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 a b s t r a c t

Continuum damage mechanics is characterized by mesh-dependent results unless specific coun-
termeasures are taken. The most popular remedies involve introducing either nonlocality via 
filtering or a gradient extension for the damage variable(s). Such approaches have their limita-
tions, e.g., they are hard to integrate into conventional finite-element codes, involve parameters 
that are non-trivial to determine experimentally and are incompatible with a scale transition that 
is both physically and mathematically sensible.
The work at hand considers an alternative route to obtain mesh-independent damage models, 
namely via convex relaxation. Such convex damage models were considered before, but they are 
usually not capable of representing softening behavior. Schwarz et al. (Continuum Mech. Thermo-
dyn., 33, pp. 69–95, 2021) proposed such a strategy by considering the convex envelope of a 
rate-limited simple damage model, i.e., an isotropic damage model without tension-compression 
anisotropy at small strains. However, they were not able to compute the envelope explicitly and 
provided an approximation only.
In the work at hand, we introduce a number of conditions on the damage-degradation func-
tion which permit us to compute the convex envelope analytically for a large class of damage-
degradation functions used in small-strain isotropic damage models. Interestingly, the obtained 
models involve a one-dimensional damaged microstructure, i.e., damage distributions emerge nat-
urally. The resulting model is structurally simple and purely local, i.e., gradient-free, thermody-
namically consistent and readily integrated into standard finite-element codes via traditional user 
subroutines.
We discuss the computational and solid mechanical aspects of the ensuing model and demon-
strate its numerical robustness via dedicated computational experiments. We also show that the 
model permits to be homogenized by considering a representative volume element study for an 
industrial-scale fiber-reinforced composite.

1.  Introduction

1.1.  State of the art

Damage models are essential in various fields, such as engineering, materials science, and structural analysis, to predict and 
understand how materials or systems degrade over time under different loading conditions. These models allow simulating the 
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\begin {equation}\label {eqq:11} -\frac {\partial \freeEnergy }{\partial d}(\feps ,d) \in \partial \dissipot \left (\frac {d - d^k}{\Delta t_k} \right ) \quad \text {with} \quad \Delta t_k = t_{k+1} - t_k,\end {equation}
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\begin {equation}\label {eqq:12} \freeEnergy (\feps ,d) + \Delta t_k \, \dissipot \lb \frac {d - d^k}{\Delta t_k}\rb \longrightarrow \min _{d \in [0,\dmax )},\end {equation}
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\begin {equation}\label {eqq:67} \begin {split} \bar {f}\lb \vecPhi \rb & \equiv \lb \sum _{j=0}^N \rho _j \lb \vecPhi \rb \, g_j \rb ^{-1} = \lb \sum _{j=0}^{N-1} \lb \lb 1-\phi _j\rb \rho _j^k \, g_j + \phi _j \rho _j^k \, g_{j+1}\rb + \rho _N^k g_N \rb ^{-1}\\ &= \lb \sum _{j=0}^N \rho _j^k \, g_j + \sum _{j=0}^{N-1} \phi _j \rho _j^k \lb g_{j+1} - g_j\rb \rb ^{-1},\\ \end {split}\end {equation}


\begin {equation}\label {eqq:68} \bar {f}\lb \vecPhi \rb = \lb \bar {f}\lb \mathbf {0}\rb ^{-1} + \vecPhi \cdot \vecXi \, \rb ^{-1}\end {equation}


$\vecXi \in \R ^N$


\begin {equation}\label {eqq:69} \xi _j = \rho _j^k \, (g_{j+1} - g_j), \quad j=0,1,\ldots ,N-1.\end {equation}


\begin {equation}\label {eqq:70} r\sum _{j=0}^{N-1} \rho _j^k\,\phi _j\,\Delta d_j = \vecPhi \cdot \vecEta \end {equation}


$\vecEta \in \R ^N$


\begin {equation}\label {eqq:71} \eta _j = r \rho _j^k\,\Delta d_j, \quad j=0,1,\ldots , N-1.\end {equation}


$\freeEnergy _0$


\begin {equation}\label {eqq:72} P\lb \feps ,\vecPhi \rb = \lb \bar {f}\lb \mathbf {0}\rb ^{-1} + \vecPhi \cdot \vecXi \, \rb ^{-1} \freeEnergy _0(\feps ) + \vecPhi \cdot \vecEta \rightarrow \min _{\vecPhi \in [0,1]^N}.\end {equation}


\begin {equation}\label {eqq:73} \frac {1}{\bar {f}\lb \vecPhi \rb } = \frac {1}{\bar {f}\lb \mathbf {0}\rb } + \vecPhi \cdot \vecXi .\end {equation}


$\phi _j$


\begin {equation}\label {eqq:74} -\frac {1}{\bar {f}\lb \vecPhi \rb ^2} \frac {\partial \bar {f}\lb \vecPhi \rb }{\partial \phi _j} = \xi _j,\end {equation}


\begin {equation}\label {eqq:75} \frac {\partial \bar {f}\lb \vecPhi \rb }{\partial \phi _i} = -\xi _i \, \bar {f}\lb \vecPhi \rb ^2, \quad i=0,1,\ldots ,N-1.\end {equation}


\begin {equation}\label {eqq:76} \frac {\partial \bar {f}\lb \vecPhi \rb }{\partial \phi _i\,\partial \phi _j} = -2\,\xi _i \bar {f}\lb \vecPhi \rb \frac {\partial \bar {f}\lb \vecPhi \rb }{\partial \phi _j } = 2 \, \xi _i\, \xi _j \, \bar {f}\lb \vecPhi \rb ^3, \quad i,j=0,1,\ldots ,N-1.\end {equation}


\begin {equation}\label {eqq:77} \frac {\partial ^2 P\lb \feps ,\vecPhi \rb }{\partial \vecPhi ^2} = 2\,\bar {f}\lb \vecPhi \rb ^3 \freeEnergy _0(\feps ) \, \vecXi \otimes \vecXi \end {equation}


$P$


$\vecPhi $


\begin {equation}\label {eqq:78} \mathbf {0} \stackrel {!}{=}\frac {\partial P\lb \feps ,\vecPhi \rb }{\partial \vecPhi } = -\bar {f}\lb \vecPhi \rb ^2 \freeEnergy _0(\feps )\,\vecXi + \vecEta .\end {equation}


$\vecXi $


$\vecEta $


\begin {equation}\label {eqq:79} \mathbf {0} \stackrel {!}{=} - \bar {f}\lb \vecPhi + \Delta \vecPhi \rb ^2\freeEnergy _0(\feps )\,\vecXi + \vecEta \approx - \bar {f}\lb \vecPhi \rb ^2\freeEnergy _0(\feps )\,\vecXi + \eta + 2\,\bar {f}\lb \vecPhi \rb ^3\,\freeEnergy _0(\feps ) \lb \vecXi \otimes \vecXi \rb \Delta \vecPhi ,\end {equation}


\begin {equation}\label {eqq:80} \lb \vecXi \otimes \vecXi \rb \Delta \vecPhi = \frac {\bar {f}\lb \vecPhi \rb ^2\freeEnergy _0(\feps )\,\vecXi - \vecEta }{2\,\bar {f}\lb \vecPhi \rb ^3\,\freeEnergy _0(\feps )}.\end {equation}


$\vecXi \otimes \vecXi $


$0 \leq \phi _j \leq 1$


$[0,1]$


\begin {equation}\label {eqq:81} \phi _j \gets \max \lb 0 , \min \lb \phi _j + s_j \lb \bar {f}\lb \vecPhi \rb ^2\freeEnergy _0(\feps )\,\xi _j - \eta _j \rb ,1\rb \rb , \quad j=0,1,\ldots , N-1,\end {equation}


\begin {equation}\label {eqq:82} s_j = \left \{ \begin {array}{rl} \lb 2\,\bar {f}\lb \vecPhi \rb ^3\,\freeEnergy _0(\feps )\, \xi _j^2\rb ^{-1}, & \rho _j^k > 0,\\ 0, & \text {otherwise}. \end {array} \right .\end {equation}


\begin {equation}\label {eqq:83} \PincCond (\feps ) = \min _{\vecPhi \in [0,1]^{N}} P\lb \feps ,\vecPhi \rb , \quad \feps \in \Sym {n},\end {equation}


\begin {equation}\label {eqq:84} P\lb \feps ,\vecPhi \rb = \left ( \sum _{j=0}^N \rho _j\lb \vecPhi \rb \, g_j \right )^{-1} \frac {1}{2} \, \feps \cdot \C \lr \feps \rr + r\sum _{j=0}^{N-1} \rho _j^k\,\phi _j\,\Delta d_j,\end {equation}


$\alpha _-$


$\alpha _+$


$C_+$


\begin {equation}\label {eqq:85} \frac {\alpha _-}{2} \, \feps \cdot \C \lr \feps \rr \leq \PincCond (\feps ) \leq C_+ + \frac {\alpha _+}{2} \, \feps \cdot \C \lr \feps \rr \end {equation}


$\feps \in \Sym {n}$


$\Omega \subseteq \R ^n$


\begin {equation}\label {eqq:86} \partial \Omega = \Gamma _D \cup \Gamma _N\end {equation}


$\Gamma _D$


$\Gamma _N$


\begin {equation}\label {eqq:87} H^1_D(\Omega )^n \rightarrow \R , \quad \fu \mapsto \|\fu \|_{H^1_D} := \| \nabla ^s \fu \|_{L^2},\end {equation}


\begin {equation}\label {eqq:88} H^1_D(\Omega )^n = \left \{ \fu \in H^1(\Omega ) \,\middle |\, \fu \big |_{\Gamma _D} \equiv \bm {0} \right \}\end {equation}


$\fu _0 \in H^1(\Omega )^n$


$\ff \in H^{-1}_D(\Omega )^n \equiv \left (H^1_D(\Omega )^n\right )'$


$\ft \in H^{-\frac {1}{2}}(\Gamma _N)^n$


\begin {equation}\label {eqq:89} \int _\Omega \PincCond ( \nabla ^s(\fu _0 + \fu ) ) \, + \ff \cdot \fu \, \diff V + \int _{\Gamma _N} \ft \cdot \fu \, \diff A \longrightarrow \min _{\fu \in H^1_D(\Omega )^n}.\end {equation}


\begin {equation}\label {eqq:90} \RVE = \lr 0, Q_1\rr \times \lr 0, Q_2\rr \times \lr 0, Q_3\rr ,\end {equation}


$\ddotmax = +\infty $


$\ddotmax < +\infty $


\begin {equation}\label {eqq:91} \feps \lb \fx \rb = \bar {\feps } + \nabla ^s \fu \lb \fx \rb , \quad \fx \in \RVE ,\end {equation}


$\fu $


$\bar {\feps }$


$\feps $


\begin {equation}\label {eqq:92} \bar {\feps } = \frac {1}{Q_1\,Q_2\,Q_3}\int \limits _{\RVE } \feps \lb \fx \rb \diff V.\end {equation}


$\bar {\feps }$


\begin {equation}\label {eqq:93} \textrm {div } \fsigma \lb \fx \rb = \boldsymbol {0}\end {equation}


$\bar {\fsigma }$


\begin {equation}\label {eqq:94} \bar {\fsigma } = \frac {1}{Q_1\,Q_2\,Q_3}\int \limits _{\RVE } \fsigma \lb \fx \rb \diff V.\end {equation}


$10^{-5}$


$r$


$\dot {d}_{\max }$


$\bar {f}$


$10^{-10}$


$d_{\text {max}} \approx 23.03$


$d_{\text {max}} = 1-10^{-10}$


$d_{\text {max}} \approx 0.99999$


$r$


$\dot {d}_{\max }$


$\fe _1$


$\varepsilon _{11} = \SI {3}{\%}$


$200$


$\Delta t = \SI {0.015}{s}$


$r=\SI {0.10}{MPa}$


$\dot {d}_{\max }=\SI {1.00}{\per \second }$


$r$


$\freeEnergy _0$


$r$


\begin {equation}\freeEnergy _0(\feps ) =\frac {1}{2} \, E \, \varepsilon _{11}^2 \label {Xeqn101-4.6}\end {equation}


\begin {equation}\label {eq:strainStartDamage} \varepsilon _{11} = \sqrt {\frac {2\, r}{E}}.\end {equation}


$r$


$r$


$r$


$\varepsilon _{11}$


$\varepsilon _{11} \approx \SI {0.31}{\%}$


$r=\SI {0.01}{MPa}$


$\varepsilon _{11} \approx \SI {2.67}{\%}$


$r=\SI {0.75}{MPa}$


$r=\SI {1.00}{MPa}$


$\varepsilon _{11} =\SI {3}{\%}$


$r=\SI {0.01}{MPa}$


$r$


\begin {equation}\sigma _{11}^k\lb \varepsilon _{11}^k\rb = \sqrt {2\, r\,E}, \label {Xeqn103-4.8}\end {equation}


$k$


$\Delta \varepsilon _{11}$


\begin {equation}\varepsilon _{11}^{k+1} = \varepsilon _{11}^{k} + \Delta \varepsilon _{11}, \label {Xeqn104-4.9}\end {equation}


$d^{k+1}\lb \varepsilon _{11}^{k+1} \rb $


$\Delta \varepsilon _{11}$


\begin {equation}\sigma _{11}^{k}\lb \varepsilon _{11}^k\rb \equiv f\lb d^{k+1}\rb E \, \varepsilon _{11}^{k+1} = f\lb d^{k+1}\rb E \lb \varepsilon _{11}^{k} + \Delta \varepsilon _{11} \rb . \label {Xeqn105-4.10}\end {equation}


$\sigma _{11}^{k}$


$\sigma _{11}^{k+1}$


\begin {equation}\label {eq:hardening} f\lb d^{k+1} \rb \,E\,\Delta \varepsilon _{11} - \sqrt {2\, r\,E} \lb 1- f\lb d^{k+1}\rb \rb = 0\end {equation}


$r\approx 0.103$


$\dot {d}_{\max }$


$r$


$\dot {d}_{\max }$


$\dot {d}_{\max }$


$\dot {d}_{\max } = \SI {0.10}{\per \second }$


$\dot {d}_{\max }=\SI {0.25}{\per \second }$


$\dot {d}_{\max }$


$\dot {d}_{\max }$


$\dot {d}_{\max } = \SI {1.0}{\per \second }$


$\dot {d}_{\max } = \SI {2.0}{\per \second }$


$\dot {d}_{\max } = \SI {4.0}{\per \second }$


$\mu = \delta _0$


$\dot {d}_{\max }=\SI {1.0}{\per \second }$


$\dot {d}_{\max }=\SI {2.0}{\per \second }$


$\dot {d}_{\max }=\SI {4.0}{\per \second }$


$\dot {d}$


$\dot {d}_{\max }\rightarrow \infty $


$r=\SI {0.1}{MPa}$


$\dot {d}_{\max }=\SI {1.0}{\per \second }$


$\freeEnergy _0(\feps )=r$


$\freeEnergy _0(\feps )=r/2$


$r=\SI {0.2}{MPa}$


$\varepsilon _{11} \approx \SI {1.97}{\%}$


$\bar {f}$


$\bar {f} \approx 0.37$


$\varepsilon _{11} = \SI {3}{\%}$


$\SI {13}{\%}$


\begin {equation}f^\prime (d) = -2(1-d), \quad 0 \leq d \leq 1, \label {Xeqn107-4.12}\end {equation}


\begin {equation}f^\prime (d) = -\exp (-d), \quad d \geq 0, \label {Xeqn108-4.13}\end {equation}


$d\to d_{\text {max}}$


$\varepsilon _{11}\to \varepsilon _{11}^{\text {fail}}$


$\varepsilon _{11}^{\text {fail}}$


\begin {equation}f^\prime (d) = \left \{ \begin {array}{rl} -1, & 0\le d <1,\\ 0, & d=1, \end {array} \right . \label {Xeqn109-4.14}\end {equation}


$d_{\max }=1$


$d=\SI {10}{\mu m}$


$Q_i=\SI {20}{\mu m}$


$i=1,2$


$\bar {\varepsilon }_{11}=\SI {3}{\%}$


$\Delta t=\SI {0.03}{s}$


$r=\SI {1.00}{MPa}$


$\dot {d}_{\max }=\SI {4.00}{\per \second }$


\begin {equation}N \in \{20,40,80,160,320\}. \label {Xeqn110-4.15}\end {equation}


$240$


$320^2$


$14\,160$


$6\,876$


$239$


$1.7\%$


$3.5\%$


$320^2$


$\SI {864}{min}$


$\SI {483}{min}$


$\SI {74}{min}$


$15\%$


\begin {equation}\delta \bar {\sigma }_{11}= \left \vert \frac {\bar {\sigma }_{11,N_i} - \bar {\sigma }_{11,320}}{\bar {\sigma }_{11,320}}\right \vert \cdot 100\% \label {Xeqn111-4.16}\end {equation}


$\delta \bar {\sigma }_{11}$


$3\%$


$N_i=80$


$1.22\%$


$7.18\%$


$N_i=80$


$2.58\%$


$N_i=160$


$N_i=160$


$3\%$


$\bar {f}$


$\bar {\varepsilon }_{11}=\SI {3.0}{\%}$


$n_{\text {ERVE}}$


$c_i=1/n_{\text {ERVE}}$


$i=1,\dots ,n_{\text {ERVE}}$


$r$


$\dot {d}_{\max }$


$n_{\text {ERVE}}$


$n_{\text {ERVE}}=20$


$\SI {466}{min}$


$320^2$


$N_i=320$


$r=\SI {1.00}{MPa}$


$\dot {d}_{\max }=\SI {4.00}{\per \second }$


$\phi = \SI {20}{\percent }$


$L=\SI {1000}{\mu m}$


$D=\SI {10}{\mu m}$


$\bar {\ell } = \SI {25}{\mu m}$


$\bar {\kappa } = \SI {0.02}{\mu m^{-1}}$


$\SI {20}{\percent }$


$\SI {2.0}{\mu m}$


$\fot \, \hat {=} \,\texttt {diag} \lb 0.75,0.15,0.1\rb $


$\epsilon _{\FOT } = 10^{-4}$


$\epsilon _{\bar \kappa } = 10^{-3}$


$h$


$\bar {\varepsilon }_{22}=\SI {3}{\%}$


$n_{\Delta t}$


$\RVE _i = \SI {420}{\mu m}$


$i=1,2,3$


$h=\SI {1.25}{\mu m}$


$n_{\Delta t} = 20$


$40$


$80$


$160$


$\Delta t = \SI {0.15}{s}$


$\SI {0.075}{s}$


$\SI {0.0375}{s}$


$0.01875\,\unit {s}$


$\bar {\varepsilon }_{22}=\SI {3}{\%}$


$21.33\%$


$9.11\%$


$2.98\%$


$3\%$


$n_{\Delta t} = 80$


$h=\SI {1.0}{\mu m}$


$\SI {1.25}{\mu m}$


$\SI {2.0}{\mu m}$


$\SI {4.0}{\mu m}$


$10$


$8$


$5$


$2.5$


$\RVE _i = \SI {420}{\mu m}$


$105^3$


$1.2 \cdot 10^6$


$420^3$


$74 \cdot 10^6$


$9.00\%$


$3.32\%$


$1.40\%$


$3\%$


$h=\SI {1.25}{\mu m}$


$\RVE _i = \SI {280}{\mu m}$


$\SI {420}{\mu m}$


$\SI {560}{\mu m}$


$h=\SI {1.25}{\mu m}$


$224^3$


$11\cdot 10^6$


$448^3$


$90\cdot 10^6$


$\sigma _{22}$


\begin {equation}\delta \overline {\sigma }_{22} = \left \vert \frac {\text {mean} \lb \bar {\sigma }_{22, Q_i}\rb - \text {mean}\lb \bar {\sigma }_{22, 560}\rb }{\text {mean}\lb \bar {\sigma }_{22, 560}\rb }\right \vert \cdot 100\% \label {Xeqn112-4.17}\end {equation}


\begin {equation}\text {RSD} = \frac {\text {std}\lb \bar {\sigma }_{22, Q_i}\rb }{\left \vert \text {mean}\lb \bar {\sigma }_{22, Q_i}\rb \right \vert } \cdot 100\% \label {Xeqn113-4.18}\end {equation}


$2\%$


$Q_i=280\unit {\mu m}$


$\boldsymbol {e}_1$


$L=\SI {100}{\mu m}$


$D=\SI {10}{\mu m}$


$\phi = \SI {20}{\%}$


$h=\SI {1.25}{\mu m}$


$r=\SI {1.00}{MPa}$


$\dot {d}_{\max }=\SI {4.00}{\per \second }$


$\bar {\varepsilon }_{11} = \SI {3}{\%}$


$\bar {\varepsilon }_{22} = \SI {3}{\%}$


$\bar {\varepsilon }_{12} = \SI {3}{\%}$


$80$


$\SI {3}{\second }$


$\boldsymbol {e}_2\,-\,\boldsymbol {e_3}$


$\bar {\varepsilon }_{22}$


$\boldsymbol {e}_1\,-\,\boldsymbol {e_3}$


$\boldsymbol {e}_1\,-\,\boldsymbol {e_3}$


$r$


$d_{\text {max}}$


\begin {equation}\label {eqq:95} \min _{\meanI {\feps } = \bar {\feps }} \meanI { \frac {f(d)}{2} \, \feps \cdot \C \lr \feps \rr } = \frac {\bar {f}(d)}{2}\,\bar {\feps }\cdot \C \lr \bar {\feps }\rr .\end {equation}


\begin {equation}\label {eqq:96} \meanI { \frac {f(d)}{2} \, \feps \cdot \C \lr \feps \rr } + \fLambda \cdot \lb \meanI {\feps } - \bar {\feps }\rb \longrightarrow \min _{\feps } \max _{\fLambda },\end {equation}


$\fLambda \in \Sym {n}$


\begin {align}f(d)\,\C \lr \feps \rr + \fLambda &= \bm {0}, \label {eqq:97}\\ \meanI {\feps } - \bar {\feps } &= \bm {0}. \label {eqq:98}\end {align}


