

Journal Pre-proof

Comparing the impact of sample multiplexing approaches for single-cell RNA-sequencing on downstream analysis using cerebellar organoids

Kseniia Sarieva, Theresa Kagermeier, Vladislav Lysenkov, Francesco Castagnetti, Zeynep Yentuer, Katharina Becker, Julia Matilainen, Nicolas Casadei, Simone Mayer

PII: S2589-0042(26)00155-0

DOI: <https://doi.org/10.1016/j.isci.2026.114780>

Reference: ISCI 114780

To appear in: *iScience*

Received Date: 18 June 2025

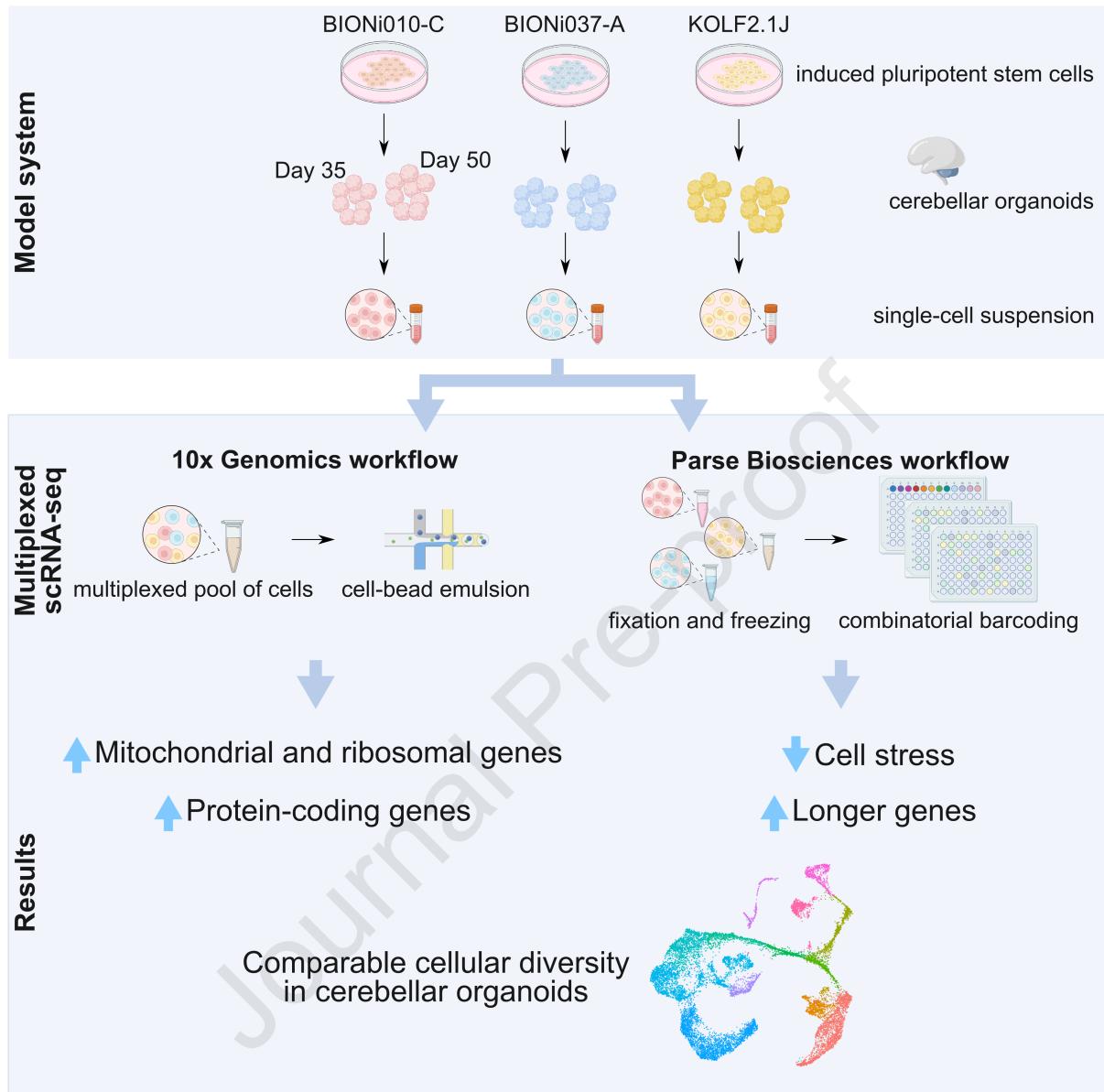
Revised Date: 10 November 2025

Accepted Date: 20 January 2026

Please cite this article as: Sarieva, K., Kagermeier, T., Lysenkov, V., Castagnetti, F., Yentuer, Z., Becker, K., Matilainen, J., Casadei, N., Mayer, S., Comparing the impact of sample multiplexing approaches for single-cell RNA-sequencing on downstream analysis using cerebellar organoids, *iScience* (2026), doi: <https://doi.org/10.1016/j.isci.2026.114780>.

This is a PDF of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability. This version will undergo additional copyediting, typesetting and review before it is published in its final form. As such, this version is no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing this early version to give early visibility of the article. Please note that Elsevier's sharing policy for the Published Journal Article applies to this version, see: <https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article>. Please also note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2026 The Author(s). Published by Elsevier Inc.



1 Comparing the impact of sample multiplexing approaches for single-cell
2 RNA-sequencing on downstream analysis using cerebellar organoids

3 Kseniia Sarieva^{1*}, Theresa Kagermeier^{1,2,8*}, Vladislav Lysenkov^{3,4}, Francesco Castagnetti⁸, Zeynep
4 Yentuer^{1,2,5,6,8}, Katharina Becker¹, Julia Matilainen⁷, Nicolas Casadei^{3,4}, Simone Mayer^{1,5,6,8,9,10#}

5 1, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076 Germany

6 2, International Max Planck Research School, Graduate Training Centre of Neuroscience, University of
7 Tübingen, Tübingen, 72076 Germany

8 3, Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, 72076 Germany

9 4, NGS Competence Center Tübingen, Tübingen, 72076 Germany

10 5, Heidelberger Akademie der Wissenschaften, Heidelberg, 69117 Germany

11 6, IMPRS, The Mechanisms of Mental Function and Dysfunction, University of Tübingen, 72076 Germany

12 7, German PCH patient network (PCH-Familie e.V.), Böblingen, 71034 Germany

13 8, Zoological Institute, Karlsruhe Institute of Technology (KIT), 76131 Germany

14 9, Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of
15 Technology (KIT), 76131 Germany

16 10, Lead contact

17 *, equal contribution authors

18 #, corresponding author: Prof. Dr. Simone Mayer

19 Address: Wolfgang-Gaede-Straße 1a, 76131 Karlsruhe, Germany

20 Email: simone.mayer@kit.edu

21

22 Summary

23 Multiplexing overcomes limited throughput in single-cell RNA sequencing (scRNA-seq). Commercial
 24 strategies include Parse Biosciences combinatorial barcoding (Parse) and 10x Genomics CellPlex with
 25 microfluidic capture (10x). It is currently unknown how these techniques differ when characterizing
 26 complex tissues. Cerebellar organoids are a highly relevant model for studying cerebellar evolution,
 27 development, and disease. Yet, their extensive characterization through scRNA-seq is ongoing. Therefore,
 28 we compared the two multiplexing techniques using cerebellar organoids. While both strategies
 29 demonstrated technical reproducibility and revealed comparable cellular diversity, we found more
 30 stressed cells in 10x than in Parse. Additionally, Parse covered a higher gene biotype diversity and showed
 31 lower mitochondrial and ribosomal protein-coding transcript fractions. In summary, we demonstrate that
 32 both techniques provide similar insight into cerebellar organoid biology, but the flexibility of experimental
 33 design, capture of long transcripts, and the level of cell stress caused by the two workflows differ.

34 Keywords

35 transcriptomics, neurodevelopment, neural organoids, stem cells, multiplexing, bioinformatics

36 Introduction

37 Single-cell RNA-sequencing (scRNA-seq) has revolutionized our approach to characterize cell types, states,
 38 and lineages in various biological systems and is increasingly used in drug screening. While biological
 39 replica are essential for robust statistical analysis and the detection of even subtle changes between
 40 experimental conditions, replication has often been limited by technically challenging workflows and high
 41 costs^{1,2}. Additionally, effective cell sampling maximizes the capture of cellular heterogeneity including rare
 42 cell populations³. Recent advances in commercialized kits now allow sample multiplexing, increasing both
 43 the number of cells assayed and the number of possible biological replicates. While combinatorial
 44 barcoding (as provided commercially by Parse Biosciences, hereafter Parse) is inherently multiplexed,
 45 microfluidic approaches (as provided commercially by 10x Genomics, hereafter 10x) require an additional
 46 labeling step for barcoding, mediated by antibodies or lipids⁴. However, increasing the number of samples
 47 remains technically challenging when working with fresh tissue because dissociation, a highly manual
 48 process, needs to be parallelized⁵. Fixation of the dissociated cells before capture (as performed in the
 49 Parse workflow) overcomes this obstacle, and different samples, for instance from different experimental
 50 time points, can be sequenced together, thereby avoiding batch effects of the capture. The kits allow
 51 multiplexing of up to 12 (10x) or 96 samples (Parse). The higher the number of multiplexed samples, the
 52 lower are the per-sample costs of cell capture with both strategies.

53 Since scRNA-seq multiplexing is widely used and datasets from different studies and experimental
 54 approaches are increasingly compared and integrated, it is important to consider the effects of the chosen
 55 multiplexing approach on the results. A recent study comparing both technologies using peripheral blood
 56 mononuclear cells (PBMCs) demonstrated that Parse had a higher sensitivity for detecting rare cell types⁶.
 57 Furthermore, it was shown that Parse covered a wider range of gene lengths, and that 10x was biased
 58 towards more GC-rich transcripts⁶. However, it remains unclear, to what extent these differences affect
 59 downstream analysis and highly complex 3D samples that require dissociation such as neural organoids.

60 Regionalized neural organoids recapitulate the development of specific brain regions with their
 61 specialized neural cell populations, making them a particularly powerful tool to study human
 62 neurodevelopment⁷, to model neurological disorders^{8,9}, and to test on- and off-target effects of

63 pharmaceuticals^{10,11}. The human cerebellum has long been thought to mainly be involved in motor
 64 learning and coordination¹², however, more recent insights into cerebellar function, describe its major
 65 contribution to cognitive functions such as attention, task execution, working memory, language and
 66 social behavior¹³, and a contribution to neurodevelopmental disorders (NDD) such as autism spectrum
 67 disorder (ASD)^{14,15}. Two cerebellar progenitor zones, the ventricular zone (VZ) and the rhombic lip (RL),
 68 arise from the rhombencephalon^{16,17}. The VZ gives rise to all inhibitory neurons of the future cerebellum,
 69 including Purkinje cells (PC) and inhibitory neurons of the deep cerebellar nuclei. The RL generates all
 70 excitatory neurons, including granule cells (GC) and excitatory neurons of the deep cerebellar nuclei¹⁸.
 71 Progenitors and neurons from both progenitor zones can now be generated in human cerebellar
 72 organoids, placing them in a unique position to model cerebellar disorders such as cerebellar hypoplasias,
 73 Dandy-Walker Syndrome, ataxias, and medulloblastoma as pioneered in several recent studies^{9,19,20}.
 74 However, the protocols underlying their generation are still being improved²¹⁻²³, and few single-cell RNA
 75 datasets of selected cell lines are available^{21,23,24}.

76 Here, we addressed two important gaps in knowledge related to multiplexing in scRNAseq and cerebellar
 77 organoid generation by comparing the technical features between the two multiplexing strategies, Parse
 78 and 10x, in complex tissue-like samples, cerebellar organoids derived from three control iPSC lines at two
 79 time points.

80 Results

81 Experimental design and quality assessment

82 To assess the reproducibility of cerebellar organoid differentiation and comparability of two multiplexed
 83 scRNA-seq methods, we differentiated three iPSC lines (BIONi010-C, BIONi037-A, and KOLF2.1J) into
 84 cerebellar organoids (Fig. 1A). Cell lines were handled in parallel throughout the experimental period. On
 85 day 28 (D28) and day 42 (D42) of differentiation, organoids were collected for quality control assessment
 86 by immunohistochemistry. We observed the expression of Purkinje cell marker SKOR2 at both time points
 87 (Fig. S1A), the granule cell precursor markers BARHL1 and ATOH1 were expressed at D42 (Fig. S2C), and
 88 general neuroectodermal commitment was indicated by the presence of neural precursor marker SOX2
 89 as well as the early pan-neuronal markers Tuj1 (D28 and D42, Fig. S1C, Fig. S2B) and MAP2 (D42, Fig. S2B).
 90 Further, all cell lines demonstrated cell division at both timepoints, indicated by the expression of Ki-67
 91 (Fig. S1B, Fig. S2A). Samples for scRNA-seq were harvested on day 35 (D35) and day 50 (D50) of
 92 differentiation. Pools of 24 organoids per cell line and time point were dissociated. One aliquot of each
 93 cell suspension was used for 10x, the other for Parse scRNA-seq workflow. This experimental design
 94 minimized the effect of biological variability and focused on technical differences between 10x and Parse.

