on the results. A recent study comparing both technologies using peripheral blood
mononuclear cells (PBMCs) demonstrated that Parse had a higher sensitivity for detecting rare cell types®.
Furthermore, it was shown that Parse covered a wider range of gene lengths, and that 10x was biased
towards more GC-rich transcripts®. However, it remains unclear, to what extent these differences affect
downstream analysis and highly complex 3D samples that require dissociation such as neural organoids.

Regionalized neural organoids recapitulate the development of specific brain regions with their
specialized neural cell populations, making them a particularly powerful tool to study human
neurodevelopment’, to model neurological disorders®®, and to test on- and off-target effects of
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pharmaceuticals'®!!. The human cerebellum has long been thought to mainly be involved in motor
learning and coordination!?, however, more recent insights into cerebellar function, describe its major
contribution to cognitive functions such as attention, task execution, working memory, language and
social behavior®3, and a contribution to neurodevelopmental disorders (NDD) such as autism spectrum
disorder (ASD)**1>. Two cerebellar progenitor zones, the ventricular zone (VZ) and the rhombic lip (RL),
arise from the rhombencephalon!®’. The VZ gives rise to all inhibitory neurons of the future cerebellum,
including Purkinje cells (PC) and inhibitory neurons of the deep cerebellar nuclei. The RL generates all
excitatory neurons, including granule cells (GC) and excitatory neurons of the deep cerebellar nuclei®®.
Progenitors and neurons from both progenitor zones can now be generated in human cerebellar
organoids, placing them in a unique position to model cerebellar disorders such as cerebellar hypoplasias,
Dandy-Walker Syndrome, ataxias, and medulloblastoma as pioneered in several recent studies®'%,
However, the protocols underlying their generation are still being improved?23, and few single-cell RNA
datasets of selected cell lines are available??*24,

Here, we addressed two important gaps in knowledge related to multiplexing in scRNAseq and cerebellar
organoid generation by comparing the technical features between the two multiplexing strategies, Parse
and 10x, in complex tissue-like samples, cerebellar organoids derived from three control iPSC lines at two
time points.

Results

Experimental design and quality assessment

To assess the reproducibility of cerebellar organoid differentiation and comparability of two multiplexed
scRNA-seq methods, we differentiated three iPSC lines (BIONi010-C, BIONi037-A, and KOLF2.1J) into
cerebellar organoids (Fig. 1A). Cell lines were handled in parallel throughout the experimental period. On
day 28 (D28) and day 42 (D42) of differentiation, organoids were collected for quality control assessment
by immunohistochemistry. We observed the expression of Purkinje cell marker SKOR2 at both time points
(Fig. S1A), the granule cell precursor markers BARHL1 and ATOH1 were expressed at D42 (Fig. S2C), and
general neuroectodermal commitment was indicated by the presence of neural precursor marker SOX2
as well as the early pan-neuronal markers Tuj1 (D28 and D42, Fig. S1C, Fig. S2B) and MAP2 (D42, Fig. S2B).
Further, all cell lines demonstrated cell division at both timepoints, indicated by the expression of Ki-67
(Fig. S1B, Fig. S2A). Samples for scRNA-seq were harvested on day 35 (D35) and day 50 (D50) of
differentiation. Pools of 24 organoids per cell line and time point were dissociated. One aliquot of each
cell suspension was used for 10x, the other for Parse scRNA-seq workflow. This experimental design
minimized the effect of biological variability and focused on technical differences between 10x and Parse.

Libraries were sequenced to achieve over 50,000 reads per cell (Table S1), and raw FASTQ files were
downsampled to 50,000 reads per cell to allow a direct comparison of gene detection sensitivity
(Supplementary Table 1). Alignment of reads was performed through technology-specific pipelines:
cellranger v7.2.0 multi pipeline (10x) and split-pipe v1.1.2 (Parse).

In both technologies, most reads were mapped to the genome (93.2% for 10x, 91.8% for Parse, Fig. S3A,
Table S2), with exonic reads constituting 56.3% of all reads in 10x, and 30.1% in Parse (Fig. S3A, Table S2).
Valid barcodes were identified for 97.2% of reads for 10x and 79.9% for Parse (Fig. S3A, Table S2). The cell
recovery rate was 42.7% for 10x and 16.5% for Parse (Fig. S3B, Table S2).
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For further comparisons, technology-specific cell-by-gene matrices were merged. We found that 32,408
genes had a non-zero expression in both technologies, while 2,159 and 12,098 genes were uniquely
expressed in 10x and Parse, respectively (Fig. S3C). After merging count matrices from both technologies,
we only retained genes that had a non-zero expression in more than 8 cells, resulting in the count matrix
with 38,580 genes (Fig. S3D).

For further analysis, we used the following combination of metadata parameters to assign cells to samples
unless stated otherwise: (1) technology (10x vs Parse); (2) day of differentiation (D35 vs D50) of cerebellar
organoids; and (3) sequencing library (L1 and L2). Day of differentiation was used as a covariate to
acknowledge both biological differences in the stage of organoid differentiation and technical differences
arising from harvesting D35 and D50 samples on different days. The sequencing library was used as a
covariate to show the reproducibility of the workflow within each technology.

After cell-level quality control (QC), we recovered 87.2% of cells from 10x and 95.6% of cells from Parse
datasets (10x, 29,505 out of 33,951 cells; Parse, 14,542 out of 15,226 cells, Fig. S3E). Interestingly, the
number of genes per cell was higher in Parse both before and after QC (p < 0.001, Fig. 1B). While protein-
coding genes were the most abundant in both technologies (Fig. 1B), Parse recovered a higher proportion
of non-coding RNAs (ncRNA) reads, including long non-coding RNA (IncRNA) (Fig. S3F). Additionally, the
percentage of mitochondrial and ribosomal protein-coding transcripts was lower in Parse than in 10x. In
contrast, the percentage of reads originating from transcription factors (TF) among protein-coding genes
was higher in Parse than in 10x (Fig. 1b, Supplementary Fig. 3e). In line with previous findings®, the
correlation of gene expression between the two technologies across cells was only moderate (Pearson’s
r = 0.6) (Fig. 1C), indicating differential gene detection between the two technologies.