$\feps $


\begin {equation}\label {eqq:99} \feps = - f(d)^{-1} \C ^{-1}\cdot \fLambda ,\end {equation}


\begin {equation}\label {eqq:100} \meanI {\feps } = - \meanI {f(d)^{-1}} \C ^{-1} \cdot \fLambda .\end {equation}


\begin {equation}\label {eqq:101} \bar {\feps } = - \meanI {f(d)^{-1}} \C ^{-1}\cdot \fLambda \end {equation}


\begin {equation}\label {eqq:102} \fLambda = - \meanI {f(d)^{-1}}^{-1} \C \lr \bar {\feps }\rr .\end {equation}


\begin {equation}\label {eqq:103} \feps = f(d)^{-1} \meanI {f(d)^{-1}}^{-1} \bar {\feps }.\end {equation}


\begin {equation}\label {eqq:104} \begin {split} \meanI { \frac {f(d)}{2}\, \feps \cdot \C \lr \feps \rr } &= \meanI { \frac {f(d)}{2}\, \lb f(d)^{-1} \meanI {f(d)^{-1}}^{-1} \bar {\feps }\rb \cdot \C \lr f(d)^{-1} \meanI {f(d)^{-1}}^{-1} \bar {\feps }\rr }\\ &= \frac {1}{2} \meanI { f(d)\, f(d)^{-2}} \meanI {f(d)^{-1}}^{-2}\, \bar {\feps } \cdot \C \lr \bar {\feps }\rr \\ &= \frac {1}{2}\meanI {f(d)^{-1}}^{-1}\, \bar {\feps } \cdot \C \lr \bar {\feps }\rr . \end {split}\end {equation}


\begin {equation}\label {eqq:105} \PincCond ^c(\bar {\feps }) = \min \left \{ \bar {f}(d)\, \freeEnergy _0(\bar {\feps }) + r\,\meanI {d - d^-} \, \middle |\, d^- \leq d \leq d^+ \right \}\end {equation}


\begin {equation}\label {eqq:106} \tilde {\freeEnergy }_{\text {cond}}^c(\bar {\feps }) = \min _{\phi :[0,1] \rightarrow [0,1]} \meanI {(1 - \phi ) f\lb d^-\rb ^{-1} + \phi \, f\lb d^+\rb ^{-1}}^{-1}\, \freeEnergy _0(\bar {\feps }) + r\,\meanI {\phi \lb d^+ - d^-\rb }\end {equation}


$d^\pm :[0,1] \rightarrow [d,\dmax )$


$d^- \leq d^+$


\begin {equation}\label {eqq:107} \PincCond ^c(\bar {\feps }) \leq \tilde {\freeEnergy }_{\text {cond}}^c(\bar {\feps }) \quad \text {and} \quad \tilde {\freeEnergy }_{\text {cond}}^c(\bar {\feps }) \leq \PincCond ^c(\bar {\feps })\end {equation}


$\bar {\feps } \in \Sym {n}$


$\PincCond ^c(\bar {\feps }) \leq \tilde {\freeEnergy }_{\text {cond}}^c(\bar {\feps })$


$d^-$


$d^+$


$[0,1]$


$K$


$I_a$


$a=1,2,\ldots ,K$


$d^-$


$d^+$


$d^\pm _a$


$a=1,2,\ldots ,K$


$\phi :[0,1] \rightarrow [0,1]$


$d:[0,1] \rightarrow \R _{\geq 0}$


$d^- \leq d \leq d^+$


\begin {equation}\label {eqq:108} \bar {f}(d)\, \freeEnergy _0(\bar {\feps }) + r\,\meanI {d - d^-} = \meanI {(1 - \phi ) f\lb d^-\rb ^{-1} + \phi \, f\lb d^+\rb ^{-1}}^{-1}\, \freeEnergy _0(\bar {\feps }) + r\,\meanI {\phi \lb d^+ - d^-\rb }.\end {equation}


\begin {equation}\label {eqq:109} \PincCond ^c(\bar {\feps }) \leq \meanI {(1 - \phi ) f\lb d^-\rb ^{-1} + \phi \, f\lb d^+\rb ^{-1}}^{-1}\, \freeEnergy _0(\bar {\feps }) + r\,\meanI {\phi \lb d^+ - d^-\rb }.\end {equation}


$\phi :[0,1] \rightarrow [0,1]$


$\PincCond ^c(\bar {\feps }) \leq \tilde {\freeEnergy }_{\text {cond}}^c(\bar {\feps })$


$d$


$\phi $


$\{I_a\}_{a=1}^K$


\begin {equation}\label {eqq:110} \begin {split} \meanI {(1 - \phi ) f\lb d^-\rb ^{-1} + \phi \, f\lb d^+\rb ^{-1}} &= \sum _{a=1}^K \int _{I_a} {(1 - \phi (s)) f\lb d^-_a\rb ^{-1} + \phi (s) \, f\lb d^+_a\rb ^{-1}} \, \diff s\\ &= \sum _{a=1}^K \lb \lb 1 - \phi _a\rb f\lb d^-_a\rb ^{-1} + \phi _a \, f\lb d^+_a\rb ^{-1} \rb \int _{I_a} \diff s\\ \end {split}\end {equation}


\begin {equation}\label {eqq:111} \phi _a = \left . \int _{I_a} \phi (s) \, \diff s \middle / \int _{I_a} \diff s \right . \in [0,1].\end {equation}


\begin {equation}\label {eqq:112} \meanI {\phi \lb d^+ - d^-\rb } = \sum _{a=1}^K \phi _a \lb d^+_a - d^-_a \rb \int _{I_a} \diff s.\end {equation}


$d$


$d_a^-$


$(1-\phi _a)$


$I_a$


$d_a^+$


\begin {equation}\label {eqq:113} \meanI {f(d)^{-1}} = \sum _{a=1}^K \lb \lb 1 - \phi _a\rb f\lb d^-_a\rb ^{-1} + \phi _a \, f\lb d^+_a\rb ^{-1} \rb \int _{I_a} \diff s\end {equation}


\begin {equation}\label {eqq:114} \meanI {d - d^-} = \sum _{a=1}^K \phi _a \lb d^+_a - d^-_a\rb \int _{I_a} \diff s\end {equation}


$\tilde {\freeEnergy }_{\text {cond}}^c(\bar {\feps }) \leq \PincCond ^c(\bar {\feps })$


\begin {equation}\label {eqq:113} d:[0,1] \rightarrow \R _{\geq 0} \quad \text {which respects the constraints} \quad d^- \leq d \leq d^+.\end {equation}


$\phi :[0,1] \rightarrow [0,1]$


\begin {equation}\label {eqq:114} \meanI {(1 - \phi ) f\lb d^-\rb ^{-1} + \phi \, f\lb d^+\rb ^{-1}}^{-1}\, \freeEnergy _0(\bar {\feps }) + r\,\meanI {\phi \lb d^+ - d^-\rb } \leq \bar {f}(d)\, \freeEnergy _0(\bar {\feps }) + r\,\meanI {d - d^-}\end {equation}


\begin {equation}\label {eqq:115} \tilde {\freeEnergy }_{\text {cond}}^c(\bar {\feps }) \leq \bar {f}(d)\, \freeEnergy _0(\bar {\feps }) + r\,\meanI {d - d^-}.\end {equation}


$\tilde {\freeEnergy }_{\text {cond}}^c(\bar {\feps }) \leq \PincCond ^c(\bar {\feps })$


$\phi $


$\phi $


\begin {equation}\label {eqq:116} d(s) = (1 - \phi (s)) \, d^-(s) + \phi (s) \, d^+(s), \quad s \in [0,1],\end {equation}


$d$


\begin {equation}\label {eqq:117} g(d(s)) \equiv g\lb (1 - \phi (s)) \, d^-(s) + \phi (s) \, d^+(s)\rb \leq (1 - \phi (s)) \, g\lb d^-(s)\rb + \phi (s) \, g\lb d^+(s)\rb .\end {equation}


\begin {equation}\label {eqq:118} \meanI {g(d)} \leq \meanI {(1-\phi ) \, g(d^-) + \phi \, g(d^+)},\end {equation}


\begin {equation}\label {eqq:119} \meanI {(1-\phi ) \, f\lb d^-\rb ^{-1} + \phi \, f\lb d^+\rb ^{-1}}^{-1} \leq \meanI {f(d)^{-1}}^{-1} \equiv \bar {f}(d),\end {equation}


$\freeEnergy _0(\bar {\feps })$


\begin {equation}\label {eqq:120} \meanI {(1-\phi ) \, f\lb d^-\rb ^{-1} + \phi \, f\lb d^+\rb ^{-1}}^{-1}\,\freeEnergy _0(\bar {\feps }) \leq \bar {f}(d) \, \freeEnergy _0(\bar {\feps }).\end {equation}


\begin {equation}\label {eqq:121} \begin {split} \meanI {d - d^-} &= \meanI {(1 - \phi ) \, d^- + \phi \, d^+ - d^-}\\ &= \meanI {-\phi \, d^- + \phi \, d^+}\\ &= \meanI {\phi \, \lb d^+ - d^-\rb }. \end {split}\end {equation}


$r$


\begin {equation}\label {eqq:122} \meanI {(1-\phi ) \, f\lb d^-\rb ^{-1} + \phi \, f\lb d^+\rb ^{-1}}^{-1}\, \freeEnergy _0(\bar {\feps }) + r \meanI {\phi \, \lb d^+ - d^-\rb }\leq \bar {f}(d) \, \freeEnergy _0(\bar {\feps }) + r\meanI {d - d^-}\end {equation}


$\alpha _-$


$\alpha _+$


$C_+$


\begin {equation}\label {eqq:123} \frac {\alpha _-}{2} \, \feps \cdot \C \lr \feps \rr \leq \PincCond (\feps ) \leq C_+ + \frac {\alpha _+}{2} \, \feps \cdot \C \lr \feps \rr \end {equation}


$\feps \in \Sym {n}$


$g_j$


\begin {equation}\label {eqq:124} g_j = f(d_j)^{-1}, \quad j=0,1,\ldots ,N.\end {equation}


$f$


$d_j$


\begin {equation}\label {eqq:126} f_0 \geq f_j \geq f_N, \quad j=0,1,\ldots ,N,\end {equation}


\begin {equation}\label {eqq:127} g_0 \leq g_j \leq g_N, \quad j=0,1,\ldots ,N.\end {equation}


\begin {equation}\label {eqq:128} \rho _j \geq 0 \quad (j=0,1,\ldots ,N) \quad \text {and} \quad \sum _{j=0}^N \rho _j = 1\end {equation}


\begin {equation}\label {eqq:129} g_N \leq \sum _{j=0}^N \rho _j \, g_j \leq g_0.\end {equation}


\begin {equation}\label {eqq:130} \frac {1}{2 g_0} \feps \cdot \C \lr \feps \rr \leq \left ( \sum _{j=0}^N \rho _j\lb \vecPhi \rb \, g_j \right )^{-1} \frac {1}{2} \, \feps \cdot \C \lr \feps \rr \leq \frac {1}{2 g_N} \feps \cdot \C \lr \feps \rr , \quad \forall \,\feps \in \Sym {n},\end {equation}


\begin {equation}\label {eqq:131} \mathcal {D}(\vecPhi ) = r\sum _{j=0}^{N-1} \rho _j^k\,\phi _j\,\Delta d_j \quad \text {with} \quad \Delta d_j = d_{j+1} - d_j > 0,\end {equation}


\begin {equation}\label {eqq:132} 0 \leq r\sum _{j=0}^{N-1} \rho _j^k\,\phi _j\,\Delta d_j \leq r\sum _{j=0}^{N-1} \rho _j^k\,\Delta d_j\end {equation}


$\phi _j \in [0,1]$


\begin {equation}\label {eqq:133} P\lb \feps ,\vecPhi \rb = \left ( \sum _{j=0}^N \rho _j\lb \vecPhi \rb \, g_j \right )^{-1} \frac {1}{2} \, \feps \cdot \C \lr \feps \rr + r\sum _{j=0}^{N-1} \rho _j^k\,\phi _j\,\Delta d_j,\end {equation}


\begin {equation}\label {eqq:134} \frac {1}{2 g_0} \feps \cdot \C \lr \feps \rr \leq P\lb \feps ,\vecPhi \rb \leq \frac {1}{2 g_N} \feps \cdot \C \lr \feps \rr + r\sum _{j=0}^{N-1} \rho _j^k\,\Delta d_j, \quad \forall \,\feps \in \Sym {n}.\end {equation}


$\vecPhi $


$\vecPhi \in [0,1]^N$


\begin {equation}\label {eqq:135} \alpha _- = \frac {1}{g_0}, \quad \alpha _+ = \frac {1}{g_N} \quad \text {and} \quad C_+ = r\sum _{j=0}^{N-1} \rho _j^k\,\Delta d_j.\end {equation}


\begin {equation}\label {eqq:136} \PincCond (\feps ) := \min _{\vecPhi \in [0,1]^{N}} P\lb \feps ,\vecPhi \rb , \quad \feps \in \Sym {n},\end {equation}


$P$


\begin {equation}\label {eqq:137} \PincCond ( \lambda \, \feps _1 + (1-\lambda ) \, \feps _2) \leq \lambda \, \PincCond (\feps _1) + (1 - \lambda ) \, \PincCond (\feps _2)\end {equation}


$\feps _1, \feps _2 \in \Sym {n}$


$\lambda \in [0,1]$


$\vecPhi _1, \vecPhi _2 \in [0,1]^N$


\begin {equation}\label {eqq:138} \PincCond (\feps _i) = P(\feps _i,\vecPhi _i), \quad i=1,2,\end {equation}


$P$


\begin {equation}\label {eqq:139} P ( \lambda \, \feps _1 + (1-\lambda ) \, \feps _2, \lambda \, \vecPhi _1 + (1-\lambda ) \, \vecPhi _2 ) \leq \lambda \, P (\feps _1, \vecPhi _1) + (1 - \lambda ) \, P (\feps _2, \vecPhi _2)\end {equation}


$\lambda \in [0,1]$


\begin {equation}\label {eqq:140} \PincCond (\lambda \, \feps _1 + (1-\lambda ) \, \feps _2) \equiv \min _{\vecPhi \in [0,1]^{N}} P\lb \lambda \, \feps _1 + (1-\lambda ) \, \feps _2,\vecPhi \rb \leq P ( \lambda \, \feps _1 + (1-\lambda ) \, \feps _2, \lambda \, \vecPhi _1 + (1-\lambda ) \, \vecPhi _2 ),\end {equation}


\begin {equation}\label {eqq:141} \PincCond (\feps ) := \min _{\vecPhi \in [0,1]^{N}} P\lb \feps ,\vecPhi \rb , \quad \feps \in \Sym {n},\end {equation}


\begin {equation}\label {eqq:142} \PincCond (\feps ) := \min _{\phi \in [0,1]} \frac {\freeEnergy {}_0(\feps )}{ (1-\phi ) \, g_0 + \phi \, g_1 } + \phi \, r \,(d_1 - d_0), \quad \feps \in \Sym {n},\end {equation}


\begin {equation}\label {eqq:143} \freeEnergy {}_0(\feps ) = \frac {1}{2} \, \feps \cdot \C \lr \feps \rr , \quad \feps \in \Sym {n}.\end {equation}


\begin {equation}\label {eqq:144} d_- \equiv d_0, \quad d_+ \equiv d_1, \quad g_- = g_0, \quad g_+ = g_1.\end {equation}


\begin {equation}\label {eqq:145} \PincCond (\feps ) := \min _{\phi \in [0,1]} \frac {\freeEnergy {}_0(\feps )}{ (1-\phi ) \, g_- + \phi \, g_+ } + \phi \, r \,(d_+ - d_-), \quad \feps \in \Sym {{n}}.\end {equation}


$\phi $


\begin {equation}\label {eqq:146} \phi = R_{[0,1]} \left (\frac {\sqrt {\dfrac {g_+ - g_-}{ d_+ - d_- } \, \dfrac {\freeEnergy {}_0(\feps )}{r}} - g_-}{g_+ - g_-}\right )\end {equation}


\begin {equation}\label {eqq:147} R_{[0,1]}:\R \rightarrow [0,1], \quad x \mapsto \max (\min (x,1),0).\end {equation}


$\feps \in \Sym {n}$


\begin {equation}\label {eqq:148} \freeEnergy {}_0(\feps ) \in \left [ r \, g_-^2 \, \frac {d_+ - d_-}{g_+ - g_-}, r \, g_+^2 \, \frac {d_+ - d_-}{g_+ - g_-} \right ],\end {equation}


$\phi $


\begin {equation}\label {eqq:149} \freeEnergy {}_0(\feps ) \, \frac { g_+ - g_-}{ ((1-\phi ) \, g_- + \phi \, g_+)^2 } = r \, (d_+ - d_-),\end {equation}


\begin {equation}\label {eqq:150} (1-\phi ) \, g_- + \phi \, g_+ = \sqrt { \frac {\freeEnergy {}_0(\feps )}{r} \, \frac { g_+ - g_-}{ d_+ - d_- } }.\end {equation}


\begin {equation}\label {eqq:151} \begin {split} \PincCond (\feps ) &= \frac {\freeEnergy {}_0(\feps )}{ \sqrt { \dfrac {\freeEnergy {}_0(\feps )}{r} \, \dfrac { g_+ - g_-}{ d_+ - d_- } } } + r\, (d_+ - d_-) \, \frac {\sqrt {\dfrac {g_+ - g_-}{ d_+ - d_- } \, \dfrac {\freeEnergy {}_0(\feps )}{r}} - g_-}{g_+ - g_-}\\ &= 2 \sqrt { r \, \frac { d_+ - d_- }{ g_+ - g_-} } \sqrt {\freeEnergy {}_0(\feps )} - r\,g_- \frac {d_+ - d_-}{g_+ - g_-},\\ \end {split}\end {equation}


\begin {equation}\label {eqq:152} \PincCond (\feps ) = A \, \sqrt {\freeEnergy {}_0(\feps )} + B\end {equation}


$\feps \in \Sym {n}$


\begin {equation}\label {eqq:153} A = 2 \sqrt { r \, \frac { d_+ - d_- }{ g_+ - g_-} } \quad \text {and} \quad B = - r\,g_- \frac {d_+ - d_-}{g_+ - g_-}.\end {equation}


$\feps _1$


$\feps _2$


\begin {equation}\label {eqq:154} \feps (\lambda ) = \lambda \, \feps _1 + (1-\lambda ) \, \feps _2, \quad \lambda \in [0,1].\end {equation}


$\lambda \in (0,1)$


\begin {equation}\label {eqq:155} \PincCond (\feps (\lambda )) \stackrel {!}{<} \lambda \, \PincCond (\feps _1) + (1-\lambda ) \, \PincCond (\feps _2), \quad 0<\lambda < 1.\end {equation}


\begin {equation}\label {eqq:156} \PincCond (\feps (\lambda )) = \lambda \, \PincCond (\feps _1) + (1-\lambda ) \, \PincCond (\feps _2), \quad 0<\lambda < 1,\end {equation}


$\feps _1 \in \Sym {{n}}$


\begin {equation}\label {eqq:157} \freeEnergy {}_0(\feps _1) = r \, g_-^2 \, \frac {d_+ - d_-}{g_+ - g_-},\end {equation}


\begin {equation}\label {eqq:158} \feps _2 = M \, \feps _1\end {equation}


$M > 1$


\begin {equation}\label {eqq:159} \freeEnergy {}_0(\feps _2) = r \, g_+^2 \, \frac {d_+ - d_-}{g_+ - g_-}\end {equation}


\begin {equation}\label {eqq:160} M = \frac {g_+}{g_-}.\end {equation}


\begin {align}\PincCond (\feps _1) &= A \, \sqrt {\freeEnergy {}_0(\feps _1)} + B, \label {eqq:161}\\ \PincCond (\feps _2) &= A \, M\sqrt {\freeEnergy {}_0(\feps _1)} + B, \label {eqq:162}\\ \PincCond (\feps (\lambda )) &= A \, \left [ \lambda + (1-\lambda ) M \right ]\sqrt {\freeEnergy {}_0(\feps _1)} + B, \label {eqq:163}\end {align}


\begin {equation}\label {eqq:164} \feps (\lambda ) = \lambda \, \feps _1 + (1-\lambda ) \, \feps _2 = \lambda \, \feps _1 + (1-\lambda ) M \, \feps _1 = \left [ \lambda + (1-\lambda ) M \right ] \feps _1.\end {equation}


\begin {equation}\label {eqq:165} \begin {split} \PincCond (\feps (\lambda )) &= A \, \left [ \lambda + (1-\lambda ) M \right ]\sqrt {\freeEnergy {}_0(\feps _1)} + B\\ &= A \, \lambda \, \sqrt {\freeEnergy {}_0(\feps _1)} + (1-\lambda ) \, {A} \, M \sqrt {\freeEnergy {}_0(\feps _1)} + B\\ &= \lambda \left ( A \, \sqrt {\freeEnergy {}_0(\feps _1)} + B \right ) + (1 - \lambda ) \left ( A \, M\sqrt {\freeEnergy {}_0(\feps _1)} + B \right )\\ &= \lambda \, \PincCond (\feps _1) + (1-\lambda ) \, \PincCond (\feps _2), \end {split}\end {equation}


$\fu \in H^1_D(\Omega )^n$


\begin {equation}\label {eqq:166} \mathcal {F}(\fu ) := \int _\Omega \PincCond ( \nabla ^s(\fu _0 + \fu ) ) \, + \ff \cdot \fu \, \diff V + \int _{\Gamma _N} \ft \cdot \fu \, \diff A \longrightarrow \min _{\fu \in H^1_D(\Omega )^n}.\end {equation}


\begin {equation}\label {eqq:167} c_-\, \|\feps \|^2 \leq \PincCond (\feps ) \leq C_+ + c_+\, \|\feps \|^2, \quad \feps \in \Sym {n},\end {equation}


$c_\pm $


$C_+$


$\PincCond $


$\mathcal {F}$


$(\fu _k)$


$H^1_D(\Omega )^n$


\begin {equation}\label {eqq:168} \lim _{k\rightarrow \infty } \mathcal {F}(\fu _k) = \mathcal {F}^* \equiv \min _{\fu \in H^1_D(\Omega )^n} \mathcal {F}(\fu ).\end {equation}


\begin {equation}\label {eqq:169} \int _\Omega {c_- }\| \nabla ^s(\fu _0 + \fu ) \|^2 \, + \ff \cdot \fu \, \diff V + \int _{\Gamma _N} \ft \cdot \fu \, \diff A \leq \mathcal {F}(\fu ), \quad \fu \in H^1_D(\Omega )^n,\end {equation}


\begin {equation}\label {eqq:170} \| \nabla ^s(\fu _0 + \fu ) \|_{H^1_D(\Omega )^n}^2 \leq C \left [\mathcal {F}(\fu ) + \left (\| \ff \|_{H^{-1}_D(\Omega )^n} + \| \ft \|_{H^{-\frac {1}{2}}_D(\Gamma _N)^n} \right ) \| \nabla ^s(\fu _0 + \fu ) \|_{H^1_D(\Omega )^n} \right ]\end {equation}


$C$


$\fu \in H^1_D(\Omega )^n$


$(\fu _k)$


$H^1_D(\Omega )^n$


$\fu ^* \in H^1_D(\Omega )^n$


$(\fu _k)$


$\fu ^*$


\begin {align}\fu _k &\rightarrow \fu ^* \text { strongly in } L^2(\Omega )^n, \label {eqq:171}\\ \nabla \fu _k &\rightharpoonup \nabla \fu ^* \text { weakly in } L^2(\Omega )^{n\times n}. \label {eqq:172}\end {align}


$L^2$


\begin {equation}\label {eqq:173} \mathcal {F}(\fu ^*) \leq \liminf _{k\rightarrow \infty } \mathcal {F}(\fu ) \equiv \mathcal {F}^* \equiv \min _{\fu \in H^1_D(\Omega )^n} \mathcal {F}(\fu )\end {equation}


$\fu ^* \in H^1_D(\Omega )^n$
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progression of damage, e.g., caused by erosion, material aging, fatigue, or fracture, and help engineers design safer, more durable 
structures and products. By accurately forecasting the behavior of materials under stress, damage models enable identifying potential 
weak spots, improving the efficiency of maintenance as well as repair strategies and reducing the risk of catastrophic failures.