95 Libraries were sequenced to achieve over 50,000 reads per cell (Table S1), and raw FASTQ files were
 96 downsampled to 50,000 reads per cell to allow a direct comparison of gene detection sensitivity
 97 (Supplementary Table 1). Alignment of reads was performed through technology-specific pipelines:
 98 cellranger v7.2.0 *multi* pipeline (10x) and split-pipe v1.1.2 (Parse).

99 In both technologies, most reads were mapped to the genome (93.2% for 10x, 91.8% for Parse, Fig. S3A,
 100 Table S2), with exonic reads constituting 56.3% of all reads in 10x, and 30.1% in Parse (Fig. S3A, Table S2).
 101 Valid barcodes were identified for 97.2% of reads for 10x and 79.9% for Parse (Fig. S3A, Table S2). The cell
 102 recovery rate was 42.7% for 10x and 16.5% for Parse (Fig. S3B, Table S2).

103 For further comparisons, technology-specific cell-by-gene matrices were merged. We found that 32,408
 104 genes had a non-zero expression in both technologies, while 2,159 and 12,098 genes were uniquely
 105 expressed in 10x and Parse, respectively (Fig. S3C). After merging count matrices from both technologies,
 106 we only retained genes that had a non-zero expression in more than 8 cells, resulting in the count matrix
 107 with 38,580 genes (Fig. S3D).

108 For further analysis, we used the following combination of metadata parameters to assign cells to samples
 109 unless stated otherwise: (1) technology (10x vs Parse); (2) day of differentiation (D35 vs D50) of cerebellar
 110 organoids; and (3) sequencing library (L1 and L2). Day of differentiation was used as a covariate to
 111 acknowledge both biological differences in the stage of organoid differentiation and technical differences
 112 arising from harvesting D35 and D50 samples on different days. The sequencing library was used as a
 113 covariate to show the reproducibility of the workflow within each technology.

114 After cell-level quality control (QC), we recovered 87.2% of cells from 10x and 95.6% of cells from Parse
 115 datasets (10x, 29,505 out of 33,951 cells; Parse, 14,542 out of 15,226 cells, Fig. S3E). Interestingly, the
 116 number of genes per cell was higher in Parse both before and after QC ($p < 0.001$, Fig. 1B). While protein-
 117 coding genes were the most abundant in both technologies (Fig. 1B), Parse recovered a higher proportion
 118 of non-coding RNAs (ncRNA) reads, including long non-coding RNA (lncRNA) (Fig. S3F). Additionally, the
 119 percentage of mitochondrial and ribosomal protein-coding transcripts was lower in Parse than in 10x. In
 120 contrast, the percentage of reads originating from transcription factors (TF) among protein-coding genes
 121 was higher in Parse than in 10x (Fig. 1b, Supplementary Fig. 3e). In line with previous findings⁶, the
 122 correlation of gene expression between the two technologies across cells was only moderate (Pearson's
 123 $r = 0.6$) (Fig. 1C), indicating differential gene detection between the two technologies.

124 Different RNA-seq technologies are known to have biases in gene detection based on gene properties
 125 such as GC content and gene length^{6,25}. To characterize these biases, we analyzed the correspondence
 126 between gene abundance and gene length or GC content (Fig. 1D, Fig. S3F). While using all expressed
 127 genes per technology revealed small but statistically significant differences in these parameters ($p < 0.001$,
 128 Fig. S3F), gene length and GC content of differentially expressed genes (DEG) per technology (10x, 2,737
 129 DEGs; Parse, 4,055 DEGs) differed to a higher extent (Fig. 1D), reminiscent of previously published results⁶.
 130 We observed a bias towards detecting longer genes in Parse, both for protein-coding genes and lncRNA
 131 (Fig. S3G). Finally, we performed an extensive analysis of gene detection sensitivity and biases (Table S2)
 132 largely corroborating results from the previous benchmarking study⁶. We therefore suggest that the
 133 observed differences are characteristic features of 10x and Parse technologies independent of sample
 134 type.

135 Technical and biological differences between technologies

136 Next, data normalization revealed highly variable genes for Principal Component Analysis (PCA) as well as
 137 Uniform Manifold Approximation and Projection (UMAP) on unintegrated data (Fig. 2A). As expected from
 138 previous results⁶ and our QC, both PCA and UMAP revealed major differences between the technologies
 139 (Fig. 2A). We hypothesized that these differences arise from sample preparation where cells for Parse
 140 were immediately fixed and frozen after dissociation, while cells undergoing 10x capture were depleted
 141 of nutrients and passed through microfluidic channels of the instrument before lysis.

142 Hence, we hypothesized that cellular stress may contribute to differences between samples. We analyzed
 143 the expression of gene ontology (GO) modules involved in different modalities of cellular stress and its

144 downstream effects, such as integrated stress response (ISR) (Supplementary Fig. 4a). In hierarchical
 145 clustering of average GO module expression scores, samples from the two technologies clustered apart.
 146 The major differences came from three terms: response to oxidative stress, glycolytic process, and ISR
 147 signaling (Fig. S4A). Using only these three modules and the random set for hierarchical clustering led to
 148 the same results (Fig. 2B, Fig. S4A).

149 We further determined the number of stressed cells using Gruffi²⁶ using the top cell stress terms from
 150 the module expression analysis: glycolytic process (GO:0006096) and ISR signaling (GO:0140467). We
 151 found that the percentage of stressed cells varied between technologies but also between days of
 152 organoid differentiation (Fig. 2C,D, Fig. S4B). There were more stressed cells in the 10x data and both
 153 technologies captured more stressed cells in D50 cerebellar organoids (Fig. 2D). This finding can be
 154 explained by the diffusion-based distribution of nutrients in organoids leading to an increasing nutrient
 155 deficiency as organoids grow (D50 vs. D35)^{27,28}. We therefore removed cells that were classified as
 156 stressed by Gruffi (6,595 out of 44,047 cells that passed QC) from further analysis, integrated normalized
 157 counts by sample using reciprocal PCA, and repeated PCA and UMAP. This analysis revealed that the data
 158 from the two technologies can be easily integrated (Fig. 2E).

159 To analyze the biological reproducibility of the cerebellar organoid protocol between different iPSC lines,
 160 we characterized the cellular diversity. We first aimed to understand whether organoids had neural
 161 identity. We, therefore, performed reference-query mapping of our dataset onto the human
 162 developmental transcriptome using Azimuth^{29,30}. This reference dataset includes cell types from various
 163 tissues, including the nervous system and the cerebellum. We first assigned our cells with cell types from
 164 the reference dataset featuring cells from 15 human organs between 72 and 129 days post-conception^{29,30}
 165 (Fig. S4C). High prediction scores were assigned to the cells annotated as skeletal muscle, bronchiolar and
 166 alveolar epithelial cells, enteric nervous system glia, astrocytes, and some neuronal cells (Fig. S4D).
 167 However, prediction scores varied between cells (0.59 ± 0.26 , mean \pm SD, Fig. S4D), with most cells not
 168 reaching a high-confidence prediction score of 0.75³⁰. Therefore, we did not rely on the annotation of
 169 certain cell types but grouped the cells into two categories – neural and non-neural (Fig. 2F, Table S3). We
 170 found a considerable portion of cells having non-neural identity (Fig. 2F) with subsets of cells expressing
 171 muscular markers (e.g., *MYOD1* and *MYOG*³¹) and endo-/mesodermal markers (e.g., *FGF10*³²) (Fig. 2G).
 172 Accordingly, cells expressing muscular markers were annotated as muscular cells with high confidence
 173 (Fig. S4D). In contrast, most cells classified as neural expressed the pan-neuronal marker *STMN2* (Fig. 2G).
 174 Among those cells, there were cells annotated as granule neurons and Purkinje neurons, albeit with lower
 175 prediction scores (Fig. S4C,D). Overall, the proportion of neural cells ranged from 46.0% to 60.7% per
 176 sample (Fig. 2H). Importantly, considerable differences were observed between the three iPSC lines that
 177 the organoids were generated from with BIONi010-C cell line having the highest number of neural cells
 178 (Fig. 2I).

179 To cross-validate this assignment we adapted Gruffi²⁶ for detecting neural and non-neural transcriptomic
 180 signatures. We used GO terms for endoderm (GO:0001706) and mesoderm formation (GO:0001707) for
 181 selecting non-neural cells and GO terms for nervous system development (GO:0007399) and neurogenesis
 182 (GO:0022008) for selecting neural cells (Fig. S4E). The results between reference-query mapping and
 183 Gruffi were mostly coherent (Fig. S4F). Inconsistent annotations were observed for putatively muscular
 184 cells (positive for *MYOG* and *MYOD1*), which were incorrectly classified as neural by Gruffi. We suggest
 185 that this discrepancy may be due to the shared excitability between neural and muscular cells.

186 Characterization of neural cell diversity
 187 Utilizing the results of reference-query mapping with the human developmental transcriptome²⁹, we
 188 subset neural cells (19,526 neural cells out of 37,452 cells) and downsampled 10x and Parse datasets to
 189 an equal number of cells (resulting in 7,212 cells per technology) before repeating integration and
 190 dimensionality reduction. Next, we aimed to reveal the brain regional identity of the neural cells within
 191 the cerebellar organoids²³ by correlating regional marker gene expression (inferred from E15 mouse brain,
 192 Table S4) with our dataset and human brain transcriptomic data from postconceptional week (PCW) 12-
 193 13 from Brain Span^{33,34}. All samples had the highest correlation with the cerebellum (Fig. S5A). However,
 194 when similarity scores were not scaled, they were higher for 10x than for Parse samples (Fig. 3A). Next,
 195 we assigned cell identities to the neural cells by combining cerebellar canonical marker gene^{18,35-37} with
 196 differential gene expression (DGE). We identified both RL-derived cellular lineages (RL, granule precursor
 197 cells (GPC), and GC) and VZ-derived newborn PCs (Fig. 3B,C). A subset of neuronal cells was characterized
 198 as hindbrain neurons (Fig. 3B). While overall proportions of cells captured by the two technologies were
 199 similar (Fig. 3D, Fig. S5B), dividing progenitors, PAX6-positive RL and dividing RL cell populations were
 200 significantly enriched in Parse (Fig. 3D, Fig. S5B). We then visualized the distribution of cell types in
 201 organoids originating from different cell lines (Fig. S5C). This analysis revealed differences in proportions
 202 of different neural cell types between cell lines (Fig. S5C). This highlights the necessity to use multiple cell
 203 lines and batches of differentiation when characterizing the reproducibility of new neural organoid
 204 protocols.

205 To our knowledge, currently scRNA-seq cerebellar organoid datasets are available for D60²¹ or D90²² of
 206 differentiation. We hypothesized that our scRNA-seq analysis at D35 and D50 provides insights into the
 207 establishment of cell type diversity during differentiation. Indeed, when we visualized the distribution of
 208 cell types between the two sampling time points, we found that RL-derived populations had higher
 209 proportions in D35 than in D50 of differentiation while several neuronal populations, including newborn
 210 PCs, demonstrated the opposite trend (Fig. S5D,E). Therefore, cerebellar organoids recapitulated the
 211 temporal progression of cell type proportions characteristic of the developing cerebellum^{18,36}. To
 212 characterize the similarity of our cerebellar organoids with the developing human cerebellum, we
 213 performed reference-query mapping with a primary cerebellar transcriptomic dataset, subset to only
 214 include prenatal samples³⁷. While finding general agreement in cell type annotations, we noticed
 215 differences in both assigned cell type identities (Fig. 3E) and prediction scores, which were higher in Parse
 216 than in 10x data (Fig. S5F). We further compared our data with a recent scRNA-seq cerebellar organoids
 217 dataset (Fig. S5G,H)²¹. The prediction scores were higher than for the comparison with the human
 218 cerebellar developmental transcriptome (Fig. S5F). This time, however, prediction scores were higher for
 219 10x than for Parse cells (Fig. S5I). Interestingly, both reference datasets were generated using 10x.
 220 Therefore, expectedly, our organoid data aligns more with organoid data obtained from a different
 221 protocol than with primary tissue.

222 In summary, we found that the cerebellar organoids indeed acquired a mid-gestational human cerebellar
 223 regional identity. We also found robust differentiation into both major cerebellar lineages, RL- and VZ-
 224 derived cells. Small variances in the different parameters were found between 10x and Parse
 225 technologies.

