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Fast pyrolysis bio-oil (FPBO) holds promise as a renewable source for fuels and chemicals, yet its complex
chemical composition poses significant challenges for efficient product recovery design and further downstream
separation. In particular, the high molecular weight pyrolytic lignin fraction remains difficult to characterize, as
its composition is largely unknown and its thermodynamic behavior poorly described. To improve under-
standing, the vapor-liquid equilibrium (VLE) behavior of FPBO was investigated, focusing on the pyrolytic lignin.
A lignin-derived FPBO was selected for the study in order to minimize the influence of carbohydrate components
of biomass. Advanced distillation curve (ADC) experiments were conducted to obtain thermodynamic data,
which was then compared to simulations in which the FPBO was modeled as a surrogate mixture. To represent
the pyrolytic lignin (PL) in the mixture, a range of surrogate molecules, from dimers to tetramers with varied
inter-unit linkages and functional groups, were evaluated to find which structure best represents the PL in VLE
calculations. Among the structures tested, dimers featuring biphenyl inter-unit linkages provided the best overall
agreement to the experimental values. In general, dimers were more suitable for simulation, as some of the
trimers and tetramers faced convergence issues and simulation errors. The effect of thermodynamic model was
also taken into consideration, comparing the Ideal equilibrium model, the UNIFAC-Dortmund (DMD) activity
coefficient method, and the Peng-Robinson Boston-Mathias (PR-BM) equation of state. The findings underscore
the importance of surrogate and model selection and provide guidance for optimizing FPBO fractionation and
upgrading.

1. Introduction value, and chemical instability, limiting its direct use [4].

To improve FPBO's properties and broaden its applicability, different

Fast pyrolysis has emerged as a promising technology for the valo-
rization of lignocellulosic biomass, offering a renewable pathway for
producing fuels and chemicals [1]. This thermochemical process rapidly
converts the major components of biomass — cellulose, hemicellulose,
and lignin - into a liquid product known as fast pyrolysis bio-oil (FPBO),
alongside smaller amounts of gases and char [2]. FPBO is particularly
attractive due to its high liquid yield and ease of storage and transport;
however, it is a chemically complex emulsion, comprising water, light
oxygenated compounds (e.g., acids, alcohols, and ketones), monomeric
phenols, sugars, and lignin-derived oligomers [3]. While many of these
components hold significant promise for industrial applications, such as
resins, coatings, and biofuels, others, such as water and highly
oxygenated species, contribute to FPBO's corrosiveness, low heating
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fractionation and upgrading techniques have been explored to reduce
oxygen content, enhance stability, and increase its calorific value, as
well as isolate valuable compounds for potential commercialization [5,
6]. Fractional condensation is a commonly employed strategy, sepa-
rating pyrolysis vapors into distinct fractions based on their dew points
[7]. This approach allows for the selective recovery of lighter, more
reactive components and heavier fractions enriched in phenolics [8,9].
Liquid-liquid extraction offers another method for isolating specific
chemical groups, enabling the removal of sugars or phenols for targeted
applications [10,11]. Despite these advancements, designing and opti-
mizing these processes requires a deep understanding of FPBO's
behavior in phase equilibria at varying conditions. Modeling FPBO
processes is a powerful tool for simulating, optimizing, and predicting
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the performance of bio-oil production systems [12]. However, achieving
accurate and reliable models for FPBO remains a significant challenge
due to the highly complex and variable nature of its composition [13].

A particularly challenging component within FPBO is the pyrolytic
lignin (PL), a high molecular weight fraction primarily derived from the
thermochemical breakdown of lignin during pyrolysis. The PL is
composed of oligomers with aromatic structures and a wide range of
molecular weights [14,15]. Its content in FPBO can vary substantially,
typically accounting for 15-50 wt% of the total bio-oil, depending on
both the feedstock and the specific process conditions [16-18]. The
presence of PL has a pronounced impact on the physicochemical prop-
erties of FPBO, including viscosity, phase stability, solubility, and
reactivity [19,20]. These properties, in turn, affect downstream pro-
cessing steps such as upgrading, separation, and utilization in fuel or
chemical applications. It has been previously shown that the represen-
tation of this fraction is particularly important for improving the pre-
dictive capability of phase equilibrium models [21,22]. In addition, high
molecular weight compounds derived from carbohydrates may also be
present in FPBO, which further increases the complexity of modeling
effects [23,24].

The complexity of the PL poses several modeling challenges. First, its
chemical structure is not uniform; it consists of a broad distribution of
oligomeric species with varying degrees of polymerization, functional
group content, and solubility [17,20]. This makes it difficult to represent
PL as a single component or even as a well-defined group of compounds
during process simulation [13,22,25]. Second, the interactions between
PL and other bio-oil constituents can lead to phase separation and un-
predictable changes in physical properties, complicating both experi-
mental characterization and predictive modeling [19,21].

Advanced modeling approaches for this PL fraction often incorporate
surrogate compounds, pseudo-components, or group contribution
methods to describe the behavior of pyrolytic lignin. Recent research has
also focused on integrating experimental data such as molecular weight
distributions, functional group analyses, and phase behavior studies,
into modeling frameworks to improve their predictive power [22,
25-27]. However, selecting appropriate surrogates is still challenging,
as the absence of direct experimental data on key thermophysical
properties introduces uncertainties in phase equilibrium modeling [13,
26].