Different RNA-seq technologies are known to have biases in gene detection based on gene properties
such as GC content and gene length®?>, To characterize these biases, we analyzed the correspondence
between gene abundance and gene length or GC content (Fig. 1D, Fig. S3F). While using all expressed
genes per technology revealed small but statistically significant differences in these parameters (p <0.001,
Fig. S3F), gene length and GC content of differentially expressed genes (DEG) per technology (10x, 2,737
DEGs; Parse, 4,055 DEGs) differed to a higher extent (Fig. 1D), reminiscent of previously published results®.
We observed a bias towards detecting longer genes in Parse, both for protein-coding genes and IncRNA
(Fig. S3G). Finally, we performed an extensive analysis of gene detection sensitivity and biases (Table S2)
largely corroborating results from the previous benchmarking study®. We therefore suggest that the
observed differences are characteristic features of 10x and Parse technologies independent of sample

type.

Technical and biological differences between technologies

Next, data normalization revealed highly variable genes for Principal Component Analysis (PCA) as well as
Uniform Manifold Approximation and Projection (UMAP) on unintegrated data (Fig. 2A). As expected from
previous results® and our QC, both PCA and UMAP revealed major differences between the technologies
(Fig. 2A). We hypothesized that these differences arise from sample preparation where cells for Parse
were immediately fixed and frozen after dissociation, while cells undergoing 10x capture were depleted
of nutrients and passed through microfluidic channels of the instrument before lysis.

Hence, we hypothesized that cellular stress may contribute to differences between samples. We analyzed
the expression of gene ontology (GO) modules involved in different modalities of cellular stress and its
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downstream effects, such as integrated stress response (ISR) (Supplementary Fig. 4a). In hierarchical
clustering of average GO module expression scores, samples from the two technologies clustered apart.
The major differences came from three terms: response to oxidative stress, glycolytic process, and ISR
signaling (Fig. S4A). Using only these three modules and the random set for hierarchical clustering led to
the same results (Fig. 2B, Fig. S4A).

We further determined the number of stressed cells using Gruffi 2° using the top cell stress terms from
the module expression analysis: glycolytic process (GO:0006096) and ISR signaling (GO:0140467). We
found that the percentage of stressed cells varied between technologies but also between days of
organoid differentiation (Fig. 2C,D, Fig. S4B). There were more stressed cells in the 10x data and both
technologies captured more stressed cells in D50 cerebellar organoids (Fig. 2D). This finding can be
explained by the diffusion-based distribution of nutrients in organoids leading to an increasing nutrient
deficiency as organoids grow (D50 vs. D35)%”%. We therefore removed cells that were classified as
stressed by Gruffi (6,595 out of 44,047 cells that passed QC) from further analysis, integrated normalized
counts by sample using reciprocal PCA, and repeated PCA and UMAP. This analysis revealed that the data
from the two technologies can be easily integrated (Fig. 2E).

To analyze the biological reproducibility of the cerebellar organoid protocol between different iPSC lines,
we characterized the cellular diversity. We first aimed to understand whether organoids had neural
identity. We, therefore, performed reference-query mapping of our dataset onto the human
developmental transcriptome using Azimuth?>%, This reference dataset includes cell types from various
tissues, including the nervous system and the cerebellum. We first assigned our cells with cell types from
the reference dataset featuring cells from 15 human organs between 72 and 129 days post-conception?®3°
(Fig. S4C). High prediction scores were assigned to the cells annotated as skeletal muscle, bronchiolar and
alveolar epithelial cells, enteric nervous system glia, astrocytes, and some neuronal cells (Fig. S4D).
However, prediction scores varied between cells (0.59 + 0.26, mean * SD, Fig. S4D), with most cells not
reaching a high-confidence prediction score of 0.75%°. Therefore, we did not rely on the annotation of
certain cell types but grouped the cells into two categories — neural and non-neural (Fig. 2F, Table S3). We
found a considerable portion of cells having non-neural identity (Fig. 2F) with subsets of cells expressing
muscular markers (e.g., MYOD1 and MYOG?!) and endo-/mesodermal markers (e.g., FGF10*?) (Fig. 2G).
Accordingly, cells expressing muscular markers were annotated as muscular cells with high confidence
(Fig. S4D). In contrast, most cells classified as neural expressed the pan-neuronal marker STMN2 (Fig. 2G).
Among those cells, there were cells annotated as granule neurons and Purkinje neurons, albeit with lower
prediction scores (Fig. S4C,D). Overall, the proportion of neural cells ranged from 46.0% to 60.7% per
sample (Fig. 2H). Importantly, considerable differences were observed between the three iPSC lines that
the organoids were generated from with BIONi010-C cell line having the highest number of neural cells
(Fig. 21).

To cross-validate this assignment we adapted Gruffi%® for detecting neural and non-neural transcriptomic
signatures. We used GO terms for endoderm (G0:0001706) and mesoderm formation (G0:0001707) for
selecting non-neural cells and GO terms for nervous system development (GO:0007399) and neurogenesis
(G0O:0022008) for selecting neural cells (Fig. S4E). The results between reference-query mapping and
Gruffi were mostly coherent (Fig. S4F). Inconsistent annotations were observed for putatively muscular
cells (positive for MYOG and MYOD1), which were incorrectly classified as neural by Gruffi. We suggest
that this discrepancy may be due to the shared excitability between neural and muscular cells.
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Characterization of neural cell diversity

Utilizing the results of reference-query mapping with the human developmental transcriptome?, we
subset neural cells (19,526 neural cells out of 37,452 cells) and downsampled 10x and Parse datasets to
an equal number of cells (resulting in 7,212 cells per technology) before repeating integration and
dimensionality reduction. Next, we aimed to reveal the brain regional identity of the neural cells within
the cerebellar organoids® by correlating regional marker gene expression (inferred from E15 mouse brain,
Table S4) with our dataset and human brain transcriptomic data from postconceptional week (PCW) 12-
13 from Brain Span332%, All samples had the highest correlation with the cerebellum (Fig. S5A). However,
when similarity scores were not scaled, they were higher for 10x than for Parse samples (Fig. 3A). Next,
we assigned cell identities to the neural cells by combining cerebellar canonical marker gene 33537 with
differential gene expression (DGE). We identified both RL-derived cellular lineages (RL, granule precursor
cells (GPC), and GC) and VZ-derived newborn PCs (Fig. 3B,C). A subset of neuronal cells was characterized
as hindbrain neurons (Fig. 3B). While overall proportions of cells captured by the two technologies were
similar (Fig. 3D, Fig. S5B), dividing progenitors, PAX6-positive RL and dividing RL cell populations were
significantly enriched in Parse (Fig. 3D, Fig. S5B). We then visualized the distribution of cell types in
organoids originating from different cell lines (Fig. S5C). This analysis revealed differences in proportions
of different neural cell types between cell lines (Fig. S5C). This highlights the necessity to use multiple cell
lines and batches of differentiation when characterizing the reproducibility of new neural organoid
protocols.

