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A B S T R A C T

Fast pyrolysis bio-oil (FPBO) holds promise as a renewable source for fuels and chemicals, yet its complex 
chemical composition poses significant challenges for efficient product recovery design and further downstream 
separation. In particular, the high molecular weight pyrolytic lignin fraction remains difficult to characterize, as 
its composition is largely unknown and its thermodynamic behavior poorly described. To improve under
standing, the vapor-liquid equilibrium (VLE) behavior of FPBO was investigated, focusing on the pyrolytic lignin. 
A lignin-derived FPBO was selected for the study in order to minimize the influence of carbohydrate components 
of biomass. Advanced distillation curve (ADC) experiments were conducted to obtain thermodynamic data, 
which was then compared to simulations in which the FPBO was modeled as a surrogate mixture. To represent 
the pyrolytic lignin (PL) in the mixture, a range of surrogate molecules, from dimers to tetramers with varied 
inter-unit linkages and functional groups, were evaluated to find which structure best represents the PL in VLE 
calculations. Among the structures tested, dimers featuring biphenyl inter-unit linkages provided the best overall 
agreement to the experimental values. In general, dimers were more suitable for simulation, as some of the 
trimers and tetramers faced convergence issues and simulation errors. The effect of thermodynamic model was 
also taken into consideration, comparing the Ideal equilibrium model, the UNIFAC-Dortmund (DMD) activity 
coefficient method, and the Peng-Robinson Boston-Mathias (PR-BM) equation of state. The findings underscore 
the importance of surrogate and model selection and provide guidance for optimizing FPBO fractionation and 
upgrading.

1. Introduction

Fast pyrolysis has emerged as a promising technology for the valo
rization of lignocellulosic biomass, offering a renewable pathway for 
producing fuels and chemicals [1]. This thermochemical process rapidly 
converts the major components of biomass – cellulose, hemicellulose, 
and lignin – into a liquid product known as fast pyrolysis bio-oil (FPBO), 
alongside smaller amounts of gases and char [2]. FPBO is particularly 
attractive due to its high liquid yield and ease of storage and transport; 
however, it is a chemically complex emulsion, comprising water, light 
oxygenated compounds (e.g., acids, alcohols, and ketones), monomeric 
phenols, sugars, and lignin-derived oligomers [3]. While many of these 
components hold significant promise for industrial applications, such as 
resins, coatings, and biofuels, others, such as water and highly 
oxygenated species, contribute to FPBO's corrosiveness, low heating 

value, and chemical instability, limiting its direct use [4].
To improve FPBO's properties and broaden its applicability, different 

fractionation and upgrading techniques have been explored to reduce 
oxygen content, enhance stability, and increase its calorific value, as 
well as isolate valuable compounds for potential commercialization [5,
6]. Fractional condensation is a commonly employed strategy, sepa
rating pyrolysis vapors into distinct fractions based on their dew points 
[7]. This approach allows for the selective recovery of lighter, more 
reactive components and heavier fractions enriched in phenolics [8,9]. 
Liquid-liquid extraction offers another method for isolating specific 
chemical groups, enabling the removal of sugars or phenols for targeted 
applications [10,11]. Despite these advancements, designing and opti
mizing these processes requires a deep understanding of FPBO's 
behavior in phase equilibria at varying conditions. Modeling FPBO 
processes is a powerful tool for simulating, optimizing, and predicting 
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the performance of bio-oil production systems [12]. However, achieving 
accurate and reliable models for FPBO remains a significant challenge 
due to the highly complex and variable nature of its composition [13].

A particularly challenging component within FPBO is the pyrolytic 
lignin (PL), a high molecular weight fraction primarily derived from the 
thermochemical breakdown of lignin during pyrolysis. The PL is 
composed of oligomers with aromatic structures and a wide range of 
molecular weights [14,15]. Its content in FPBO can vary substantially, 
typically accounting for 15–50 wt% of the total bio-oil, depending on 
both the feedstock and the specific process conditions [16–18]. The 
presence of PL has a pronounced impact on the physicochemical prop
erties of FPBO, including viscosity, phase stability, solubility, and 
reactivity [19,20]. These properties, in turn, affect downstream pro
cessing steps such as upgrading, separation, and utilization in fuel or 
chemical applications. It has been previously shown that the represen
tation of this fraction is particularly important for improving the pre
dictive capability of phase equilibrium models [21,22]. In addition, high 
molecular weight compounds derived from carbohydrates may also be 
present in FPBO, which further increases the complexity of modeling 
effects [23,24].

The complexity of the PL poses several modeling challenges. First, its 
chemical structure is not uniform; it consists of a broad distribution of 
oligomeric species with varying degrees of polymerization, functional 
group content, and solubility [17,20]. This makes it difficult to represent 
PL as a single component or even as a well-defined group of compounds 
during process simulation [13,22,25]. Second, the interactions between 
PL and other bio-oil constituents can lead to phase separation and un
predictable changes in physical properties, complicating both experi
mental characterization and predictive modeling [19,21].

Advanced modeling approaches for this PL fraction often incorporate 
surrogate compounds, pseudo-components, or group contribution 
methods to describe the behavior of pyrolytic lignin. Recent research has 
also focused on integrating experimental data such as molecular weight 
distributions, functional group analyses, and phase behavior studies, 
into modeling frameworks to improve their predictive power [22,
25–27]. However, selecting appropriate surrogates is still challenging, 
as the absence of direct experimental data on key thermophysical 
properties introduces uncertainties in phase equilibrium modeling [13,
26].