The advanced distillation curve (ADC) method provides a robust tool
for investigating the VLE behavior of FPBO and acquiring detailed
thermodynamic data [28]. In contrast to conventional distillation
techniques, ADC generates a comprehensive dataset by recording tem-
perature, pressure, and composition at discrete distilled volume frac-
tions throughout the distillation process, offering valuable insights into
the phase behavior of complex bio-oils [29]. This method is well-suited
for thermally sensitive systems, as it can operate under reduced pressure
to mitigate undesirable phenomena such as polymerization and thermal
degradation [30]. The thermodynamic data obtained from ADC exper-
iments constitutes a valuable resource for refining thermodynamic
models, optimizing surrogate mixtures, and enhancing the predictive
accuracy of VLE models for FPBO [31].

In this study, the representation of pyrolytic lignin in FPBO models
was investigated to find the most suitable approach for improving VLE
predictions. To achieve this, ADC experiments were integrated with VLE
simulations to obtain a comprehensive understanding of FPBO's phase
behavior, with a particular emphasis on the influence of pyrolytic lignin.
To isolate and elucidate the thermodynamic role of the pyrolytic lignin,
FPBO derived specifically from lignin was selected, allowing for a
focused assessment of this high molecular weight fraction without the
interference of carbohydrate derived compounds. The ADC experiments
yield detailed temperature and composition profiles for each distilled
fraction of FPBO, which were subsequently modeled using the IDEAL
model, the UNIFAC-Dortmund (DMD) activity coefficient model, and
the Peng—Robinson Boston-Mathias (PR-BM) equation of state, using
different surrogate molecules to represent the pyrolytic lignin fraction.
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The insights gained from this combined experimental and modeling
approach advance the understanding of the thermophysical properties
of FPBO and provide a foundation for more accurate and efficient
models for bio-oil processing and upgrading.

2. Materials and methods
2.1. Lignin fast pyrolysis bio-oil

The lignin bio-oil used in this study was produced via fast pyrolysis of
a Miscanthus derived lignin (Miscancell), as detailed in a previous work
[32]. In the study, pyrolysis experiments were conducted at 500 °C in an
auger type reactor that mechanically mixes the feedstock with a pre-
heated heat carrier (steel beads) with a feedstock capacity of 10 kg/h.
Residence time of the solids in the reactor are 10-15 s; the gas residence
time is estimated to be < 2 s [33]. Entrained char particles are separated
from hot pyrolysis gases in a series of two cyclones and a ceramic filter
prior to condensation in a tube and shell condenser integrated in an
electrostatic precipitator that operates at 90 °C. The condensate
collected at this temperature was used as bio-oil in this study and
characterized for its elemental composition, density, water content (via
Karl Fischer titration) and chemical composition (via GC-MS/FID). Key
results are summarized in Table 1.

2.2. Advanced distillation curve experiments

Vacuum advanced distillation curve experiments using the lignin
bio-oil were conducted following the approach reported by Krutof and
Hawboldt [28], a scheme of the setup can be found in Fig. 1. At the
beginning of each experiment, the system was evacuated to an absolute
pressure of 15 kPa, after which heating was initiated. The sample was
placed in a round-bottom flask enclosed by a heating jacket programmed
to follow a three-stage heating ramp from room temperature to 285 °C.
Vapor condensation was achieved using a counter-flow condenser
initially cooled to 0 °C.

The first measurement was recorded when the first droplet of
condensate was visually observed. Subsequently, kettle and head tem-
perature were recorded at every 10 mL interval, as observed on the
calibrated receiving flask. At the same points, 10 L samples were taken
using a syringe for GC-FID analysis. Distillation continued until no
further condensation was observed. All experiments were carried out in
triplicate to ensure reproducibility.

A few adaptations were made to the setup described by Krutof and
Hawboldt [28]. To accommodate for a smaller sample size used in the
study (100 mL vs, 200 mL), a 250 mL round-bottom flask was used

Table 1
Properties of the lignin FPBO used in the study (adapted from
Ref. [32]).
Property Lignin FPBO
General properties
Water content (wt.%) 12.5
Density at 60 °C 1.11
Elemental composition (wt.%)
C 60.4
H 6.1
o 30.7
Chemical composition (wt.%)
Acids 8.2
Ketones 1.2
Furans 0.4
Benzenes 0.6
Phenols 3.9
Guaiacols 6.1
Syringols 3.6
Sugars 2.1
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Fig. 1. Scheme of vacuum ADC system adapted from Ref. [28].

instead of a 500 mL one, and the gap between the flask and the heating
enclosure was filled with copper shavings to improve heat transfer. In
addition, the lower pressure of 5 kPa used in the original work could not
be achieved due to equipment limitations.

2.3. Modeling

Modeling of the ADC experiments was carried out using Aspen Plus
V14®. The thermodynamic property method used was either IDEAL,
UNIFAC-DMD, or PR-BM for comparison purposes; property methods
were not modified from their default configurations [34]. All molecules
were characterized based on their structure, and in the case of the
UNIFAC-DMD model, functional group information was also required.
Properties that were not present in the Aspen Properties™ database
were estimated using default options. Details can be found in the Sup-
plementary Information (SI).