226 Secondary analysis between techniques reveals differences in cell stress signatures and
 227 neurodevelopment-related gene regulatory networks activity
 228 During QC, we found differences in the percentage of reads originating from ribosomal and mitochondrial
 229 protein-coding genes between the two technologies (Fig. 1B). We also found a subset of cells expressing
 230 cell stress-related genes, and this proportion was higher for 10x (Fig. 2D). Therefore, we analyzed whether
 231 the neural cells preserved these transcriptomic features and performed DGE analysis between the
 232 different technologies within individual cell types. For that, we split the dataset by cell type, technology,
 233 cell line, and day of differentiation and pseudobulked cells for DESeq2. DEGs were spread across all cell
 234 types (Fig. 4A, Fig. S6A). Especially mitochondrial and ribosomal protein-coding genes were upregulated
 235 in 10x compared to Parse (Table S5), including GPCs (Fig. 4B). More genes were upregulated in 10x
 236 compared to Parse across all cell types (Fig. S6A). Interestingly, there were a few genes with large fold
 237 change and relatively large p-values upregulated in either of the two technologies (Fig. S6B). To
 238 functionally characterize the differences in gene expression between the techniques, we performed gene
 239 set enrichment analysis (GSEA) and clustered the output in a semantic similarity matrix (Fig. 4C). Here, we
 240 describe findings for GSEA in GPCs, as a representative cell type with relatively high cell numbers and a
 241 medium number of DEGs. In GPCs, the normalized expression score for all statistically significant GO terms
 242 was less than 0, indicating their upregulation in 10x compared with Parse (Table S6). One cluster of
 243 enriched GO terms was related to nucleotide processing, another to mitochondrial respiration. These two
 244 clusters of GO terms included not only mitochondria-encoded protein-coding genes (Fig. 1B), but also
 245 nuclear-encoded genes involved in mitochondrial function (e.g., NDUF, Table S6). Another group of
 246 enriched GO terms in GPCs was described as related to neuron projection assembly (Fig. 4C).

247 To reveal the upstream mechanisms leading to the transcriptional changes across cell types, we
 248 performed upstream regulator analysis (URA). That predicted a variety of TFs to be differentially active in
 249 either of the technologies, and that these transcriptional changes were coordinated across cell types (Fig.
 250 4D). For example, we found ER stress-induced TFs *XBPI*, *ATF4* and *ATF6*, and *NFE2L2* and *NRF1*, which
 251 mediate oxidative stress response and are involved in maintaining mitochondria redox homeostasis³⁸⁻⁴⁰
 252 to be upregulated in 10x. These predictions are in line with our previous findings (Fig. 2B, Fig. S4A),
 253 demonstrating a higher proportion of stressed cells in 10x than Parse. Since we found that the Parse
 254 dataset had a larger proportion of reads originating from TFs (Fig. 1B), we decided to extend our analysis
 255 to gene regulatory network (GRN) analysis using SCENIC⁴¹. Average area under the curve (AUC) scores per
 256 cell type and technology were z-score normalized and subjected to k-means clustering (Fig. 4E). We found
 257 that, albeit overall small z-scores, the two technologies clustered apart (column clusters 1 and 3 for 10x,
 258 and 2 and 4 for Parse) but also cell types divided into two meta groups based on the activity of GRNs
 259 (column clusters 1 and 2 were enriched in neurons, while column clusters 3 and 4 contained
 260 predominantly progenitor cell types, Fig. 4E, Figure S6C). Additional examples of cell type-associated
 261 regulon activity can be found in Fig. S6C. In summary, transcriptional differences between technologies
 262 did not mask transcriptional differences between cell types.

263 Discussion

264 In this study, we compared two broadly used and commercialized approaches for sample multiplexing of
 265 scRNA-seq: 10x and Parse using cerebellar organoids, as an example of a complex 3D sample that requires
 266 dissociation. Regionalized neural organoids, such as cerebellar organoids, are commonly used in
 267 neuroscience research but can be challenging due to heterogeneity between samples, batches, and iPSC
 268 lines and require in-depth characterization^{7,42}. To compare scRNA-seq datasets across experiments and

269 to differentiate technical and biological causes of variance, it is essential to understand artefacts and
 270 biases introduced by experimental pipelines of cell capture techniques. We generated cerebellar
 271 organoids²³ from three iPSC lines, dissociated the samples at D35 and D50, subjected them to 10x and
 272 Parse cell capture, and sequenced the resulting libraries. We compared the methods based on library
 273 efficiency, differential transcript capture, cell type enrichment, and secondary analysis insights.

274 Sample preparation differs considerably between the two technologies: Parse samples are fixed after
 275 dissociation, whereas cells are kept alive until lysis in 10x. Consequently, Parse provides more flexibility in
 276 sample processing and allows handling higher sample numbers in one sequencing run, which is
 277 advantageous for larger experiments. Further, we observed differences in the cell recovery rates—42.7%
 278 for 10x and 16.5% for Parse (Fig. S3B), and for scarce samples, higher recovery is beneficial to maximize
 279 data output. The downside of fixation may be decreased RNA quality, reflected in a lower number of
 280 recovered genes⁴³. Next, there are substantial differences in library preparation protocols. Namely, one
 281 important difference is that Parse, in addition to oligo(dT) primers, uses random hexamer primers for
 282 reverse transcription, thus allowing multipriming. Since both technologies rely on reverse transcription of
 283 mRNA up to its 5' end, multipriming may allow for more robust recovery of longer transcripts. Random
 284 hexamer primers also allow capturing transcripts devoid of polyA tails, non-coding RNAs, and nascent
 285 transcripts. Other steps of library preparation, albeit different, rely on reactions that should be either
 286 immune to transcript-specific biases or whose effect is difficult to predict.

287 For alignment and generation of count tables, we used technology-specific pipelines, thus leveraging
 288 optimal settings for both library construction protocols. Both approaches use the same tools for data
 289 processing with minor changes, thus potentially introducing minor variations into the resulting count
 290 tables.

291 Consistent with previous findings⁶ and suggested effects of different sample processing and library
 292 generation protocols, we observed differences in the number of detected genes and their properties.
 293 Namely, 10x resulted in a higher number of genes, a higher number of protein-coding genes, including
 294 mitochondrial and ribosomal protein-coding genes compared to Parse (Fig. 1B, Fig. S3E). Furthermore,
 295 10x captured transcripts with higher GC content, while Parse captured longer transcripts (Fig. 1B, Fig.
 296 S3E,H). Previous studies showed a connection between gene length and neurodevelopment and NDDs^{44,45}.
 297 Interestingly, BCL11b (CTIP2) (102,911 bps), a TF crucial for neuronal maturation and differentiation, is
 298 predicted to be upregulated in Parse in DAB1/CALB1/CALB2 HindN in our data (Fig. 4D). The clinical
 299 features of BCL11b-associated NDDs include ASD, intellectual disability, and cerebellar hypoplasia⁴⁵, which
 300 have been previously modeled in organoids^{8,9}. These findings highlight transcript length as an important
 301 factor, suggesting Parse may be better suited for studying long transcripts upon experimental
 302 manipulations.

303 Further, Parse covered more transcripts encoding TFs among protein-coding genes (Fig. 1B, Fig. S3E). To
 304 investigate if this bias had effects on GRN activity, we employed SCENIC analysis. Interestingly, Parse
 305 showed higher z-scores for neurodevelopment and maturation-related regulons (Fig. 4E), in contrast to
 306 the upregulation of neuron processes assembly-related terms in 10x in GSEA (Fig. 4C). Additionally, we
 307 identified cell type- and technique-specific differences in regulon activity. For instance, *NFIA* regulon had
 308 higher z-scores in RL derivates in Parse (Fig. 4E), a TF relevant for GC maturation and linked to NDDs and
 309 gliomas^{46,47}. Taken together, the GRN analysis reveals not only cell type but also technique-driven
 310 differences in regulon activity of identical biological samples.

311 During QC, we found that the percentage of mitochondrial and ribosomal protein-coding genes was higher
 312 in 10x samples (Fig. 1B), corroborating previous findings⁶. DGE analysis revealed the upregulation of
 313 mitochondrial protein-coding genes and other genes involved in mitochondrial function (Fig. 4B). Hence,
 314 the differences in mitochondrial transcripts might be partially explained by higher cell stress in the 10x
 315 data and mitochondrial involvement in stress response pathways⁴⁸.

316 We analyzed stress-specific modulators and identified three modules (oxidative stress, glycolysis, and ISR)
 317 that separated the two technologies. 10x showed stronger stress module expression overall, particularly at
 318 D50. Regionalized neural organoids have been reported to show high expression of stress pathway-related
 319 transcripts due to *in vitro* culturing conditions and insufficient oxygen supply^{26-28,49}. The cascade of events
 320 unfolding upon persistent hypoxia may explain the elevated stress response-associated transcriptional
 321 signature at D50 compared to D35 of differentiation (Fig. 2B)⁵⁰. Additionally, tissue dissociation for single-
 322 cell capture can induce stress response⁵¹. Since stressed cells are common in scRNA-seq organoid
 323 datasets, a bioinformatic approach called Gruffi was developed to remove these cells²⁶. Using Gruffi, we
 324 found a noticeably higher percentage of stressed cells in the 10x compared to the Parse dataset at both
 325 time points (Fig. 2D). Immediate fixation of cells after the dissociation in Parse may limit the induction of
 326 stress-related genes, in contrast to live cells processing in 10x. These findings suggest that identical
 327 samples of cerebellar organoids show a technology- and time point-specific stress response reflected in
 328 transcriptional signature and striking differences in the number of cells identified as stressed (Fig. 2D).

329 To assess the biological reproducibility of organoid differentiation, we assessed the percentage of neural
 330 cells²⁹, revealing neural commitment of 52.1% of all cells, suggesting the initial tissue specification could
 331 be improved. Different neural organoid protocols^{52,53} and a recently published protocol for cerebellar
 332 organoids²¹ use dual SMAD inhibition during initiation of differentiation to prevent meso- and endodermal
 333 fates thus promoting neural induction⁵⁴. In contrast, the cerebellar differentiation protocol used in this
 334 study employs only one SMAD pathway inhibitor²³, and dual SMAD inhibition could improve
 335 neuroectodermal commitment. Furthermore, we noticed substantial differences in differentiation
 336 efficiencies between the iPSC lines, with the KOLF2.1J-derived cerebellar organoids demonstrating the
 337 lowest proportion of neural cells. This suggests that iPSC line-inherent mechanisms influence the
 338 differentiation efficiency⁵⁵, underscoring the importance of using isogenic control iPSCs when analyzing
 339 pathogenic variants⁵⁶. A recent study suggests adjusting small molecule and growth factor concentrations
 340 in cortical organoids for individual iPSC lines to reduce off-target tissue⁴⁰. This approach could reduce line-
 341 to-line variability. Further, a recent preprint demonstrates structural variants in neurodevelopmental
 342 genes in KOLF2.1 line that could affect neural differentiation⁵⁷. Despite the differences between the three
 343 iPSC lines used in this study, our cerebellar organoids generated cerebellar cells of both RL and VZ lineage.
 344 Comparing our data set with a recently published cerebellar organoid transcriptomic dataset²¹ revealed
 345 similar cell populations.

346 In conclusion, our comparison of Parse and 10x encompassed library efficiency, differential transcript
 347 capture, cell type preferences, and secondary analysis outcomes, showing distinct strengths of each
 348 method. While 10x provided higher cell recovery and gene detection rates, Parse captured longer
 349 transcripts and a wider range of transcript lengths and resulted in lower cell stress—important for
 350 regionalized neural organoids, in which cell stress may be a key artifact²⁷. These technical differences have
 351 relevant biological implications, making it essential to choose the appropriate method based on specific
 352 research goals. Future studies should consider these factors to improve the accuracy and biological
 353 relevance of single-cell transcriptomic analyses. Finally, we demonstrated cerebellar organoid

354 differentiation and in-depth characterization on three iPSC lines, highlighting the importance of using
 355 diverse cell lines to capture line-to-line variability.

356 Limitations of the study

357 In the current study, we used cerebellar organoids as a model system to showcase technical differences
 358 arising from two single-cell capturing and multiplexing techniques. Our experimental design has several
 359 limitations. First, the study relied on one differentiation per line, reducing our ability to separate protocol
 360 effects from batch- and line-specific variability. Next, although the organoids produced relevant cerebellar
 361 lineages, neural commitment was incomplete, and a substantial fraction of cells adopted non-neuronal fates,
 362 indicating that early tissue specification was not fully optimized. More recent cerebellar organoid
 363 differentiation protocols^{21,58,59} may better suppress meso-/endodermal trajectories and improve neural
 364 induction through dual SMAD inhibition, and should be evaluated in future work. In addition,
 365 differentiation efficiency differed markedly across cell lines, with the KOLF2.1J line showing the lowest
 366 neural yield, suggesting that line-inherent properties may confound direct comparisons^{57,60}. Finally, some
 367 technical features of the single-cell workflows may introduce differences in count tables due to
 368 bioinformatic processing. In our analysis, we generated count tables using technology-specific pipelines,
 369 ensuring optimal settings. While most of the bioinformatic tools are shared between pipelines, some
 370 minor differences exist. For example, while both Cell Ranger and split-pipe perform UMI demultiplexing,
 371 only Cell Ranger reports further UMI correction and exclusion of low-quality UMIs.