To model the loss of stiffness caused by the damage progression, continuum damage mechanics [1,2] provides suitable tools based 
on the fundamental concepts introduced by Kachanov [3] and Rabotnov [4]. As the main assumptions, the materials are modeled as 
continuous and homogeneous media on the macroscale, and the damage evolution is given as an irreversible evolutionary process.

Typically, the damage degradation starts as cracks or voids on lower length scales first, then grows to defects on the macroscale and 
eventually leads to failure of the structure [5,6]. Depending on the underlying approach, continuum-damage models may be roughly 
divided into two main categories [7,8]. Micromechanics based models [7,9–11] account for the multiscale progression of the defects, 
and work on two scales: the continuous and homogeneous macroscale and the heterogeneous and locally discontinuous lower length 
scale. These models proceed as follows. First, the damage mechanisms on the lower length scale are determined. Subsequently, basic 
mechanics principles are employed to quantify the nonlinear response at the lower length scale accounting for the defects. Last but not 
least, the obtained fields are homogenized to predict the behavior on the macroscale. Due to their physical foundation, micromechanics 
based models are still subject to recent research and find application to several material systems and loading cases [12–15].

The second category of continuum-damage models comprises phenomenological approaches [7,8]. In contrast to micromechanics-
based strategies, these models are not informed on the actual damage origin and propagation on the lower length scales, but rather 
provide a rational prediction based on macroscopic experiments. For the phenomenological approaches, a (set of) damage variable 
is selected first. Then, a thermodynamical model is postulated, linking the damage progression to an irreversible internal energy 
dissipation [16–20]. By construction, phenomenological approaches are strategies to describe the damage behavior directly at the 
macroscale. Thus, for heterogeneous materials, the stochastics at lower length scales are not taken into consideration. However, this 
limitation may be overcome by starting at the lower length scale and assigning to each component a phenomenological material model 
individually, and then homogenizing [21,22]. For such a phenomenological multiscale strategy, the medium at the lower length scale 
is still continuous, whereas micromechanics based approaches may include local discontinuities due to the actual defects.

Selecting the appropriate damage variable(s) plays a key role within the framework of phenomenological continuum-damage 
models. Scalar damage variables are used to model isotropic, i.e., direction-independent, damaging behavior [16,23,24] and may 
be interpreted as the ratio of the effective load-bearing area to the total area. Due to its simplicity, scalar damage models are used 
frequently, also in recent publications [25–29]. To incorporate anisotropic damage into the continuum damage formulation, damage 
variables with higher tensor orders may be used, such as second-order damage variables [30–33] or fourth-order damage tensors [22,
32,34–37].

In continuum damage mechanics, selecting the damage variables is only half of the story: Care has to be taken when dealing with 
damage models that capture softening behavior of the material, as the material then favors localization [38] which cannot be captured 
on a volumetric mesh by standard local models. Rather, finite element computations lead to mesh-dependent predictions [39]. These 
observed “mesh dependencies” are actually just the ramifications of the underlying lack of mathematical sensibility of the softening 
damage model.

Different countermeasures were reported in the literature [40]. The simplest approach is based on viscous regularization [41–43], 
which implicitly enforces an upper bound on the damage increment for each mesh-element, thus limiting the dissipation and excluding 
the localization. Such strategies typically lead to reasonable models in practice, but lack a sound mathematical foundation.

Integral based approaches [44–47] incorporate long-range interactions by computing a filtered response of either the damage 
or the evaluated degradation function on a neighborhood of the material point. This averaging process smears out the intended 
localization and effectively excludes strong localization effects.

It is also possible to consider gradient-enhanced formulations [48–51], which add a gradient term of the damage variable within the 
damage evolution equation. From a physical point of view, the emergence of the damage gradient may be interpreted as quantifying 
the “average crack area”, and the additional gradient term permits to limit the energy dissipated when forming crack surfaces – the 
physical phenomenon responsible for the localization. Such approaches penalize strong fluctuations of damage in the same way as 
those strategies based on integral averages. In fact, most gradient-extended damage models may be equivalently expressed a non-local 
approaches by rewriting the evolution equation for the damage variable with a suitable Green’s function.

Despite their success, these reported ameliorations come with a number of shortcomings:
1. Incorporating non-local or gradient-enhanced damage models into existing software codes is often challenging. In particular, for 
commercial codes specific tricks are required. For instance, Navidtehrani et al. [52] report on an implementation of a phase field 
fracture model into the commercial software Abaqus hijacking the thermomechanical solver, i.e., the temperature is treated as 
the damage variable.

2. Both non-local and gradient-extended damage models require a length-scale parameter to be chosen. More often than not, the 
physical significance of this parameter is unclear and its identification based on experimental results is challenging. Also this 
length-scale parameter effectively excludes homogenization to apply [53]: If the length scale is proportional to the unit-cell size, 
it will become infinitesimal upon homogenization, removing the required regularization of the effective model to be sensible. In 
particular, no representative volume elements [54–56] emerge.
For these and other reasons, methods based on convex relaxation [57–60] were investigated recently. These works take a closer 

look at the mathematical underpinnings of the localization phenomena: In a variational setting, the considered damage models lack 
quasi-convexity. Morrey [61] identified the property of quasi-convexity as a necessary and sufficient condition for the existence of 
minimizers in the calculus of variations, provided certain necessary growth conditions on the integrands hold. Physically speaking, 
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quasi-convexity of an integrand means that a homogeneous variational problem with uniform boundary conditions admits a homo-
geneous solution. Interestingly, neither the shape of the considered body nor whether Dirichlet-, Neumann- or periodic boundary 
conditions are used plays a role to decide whether a specific integrand is quasi-convex or not, see Dacorogna [62]. For damage me-
chanics with softening, quasi-convexity of the integrands is not expected by physical considerations - cracks are supposed to form at 
a lower scale, leading to a non-homogeneous response. As quasi-convexity is a necessary condition for the existence of minimizers, it 
does not come as a surprise that softening behavior does in fact lead to ill-posed mathematical problems.

Methods based on convex relaxation intend to restore the quasi-convexity of the integrand by computing the (quasi-)convex 
envelope explicitly and to consider the obtained relaxed integrand as the ground truth. Such a strategy might be considered as adding 
“microstructural information”, i.e., the heterogeneities obstructing quasi-convexity, into the picture. Thus, relaxation approaches 
operate in two stages: First, the model is selected. Secondly, the convex envelope is computed. Both stages involve choices. The real 
problem for the relaxation approach is actually computing the envelope, which amounts to solving a non-convex variational problem 
more or less explicitly. In this way, this difficulty of non-quasi-convexity is handled by an analytical method. Unfortunately, achieving 
this task is only possible in rare cases, and the choice of the original model and the type of convex envelope is driven by whether it 
can be handled analytically and explicitly or not. For instance, computing the quasi-convex envelope explicitly is notoriously difficult. 
Computing the convex envelope is typically simpler, and every convex function is also quasi-convex. Thus, the convex envelope is 
regularly considered although it is less physical than the quasi-convex envelope. Due to the convexification process, relaxation-based 
models are local, i.e., do not require non-local terms or damage-gradient terms for regularization. We wish to clarify that the term
local model is used to distinguish such approaches from non-local damage models or gradient-enhanced formulations, which include 
neighborhood information to compute the material response at a single material point.

The described program was set up by Schwarz et al. [59] who considered an isotropic damage model without tension-compression 
asymmetry. To ensure coercivity of the functionals, a damage-rate limitation [63] was enforced. Then, the incremental condensed 
free energy was selected as the function to be convexified. Schwarz et al. [59] managed to solve the minimization problem with 
respect to the strain, but did not arrive at an explicit formula for the damage-minimization process. Rather, an approximation based 
on physical considerations - termed emulated RVE - was introduced and investigated. 

1.2.  Contributions

There are a number of advantages which make a convexified damage model attractive:
• The model is local, i.e., no filtered averages or damage-gradient terms are necessary.
• The material evaluation involves conventional internal variables only, is thermodynamically consistent and operates on material 
point level.

• The formulation does not involve internal length scale parameters, which may be challenging to calibrate experimentally.
• The implementation in standard commercial FE software, e.g., Abaqus, is straightforward via user material subroutines.
• The novel class of damage models is suitable for computational multiscale modeling frameworks due to its mesh-objective response 
and the absence of a length scale parameter. Thus, it may be directly embedded into FE2 [64–66] or FE-FFT [67,68] codes.

However, there are two issues which must be taken care of. For a start, the model must be able to reproduce softening behavior. 
Otherwise, the damaging behavior observed in experiments cannot be reproduced accurately. Moreover, the (cross-)convex hull must 
be determined by some means [69–71]. Previous works used computationally convenient approximations: a pre-defined finite number 
of damageable phases [59] or an a-priori restriction to 1D with subsequent direction averaging [72,73].
The key contribution of the work at hand is that we compute the (cross-)convex envelope of the considered local damage models 
explicitly and analytically. In general, solving the latter problem is considered hard because it involves computing the absolute 
minimum of a non-convex variational problem. It appears therefore surprising that a closed-form solution could be found.

To be more precise, we compute the convex envelope of a rate-limited, non-convex standard scalar damage model in a time-
discretized setting in Section 2, completing the conceptual agenda initiated by Schwarz et al. [59]. To do so, we impose a condition 
which is satisfied by a variety of reasonable damage models: The reciprocal function of the damage-degradation function should be 
convex. Under this condition, the regularization approach leads to a family of convex damage models.

As a central outcome of the convexification process, the damage models are formulated based on one-dimensional damage-
distribution functions instead of a scalar damage variable, and the effective degradation computes as the harmonically averaged 
degradation function. Interestingly, the time evolution of the damage-distribution functions turns out to possess the structure of an 
optimal transport problem [74], which naturally emerges from the variational formulation of the convexified energy. Due to the 
structural analogy to optimal transport theory, we call the damage models optimal transport (OT) damage models.

We provide arguments for the existence of minimizers to the associated mechanical boundary value problems, which is essential 
for a reliable numerical approximation. The existence of a solution results from the convexity and the coercivity of the condensed 
incremental energy, see Section 3.3.

In Section 3, we derive the damage models for a constant time-step size explicitly. Additionally, we introduce an efficient numerical 
procedure to solve the constrained linear optimization problem using a one-dimensional Newton-type method. We also discuss the 
convexity properties of the incremental energy and the existence of continuous minimizers to the associated mechanical boundary-
value problems. Section 3 also provides critical insights into the structure of the derived class of models: In contrast to traditional 
phenomenological continuum-damage models, which use damage variables of a specific tensor order as arguments, the emerging 
model involves a damage-distribution function. Moreover, this distribution enters the free energy via a harmonic average as a prefactor 
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to the Hookean undamaged free energy. This harmonic averages emerge naturally as a consequence of the convex relaxation process. 
From a continuum mechanical point of view, the appearance of both the damage distribution and the harmonic average does not 
come as a surprise: If we pursued a quasi-convexification, we would expect damage(d) microstructures to form. As we carry out a 
convexification process - which ignores kinematic compatibility of the strains and thus anisotropic spatial correlations - the harmonic 
mean emerges naturally as the dedicated homogenization operator in one spatial dimension of elastic rods connected in series. 
Alternatively, the harmonic average may also be considered as a realized Reuss bound on the effective stiffness. However, some care 
has to be taken, as we also obtain an evolution for the emerging damage distributions naturally. It is well known that the Hookean 
free energy gives rise to a convex function in terms of the strain and the compliance tensor [22]. As the compliance tensor of the 
convexified damage model is linear w.r.t. the damage distribution, the convexity of the model at hand is readily apparent, and the 
variety of advantages which comes with convexity is directly available.

In Section 4, we conduct computational investigations with respect to the novel class of scalar damage models, using methods 
of FFT-based computational micromechanics [75–77]. We start with computations on material point level, studying the influence of 
the damage model parameters and different damage-degradation functions. To take heterogeneous stress states into consideration, 
we first apply the damage model to the matrix material of composites with a single circular inclusion and subsequently to the matrix 
material of long fiber reinforced composites. The OT damage models lead to mesh-independent results even in the regime of softening, 
preventing localization. Thus, the models may be used to predict the mechanical behavior on continuum scale including materials 
with softening behavior in a reliable and efficient manner. In addition, the mesh-independence ensures that the OT damage model is 
applicable for homogenization problems as representative volume elements will emerge for increasing unit cell size.

1.3.  Notation

We use a direct tensor notation or matrix-vector notation with an orthonormal basis {𝒆1,… , 𝒆𝑛} in 𝑛 = 3 dimension. We denote 
scalars with non-bold letters, e.g., 𝑏. Vectors are represented by non-cursive bold lowercase letters, e.g., 𝐛, in matrix-vector notation 
and by cursive bold lowercase letters, e.g., 𝒃, in the direct tensor notation. Bold cursive uppercase letters, e.g., 𝑩, are used for tensors 
of second order and, e.g., 𝔹, denote tensors of fourth order. For symmetric tensors of second order defined in a three-dimensional 
orthonormal basis, we use, e.g., 𝑩 =̂ diag(𝑏1, 𝑏2, 𝑏3), for the representation in the diagonalized form. The space of symmetric second-
order tensors on R𝑛 is represented by Sym(𝑛). For simplicity, we introduce the following operations only for the direct tensor notation, 
but use the same notations also for operations in matrix-vector notation. The material time derivative of the scalar 𝑏 is symbolized 
by 𝑏̇. The linear mapping of a second-order tensor by a fourth order tensor is denoted by, e.g., (𝑨)𝑖𝑗 = (𝔹[𝑪])𝑖𝑗 = 𝐵𝑖𝑗𝑘𝑙𝐶𝑘𝑙.

2.  Convex relaxation of a class of damage models

2.1.  A rate-dependent damage model to be convexified

As our point of departure, we consider an isotropic scalar damage model [59] at small strains in an isothermal setting. We restrict 
to isotropic damage to keep the formulation as simple as possible to focus on the structure of the novel regularization technique and 
to avoid further complications. In general, a tensorial damage variable [37] could be used to model anisotropic damage processes.
We use the framework of generalized standard materials (GSM) [78,79], and consider the free energy (density) as a function of the 
strain ε and the damage variable 𝑑

𝜓 ∶ Sym(𝑛) × [0, 𝑑max) → R≥0, 𝜓(ε, 𝑑) =
𝑓 (𝑑)
2

ε ⋅C[ε], (2.1)

where Sym(𝑛) stands for the vector space of symmetric second-order tensors in R𝑛 with 𝑛 = 2, 3 spatial dimensions. The considered 
dissipation potential reads

Ψ ∶ R → R≥0 ∪ {+∞}, Ψ
(

𝑑̇
)

=
{

𝑟 𝑑̇, 0 ≤ 𝑑̇ ≤ 𝑑̇max,
+∞, otherwise.

(2.2)

Here, 𝑑̇ denotes the material time derivative of the internal variable 𝑑 describing the damage, 𝑑max refers to a positive number or 
plus infinity and determines the maximum attainable value of damage, C stands for an elastic stiffness tensor, corresponding to the 
undamaged state, and 𝑟 is a positive dissipation parameter. Moreover, the phenomenological model involves a damage-degradation 
function

𝑓 ∶ [0, 𝑑max) → [0, 1], (2.3)

which we assume to be continuous, strictly monotonically decreasing and to satisfy the “boundary conditions”
𝑓 (0) = 1 and lim

𝑑→𝑑max
𝑓 (𝑑) = 0. (2.4)

For the work at hand, the following three mathematical equations are used for the degradation function, taken from the literature [3,
51,80]:

1. Exponential degradation:
𝑓 (𝑑) = 𝑒−𝑑 , 𝑑 ≥ 0. (2.5)
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2. Linear degradation:
𝑓 (𝑑) = 1 − 𝑑, 0 ≤ 𝑑 ≤ 1. (2.6)

3. Quadratic degradation:
𝑓 (𝑑) = (1 − 𝑑)2, 0 ≤ 𝑑 ≤ 1. (2.7)

As the damage degradation function modulates the remaining stiffness of the material, the stress-strain response of the damage 
model may be tailored to a specific material by selecting an adequate degradation function. Besides the three introduced func-
tions (2.5)–(2.7), further options are available in literature, see for example Wu and Nguyen [81].

Last but not least, the model (2.1)-(2.2) involves a rate limitation 𝑑̇max, which we assume positive and finite. Here, we follow 
the suggestion of Allix [63], who introduced the rate limitation 𝑑̇max to ensure the coercivity of the condensed energy, i.e., that the 
condensed energy tends to infinity as the norm of the strain tensor becomes arbitrarily large. If coercivity does not hold, minimizers 
might lie “at infinity”, i.e., are trivial, and existence of minimizers for the model might fail [62]. We wish to stress that the rate 
limitation makes the model generally rate-dependent. Indeed, a generalized standard model is rate independent if and only if the 
dissipation potential (2.2) is positively homogeneous of degree one. Due to the damage rate limitation, the dissipation potential is 
not homogeneous and the damage model is rate-dependent.