The advanced distillation curve (ADC) method provides a robust tool 
for investigating the VLE behavior of FPBO and acquiring detailed 
thermodynamic data [28]. In contrast to conventional distillation 
techniques, ADC generates a comprehensive dataset by recording tem
perature, pressure, and composition at discrete distilled volume frac
tions throughout the distillation process, offering valuable insights into 
the phase behavior of complex bio-oils [29]. This method is well-suited 
for thermally sensitive systems, as it can operate under reduced pressure 
to mitigate undesirable phenomena such as polymerization and thermal 
degradation [30]. The thermodynamic data obtained from ADC exper
iments constitutes a valuable resource for refining thermodynamic 
models, optimizing surrogate mixtures, and enhancing the predictive 
accuracy of VLE models for FPBO [31].

In this study, the representation of pyrolytic lignin in FPBO models 
was investigated to find the most suitable approach for improving VLE 
predictions. To achieve this, ADC experiments were integrated with VLE 
simulations to obtain a comprehensive understanding of FPBO's phase 
behavior, with a particular emphasis on the influence of pyrolytic lignin. 
To isolate and elucidate the thermodynamic role of the pyrolytic lignin, 
FPBO derived specifically from lignin was selected, allowing for a 
focused assessment of this high molecular weight fraction without the 
interference of carbohydrate derived compounds. The ADC experiments 
yield detailed temperature and composition profiles for each distilled 
fraction of FPBO, which were subsequently modeled using the IDEAL 
model, the UNIFAC-Dortmund (DMD) activity coefficient model, and 
the Peng–Robinson Boston–Mathias (PR-BM) equation of state, using 
different surrogate molecules to represent the pyrolytic lignin fraction. 

The insights gained from this combined experimental and modeling 
approach advance the understanding of the thermophysical properties 
of FPBO and provide a foundation for more accurate and efficient 
models for bio-oil processing and upgrading.

2. Materials and methods

2.1. Lignin fast pyrolysis bio-oil

The lignin bio-oil used in this study was produced via fast pyrolysis of 
a Miscanthus derived lignin (Miscancell), as detailed in a previous work 
[32]. In the study, pyrolysis experiments were conducted at 500 ◦C in an 
auger type reactor that mechanically mixes the feedstock with a pre
heated heat carrier (steel beads) with a feedstock capacity of 10 kg/h. 
Residence time of the solids in the reactor are 10–15 s; the gas residence 
time is estimated to be < 2 s [33]. Entrained char particles are separated 
from hot pyrolysis gases in a series of two cyclones and a ceramic filter 
prior to condensation in a tube and shell condenser integrated in an 
electrostatic precipitator that operates at 90 ◦C. The condensate 
collected at this temperature was used as bio-oil in this study and 
characterized for its elemental composition, density, water content (via 
Karl Fischer titration) and chemical composition (via GC-MS/FID). Key 
results are summarized in Table 1.

2.2. Advanced distillation curve experiments

Vacuum advanced distillation curve experiments using the lignin 
bio-oil were conducted following the approach reported by Krutof and 
Hawboldt [28], a scheme of the setup can be found in Fig. 1. At the 
beginning of each experiment, the system was evacuated to an absolute 
pressure of 15 kPa, after which heating was initiated. The sample was 
placed in a round-bottom flask enclosed by a heating jacket programmed 
to follow a three-stage heating ramp from room temperature to 285 ◦C. 
Vapor condensation was achieved using a counter-flow condenser 
initially cooled to 0 ◦C.

The first measurement was recorded when the first droplet of 
condensate was visually observed. Subsequently, kettle and head tem
perature were recorded at every 10 mL interval, as observed on the 
calibrated receiving flask. At the same points, 10 μL samples were taken 
using a syringe for GC-FID analysis. Distillation continued until no 
further condensation was observed. All experiments were carried out in 
triplicate to ensure reproducibility.

A few adaptations were made to the setup described by Krutof and 
Hawboldt [28]. To accommodate for a smaller sample size used in the 
study (100 mL vs, 200 mL), a 250 mL round-bottom flask was used 

Table 1 
Properties of the lignin FPBO used in the study (adapted from 
Ref. [32]).

Property Lignin FPBO

General properties
Water content (wt.%) 12.5
Density at 60 ◦C 1.11

Elemental composition (wt.%)
C 60.4
H 6.1
O 30.7

Chemical composition (wt.%)
Acids 8.2
Ketones 1.2
Furans 0.4
Benzenes 0.6
Phenols 3.9
Guaiacols 6.1
Syringols 3.6
Sugars 2.1
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instead of a 500 mL one, and the gap between the flask and the heating 
enclosure was filled with copper shavings to improve heat transfer. In 
addition, the lower pressure of 5 kPa used in the original work could not 
be achieved due to equipment limitations.

2.3. Modeling

Modeling of the ADC experiments was carried out using Aspen Plus 
V14®. The thermodynamic property method used was either IDEAL, 
UNIFAC-DMD, or PR-BM for comparison purposes; property methods 
were not modified from their default configurations [34]. All molecules 
were characterized based on their structure, and in the case of the 
UNIFAC-DMD model, functional group information was also required. 
Properties that were not present in the Aspen Properties™ database 
were estimated using default options. Details can be found in the Sup
plementary Information (SI).

For the bio-oil properties, the elemental composition was determined 
by performing a simple component balance over the surrogate mixtures, 
using the different PL surrogate molecules. Density predictions were 
obtained by simulating the bio-oil surrogate mixtures in Aspen at 60 ◦C, 
matching the reference temperature of the experimental data.