372 Resource availability

373 *Lead contact*

374 Further information and requests for resources and reagents should be directed to and will be fulfilled
 375 by the Lead Contact, Simone Mayer (simone.mayer@kit.edu).

376 *Materials availability*

377 This study did not generate new unique reagents or new iPSC cell lines.

378 *Data and code availability*

- 379 • Single-cell RNA sequencing data are available at CellXGene (link:
 380 <https://cellxgene.cziscience.com/collections/0dd101f7-9829-44b3-a323-18b113eabeb4>).
- 381 • Code: This study did not generate novel code, and the required functions for the analysis and
 382 data visualization are described in the STAR Methods section.
- 383 • All other items: Further requests for additional information should be directed to the lead
 384 contact, Simone Mayer (simone.mayer@kit.edu).

385 Acknowledgements

386 We thank Antje Schulze-Selting, Elisabeth Gustafsson, Christina Kulka, and Ezgi Atay for technical support.
 387 We thank Christopher Sifuentes, Yogesh Singh, and Vincent Hammer for strategic and technical
 388 discussions.

389 We are grateful for financial support from the Hertie Foundation (Gemeinnützige Hertie-Stiftung), the
 390 Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg state postgraduate fellowship
 391 (to TK), Add-on Fellowship of the Joachim Herz Foundation (to KS), and the Heidelberger Akademie der
 392 Wissenschaften (WIN Kolleg). NGS sequencing for the Parse libraries was performed with the support of

393 the DFG-funded NGS Competence Center Tübingen (INST 37/1049-1). This project has been made
394 possible in part by grant number 2022-316727 from the Chan Zuckerberg Initiative DAF, an advised fund
395 of Silicon Valley Community Foundation. This research has been partially funded by the Deutsche
396 Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy via
397 the Excellence Cluster 3D Matter Made to Order (EXC-2082/1 – 390761711).

398 Authors' contributions

399 **KS:** Conceptualization, Methodology, Software, Formal analysis, Writing – Original draft, Writing – Review
400 & Editing, Visualization, Project administration; **TK:** Conceptualization, Methodology, Investigation,
401 Writing – Original draft, Writing – Review & Editing, Visualization, Project administration; **VL:**
402 Methodology, Software, Formal analysis, Writing – Original draft; Writing – Review & Editing; **FC:**
403 Investigation, Writing – Original draft; Writing – Review & Editing; **ZY:** Investigation, Writing – Original
404 draft; Writing – Review & Editing; **KB:** Investigation; Writing – Review & Editing; **JM:** Funding acquisition;
405 Writing – Review & Editing; **NC:** Conceptualization, Methodology, Formal analysis, Writing – Original draft,
406 Writing – Review & Editing, Resources, Supervision; **SM:** Conceptualization, Methodology, Writing –
407 Review & Editing, Resources, Supervision, Funding acquisition.

408 Declaration of interests

409 The authors declare no competing interests. Kseniia Sarieva is currently affiliated with Oncode Institute,
410 Hubrecht Institute, KNAW, and University Medical Center Utrecht, Utrecht, the Netherlands. Vladislav
411 Lysenkov is currently affiliated with the Technical University of Munich, Munich, Germany.

412 Declaration of generative AI and AI-assisted technologies

413 During the preparation of this work, the authors used ChatGPT in order to improve the language and
414 readability. After using these tools, the authors reviewed and edited the content as needed and take full
415 responsibility for the content of the publication.

416

417 Figure titles and legends

418 **Fig. 1. Study design, quality control, and potential biases in the data.** **A**, Three iPSC lines (BIONi010-C,
 419 BIONi037-A, and KOLF2.1J) were differentiated to cerebellar organoids until days 35 and 50. The organoids
 420 generated from the same cell line were pooled and dissociated into single cells when each single-cell
 421 suspension was split into two portions. One set of single-cell suspensions was immediately subjected to
 422 sample multiplexing with CellPlex and processed in 10x Genomics 3'GEX+FB pipeline. The second set of
 423 single-cell suspensions was frozen until all samples were available. The samples were further processed
 424 through Parse Biosciences Evercode v2 pipeline. Libraries were sequenced, and the resulting FASTQ files
 425 were processed with technology-specific computational pipelines. Count matrices were further analyzed.
 426 Graphic was created with [BioRender.com](https://biorender.com). **B**, Quality statistics after quality control. Color represents
 427 sample identity with respect to technology (10x or Parse), day of differentiation (D35 or D50), and library
 428 (L1 or L2). 10x, n = 29,505, Parse, n = 14,542 cells. Three-way ANOVA, p-values represent differences
 429 between technologies, *** p < 0.001. **C**, Left, density scatter plot showing correlation of average gene
 430 expression between the two technologies. Right, scatter plot showing correlation of average gene
 431 expression between the two technologies. Color represents gene group. **D**, Distributions of gene GC
 432 content and gene length for differentially expressed genes between technologies. Two-sided t-test, *** p
 433 < 0.001. See also Figure S1-3 and Table S1 and S2.

434 **Fig. 2. Assessment of neural lineage identity.** **A**, PCA and UMAP plots for globally normalized and
 435 unintegrated data. **B**, Heatmap representing mean module expression scores of gene ontology terms
 436 related to aspects of cell stress. **C**, UMAP plot representing cell stress status of cells based on Gruffi
 437 assessment. **D**, Percentage of stressed cells based on Gruffi assessment. **E**, RPCA and UMAP plots for
 438 globally normalized and RPCA-integrated data originating from non-stressed cells. **F**, UMAP plot
 439 representing neural lineage status of cells based on reference-query integration with human
 440 developmental transcriptome²⁹. **G**, Feature plots showing expression of selected genes to highlight
 441 developmental lineages. **H**, Percentage of neuroectodermal cells based on reference-query integration
 442 with human developmental transcriptome. **I**, Percentage of neuroectodermal cells per cell line based on
 443 reference-query integration with human developmental transcriptome. For **A**, **D**, **E**, **H**, **I**, color represents
 444 sample identity with respect to technology (10x or Parse), day of differentiation (D35 or D50), and library
 445 (L1 or L2). See also Figure S3 and Table S3.

446 **Fig. 3. Assessment of regional identity and cell type annotation.** **A**, Heatmap of similarity metric of
 447 VoxHunt algorithm comparing samples with human neocortical RNA-seq data from BrainSpan using brain
 448 regional markers obtained from Mouse Brain Atlas at E13. **B**, UMAP plots for globally normalized and
 449 RPCA-integrated neural data with manually annotated clusters. **C**, Violin plots for expression of canonical
 450 markers of hindbrain development. **D**, Stacked bar plot representing average proportion of individual cell
 451 types between technologies. **E**, UMAP plot representing cell type identity as assigned based on reference-
 452 query integration with human cerebellar transcriptome³⁷. **F**, Feature plots showing prediction score based
 453 on reference-query integration with human cerebellar transcriptome. See also Figure S5 and Table S4.

454 **Fig. 4. Differential gene expression between technologies.** **A**, Strip plot displaying DEGs between
 455 technologies per cell type. Genes represented in grey are not differentially expressed. Color represents
 456 log10 adjusted p-value for differentially expressed genes (absolute log2 fold change > 1, FDR < 10⁻⁴). **B**,
 457 Volcano plot representing differential gene expression in GPC cluster. **C**, Heatmap representing semantic
 458 similarity between GO terms identified as significantly deregulated in GPC cluster by GSEA analysis. **D**,

459 Heatmap representing z-scores for SCENIC regulon activity calculated based on AUC scores. See also
460 Figure S6 and Table S5 and S6.

461

462 STAR★METHODS

463 Key resources table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
CORL2 (SKOR2)	Atlas Antibodies	Cat# HPA046206; RRID:AB_2679588
Sox2	R&D Systems	Cat# AF2018; RRID:AB_355110
BARHL1	Atlas Antibodies	Cat# HPA004809; RRID:AB_1078266
ATOH1	Sigma-Aldrich	Cat# WH0000474M1; RRID:AB_1839957
Ki67	Merck	Cat# AB9260; RRID: AB_2142366
Tuj1 (TUBB3)	Atlas Antibodies	Cat# AMAb91394; RRID: AB_2716670
Map2	Abcam	Cat# ab32454; RRID:AB_776174
Bacterial and virus strains		
N/A	N/A	N/A
Biological samples		
N/A	N/A	N/A
Chemicals, peptides, and recombinant proteins		
N/A	N/A	N/A
Critical commercial assays		
Chromium Next GEM Single Cell 3' kit v3.1	10x Genomics	Cat# 1000268
Evercode WT Mini v2	Parse Biosciences	Cat# ECW02110
Deposited data		
scRNA-seq data of hiPSC-derived cerebellar organoids	This paper	https://cellxgene.cziscience.com/collections/0dd101f7-9829-44b3-a323-18b113eabeb4
Human fetal development scRNA-seq	Cao et al. ²⁹	DOI: 10.1126/science.aba7721
BrainSpan human developmental transcriptome	Miller et al. ³⁴	DOI: 10.1038/nature13185
Human cerebellar development scRNA-seq	Sepp et al. ³⁷	DOI: 10.1038/s41586-023-06884-x
hiPSC-derived cerebellar organoids scRNA-seq	Atamian et al. ²¹	DOI: 10.1016/j.stem.2023.11.013
Experimental models: Cell lines		
BIONi010-C (male)	EBiSC	hiPSC
BIONi037-A (female)	EBiSC	hiPSC
KOLF2.1J (male)	Jackson Laboratory	hiPSC
Experimental models: Organisms/strains		
N/A	N/A	N/A
Oligonucleotides		
N/A	N/A	N/A
Recombinant DNA		
N/A	N/A	N/A
Software and algorithms		
Cell Ranger v.7.2.0	10x Genomics	https://www.10xgenomics.com/support/software/cell-ranger/downloads

Split-pipe v.1.1.2	Parse Biosciences	https://www.parsebiosciences.com/
Other		
N/A	N/A	N/A

464

465 Experimental model and study participant details

466 iPSC culture

467 Commercially available iPSC lines BIONi010-C (EBiSC), BIONi037-A (EBiSC) and KOLF2.1J (Jackson
 468 Laboratory) were cultured under standard conditions (37°C, 5% CO₂, and 100% humidity) in E8 Flex
 469 medium (BIONi010-C and BIONi037-A, Gibco, Cat. no. A2858501) and mTeSR plus (KOLF2.1J, STEMCELL
 470 Technologies, Cat. no 100-0276) on hESC-qualified growth factor-reduced Matrigel-coated (Corning, Cat.
 471 no. 354277) cell culture dishes (Greiner, Cat. no. 657160). Passaging was performed using Gentle
 472 Dissociation Reagent (STEMCELL Technologies, Cat. no. 07174) once cells reached 80%-90% confluence.
 473 Medium was supplemented with Thiazovivin (Sigma-Aldrich, Cat. no. 420220) upon passaging for one day.
 474 All cell lines were kept under passage 20 and tested for mycoplasma using PCR Mycoplasma Detection Set
 475 (TaKaRa, Cat. no. 6601) and pluripotency by immunocytochemistry against OCT4 (rabbit, 1:500, Abcam,
 476 Cat. no. ab19857).

477 Generation of cerebellar organoids

478 Cerebellar organoids were generated as previously described^{23,61} with some modifications: 80-90%
 479 confluent iPSCs were dissociated using Accutase (Merck, Cat. no. A6964), and 4,500 cells per well were
 480 seeded into 96 well plates (S-bio, Cat. no. MS-9096VZ) in culture medium (Gibco, Cat. no. A2858501),
 481 supplemented with 10 µM Y-27632 (Cayman Chemical, Cat. no. 10005583). Once aggregates reached 250
 482 µm in diameter, medium was changed to growth factor-free chemically defined medium (gfCDM)
 483 supplemented with 50 ng/ml FGF2 (PeproTech, Cat. no. 100-18B) and 10 µM SB-431542 (Tocris, Cat. No.
 484 1614). At D7, FGF2 and SB-431542 were reduced to 33.3 ng/ml and 6.67 µM, respectively. At D14, media
 485 was supplemented with 100 ng/ml FGF19 (PeproTech, Cat. No. 100-32). The medium was changed to
 486 Neurobasal Medium at D21, supplemented with 300 ng/ml SDF-1 from D28 to D34. From D35 onwards,
 487 media was changed to complete BrainPhys (StemCell Technologies, Cat. no. 5793), supplemented with 10
 488 µg/ml BDNF (PeproTech, Cat. no. 450-02), 100 µg/ml GDNF (PeproTech, Cat. no. 450-10), 100 mg/ml
 489 dbcAMP (PeproTech, Cat. no. 1698950) and 250 mM ascorbic acid (Tocris, Cat. no. 4055). All three cell
 490 lines were processed in parallel throughout the experiments.