In accordance with the setting of a GSM [78], the dissipation potential (2.2) is non-negative, lower semicontinuous as well as 
convex and fulfills the condition Ψ(0) = 0.
To ensure that the model is thermodynamically consistent, we take the Clausius-Duhem inequality (CDI) [82, Chapter 13] for an 
isothermal model approach

0
!
≤ 𝝈 ⋅ ε̇ − 𝜓̇(ε, 𝑑) ≡

[

𝝈 −
𝜕𝜓
𝜕ε

(ε, 𝑑)
]

⋅ ε̇ −
𝜕𝜓
𝜕𝑑

⋅ 𝑑̇ (2.8)

into account, which has to hold for all strain rates and damage rates. Derived from the CDI (2.8), the associated stress computes as

𝝈 ≡ 𝜕𝜓
𝜕ε

(ε, 𝑑) = 𝑓 (𝑑)C[ε], (2.9)

for the model at hand, i.e., the undamaged stiffness C is uniformly weakened via the degradation function (2.3). To satisfy the 
non-negativity of the second term of the CDI, we assume the damage evolution to be governed by Biot’s equation [83]

−
𝜕𝜓
𝜕𝑑

(ε, 𝑑) ∈ 𝜕Ψ
(

𝑑̇
)

(2.10)

for a prescribed strain path and a given initial condition for the damage variable, where 𝜕Ψ stands for the subdifferential [84] of the 
(convex) dissipation potential (2.2) and the quantity −𝜕𝜓(ε, 𝑑)∕𝜕𝑑 is called driving force.
We consider an implicit Euler discretization in time, i.e., a sequence 𝑡0, 𝑡1,… of increasing time steps and wish to determine solutions 
to the time-discrete equivalent of Biot’s Eq. (2.10)

−
𝜕𝜓
𝜕𝑑

(ε, 𝑑) ∈ 𝜕Ψ
(

𝑑 − 𝑑𝑘
Δ𝑡𝑘

)

with Δ𝑡𝑘 = 𝑡𝑘+1 − 𝑡𝑘, (2.11)

where we write 𝑑 ≡ 𝑑𝑘+1 for simplicity and assume the previous value 𝑑𝑘 to be known. The condition (2.11) characterizes critical 
points of the optimization problem [85,86]

𝜓(ε, 𝑑) + Δ𝑡𝑘 Ψ
(

𝑑 − 𝑑𝑘
Δ𝑡𝑘

)

⟶ min
𝑑∈[0,𝑑max)

, (2.12)

where the minimum of the function is called condensed incremental energy [86]

𝜓cond(ε) = min
𝑑∈[0,𝑑max)

𝜓(ε, 𝑑) + Δ𝑡𝑘 Ψ
(

𝑑 − 𝑑𝑘
Δ𝑡𝑘

)

, ε ∈ Sym(𝑛). (2.13)

Considering the model at hand, the optimization problem (2.12) takes the form
𝑓 (𝑑)
2

ε ⋅C[ε] +
(

𝑑𝑘, 𝑑
)

⟶ min
0≤𝑑−𝑑𝑘≤Δ𝑡𝑘 𝑑̇max

(2.14)

with the dissipation distance

(

𝑑𝑘, 𝑑
)

= 𝑟 (𝑑 − 𝑑𝑘), (2.15)

which may be understood as the energy dissipated during the damage progression from the damage state 𝑑𝑘 to 𝑑. For the degradation 
functions (2.5)–(2.7), the discrete evolution of the damage variable 𝑑 may be determined analytically. For instance, the exponential 
degradation function (2.5) leads to the prescription

𝑑 = min
(

max
(

𝑑𝑘, ln
𝜓0(ε)
𝑟

)

, 𝑑𝑘 + Δ𝑡𝑘 𝑑̇max

)

(2.16)

with the undamaged elastic energy

𝜓0 ∶ Sym(𝑛) → R≥0, 𝜓0(ε) =
1
2
ε ⋅C[ε]. (2.17)
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For the quadratic degradation (2.7), one computes

𝑑 = min
(

max
(

𝑑𝑘, 1 − 𝑟
2𝜓0(ε)

)

, 𝑑𝑘 + Δ𝑡𝑘 𝑑̇max

)

, (2.18)

whereas the linear degradation function (2.6) yields the result

𝑑 =

⎧

⎪

⎨

⎪

⎩

𝑑𝑘, 𝜓0(ε) < 𝑟,
𝑑𝑘 < 𝑑 < 𝑑𝑘 + Δ𝑡𝑘 𝑑̇max, 𝜓0(ε) = 𝑟,

𝑑𝑘 + Δ𝑡𝑘 𝑑̇max, 𝜓0(ε) > 𝑟.
(2.19)

As the linear degradation function leads to a driving force which is independent of the damage variable

−
𝜕𝜓
𝜕𝑑

(ε, 𝑑) = 𝜓0(ε), (2.20)

the damage evolution equation is ill-posed, resulting in an indeterminate damage state if the undamaged elastic energy exactly equals 
the damage parameter 𝑟, see Eq. (2.19). However, in our numerical simulations this case did not occur. For a finite-strain setting 
without damage-rate limitation, Melchior et al. [73, Section 2.4] reported a similar phenomenon due to the applied linear degradation 
function, where a phase of the material tends to the maximal energetically possible damage evolution.
Let us consider an undamaged material with 𝑑0 = 0 and compute the minimum value of the undamaged elastic energy 𝜓0(ε) which 
is required for damage onset. For both the exponential and the linear degradation function, the undamaged elastic energy needs to 
satisfy the equation

𝜓0(ε) = 𝑟, (2.21)

whereas the required undamaged elastic energy equals
𝜓0(ε) = 𝑟∕2 (2.22)

for the quadratic degradation function. Hence, we observe that the model parameter 𝑟 limits the elastic range, i.e., it determines the 
onset of inelastic deformation. According to Eqs. (2.21) and (2.22), the quadratic degradation function leads to an earlier onset of 
damage compared to the other two degradation functions when selecting the same value for the parameter 𝑟. In case that all three 
degradation functions are requested to start the damage evolution at an equal level of undamaged elastic energy, the parameter 𝑟
needs to be selected twice as high for the quadratic degradation function.

Although these models lead to sensible results on a material-point level – thanks to the rate limitation (2.2) – producing a well-
defined evolution on the continuum scale, when used as a constitutive model for a component, for instance, is more challenging. 
Under suitable growth conditions on the integrand, a celebrated result of Morrey [61] states that a necessary and sufficient condition 
for the existence of minimizers to the variational problem involving such an integrand is the quasi-convexity of the integrand. Whether 
the condensed incremental energy of the considered damage model is quasi-convex or not is not known to the authors. Presumably, 
it is not.
A possible way to construct a well-posed evolution is to compute a suitable quasi-convex envelope of the condensed incremental 
energy. Unfortunately, we are neither aware of an explicit analytical solution for this problem nor an efficient computational scheme, 
despite recent progress [60,87]. Therefore, we follow the route sketched by Schwarz and coworkers [59]: We compute the convex 
envelope of the condensed incremental energy. Every convex function is also quasi-convex [88], so the incremental problems will be 
amenable to Morrey’s existence result. The price to pay is that the model becomes less physically interpretable and that the models 
we started out with may be significantly altered by the convexification process. Fortunately, computational experiments will permit 
us to gain insight into the differences which are created and show that the alteration is small for the considered material and load 
cases, see Section 3.

2.2.  The convex envelope

The purpose of this section is to compute the convex envelope for the damage model (2.1)-(2.2) under natural conditions on the 
damage-degradation function (2.3).
Suppose that a specific function

𝐹 ∶ R𝑚 → R (2.23)

is given. Then, the convex envelope 𝐹 𝑐 is defined as the largest convex function whose graph is point-wise less or equal than the 
graph of the given function 𝐹 . Geometrically, the epigraph of the convex envelope 𝐹 𝑐 corresponds to the convex hull of the epigraph 
of the function 𝐹 , see Fig. 1. Thus, the following explicit characterization

𝐹 𝑐 (𝒙̄) = min

{ 𝑚
∑

𝑖=0
𝑐𝑖 𝐹 (𝒙𝑖)

|

|

|

|

|

𝒙𝑖 ∈ R𝑚, 𝑐𝑖 ≥ 0 for 𝑖 = 0, 1,… , 𝑚,
𝑚
∑

𝑖=0
𝑐𝑖 = 1 and 

𝑚
∑

𝑖=0
𝑐𝑖 𝒙𝑖 = 𝒙̄

}

(2.24)

of the convex envelope 𝐹 𝑐 for 𝒙̄ ∈ R𝑚 emerges. Thus, for any point 𝒙̄ ∈ R𝑚, one considers all convex combinations

𝒙̄ =
𝑚
∑

𝑖=0
𝑐𝑖 𝒙𝑖 (2.25)
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Fig. 1. Illustration of a one-dimensional non-convex function 𝐹 , its convex envelope 𝐹 𝑐 and the epigraphs of both functions epi(𝐹 ) and epi(𝐹 𝑐 ).

of the point 𝒙̄, where 𝑚 + 1 terms are sufficient in 𝑚 dimensions to represent a general convex combination by Caratheodory’s 
Theorem [89], and seeks the smallest convex combination of the corresponding objective values.
For the problem (2.1)-(2.2) at hand, we start with the first time step with index 𝑘 = 0 and consider the condensed incremental energy

𝜓cond(ε̄) = min
{

𝑓 (𝑑)
2

ε̄ ⋅C[ε̄] + 𝑟
(

𝑑 − 𝑑0
) |

|

|

|

0 ≤ 𝑑 − 𝑑0 ≤ Δ𝑡0 𝑑̇max

}

, ε̄ ∈ Sym(𝑛), (2.26)

for 𝑚 = 𝑛(𝑛 + 1)∕2 dimensions. Thus, the convex envelope (2.24) of the condensed incremental energy (2.26) becomes

𝜓𝑐cond(ε̄) = min

{ 𝑚
∑

𝑖=0
𝑐𝑖

(

𝑓
(

𝑑𝑖
)

2
ε𝑖 ⋅C𝑖

[

ε𝑖
]

+ 𝑟
(

𝑑𝑖 − 𝑑0
)

)

|

|

|

|

|

|

𝑚
∑

𝑖=0
𝑐𝑖 ε𝑖 = ε̄, 0 ≤ 𝑑𝑖 − 𝑑0 ≤ Δ𝑡0 𝑑̇max

}

(2.27)

for 𝑚 = 𝑛(𝑛 + 1)∕2, ε̄ ∈ Sym(𝑛) and weighting coefficients 𝑐𝑖 which satisfy the simplex constraint (2.24).
Thus, we observe that the “mixing” which is intrinsic to computing a convex envelope (2.24) also entails a “mixing” of internal 
variables in the sense of creating a “microstructure”. Indeed, instead of a single value of the internal variable 𝑑, up to 𝑛(𝑛 + 1)∕2 + 1
internal variables may appear in the first load step due to the convexification. For the second load step, each of the internal variables 
may decompose further - leading to a process of more and more internal variables for the subsequent time steps. Put differently, a 
(𝑛(𝑛 + 1)∕2 + 1)-ary tree whose depth corresponds to the number of time steps is created.
To avoid these technicalities, it is actually more convenient to work with a continuum than with a possibly large number of discrete 
variables. More precisely, returning to the abstract setting (2.23) for clarity, we consider fields

𝒙 ∶ [0, 1] → R𝑚 (2.28)

on the unit interval. This domain has no intrinsic physical meaning, but permits us to express the convex envelope (2.24) in the form
𝐹 𝑐 (𝒙̄) = min

{

⟨𝐹 (𝒙)⟩[0,1]
|

|

|

𝒙 ∶ [0, 1] → R𝑚, ⟨𝒙⟩[0,1] = 𝒙̄
}

(2.29)

for a prescribed vector 𝒙̄ ∈ R𝑚, where the symbol

⟨𝑞⟩[0,1] = ∫

1

0
𝑞(𝑠) d𝑠 (2.30)

encodes the mean of a function 𝑞 on the unit interval [0, 1]. The equivalence of the two expressions (2.24) and (2.29) is readily seen. 
The right-hand side in Eq. (2.29) is certainly not larger than the right-hand side in Eq. (2.24), as one may define the piece-wise 
constant function

𝒙 ∶ [0, 1] → R𝑚, 𝒙(𝑠) = 𝒙𝑖 if 
𝑖

∑

𝑗=0
𝑐𝑖 ≤ 𝑠 <

𝑖+1
∑

𝑗=0
𝑐𝑖 for 𝑖 = 0, 1,… , 𝑚 − 1. (2.31)

On the other hand, the right-hand side in Eq. (2.24) is certainly not larger than the right-hand side in Eq. (2.29), as any continuous 
convex combination

𝒙̄ = ⟨𝒙⟩[0,1] (2.32)

may be represented by a finite convex combination

𝒙̄ =
𝑚
∑

𝑖=0
𝑐𝑖 𝒙𝑖, 𝒙𝑖 ∈ R𝑚, 𝑐𝑖 ≥ 0,

𝑚
∑

𝑖=0
𝑐𝑖 = 1, (2.33)

with no more than 𝑚 + 1 terms as a consequence of Caratheodory’s Theorem [89].
Returning to the problem (2.27) at hand, we thus consider the following convex envelope

𝜓𝑐cond(ε̄) = min

{

⟨

𝑓 (𝑑)
2

ε ⋅C[ε] + 𝑟 (𝑑 − 𝑑−)
⟩

[0,1]

|

|

|

|

|

⟨ε⟩[0,1] = ε̄, 𝑑− ≤ 𝑑 ≤ 𝑑+
}

(2.34)

Here, 𝑑± ∶ [0, 1] → [𝑑, 𝑑max) are piece-wise constant functions. For the first load step, we have 𝑑− ≡ 𝑑0 and 𝑑+ = 𝑑0 + Δ𝑡0 𝑑̇max. The 
introduction of the fields 𝑑− and 𝑑+ permits to treat subsequent time steps in a uniform fashion.
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Fig. 2. Rod with local damage variable 𝑑.

Fig. 3. Elastic rods connected in series with elastic moduli 𝐸𝑖, lengths 𝓁𝑖 and cross-sectional area 𝐴𝑖 = 𝐴.

2.3.  Computing the convex envelope explicitly

The goal of this section is to compute the convex envelope (2.34)

𝜓𝑐cond(ε̄) = min

{

⟨

𝑓 (𝑑)
2

ε ⋅C[ε] + 𝑟 (𝑑 − 𝑑−)
⟩

[0,1]

|

|

|

|

|

⟨ε⟩[0,1] = ε̄, 𝑑− ≤ 𝑑 ≤ 𝑑+
}

(2.35)

for a prescribed strain ε̄ ∈ Sym(𝑛) and given piece-wise constant functions 𝑑± ∶ [0, 1] → [𝑑, 𝑑max) which we assume to satisfy the 
inequality 𝑑− ≤ 𝑑+ point-wise. Physically speaking, the problem (2.35) may be imagined as a single initially elastic rod which un-
dergoes damage. The domain [0, 1] represents the “material points” of the rod, and the stiffness at each material point is degraded 
by the local damage variable 𝑑(𝑠) at the location 𝑠 ∈ [0, 1], see Fig. 2. The mental image of the rod makes sense because the strains 
appearing in the problem (2.35) do not account for kinematic compatibility as a result for considering the convex envelope, and not 
the quasi-convex one.
As a first step, Schwarz et al. [59] observed the identity

min
⟨ε⟩[0,1]=ε̄

⟨

𝑓 (𝑑)
2

ε ⋅C[ε]
⟩

[0,1]
=
𝑓 (𝑑)
2

ε̄ ⋅C[ε̄] (2.36)

with the harmonically averaged degradation function

𝑓 (𝑑) =
⟨

𝑓 (𝑑)−1
⟩−1
[0,1]. (2.37)

For the convenience of the reader, the mathematical arguments are collected in Appendix A. From a homogenization point-of-view 
in one spatial dimension, the harmonic average (2.39) emerges naturally as the homogenization operator of elastic rods connected 
in series [90], illustrated in Fig. 3. With this insight at hand, we are left to evaluate the minimization problem

𝑓 (𝑑)𝜓0(ε̄) + 𝑟 ⟨𝑑 − 𝑑−⟩[0,1] ⟶ min
𝑑−≤𝑑≤𝑑+

(2.38)

with the elastic energy 𝜓0 of the undamaged state (2.17). To proceed beyond the state of the art [59], we need to make an additional 
assumption.
We require that the function

𝑔 ∶ [𝑑, 𝑑max) → [0,∞), 𝑔(𝑑) = 1
𝑓 (𝑑)

, (2.39)

is well-defined and convex. This assumption is readily seen to hold for the three specific cases (2.5)–(2.7) of damage-degradation 
functions which we have in mind. For the exponential degradation function (2.5), the function 𝑔 takes the form 𝑔(𝑑) = 𝑒𝑑 , which 
is clearly a convex function. For the linear and the quadratic degradation functions, the reciprocal function (2.39) takes the form 
𝑔(𝑑) = (1 − 𝑑)−𝑚 for 𝑚 = 1 and 𝑚 = 2. This function is convex on the interval [0, 1), as can be read off the second derivative

𝑔′′(𝑑) = 𝑚 (𝑚 + 1) 1
(1 − 𝑑)𝑚+2

, (2.40)
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which turns out to be positive for 𝑑 ∈ [0, 1).
Under the convexity assumption on the function (2.39), the following alternative expression

𝜓𝑐cond(ε̄) = min
𝜙∶[0,1]→[0,1]

⟨

(1 − 𝜙)𝑓 (𝑑−)−1 + 𝜙𝑓
(

𝑑+
)−1

⟩−1

[0,1]
𝜓0(ε̄) + 𝑟

⟨

𝜙
(

𝑑+ − 𝑑−
)⟩

[0,1] (2.41)

is valid. The derivation of this result comprises Appendix B. In fact, when preparing the revised manuscript we discovered that 
Francfort and co-workers [91,92] provided a result that is equivalent to the expression (2.41) for the linear degradation function
(2.6) and the first time step.
Let us discuss the ramifications of the formula (2.41). The result (2.41) may be understood readily via the previously introduced 
analogy with an elastic rod whose stiffness is heterogeneous along the rod. At every continuum point of the rod with Young’s modulus 
𝐸(𝑑−), there is a maximum damage to be attained during this time step, which would lead to the Young’s modulus 𝐸(𝑑+) (during 
unloading), which is lower than 𝐸(𝑑−). The model (2.41) predicts that either the continuum point remains undamaged or is damaged 
as much as possible. The “volume fraction” 𝜙 in Eq. (2.41) indicates the fraction of such continuum points which damage fully, and 
the remaining 1 − 𝜙 fraction of continuum points remain unscathed.
To be more explicit, we study the first time step, where the bounding functions 𝑑± are actually constant with values

𝑑− = 𝑑0 and 𝑑+ = 𝑑0 + Δ𝑡0 𝑑̇max. (2.42)

Then, the optimization problem (2.41) takes the form

𝜓𝑐cond(ε̄) = min
𝜙0∈[0,1]

[

(

(

1 − 𝜙0
)

𝑓
(

𝑑0
)−1 + 𝜙0 𝑓

(

𝑑0 + Δ𝑡0 𝑑̇max
)−1)−1

𝜓0(ε̄) + 𝑟 𝜙0 Δ𝑡0 𝑑̇max

]

(2.43)

with 𝜙0 = ⟨𝜙⟩[0,1]. Thus, we observe that intermediate damage states in the interior of the interval [𝑑0, 𝑑0 + Δ𝑡0 𝑑̇max] are not attained. 
Rather, a mixing of the extreme states, i.e., the end points of the interval, with mixing coefficients 1 − 𝜙0 and 𝜙0 occur. In the mental 
rod model, a fraction of 𝜙0 of continuum points within the rod are damaged as much as possible, and the remaining 1 − 𝜙0 points 
remain in their virgin state. Here, the role of the damage-rate limitation 𝑑̇max becomes apparent: The model (2.43) predicts that 
certain points damage as much as possible. If there was no limitation to the damage increment, the specimen would fail instantly, 
leading to complete damage and recovering the ill-posed damage-evolution problem we started out with.
Subsequent time steps also follow such a mixing, triggering a further splitting of the attainable states, leading to damage distributions. 
In case the time increment is constant, an explicit expression of the resulting damage model can be constructed, see Section 3.1. 
Whereas the damage model is rate-dependent, in general, for the specific case with unlimited damage rate 𝑑̇ → ∞, the damage model 
becomes rate-independent. In addition, the damage model may remain rate-independent, even for finite damage rate limitations, in 
case the actual damage increments are smaller than the maximum admissible damage increments, i.e., the damage rate limitation is 
inactive.
The model formulation in Eq. (2.41) only includes the macroscopic strain ε̄ explicitly, and the distinction between the microscopic 
strains ε𝑖 and the macroscopic strain ε̄ is not required anymore. Thus, we omit the bar over the macroscopic strain throughout the 
remaining manuscript for simplicity, i.e., the notation ε is used for the macroscopic strain.

2.4.  The optimal transport point-of-view

The transition from discrete attained states (2.24) to a continuum description (2.29) turned out to be beneficial for the mathe-
matical treatment of the convex relaxation problem. Indeed, we could reduce the technicalities and arrive at a unified description of 
the emerging constitutive model which is valid for all time steps. Despite these advantages of the continuum description in terms of 
damage fields, there are some downsides, in particular in terms of the uniqueness and interpretation of the results. More precisely, 
as we consider a convex envelope, and not a quasi-convex one, there is no natural spatial “order” on the attained damage values. In 
particular, for a given damage state realizing the minimum (2.35), we may re-order this state in an arbitrary way and obtain another 
optimal damage state. This circumstance is a direct consequence of the lacking spatial correlation of th convex envelope.
Thus, one observes that the spatial arrangement of the damage values is not relevant. However, the distribution of the damage values 
turns out to be the expressive value of significance. In mathematical terms, instead of a field

𝑑 ∶ [0, 1] → [0, 𝑑max), (2.44)

we consider the probability measure 𝜇 on the set [0, 𝑑max) of attainable damage values. In particular, for a continuous function 
Φ ∶ [0, 𝑑max) → R, we notice the equality

∫

1

0
Φ(𝑑(𝑠)) d𝑠 = ∫

𝑑max

0
Φ(𝑑) d𝜇(𝑑), (2.45)

where the letter 𝑑 on the left-hand side stands for the damage field 𝑑, whereas the right-hand side involves the letter 𝑑 as the variable 
of integration. The Eq. (2.45) may be interpreted as some form of the co-area formula.
In view of the Eq. (2.45), the relevant integral quantities of the field 𝑑 may be expressed equivalently via statistics of the associated 
probability measure 𝜇. Moreover, under a re-ordering of the domain [0, 1], the probability measure 𝜇 remains unaltered.
These observations motivate us to consider the probability measure 𝜇 as the primary quantity of interest describing the phase space 
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of the relaxed damage model. In fact, we may express the free energy (2.1) in the form

𝜓(ε, 𝜇) =
(

∫

𝑑max

0
𝑓 (𝑑)−1 d𝜇(𝑑)

)−1

𝜓0(ε), (2.46)

where we abuse notation and retain the letter 𝜓 for the free energy, although it has been reserved for damage functions previously. 
With respect to the framework of a GSM, the time derivative of the free energy with respect to the evolution of the probability measure 
𝜇 follows as

𝜕𝜓
𝜕𝜇

(ε, 𝜇) 𝜇̇ = −
∫

𝑑max

0
𝑓 (𝑑)−1 𝑑𝜇̇(𝑑)

(

∫

𝑑max

0
𝑓 (𝑑)−1 𝑑𝜇(𝑑)

)2
𝜓0(ε), (2.47)

implicitly defining the thermodynamical driving force. 
For a fixed time step 𝑘, the transition from the previous measure 𝜇𝑘 to the current measure 𝜇 involves optimal transportation [69–

71,74,93]. In this context, a transportation plan between the probability measures 𝜇𝑘 and 𝜇 is a measure 𝜋 on the product space 
[0, 𝑑max) × [0, 𝑑max) ≡ [0, 𝑑max)2 which satisfies the push-forward conditions

(

pr1
)

∗𝜋 = 𝜇𝑘 and
(

pr2
)

∗𝜋 = 𝜇 (2.48)

in terms of the projections pr𝑖(𝑑1, 𝑑2) = 𝑑𝑖 (𝑖 = 1, 2). The conditions (2.48) state that the transportation plan 𝜋 distributes the mass 
from the measure 𝜇𝑘 to the measure 𝜇. An equivalent formulation of the conditions (2.48) is that for any continuous function 
Φ ∶ [0, 𝑑max) → R and any bounded interval 𝐼 , the conditions

∫𝐼×[0,𝑑max)
Φ(𝑑1) d𝜋(𝑑1, 𝑑2) = ∫𝐼

Φ(𝑑1) d𝜇𝑘(𝑑1) and ∫[0,𝑑max)×𝐼
Φ(𝑑2) d𝜋(𝑑1, 𝑑2) = ∫𝐼

Φ(𝑑2) d𝜇𝑘(𝑑2) (2.49)

must hold true. With the notation of transportation plan at hand, we may describe the transition from the previous state 𝜇𝑘 to the 
current state 𝜇 mathematically. More precisely, the probability measure 𝜇 minimizes the functional

(

∫

𝑑max

0
𝑓 (𝑑)−1 d𝜇(𝑑)

)−1

𝜓0(ε) +(𝜇𝑘, 𝜇), (2.50)

where the dissipation distance (

𝜇𝑘, 𝜇
) is the minimum of the Monge-Kantorovich problem [94]


(

𝜇𝑘, 𝜇
)

= min

{

∫[0,𝑑max)2
𝜅(𝑑1, 𝑑2) d𝜋(𝑑1, 𝑑2)

|

|

|

|

|

𝜋 is a transportation plan from 𝜇𝑘 to 𝜇
}

, (2.51)

formulated in terms of the cost function

𝜅(𝑑1, 𝑑2) =
{

𝑟(𝑑2 − 𝑑1), 𝑑1 ≤ 𝑑2 ≤ 𝑑1 + Δ𝑡𝑘 𝑑̇max,
+∞, otherwise.