For the VLE calculations, a scheme of the flowsheet model can be 
found in Fig. 2. The process was simulated at an absolute pressure of 15 
kPa, with the lignin FPBO input as a liquid at 25 ◦C and a flow rate of 
100 L/h. Each distillation stage was modeled as a HEATER + SEP2 pair, 
with the HEATER configured to achieve a specified vapor fraction and 
the SEP2 unit serving as an adiabatic separator. Design specifications 
were applied at each stage to evaporate 10 L of the liquid input by 
adjusting the vapor fraction in the HEATER, corresponding to the vol
ume intervals of the ADC experiments. For the very first drop, however, 
no design specification was applied, and a fixed vapor fraction of 1 ×
10− 6 was used instead. The vapor stream produced in each stage was 
condensed using a second HEATER, enabling evaluation of the recovered 

condensate fractions. This approach allowed for the prediction of the 
temperature profile along the distillation and the component distribu
tion across the collected fractions.

The lignin FPBO was modeled using a surrogate mixture, as detailed 
in Table 2. The selected components and their weight fractions were 
based on data from the previous bio-oil GC-MS/FID characterization 
summarized in Table 1; the remaining unidentified fraction was repre
sented as pyrolytic lignin.

The pyrolytic lignin (PL) surrogate was modeled using various 
molecules proposed in the literature to evaluate which structure best 
represents the bio-oil properties and VLE behavior. A similar set of 
structures were also employed by Rojas et al. [22] when modeling 
liquid-liquid equilibrium. The molecules were grouped according to 
shared structural characteristics, such as number of aromatic rings and 
linkage type, as summarized in Table 3. To illustrate these differences, 
Fig. 3 shows a representative molecule from each group, highlighting 
the base structure and typical size. Full information on the structure, 
molecular formula, and functional groups of all molecules is provided in 
the SI. From this point on, these molecules will be referred to as PL 
surrogates. In modeling, all molecules were evaluated individually, 
meaning no mixture of PL surrogates was considered. Additionally, a 
surrogate mixture excluding the PL surrogate, referred to as “No-PL,” 
was evaluated to assess the importance of including pyrolytic lignin in 
the overall representation. This No-PL mixture contained only the 
components identified during the characterization, with their weight 
fractions normalized to 100 %.

2.4. Data treatment

All simulated property values were processed and analyzed against 
the experimental data. Experimental reference values for elemental 
composition and density were taken from the characterization of the 
lignin FPBO reported on Table 1. For VLE evaluation, the experimental 

Fig. 1. Scheme of vacuum ADC system adapted from Ref. [28].
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data of the ADC temperature profile and water content across the 
distillation range were used.

The relative error (RE) was used for properties with a single exper
imental value, such as density: 

RE =

⃒
⃒
⃒
⃒
xsim − xexp

xexp

⃒
⃒
⃒
⃒× 100 (1) 

For properties with multiple data points, such as elemental 

composition and ADC profiles, the mean absolute relative error (MARE) 
was used: 

MARE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
xsim,i − xexp,i

xexp.i

⃒
⃒
⃒
⃒× 100 (2) 

In addition, for evaluating the different groups of molecules, the mean 
MARE of each group's molecules was used, following the grouping logic 
defined in Table 3.

3. Results and discussion

3.1. ADC experiments

The kettle temperature results obtained from the ADC experiments of 

Fig. 2. Scheme of the model implemented in Aspen Plus™, based on the flowsheet view of the software environment.

Table 2 
Surrogate mixture of the lignin FPBO.

Component Mass Fraction Formula CAS

Acetic Acid 3.31 % C2H4O2 64-19-7
Propionic acid 4.97 % C3H6O2 79-09-4
Cyclopentenone 0.56 % C5H6O 930-30-3
Cyclopentenone, 2-methyl 1.32 % C6H8O 1120-73-6
2(H)-Furanone 0.42 % C5H4O2 98-01-1
Benzofuran 0.59 % C8H6O 271-89-6
Phenol 1.32 % C6H6O 108-95-2
P-cresol 1.32 % C7H8O 106-44-5
Phenol, 4-ethyl 1.32 % C8H10O 123-07-9
Guaiacol 1.84 % C7H8O2 90-05-1
Guaiacol, 4-vinyl 1.23 % C9H10O2 7786-61-0
Isoeugenol 1.84 % C10H11O2 5932-68-3
Acetoguaiacone 1.23 % C9H10O3 498-02-2
Syringol 1.64 % C8H10O3 91-10-1
Syringol, 4-vinyl 1.64 % C10H12O3 28343-22-8
Acetosyringone 0.37 % C10H12O4 2478-38-8
Levoglucosan 2.11 % C6H10O5 498-07-7
Water 12.25 % H2O 7732-18-5
Pyrolytic Lignin Surrogate 60.93 % – –

Table 3 
Classification of PL surrogates by structure and linkage type, following the group 
approach from Ref. [22].