For the bio-oil properties, the elemental composition was determined
by performing a simple component balance over the surrogate mixtures,
using the different PL surrogate molecules. Density predictions were
obtained by simulating the bio-oil surrogate mixtures in Aspen at 60 °C,
matching the reference temperature of the experimental data.

For the VLE calculations, a scheme of the flowsheet model can be
found in Fig. 2. The process was simulated at an absolute pressure of 15
kPa, with the lignin FPBO input as a liquid at 25 °C and a flow rate of
100 L/h. Each distillation stage was modeled as a HEATER + SEP2 pair,
with the HEATER configured to achieve a specified vapor fraction and
the SEP2 unit serving as an adiabatic separator. Design specifications
were applied at each stage to evaporate 10 L of the liquid input by
adjusting the vapor fraction in the HEATER, corresponding to the vol-
ume intervals of the ADC experiments. For the very first drop, however,
no design specification was applied, and a fixed vapor fraction of 1 x
107% was used instead. The vapor stream produced in each stage was
condensed using a second HEATER, enabling evaluation of the recovered

condensate fractions. This approach allowed for the prediction of the
temperature profile along the distillation and the component distribu-
tion across the collected fractions.

The lignin FPBO was modeled using a surrogate mixture, as detailed
in Table 2. The selected components and their weight fractions were
based on data from the previous bio-oil GC-MS/FID characterization
summarized in Table 1; the remaining unidentified fraction was repre-
sented as pyrolytic lignin.

The pyrolytic lignin (PL) surrogate was modeled using various
molecules proposed in the literature to evaluate which structure best
represents the bio-oil properties and VLE behavior. A similar set of
structures were also employed by Rojas et al. [22] when modeling
liquid-liquid equilibrium. The molecules were grouped according to
shared structural characteristics, such as number of aromatic rings and
linkage type, as summarized in Table 3. To illustrate these differences,
Fig. 3 shows a representative molecule from each group, highlighting
the base structure and typical size. Full information on the structure,
molecular formula, and functional groups of all molecules is provided in
the SI. From this point on, these molecules will be referred to as PL
surrogates. In modeling, all molecules were evaluated individually,
meaning no mixture of PL surrogates was considered. Additionally, a
surrogate mixture excluding the PL surrogate, referred to as “No-PL,”
was evaluated to assess the importance of including pyrolytic lignin in
the overall representation. This No-PL mixture contained only the
components identified during the characterization, with their weight
fractions normalized to 100 %.

2.4. Data treatment

All simulated property values were processed and analyzed against
the experimental data. Experimental reference values for elemental
composition and density were taken from the characterization of the
lignin FPBO reported on Table 1. For VLE evaluation, the experimental
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Fig. 2. Scheme of the model implemented in Aspen Plus™, based on the flowsheet view of the software environment.

Table 2

Surrogate mixture of the lignin FPBO.
Component Mass Fraction Formula CAS
Acetic Acid 3.31% C2H40, 64-19-7
Propionic acid 4.97 % C3HgO5 79-09-4
Cyclopentenone 0.56 % CsHgO 930-30-3
Cyclopentenone, 2-methyl 1.32% CeHgO 1120-73-6
2(H)-Furanone 0.42 % CsH40, 98-01-1
Benzofuran 0.59 % CgHgO 271-89-6
Phenol 1.32% CeHeO 108-95-2
P-cresol 1.32% C;HgO 106-44-5
Phenol, 4-ethyl 1.32% CgH100 123-07-9
Guaiacol 1.84% C;HgO, 90-05-1
Guaiacol, 4-vinyl 1.23 % CoH;1002 7786-61-0
Isoeugenol 1.84 % C1oH1102 5932-68-3
Acetoguaiacone 1.23 % CoH1003 498-02-2
Syringol 1.64 % CgH1003 91-10-1
Syringol, 4-vinyl 1.64 % C10H;1203 28343-22-8
Acetosyringone 0.37 % C10H1204 2478-38-8
Levoglucosan 211 % CeH1005 498-07-7
Water 12.25 % H,0 7732-18-5
Pyrolytic Lignin Surrogate 60.93 % - -

data of the ADC temperature profile and water content across the
distillation range were used.

The relative error (RE) was used for properties with a single exper-
imental value, such as density:

Xsim — xexp

RE = x 100 (@]

exp

For properties with multiple data points, such as elemental

Table 3
Classification of PL surrogates by structure and linkage type, following the group
approach from Ref. [22].

Group  Description Molecules Reference
D-A Dimer - p-O-4 D-A1, D-A2, D-A3, D-A4 [26,35]
D-B Dimer — Biphenyl D-B1, D-B2, D-B3, D-B4 [21,36]
D-C Dimer - Stilbene D-C1, D-C2 [36,37]1
D-D Dimer - Phenylcoumaran D-D1, D-D2 [36]
D-E Dimer — Resinol D-E1 [36]
D-F Dimer — Bridging double D-F1 [38]
bond
TR Trimer — various links TR1, TR2, TR3, TR4, TR5, [26,37,
TR6 39]
TE Tetramer — various links TE1, TE2 [37,40]

composition and ADC profiles, the mean absolute relative error (MARE)
was used:

xsim,i - xexp,i % 100 (2)

1 n
MARE =~
n ; Xexp.i

In addition, for evaluating the different groups of molecules, the mean
MARE of each group's molecules was used, following the grouping logic
defined in Table 3.