491 Method details

492 Immunohistochemistry on organoids

493 Organoids were fixed at the respective time points in 4% PFA in PBS for 45-60 min at room temperature⁶².
 494 The organoids were washed three times for 15 min with 1× PBS and then incubated in 30% sucrose (Sigma-
 495 Aldrich, S7903) in PBS solution at 4°C until they sunk to the bottom of the dish. The organoids were
 496 embedded in a 1:1 v/v mixture of 30% sucrose in PBS and optimal cutting temperature (OCT) compound
 497 (Sakura, 4583) and sectioned on Superfrost Plus slides (R. Langenbrinck GmbH, 03-0060) with a cryostat
 498 at 20 µm (Leica). The slides were stored at -80°C.

499 For immunohistochemistry, slides were thawed for 15 min at room temperature, and the embedding
 500 solution was rinsed off with PBS. A hydrophobic pen (PAP pen, Abcam, ab2601) was used to circle the
 501 sections to prevent the blocking solution from spilling during incubation. Permeabilization and blocking

502 were performed with 1% Triton X-100, 0.2% gelatin (Sigma-Aldrich, G1890) and 10% normal donkey serum
 503 in PBS for 1 h at room temperature. Primary antibodies were diluted in permeabilization and blocking
 504 solution and applied to the sections overnight at 4°C. Subsequently, the slides were rinsed with PBS three
 505 times for 15 min, then secondary antibodies were diluted in permeabilization and blocking solution and
 506 applied for 3 h at room temperature. The sections were rinsed in PBS three times for 15 min and nuclei
 507 were stained with DAPI (1:5000) diluted in PBS for 4 min. The sections were then rinsed in PBS and
 508 mounted using ProLong Gold (Invitrogen, P36930). Image acquisition was performed at 20X magnification
 509 using ECHO Revolution Hybrid Automated Microscope (DISCOVER ECHO INC.).

510 Single-cell dissociation of cerebellar organoids, library preparation, and sequencing
 511 On D35 and D50, 24 organoids per cell line were pooled and dissociated using the Papain dissociation kit
 512 (Worthington, Cat.No. LK003150) following a published protocol with minor modifications⁵². Cells were
 513 counted and divided into aliquots for further processing.

514 For the 10x Genomics pipeline cells were labeled with cell multiplexing oligos (CMO, 10x Genomics, Cat.
 515 no. 1000261) and subsequently pooled at an equal ratio. Cells were counted and loaded onto two lanes
 516 of a Chromium Next Gen Chip G (10x Genomics, Cat. no. 1000120) with a targeted cell recovery of 12,000
 517 (D35) and 14,000 (D50) cells per lane. Library preparation was performed with the Chromium Next GEM
 518 Single Cell 3' kit v3.1 (10x Genomics, Cat. no. 1000268), and sequencing was performed on NovaSeq 6000
 519 with S1 flow cell kit and 100 cycles (Illumina, Cat. no. 20028319).

520 Samples for Parse Bioscience workflow were fixed using the Evercode fixation kit for cells (Parse
 521 Bioscience, Cat. No. WF300). Fixed samples were stored at -80°C. Samples were characterized by day of
 522 differentiation (D35 or D50) and cell line (BIONi010-C, BIONi037-A, or KOLF2.1J). Every sample was loaded
 523 as a technical duplicate into 2 independent wells, with all samples spanning wells 1-12. Sequencing was
 524 performed using a molarity of 62.4 nM and 3% PhiX spike-in on the Nova Seq 6000 with SP flow cell kit
 525 and 200 cycles (Illumina).

526 Quantification and statistical analysis

527 Data downsampling, preprocessing, and quality control

528 Initially, the datasets from 10x and Parse pipelines had different sequencing depths (Supplementary Table
 529 1). To ensure fair comparison, we downsampled both datasets to an average of 50,000 reads per cell. The
 530 FASTQ files were downsampled with the *seqtk sample* tool using the same seed for forward and reverse
 531 reads. Parse FASTQ files from each of the 2 sub-libraries were demultiplexed into 6 samples and processed
 532 *split-pipe* (v1.1.2), resulting in a count matrix. The 2 sub-libraries were merged with *combine* mode of
 533 *split-pipe*. For 10x data, read downsampling was performed for individual libraries. Afterwards,
 534 downsampled FASTQ files were processed with *cellranger* (v.7.2.0) *multi* pipeline, assigning their cell line
 535 of origin based on CMO.

536 Gene names in count matrices between the two technologies were harmonized as follows: First, ENSEMBL
 537 gene identifiers were used to merge expression matrices. Secondly, ENSEMBL identifiers were replaced
 538 by HGNC identifiers wherever possible (41,980 genes), and ENSEMBL identifiers were used in other cases
 539 (20,930 genes). The merged count matrix was converted into a Seurat object (Seurat v.5.1.0). Gene
 540 biotypes were retrieved from bioMart using ENSEMBL identifiers. Ribosomal and mitochondrial protein-
 541 coding genes were identified by HGNC names starting with RPS/RPL and MT-, respectively. The percentage
 542 of gene expression for ribosomal and mitochondrial protein-coding genes as well as for individual gene

543 biotypes were calculated using *PercentageFeatureSet()*. For transcription factors (TF) among protein-
 544 coding genes, the count matrix was first subset to protein-coding genes, and *PercentageFeatureSet()* was
 545 applied using the human TFs list⁶³.

546 Next, QC was performed on cell and gene levels. Cells were excluded if they met any of the following
 547 criteria: (1) number of genes per cell \leq 2,000 or \geq 13,000; (2) number of genes per UMI \leq 0.8; or (3)
 548 percentage of mitochondrial genes \geq 8%. Genes were excluded if their cumulative expression across all
 549 cells was \leq 8.

550 Data normalization, clustering, integration, and dimensionality reduction
 551 After QC, data were normalized using Seurat's *NormalizeData()* function with default parameters.
 552 Normalized data were then scaled, and principal component analysis (PCA) was performed on the z-scaled
 553 expression of the 2,000 most variable features (*FindVariableFeatures()*). Additionally, normalized counts
 554 were integrated using *IntegrateData()* function with reciprocal PCA (RPCA). Dimensionality reduction and
 555 clustering were performed using both un- and integrated data. *RunUMAP()* function was used for
 556 dimensionality reduction with 30 neighbors and 30 principal components (PC). Louvain clustering was
 557 performed using *FindClusters()* function.

558 Technology-specific analyses: correlation analysis, transcript length, and GC content
 559 To analyze the correlation of gene expression between technologies, we used cells that passed QC,
 560 averaged the gene expression for each technology, and calculated Pearson's correlation coefficient. DEGs
 561 between technologies were identified using the MAST algorithm in *FindMarkers()* function as previously
 562 described⁶ with the following cutoffs: absolute log2 fold change (log2FC) $>$ 1, adjusted p-value $<$ 0.01.
 563 Gene length and GC content were retrieved from bioMart.

564 Cellular stress assessment
 565 Normalized unintegrated counts were used to analyze the expression of cell stress-related GO terms using
 566 *AddModuleScore()* function. A random set of genes with mean GO term size was used as an internal
 567 control for module expression analysis. Hierarchical clustering was performed on mean module
 568 expression of cell stress-related GO terms across samples. Gruffi cell stress analysis was performed using
 569 normalized unintegrated counts following the authors' instructions²⁶. Two GO terms were chosen for
 570 negative selection: glycolytic process (GO:0006096) and integrated stress response signaling
 571 (GO:0140467); and one for positive selection: neurogenesis (GO:0022008).

572 Germ layer assessment
 573 Normalized integrated counts were used to perform Azimuth reference-query mapping³⁰ of our dataset
 574 with human fetal development transcriptome²⁹. Cells were further classified as "neural" and "non-neural"
 575 based on cell type assignment from Azimuth (Supplementary Table 3). Gruffi differentiation lineage
 576 analysis was performed using normalized integrated counts. Two GO terms were chosen for negative
 577 selection: endoderm (GO:0001706) and mesoderm (GO:0001707) formation; and two for positive
 578 selection: nervous system development (GO:0007399) and neurogenesis (GO:0022008).

579 Neural data processing and cell type annotation
 580 After germ layer assessment, the dataset was subset to neural cells by labels originating from Azimuth
 581 reference-query mapping and downsampled to retain the equal number of cells in 10x and Parse datasets
 582 (7,212 cells per technology). Data normalization, clustering, integration, and dimensionality reduction
 583 workflow steps were repeated as previously described.

584 VoxHunt³³ was used to analyze the brain region identity of cells. 10 genes with the highest AUC scores per
 585 brain region in the developing mouse brain at E15 were retrieved, resulting in 186 unique regional marker
 586 genes. These marker genes were used to assess the similarity of gene expression profiles between our
 587 samples and BrainSpan human developmental transcriptome³⁴ at postconceptional weeks 12 and 13.

588 Cell type annotation was performed for clusters at resolution 0.9 by a combination of approaches: (1)
 589 retrieving cluster marker genes by *FindAllMarkers()* with MAST (normalized counts provided as input) and
 590 ROC (raw counts provided as input) algorithms; (2) visualizing canonical marker gene expression for cell
 591 types in the developing mouse and human cerebellum.

592 Reference-query mapping with published primary cerebellar development and cerebellar
 593 organoids transcriptomic datasets

594 For reference-query mapping of neural-classified cells, we first used human cerebellar development
 595 transcriptomic dataset³⁷ as a reference, downsampling it to 1,000 cells per cell type as defined by the
 596 metadata (author_cell_type column). Both the reference and query datasets were normalized, variable
 597 features identified, scaled, and PCA was performed using Seurat's default parameters. Integration was
 598 performed using *FindTransferAnchors()* function with the "pcaproject" option and 30 PCs. Predicted cell
 599 types and prediction scores were obtained from *TransferData()*, wrapped into *MapQuery()*, with default
 600 parameters and "author_cell_type" as the reference label. For integration with the cerebellar organoids
 601 transcriptomic dataset²¹, the same method was used with two adjustments: (1) the complete reference
 602 dataset was used for mapping; (2) the reference label was "final.clusters".

603 Differential gene expression analysis and functional enrichment analysis

604 For DGE analysis, raw counts from neural cells were used. Cells were grouped by cell type, technology,
 605 cell line, and day of differentiation, excluding groups with fewer than 20 cells. Gene counts were
 606 aggregated by technology, cell line, and day of differentiation using *AggregateExpression()* function with
 607 default settings to sum raw counts per group. No further downsampling was applied to equalize cell group
 608 sizes. The aggregated counts were used for *DESeq2* (v.1.42.1) DGE analysis between technologies within
 609 individual cell types⁶⁴. Log2FC were shrunk using *apeglm* shrinkageestimator⁶⁵. Volcano plots were
 610 generated using *EnhancedVolcano* library (v.1.20.0).

611 GSEA with GO terms was performed by *clusterProfiler* (v.4.10.1)⁶⁶ using Biological Processes gene
 612 ontology, gene set size of 50 to 500 genes, false discovery rate (FDR) for p-value adjustment with a q-
 613 value threshold of 0.05. For significantly deregulated GO terms, similarity matrices were calculated and
 614 simplified using the *binary cut* approach implemented in *simplifyEnrichment* (v.1.12.0) package⁶⁷.

615 Upstream regulator analysis

616 Upstream regulator analysis was conducted using IPA software (Qiagen). Cell type-specific *DESeq2* output
 617 matrices were used for IPA core analysis with the following cutoffs: (1) absolute log2FC > 1; (2) q-value <
 618 0.0001. For visualizations, molecule type was restricted to transcription regulators, and bias-corrected z-
 619 scores across cell types were used for hierarchical clustering using the *ComplexHeatmap* package
 620 (v.2.18.0). When z-scores were not available, they were set to 0.

621 Gene regulatory network activity analysis

622 We performed GRN analysis closely following the official pySCENIC protocol^{41,68}. The annotated raw count
 623 matrix from Seurat and the list of human TFs were processed, inferring importance values of regulatory
 624 interactions between TFs and their target genes. The inferred interactions ("adjacencies") were searched

625 in the cisTarget databases to identify enriched binding motifs. TFs and target genes indicated by the
626 enriched motifs were grouped into regulons, and their enrichment was assessed in each cell. Cells were
627 assigned AUC scores representing activity levels of regulons. Z-scores were calculated based on AUC
628 scores, and k-means clustering of z-scores was performed to reveal groups of co-regulated regulons.
629 Regulon target genes and GO BP were used for gene set overrepresentation analysis (ORA) by
630 clusterProfiler (v.4.10.1) with gene set size of 5 to 500 genes, FDR for p-value adjustment method, and a
631 q-value threshold of 0.1.