To our knowledge, currently scRNA-seq cerebellar organoid datasets are available for D60%! or D90?? of
differentiation. We hypothesized that our scRNA-seq analysis at D35 and D50 provides insights into the
establishment of cell type diversity during differentiation. Indeed, when we visualized the distribution of
cell types between the two sampling time points, we found that RL-derived populations had higher
proportions in D35 than in D50 of differentiation while several neuronal populations, including newborn
PCs, demonstrated the opposite trend (Fig. S5D,E). Therefore, cerebellar organoids recapitulated the
temporal progression of cell type proportions characteristic of the developing cerebellum®®3¢, To
characterize the similarity of our cerebellar organoids with the developing human cerebellum, we
performed reference-query mapping with a primary cerebellar transcriptomic dataset, subset to only
include prenatal samples®’. While finding general agreement in cell type annotations, we noticed
differences in both assigned cell type identities (Fig. 3E) and prediction scores, which were higher in Parse
than in 10x data (Fig. S5F). We further compared our data with a recent scRNA-seq cerebellar organoids
dataset (Fig. S5G,H)?!. The prediction scores were higher than for the comparison with the human
cerebellar developmental transcriptome (Fig. S5F). This time, however, prediction scores were higher for
10x than for Parse cells (Fig. S5I). Interestingly, both reference datasets were generated using 10x.
Therefore, expectedly, our organoid data aligns more with organoid data obtained from a different
protocol than with primary tissue.

In summary, we found that the cerebellar organoids indeed acquired a mid-gestational human cerebellar
regional identity. We also found robust differentiation into both major cerebellar lineages, RL- and VZ-
derived cells. Small variances in the different parameters were found between 10x and Parse
technologies.
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Secondary analysis between techniques reveals differences in cell stress signatures and
neurodevelopment-related gene regulatory networks activity

During QC, we found differences in the percentage of reads originating from ribosomal and mitochondrial
protein-coding genes between the two technologies (Fig. 1B). We also found a subset of cells expressing
cell stress-related genes, and this proportion was higher for 10x (Fig. 2D). Therefore, we analyzed whether
the neural cells preserved these transcriptomic features and performed DGE analysis between the
different technologies within individual cell types. For that, we split the dataset by cell type, technology,
cell line, and day of differentiation and pseudobulked cells for DESeq2. DEGs were spread across all cell
types (Fig. 4A, Fig. S6A). Especially mitochondrial and ribosomal protein-coding genes were upregulated
in 10x compared to Parse (Table S5), including GPCs (Fig. 4B). More genes were upregulated in 10x
compared to Parse across all cell types (Fig. S6A). Interestingly, there were a few genes with large fold
change and relatively large p-values upregulated in either of the two technologies (Fig. S6B). To
functionally characterize the differences in gene expression between the techniques, we performed gene
set enrichment analysis (GSEA) and clustered the output in a semantic similarity matrix (Fig. 4C). Here, we
describe findings for GSEA in GPCs, as a representative cell type with relatively high cell numbers and a
medium number of DEGs. In GPCs, the normalized expression score for all statistically significant GO terms
was less than 0, indicating their upregulation in 10x compared with Parse (Table S6). One cluster of
enriched GO terms was related to nucleotide processing, another to mitochondrial respiration. These two
clusters of GO terms included not only mitochondria-encoded protein-coding genes (Fig. 1B), but also
nuclear-encoded genes involved in mitochondrial function (e.g., NDUF, Table S6). Another group of
enriched GO terms in GPCs was described as related to neuron projection assembly (Fig. 4C).

To reveal the upstream mechanisms leading to the transcriptional changes across cell types, we
performed upstream regulator analysis (URA). That predicted a variety of TFs to be differentially active in
either of the technologies, and that these transcriptional changes were coordinated across cell types (Fig.
4D). For example, we found ER stress-induced TFs XBP1, ATF4 and ATF6, and NFE2L2 and NRF1, which
mediate oxidative stress response and are involved in maintaining mitochondria redox homeostasis3°
to be upregulated in 10x. These predictions are in line with our previous findings (Fig. 2B, Fig. S4A),
demonstrating a higher proportion of stressed cells in 10x than Parse. Since we found that the Parse
dataset had a larger proportion of reads originating from TFs (Fig. 1B), we decided to extend our analysis
to gene regulatory network (GRN) analysis using SCENIC*!. Average area under the curve (AUC) scores per
cell type and technology were z-score normalized and subjected to k-means clustering (Fig. 4E). We found
that, albeit overall small z-scores, the two technologies clustered apart (column clusters 1 and 3 for 10x,
and 2 and 4 for Parse) but also cell types divided into two meta groups based on the activity of GRNs
(column clusters 1 and 2 were enriched in neurons, while column clusters 3 and 4 contained
predominantly progenitor cell types, Fig. 4E, Figure S6C). Additional examples of cell type-associated
regulon activity can be found in Fig. S6C. In summary, transcriptional differences between technologies
did not mask transcriptional differences between cell types.