3. Results and discussion

3.1. ADC experiments

The kettle temperature results obtained from the ADC experiments of
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the lignin FPBO can be seen in Table 4. At the distillation starting point
(57.6 °C), temperature values were consistent across replicates, with a
standard deviation of 0.5 °C. Following this, the temperature increased
to an average of 96.9 °C at 10 % distilled volume. An even sharper in-
crease was observed at 20 %, with temperature reaching 189.1 °C. This
point also exhibited the highest deviation across replicates (22.6 °C),
indicating a broader range of volatiles present in this fraction. From that
point on, temperature gains became less pronounced, stabilizing toward
the final measured values and showing lower deviations.

The temperature results presented in Table 4 are compared with the
data reported by Krutof and Hawboldt [28], for a softwood bio-oil, in
Fig. 4. Given the limited availability of ADC data for bio-oils, particu-
larly lignin-derived ones, the softwood bio-oil results are used here as a
comparative reference. Comparing the curves, the two distillation pro-
files show significant differences. Krutof and Hawboldt [28] reported an
earlier distillation onset (33.4 °C) and a convex profile with a lower

Table 4
Kettle temperatures from ADC of lignin fast pyrolysis bio-oil at 15 kPa.

Distilled volume % Experimental kettle temperature (Tettie, °C)

Run 1 Run 2 Run 3 Average St. deviation
0 56.9 57.9 58 57.6 0.5
10 93.9 81.3 115.5 96.9 14.1
20 162.9 186.4 218 189.1 22.6
30 219 227 247 231 11.8
40 244 251 262 252.3 7.4
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Fig. 4. ADC temperature profiles of lignin FPBO at 15 kPa (this work) and
softwood fast pyrolysis bio-oil at 5 kPa (Krutof and Hawboldt [28]).

incline. In contrast, this work presents a sharper incline and a more
concave profile, with distillation starting at higher temperatures.
Furthermore, the distillation of softwood bio-oil proceeds up to ~65 vol
% distilled, whereas in this work it was limited to ~40 vol% Interest-
ingly, despite these differences, both curves reach similar final tem-
peratures near 260 °C.
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These variations can be attributed to both the distinct nature of the
bio-oils and the experimental conditions. The lignin-derived bio-oil used
here contains a higher proportion of heavy phenolic oligomers and py-
rolytic lignin, whereas softwood-derived oil likely includes more water
and light volatiles. Additionally, the lower vacuum pressure employed
by the reference (5 kPa vs 15 kPa in this study) would favor earlier and
more extended evaporation of volatile fractions, further amplifying the
observed differences.

In addition to the temperature data, the ADC experiment also pro-
vides insight into the distribution of compounds across the distilled
fractions, as shown in Fig. 5. Fig. 5a shows how the water content varies
throughout the distillation, starting as the dominant component at
approximately 80 wt% of the initial fraction and gradually decreasing as
the distillation progresses. It is interesting to note that at 15 kPa, the
boiling point of pure water is approximately 54.8 °C [41], closely
aligning with the initial temperature observed in our experiments
(57.6 °C). The slight elevation could be attributed to the presence of
other solutes in the mixture. In contrast, at 5 kPa, water boils at around
32.9 °C [41], which corresponds well with the distillation onset reported
by Krutof and Hawboldt (33.4 °C). This supports the conclusion that the
difference in starting temperatures between the two curves shown in
Fig. 4 is primarily due to the difference in operating pressure.

To further assess the phase behavior of water, its experimental ac-
tivity coefficient (y) in the initial distillation stage was estimated via
modified Raoult's law. Based on the water content measured in the
condensate at the starting point and the composition of the liquid sur-
rogate mixture (Table 2), the mole fractions of water in each phase were
determined. Two scenarios were considered to account for the uncer-
tainty in the composition of the pyrolytic lignin (PL) surrogate: one
assuming the smallest PL molecule in the surrogate set (D-B1) and
another the largest (TE2). Calculations estimated activity coefficients of
1.76 and 1.42, respectively, which indicates a moderate positive devi-
ation from ideal behavior, consistent with previous findings by Ille et al.
[21]. Full calculation details are provided in the SI. Notably, the higher y
value was obtained for the smaller PL surrogate, which can be attributed
to mole fraction balance, in which smaller molecules contribute a
greater number of moles to the mixture, thereby lowering the mole
fraction of water and increasing the calculated activity coefficient.

Fig. 5b presents the mass fraction of compounds identified by
GC-FID and the remaining “unknown” fraction, calculated by
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subtracting the identified species and water content from the total. In
the initial fractions, only a small portion of the distillate could be
identified, and a notable fraction remained classified as unknown. The
presence of these unidentified components at such early stages is
somewhat unexpected and may arise from limitations in the GC-FID
analysis and/or an underestimation of the water content. At 20 %
distilled volume, both identified and unknown fractions reached
amounts around 30 wt% and exhibited the highest standard deviations.
This correlates with the peak deviations in temperature and water
content, indicating an increased complexity in this fraction. In the final
stages of the distillation (30-40 % distilled volume), the amount of
identified compounds gradually declined, and with water content at its
lowest, the unknown fraction became increasingly dominant, probably
composed of pyrolytic lignin oligomers that are beyond the detection
range of the GC-FID.