Group Description Molecules Reference

D-A Dimer – β-O-4 D-A1, D-A2, D-A3, D-A4 [26,35]
D-B Dimer – Biphenyl D-B1, D-B2, D-B3, D-B4 [21,36]
D-C Dimer – Stilbene D-C1, D-C2 [36,37]
D-D Dimer – Phenylcoumaran D-D1, D-D2 [36]
D-E Dimer – Resinol D-E1 [36]
D-F Dimer – Bridging double 

bond
D-F1 [38]

TR Trimer – various links TR1, TR2, TR3, TR4, TR5, 
TR6

[26,37,
39]

TE Tetramer – various links TE1, TE2 [37,40]
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the lignin FPBO can be seen in Table 4. At the distillation starting point 
(57.6 ◦C), temperature values were consistent across replicates, with a 
standard deviation of 0.5 ◦C. Following this, the temperature increased 
to an average of 96.9 ◦C at 10 % distilled volume. An even sharper in
crease was observed at 20 %, with temperature reaching 189.1 ◦C. This 
point also exhibited the highest deviation across replicates (22.6 ◦C), 
indicating a broader range of volatiles present in this fraction. From that 
point on, temperature gains became less pronounced, stabilizing toward 
the final measured values and showing lower deviations.

The temperature results presented in Table 4 are compared with the 
data reported by Krutof and Hawboldt [28], for a softwood bio-oil, in 
Fig. 4. Given the limited availability of ADC data for bio-oils, particu
larly lignin-derived ones, the softwood bio-oil results are used here as a 
comparative reference. Comparing the curves, the two distillation pro
files show significant differences. Krutof and Hawboldt [28] reported an 
earlier distillation onset (33.4 ◦C) and a convex profile with a lower 

incline. In contrast, this work presents a sharper incline and a more 
concave profile, with distillation starting at higher temperatures. 
Furthermore, the distillation of softwood bio-oil proceeds up to ~65 vol 
% distilled, whereas in this work it was limited to ~40 vol% Interest
ingly, despite these differences, both curves reach similar final tem
peratures near 260 ◦C.

Fig. 3. Representative PL surrogate from each group.

Table 4 
Kettle temperatures from ADC of lignin fast pyrolysis bio-oil at 15 kPa.

Distilled volume % Experimental kettle temperature (Tkettle, ◦C)

Run 1 Run 2 Run 3 Average St. deviation

0 56.9 57.9 58 57.6 0.5
10 93.9 81.3 115.5 96.9 14.1
20 162.9 186.4 218 189.1 22.6
30 219 227 247 231 11.8
40 244 251 262 252.3 7.4

Fig. 4. ADC temperature profiles of lignin FPBO at 15 kPa (this work) and 
softwood fast pyrolysis bio-oil at 5 kPa (Krutof and Hawboldt [28]).
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These variations can be attributed to both the distinct nature of the 
bio-oils and the experimental conditions. The lignin-derived bio-oil used 
here contains a higher proportion of heavy phenolic oligomers and py
rolytic lignin, whereas softwood-derived oil likely includes more water 
and light volatiles. Additionally, the lower vacuum pressure employed 
by the reference (5 kPa vs 15 kPa in this study) would favor earlier and 
more extended evaporation of volatile fractions, further amplifying the 
observed differences.

In addition to the temperature data, the ADC experiment also pro
vides insight into the distribution of compounds across the distilled 
fractions, as shown in Fig. 5. Fig. 5a shows how the water content varies 
throughout the distillation, starting as the dominant component at 
approximately 80 wt% of the initial fraction and gradually decreasing as 
the distillation progresses. It is interesting to note that at 15 kPa, the 
boiling point of pure water is approximately 54.8 ◦C [41], closely 
aligning with the initial temperature observed in our experiments 
(57.6 ◦C). The slight elevation could be attributed to the presence of 
other solutes in the mixture. In contrast, at 5 kPa, water boils at around 
32.9 ◦C [41], which corresponds well with the distillation onset reported 
by Krutof and Hawboldt (33.4 ◦C). This supports the conclusion that the 
difference in starting temperatures between the two curves shown in 
Fig. 4 is primarily due to the difference in operating pressure.

To further assess the phase behavior of water, its experimental ac
tivity coefficient (γ) in the initial distillation stage was estimated via 
modified Raoult's law. Based on the water content measured in the 
condensate at the starting point and the composition of the liquid sur
rogate mixture (Table 2), the mole fractions of water in each phase were 
determined. Two scenarios were considered to account for the uncer
tainty in the composition of the pyrolytic lignin (PL) surrogate: one 
assuming the smallest PL molecule in the surrogate set (D-B1) and 
another the largest (TE2). Calculations estimated activity coefficients of 
1.76 and 1.42, respectively, which indicates a moderate positive devi
ation from ideal behavior, consistent with previous findings by Ille et al. 
[21]. Full calculation details are provided in the SI. Notably, the higher γ 
value was obtained for the smaller PL surrogate, which can be attributed 
to mole fraction balance, in which smaller molecules contribute a 
greater number of moles to the mixture, thereby lowering the mole 
fraction of water and increasing the calculated activity coefficient.

Fig. 5b presents the mass fraction of compounds identified by 
GC–FID and the remaining “unknown” fraction, calculated by 

subtracting the identified species and water content from the total. In 
the initial fractions, only a small portion of the distillate could be 
identified, and a notable fraction remained classified as unknown. The 
presence of these unidentified components at such early stages is 
somewhat unexpected and may arise from limitations in the GC–FID 
analysis and/or an underestimation of the water content. At 20 % 
distilled volume, both identified and unknown fractions reached 
amounts around 30 wt% and exhibited the highest standard deviations. 
This correlates with the peak deviations in temperature and water 
content, indicating an increased complexity in this fraction. In the final 
stages of the distillation (30–40 % distilled volume), the amount of 
identified compounds gradually declined, and with water content at its 
lowest, the unknown fraction became increasingly dominant, probably 
composed of pyrolytic lignin oligomers that are beyond the detection 
range of the GC–FID.