Discussion

In this study, we compared two broadly used and commercialized approaches for sample multiplexing of
scRNA-seq: 10x and Parse using cerebellar organoids, as an example of a complex 3D sample that requires
dissociation. Regionalized neural organoids, such as cerebellar organoids, are commonly used in
neuroscience research but can be challenging due to heterogeneity between samples, batches, and iPSC
lines and require in-depth characterization 7#2. To compare scRNA-seq datasets across experiments and
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to differentiate technical and biological causes of variance, it is essential to understand artefacts and
biases introduced by experimental pipelines of cell capture techniques. We generated cerebellar
organoids?® from three iPSC lines, dissociated the samples at D35 and D50, subjected them to 10x and
Parse cell capture, and sequenced the resulting libraries. We compared the methods based on library
efficiency, differential transcript capture, cell type enrichment, and secondary analysis insights.

Sample preparation differs considerably between the two technologies: Parse samples are fixed after
dissociation, whereas cells are kept alive until lysis in 10x. Consequently, Parse provides more flexibility in
sample processing and allows handling higher sample numbers in one sequencing run, which is
advantageous for larger experiments. Further, we observed differences in the cell recovery rates—42.7%
for 10x and 16.5% for Parse (Fig. S3B), and for scarce samples, higher recovery is beneficial to maximize
data output. The downside of fixation may be decreased RNA quality, reflected in a lower number of
recovered genes®. Next, there are substantial differences in library preparation protocols. Namely, one
important difference is that Parse, in addition to oligo(dT) primers, uses random hexamer primers for
reverse transcription, thus allowing multipriming. Since both technologies rely on reverse transcription of
mRNA up to its 5’ end, multipriming may allow for more robust recovery of longer transcripts. Random
hexamer primers also allow capturing transcripts devoid of polyA tails, non-coding RNAs, and nascent
transcripts. Other steps of library preparation, albeit different, rely on reactions that should be either
immune to transcript-specific biases or whose effect is difficult to predict.

For alignment and generation of count tables, we used technology-specific pipelines, thus leveraging
optimal settings for both library construction protocols. Both approaches use the same tools for data
processing with minor changes, thus potentially introducing minor variations into the resulting count
tables.

Consistent with previous findings® and suggested effects of different sample processing and library
generation protocols, we observed differences in the number of detected genes and their properties.
Namely, 10x resulted in a higher number of genes, a higher number of protein-coding genes, including
mitochondrial and ribosomal protein-coding genes compared to Parse (Fig. 1B, Fig. S3E). Furthermore,
10x captured transcripts with higher GC content, while Parse captured longer transcripts (Fig. 1B, Fig.
S3E,H). Previous studies showed a connection between gene length and neurodevelopment and NDDs**%°
Interestingly, BCL11b (CTIP2) (102,911 bps), a TF crucial for neuronal maturation and differentiation, is
predicted to be upregulated in Parse in DAB1/CALB1/CALB2 HindN in our data (Fig. 4D). The clinical
features of BCL11b-associated NDDs include ASD, intellectual disability, and cerebellar hypoplasia**, which
have been previously modeled in organoids®®. These findings highlight transcript length as an important
factor, suggesting Parse may be better suited for studying long transcripts upon experimental
manipulations.

Further, Parse covered more transcripts encoding TFs among protein-coding genes (Fig. 1B, Fig. S3E). To
investigate if this bias had effects on GRN activity, we employed SCENIC analysis. Interestingly, Parse
showed higher z-scores for neurodevelopment and maturation-related regulons (Fig. 4E), in contrast to
the upregulation of neuron processes assembly-related terms in 10x in GSEA (Fig. 4C). Additionally, we
identified cell type- and technique-specific differences in regulon activity. For instance, NFIA regulon had
higher z-scores in RL derivates in Parse (Fig. 4E), a TF relevant for GC maturation and linked to NDDs and
gliomas®®%’. Taken together, the GRN analysis reveals not only cell type but also technique-driven
differences in regulon activity of identical biological samples.
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During QC, we found that the percentage of mitochondrial and ribosomal protein-coding genes was higher
in 10x samples (Fig. 1B), corroborating previous findings®. DGE analysis revealed the upregulation of
mitochondrial protein-coding genes and other genes involved in mitochondrial function (Fig. 4B). Hence,
the differences in mitochondrial transcripts might be partially explained by higher cell stress in the 10x
data and mitochondrial involvement in stress response pathways*.

We analyzed stress-specific modulators and identified three modules (oxidative stress, glycolysis, and ISR)
that separated the two technologies. 10x showed stronger stress module expression overall, particularly at
D50. Regionalized neural organoids have been reported to show high expression of stress pathway-related
transcripts due to in vitro culturing conditions and insufficient oxygen supply?®284°. The cascade of events
unfolding upon persistent hypoxia may explain the elevated stress response-associated transcriptional
signature at D50 compared to D35 of differentiation (Fig. 2B)*°. Additionally, tissue dissociation for single-
cell capture can induce stress response®l. Since stressed cells are common in scRNA-seq organoid
datasets, a bioinformatic approach called Gruffi was developed to remove these cells?®®. Using Gruffi, we
found a noticeably higher percentage of stressed cells in the 10x compared to the Parse dataset at both
time points (Fig. 2D). Immediate fixation of cells after the dissociation in Parse may limit the induction of
stress-related genes, in contrast to live cells processing in 10x. These findings suggest that identical
samples of cerebellar organoids show a technology- and time point-specific stress response reflected in
transcriptional signature and striking differences in the number of cells identified as stressed (Fig. 2D).

To assess the biological reproducibility of organoid differentiation, we assessed the percentage of neural
cells®, revealing neural commitment of 52.1% of all cells, suggesting the initial tissue specification could
be improved. Different neural organoid protocols®*>® and a recently published protocol for cerebellar
organoids?! use dual SMAD inhibition during initiation of differentiation to prevent meso- and endodermal
fates thus promoting neural induction®*. In contrast, the cerebellar differentiation protocol used in this
study employs only one SMAD pathway inhibitor?3, and dual SMAD inhibition could improve
neuroectodermal commitment. Furthermore, we noticed substantial differences in differentiation
efficiencies between the iPSC lines, with the KOLF2.1J)-derived cerebellar organoids demonstrating the
lowest proportion of neural cells. This suggests that iPSC line-inherent mechanisms influence the
differentiation efficiency®, underscoring the importance of using isogenic control iPSCs when analyzing
pathogenic variants®®. A recent study suggests adjusting small molecule and growth factor concentrations
in cortical organoids for individual iPSC lines to reduce off-target tissue®. This approach could reduce line-
to-line variability. Further, a recent preprint demonstrates structural variants in neurodevelopmental
genes in KOLF2.1 line that could affect neural differentiation®’. Despite the differences between the three
iPSC lines used in this study, our cerebellar organoids generated cerebellar cells of both RL and VZ lineage.
Comparing our data set with a recently published cerebellar organoid transcriptomic dataset?! revealed
similar cell populations.