3.2. Modeling of FPBO properties

To evaluate how well different PL surrogate molecules represent the
bulk characteristics of the lignin-derived FPBO, key physicochemical
properties were analyzed. Fig. 6 presents a Van Krevelen diagram (H/C
vs. O/C) for the surrogate mixtures using different PL molecules,
alongside the experimental value for the lignin bio-oil. Each point rep-
resents one surrogate, with the color scale indicating the MARE in
elemental composition compared to the experimental result. Full results
for each individual molecule can be found in the SI.

From the graph, it is clear that the introduction of a PL surrogate
significantly improves the representation of the lignin bio-oil's elemental
composition, with the No-PL case showing the largest error (45 %),
twice the error of worst performing surrogate. The best-performing PL
surrogate, D-B1, is a small biphenyl-type dimer with just two oxygen
atoms, yielding a MARE of 4.5 %. In contrast, TR5, a bulky trimer
containing 15 oxygen atoms, produced the highest error at 24.8 %.
These results indicate that PL surrogates with lower oxygen and higher
carbon content more effectively capture the elemental composition of
pyrolytic lignin. This suggests that the actual PL structures present in the
heavy fraction of the bio-oil may be less oxygenated than those often
assumed in the literature.

Accurately predicting the density of the bio-oil is essential as it re-
flects how well the surrogates capture bulk physical properties. Fig. 7
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Fig. 5. Mass fractions of water (a), and GC-MS/FID identified vs. unknown compounds (b) in the ADC distillates.
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compares simulated density values (p) for surrogate molecules as a
function of their molecular weight (MW) using two different methods:
the Rackett equation, which is used by the IDEAL and UNIFAC-DMD
models to estimate the liquid density, and PR-BM, which determines it
from its own equation of state [34]. Full results are available in the SIL.
For the Rackett estimations (Fig. 7a), the best agreement was observed
for dimers, particularly those in the 200-350 g/mol range, with most
values falling close to the experimental target. As molecular weight
increased, the predicted density generally declined, with most trimers
and tetramers significantly underestimating the density, with the
exception of TE1, which over predicted but still showed a considerably
lower error.

In contrast, the PR-BM method (Fig. 7b) systematically predicted
lower density values across all surrogates, showing larger deviations
from the experimental target. While dimers still performed compara-
tively better than larger molecules, their predicted densities were
generally lower than those obtained using the Rackett method. The
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discrepancy became more pronounced for trimers and tetramers, which
showed limited predictive reliability, with many of these molecules
encountering simulation issues and yielding zero-value predictions that
were no included in the graph. These findings reinforce the limitations of
cubic equations of state in representing liquid densities of heavy aro-
matics, as noted in previous studies [13].

The No-PL case underestimated the experimental density with both
methods (Fig. 7), with the Rackett method performing better than PR-
BM, which showed a larger underestimation. This shows that
including a PL surrogate can improve predictive accuracy; however, this
improvement depends strongly on the surrogate choice, as higher mo-
lecular weight candidates can often underestimate the density or lead to
simulation issues.

The combined analysis of elemental composition and density showed
that dimers yielded more reliable predictions, whereas high molecular
weight surrogates, particularly those rich in oxygen, were less accurate
and more prone to simulation errors. The D-B group (biphenyl-type
dimer) consistently showed the best performance as surrogate for the
pyrolytic lignin fraction, with other surrogates from the D-A (p-O-4), D-C
(stilbene), and D-D (phenylcoumaran) groups also yielding strong re-
sults. These findings suggest that small, condensed aromatic dimers with
low oxygen content are particularly well-suited to represent the physical
properties of pyrolytic lignin in thermodynamic modelling.

3.3. Modeling of vapor-liquid equilibrium

To evaluate the ability of PL surrogates to reproduce VLE behavior,
their performance was assessed using the experimental ADC data as
benchmark. At first, the surrogates were evaluated by group, using the
mean MARE for each group, with error bars indicating the standard
deviation within the group. Some surrogates encountered simulation
issues: TE2 failed to converge with the UNIFAC-DMD model and, while
it ran with the IDEAL model, produced unrealistic results and it was
removed from the analysis. In the PR-BM model, convergence errors
were observed for TR5 and TE3. Fig. 8 compares the mean MARE values
for temperature and water content predictions, highlighting how the
choice of surrogate group and thermodynamic model influences accu-
racy. Data associated with individual PL surrogates can be found in the
SIL

For the temperature predictions, shown in Fig. 8a, most molecular
groups performed comparably similar, with the exception of group D-E
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Fig. 7. Liquid density (p) predictions of mixture featuring different PL surrogate molecules. (a) Using the Rackett method; (b) using the PR-BM model.
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Fig. 8. Mean MARE values for (a) temperature and (b) water content prediction across surrogate groups using IDEAL, UNIFAC-DMD, and PR-BM models. Repre-

sentative molecular structures are provided in Fig. 3.

that clearly showed the worst performance. Regarding the influence of
thermodynamic models, IDEAL consistently achieved the best perfor-
mance (with MARE values often below 30 %), closely followed by
UNIFAC-DMD which showed similar performance in several groups,
while PR-BM consistently produced the highest deviations (>40 %). This
is surprising given that the IDEAL mixture model neglects intermolec-
ular interactions, which are typically considered critical for representing
PL behavior. The comparatively lower deviations may arise from
compensating effects in the simplified model formulation, as well as
from uncertainties in molecular definitions and interaction parameters
affecting more complex models; therefore, its apparent superior per-
formance should be interpreted with care. The absence of a PL surrogate
(No-PL) led to significantly higher deviations (>50 %), underscoring the
importance of including a representative for this fraction in the mixture.
Variability within groups was generally small, with the exception of
group D-B for the PR-BM model, suggesting that functional group vari-
ations may have little effect on temperature predictions.