(2.52)

The formulation (2.50) highlights the convexity of the considered model. Indeed, the traditional Hookean free energy

𝜓Hooke(ε,S) = 1
2
ε ⋅ S−1[ε], (2.53)

formulated in terms of the strain ε and the compliance tensor S, turns out to be a convex function of both arguments, see Görthofer et 
al. [22]. In particular, the free energy (2.46) is also a convex function of its arguments ε and 𝜇. First, the undamaged elastic energy 
𝜓0(ε) is convex in its argument ε. Secondly, the harmonic mean of the function 𝑓 (𝑑) is also convex in the argument 𝜇, essentially 
as the integration against a probability measure is a linear operation and the reciprocal function is convex for positive input values. 
As the minimum value of a Monge-Kantorovich problem is a convex function of the marginals 𝜇𝑘 and 𝜇 [74,93], the dissipation 
distance (2.51) is convex in the argument 𝜇 too. Thus, the incremental minimization problem (2.50) is a convex optimization problem, 
as well. As a result, the condensed incremental energy

𝜓cond(ε) = min

{

(

∫

𝑑max

0
𝑓 (𝑑)−1 d𝜇(𝑑)

)−1

𝜓0(ε) +(𝜇𝑘, 𝜇)
|

|

|

|

|

|

𝜇 is a probability measure on [0, 𝑑max)
}

(2.54)

turns out to be a convex function.
We wish to close this excursion to the world of mathematical optimal transport with an interpretation of the results discussed in 
Section 2.4. Under the convexity assumption (2.39) on the reciprocal of the damage-degradation function, the solution 𝜇 of the 
optimization problem (2.50) will be a sum of Dirac measures, provided the previous internal variable 𝜇𝑘 was a sum of Dirac measures, 
as well. In particular, if the first time step involves a fully intact material, i.e.,

𝜇0 = 𝛿0, (2.55)

where 𝛿𝑑 stands for the Dirac measure on the set [0, 𝑑max) concentrated at the damage value 𝑑, the first time step will lead to a damage 
distribution

𝜇1 = (1 − 𝜙) 𝛿0 + 𝜙𝛿Δ𝑡0 𝑑̇max for some 𝜙 ∈ [0, 1]. (2.56)
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Fig. 4. Evolution of a discrete damage distribution with three damage values for two time steps.

Suppose the 𝑘th time step is described by the discrete measure

𝜇𝑘 =
𝑁
∑

𝑗=1
𝜌𝑗 𝛿𝑑𝑗 , 𝜌𝑗 ≥ 0,

𝑁
∑

𝑗=1
𝜌𝑗 = 1, (2.57)

and distinct damage values 𝑑𝑗 ∈ [0, 𝑑max), the subsequent time step will have the form

𝜇𝑘 =
𝑁
∑

𝑗=1
𝜌𝑗

[

(1 − 𝜙𝑗 )𝛿𝑑𝑗 + 𝜙𝑗𝛿𝑑𝑗+Δ𝑡𝑘 𝑑̇max
]

(2.58)

with suitable “fractions” 𝜙𝑗 ∈ [0, 1]. Due to the connection of the convexified damage model with the theory of optimal transport, we 
call it optimal transport (OT) damage model.

In Fig. 4, the evolution of a discrete damage distribution with the three damage values 𝑑𝑖 (𝑖 = 0, 1, 2) is shown for two time steps. 
The initial discrete damage distribution is described by the measure 𝜇0 = 𝛿𝑑0 , i.e., the damage fractions are 𝜌00 = 1 and 𝜌01 = 𝜌02 = 0. 
During the first time step, see Fig. 4(a), damage mass is transferred from the damage value 𝑑0 to the damage value 𝑑1 with the 
transition fraction 𝜙0

0 = 1∕3. The damage distribution at the end of the first time step is 𝜇1 = 2∕3 𝛿𝑑0 + 1∕3 𝛿𝑑1 . In the second time 
step, see Fig. 4(b), the evolution of the damage distribution is characterized by a damage transportation from the damage value 𝑑0 to 
the damage value 𝑑1 as well as a damage transportation from the damage value 𝑑1 to the damage value 𝑑2, both with the transition 
fraction 𝜙1

0 = 𝜙1
1 = 1∕2. The updated damage distribution reads 𝜇2 = 1∕3 𝛿𝑑0 + 1∕2 𝛿𝑑1 + 1∕6 𝛿𝑑2 .

The section at hand is mostly informative, i.e., it puts the results on the convex envelope (2.41) into perspective. Such a formulation 
appears to be imperative if we were interested in recovering a limit for vanishing time steps Δ𝑡𝑖 → 0, i.e., a time-continuous model. 
Indeed, we started out with a time-continuous model (2.23)-(2.24), and performed a convex relaxation at a time-discrete level. The 
resulting model may be treated numerically - and we will provide details in Section 3. However, from a continuum mechanical point 
of view, it is desirable to recover a time-continuous description, as well. We shall not do so here explicitly. Rather, we remark that 
the mathematical theory of optimal transport is the natural framework for such a task: The time-continuous model naturally involves 
probability measures as internal variables. These measures encode a damage distribution in a natural way. The latter insight might 
provide a reasonable continuum-mechanical interpretation of the convex relaxation process.
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3.  Computational mechanics of the damage model

3.1.  Discussion of the model

In this section, we work out the mechanical aspects of the continuum-damage model resulting from the relaxation procedure (2.41) 
under the assumption that the time-step size Δ𝑡𝑘 ≡ Δ𝑡 is constant. In particular, assuming initial damage of zero, the attainable damage 
states of the model are given by the sequence

0,Δ𝑡 𝑑̇max, 2Δ𝑡 𝑑̇max, 3Δ𝑡 𝑑̇max,… (3.1)

As we are considering a finite number of time steps, and we also enforce a maximum damage value 𝑑max, it is sufficient to restrict to 
a finite number

𝑑0, 𝑑1,… , 𝑑𝑁 (3.2)

or ordered damage states
𝑑𝑗 = min

(

𝑗 Δ𝑡 𝑑̇max, 𝑑max
)

, 𝑗 = 0, 1,… , 𝑁, (3.3)

i.e., which satisfy the inequalities
𝑑𝑗 < 𝑑𝑗+1 for 𝑗 = 0, 1,… , 𝑁 − 1. (3.4)

The phase-space of the internal variables comprises all damage fractions
ρ ≡

[

𝜌0 ⋯ 𝜌𝑁
]𝖳 (3.5)

which satisfy the simplex constraints

𝜌𝑗 ≥ 0 (𝑗 = 0, 1,… , 𝑁) and
𝑁
∑

𝑗=0
𝜌𝑗 = 1. (3.6)

The number 𝜌𝑗 ∈ [0, 1] indicates the fraction of damage residing in the damage state 𝑑𝑗 (3.3). Initially, we have 𝜌0 = 1 and all other 
𝜌𝑗 ’s vanish.
For any such damage-distribution state ρ, the effective degradation function 𝑓 computes as

𝑓 (ρ) ≡

( 𝑁
∑

𝑗=0
𝜌𝑗 𝑔𝑗

)−1

where 𝑔𝑗 = 𝑓 (𝑑𝑗 )−1, (3.7)

and the associated free energy reads

𝜓(ε,ρ) = 𝑓 (ρ) 1
2
ε ⋅C[ε] (3.8)

with corresponding stress tensor

𝝈 ≡ 𝜕𝜓
𝜕ε

(ε,ρ), i.e., 𝝈 = 𝑓 (ρ)C[ε], (3.9)

compare Eq. (2.9). The change from one time step to the next is governed by a suitable dissipation distance. More precisely, the 
transition from the internal-variable state at the previous step ρ𝑘 to the value at the current time step ρ𝑘+1 ≡ ρ is handled via suitable 
mixing coefficients

𝜙𝑗 ∈ [0, 1], 𝑗 = 0, 1,… , 𝑁 − 1, (3.10)

which we collect in a vector φ ∈ [0, 1]𝑁 . Then, the damage fractions at the next time step are parameterized as follows

𝜌𝑗 (φ) =

⎧

⎪

⎨

⎪

⎩

(

1 − 𝜙0
)

𝜌𝑘0 , 𝑗 = 0,
(

1 − 𝜙𝑗
)

𝜌𝑘𝑗 + 𝜙𝑗−1 𝜌
𝑘
𝑗−1, 0 < 𝑗 < 𝑁,

𝜌𝑘𝑁 + 𝜙𝑁−1 𝜌𝑘𝑁−1, 𝑗 = 𝑁.
(3.11)

Thus, the volume fractions (3.10) determine the fraction of damage “mass” which is transferred to the next higher level, see Fig. 4 for 
an illustration. For a fixed level 𝑗, there is a fraction 𝜙𝑗−1 coming from the previous level and a fraction 1 − 𝜙𝑗 of remaining “mass”. 
The lowest and the highest level with indices 𝑗 = 0 and 𝑗 = 𝑁 deserve a special treatment. As there is no negative state, the lowest 
level 𝑗 = 0 does not receive any “inflow” of damage. Thus, it can only lose damage “mass”. The highest level, on the other hand, 
cannot lose damage “mass”. Thus, there is no outflow of damage to a higher level, explaining why the index 𝑗 in Eq. (3.10) runs only 
up to the limit 𝑁 − 1. An example for the evolution of a discrete damage distribution with three damage values is shown in Fig. 4 for 
two time steps.
The dissipation distance between the damage states ρ𝑘 and ρ ≡ ρ𝑘+1 is actually a function of the transition coefficients (3.10)

(φ) = 𝑟
𝑁−1
∑

𝑗=0
𝜌𝑘𝑗 𝜙𝑗 Δ𝑑𝑗 with Δ𝑑𝑗 = 𝑑𝑗+1 − 𝑑𝑗 . (3.12)
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In view of Eq. (3.11), the dissipation (3.12) encodes the fraction of damage “mass” which dissipates to the next damage level, 
parameterized by the transition fractions φ.
All in all, the incremental potential 𝑃  for the 𝑘th load step takes the form

𝑃 (ε,φ) =

( 𝑁
∑

𝑗=0
𝜌𝑗 (φ) 𝑔𝑗

)−1
1
2
ε ⋅C[ε] + 𝑟

𝑁−1
∑

𝑗=0
𝜌𝑘𝑗 𝜙𝑗 Δ𝑑𝑗 , (3.13)

where ε ∈ Sym(𝑛) denotes a strain tensor, the damage “masses” ρ are parameterized by Eq. (3.11) and the transition fractions φ
are elements of the unit cube (3.10). The discrete evolution of the internal variables, the damage “masses”, is thus governed by the 
optimization problem

𝜓cond(ε) = min
φ∈[0,1]𝑁

𝑃 (ε,φ), (3.14)

where the minimum of the functional is the condensed incremental energy 𝜓cond, see Eqs. (2.34) and (2.43). Notice that we drop the 
superscript 𝑐 and the bar over the strain for notational convenience.

3.2.  Computational aspects on material-point level

Algorithm 1 Evaluation of the OT damage model on material point level.
Input: current strain ε, damage masses ρ𝑘 of the previous time step
Parameters of the damage model: 𝐝, 𝐠, 𝑟 ⊳ Eqs. (3.2), (3.7) and (2.2)

1 Initialize the damage volume fractions φ = 𝟎
2 Compute the undamaged elastic energy 𝜓0(ε) ⊳ Eq. (2.17)
3 Compute ξ and η ⊳ Eqs. (3.17) and (3.19)
4 while ‖Δφ‖ > 10−8 do
5 Update the damage fractions ρ(φ) ⊳ Eq. (3.11)
6 Compute the effective degradation 𝑓 (φ) ⊳ Eq. (3.15)
7 Update the damage volume fractions φ ⊳ Eqs. (3.29) and (3.30)
8 Compute the stress 𝝈(ε,ρ) ⊳ Eq. (3.9)
Output: current stress 𝝈, damage masses ρ of the current time step

For a computational treatment of the model (3.14), the following remarks are helpful.

1. The effective degradation function 𝑓 may be re-written in the form

𝑓 (φ) ≡

( 𝑁
∑

𝑗=0
𝜌𝑗 (φ) 𝑔𝑗

)−1

=

(𝑁−1
∑

𝑗=0

(

(

1 − 𝜙𝑗
)

𝜌𝑘𝑗 𝑔𝑗 + 𝜙𝑗𝜌
𝑘
𝑗 𝑔𝑗+1

)

+ 𝜌𝑘𝑁𝑔𝑁

)−1

=

( 𝑁
∑

𝑗=0
𝜌𝑘𝑗 𝑔𝑗 +

𝑁−1
∑

𝑗=0
𝜙𝑗𝜌

𝑘
𝑗
(

𝑔𝑗+1 − 𝑔𝑗
)

)−1

,

(3.15)

which we may also express in the compressed form

𝑓 (φ) =
(

𝑓 (𝟎)−1 +φ ⋅ ξ
)−1 (3.16)

in terms of the vector ξ ∈ R𝑁  with non-negative components
𝜉𝑗 = 𝜌𝑘𝑗 (𝑔𝑗+1 − 𝑔𝑗 ), 𝑗 = 0, 1,… , 𝑁 − 1. (3.17)

2. Similarly, the dissipation distance may be expressed in the form

𝑟
𝑁−1
∑

𝑗=0
𝜌𝑘𝑗 𝜙𝑗 Δ𝑑𝑗 = φ ⋅ η (3.18)

with the vector η ∈ R𝑁  whose components read
𝜂𝑗 = 𝑟𝜌𝑘𝑗 Δ𝑑𝑗 , 𝑗 = 0, 1,… , 𝑁 − 1. (3.19)

These components are non-negative, as well.

Thus, in terms of the undamaged elastic energy 𝜓0, see Eq. (2.17), the optimization problem (3.14) may be written in the compact 
vector form

𝑃 (ε,φ) =
(

𝑓 (𝟎)−1 +φ ⋅ ξ
)−1𝜓0(ε) +φ ⋅ η → min

φ∈[0,1]𝑁
. (3.20)
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To derive the necessary (and sufficient) conditions for this optimization problem, we first take a look at the derivatives of the effective 
degradation function (3.15). This task is handled easily by re-writing Eq. (3.16) in the form

1
𝑓 (φ)

= 1
𝑓 (𝟎)

+φ ⋅ ξ. (3.21)

Differentiating both hands of the identity w.r.t. the variable 𝜙𝑗 , we arrive at the equation

− 1
𝑓 (φ)2

𝜕𝑓 (φ)
𝜕𝜙𝑗

= 𝜉𝑗 , (3.22)

i.e., we are led to the expression
𝜕𝑓 (φ)
𝜕𝜙𝑖

= −𝜉𝑖 𝑓 (φ)2, 𝑖 = 0, 1,… , 𝑁 − 1. (3.23)

For the second derivative, we deduce
𝜕𝑓 (φ)
𝜕𝜙𝑖 𝜕𝜙𝑗

= −2 𝜉𝑖𝑓 (φ)
𝜕𝑓 (φ)
𝜕𝜙𝑗

= 2 𝜉𝑖 𝜉𝑗 𝑓 (φ)3, 𝑖, 𝑗 = 0, 1,… , 𝑁 − 1. (3.24)

We observe that the Hessian of the objective function (3.20)
𝜕2𝑃 (ε,φ)
𝜕φ2

= 2 𝑓 (φ)3𝜓0(ε)ξ⊗ ξ (3.25)

is a positive semi-definite matrix. Indeed, both the degradation function (3.15) and the undamaged free energy (2.17) take non-
negative values, and a dyadic product of a vector leads to a positive semi-definite matrix.
The positive semidefiniteness of the Hessian (3.25) reveals that the objective function 𝑃  is convex in the argument φ. In particular, 
every critical point of the optimization problem (3.14) is a global minimum. We derived this fact by more general arguments in 
Section 2.4, but come across it at this point, as well.
To find a critical point of the problem (3.14), we first study the case of an interior critical point. Such a point satisfies the equation

𝟎
!
=
𝜕𝑃 (ε,φ)
𝜕φ

= −𝑓 (φ)2𝜓0(ε)ξ + η. (3.26)

Apparently, such an interior critical point can only exist in case the vectors ξ and η are collinear. Still, to find a root of the vector 
field on the right-hand side (3.26), we take a look at a Newton-type method

𝟎
!
= −𝑓 (φ + Δφ)2𝜓0(ε)ξ + η ≈ −𝑓 (φ)2𝜓0(ε)ξ + 𝜂 + 2 𝑓 (φ)3 𝜓0(ε)(ξ⊗ ξ)Δφ, (3.27)

i.e.,

(ξ⊗ ξ)Δφ =
𝑓 (φ)2𝜓0(ε)ξ − η

2 𝑓 (φ)3 𝜓0(ε)
. (3.28)

Due to the degeneracy of the left-hand side, we consider the diagonal components of the matrix ξ⊗ ξ only. To account for the box 
constraints 0 ≤ 𝜙𝑗 ≤ 1, we use a projection onto the interval [0, 1]. We are thus led to the update scheme

𝜙𝑗 ← max
(

0,min
(

𝜙𝑗 + 𝑠𝑗
(

𝑓 (φ)2𝜓0(ε) 𝜉𝑗 − 𝜂𝑗
)

, 1
))

, 𝑗 = 0, 1,… , 𝑁 − 1, (3.29)

with the step size

𝑠𝑗 =

{
(

2 𝑓 (φ)3 𝜓0(ε) 𝜉2𝑗
)−1

, 𝜌𝑘𝑗 > 0,
0, otherwise.

(3.30)

Put differently, we consider a projected gradient method [95, 16.6] with an adaptive step size which recovers Newton’s method 
in 1D. The algorithmic approach is summarized in Algorithm 1. The designed computational treatment is simple, yet resolves the 
incremental problem (3.14) quickly. In the computational practice, we observe convergence of the numerical scheme to a unique 
fixed point. We do not, however, have a mathematical argument for uniqueness at our disposal.

3.3.  Convexity properties of the condensed incremental energy

In this section, we take a look at the mathematical properties of the condensed incremental energy (3.14)
𝜓cond(ε) = min

φ∈[0,1]𝑁
𝑃 (ε,φ), ε ∈ Sym(𝑛), (3.31)

with the incremental potential (3.13)

𝑃 (ε,φ) =

( 𝑁
∑

𝑗=0
𝜌𝑗 (φ) 𝑔𝑗

)−1
1
2
ε ⋅C[ε] + 𝑟

𝑁−1
∑

𝑗=0
𝜌𝑘𝑗 𝜙𝑗 Δ𝑑𝑗 , (3.32)

which governs the mechanical subproblem associated to each discrete time step with the parametrization (3.11). The condensed 
incremental energy has the following properties:
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(i) There are positive constants 𝛼−, 𝛼+ and 𝐶+, s.t. the two-sided estimate
𝛼−
2

ε ⋅C[ε] ≤ 𝜓cond(ε) ≤ 𝐶+ +
𝛼+
2

ε ⋅C[ε] (3.33)

is valid for all strains ε ∈ Sym(𝑛).
(ii) The condensed incremental energy (3.31) is convex, but not strictly convex.
(iii) The naturally associated mechanical boundary-value problem admits minimizers. More precisely, suppose a domain Ω ⊆ R𝑛 is 

given, whose sufficiently smooth boundary
𝜕Ω = Γ𝐷 ∪ Γ𝑁 (3.34)

decomposes into non-overlapping subsets Γ𝐷 and Γ𝑁  which serve as the locations where Dirichlet and Neumann boundary 
conditions are imposed. In case the function

𝐻1
𝐷(Ω)

𝑛 → R, 𝒖 ↦ ‖𝒖‖𝐻1
𝐷
∶= ‖∇𝑠𝒖‖𝐿2 , (3.35)

defines a norm on the Sobolev space

𝐻1
𝐷(Ω)

𝑛 =
{

𝒖 ∈ 𝐻1(Ω)
|

|

|

|

𝒖||
|Γ𝐷

≡ 0

}

(3.36)

with vanishing trace on the Dirichlet boundary, for any boundary-condition enforcing displacement field 𝒖0 ∈ 𝐻1(Ω)𝑛, body-force 
field 𝒇 ∈ 𝐻−1

𝐷 (Ω)𝑛 ≡
(

𝐻1
𝐷(Ω)

𝑛)′ and traction field 𝒕 ∈ 𝐻− 1
2 (Γ𝑁 )𝑛, there is a minimizer to the variational problem

∫Ω
𝜓cond(∇𝑠(𝒖0 + 𝒖)) + 𝒇 ⋅ 𝒖 d𝑉 + ∫Γ𝑁

𝒕 ⋅ 𝒖 d𝐴⟶ min
𝒖∈𝐻1

𝐷(Ω)
𝑛
. (3.37)

The first property (3.33) ensures that the incremental energy is sandwiched between two quadratic functions, ensuring both a coer-
civity condition and a growth estimate. Together with the second property, the weak lower semicontinuity of the functional (3.37) is 
ensured, see standard textbooks on the calculus of variations like Dacorogna [62]. In particular, these two properties are responsible 
for the validity of the third statement, i.e., the existence of minimizers to the mechanical boundary problem (3.37), associated to each 
time step of a component made of a homogeneous OT damage material. A simple sufficient condition for the uniqueness of solutions 
to the problem (3.37) is strict convexity. Such a condition is not satisfied by the incremental energy (3.31), as stated in condition (ii) 
and demonstrated explicitly for the first time step in Appendix C.3.
For the sake of readability, the arguments supporting the claimed properties (i)–(iii) were out-sourced to Appendix C.