In conclusion, our comparison of Parse and 10x encompassed library efficiency, differential transcript
capture, cell type preferences, and secondary analysis outcomes, showing distinct strengths of each
method. While 10x provided higher cell recovery and gene detection rates, Parse captured longer
transcripts and a wider range of transcript lengths and resulted in lower cell stress—important for
regionalized neural organoids, in which cell stress may be a key artifact?’. These technical differences have
relevant biological implications, making it essential to choose the appropriate method based on specific
research goals. Future studies should consider these factors to improve the accuracy and biological
relevance of single-cell transcriptomic analyses. Finally, we demonstrated cerebellar organoid
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differentiation and in-depth characterization on three iPSC lines, highlighting the importance of using
diverse cell lines to capture line-to-line variability.

Limitations of the study

In the current study, we used cerebellar organoids as a model system to showcase technical differences
arising from two single-cell capturing and multiplexing techniques. Our experimental design has several
limitations. First, the study relied on one differentiation per line, reducing our ability to separate protocol
effects from batch- and line-specific variability. Next, although the organoids produced relevant cerebellar
lineages, neural commitment was incomplete, and a substantial fraction of cells adopted non-neural fates,
indicating that early tissue specification was not fully optimized. More recent cerebellar organoid
differentiation protocols?°%>° may better suppress meso-/endodermal trajectories and improve neural
induction through dual SMAD inhibition, and should be evaluated in future work. In addition,
differentiation efficiency differed markedly across cell lines, with the KOLF2.1J line showing the lowest
neural yield, suggesting that line-inherent properties may confound direct comparisons®”®. Finally, some
technical features of the single-cell workflows may introduce differences in count tables due to
bioinformatic processing. In our analysis, we generated count tables using technology-specific pipelines,
ensuring optimal settings. While most of the bioinformatic tools are shared between pipelines, some
minor differences exist. For example, while both Cell Ranger and split-pipe perform UMI demultiplexing,
only Cell Ranger reports further UMI correction and exclusion of low-quality UMls.

Resource availability
Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled
by the Lead Contact, Simone Mayer (simone.mayer@kit.edu).

Materials availability
This study did not generate new unique reagents or new iPSC cell lines.

Data and code availability
e Single-cell RNA sequencing data are available at CellXGene (link:
https://cellxgene.cziscience.com/collections/0dd101f7-9829-44b3-a323-18b113eabeb4).
e Code: This study did not generate novel code, and the required functions for the analysis and
data visualization are described in the STAR Methods section.
o All other items: Further requests for additional information should be directed to the lead
contact, Simone Mayer (simone.mayer@kit.edumailto:).
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Figure titles and legends

Fig. 1. Study design, quality control, and potential biases in the data. A, Three iPSC lines (BIONi010-C,
BIONi037-A, and KOLF2.1J) were differentiated to cerebellar organoids until days 35 and 50. The organoids
generated from the same cell line were pooled and dissociated into single cells when each single-cell
suspension was split into two portions. One set of single-cell suspensions was immediately subjected to
sample multiplexing with CellPlex and processed in 10x Genomics 3’GEX+FB pipeline. The second set of
single-cell suspensions was frozen until all samples were available. The samples were further processed
though Parse Biosciences Evercode v2 pipeline. Libraries were sequenced, and the resulting FASTQ files
were processed with technology-specific computational pipelines. Count matrices were further analyzed.
Graphic was created with BioRender.com. B, Quality statistics after quality control. Color represents
sample identity with respect to technology (10x or Parse), day of differentiation (D35 or D50), and library
(L1 or L2). 10x, n = 29,505, Parse, n = 14,542 cells. Three-way ANOVA, p-values represent differences
between technologies, *** p < 0.001. C, Left, density scatter plot showing correlation of average gene
expression between the two technologies. Right, scatter plot showing correlation of average gene
expression between the two technologies. Color represents gene group. D, Distributions of gene GC
content and gene length for differentially expressed genes between technologies. Two-sided t-test, *** p
< 0.001. See also Figure S1-3 and Table S1 and S2.

Fig. 2. Assessment of neural lineage identity. A, PCA and UMAP plots for globally normalized and
unintegrated data. B, Heatmap representing mean module expression scores of gene ontology terms
related to aspects of cell stress. C, UMAP plot representing cell stress status of cells based on Gruffi
assessment. D, Percentage of stressed cells based on Gruffi assessment. E, RPCA and UMAP plots for
globally normalized and RPCA-integrated data originating from non-stressed cells. F, UMAP plot
representing neural lineage status of cells based on reference-query integration with human
developmental transcriptome?. G, Feature plots showing expression of selected genes to highlight
developmental lineages. H, Percentage of neuroectodermal cells based on reference-query integration
with human developmental transcriptome. I, Percentage of neuroectodermal cells per cell line based on
reference-query integration with human developmental transcriptome. For A, D, E, H, |, color represents
sample identity with respect to technology (10x or Parse), day of differentiation (D35 or D50), and library
(L1 or L2). See also Figure S3 and Table S3.

Fig. 3. Assessment of regional identity and cell type annotation. A, Heatmap of similarity metric of
VoxHunt algorithm comparing samples with human neocortical RNA-seq data from BrainSpan using brain
regional markers obtained from Mouse Brain Atlas at E13. B, UMAP plots for globally normalized and
RPCA-integrated neural data with manually annotated clusters. C, Violin plots for expression of canonical
markers of hindbrain development. D, Stacked bar plot representing average proportion of individual cell
types between technologies. E, UMAP plot representing cell type identity as assigned based on reference-
query integration with human cerebellar transcriptome?’. F, Feature plots showing prediction score based
on reference-query integration with human cerebellar transcriptome. See also Figure S5 and Table S4.