632 Statistics

633 R v.4.3.2 was used for statistical analysis. Statistical tests are described in text and figure legends, and
634 results are documented in Table S7. Two-sided unpaired t-tests were used to compare two groups. For
635 comparisons with more than two groups, we used three-way ANOVA. Within a set of comparisons (e.g.,
636 for quality control metrics), the Benjamini-Hochberg method of p-value adjustments was used.

637

638 Supplemental information
639 Document S1. Figure S1-S6.

640 Table S1. Sequencing statistics. Related to Figure 1.

641 Table S2. Summary of sequencing statistics. Related to Figure 1.

642 Table S3. Assignment of neural vs non-neural cell fate to the human developmental transcriptome
643 dataset. Related to Figure 2.

644 Table S4. Cerebellar regional marker genes. Related to Figure 3.

645 Table S5. Differentially expressed genes between 10x and Parse. Related to Figure 4.

646 Table S6. GSEA results for GPC cluster. Related to Figure 4.

647 Table S7. Detailed statistical results related to Figures 1, 3, S3, and S5.

648

649 References

- 650 1. Evrony, G.D., Hinch, A.G., and Luo, C. (2021). Applications of Single-Cell DNA Sequencing. *Annu Rev Genomics Hum Genet* 22, 171–197. 10.1146/annurev-genom-111320-090436.
- 651 2. Yasen, A., Aini, A., Wang, H., Li, W., Zhang, C., Ran, B., Tuxun, T., Maimaitinijjati, Y., Shao, Y., Aji, T., and Wen, H. (2020). Progress and applications of single-cell sequencing techniques. *Infect Genet Evol* 80, 104198. 10.1016/j.meegid.2020.104198.
- 652 3. Luecken, M.D., and Theis, F.J. (2019). Current best practices in single-cell RNA-seq analysis: a tutorial. *Mol Syst Biol* 15, e8746. 10.15252/msb.20188746.
- 653 4. Rosenberg, A.B., Roco, C.M., Muscat, R.A., Kuchina, A., Sample, P., Yao, Z., Graybuck, L.T., Peeler, D.J., Mukherjee, S., Chen, W., et al. (2018). Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. *Science* 360, 176–182. 10.1126/science.aam8999.
- 654 5. Cheng, J., Liao, J., Shao, X., Lu, X., and Fan, X. (2021). Multiplexing Methods for Simultaneous Large-Scale Transcriptomic Profiling of Samples at Single-Cell Resolution. *Adv Sci (Weinh)* 8, e2101229. 10.1002/advs.202101229.
- 655 6. Xie, Y., Chen, H., Chellamuthu, V.R., Lajam, A.B.M., Albani, S., Low, A.H.L., Petretto, E., and Behmoaras, J. (2024). Comparative Analysis of Single-Cell RNA Sequencing Methods with and without Sample Multiplexing. *International Journal of Molecular Sciences* 25, 3828. 10.3390/ijms25073828.
- 656 7. Eichmüller, O.L., and Knoblich, J.A. (2022). Human cerebral organoids — a new tool for clinical neurology research. *Nature Reviews Neurology* 18, 661–680. 10.1038/s41582-022-00723-9.
- 657 8. Sarieva, K., Kagermeier, T., Khakipoor, S., Atay, E., Yentur, Z., Becker, K., and Mayer, S. (2023). Human brain organoid model of maternal immune activation identifies radial glia cells as selectively vulnerable. *Mol Psychiatry* 28, 5077–5089. 10.1038/s41380-023-01997-1.
- 658 9. Kagermeier, T., Hauser, S., Sarieva, K., Laugwitz, L., Groeschel, S., Janzarik, W.G., Yentür, Z., Becker, K., Schöls, L., Krägeloh-Mann, I., and Mayer, S. (2024). Human organoid model of pontocerebellar hypoplasia 2a recapitulates brain region-specific size differences. *Disease Models & Mechanisms* 17, dmm050740. 10.1242/dmm.050740.
- 659 10. Giorgi, C., Lombardozzi, G., Ammannito, F., Scenna, M.S., Maceroni, E., Quintiliani, M., d'Angelo, M., Cimini, A., and Castelli, V. (2024). Brain Organoids: A Game-Changer for Drug Testing. *Pharmaceutics* 16. 10.3390/pharmaceutics16040443.
- 660 11. Corsini, N.S., and Knoblich, J.A. (2022). Human organoids: New strategies and methods for analyzing human development and disease. *Cell* 185, 2756–2769. 10.1016/j.cell.2022.06.051.
- 661 12. Schmahmann, J.D. (2019). The cerebellum and cognition. *Neurosci Lett* 688, 62–75. 10.1016/j.neulet.2018.07.005.
- 662 13. Zhang, P., Duan, L., Ou, Y., Ling, Q., Cao, L., Qian, H., Zhang, J., Wang, J., and Yuan, X. (2023). The cerebellum and cognitive neural networks. *Front Hum Neurosci* 17, 1197459. 10.3389/fnhum.2023.1197459.
- 663 14. Sathyanesan, A., Zhou, J., Scafidi, J., Heck, D.H., Sillitoe, R.V., and Gallo, V. (2019). Emerging connections between cerebellar development, behaviour and complex brain disorders. *Nat Rev Neurosci* 20, 298–313. 10.1038/s41583-019-0152-2.
- 664 15. Mapelli, L., Soda, T., D'Angelo, E., and Prestori, F. (2022). The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. *Int J Mol Sci* 23, 3894. 10.3390/ijms23073894.
- 665 16. Harada, H., Sato, T., and Nakamura, H. (2016). Fgf8 signaling for development of the midbrain and hindbrain. *Dev Growth Differ* 58, 437–445. 10.1111/dgd.12293.

695 17. Lowenstein, E.D., Cui, K., and Hernandez-Miranda, L.R. (2023). Regulation of early cerebellar
696 development. *FEBS J* 290, 2786–2804. 10.1111/febs.16426.

697 18. Leto, K., Arancillo, M., Becker, E.B.E., Buffo, A., Chiang, C., Ding, B., Dobyns, W.B., Dusart, I.,
698 Haldipur, P., Hatten, M.E., et al. (2016). Consensus Paper: Cerebellar Development. *The
699 Cerebellum* 15, 789–828. 10.1007/s12311-015-0724-2.

700 19. van Essen, M.J., Apsley, E.J., Riepsaame, J., Xu, R., Northcott, P.A., Cowley, S.A., Jacob, J., and
701 Becker, E.B.E. (2024). PTCH1-mutant human cerebellar organoids exhibit altered neural
702 development and recapitulate early medulloblastoma tumorigenesis. *Dis Model Mech* 17,
703 dmm050323. 10.1242/dmm.050323.

704 20. Ballabio, C., Anderle, M., Gianesello, M., Lago, C., Miele, E., Cardano, M., Aiello, G., Piazza, S.,
705 Caron, D., Gianno, F., et al. (2020). Modeling medulloblastoma in vivo and with human
706 cerebellar organoids. *Nat Commun* 11, 583. 10.1038/s41467-019-13989-3.

707 21. Atamian, A., Birtele, M., Hosseini, N., Nguyen, T., Seth, A., Del Dosso, A., Paul, S., Tedeschi, N.,
708 Taylor, R., Coba, M.P., et al. (2024). Human cerebellar organoids with functional Purkinje cells.
709 *Cell Stem Cell* 31, 39–51 e36. 10.1016/j.stem.2023.11.013.

710 22. Nayler, S., Agarwal, D., Curion, F., Bowden, R., and Becker, E.B.E. (2021). High-resolution
711 transcriptional landscape of xeno-free human induced pluripotent stem cell-derived cerebellar
712 organoids. *Sci Rep* 11, 12959. 10.1038/s41598-021-91846-4.

713 23. Silva, T.P., Fernandes, T.G., Nogueira, D.E.S., Rodrigues, C.A.V., Bekman, E.P., Hashimura, Y.,
714 Jung, S., Lee, B., Carmo-Fonseca, M., and Cabral, J.M.S. (2020). Scalable Generation of Mature
715 Cerebellar Organoids from Human Pluripotent Stem Cells and Characterization by
716 Immunostaining. *J Vis Exp*, e61143. 10.3791/61143.

717 24. Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K., and Sasai, Y. (2015). Self-
718 organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. *Cell
719 Rep* 10, 537–550. 10.1016/j.celrep.2014.12.051.

720 25. Zheng, W., Chung, L.M., and Zhao, H. (2011). Bias detection and correction in RNA-Sequencing
721 data. *BMC Bioinformatics* 12, 290. 10.1186/1471-2105-12-290.

722 26. Vértesy, Á., Eichmüller, O.L., Naas, J., Novatchkova, M., Esk, C., Balmaña, M., Ladstaetter, S.,
723 Bock, C., Von Haeseler, A., and Knoblich, J.A. (2022). Gruffi: an algorithm for computational
724 removal of stressed cells from brain organoid transcriptomic datasets. *The EMBO Journal* 41,
725 e111118. 10.15252/embj.2022111118.

726 27. Bhaduri, A., Andrews, M.G., Mancia Leon, W., Jung, D., Shin, D., Allen, D., Jung, D., Schmunk, G.,
727 Haeussler, M., Salma, J., et al. (2020). Cell stress in cortical organoids impairs molecular subtype
728 specification. *Nature* 578, 142–148. 10.1038/s41586-020-1962-0.

729 28. Qian, X., Song, H., and Ming, G.L. (2019). Brain organoids: advances, applications and challenges.
730 *Development* 146, dev166074. 10.1242/dev.166074.

731 29. Cao, J., O'Day, D.R., Pliner, H.A., Kingsley, P.D., Deng, M., Daza, R.M., Zager, M.A., Aldinger, K.A.,
732 Blecher-Gonen, R., Zhang, F., et al. (2020). A human cell atlas of fetal gene expression. *Science*
733 370, eaba7721. 10.1126/science.aba7721.

734 30. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee, M.J., Wilk, A.J.,
735 Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data. *Cell* 184,
736 3573–3587.e3529. 10.1016/j.cell.2021.04.048.

737 31. Olson, E.N. (1990). MyoD family: a paradigm for development. *Genes Dev* 4, 1454–1461.
738 10.1101/gad.4.9.1454.

739 32. Itoh, N. (2016). FGF10: A multifunctional mesenchymal–epithelial signaling growth factor in
740 development, health, and disease. *Cytokine & Growth Factor Reviews* 28, 63–69.
741 <https://doi.org/10.1016/j.cytogfr.2015.10.001>.

742 33. Fleck, J.S., Sanchís-Calleja, F., He, Z., Santel, M., Boyle, M.J., Camp, J.G., and Treutlein, B. (2021).
 743 Resolving organoid brain region identities by mapping single-cell genomic data to reference
 744 atlases. *Cell Stem Cell* 28, 1148–1159.e1148. 10.1016/j.stem.2021.02.015.

745 34. Miller, J.A., Ding, S.-L., Sunkin, S.M., Smith, K.A., Ng, L., Szafer, A., Ebbert, A., Riley, Z.L., Royall,
 746 J.J., Aiona, K., et al. (2014). Transcriptional landscape of the prenatal human brain. *Nature* 508,
 747 199–206. 10.1038/nature13185.

748 35. Aldinger, K.A., Thomson, Z., Phelps, I.G., Haldipur, P., Deng, M., Timms, A.E., Hirano, M.,
 749 Santpere, G., Roco, C., Rosenberg, A.B., et al. (2021). Spatial and cell type transcriptional
 750 landscape of human cerebellar development. *Nat Neurosci* 24, 1163–1175. 10.1038/s41593-
 751 021-00872-y.

752 36. Haldipur, P., Aldinger, K.A., Bernardo, S., Deng, M., Timms, A.E., Overman, L.M., Winter, C.,
 753 Lisgo, S.N., Razavi, F., Silvestri, E., et al. (2019). Spatiotemporal expansion of primary progenitor
 754 zones in the developing human cerebellum. *Science* 366, 454–460. 10.1126/science.aax7526.

755 37. Sepp, M., Leiss, K., Murat, F., Okonechnikov, K., Joshi, P., Leushkin, E., Spanig, L., Mbengue, N.,
 756 Schneider, C., Schmidt, J., et al. (2024). Cellular development and evolution of the mammalian
 757 cerebellum. *Nature* 625, 788–796. 10.1038/s41586-023-06884-x.

758 38. Chen, X., Shi, C., He, M., Xiong, S., and Xia, X. (2023). Endoplasmic reticulum stress: molecular
 759 mechanism and therapeutic targets. *Signal Transduct Target Ther* 8, 352. 10.1038/s41392-023-
 760 01570-w.

761 39. Jager, R., Bertrand, M.J., Gorman, A.M., Vandenabeele, P., and Samali, A. (2012). The unfolded
 762 protein response at the crossroads of cellular life and death during endoplasmic reticulum
 763 stress. *Biol Cell* 104, 259–270. 10.1111/boc.201100055.