4.  Computational investigations

4.1.  Setup

We consider matrix-inclusion materials within a fixed unit cell
𝑄 =

[

0, 𝑄1
]

×
[

0, 𝑄2
]

×
[

0, 𝑄3
]

, (4.1)

i.e., we suppose that two open subsets – corresponding to the matrix and the inclusion – are given, which are disjoint and whose 
closure covers the entire cell. Then, we consider heterogeneous generalized standard materials, s.t. the fibers are purely elastic and 
the matrix is governed by a damageable material. More precisely, we consider different material models, encompassing the original 
damage model (2.1)-(2.2) (with 𝑑̇max = +∞), the rate-limitation approach (2.1)-(2.2) (with 𝑑̇max < +∞) proposed by Allix [63], the 
relaxation-type model by Schwarz et al. [59] and the novel optimal transport (OT) model introduced in the manuscript at hand, and 
discussed in Section 3.
Within every time step, kinematic compatibility enforces the local strain field within the unit cell to possess the form

ε(𝒙) = ε̄ + ∇𝑠𝒖(𝒙), 𝒙 ∈ 𝑄, (4.2)

involving the symmetrized gradient of a periodic displacement-fluctuation field 𝒖. In particular, the macroscopic strain ε̄ computes 
as the volume average of the microscopic strain field ε

ε̄ = 1
𝑄1𝑄2𝑄3 ∫

𝑄

ε(𝒙) d𝑉 . (4.3)

We assume the material to be undamaged in the initial state. For a prescribed loading path of macroscopic strains ε̄, we seek, for each 
time step, the associated strain field (4.2) and field of damage variables, s.t. the static balance of linear momentum without volume 
forces

div 𝝈(𝒙) = 𝟎 (4.4)

is satisfied, where the stress tensor is related to the strain tensor and the internal variables through the governing constitutive law. 
Subsequently, the macroscopic stress tensor 𝝈̄ arises via volume averaging [96]

𝝈̄ = 1
𝑄1𝑄2𝑄3 ∫

𝑄

𝝈(𝒙) d𝑉 . (4.5)
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Table 1 
Isotropic material properties for the PA matrix and the E-glass 
fibers, both taken from Doghri et al. [104].
    E-glass fibers  PA matrix  
 𝐸 = 72.0 GPa 𝐸 = 2.1 GPa 
 𝜈 = 0.22 𝜈 = 0.3  

Fig. 5. Stress-strain curve for varying model parameters on material point level.

To solve the static balance of linear momentum (4.4), we use an implementation of the proposed damage model as a user-
defined subroutine within an FFT-based computational homogenization code. The code [97,98] is written in Python with Cython 
extensions and parallelized with OpenMP. For the numerical homogenization within the FFT-based computational homogenization 
framework [75,76], we discretize the problem by finite differences on a staggered grid [99]. The resulting nonlinear equations are 
solved with a conjugate gradient scheme [100–103] with a relative tolerance of 10−5 as termination criterion. The investigations 
were conducted on a desktop computer equipped with an 8-core Intel i7 CPU, 64 GB RAM, and enabled Hyper-Threading with a total 
number of 16 threads. For the computations related to the long fiber reinforced composite material at the end of the computational 
investigations, we used a workstation with two AMD EPYC 9534 CPUs, each with 64 physical cores, enabled SMT, 256 threads total, 
and 1024 GB of DRAM.

As the standard material, we consider a polyamide (PA) matrix reinforced with E-glass fibers. For the matrix material and the 
fibers, we use isotropic elastic parameters [104], see Table 1. Whereas the fibers are modeled in a purely linear elastic way, we apply 
the introduced damage model to the matrix material and define the damage parameters 𝑟 and 𝑑̇max as part of the considered studies.

We limit the minimum of the effective degradation function 𝑓 to be greater or equal than the threshold 10−10, which leads to a 
maximum damage 𝑑max ≈ 23.03 for the exponential degradation function, 𝑑max = 1 − 10−10 for the linear degradation function and 
𝑑max ≈ 0.99999 for the quadratic degradation function. If not specified otherwise, the exponential degradation function is used for the 
damage model at hand.

4.2.  Studies on material point level

In this section, we investigate the influence of the damage parameters 𝑟 and 𝑑̇max as well as the degradation-function type on 
the damage model. Therefore, we investigate the stress-strain behavior of the matrix material at material point level. As the loading 
condition, we select an uniaxial extension in 𝒆1-direction with maximum strain of 𝜀11 = 3%. The loading is applied in 200 linear loading 
steps with a time increment of Δ𝑡 = 0.015 s. As the standard setup, we select the damage parameters 𝑟 = 0.10MPa and 𝑑̇max = 1.00 s−1.
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Influence of the damage parameters
Let us start with the investigation of the model parameter 𝑟. According to Eq. (2.16), the undamaged energy 𝜓0 needs to be greater 

or equal to the value 𝑟 for damage to initiate in case of an exponential degradation function. As the undamaged energy computes as

𝜓0(ε) =
1
2
𝐸 𝜀211 (4.6)

for the considered unidirectional tensile test, damage starts at the applied strain level

𝜀11 =
√

2 𝑟
𝐸
. (4.7)

Thus, the model parameter 𝑟 may be interpreted as a limit for damage initiation. The obtained stress-strain curves for varying model 
parameters 𝑟 are given in Fig. 5(a). In accordance with Eq. (4.7), we observe that with increasing parameter 𝑟, the damage initiation is 
activated at a higher strain level 𝜀11. For instance, the required strain with respect to damage initiation is 𝜀11 ≈ 0.31% for the parameter 
𝑟 = 0.01MPa and 𝜀11 ≈ 2.67% for the parameter 𝑟 = 0.75MPa. In fact, for the highest parameter value 𝑟 = 1.00MPa investigated, the 
required strain is above the maximum strain of 𝜀11 = 3%, i.e., the material shows a completely linear elastic behavior within the 
considered range.

For the smallest considered parameter value 𝑟 = 0.01MPa, taking a look beyond the elastic region, we observe first a positive slope, 
i.e., a region of hardening, and then a negative slope, i.e., softening. In all other cases, no significant initial hardening is observable. 
Let us compute the critical value for 𝑟 which marks the transition from hardening to softening at the damage initiation. To simplify the 
discussion, we investigate the non-convex damage model instead of the OT damage model. At the start of the damage initiation (4.7), 
the corresponding stress level reads

𝜎𝑘11
(

𝜀𝑘11
)

=
√

2 𝑟𝐸, (4.8)

where 𝑘 denotes the time step of the damage initiation. For the strain increment Δ𝜀11, the strain level of the subsequent time step 
becomes

𝜀𝑘+111 = 𝜀𝑘11 + Δ𝜀11, (4.9)

and the damage variable increases from zero to the value 𝑑𝑘+1(𝜀𝑘+111
)

. Using the formula for the damage evolution (2.16) and the 
positivity of the increment Δ𝜀11, the stress at the subsequent time step follows:

𝜎𝑘11
(

𝜀𝑘11
)

≡ 𝑓
(

𝑑𝑘+1
)

𝐸 𝜀𝑘+111 = 𝑓
(

𝑑𝑘+1
)

𝐸
(

𝜀𝑘11 + Δ𝜀11
)

. (4.10)

The stress-strain curve shows hardening if and only if 𝜎𝑘11 is smaller than 𝜎𝑘+111  and softening otherwise. Thus, the condition

𝑓
(

𝑑𝑘+1
)

𝐸 Δ𝜀11 −
√

2 𝑟𝐸
(

1 − 𝑓
(

𝑑𝑘+1
))

= 0 (4.11)

characterizes the transition between hardening and softening behavior. For the considered study setup, the nonlinear Eq. (4.11) is 
satisfied for the model parameter 𝑟 ≈ 0.103, i.e., only the two smallest parameter selections start with hardening, confirming our 
computational observations. 

The influence of the model parameter 𝑑̇max on the stress-strain behavior of the damage model is shown in Fig. 5(b). As we fix 
the model parameter 𝑟, all models leave the linear elastic regime at the same level. After the damage onset, the model parameter 
𝑑̇max affects the shape of the curve. For small parameters 𝑑̇max, the damage progression is limited in a stronger way, and thus the 
stiffness degradation is less pronounced. For the models with the parameter values 𝑑̇max = 0.10 s−1 and 𝑑̇max = 0.25 s−1, we observe 
a large region of hardening, but no softening. However, these models would also include a softening behavior in case of higher 
applied strains. With increasing rate limit 𝑑̇max, the stiffness reduction gets more apparent, the region of hardening decreases and a 
pronounced softening behavior is observed.

In addition, we study the influence of the model parameter 𝑑̇max on the realized damage distribution, see Fig. 6. For the three 
considered maximum damage rates, the unloaded material is completely undamaged, i.e., the damage distribution takes the form 
𝜇 = 𝛿0. For increasing applied strain, we observe that the entire damage mass propagates to the maximum damage level for each time 
step in Fig. 6(a), when limiting the damage rate to 𝑑̇max = 1.0 s−1. In contrast, for the two higher maximum damage rates 𝑑̇max = 2.0 s−1

and 𝑑̇max = 4.0 s−1, it turns out that the damage distributions are characterized by higher variances and that a significant fraction of 
the damage mass always remains undamaged, while only smaller fractions propagate to complete failure, see Fig. 6(b) and (c). These 
observations are caused by the definition of the effective degradation as the harmonic mean of the damage distribution. In fact, the 
effective degradation tends to zero in case any subset - independent of its damage fraction - tends to the maximum damage value. 
Transferring these insights about the harmonic mean to the minimization problem to be solved (3.14), for a fixed dissipation distance 
the incremental potential gets smaller in case larger damage increments are permitted (but for smaller damage fractions), compared 
to a scenario where the total damage is distributed over many smaller steps. As a result, transporting smaller damage fractions over 
larger damage increments is energetically more favorable than transporting larger fractions over smaller damage increments. As 
increasing the maximum damage rate 𝑑̇ permits higher damage increments, the evolution of the damage distribution changes from 
transporting the total damage over many smaller steps, see Fig. 6, towards transporting decreasing damage fractions over increasing 
damage steps, see Fig. 6(b) and (c). Consequently, an increasing damage mass remains at low damage states. For the extreme case with 
unlimited damage rate 𝑑̇max → ∞, almost the entire damage mass is concentrated at low damage states, whereas only an infinitesimal 
fraction propagates to the maximum damage state, which may be interpreted as damage localization.
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Fig. 6. Damage distribution for increasing strain levels with different enforced damage-rate limitations 𝑑̇max = 1.0 s−1 (a), 𝑑̇max = 2.0 s−1 (b) and 
𝑑̇max = 4.0 s−1 (c).

Influence of the selected degradation function
Besides the model parameters, we also study the differences when using different types of degradation functions. To do so, we fix 

the model parameters 𝑟 = 0.1MPa and 𝑑̇max = 1.0 s−1, but consider all three types of degradation functions.
In Fig. 7(a), the stress-strain curves are shown. For the linear and the exponential function, damage initiates at the energy level 

𝜓0(ε) = 𝑟, see Eqs. (2.16) and (2.19). Thus, both curves share the linear elastic regime. In contrast, the quadratic damage function 
features a damage onset at the level 𝜓0(ε) = 𝑟∕2, see Eq. (2.18), which manifests in a smaller linear elastic regime. To compare the 
three degradation functions with equal damage onset, we also plot the stress-strain curve for the quadratic damage function with 
𝑟 = 0.2MPa. We observe that the damage model strongly depends on the selected damage degradation function. Whereas similar 
stress-strain curves with complete damage at 𝜀11 ≈ 1.97% emerge for the linear and the quadratic damage function, the exponential 
degradation function leads to a significantly slower stiffness degradation, and thus to higher remaining stresses.

Let us have a look at the effective degradation 𝑓 , see Fig. 7(b), to study the differences with respect to the remaining stiffness more 
thoroughly. It turns out that the exponential degradation function still leads to an effective degradation of 𝑓 ≈ 0.37 when the material 
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Fig. 7. Comparison of three degradation functions on material point level.

already fails for the other two degradation functions. Even at the highest applied strain of 𝜀11 = 3%, about 13% of the undamaged 
stiffness remains for the exponential degradation function.

The derivatives of the quadratic degradation function
𝑓 ′(𝑑) = −2(1 − 𝑑), 0 ≤ 𝑑 ≤ 1, (4.12)

and the exponential degradation function
𝑓 ′(𝑑) = − exp(−𝑑), 𝑑 ≥ 0, (4.13)

converge to zero for 𝑑 → 𝑑max. As a result, the effective degradation curves reveal an asymptotic behavior for 𝜀11 → 𝜀fail11 , where 𝜀fail11  
denotes the strain at material failure. In contrast, the derivative of the linear degradation function

𝑓 ′(𝑑) =
{

−1, 0 ≤ 𝑑 < 1,
0, 𝑑 = 1,

(4.14)

has no convergence behavior, but is discontinuous at 𝑑max = 1, which transfers to the slope of the effective degradation curve.

4.3.  Implications of the OT damage model for boundary value problems

To discuss the OT damage model as a constitutive model for components with heterogeneous stress states, we consider a matrix 
material with a single circular inclusion, which is furnished with the material parameters of E-glass, see Table 1. The diameter of the 
circle is assumed to be 𝑑 = 10 μm and the quadratic unit cell has an edge length of 𝑄𝑖 = 20 μm (𝑖 = 1, 2). We apply the macroscopic 
normal strain 𝜀̄11 = 3% via periodic boundary conditions in 100 loading steps with the time increment Δ𝑡 = 0.03 s. For the damage 
parameters, we use 𝑟 = 1.00MPa and 𝑑̇max = 4.00 s−1.
On the mesh-independence of the non-convex and the OT damage model

Let us start the investigations with a study on the mesh-size effect by varying the pixel count per direction of the rectangular grid
𝑁 ∈ {20, 40, 80, 160, 320}. (4.15)

We consider the non-convex damage model (2.1)-(2.2) either without or with damage rate limitation as well as the OT damage model. 
To obtain the results for the non-convex damage model, we used the FFT-based homogenization technique with the basic scheme [75] 
as the conjugate gradient solver did not converge for those material models. The mean and the standard deviation of the solver’s 
iteration count for a single time step are shown in Table 2. We observe that the iteration count increases for refined resolutions. 
Due to the numerical stability of the FFT-based computational micromechanics with the OT damage model and the applicability of 
the superior (non-linear) conjugate gradient solver, the iteration count is significantly decreased compared to the other two damage 
models. The small iteration count below 240 on average highlights the improved convergence behavior of the algorithm with the OT 
damage model. Comparing the mean iteration number for 3202 pixels, the non-convex damage model without damage rate limitation 
leads to 14 160 iterations and the non-convex damage model with damage rate limitation results in 6 876 iterations, whereas for the 
OT damage model 239 iterations are required, i.e., only 1.7% and 3.5% of the other two damage models, respectively.

In addition to the iteration numbers, we assess the total runtime to discuss whether the lower iteration count of the OT damage 
compensates for the increase in runtime due to the convexification process. The computations were conducted on a desktop computer, 
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Table 2 
Per time-step mean and standard deviation of the solver iteration-count for a matrix material with a single circular inclusion. We compare different 
damage models for the matrix materials and resolutions of the composite.
Resolution 202 402 802 1602 3202

Non-convex damage 1595 ± 2882 1205 ± 3935 3096 ± 9317 7567 ± 30637 14160 ± 92676
(𝑑̇max = ∞)
Non-convex damage 696 ± 1048 2440 ± 5271 4963 ± 10521 6481 ± 16890 6876 ± 17656
(𝑑̇max = 4.00 s−1)
ERVE damage model 401 ± 589 1415 ± 3309 2219 ± 5665 2465 ± 6727 2528 ± 6714
OT damage model 50 ± 54 89 ± 120 128 ± 195 163 ± 270 239 ± 435

see Section 4.1 for more details on the hardware configuration, using four threads. For a pixel count of 3202, the runtime with the non-
convex damage model without damage-rate limitation was about 864min, decreasing to 483min for the non-convex damage model 
with damage-rate limitation. In contrast, the OT damage model required 74min, i.e., only 15% of the runtime of the non-convex 
damage model with damage-rate limitation. Thus, the study demonstrates that the reduction in the iteration number significantly 
outweighs the cost of the convexification process.

Besides the algorithmic convergence behavior, we also study the effect of the mesh-size on the mechanical response for the 
different resolutions in Fig. 8. For all damages models, we observe that the stress-strain curves of all four mesh-sizes almost coincide 
in the elastic regime, i.e., the results are mesh-independent.

When softening effects start, the results for the non-convex model without damage rate limitation no longer converges due to the 
onset of localization, which leads to mesh dependency [56], see Fig. 8(a). For the non-convex model with damage rate limitation in 
Fig. 8(b), we observe a converging trend, however the differences between the resolutions are still quite high. In contrast, the results 
for the OT damage model in Fig. 8(c) reveal a significantly improved convergence behavior. To examine the convergence behavior of 
the non-convex damage model with damage rate limitation and the OT damage model more closely, we analyze the absolute relative 
mesh-size error of the stress-strain curves compared to the finest resolution

𝛿𝜎̄11 =
|

|

|

|

|

𝜎̄11,𝑁𝑖 − 𝜎̄11,320
𝜎̄11,320

|

|

|

|

|

⋅ 100% (4.16)

and report on the maximum of the error 𝛿𝜎̄11 for each pixel count in Fig. 9(a). It turns out that the error is always lower for the OT 
damage model compared to the non-convex damage model, which is a result of the convexification procedure. Targeting an error 
below 3%, we may use the resolution 𝑁𝑖 = 80 for the OT damage model with a relative error of 1.22%. However, for the non-convex 
damage model the relative error is still 7.18% for the resolution 𝑁𝑖 = 80 and 2.58% for the resolution 𝑁𝑖 = 160. Thus, we need to 
resolve the structure with at least 𝑁𝑖 = 160 pixels per axis for the non-convex damage model to ensure the convergence criterion 
of 3%. Due to the higher voxel count, the less stable convergence behavior and the inability to use the efficient conjugate gradient 
solver, the computational effort is tremendously higher for the non-convex damage model compared to the OT damage model.

To study the localization as well as the differences in the convergence behavior with respect to the damage degradation, we plot 
the effective degradation field 𝑓 at the strain level 𝜀̄11 = 3.0% for the three damage models and varying pixel counts in Fig. 10. For the 
non-convex damage model without damage rate limitation, the progressive localization with decreasing voxel edge-length is clearly 
visible in Fig. 10(a). Due to damage rate limitation, localization is prevented in Fig. 10(b). However, in contrast to the effective 
degradation field of the convexified OT damage model, see Fig. 10(c), finer resolutions are necessary for an adequate approximation 
of the quantity, which leads to the higher error in Fig. 9(a).

The considered study may lead to the impression that the non-convex damage model with damage-rate limitation does not suffer 
from convergence problem under grid refinements for regular meshes. This observation may, however, be very specific to the problem 
at hand. There is no guarantee that this positive behavior transfers to other cases. In contrast, the convexification process of the OT 
damage model ensures salient mathematical properties - coercivity and (quasi-)convexity - to hold, in general.

Comparison to the damage model introduced by Schwarz et al. [59]
In this section, we compare the OT damage model with a damage model introduced by Schwarz et al. [59], which is also derived 

by applying a convexification scheme to the non-convex damage model in Eqs. (2.1)–(2.2). To approximate the convex hull, Schwarz 
et al. [59] model the damage variable at each material point in a microstructured fashion with 𝑛ERVE discrete damage states defined on 
an emulated representative volume element (ERVE). The attained condensed incremental energy is equivalent to Eq. (2.27) with constant 
weighting coefficients 𝑐𝑖 = 1∕𝑛ERVE (𝑖 = 1,… , 𝑛ERVE). In addition to the parameters 𝑟 and 𝑑̇max, the number of discrete damage states 
𝑛ERVE needs to be selected. In this work we use 𝑛ERVE = 20, consistent with the computational investigation conducted by Schwarz 
et al. [59]. To solve the static balance of linear momentum (4.4), we use the FFT-based homogenization framework with the basic 
scheme [75] as the conjugate gradient solver failed to converge for the ERVE damage model. Due to the convexification scheme, 
also the ERVE damage model shows a favorable convergence behavior with respect to mesh refinement, see Figs. 8(d) and 9(a). In 
addition, the iteration count is decreased compared due to the non-convex damage models, see Table 2, but increased compared to 
the OT damage model. Having a look at the runtime of 466min for the pixel count of 3202, we observe that the computational cost of 
the ERVE damage model is between the costs of the non-convex damage models and of the OT damage model.
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Fig. 8. Mesh size study for different models and pixel counts for the circular inclusion.

In Fig. 9(b), we plot the stress-strain curves for both convexified damage models as well as for the non-convex damage model with 
damage rate limitation, using a pixel count of 𝑁𝑖 = 320 per axis. We observe that the non-convex damage model and the OT damage 
model lead to almost coinciding curves, i.e., the convexification process does not alter the stress-strain behavior significantly. For 
the ERVE damage model, the convexification process has a greater influence on the results, leading to a slightly higher predicted 
stress-strain response compared to the other two damage models.

4.4.  Validation of the representativity for stochastic homogenization

In this section, we apply the OT damage model to discontinuously fiber-reinforced composites, which exhibit a heterogeneous 
and random microstructure, to investigate the representativity of the predicted material behavior within the framework of stochastic 
homogenization. We use the material data summarized in Table 1 for the matrix material and the fibers, and select the damage 
parameters 𝑟 = 1.00MPa and 𝑑̇max = 4.00 s−1.