3.2. Modeling of FPBO properties

To evaluate how well different PL surrogate molecules represent the 
bulk characteristics of the lignin-derived FPBO, key physicochemical 
properties were analyzed. Fig. 6 presents a Van Krevelen diagram (H/C 
vs. O/C) for the surrogate mixtures using different PL molecules, 
alongside the experimental value for the lignin bio-oil. Each point rep
resents one surrogate, with the color scale indicating the MARE in 
elemental composition compared to the experimental result. Full results 
for each individual molecule can be found in the SI.

From the graph, it is clear that the introduction of a PL surrogate 
significantly improves the representation of the lignin bio-oil's elemental 
composition, with the No-PL case showing the largest error (45 %), 
twice the error of worst performing surrogate. The best-performing PL 
surrogate, D-B1, is a small biphenyl-type dimer with just two oxygen 
atoms, yielding a MARE of 4.5 %. In contrast, TR5, a bulky trimer 
containing 15 oxygen atoms, produced the highest error at 24.8 %. 
These results indicate that PL surrogates with lower oxygen and higher 
carbon content more effectively capture the elemental composition of 
pyrolytic lignin. This suggests that the actual PL structures present in the 
heavy fraction of the bio-oil may be less oxygenated than those often 
assumed in the literature.

Accurately predicting the density of the bio-oil is essential as it re
flects how well the surrogates capture bulk physical properties. Fig. 7

Fig. 5. Mass fractions of water (a), and GC–MS/FID identified vs. unknown compounds (b) in the ADC distillates.
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compares simulated density values (ρ) for surrogate molecules as a 
function of their molecular weight (MW) using two different methods: 
the Rackett equation, which is used by the IDEAL and UNIFAC-DMD 
models to estimate the liquid density, and PR-BM, which determines it 
from its own equation of state [34]. Full results are available in the SI. 
For the Rackett estimations (Fig. 7a), the best agreement was observed 
for dimers, particularly those in the 200–350 g/mol range, with most 
values falling close to the experimental target. As molecular weight 
increased, the predicted density generally declined, with most trimers 
and tetramers significantly underestimating the density, with the 
exception of TE1, which over predicted but still showed a considerably 
lower error.

In contrast, the PR-BM method (Fig. 7b) systematically predicted 
lower density values across all surrogates, showing larger deviations 
from the experimental target. While dimers still performed compara
tively better than larger molecules, their predicted densities were 
generally lower than those obtained using the Rackett method. The 

discrepancy became more pronounced for trimers and tetramers, which 
showed limited predictive reliability, with many of these molecules 
encountering simulation issues and yielding zero-value predictions that 
were no included in the graph. These findings reinforce the limitations of 
cubic equations of state in representing liquid densities of heavy aro
matics, as noted in previous studies [13].

The No-PL case underestimated the experimental density with both 
methods (Fig. 7), with the Rackett method performing better than PR- 
BM, which showed a larger underestimation. This shows that 
including a PL surrogate can improve predictive accuracy; however, this 
improvement depends strongly on the surrogate choice, as higher mo
lecular weight candidates can often underestimate the density or lead to 
simulation issues.

The combined analysis of elemental composition and density showed 
that dimers yielded more reliable predictions, whereas high molecular 
weight surrogates, particularly those rich in oxygen, were less accurate 
and more prone to simulation errors. The D-B group (biphenyl-type 
dimer) consistently showed the best performance as surrogate for the 
pyrolytic lignin fraction, with other surrogates from the D-A (β-O-4), D-C 
(stilbene), and D-D (phenylcoumaran) groups also yielding strong re
sults. These findings suggest that small, condensed aromatic dimers with 
low oxygen content are particularly well-suited to represent the physical 
properties of pyrolytic lignin in thermodynamic modelling.

3.3. Modeling of vapor-liquid equilibrium

To evaluate the ability of PL surrogates to reproduce VLE behavior, 
their performance was assessed using the experimental ADC data as 
benchmark. At first, the surrogates were evaluated by group, using the 
mean MARE for each group, with error bars indicating the standard 
deviation within the group. Some surrogates encountered simulation 
issues: TE2 failed to converge with the UNIFAC-DMD model and, while 
it ran with the IDEAL model, produced unrealistic results and it was 
removed from the analysis. In the PR-BM model, convergence errors 
were observed for TR5 and TE3. Fig. 8 compares the mean MARE values 
for temperature and water content predictions, highlighting how the 
choice of surrogate group and thermodynamic model influences accu
racy. Data associated with individual PL surrogates can be found in the 
SI.

For the temperature predictions, shown in Fig. 8a, most molecular 
groups performed comparably similar, with the exception of group D-E 

Fig. 6. Van Krevelen diagram (H/C vs. O/C) of bio-oil composition predicted 
by the different surrogate molecules. Color scale shows the error (MARE) in 
reproducing the experimental values. Representative molecular structures are 
provided in Fig. 3. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.)

Fig. 7. Liquid density (ρ) predictions of mixture featuring different PL surrogate molecules. (a) Using the Rackett method; (b) using the PR-BM model.
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that clearly showed the worst performance. Regarding the influence of 
thermodynamic models, IDEAL consistently achieved the best perfor
mance (with MARE values often below 30 %), closely followed by 
UNIFAC-DMD which showed similar performance in several groups, 
while PR-BM consistently produced the highest deviations (>40 %). This 
is surprising given that the IDEAL mixture model neglects intermolec
ular interactions, which are typically considered critical for representing 
PL behavior. The comparatively lower deviations may arise from 
compensating effects in the simplified model formulation, as well as 
from uncertainties in molecular definitions and interaction parameters 
affecting more complex models; therefore, its apparent superior per
formance should be interpreted with care. The absence of a PL surrogate 
(No-PL) led to significantly higher deviations (>50 %), underscoring the 
importance of including a representative for this fraction in the mixture. 
Variability within groups was generally small, with the exception of 
group D-B for the PR-BM model, suggesting that functional group vari
ations may have little effect on temperature predictions.