764 40. Bertucci, T., Bowles, K.R., Lotz, S., Qi, L., Stevens, K., Goderie, S.K., Borden, S., Oja, L.M., Lane, K.,
 765 Lotz, R., et al. (2023). Improved Protocol for Reproducible Human Cortical Organoids Reveals
 766 Early Alterations in Metabolism with MAPT Mutations. *bioRxiv*. 10.1101/2023.07.11.548571.

767 41. Aibar, S., González-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H., Hulselmans, G.,
 768 Rambow, F., Marine, J.-C., Geurts, P., Aerts, J., et al. (2017). SCENIC: single-cell regulatory
 769 network inference and clustering. *Nature Methods* 14, 1083–1086. 10.1038/nmeth.4463.

770 42. Camp, J.G., and Treutlein, B. (2017). Human organomics: a fresh approach to understanding
 771 human development using single-cell transcriptomics. *Development* 144, 1584–1587.
 772 10.1242/dev.150458.

773 43. Phan, H.V., Van Gent, M., Drayman, N., Basu, A., Gack, M.U., and Tay, S. (2021). High-throughput
 774 RNA sequencing of paraformaldehyde-fixed single cells. *Nature Communications* 12, 5636.
 775 10.1038/s41467-021-25871-2.

776 44. Zhao, Y.T., Kwon, D.Y., Johnson, B.S., Fasolino, M., Lamonica, J.M., Kim, Y.J., Zhao, B.S., He, C.,
 777 Vahedi, G., Kim, T.H., and Zhou, Z. (2018). Long genes linked to autism spectrum disorders
 778 harbor broad enhancer-like chromatin domains. *Genome Res* 28, 933–942.
 779 10.1101/gr.233775.117.

780 45. Seigfried, F.A., and Britsch, S. (2024). The Role of Bcl11 Transcription Factors in
 781 Neurodevelopmental Disorders. *Biology (Basel)* 13. 10.3390/biology13020126.

782 46. Dini, G., Verrotti, A., Gorello, P., Soliani, L., Cordelli, D.M., Antoni, V., Mencarelli, A., Colavito, D.,
 783 and Pronter, P. (2023). NF1A haploinsufficiency: case series and literature review. *Front Pediatr*
 784 11, 1292654. 10.3389/fped.2023.1292654.

785 47. Chen, K.S., Lim, J.W.C., Richards, L.J., and Bunt, J. (2017). The convergent roles of the nuclear
 786 factor I transcription factors in development and cancer. *Cancer Lett* 410, 124–138.
 787 10.1016/j.canlet.2017.09.015.

788 48. Manoli, I., Alesci, S., Blackman, M.R., Su, Y.A., Rennert, O.M., and Chrousos, G.P. (2007).
 789 Mitochondria as key components of the stress response. *Trends Endocrinol Metab* 18, 190–198.
 790 10.1016/j.tem.2007.04.004.

791 49. Pasca, A.M., Park, J.Y., Shin, H.W., Qi, Q., Revah, O., Krasnoff, R., O'Hara, R., Willsey, A.J., Palmer,
 792 T.D., and Pasca, S.P. (2019). Human 3D cellular model of hypoxic brain injury of prematurity. *Nat
 793 Med* 25, 784–791. 10.1038/s41591-019-0436-0.

794 50. Cao, S.S., and Kaufman, R.J. (2014). Endoplasmic reticulum stress and oxidative stress in cell fate
 795 decision and human disease. *Antioxid Redox Signal* 21, 396–413. 10.1089/ars.2014.5851.

796 51. Neuschulz, A., Bakina, O., Badillo-Lisakowski, V., Olivares-Chauvet, P., Conrad, T., Gotthardt, M.,
 797 Kettenmann, H., and Junker, J.P. (2023). A single-cell RNA labeling strategy for measuring stress
 798 response upon tissue dissociation. *Mol Syst Biol* 19, e11147. 10.15252/msb.202211147.

799 52. Velasco, S., Kedaigle, A.J., Simmons, S.K., Nash, A., Rocha, M., Quadrato, G., Paulsen, B., Nguyen,
 800 L., Adiconis, X., Regev, A., et al. (2019). Individual brain organoids reproducibly form cell
 801 diversity of the human cerebral cortex. *Nature* 570, 523–527. 10.1038/s41586-019-1289-x.

802 53. Pasca, A.M., Sloan, S.A., Clarke, L.E., Tian, Y., Makinson, C.D., Huber, N., Kim, C.H., Park, J.Y.,
 803 O'Rourke, N.A., Nguyen, K.D., et al. (2015). Functional cortical neurons and astrocytes from
 804 human pluripotent stem cells in 3D culture. *Nat Methods* 12, 671–678. 10.1038/nmeth.3415.

805 54. Chambers, S.M., Fasano, C.A., Papapetrou, E.P., Tomishima, M., Sadelain, M., and Studer, L.
 806 (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD
 807 signaling. *Nature Biotechnology* 27, 275–280. 10.1038/nbt.1529.

808 55. Volpato, V., and Webber, C. (2020). Addressing variability in iPSC-derived models of human
 809 disease: guidelines to promote reproducibility. *Dis Model Mech* 13, dmm042317.
 810 10.1242/dmm.042317.

811 56. Pantazis, C.B., Yang, A., Lara, E., McDonough, J.A., Blauwendraat, C., Peng, L., Oguro, H.,
 812 Kanaujiya, J., Zou, J., Sebesta, D., et al. (2022). A reference human induced pluripotent stem cell
 813 line for large-scale collaborative studies. *Cell Stem Cell* 29, 1685–1702 e1622.
 814 10.1016/j.stem.2022.11.004.

815 57. Yang, M.J., Sedov, K., Chen, M.Y., Zafar, F., and Schüle, B. (2024). Optical Genome Mapping of
 816 the human reference iPSC line KOLF2.1J reveals new smaller structural variants in
 817 neurodevelopmental genes. *bioRxiv*. 10.1101/2024.10.17.618968.

818 58. Azbukina, N., He, Z., Lin, H.-C., Santel, M., Kashanian, B., Maynard, A., Török, T., Okamoto, R.,
 819 Nikolova, M., Kanton, S., et al. (2025). Multi-omic human neural organoid cell atlas of the
 820 posterior brain. 10.1101/2025.03.20.644368.

821 59. Amin, N.D., Kelley, K.W., Kaganovsky, K., Onesto, M., Hao, J., Miura, Y., McQueen, J.P., Reis, N.,
 822 Narazaki, G., Li, T., et al. (2024). Generating human neural diversity with a multiplexed
 823 morphogen screen in organoids. *Cell Stem Cell* 31, 1831–1846 e1839.
 824 10.1016/j.stem.2024.10.016.

825 60. Gracia-Diaz, C., Perdomo, J.E., Khan, M.E., Roule, T., Disanza, B.L., Cajka, G.G., Lei, S., Gagne,
 826 A.L., Maguire, J.A., Shalem, O., et al. (2024). KOLF2.1J iPSCs carry CNVs associated with
 827 neurodevelopmental disorders. *Cell Stem Cell* 31, 288–289. 10.1016/j.stem.2024.02.007.

828 61. Silva, T.P., Bekman, E.P., Fernandes, T.G., Vaz, S.H., Rodrigues, C.A.V., Diogo, M.M., Cabral,
 829 J.M.S., and Carmo-Fonseca, M. (2020). Maturation of Human Pluripotent Stem Cell-Derived
 830 Cerebellar Neurons in the Absence of Co-culture. *Front Bioeng Biotechnol* 8, 70.
 831 10.3389/fbioe.2020.00070.

832 62. Lancaster, M.A., and Knoblich, J.A. (2014). Generation of cerebral organoids from human
 833 pluripotent stem cells. *Nat Protoc* 9, 2329–2340. 10.1038/nprot.2014.158.

834 63. Lambert, S.A., Jolma, A., Campitelli, L.F., Das, P.K., Yin, Y., Albu, M., Chen, X., Taipale, J., Hughes,
835 T.R., and Weirauch, M.T. (2018). The Human Transcription Factors. *Cell* 172, 650–665.
836 10.1016/j.cell.2018.01.029.

837 64. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and
838 dispersion for RNA-seq data with DESeq2. *Genome Biology* 15, 550. 10.1186/s13059-014-0550-
839 8.

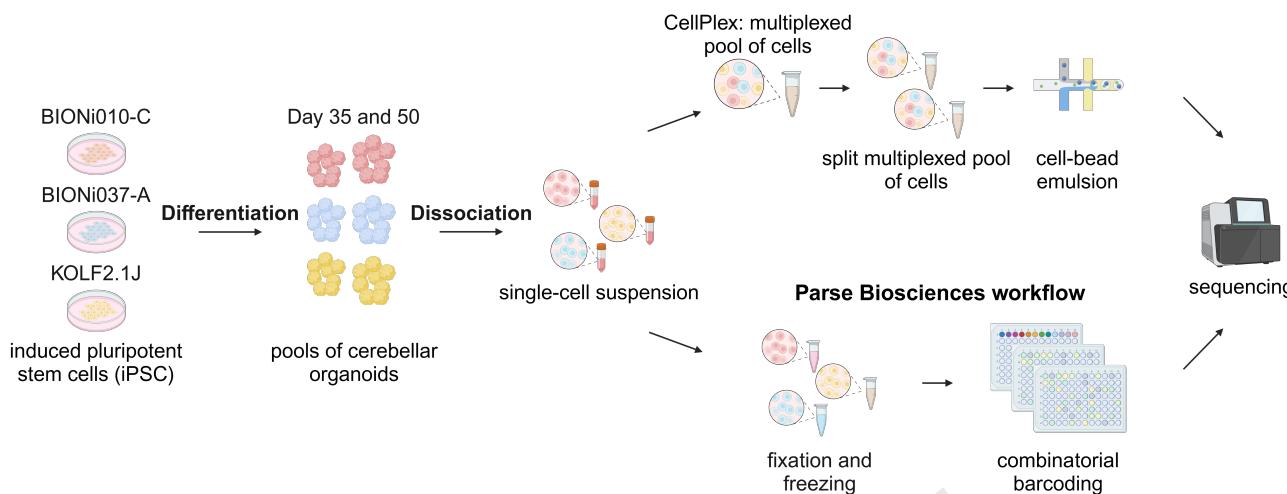
840 65. Zhu, A., Ibrahim, J.G., and Love, M.I. (2019). Heavy-tailed prior distributions for sequence count
841 data: removing the noise and preserving large differences. *Bioinformatics* 35, 2084–2092.
842 10.1093/bioinformatics/bty895.

843 66. Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., et al.
844 (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *The
845 Innovation* 2. 10.1016/j.xinn.2021.100141.

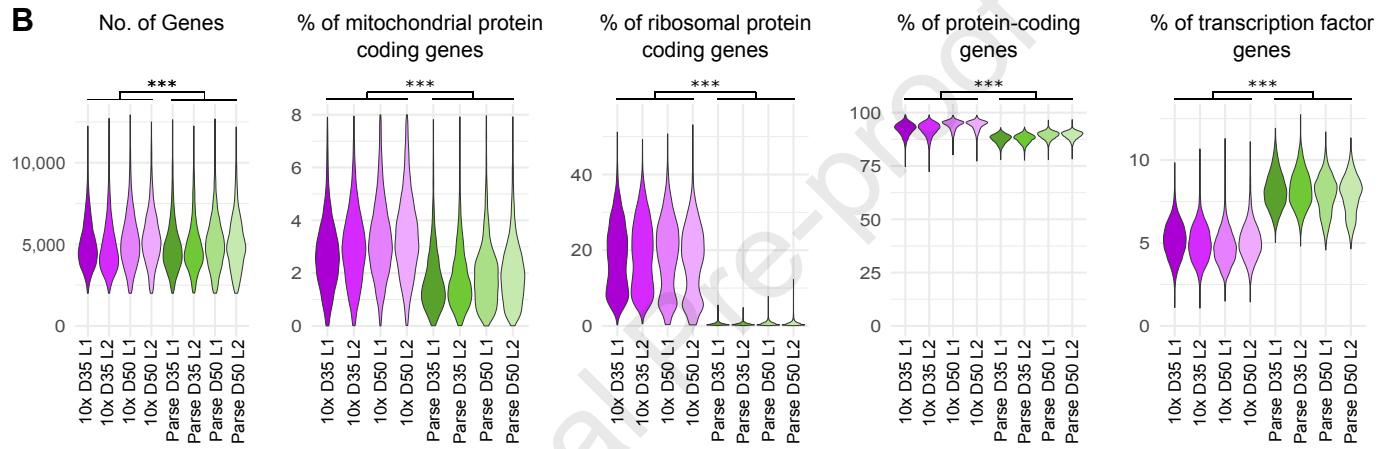
846 67. Gu, Z., and Hübschmann, D. (2023). SimplifyEnrichment: A Bioconductor Package for Clustering
847 and Visualizing Functional Enrichment Results. *Genomics, Proteomics & Bioinformatics* 21,
848 190–202. 10.1016/j.gpb.2022.04.008.