Fig. 8b shows the deviations for the evolution of the water content
predictions. In contrast to the temperature predictions, here the IDEAL
model consistently produced the largest errors (>50 %). PR-BM showed
comparatively smaller errors compared to its temperature predictions,
and was even able to achieve lower errors for D-E, where the other
models deviated by almost 100 %. The UNIFAC-DMD model showed a
broader error range (30-60 %) and the widest intragroup variation (D-
C), yet it also provided the best-performing individual PL surrogates for
all groups except the D-E group. These findings suggest that, in contrast
to temperature predictions, functional group variations may be more
relevant for water content predictions, as reported by Ille et al. [21]. The

No-PL case once again produced the highest errors (>100 %), rein-
forcing the need to include a representative surrogate for the pyrolytic
lignin fraction.

3.4. Best pyrolytic lignin surrogate candidates

The best PL surrogate molecules for each property and model are
compared in Table 5. While no single PL surrogate excelled across all
evaluations, dimers dominated the rankings overall, with the biphenyl
group (D-B) consistently ranking among the top performers for most
properties and models. Among the biphenyl groups’ molecules, D-B1
stands out as appearing in the top rank for most properties and models,
achieving the lowest elemental composition error (RE = 4.50 %) and the
best temperature prediction under the IDEAL model (MARE = 24.09 %).
D-B2 and D-B3 also showed strong performance, reaching error values of
6.70 % and 25.67 %, respectively, for elemental composition and water
content predictions. And, it is worth noting that D-B2 (3,4,4-biphenyl-
triol) was also selected in previous studies by Ille et al. [21] and Krutof
and Hawboldt [28] as a representative compound for modeling the
pyrolytic lignin in VLE, further supporting its relevance.

Analyzing the bio-oil bulk properties, the elemental composition is
best reproduced by surrogates that match the experimental FPBO carbon
and oxygen balance (C ~ 60 wt% and O ~ 30-35 wt%), which is ex-
pected given that these elements dominate the overall bio-oil composi-
tion. The best-performing surrogates are all dimers containing two to
four oxygen atoms. Regarding density, the Rackett model provides
values much closer to the experimental FPBO density than PR-BM,
which largely underestimates density for most surrogates. The best
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Table 5
Top five performing surrogates across all categories, ranked by lowest error
values. Representative molecular structures are provided in Fig. 3.

Input bio-oil properties

C-H-O (wt. %) Density — Rackett Density — PR-BM

Surrogate MARE (%) Surrogate RE (%) Surrogate RE (%)
1 D-B1 4.50 D-B4 0.25 D-A2 5.27
2 D-B2 6.70 D-D2 0.25 D-A4 5.35
3 D-Al 7.39 D-C1 0.25 D-B2 12.5
4 D-E1 8.01 D-B1 2.26 D-B1 15.7
5 D-D2 8.44 D-A4 2.37 D-Al 15.8
Temperature profile
IDEAL UNIFAC-DMD PR-BM
Surrogate MARE Surrogate  MARE Surrogate MARE
(%) (%) (%)
1 D-Bl 24.09 D-B1 28.01 D-B2 36.37
2 D-B3 26.40 D-B2 29.14 D-B1 36.45
3 D-B2 26.47 D-B3 30.70 D-A4 38.67
4 D-D1 27.17 D-B4 32.86 D-A3 39.55
5 D-A4 27.26 D-C2 33.47 D-Al 40.17
Water content profile
IDEAL UNIFAC-DMD PR-BM
Surrogate ~ MARE Surrogate ~ MARE Surrogate ~ MARE
(%) (%) (%)
1 D-B3 35.80 D-B3 25.67 D-A4 32.40
2 TR2 39.03 TR2 27.59 D-B2 33.35
3 DBl 46.34 D-Al 28.47 D-C2 36.12
4 D-Al 47.53 D-D2 29.30 D-A3 36.80
5 D-D2 47.66 TE3 29.53 D-B1 38.59

agreement with Rackett is obtained for D-B4, D-D2 and D-C1 (RE = 0.25
%), while PR-BM performs best for D-A2 and D-A4 (RE = 5.3 %).
Notably, the top performers differ between models, indicating that the
description of molecular intermolecular interactions plays a central role
in density prediction.

a. Temperature — IDEAL

b. Temperature — UNIFAC-DMD
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For temperature prediction, dimers again show the most consistent
performance across all thermodynamic models, with the D-B (biphenyl)
structures emerging as the best candidates. D-B1 and D-B2 in particular
provide the lowest temperature MAREs under IDEAL and UNIFAC-DMD,
while also outperforming most other surrogates in PR-BM. Notably,
under the PR-BM model, the top candidates following D-B1 and D-B2 are
exclusively D-A ($-O-4) dimers. Based on these observations, it seems
that D-B and D-A (in the case of PR-BM) structures better capture the
intermediate-to-heavy volatility window that is most relevant for VLE
temperature predictions in FPBO.