Fig. 8b shows the deviations for the evolution of the water content 
predictions. In contrast to the temperature predictions, here the IDEAL 
model consistently produced the largest errors (>50 %). PR-BM showed 
comparatively smaller errors compared to its temperature predictions, 
and was even able to achieve lower errors for D-E, where the other 
models deviated by almost 100 %. The UNIFAC-DMD model showed a 
broader error range (30–60 %) and the widest intragroup variation (D- 
C), yet it also provided the best-performing individual PL surrogates for 
all groups except the D-E group. These findings suggest that, in contrast 
to temperature predictions, functional group variations may be more 
relevant for water content predictions, as reported by Ille et al. [21]. The 

No-PL case once again produced the highest errors (>100 %), rein
forcing the need to include a representative surrogate for the pyrolytic 
lignin fraction.

3.4. Best pyrolytic lignin surrogate candidates

The best PL surrogate molecules for each property and model are 
compared in Table 5. While no single PL surrogate excelled across all 
evaluations, dimers dominated the rankings overall, with the biphenyl 
group (D-B) consistently ranking among the top performers for most 
properties and models. Among the biphenyl groups’ molecules, D-B1 
stands out as appearing in the top rank for most properties and models, 
achieving the lowest elemental composition error (RE = 4.50 %) and the 
best temperature prediction under the IDEAL model (MARE = 24.09 %). 
D-B2 and D-B3 also showed strong performance, reaching error values of 
6.70 % and 25.67 %, respectively, for elemental composition and water 
content predictions. And, it is worth noting that D-B2 (3,4,4-biphenyl
triol) was also selected in previous studies by Ille et al. [21] and Krutof 
and Hawboldt [28] as a representative compound for modeling the 
pyrolytic lignin in VLE, further supporting its relevance.

Analyzing the bio-oil bulk properties, the elemental composition is 
best reproduced by surrogates that match the experimental FPBO carbon 
and oxygen balance (C ≈ 60 wt% and O ≈ 30–35 wt%), which is ex
pected given that these elements dominate the overall bio-oil composi
tion. The best-performing surrogates are all dimers containing two to 
four oxygen atoms. Regarding density, the Rackett model provides 
values much closer to the experimental FPBO density than PR-BM, 
which largely underestimates density for most surrogates. The best 

Fig. 8. Mean MARE values for (a) temperature and (b) water content prediction across surrogate groups using IDEAL, UNIFAC-DMD, and PR-BM models. Repre
sentative molecular structures are provided in Fig. 3.
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agreement with Rackett is obtained for D-B4, D-D2 and D-C1 (RE ≈ 0.25 
%), while PR-BM performs best for D-A2 and D-A4 (RE ≈ 5.3 %). 
Notably, the top performers differ between models, indicating that the 
description of molecular intermolecular interactions plays a central role 
in density prediction.

For temperature prediction, dimers again show the most consistent 
performance across all thermodynamic models, with the D-B (biphenyl) 
structures emerging as the best candidates. D-B1 and D-B2 in particular 
provide the lowest temperature MAREs under IDEAL and UNIFAC-DMD, 
while also outperforming most other surrogates in PR-BM. Notably, 
under the PR-BM model, the top candidates following D-B1 and D-B2 are 
exclusively D-A (β-O-4) dimers. Based on these observations, it seems 
that D-B and D-A (in the case of PR-BM) structures better capture the 
intermediate-to-heavy volatility window that is most relevant for VLE 
temperature predictions in FPBO.

In the case of water content prediction, the best-performing surro
gate molecules varies between thermodynamic models, with IDEAL and 
UNIFAC-DMD identifying a similar set of top candidates, namely D-B3 
and TR2, followed by D-A1 and D-D2. In contrast, PR-BM favors a 
different group of structures, with D-A4 and D-B2 yielding the lowest 
deviations. In addition, analysis of the UNIFAC-DMD top performers 
functional groups shows that the best surrogates exhibit a balance of 
hydroxyl (-OH) and ether (-O-) groups in their structure. In comparison, 
the worst performing molecules, reported in the SI, are dominated by 
hydroxyl groups (-OH).

In addition to the evaluation of errors, the ability to model distilla
tion profiles must also be considered. Fig. 9 compares the top two sur
rogates for each model and the No-PL case against the experimental ADC 
data for temperature and water content profiles. The selected profiles 
highlight how individual surrogates capture the VLE behavior of the 
pyrolytic lignin fraction, allowing for direct comparison across different 
thermodynamic models. For clarity, only the top two molecules from 
each model are shown in the main figures, while the complete top five 
rankings are provided in the SI.

Regarding the temperature, all PL surrogates tended to underesti
mate the experimental curve, resulting in a convex shaped simulation 
profile, consistent with the behavior reported by Krutof and Hawboldt 
[28]. For the UNIFAC-DMD model (Fig. 9b), D-B2 closely matched the 
initial distillation temperature, while D-B1 showed a slight underesti
mation. The IDEAL model (Fig. 9a) overestimated this point, whereas 

Table 5 
Top five performing surrogates across all categories, ranked by lowest error 
values. Representative molecular structures are provided in Fig. 3.