849 68. Van De Sande, B., Flerin, C., Davie, K., De Waegeneer, M., Hulselmans, G., Aibar, S., Seurinck, R.,
850 Saelens, W., Cannoodt, R., Rouchon, Q., et al. (2020). A scalable SCENIC workflow for single-cell
851 gene regulatory network analysis. *Nature Protocols* 15, 2247–2276. 10.1038/s41596-020-0336-
852 2.

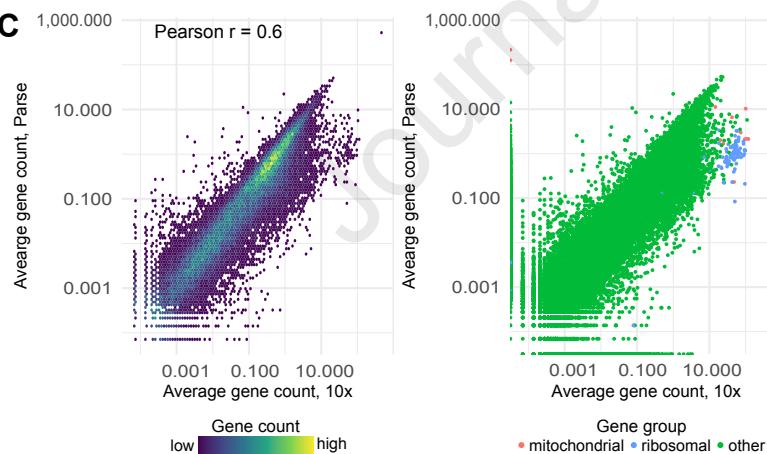
853



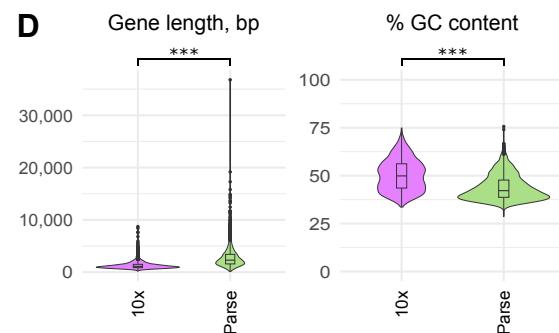
B



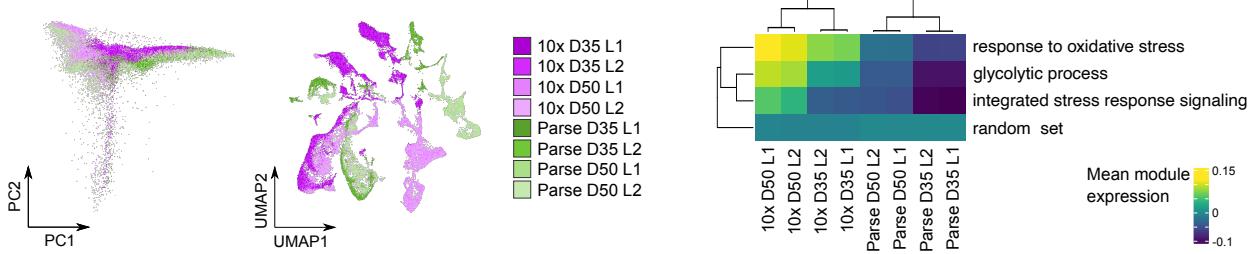
C



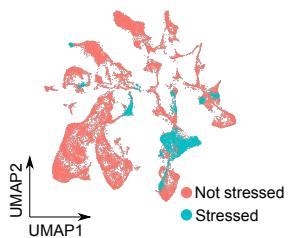
D



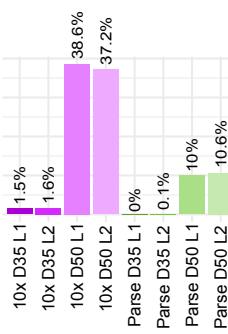
A



C Gruffi-based cell stress assessment

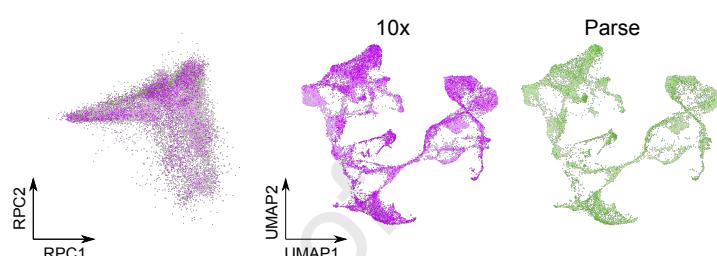
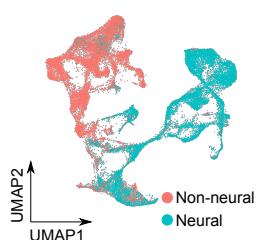


D % of stressed cells



E

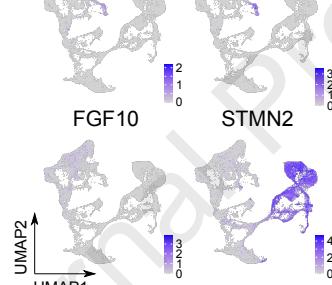
Dimensionality reductions in RPCA-integrated data

F Reference-query mapping with human developmental transcriptome (Cao *et al.*, 2020)

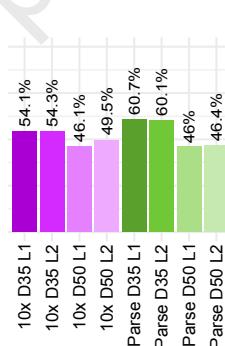
G MYOD1

FGF10

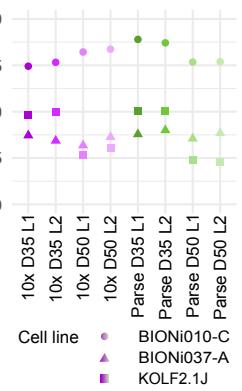
MYOG



H % of neural cells

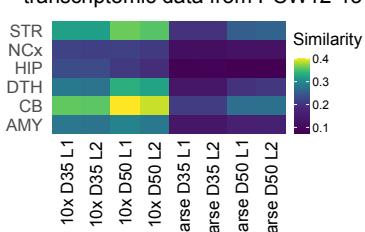
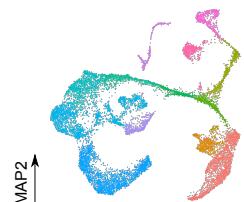


I % of neural cells per cell line



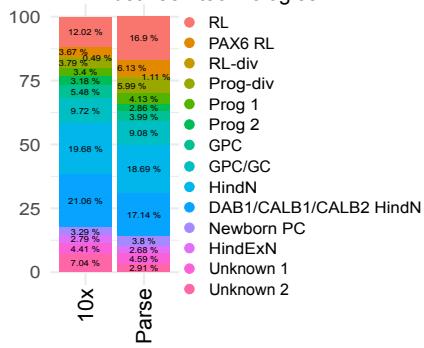
A

expression with BrainSpan human transcriptomic data from PCW12-13

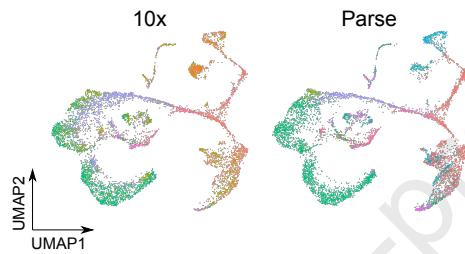


● RL ● GPC/GC
 ● PAX6 RL ● HindN
 ● RL-div ● DAB1/CALB1/CALB2 HindN
 ● Prog-div ● Newborn PC
 ● Prog 1 ● HindExN
 ● Prog 2 ● Unknown 1
 ● GPC ● Unknown 2

D Percentage of cell types between technologies

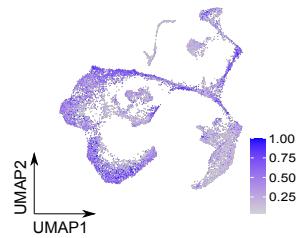


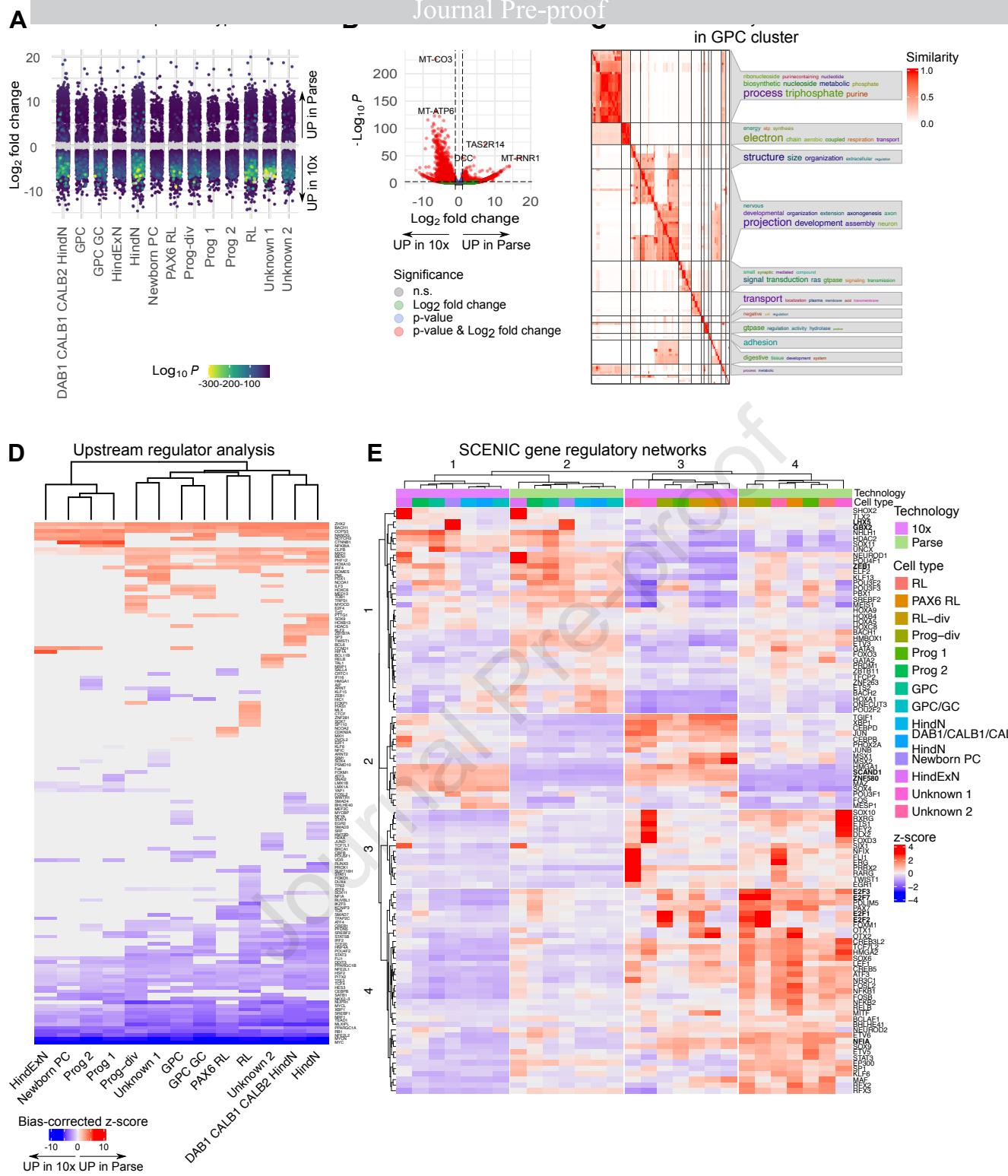
E Reference-query integration with human cerebellar transcriptome (Sepp et al., 2024)



● astroglia
 ● erythroid
 ● GABA_DN
 ● GC
 ● GC/UBC
 ● glut_DN
 ● immune
 ● interneuron
 ● isth_N
 ● isthmic_neuroblast
 ● meningeal
 ● mural/endoth
 ● noradrenergic
 ● NTZ_mixed
 ● NTZ_neuroblast
 ● oligo
 ● parabrachial
 ● Purkinje
 ● UBC
 ● VZ_neuroblast

F Prediction scores from reference-query integration





Highlights

10x yields more ribosomal, mitochondrial, and nuclear gene reads than Parse

The Parse workflow results in lower cell stress than 10x.

Data from both technologies can be successfully integrated.

10x and Parse capture the same cellular diversity in human cerebellar organoids.