Fig. 4. Differential gene expression between technologies. A, Strip plot displaying DEGs between
technologies per cell type. Genes represented in grey are not differentially expressed. Color represents
log10 adjusted p-value for differentially expressed genes (absolute log2 fold change > 1, FDR < 10%). B,
Volcano plot representing differential gene expression in GPC cluster. C, Heatmap representing semantic
similarity between GO terms identified as significantly deregulated in GPC cluster by GSEA analysis. D,
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459 Heatmap representing z-scores for SCENIC regulon activity calculated based on AUC scores. See also
460 Figure S6 and Table S5 and S6.
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STARXMETHODS

Key resources table

REAGENT or RESOURCE \ SOURCE ‘ IDENTIFIER

Antibodies

CORL2 (SKOR2) Atlas Antibodies | Cat# HPA046206; RRID:AB_2679588
Sox2 R&D Systems Cat# AF2018; RRID:AB_355110
BARHL1 Atlas Antibodies | Cat# HPA004809; RRID:AB_1078266
ATOH1 Sigma-Aldrich Cat# WH0000474M1; RRID:AB_1839957
Ki67 Merck Cat# AB9260; RRID: AB_2142366
Tujl (TUBB3) Atlas Antibodies | Cat# AMAb91394; RRID: AB_2716670
Map2 Abcam Cat# ab32454; RRID:AB_776174
Bacterial and virus strains

N/A N/A N/A

Biological samples

N/A N/A N/A

Chemicals, peptides, and recombinant proteins

N/A | N/A | N/A

Critical commercial assays

Chromium Next GEM Single Cell 3’ kit
v3.1

10x Genomics

Cat# 1000268

Evercode WT Mini v2 Parse Cat# ECW02110
Biosciences
Deposited data
scRNA-seq data of hiPSC-derived This paper https://cellxgene.cziscience.com/collections/
cerebellar organoids 0dd101f7-9829-44b3-a323-18b113eabeb4
Human fetal development scRNA-seq | Cao et al.?® DOI: 10.1126/science.aba7721
BrainSpan human developmental Miller et al.34 DOI: 10.1038/nature13185
transcriptome
Human cerebellar development Sepp et al.¥” DOI: 10.1038/s41586-023-06884-x

SCcRNA-seq

hiPSC-dericed cerebellar organoids
ScRNA-seq

Atamian et al.?*

DOI: 10.1016/j.stem.2023.11.013

Experimental models: Cell lines

BIONi010-C (male) EBIiSC hiPSC

BIONi037-A (female) EBISC hiPSC

KOLF2.1J (male) Jackson hiPSC
Laboratory

Experimental models: Organisms/strains

N/A | N/A | N/A

Oligonucleotides

N/A | N/A | N/A

Recombinant DNA

N/A | N/A | N/A

Software and algorithms

Cell Ranger v.7.2.0

10x Genomics

https://www.10xgenomics.com/support/softw
are/cell-ranger/downloads
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Split-pipe v.1.1.2 Parse https://www.parsebiosciences.com/
Biosciences

Other

N/A | N/A | N/A

Experimental model and study participant details

iPSC culture

Commercially available iPSC lines BIONi010-C (EBiSC), BIONi037-A (EBiSC) and KOLF2.1) (Jackson
Laboratory) were cultured under standard conditions (37°C, 5% C0O2, and 100% humidity) in E8 Flex
medium (BIONi010-C and BIONi037-A, Gibco, Cat. no. A2858501) and mTeSR plus (KOLF2.1J, STEMCELL
Technologies, Cat. no 100-0276) on hESC-qualified growth factor-reduced Matrigel-coated (Corning, Cat.
no. 354277) cell culture dishes (Greiner, Cat. no. 657160). Passaging was performed using Gentle
Dissociation Reagent (STEMCELL Technologies, Cat. no. 07174) once cells reached 80%-90% confluency.
Medium was supplemented with Thiazovivin (Sigma-Aldrich, Cat. no. 420220) upon passaging for one day.
All cell lines were kept under passage 20 and tested for mycoplasma using PCR Mycoplasma Detection Set
(TaKaRa, Cat. no. 6601) and pluripotency by immunocytochemistry against OCT4 (rabbit, 1:500, Abcam,
Cat. no. ab19857).

Generation of cerebellar organoids

Cerebellar organoids were generated as previously describe with some modifications: 80-90%
confluent iPSCs were dissociated using Accutase (Merck, Cat. no. A6964), and 4,500 cells per well were
seeded into 96 well plates (S-bio, Cat. no. MS-9096VZ) in culture medium (Gibco, Cat. no. A2858501),
supplemented with 10 uM Y-27632 (Cayman Chemical, Cat. no. 10005583). Once aggregates reached 250
pm in diameter, medium was changed to growth factor-free chemically defined medium (gfCDM)
supplemented with 50 ng/ml FGF2 (PeproTech, Cat. no. 100-18B) and 10 pM SB-431542 (Tocris, Cat. No.
1614). At D7, FGF2 and SB-431542 were reduced to 33.3 ng/ml and 6.67 uM, respectively. At D14, media
was supplemented with 100 ng/ml FGF19 (PeproTech, Cat. No. 100-32). The medium was changed to
Neurobasal Medium at D21, supplemented with 300 ng/ml SDF-1 from D28 to D34. From D35 onwards,
media was changed to complete BrainPhys (StemCell Technologies, Cat. no. 5793), supplemented with 10
pug/ml BDNF (PeproTech, Cat. no. 450-02), 100 ug/ml GDNF (PeproTech, Cat. no. 450-10), 100 mg/ml
dbcAMP (PeproTech, Cat. no. 1698950) and 250 mM ascorbic acid (Tocris, Cat. no. 4055). All three cell
lines were processed in parallel throughout the experiments.

d23,61

Method details

Immunohistochemistry on organoids

Organoids were fixed at the respective time points in 4% PFA in PBS for 45-60 min at room temperature®?.
The organoids were washed three times for 15 min with 1x PBS and then incubated in 30% sucrose (Sigma-
Aldrich, S7903) in PBS solution at 4°C until they sunk to the bottom of the dish. The organoids were
embedded in a 1:1 v/v mixture of 30% sucrose in PBS and optimal cutting temperature (OCT) compound
(Sakura, 4583) and sectioned on Superfrost Plus slides (R. Langenbrinck GmbH, 03-0060) with a cryostat
at 20 um (Leica). The slides were stored at -80°C.