For the periodic microstructure generation, we use the fused sequential addition and migration (fSAM) algorithm [105,106]. 
The synthetic packings are filled with a fiber volume fraction of 𝜙 = 20%. We model the fibers as polygonal chains with the fiber 
length 𝐿 = 1000 μm, the constant fiber diameter 𝐷 = 10 μm and a maximum segment length 𝓁 = 25 μm. To avoid extremely high 
angles between adjacent segments, we prescribe the maximum curvature 𝜅̄ = 0.02 μm−1. Additionally, we choose a minimum distance 
between the fibers of 20% of the fiber diameter, i.e., 2.0 μm. For the fiber orientation tensor [107] of second order, we target the 
tensor 𝑨 =̂ diag(0.75, 0.15, 0.1), and use the exact closure to approximate the fiber orientation tensor of fourth order [108,109]. The 
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Fig. 9. Comparing stress-strain curves and errors for the non-convex damage model with damage rate limitation, the OT damage model and the 
ERVE damage model [59] for the circular inclusion.

Fig. 10. Distribution of the effective degradation for varying resolutions, using the non-convex damage model without damage rate limitation (a), 
the non-convex damage model with damage rate limitation (b) and the OT damage model (c) for the circular inclusion.
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Fig. 11. Fiber microstructure resolved with two different voxel-edge lengths ℎ.

Fig. 12. Sensitivity studies of the stress-strain response for the 3D fiber microstructure.

fSAM algorithm is considered to be converged in case no fiber-overlap is detected, the relative error of the fiber orientation tensor is 
below 𝜖𝔸 = 10−4 and the relative error of the maximum curvature constraint drops below 𝜖𝜅̄ = 10−3.

We load the structure with the macroscopic normal strain 𝜀̄22 = 3% via periodic boundary conditions in 𝑛Δ𝑡 loading steps. The 
time-step count, the necessary resolution and the required cell size for representativity are studied in the following investigations. 
Generated microstructures resolved a coarse and a fine mesh-size are shown in Fig. 11. 
Study on the time-step size

The goal of this section is to select a sufficiently fine time-step size. Therefore, we consider a microstructure with cubic cell 
dimensions 𝑄𝑖 = 420 μm (𝑖 = 1, 2, 3). The generated microstructure is resolved with a voxel-edge length ℎ = 1.25 μm. We study the 
time-step counts 𝑛Δ𝑡 = 20, 40, 80, 160, i.e., the time increments are Δ𝑡 = 0.15 s, 0.075 s, 0.0375 s and 0.01875 s.

In Fig. 12(a), the computed effective stress-strain responses for the applied time-step counts are shown. We observe that the time 
increment significantly influences the computed material behavior. However, for increasing time-step count, convergence is obtained. 
Evaluating the absolute relative difference between the temporal resolutions at 𝜀̄22 = 3% compared to the smallest time increment, 
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we obtain errors of 21.33%, 9.11% and 2.98% for increasing time-step count. To obtain an error below 3%, we choose a time-step count 
of 𝑛Δ𝑡 = 80 for the following investigations.

Study on the resolution

A critical aspect of FFT-based homogenization is the spatial resolution of the input microstructure, which directly influences 
the accuracy of the computed effective properties. Insufficient resolution may fail to capture essential microscale features, while an 
excessively fine discretization can lead to high computational costs without significant gains in accuracy. The aim of this resolution 
study is to investigate the impact of the voxel resolution on the homogenized material properties. By evaluating the convergence 
behavior of the effective stress-strain behavior with increasing resolution, we seek to identify a suitable discretization level that 
ensures a reliable balance between computational efficiency and numerical accuracy.

We investigate the voxel-edge lengths ℎ = 1.0 μm, 1.25 μm, 2.0 μm and 4.0 μm, which resolve the fiber diameter with 10, 8, 5 and 2.5
voxels. For the cubic cell dimensions, we select 𝑄𝑖 = 420 μm. Thus, the microstructure is resolved with 1053, i.e., about 1.2 ⋅ 106, voxels 
for the coarsest resolution and 4203, i.e., about 74 ⋅ 106, voxels for the finest resolution. Due to the significantly increased number 
of voxels, the computational effort required to homogenize the finely resolved structure is substantially higher. The considered 
microstructure resolved with the coarsest and the finest mesh-size are shown in Fig. 11.

The computed effective stress-strain behavior is shown in Fig. 12(b). Due to the convexity and coercivity of the OT damage 
model, convergence for decreasing mesh-size is obtained. Evaluating the maximum relative resolution error of the stress-strain curves 
compared to the finest resolution reveals an error of 9.00% for the coarsest resolution, dropping to 3.32% and 1.40% with increasing 
voxel count. We require a resolution error below 3% and thus choose a voxel-edge length of ℎ = 1.25 μm, which is in accordance with 
previous studies on long fiber reinforced composites applying a purely elastic material model to the matrix material [105,106].

RVE study

Understanding the effective behavior of heterogeneous materials at the macroscopic level typically relies on detailed simulations 
of their microscopic structure. Instead of modeling the entire complexity of a material, computational homogenization uses simpli-
fied, smaller-scale models – so-called unit cells – to estimate global properties. A key challenge is ensuring that these unit cells are 
representative, i.e., that they capture the essential statistical and structural features of the material well enough to enable reliable 
macroscopic predictions.

In reality, the microstructure introduces randomness, so apparent material properties derived from finite unit cells vary across 
different configurations. As the cell size increases, this variability diminishes, and the results stabilize, approaching the so-called 
effective properties [54,55,110]. If a unit cell becomes large enough that further increases no longer affect the computed averages 
significantly, it is considered a representative volume element (RVE). In context of damage modeling with softening phenomena, the 
apparent properties will only converge to the effective properties if the material behavior is mesh-independent [56]. Thus, localization 
and the concept of representativity are incompatible.

Choosing the smallest possible RVE is the key to minimizing computational cost without sacrificing accuracy. One way to decrease 
the required unit cell size for representativity is through the use of periodic boundary conditions [111,112] and carefully controlled 
statistical descriptors, such as the fiber volume fraction or high-order orientation tensors, when generating synthetic microstruc-
tures [106,113].

To assess whether a unit cell is representative, we need to monitor two types of errors: the random and the systematic error [55,114]. 
The random error (or dispersion) refers to the variance in the apparent properties across different realizations of a microstructure at 
fixed cell size and typically vanishes as the domain grows. The systematic error (or bias), on the other hand, measures the discrepancy 
between the average apparent properties for a fixed unit cell size and the (generally unknown) effective properties. Since the effective 
properties are rarely available, convergence is evaluated by comparing the mean apparent properties for increasing cell-sizes.

In this RVE study, we consider the three unit cell sizes 𝑄𝑖 = 280 μm, 420 μm and 560 μm, and use the resolution ℎ = 1.25 μm. Thus, 
the smallest unit cell is resolved with 2243, i.e., about 11 ⋅ 106, voxels and the largest unit cell with 4483, i.e., about 90 ⋅ 106, voxels. To 
assess the representativity of the unit cells, we first generate ten microstructures for each unit cell size, and compute the stress-strain 
behavior for all generated microstructures. Subsequently, we evaluate the mean and the standard deviation of the stress 𝜎22 for each 
unit cell size with respect to its ten realizations. Last but not least, we compute the relative error of the mean stress compared to the 
largest unit cell size

𝛿𝜎22 =
|

|

|

|

|

|

|

mean
(

𝜎̄22,𝑄𝑖
)

−mean
(

𝜎̄22,560
)

mean
(

𝜎̄22,560
)

|

|

|

|

|

|

|

⋅ 100% (4.17)

to assess the systematic error and the relative standard deviation

RSD =
std

(

𝜎̄22,𝑄𝑖
)

|

|

|

|

mean
(

𝜎̄22,𝑄𝑖
)

|

|

|

|

⋅ 100% (4.18)

to quantify the random error.
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Fig. 13. On the influence of the unit-cell size for the 3D fiber ensemble.

The mean computed stress-strain curves with the resulting scatter bands are plotted in Fig. 13(a) for all unit cell sizes. We ob-
serve that distinguishing between the different curves is barely possible as the curves are in a close range. For a better overview 
of the differences, we have a look at the representativity errors in Fig. 13(b). It turns out that the random and the system-
atic are increasing along the loading path, but always are below 2%, proving the representativity of all unit cells. Hence, we 
emphasize that the OT damage model is applicable in the context of homogenization, ensuring moderate necessary resolutions 
and unit cell sizes for representativity. Such properties are crucial to predict the mechanical behavior in a reliable and efficient
manner.

4.5.  Matrix-failure mechanisms of unidirectional fiber reinforced composites

Last but not least, we investigate the matrix failure of unidirectional fiber-reinforced composites to identify the damage mecha-
nisms predicted by our model. We generate short fiber reinforced microstructures with cubic cell dimensions of 𝑄𝑖 = 280μm by the 
SAM algorithm [113,115], prescribing a fiber alignment in 𝒆1-direction, a uniform fiber length of 𝐿 = 100 μm, a fiber diameter of 
𝐷 = 10 μm and a fiber volume fraction of 𝜙 = 20%. According to the resolution study in Section 4.2, we resolve the microstructure 
with the voxel edge-length ℎ = 1.25 μm. A generated microstructure is shown in Fig. 14(a). The matrix and the fibers are modeled 
with the isotropic material parameters listed in Table 1, and we use the damage parameters 𝑟 = 1.00MPa and 𝑑̇max = 4.00 s−1 for the 
matrix material.

In three loading cases, we investigate the failure mechanisms of the matrix and plot the effective degradation fields in 
Fig. 14(b)–(d). For the first and the second loading case, we apply macroscopic normal strains in fiber direction (𝜀̄11 = 3%) and 
perpendicular to the fiber direction (𝜀̄22 = 3%), respectively. In the last scenario, we load the structure with macroscopic shear strain 
in fiber direction (𝜀̄12 = 3%). For all scenarios, we apply the load in 80 time steps with a total loading time of 3 s, imposing periodic 
boundary conditions.

For normal extension in fiber direction, the damage initiates at the fiber ends due to stress concentrations and evolves with 
increasing applied strain perpendicular to the loading direction. Thus, the loading condition evokes damage peaks at the end of the 
fibers in the loading direction, see Fig. 14(b), weakening the load transfer between the matrix and the fibers. In addition, we observe 
inter-fiber failure in the 𝒆2 − 𝒆𝟑-plane as a result of the dilatation. The random arrangement of the fibers deflects the damage path 
as the damage grows between the fiber ends, preventing a strict propagation perpendicular to the loading directions. Applying the 
macroscopic normal strain 𝜀̄22 perpendicular to the fiber direction leads to a damage evolution of the matrix in the 𝒆1 − 𝒆𝟑-plane, as 
shown in Fig. 14(c), starting along the fiber boundaries. Hence, in contrast to the first loading scenario, the interfacial area between 
the matrix and the fibers is reduced along the edges of the fibers rather than at the end of the fibers. The effective degradation field 
associated to the shear loading in fiber direction 14(d) reveals similar damage mechanisms as for the normal tension perpendicular to 
the fiber axis, i.e., damage propagation in the 𝒆1 − 𝒆𝟑-plane. The matrix-failure modes identified in this study are in agreement with 
previous investigations in the literature [116–119], indicating the validity of the damage prediction for the matrix in fiber-reinforced 
composites. 
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Fig. 14. Fiber-reinforced composite with unidirectional fiber arrangement (a) and the distribution of the effective degradation for three different 
loading conditions (b) - (d).

5.  Conclusion

The goal of the work at hand was to complete the agenda of Schwarz et al. [59]: compute the convex envelope of the incremental 
condensed energy arising from a class of isotropic damage models with rate limitation. These developments were driven by the desire 
to simulate the stiffness degradation of a material exhibiting strain softening behavior within a component undergoing mechanical 
loading in a robust and mesh-independent way. To be more precise, our contributions include:

1. We identified a condition on the damage-degradation function which permits to compute the convex envelope explicitly: convexity 
of the reciprocal degradation function. Such a condition is quite natural due to the emergence of the harmonic mean in the 
degradation pre-factor in front of the undamaged elastic energy. Moreover, the condition is satisfied for the degradation functions 
considered in this manuscript: the exponential degradation as well as the elementary monomial degradation functions. It might 
be interesting to investigate other degradation functions like the ones reported by Wu and Nguyen [81].

2. We computed the convex envelope of the incremental time-discretized energy explicitly. We used a continuum formulation to 
handle all time steps in the same framework. It turned out that the optimal states arise as convex combinations of the extreme 
reachable damage states per load step: the undamaged state and the maximum damage reachable in this step. Interestingly, 
the compliance form of Hooke’s elastic energy emerges naturally, which is convex in the strain and the compliance tensor [22] 
and was previously used ad-hoc in phenomenological damage models [120–122]. The devised model turns out to be convex in 
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a natural way – which is evident from its formulation(s) in terms of a generalized standard material with convex free energy. 
However, the space of internal (damage) variables is inherently infinite-dimensional. As the damage-distribution function point 
of view leads to more ambiguities than necessary, we also introduced another formulation based on measure theory and optimal 
transportation [74,93], a topic which is well-studied in mathematics but does not appear to be standard in continuum mechanical 
models.

3. Our findings also shed light on the model structure: Whereas classical phenomenological continuum-damage models use damage 
variables as arguments, the convexified model involves a probability distribution of a damage variable. This finding was already 
envisioned by Schwarz et al. [59] in their use of the “emulated RVE”. The latter may be imagined as a one-dimensional rod with a 
distribution of Young’s moduli, spread according to the damage distribution under consideration. The “effective” Young’s modulus 
then arises from a harmonic average - a fact which is well-known in micromechanics and thermodynamics, corresponding to the 
Maxwell construction. Aside from this statics point-of-view, the dynamics of the entire damage evolution also emerges from the 
stepwise convexification procedure of the condensed incremental potential. As a result, the convexified local, i.e., gradient-free, 
damage model is able to reproduce a softening behavior because the localization takes place in “damage space”, i.e., in the rod, 
and not in physical space.

4. Aside from the theoretical findings we introduced a full computational procedure to resolve the ensuing mechanical model: we 
discussed a natural time discretization for equidistant time steps in terms of convex combinations Dirac measures, i.e., discrete 
damage distributions, and provided a Newton-type method which permits to resolve the nonlinear systems arising for each time 
steps in a robust and efficient manner.

5. We provided an analysis of the properties of the resulting damage model. The convexity and the thermodynamical consistency 
of the model are more or less straightforward: the original (non-convex) damage model was formulated as a GSM, and the 
convexification procedure retains thermodynamical consistency - both the free energy and the dissipation distance are convex. 
Moreover, the fact that a convexification process leads to a convex model is not surprising. What is a bit more subtle is the lack of 
strict convexity of the resulting relaxed model: both the full energy (for the strain and the internal variables) and the condensed 
incremental energy (for the strain tensor only) lack strict convexity, in general. As a result, we cannot conclude uniqueness neither 
for the evolution of the internal variables nor the attained strain state per load increment. In hindsight, this fact is not surprising 
due to the linear dissipation distance of the original model and the emergence of the harmonic mean upon convex relaxation. An 
intriguing question here is whether the lack of strict convexity is a bug or a feature. Maybe the lack of uniqueness reflects the 
inherent stochasticity of the damage process.

6. We wish to stress the consequences of the salient properties of the convexified damage model: For a start, the convexity of 
the condensed incremental energy permits, together with suitable growth conditions, ensure the existence of minimizers to the 
associated mechanical boundary-value problems. Thus, no spurious mesh-dependence of the model is observed. In particular, as 
every local minimizer of a convex objective function is actually a global minimizer, certain pathological situations encountered 
for non-convex damage models are avoided. Moreover, convexity of the model permits homogenization to be simple: Periodic 
homogenization applies to such convex models, and the emerging homogenized materials involve single-cell formulas only, see 
Braides [123] and Müller [124], avoiding multi-cell homogenization formulas required for non-convex energies. Moreover, other 
issues observed for non-convex models, like the fact that homogenization and letting the time-step size go to zero do not commute 
as limiting procedures, see the relevant works [125–127], are not expected to occur. Whether these advantageous properties 
actually reflect the underlying physics is another matter, however.

7. Last but not least we provided pertinent computational examples, showing the performance and robustness of the convexified 
model and its computational realization, both on material-point level and within a homogenization setting. Due to the salient 
features of the convexified damage model, it may be used in dedicated upscaling schemes [128–130] to predict the material 
degradation including softening effects of components made of microstructured materials.

Apart from the contributions, we also list a number of loose ends and interesting questions to ponder.
1. The manuscript at hand was limited to convexifying a linear-elastic isotropic damage model without tension-compression 
anisotropy. Lifting each of these constraints would be interesting: Dealing with anisotropic damage, incorporating tension-
compression asymmetry or extending the framework to inelastic material models like plasticity or viscoelasticity could prove 
fruitful, in particular when using the obtained model(s) for representing practical materials beyond the theoretical setting of the 
article at hand.

2. There is a number of mathematical questions that might be of interest. We performed relaxation after time discretization. Letting 
the time-step size go to zero might shed further light onto the model. Moreover, it would be interesting to find out whether strict 
convexity could be introduced into the model. Presumably, this is possible in a variety of ways, and the ramification should be 
studied. Last but not least, it might be interesting to find out whether rate-independence can be realized in this framework as 
envisioned by Schwarz et al. [59].

3. From the point of view of computational mechanics it is desirable to study which discretization schemes to use. For a start, we 
used equidistant time steps only, and monitored discrete damage distributions. Such a naive procedure does not appear optimal, 
in particular when non-equidistant time steps are used. Moreover, it might be worthwhile to study if fully continuous schemes 
may be used. Here, a transfer from the optimal transport literature [131] might be advised.

4. The derived convexified model behaves strongly like the model envisioned by Schwarz et al. [59], which is conceptually much 
simpler. It might be useful to study the connections more closely, e.g., finding conditions under which both models behave 
similarly.
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5. The investigated model [59] involves the abstract parameters 𝑟 and 𝑑max. It would be desirable to establish the connection to 
experimentally measurable quantities such as the fracture energy or the critical strain energy density.

6. This work was concerned with the mathematical details required to set up a continuum damage model that is local and permits 
to represent a softening behavior without spurious mesh dependence of the finite-element results. With this focus, less effort was 
spent on discussing the potential applications of the resulting model, e.g., to damage prediction in polymers, quasi-brittle materials 
or structural composites.
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Appendix A.  The emergence of the harmonic mean

The goal of this section is to provide arguments for the validity of the identity (2.38)

min
⟨ε⟩[0,1]=ε̄

⟨

𝑓 (𝑑)
2

ε ⋅C[ε]
⟩

[0,1]
=
𝑓 (𝑑)
2

ε̄ ⋅C[ε̄]. (A.1)

For this purpose, we re-write the optimization problem on the left-hand side in Lagrangian form
⟨

𝑓 (𝑑)
2

ε ⋅C[ε]
⟩

[0,1]
+Λ ⋅

(

⟨ε⟩[0,1] − ε̄
)

⟶ min
ε

max
Λ
, (A.2)

with a Lagrangian multiplier Λ ∈ Sym(𝑛). The Karush-Kuhn-Tucker (KKT) conditions compute as
𝑓 (𝑑)C[ε] +Λ = 0, (A.3)

⟨ε⟩[0,1] − ε̄ = 0. (A.4)

Solving the first equation explicitly for the strain field ε,
ε = −𝑓 (𝑑)−1C−1 ⋅Λ, (A.5)

averaging yields the equation
⟨ε⟩[0,1] = −

⟨

𝑓 (𝑑)−1
⟩

[0,1]C
−1 ⋅Λ. (A.6)

Inserting this insight into the second Eq. (A.4)
ε̄ = −

⟨

𝑓 (𝑑)−1
⟩

[0,1]C
−1 ⋅Λ (A.7)

provides an explicit expression of the Lagrange multiplier

Λ = −
⟨

𝑓 (𝑑)−1
⟩−1
[0,1]C[ε̄]. (A.8)

In particular, we arrive at the following formula for the local strain

ε = 𝑓 (𝑑)−1
⟨

𝑓 (𝑑)−1
⟩−1
[0,1]ε̄. (A.9)
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With this result at hand, the desired identity (A.1) follows readily, as we observe
⟨

𝑓 (𝑑)
2

ε ⋅C[ε]
⟩

[0,1]
=
⟨

𝑓 (𝑑)
2

(

𝑓 (𝑑)−1
⟨

𝑓 (𝑑)−1
⟩−1
[0,1]ε̄

)

⋅C
[

𝑓 (𝑑)−1
⟨

𝑓 (𝑑)−1
⟩−1
[0,1]ε̄

]

⟩

[0,1]

= 1
2
⟨

𝑓 (𝑑) 𝑓 (𝑑)−2
⟩

[0,1]
⟨

𝑓 (𝑑)−1
⟩−2
[0,1] ε̄ ⋅C[ε̄]

= 1
2
⟨

𝑓 (𝑑)−1
⟩−1
[0,1] ε̄ ⋅C[ε̄].