Input bio-oil properties

C-H-O (wt. %) Density – Rackett Density – PR-BM

Surrogate MARE (%) Surrogate RE (%) Surrogate RE (%)

1 D-B1 4.50 D-B4 0.25 D-A2 5.27
2 D-B2 6.70 D-D2 0.25 D-A4 5.35
3 D-A1 7.39 D-C1 0.25 D-B2 12.5
4 D-E1 8.01 D-B1 2.26 D-B1 15.7
5 D-D2 8.44 D-A4 2.37 D-A1 15.8

Temperature profile

IDEAL UNIFAC-DMD PR-BM

Surrogate MARE 
(%)

Surrogate MARE 
(%)

Surrogate MARE 
(%)

1 D-B1 24.09 D-B1 28.01 D-B2 36.37
2 D-B3 26.40 D-B2 29.14 D-B1 36.45
3 D-B2 26.47 D-B3 30.70 D-A4 38.67
4 D-D1 27.17 D-B4 32.86 D-A3 39.55
5 D-A4 27.26 D-C2 33.47 D-A1 40.17

Water content profile

IDEAL UNIFAC-DMD PR-BM

Surrogate MARE 
(%)

Surrogate MARE 
(%)

Surrogate MARE 
(%)

1 D-B3 35.80 D-B3 25.67 D-A4 32.40
2 TR2 39.03 TR2 27.59 D-B2 33.35
3 D-B1 46.34 D-A1 28.47 D-C2 36.12
4 D-A1 47.53 D-D2 29.30 D-A3 36.80
5 D-D2 47.66 TE3 29.53 D-B1 38.59

Fig. 9. Simulated ADC temperature and water content profiles for top-performing surrogate molecules and the No-PL case across thermodynamic models: (a) & (d) 
IDEAL, (b) & (e) UNIFAC-DMD and (c) & (f) PR-BM. Representative molecular structures are provided in Fig. 3.
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PR-BM (Fig. 9c) strongly underestimated it. This difference at the initial 
distillation point contributes to the lower aggregated temperature errors 
observed for the IDEAL model, whereas the higher errors associated with 
PR-BM largely result from its strong underestimation of the initial 
boiling point. All simulated curves fail to capture the sharp temperature 
rise observed between 10 and 20 vol%. Instead, they consistently un
derestimate the boiling temperature throughout the distillation and 
show the steepest incline to the 20-30-40 vol% range, where the 
experimental curve actually begins to flatten. The last distillation point 
is well captured by D-B1 in both the IDEAL and UNIFAC-DMD models 
and by D-B2 in the PR-BM model (Fig. 9a–c).

Compared to the softwood derived FPBO studied by Krutof and 
Hawboldt [28], the bio-oil investigated here is strongly enriched in 
lignin derived compounds, which results in lower distillate yields and a 
substantially steeper experimental temperature profile. As a result, the 
inability to reproduce this sharp temperature rise is not interpreted as a 
fundamental limitation of the models, but rather as a consequence of the 
lignin-rich nature of the bio-oil and the higher contribution of the poorly 
characterized heavy fraction. Improved agreement would therefore 
likely require a more detailed representation of the pyrolytic lignin 
fraction, potentially involving multiple surrogate molecules, together 
with improved thermodynamic parameters for these surrogates.

While the surrogates still captured key features of the temperature 
curve, the No-PL case consistently failed to do so, producing a flat and 
inaccurate profile across all models. This again reaffirms the need to 
include a pyrolytic lignin surrogate to achieve more accurate VLE 
predictions.

Fig. 9 d, e, and f show the water content profiles obtained with the 
different thermodynamic models. All models are able to capture the 
general trend of the experimental data across the distillation range, with 
the UNIFAC-DMD model (Fig. 9e) showing the best overall agreement 
and the lowest errors. Despite its comparatively larger deviations, the 
IDEAL model (Fig. 9d) follows a curve shape similar to that of UNIFAC- 
DMD. Higher errors for this model may stem primarily from mismatches 
at the final distillation points. In contrast, the PR-BM model (Fig. 9f) was 
the only one to overestimate the water content in the initial stages of the 
distillation, followed by a sharper decline. Notably, the overall shape of 
the water content curve remained consistent across different PL surro
gates, with the choice of molecule mainly influencing the magnitude of 
the errors rather than the general trend of the predictions. As with the 
temperature predictions, the No-PL case failed to capture the experi
mental trend, producing an inaccurate water content profile across all 
models.

Evaluating the simulated activity coefficient of water at the first 
distillation point for molecule D-B1 reveals important differences. For 

the UNIFAC-DMD model, the predicted γwater was 1.87, which aligns 
well with the experimentally estimated value of 1.76. This agreement, 
together with its accurate water content predictions, highlights the 
model's suitability for capturing non-ideal behavior in fast pyrolysis bio- 
oils. In contrast, PR-BM predicted a much higher γwater of 6.3 for the 
same surrogate, correlating with its poor performance in the initial 
distillation region and suggesting limited applicability for these systems.

It is also important to note that deviations between modeled and 
experimental curves may also arise from uncertainties in both the 
experimental procedure and analytical methods. In particular, offsets in 
temperature and distilled volume readings can contribute to the 
observed deviations. Additionally, uncertainties in quantification of the 
fast pyrolysis bio-oil and especially in the small distillate samples can 
also affect the results.