For immunohistochemistry, slides were thawed for 15 min at room temperature, and the embedding
solution was rinsed off with PBS. A hydrophobic pen (PAP pen, Abcam, ab2601) was used to circle the
sections to prevent the blocking solution from spilling during incubation. Permeabilization and blocking
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were performed with 1% Triton X-100, 0.2% gelatin (Sigma-Aldrich, G1890) and 10% normal donkey serum
in PBS for 1 h at room temperature. Primary antibodies were diluted in permeabilization and blocking
solution and applied to the sections overnight at 4°C. Subsequently, the slides were rinsed with PBS three
times for 15 min, then secondary antibodies were diluted in permeabilization and blocking solution and
applied for 3 h at room temperature. The sections were rinsed in PBS three times for 15 min and nuclei
were stained with DAPI (1:5000) diluted in PBS for 4 min. The sections were then rinsed in PBS and
mounted using ProLong Gold (Invitrogen, P36930). Image acquisition was performed at 20X magnification
using ECHO Revolution Hybrid Automated Microscope (DISCOVER ECHO INC.).

Single-cell dissociation of cerebellar organoids, library preparation, and sequencing

On D35 and D50, 24 organoids per cell line were pooled and dissociated using the Papain dissociation kit
(Worthington, Cat.No. LK003150) following a published protocol with minor modifications®2. Cells were
counted and divided into aliquots for further processing.

For the 10x Genomics pipeline cells were labeled with cell multiplexing oligos (CMO, 10x Genomics, Cat.
no. 1000261) and subsequently pooled at an equal ratio. Cells were counted and loaded onto two lanes
of a Chromium Next Gen Chip G (10x Genomics, Cat. no. 1000120) with a targeted cell recovery of 12,000
(D35) and 14,000 (D50) cells per lane. Library preparation was performed with the Chromium Next GEM
Single Cell 3’ kit v3.1 (10x Genomics, Cat. no. 1000268), and sequencing was performed on NovaSeq 6000
with S1 flow cell kit and 100 cycles (lllumina, Cat. no. 20028319).

Samples for Parse Bioscience workflow were fixed using the Evercode fixation kit for cells (Parse
Bioscience, Cat. No. WF300). Fixed samples were stored at —80°C. Samples were characterized by day of
differentiation (D35 or D50) and cell line (BIONi010-C, BIONi037-A, or KOLF2.1J). Every sample was loaded
as a technical duplicate into 2 independent wells, with all samples spanning wells 1-12. Sequencing was
performed using a molarity of 62.4 nM and 3% PhiX spike-in on the Nova Seq 6000 with SP flow cell kit
and 200 cycles (lllumina).

Quantification and statistical analysis

Data downsampling, preprocessing, and quality control

Initially, the datasets from 10x and Parse pipelines had different sequencing depths (Supplementary Table
1). To ensure fair comparison, we downsampled both datasets to an average of 50,000 reads per cell. The
FASTQ files were downsampled with the seqtk sample tool using the same seed for forward and reverse
reads. Parse FASTQ files from each of the 2 sub-libraries were demultiplexed into 6 samples and processed
split-pipe (v1.1.2), resulting in a count matrix. The 2 sub-libraries were merged with combine mode of
split-pipe. For 10x data, read downsampling was performed for individual libraries. Afterwards,
downsampled FASTQ files were processed with cellranger (v.7.2.0) multi pipeline, assigning their cell line
of origin based on CMO.

Gene names in count matrices between the two technologies were harmonized as follows: First, ENSEMBL
gene identifiers were used to merge expression matrices. Secondly, ENSEMBL identifiers were replaced
by HGCN identifiers wherever possible (41,980 genes), and ENSEMBL identifiers were used in other cases
(20,930 genes). The merged count matrix was converted into a Seurat object (Seurat v.5.1.0). Gene
biotypes were retrieved from bioMart using ENSEMBL identifiers. Ribosomal and mitochondrial protein-
coding genes were identified by HGCN names starting with RPS/RPL and MT-, respectively. The percentage
of gene expression for ribosomal and mitochondrial protein-coding genes as well as for individual gene
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biotypes were calculated using PercentageFeatureSet(). For transcription factors (TF) among protein-
coding genes, the count matrix was first subset to protein-coding genes, and PercentageFeatureSet() was
applied using the human TFs list®3,

Next, QC was performed on cell and gene levels. Cells were excluded if they met any of the following
criteria: (1) number of genes per cell £ 2,000 or 2 13,000; (2) number of genes per UMI < 0.8; or (3)
percentage of mitochondrial genes > 8%. Genes were excluded if their cumulative expression across all
cells was < 8.

Data normalization, clustering, integration, and dimensionality reduction

After QC, data were normalized using Seurat’s NormalizeData() function with default parameters.
Normalized data were then scaled, and principal component analysis (PCA) was performed on the z-scaled
expression of the 2,000 most variable features (FindVariableFeatures()). Additionally, normalized counts
were integrated using IntegrateData() function with reciprocal PCA (RPCA). Dimensionality reduction and
clustering were performed using both un- and integrated data. RunUMAP() function was used for
dimensionality reduction with 30 neighbors and 30 principal components (PC). Louvain clustering was
performed using FindClusters() function.

Technology-specific analyses: correlation analysis, transcript length, and GC content

To analyze the correlation of gene expression between technologies, we used cells that passed QC,
averaged the gene expression for each technology, and calculated Pearson’s correlation coefficient. DEGs
between technologies were identified using the MAST algorithm in FindMarkers() function as previously
described® with the following cutoffs: absolute log2 fold change (log2FC) > 1, adjusted p-value < 0.01.
Gene length and GC content were retrieved from bioMart.

Cellular stress assessment

Normalized unintegrated counts were used to analyze the expression of cell stress-related GO terms using
AddModuleScore() function. A random set of genes with mean GO term size was used as an internal
control for module expression analysis. Hierarchical clustering was performed on mean module
expression of cell stress-related GO terms across samples. Gruffi cell stress analysis was performed using
normalized unintegrated counts following the authors’ instructions?®. Two GO terms were chosen for
negative selection: glycolytic process (G0:0006096) and integrated stress response signaling
(GO:0140467); and one for positive selection: neurogenesis (G0:0022008).