In the case of water content prediction, the best-performing surro-
gate molecules varies between thermodynamic models, with IDEAL and
UNIFAC-DMD identifying a similar set of top candidates, namely D-B3
and TR2, followed by D-Al and D-D2. In contrast, PR-BM favors a
different group of structures, with D-A4 and D-B2 yielding the lowest
deviations. In addition, analysis of the UNIFAC-DMD top performers
functional groups shows that the best surrogates exhibit a balance of
hydroxyl (-OH) and ether (-O-) groups in their structure. In comparison,
the worst performing molecules, reported in the SI, are dominated by
hydroxyl groups (-OH).

In addition to the evaluation of errors, the ability to model distilla-
tion profiles must also be considered. Fig. 9 compares the top two sur-
rogates for each model and the No-PL case against the experimental ADC
data for temperature and water content profiles. The selected profiles
highlight how individual surrogates capture the VLE behavior of the
pyrolytic lignin fraction, allowing for direct comparison across different
thermodynamic models. For clarity, only the top two molecules from
each model are shown in the main figures, while the complete top five
rankings are provided in the SL

Regarding the temperature, all PL surrogates tended to underesti-
mate the experimental curve, resulting in a convex shaped simulation
profile, consistent with the behavior reported by Krutof and Hawboldt
[28]. For the UNIFAC-DMD model (Fig. 9b), D-B2 closely matched the
initial distillation temperature, while D-B1 showed a slight underesti-
mation. The IDEAL model (Fig. 9a) overestimated this point, whereas
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Fig. 9. Simulated ADC temperature and water content profiles for top-performing surrogate molecules and the No-PL case across thermodynamic models: (a) & (d)
IDEAL, (b) & (e) UNIFAC-DMD and (c) & (f) PR-BM. Representative molecular structures are provided in Fig. 3.
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PR-BM (Fig. 9c) strongly underestimated it. This difference at the initial
distillation point contributes to the lower aggregated temperature errors
observed for the IDEAL model, whereas the higher errors associated with
PR-BM largely result from its strong underestimation of the initial
boiling point. All simulated curves fail to capture the sharp temperature
rise observed between 10 and 20 vol%. Instead, they consistently un-
derestimate the boiling temperature throughout the distillation and
show the steepest incline to the 20-30-40 vol% range, where the
experimental curve actually begins to flatten. The last distillation point
is well captured by D-B1 in both the IDEAL and UNIFAC-DMD models
and by D-B2 in the PR-BM model (Fig. 9a—c).

Compared to the softwood derived FPBO studied by Krutof and
Hawboldt [28], the bio-oil investigated here is strongly enriched in
lignin derived compounds, which results in lower distillate yields and a
substantially steeper experimental temperature profile. As a result, the
inability to reproduce this sharp temperature rise is not interpreted as a
fundamental limitation of the models, but rather as a consequence of the
lignin-rich nature of the bio-oil and the higher contribution of the poorly
characterized heavy fraction. Improved agreement would therefore
likely require a more detailed representation of the pyrolytic lignin
fraction, potentially involving multiple surrogate molecules, together
with improved thermodynamic parameters for these surrogates.

While the surrogates still captured key features of the temperature
curve, the No-PL case consistently failed to do so, producing a flat and
inaccurate profile across all models. This again reaffirms the need to
include a pyrolytic lignin surrogate to achieve more accurate VLE
predictions.

Fig. 9 d, e, and f show the water content profiles obtained with the
different thermodynamic models. All models are able to capture the
general trend of the experimental data across the distillation range, with
the UNIFAC-DMD model (Fig. 9¢) showing the best overall agreement
and the lowest errors. Despite its comparatively larger deviations, the
IDEAL model (Fig. 9d) follows a curve shape similar to that of UNIFAC-
DMD. Higher errors for this model may stem primarily from mismatches
at the final distillation points. In contrast, the PR-BM model (Fig. 9f) was
the only one to overestimate the water content in the initial stages of the
distillation, followed by a sharper decline. Notably, the overall shape of
the water content curve remained consistent across different PL surro-
gates, with the choice of molecule mainly influencing the magnitude of
the errors rather than the general trend of the predictions. As with the
temperature predictions, the No-PL case failed to capture the experi-
mental trend, producing an inaccurate water content profile across all
models.

Evaluating the simulated activity coefficient of water at the first
distillation point for molecule D-B1 reveals important differences. For
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the UNIFAC-DMD model, the predicted ywater was 1.87, which aligns
well with the experimentally estimated value of 1.76. This agreement,
together with its accurate water content predictions, highlights the
model's suitability for capturing non-ideal behavior in fast pyrolysis bio-
oils. In contrast, PR-BM predicted a much higher yygter of 6.3 for the
same surrogate, correlating with its poor performance in the initial
distillation region and suggesting limited applicability for these systems.

It is also important to note that deviations between modeled and
experimental curves may also arise from uncertainties in both the
experimental procedure and analytical methods. In particular, offsets in
temperature and distilled volume readings can contribute to the
observed deviations. Additionally, uncertainties in quantification of the
fast pyrolysis bio-oil and especially in the small distillate samples can
also affect the results.

3.5. Assessment of unknowns

The assessment of the unknown fraction was treated separately from
the main VLE error analysis due to its inherently higher uncertainty. The
analysis focused on evaluating trends in the predicted profiles, providing
qualitative insights rather than quantitative error assessments. Fig. 10
compares the simulated profiles of selected PL surrogates against the
experimental distribution of the unknown fraction using the IDEAL,
UNIFAC-DMD, and PR-BM models.