3.5. Assessment of unknowns

The assessment of the unknown fraction was treated separately from 
the main VLE error analysis due to its inherently higher uncertainty. The 
analysis focused on evaluating trends in the predicted profiles, providing 
qualitative insights rather than quantitative error assessments. Fig. 10
compares the simulated profiles of selected PL surrogates against the 
experimental distribution of the unknown fraction using the IDEAL, 
UNIFAC-DMD, and PR-BM models.

Overall, most dimers started to distil around 20 vol%, which aligns 
well with the experimental profile if we consider that the apparently 
high concentration of unknowns in the early fractions is likely caused by 
an underestimation of water content and/or other volatiles. A few di
mers, however, showed earlier onset of distillation, particularly D-E1 for 
all models and D-A1, D-C1 and D-D2 for the IDEAL and UNIFAC-DMD 
model. Among these, D-E1 exhibited an especially atypical behavior, 
predicting disproportionately high concentrations of unknowns in the 
distillate from the very beginning of the distillation. This unusual trend 
is consistent with D-E1's poorer performance in simulating other prop
erties, suggesting that it may not be a suitable standalone surrogate for 
representing the PL fraction. For the trimers and tetramers, distillation 
typically began later, around 30–40 vol%, and in some cases even 
beyond this range. Among all tested candidates, the surrogate that best 
captured the overall trend of the unknown fraction was D-A1, followed 
by D-B3. Additional profiles are provided in the SI.

These findings provide insights into the distillation behavior of the 
lignin-derived fraction of the bio-oil. While dimers dominate the onset of 
unknowns release, their contributions are not uniform, with some spe
cies exhibiting earlier volatility and others aligning more closely with 
the mid-distillation range. In contrast, bulkier oligomers contribute 

Fig. 10. Simulated ADC unknowns profile for selected PL surrogates across the thermodynamic models (a) IDEAL, (b) UNIFAC-DMD and (c) PR-BM. Representative 
molecular structures are provided in Fig. 3.
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primarily at later stages, reflecting their higher molecular weights. 
Importantly, even surrogates such as D-E1, despite their unrealistic 
concentration patterns, could still play a useful role when designing 
surrogate mixtures with multiple representatives for the PL fractions, as 
they can contribute to capturing early-distilling behavior. Understand
ing the distinct contributions of each surrogate enables for a more 
informed design of surrogate mixtures for the pyrolytic lignin, sup
porting a more accurate phase equilibrium modeling.

4. Conclusion

In this study, we investigated the phase equilibrium of fast pyrolysis 
bio-oil (FPBO) by combining advanced distillation curve (ADC) experi
ments with vapor-liquid equilibrium (VLE) simulations. The influence of 
various pyrolytic lignin (PL) surrogates was assessed across different 
thermodynamic models to evaluate their ability to reproduce experi
mental distillation behavior. These findings contribute to a deeper un
derstanding of FPBO phase behavior and help guide the design of 
surrogate mixtures that can better predict VLE calculations of FPBO, 
ultimately improving the predictive accuracy of process simulations.

The results highlight the critical role of surrogate selection in accu
rately representing the PL fraction. In comparison to the No-PL case, in 
which no representative for the PL fraction was used, introducing a PL 
surrogate generally improved model accuracy, particularly for 
elemental composition and VLE behavior. For the specific case of density 
predictions, a more cautious selection is recommended, as some surro
gates yielded less accurate results than when no surrogate was used.

The evaluation of thermodynamic methods showed that the IDEAL 
model, despite not accounting for molecular interactions, delivered 
reasonably good results, including the lowest deviations in the tem
perature curve. This outcome may be partly attributed to a favorable 
offset in the initial boiling point, which coincidentally overlaps the 
experimental data. Overall, its predictions were comparable to those of 
the UNIFAC-DMD model, which was the most accurate at predicting the 
water content and also showed consistency with the calculated experi
mental activity coefficient of water, indicating its suitability for 
modeling non-ideal behavior in fast pyrolysis bio-oils. In contrast, the 
PR-BM model consistently showed higher deviations in temperature 
predictions and frequently delivered inferior performance overall. 
Furthermore, its strong overestimation of the water activity coefficient 
suggests that it may be less appropriate for accurately capturing the 
phase behavior of such systems.

Regarding the molecules, dimers provided the most consistent per
formance in reproducing FPBO properties and VLE behavior, with the 
biphenyl-based D-B group ranking among the top performers across 
most evaluations. Other dimers such as ones from groups D-A (β-O-4) 
and D-D (phenylcoumaran) also showed strong performance. Trimers 
and tetramers appeared among the best candidates only for water con
tent prediction under UNIFAC-DMD, where a few molecules (e.g., TR2 
and TE3) showed reasonable agreement, but they were less frequently 
ranked for the remaining properties and occasionally exhibited 
convergence issues for VLE results, particularly under PR-BM.

The results also revealed a strong dependence between the optimal 
surrogate choice and the thermodynamic model employed. While IDEAL 
and UNIFAC-DMD generally favored similar top-performing surrogates, 
with the D-B group dominating, the PR-BM model showed a preference 
for group D-A in several cases. Moreover, the optimal surrogate choice 
also depends on the target property, as different properties emphasize 
distinct aspects of molecular structure and VLE behavior.

Analysis of the unknown fraction provided further insights into the 
distillation characteristics of lignin-derived compounds. While some 
dimers initiate distillation earlier than expected, most remain stable and 
started distilling around the 20 vol% mark. In contrast, larger oligomers 
only started distilling at higher distillation volumes (30–40 vol%). Given 
these differences, mixtures of surrogates with complementary charac
teristics could help improve how the PL fraction is represented in phase 

equilibrium simulations in future calculations.
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