Germ layer assessment

Normalized integrated counts were used to perform Azimuth reference-query mapping® of our dataset
with human fetal development transcriptome?®. Cells were further classified as “neural” and “non-neural”
based on cell type assignment from Azimuth (Supplementary Table 3). Gruffi differentiation lineage
analysis was performed using normalized integrated counts. Two GO terms were chosen for negative
selection: endoderm (G0:0001706) and mesoderm (G0:0001707) formation; and two for positive
selection: nervous system development (GO:0007399) and neurogenesis (GO:0022008).

Neural data processing and cell type annotation

After germ layer assessment, the dataset was subset to neural cells by labels originating from Azimuth
reference-query mapping and downsampled to retain the equal number of cells in 10x and Parse datasets
(7,212 cells per technology). Data normalization, clustering, integration, and dimensionality reduction
workflow steps were repeated as previously described.
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VoxHunt3?

was used to analyze the brain region identity of cells. 10 genes with the highest AUC scores per
brain region in the developing mouse brain at E15 were retrieved, resulting in 186 unique regional marker
genes. These marker genes were used to assess the similarity of gene expression profiles between our

samples and BrainSpan human developmental transcriptome3* at postconceptional weeks 12 and 13.

Cell type annotation was performed for clusters at resolution 0.9 by a combination of approaches: (1)
retrieving cluster marker genes by FindAlIMarkers() with MAST (normalized counts provided as input) and
ROC (raw counts provided as input) algorithms; (2) visualizing canonical marker gene expression for cell
types in the developing mouse and human cerebellum.

Reference-query mapping with published primary cerebellar development and cerebellar
organoids transcriptomic datasets

For reference-query mapping of neural-classified cells, we first used human cerebellar development
transcriptomic dataset®” as a reference, downsampling it to 1,000 cells per cell type as defined by the
metadata (author_cell_type column). Both the reference and query datasets were normalized, variable
features identified, scaled, and PCA was performed using Seurat’s default parameters. Integration was
performed using FindTransferAnchors() function with the “pcaproject” option and 30 PCs. Predicted cell
types and prediction scores were obtained from TransferData(), wrapped into MapQuery(), with default
parameters and “author_cell_type” as the reference label. For integration with the cerebellar organoids
transcriptomic dataset?!, the same method was used with two adjustments: (1) the complete reference
dataset was used for mapping; (2) the reference label was “final.clusters”.

Differential gene expression analysis and functional enrichment analysis

For DGE analysis, raw counts from neural cells were used. Cells were grouped by cell type, technology,
cell line, and day of differentiation, excluding groups with fewer than 20 cells. Gene counts were
aggregated by technology, cell line, and day of differentiation using AggregateExpression() function with
default settings to sum raw counts per group. No further downsampling was applied to equalize cell group
sizes. The aggregated counts were used for DESeq2 (v.1.42.1) DGE analysis between technologies within
individual cell types®. Log2FC were shrunk using apeg/m shrinkageestimator®. Volcano plots were
generated using EnhancedVolcano library (v.1.20.0).

GSEA with GO terms was performed by clusterProfiler (v.4.10.1)%® using Biological Processes gene
ontology, gene set size of 50 to 500 genes, false discovery rate (FDR) for p-value adjustment with a g-
value threshold of 0.05. For significantly deregulated GO terms, similarity matrices were calculated and
simplified using the binary cut approach implemented in simplifyEnrichment (v.1.12.0) package®’.

Upstream regulator analysis

Upstream regulator analysis was conducted using IPA software (Qiagen). Cell type-specific DESeq2 output
matrices were used for IPA core analysis with the following cutoffs: (1) absolute log2FC > 1; (2) g-value <
0.0001. For visualizations, molecule type was restricted to transcription regulators, and bias-corrected z-
scores across cell types were used for hierarchical clustering using the ComplexHeatmap package
(v.2.18.0). When z-scores were not available, they were set to 0.

Gene regulatory network activity analysis

We performed GRN analysis closely following the official pySCENIC protocol*V8. The annotated raw count
matrix from Seurat and the list of human TFs were processed, inferring importance values of regulatory
interactions between TFs and their target genes. The inferred interactions ("adjacencies") were searched
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in the cisTarget databases to identify enriched binding motifs. TFs and target genes indicated by the
enriched motifs were grouped into regulons, and their enrichment was assessed in each cell. Cells were
assigned AUC scores representing activity levels of regulons. Z-scores were calculated based on AUC
scores, and k-means clustering of z-scores was performed to reveal groups of co-regulated regulons.
Regulon target genes and GO BP were used for gene set overrepresentation analysis (ORA) by
clusterProfiler (v.4.10.1) with gene set size of 5 to 500 genes, FDR for p-value adjustment method, and a
g-value threshold of 0.1.

Statistics

R v.4.3.2 was used for statistical analysis. Statistical tests are described in text and figure legends, and
results are documented in Table S7. Two-sided unpaired t-tests were used to compare two groups. For
comparisons with more than two groups, we used three-way ANOVA. Within a set of comparisons (e.g.,
for quality control metrics), the Benjamini-Hochberg method of p-value adjustments was used.
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Supplemental information
Document S1. Figure S1-S6.

Table S1. Sequencing statistics. Related to Figure 1.
Table S2. Summary of sequencing statistics. Related to Figure 1.

Table S3. Assignment of neural vs non-neural cell fate to the human developmental transcriptome
dataset. Related to Figure 2.

Table S4. Cerebellar regional marker genes. Related to Figure 3.
Table S5. Differentially expressed genes between 10x and Parse. Related to Figure 4.
Table S6. GSEA results for GPC cluster. Related to Figure 4.

Table S7. Detailed statistical results related to Figures 1, 3, S3, and S5.
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Highlights

10x yields more ribosomal, mitochondrial, and nuclear gene reads than Parse
The Parse workflow results in lower cell stress than 10x.

Data from both technologies can be successfully integrated.

10x and Parse capture the same cellular diversity in human cerebellar organoids.