Overall, most dimers started to distil around 20 vol%, which aligns
well with the experimental profile if we consider that the apparently
high concentration of unknowns in the early fractions is likely caused by
an underestimation of water content and/or other volatiles. A few di-
mers, however, showed earlier onset of distillation, particularly D-E1 for
all models and D-A1, D-C1 and D-D2 for the IDEAL and UNIFAC-DMD
model. Among these, D-E1 exhibited an especially atypical behavior,
predicting disproportionately high concentrations of unknowns in the
distillate from the very beginning of the distillation. This unusual trend
is consistent with D-E1's poorer performance in simulating other prop-
erties, suggesting that it may not be a suitable standalone surrogate for
representing the PL fraction. For the trimers and tetramers, distillation
typically began later, around 30-40 vol%, and in some cases even
beyond this range. Among all tested candidates, the surrogate that best
captured the overall trend of the unknown fraction was D-A1, followed
by D-B3. Additional profiles are provided in the SI.

These findings provide insights into the distillation behavior of the
lignin-derived fraction of the bio-oil. While dimers dominate the onset of
unknowns release, their contributions are not uniform, with some spe-
cies exhibiting earlier volatility and others aligning more closely with
the mid-distillation range. In contrast, bulkier oligomers contribute

a. IDEAL b. UNIFAC-DMD c. PR-BM
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Fig. 10. Simulated ADC unknowns profile for selected PL surrogates across the thermodynamic models (a) IDEAL, (b) UNIFAC-DMD and (c) PR-BM. Representative

molecular structures are provided in Fig. 3.
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primarily at later stages, reflecting their higher molecular weights.
Importantly, even surrogates such as D-E1, despite their unrealistic
concentration patterns, could still play a useful role when designing
surrogate mixtures with multiple representatives for the PL fractions, as
they can contribute to capturing early-distilling behavior. Understand-
ing the distinct contributions of each surrogate enables for a more
informed design of surrogate mixtures for the pyrolytic lignin, sup-
porting a more accurate phase equilibrium modeling.

4. Conclusion

In this study, we investigated the phase equilibrium of fast pyrolysis
bio-oil (FPBO) by combining advanced distillation curve (ADC) experi-
ments with vapor-liquid equilibrium (VLE) simulations. The influence of
various pyrolytic lignin (PL) surrogates was assessed across different
thermodynamic models to evaluate their ability to reproduce experi-
mental distillation behavior. These findings contribute to a deeper un-
derstanding of FPBO phase behavior and help guide the design of
surrogate mixtures that can better predict VLE calculations of FPBO,
ultimately improving the predictive accuracy of process simulations.

The results highlight the critical role of surrogate selection in accu-
rately representing the PL fraction. In comparison to the No-PL case, in
which no representative for the PL fraction was used, introducing a PL
surrogate generally improved model accuracy, particularly for
elemental composition and VLE behavior. For the specific case of density
predictions, a more cautious selection is recommended, as some surro-
gates yielded less accurate results than when no surrogate was used.

The evaluation of thermodynamic methods showed that the IDEAL
model, despite not accounting for molecular interactions, delivered
reasonably good results, including the lowest deviations in the tem-
perature curve. This outcome may be partly attributed to a favorable
offset in the initial boiling point, which coincidentally overlaps the
experimental data. Overall, its predictions were comparable to those of
the UNIFAC-DMD model, which was the most accurate at predicting the
water content and also showed consistency with the calculated experi-
mental activity coefficient of water, indicating its suitability for
modeling non-ideal behavior in fast pyrolysis bio-oils. In contrast, the
PR-BM model consistently showed higher deviations in temperature
predictions and frequently delivered inferior performance overall.
Furthermore, its strong overestimation of the water activity coefficient
suggests that it may be less appropriate for accurately capturing the
phase behavior of such systems.

Regarding the molecules, dimers provided the most consistent per-
formance in reproducing FPBO properties and VLE behavior, with the
biphenyl-based D-B group ranking among the top performers across
most evaluations. Other dimers such as ones from groups D-A (p-O-4)
and D-D (phenylcoumaran) also showed strong performance. Trimers
and tetramers appeared among the best candidates only for water con-
tent prediction under UNIFAC-DMD, where a few molecules (e.g., TR2
and TE3) showed reasonable agreement, but they were less frequently
ranked for the remaining properties and occasionally exhibited
convergence issues for VLE results, particularly under PR-BM.

The results also revealed a strong dependence between the optimal
surrogate choice and the thermodynamic model employed. While IDEAL
and UNIFAC-DMD generally favored similar top-performing surrogates,
with the D-B group dominating, the PR-BM model showed a preference
for group D-A in several cases. Moreover, the optimal surrogate choice
also depends on the target property, as different properties emphasize
distinct aspects of molecular structure and VLE behavior.

Analysis of the unknown fraction provided further insights into the
distillation characteristics of lignin-derived compounds. While some
dimers initiate distillation earlier than expected, most remain stable and
started distilling around the 20 vol% mark. In contrast, larger oligomers
only started distilling at higher distillation volumes (30-40 vol%). Given
these differences, mixtures of surrogates with complementary charac-
teristics could help improve how the PL fraction is represented in phase
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equilibrium simulations in future calculations.
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