(A.10)

Appendix B.  Mathematical details for the mixing formula (2.41)

The purpose of this section is to show that the quantities (2.35)
𝜓𝑐cond(ε̄) = min

{

𝑓 (𝑑)𝜓0(ε̄) + 𝑟 ⟨𝑑 − 𝑑−⟩[0,1]
|

|

|

𝑑− ≤ 𝑑 ≤ 𝑑+
}

(B.1)

and (2.41)

𝜓̃𝑐cond(ε̄) = min
𝜙∶[0,1]→[0,1]

⟨

(1 − 𝜙)𝑓 (𝑑−)−1 + 𝜙𝑓
(

𝑑+
)−1

⟩−1

[0,1]
𝜓0(ε̄) + 𝑟

⟨

𝜙
(

𝑑+ − 𝑑−
)⟩

[0,1] (B.2)

coincide for given piece-wise constant functions 𝑑± ∶ [0, 1] → [𝑑, 𝑑max) which we assume to satisfy the inequalities 𝑑− ≤ 𝑑+ point-wise.
We will follow a sandwich strategy, i.e., we will show that both inequalities

𝜓𝑐cond(ε̄) ≤ 𝜓̃𝑐cond(ε̄) and 𝜓̃𝑐cond(ε̄) ≤ 𝜓𝑐cond(ε̄) (B.3)

hold for every strain ε̄ ∈ Sym(𝑛), leading to the desired equality of the expressions (B.1) and (B.2)
We start with the“simple” case 𝜓𝑐cond(ε̄) ≤ 𝜓̃𝑐cond(ε̄). We assumed that the lower and upper bound functions 𝑑− and 𝑑+ are piece-wise 
constant, i.e., there is a decomposition of the interval [0, 1] into 𝐾 disjoint intervals 𝐼𝑎 (𝑎 = 1, 2,… , 𝐾) on which the functions 𝑑−
and 𝑑+ take constant values 𝑑±𝑎  (𝑎 = 1, 2,… , 𝐾). Let 𝜙 ∶ [0, 1] → [0, 1] be fixed. We will construct a function 𝑑 ∶ [0, 1] → R≥0 which 
satisfies the constraints 𝑑− ≤ 𝑑 ≤ 𝑑+ point-wise, together with the equality

𝑓 (𝑑)𝜓0(ε̄) + 𝑟 ⟨𝑑 − 𝑑−⟩[0,1] =
⟨

(1 − 𝜙)𝑓 (𝑑−)−1 + 𝜙𝑓
(

𝑑+
)−1

⟩−1

[0,1]
𝜓0(ε̄) + 𝑟

⟨

𝜙
(

𝑑+ − 𝑑−
)⟩

[0,1]. (B.4)

Thus, as the left-hand side of Eq. (B.4) is greater or equal than the minimum, we deduce the estimate

𝜓𝑐cond(ε̄) ≤
⟨

(1 − 𝜙)𝑓 (𝑑−)−1 + 𝜙𝑓
(

𝑑+
)−1

⟩−1

[0,1]
𝜓0(ε̄) + 𝑟

⟨

𝜙
(

𝑑+ − 𝑑−
)⟩

[0,1]. (B.5)

Minimizing the right-hand side w.r.t. 𝜙 ∶ [0, 1] → [0, 1] then yields the desired inequality
𝜓𝑐cond(ε̄) ≤ 𝜓̃𝑐cond(ε̄). Thus, for this direction, it remains to construct the function 𝑑 following the prescribed field 𝜙. In view 
of the decomposition {𝐼𝑎}𝐾𝑎=1, we observe

⟨

(1 − 𝜙)𝑓 (𝑑−)−1 + 𝜙𝑓
(

𝑑+
)−1

⟩

[0,1]
=

𝐾
∑

𝑎=1
∫𝐼𝑎

(1 − 𝜙(𝑠))𝑓
(

𝑑−𝑎
)−1 + 𝜙(𝑠) 𝑓

(

𝑑+𝑎
)−1 d𝑠

=
𝐾
∑

𝑎=1

(

(

1 − 𝜙𝑎
)

𝑓
(

𝑑−𝑎
)−1 + 𝜙𝑎 𝑓

(

𝑑+𝑎
)−1

)

∫𝐼𝑎
d𝑠

(B.6)

with the means

𝜙𝑎 = ∫𝐼𝑎
𝜙(𝑠) d𝑠

/

∫𝐼𝑎
d𝑠 ∈ [0, 1]. (B.7)

Similarly, it holds

⟨

𝜙
(

𝑑+ − 𝑑−
)⟩

[0,1] =
𝐾
∑

𝑎=1
𝜙𝑎

(

𝑑+𝑎 − 𝑑−𝑎
)

∫𝐼𝑎
d𝑠. (B.8)

Then, the function 𝑑 is constructed as follows: It takes the value 𝑑−𝑎  on the left (1 − 𝜙𝑎)-portion of the interval 𝐼𝑎, and is defined to be 
𝑑+𝑎  on the remainder of the interval. Then, it is readily checked that the identities

⟨

𝑓 (𝑑)−1
⟩

[0,1] =
𝐾
∑

𝑎=1

(

(

1 − 𝜙𝑎
)

𝑓
(

𝑑−𝑎
)−1 + 𝜙𝑎 𝑓

(

𝑑+𝑎
)−1

)

∫𝐼𝑎
d𝑠 (B.9)

and

⟨𝑑 − 𝑑−⟩[0,1] =
𝐾
∑

𝑎=1
𝜙𝑎

(

𝑑+𝑎 − 𝑑−𝑎
)

∫𝐼𝑎
d𝑠 (B.10)
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hold. In particular, the identity (B.4) is seen to be true.
The remainder of this section is devoted to establishing the validity of the converse inequality (B.3) 𝜓̃𝑐cond(ε̄) ≤ 𝜓𝑐cond(ε̄). To proceed, 
we fix a damage field

𝑑 ∶ [0, 1] → R≥0 which respects the constraints 𝑑− ≤ 𝑑 ≤ 𝑑+. (B.11)

We will construct a field 𝜙 ∶ [0, 1] → [0, 1], s.t. the inequality
⟨

(1 − 𝜙)𝑓 (𝑑−)−1 + 𝜙𝑓
(

𝑑+
)−1

⟩−1

[0,1]
𝜓0(ε̄) + 𝑟

⟨

𝜙
(

𝑑+ − 𝑑−
)⟩

[0,1] ≤ 𝑓 (𝑑)𝜓0(ε̄) + 𝑟 ⟨𝑑 − 𝑑−⟩[0,1] (B.12)

holds true. Minimizing the left-hand side and using the definition (B.2), we thus obtain the estimate
𝜓̃𝑐cond(ε̄) ≤ 𝑓 (𝑑)𝜓0(ε̄) + 𝑟 ⟨𝑑 − 𝑑−⟩[0,1]. (B.13)

Then, minimizing with respect to the admissible damage fields (B.1), we are led to the desired estimate 𝜓̃𝑐cond(ε̄) ≤ 𝜓𝑐cond(ε̄).
So, it remains to construct the field 𝜙 and establish the estimate (B.12). Actually, we select the field 𝜙 point-wise, so that the identity

𝑑(𝑠) = (1 − 𝜙(𝑠)) 𝑑−(𝑠) + 𝜙(𝑠) 𝑑+(𝑠), 𝑠 ∈ [0, 1], (B.14)

is satisfied. Here, we use that the damage field 𝑑 satisfies the constraints (B.11), s.t. each value may be represented as a convex 
combination (B.14). Due to the assumed convexity of the function (2.39), we are led to the inequality

𝑔(𝑑(𝑠)) ≡ 𝑔
(

(1 − 𝜙(𝑠)) 𝑑−(𝑠) + 𝜙(𝑠) 𝑑+(𝑠)
)

≤ (1 − 𝜙(𝑠)) 𝑔(𝑑−(𝑠)) + 𝜙(𝑠) 𝑔
(

𝑑+(𝑠)
)

. (B.15)

Averaging yields the estimate
⟨𝑔(𝑑)⟩[0,1] ≤

⟨

(1 − 𝜙) 𝑔(𝑑−) + 𝜙𝑔(𝑑+)
⟩

[0,1], (B.16)

or, rather, by taking inverses
⟨

(1 − 𝜙) 𝑓 (𝑑−)−1 + 𝜙𝑓
(

𝑑+
)−1

⟩−1

[0,1]
≤
⟨

𝑓 (𝑑)−1
⟩−1
[0,1] ≡ 𝑓 (𝑑), (B.17)

As the factor 𝜓0(ε̄) is non-negative, we are led to the estimate
⟨

(1 − 𝜙) 𝑓 (𝑑−)−1 + 𝜙𝑓
(

𝑑+
)−1

⟩−1

[0,1]
𝜓0(ε̄) ≤ 𝑓 (𝑑)𝜓0(ε̄). (B.18)

Due to the definition (B.14), we notice
⟨𝑑 − 𝑑−⟩[0,1] =

⟨

(1 − 𝜙) 𝑑− + 𝜙𝑑+ − 𝑑−
⟩

[0,1]

=
⟨

−𝜙𝑑− + 𝜙𝑑+
⟩

[0,1]

=
⟨

𝜙
(

𝑑+ − 𝑑−
)⟩

[0,1].

(B.19)

In particular, multiplying by the positive factor 𝑟, the desired inequality (B.12)
⟨

(1 − 𝜙) 𝑓 (𝑑−)−1 + 𝜙𝑓
(

𝑑+
)−1

⟩−1

[0,1]
𝜓0(ε̄) + 𝑟

⟨

𝜙
(

𝑑+ − 𝑑−
)⟩

[0,1] ≤ 𝑓 (𝑑)𝜓0(ε̄) + 𝑟⟨𝑑 − 𝑑−⟩[0,1] (B.20)

emerges.

Appendix C.  Arguments for the convexity properties of the condensed incremental energy

C.1.  Two-sided quadratic bounds

The purpose of this Appendix is to provide arguments for the validity of property (i) listed in Section 3.3, i.e., the existence of 
positive constants 𝛼−, 𝛼+ and 𝐶+, s.t. the bounds (3.33)

𝛼−
2

ε ⋅C[ε] ≤ 𝜓cond(ε) ≤ 𝐶+ +
𝛼+
2

ε ⋅C[ε] (C.1)

are valid for all strains ε ∈ Sym(𝑛). To do so, we infer the definition of the factors 𝑔𝑗 , see Eq. (3.8)
𝑔𝑗 = 𝑓 (𝑑𝑗 )−1, 𝑗 = 0, 1,… , 𝑁. (C.2)

The considered degradation function 𝑓 is assumed to be monotonically decreasing and the damage values 𝑑𝑗 are increasing (3.4). 
Thus, by the relation (C.2), the estimates

𝑓0 ≥ 𝑓𝑗 ≥ 𝑓𝑁 , 𝑗 = 0, 1,… , 𝑁, (C.3)

imply the two-sided bounds
𝑔0 ≤ 𝑔𝑗 ≤ 𝑔𝑁 , 𝑗 = 0, 1,… , 𝑁. (C.4)
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The simplex constraints (3.6)

𝜌𝑗 ≥ 0 (𝑗 = 0, 1,… , 𝑁) and
𝑁
∑

𝑗=0
𝜌𝑗 = 1 (C.5)

imply the estimate

𝑔𝑁 ≤
𝑁
∑

𝑗=0
𝜌𝑗 𝑔𝑗 ≤ 𝑔0. (C.6)

Consequently, we obtain the inequalities

1
2𝑔0

ε ⋅C[ε] ≤

( 𝑁
∑

𝑗=0
𝜌𝑗 (φ) 𝑔𝑗

)−1
1
2
ε ⋅C[ε] ≤ 1

2𝑔𝑁
ε ⋅C[ε], ∀ε ∈ Sym(𝑛), (C.7)

for the free energy. For the dissipation (3.12)

(φ) = 𝑟
𝑁−1
∑

𝑗=0
𝜌𝑘𝑗 𝜙𝑗 Δ𝑑𝑗 with Δ𝑑𝑗 = 𝑑𝑗+1 − 𝑑𝑗 > 0, (C.8)

the bounds

0 ≤ 𝑟
𝑁−1
∑

𝑗=0
𝜌𝑘𝑗 𝜙𝑗 Δ𝑑𝑗 ≤ 𝑟

𝑁−1
∑

𝑗=0
𝜌𝑘𝑗 Δ𝑑𝑗 (C.9)

are immediate in view of the box constraints 𝜙𝑗 ∈ [0, 1]. By definition of the incremental energy (3.32)

𝑃 (ε,φ) =

( 𝑁
∑

𝑗=0
𝜌𝑗 (φ) 𝑔𝑗

)−1
1
2
ε ⋅C[ε] + 𝑟

𝑁−1
∑

𝑗=0
𝜌𝑘𝑗 𝜙𝑗 Δ𝑑𝑗 , (C.10)

the estimates (C.7) and (C.9) imply the bound

1
2𝑔0

ε ⋅C[ε] ≤ 𝑃 (ε,φ) ≤ 1
2𝑔𝑁

ε ⋅C[ε] + 𝑟
𝑁−1
∑

𝑗=0
𝜌𝑘𝑗 Δ𝑑𝑗 , ∀ε ∈ Sym(𝑛). (C.11)

As the derived bounds are independent of the variable φ to be optimized, minimization w.r.t. φ ∈ [0, 1]𝑁  leads to the desired bounds
(C.1) with the constants

𝛼− = 1
𝑔0
, 𝛼+ = 1

𝑔𝑁
and 𝐶+ = 𝑟

𝑁−1
∑

𝑗=0
𝜌𝑘𝑗 Δ𝑑𝑗 . (C.12)

C.2.  Convexity of the condensed incremental energy

The purpose of this Appendix is to show that the condensed incremental energy (3.31)
𝜓cond(ε) ∶= min

φ∈[0,1]𝑁
𝑃 (ε,φ), ε ∈ Sym(𝑛), (C.13)

is a convex function of its argument. This (standard) fact follows directly from the convexity of the function 𝑃 , see Eq. (2.50). We 
provide the argument for the convenience of the reader.
The condensed incremental energy (C.13) is convex provided the inequality

𝜓cond(𝜆ε1 + (1 − 𝜆)ε2) ≤ 𝜆𝜓cond(ε1) + (1 − 𝜆)𝜓cond(ε2) (C.14)

holds for all strains ε1,ε2 ∈ Sym(𝑛) and all 𝜆 ∈ [0, 1]. For any two such strains, there are associated states φ1,φ2 ∈ [0, 1]𝑁  realizing 
the minimum (C.13), i.e., the equations

𝜓cond(ε𝑖) = 𝑃 (ε𝑖,φ𝑖), 𝑖 = 1, 2, (C.15)

are satisfied. By the convexity of the function 𝑃 , the estimate
𝑃 (𝜆ε1 + (1 − 𝜆)ε2, 𝜆φ1 + (1 − 𝜆)φ2) ≤ 𝜆𝑃 (ε1,φ1) + (1 − 𝜆)𝑃 (ε2,φ2) (C.16)

holds for all parameters 𝜆 ∈ [0, 1]. By definition (C.13), the left-hand side is not smaller than
𝜓cond(𝜆ε1 + (1 − 𝜆)ε2) ≡ min

φ∈[0,1]𝑁
𝑃
(

𝜆ε1 + (1 − 𝜆)ε2,φ
)

≤ 𝑃 (𝜆ε1 + (1 − 𝜆)ε2, 𝜆φ1 + (1 − 𝜆)φ2), (C.17)

whereas the right-hand side may be re-written via the expressions (C.15). Thus, we obtain the desired inequality (C.14), finishing the 
argument.
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C.3.  Lack of strict convexity of the condensed incremental energy

The goal of this Appendix is to show that the condensed incremental energy (3.31)
𝜓cond(ε) ∶= min

φ∈[0,1]𝑁
𝑃 (ε,φ), ε ∈ Sym(𝑛), (C.18)

is not strictly convex, in general. For this purpose, we consider the first time step (2.43) only, where the condensed incremental 
energy (3.32) reduces to the form

𝜓cond(ε) ∶= min
𝜙∈[0,1]

𝜓0(ε)
(1 − 𝜙) 𝑔0 + 𝜙𝑔1

+ 𝜙 𝑟 (𝑑1 − 𝑑0), ε ∈ Sym(𝑛), (C.19)

with the undamaged elastic energy (2.17)

𝜓0(ε) =
1
2
ε ⋅C[ε], ε ∈ Sym(𝑛). (C.20)

To increase readability, we introduce specific notation for this appendix only, and write
𝑑− ≡ 𝑑0, 𝑑+ ≡ 𝑑1, 𝑔− = 𝑔0, 𝑔+ = 𝑔1. (C.21)

Thus, the expression (C.19) becomes

𝜓cond(ε) ∶= min
𝜙∈[0,1]

𝜓0(ε)
(1 − 𝜙) 𝑔− + 𝜙𝑔+

+ 𝜙 𝑟 (𝑑+ − 𝑑−), ε ∈ Sym(𝑛). (C.22)

The problem (C.22) is just a simple one-dimensional optimization problem, and the solution 𝜙 may be computed explicitly:

𝜙 = 𝑅[0,1]

⎛

⎜

⎜

⎜

⎜

⎜

⎝

√

𝑔+ − 𝑔−
𝑑+ − 𝑑−

𝜓0(ε)
𝑟

− 𝑔−

𝑔+ − 𝑔−

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(C.23)

with the clipping function
𝑅[0,1] ∶ R → [0, 1], 𝑥 ↦ max(min(𝑥, 1), 0). (C.24)

For strains ε ∈ Sym(𝑛) with an undamaged elastic energy in the range

𝜓0(ε) ∈
[

𝑟 𝑔2−
𝑑+ − 𝑑−
𝑔+ − 𝑔−

, 𝑟 𝑔2+
𝑑+ − 𝑑−
𝑔+ − 𝑔−

]

, (C.25)

the associated volume fraction 𝜙 satisfies the equation

𝜓0(ε)
𝑔+ − 𝑔−

((1 − 𝜙) 𝑔− + 𝜙𝑔+)2
= 𝑟 (𝑑+ − 𝑑−), (C.26)

which we may re-write in the form

(1 − 𝜙) 𝑔− + 𝜙𝑔+ =

√

𝜓0(ε)
𝑟

𝑔+ − 𝑔−
𝑑+ − 𝑑−

. (C.27)

Thus, in view of the definition (C.22) and the expressions (C.23) as well as (C.26) for strains in the range (C.25), we are led to the 
formula

𝜓cond(ε) =
𝜓0(ε)

√

𝜓0(ε)
𝑟

𝑔+ − 𝑔−
𝑑+ − 𝑑−

+ 𝑟 (𝑑+ − 𝑑−)

√

𝑔+ − 𝑔−
𝑑+ − 𝑑−

𝜓0(ε)
𝑟

− 𝑔−

𝑔+ − 𝑔−

= 2

√

𝑟
𝑑+ − 𝑑−
𝑔+ − 𝑔−

√

𝜓0(ε) − 𝑟 𝑔−
𝑑+ − 𝑑−
𝑔+ − 𝑔−

,

(C.28)

which we may also write in the more abstract form
𝜓cond(ε) = 𝐴

√

𝜓0(ε) + 𝐵 (C.29)

for strains ε ∈ Sym(𝑛) satisfying the constraints (C.25) with the constants

𝐴 = 2

√

𝑟
𝑑+ − 𝑑−
𝑔+ − 𝑔−

and 𝐵 = −𝑟 𝑔−
𝑑+ − 𝑑−
𝑔+ − 𝑔−

. (C.30)
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After these preliminaries, we announce our strategy for showing the lack of strict convexity of the condensed incremental energy
(C.22): We pick two different strains ε1 and ε2 obeying the constraints (C.25) and show, with the help of the representation formula
(C.29), that the condensed incremental energy (C.22) is precisely linear over the interpolated strains

ε(𝜆) = 𝜆ε1 + (1 − 𝜆)ε2, 𝜆 ∈ [0, 1]. (C.31)

In case of strict convexity, the values of the condensed incremental energy at interior interpolation points, 𝜆 ∈ (0, 1), would need to 
be strictly less than their linear interpolation:

𝜓cond(ε(𝜆))
!
< 𝜆𝜓cond(ε1) + (1 − 𝜆)𝜓cond(ε2), 0 < 𝜆 < 1. (C.32)

In particular, as soon as we show the identity
𝜓cond(ε(𝜆)) = 𝜆𝜓cond(ε1) + (1 − 𝜆)𝜓cond(ε2), 0 < 𝜆 < 1, (C.33)

strict convexity of the condensed incremental energy is ruled out.
We pick a strain ε1 ∈ Sym(𝑛) with elastic energy

𝜓0(ε1) = 𝑟 𝑔2−
𝑑+ − 𝑑−
𝑔+ − 𝑔−

, (C.34)

and consider the rescaled strain
ε2 =𝑀 ε1 (C.35)

with a rescaling factor 𝑀 > 1 that we choose in such a way that the equation

𝜓0(ε2) = 𝑟 𝑔2+
𝑑+ − 𝑑−
𝑔+ − 𝑔−

(C.36)

is satisfied, i.e., we set
𝑀 =

𝑔+
𝑔−
. (C.37)

The strains are chosen to represent the boundary cases for the admissible range (C.25). As the elastic energy (C.20) scales quadratically, 
we observe

𝜓cond(ε1) = 𝐴
√

𝜓0(ε1) + 𝐵, (C.38)

𝜓cond(ε2) = 𝐴𝑀
√

𝜓0(ε1) + 𝐵, (C.39)

𝜓cond(ε(𝜆)) = 𝐴 [𝜆 + (1 − 𝜆)𝑀]
√

𝜓0(ε1) + 𝐵, (C.40)

where we used the expression
ε(𝜆) = 𝜆ε1 + (1 − 𝜆)ε2 = 𝜆ε1 + (1 − 𝜆)𝑀 ε1 = [𝜆 + (1 − 𝜆)𝑀]ε1. (C.41)

In particular, we observe
𝜓cond(ε(𝜆)) = 𝐴 [𝜆 + (1 − 𝜆)𝑀]

√

𝜓0(ε1) + 𝐵

= 𝐴𝜆
√

𝜓0(ε1) + (1 − 𝜆)𝐴𝑀
√

𝜓0(ε1) + 𝐵

= 𝜆
(

𝐴
√

𝜓0(ε1) + 𝐵
)

+ (1 − 𝜆)
(

𝐴𝑀
√

𝜓0(ε1) + 𝐵
)

= 𝜆𝜓cond(ε1) + (1 − 𝜆)𝜓cond(ε2),

(C.42)

which was to be shown (C.33).

C.4.  Existence of minimizers to mechanical mixed boundary-value problems

The purpose of this Appendix is to provide arguments for the validity of property (iii) listed in Section 3.3, i.e., the existence of a 
minimizer 𝒖 ∈ 𝐻1

𝐷(Ω)
𝑛 to the problem (3.37)

 (𝒖) ∶= ∫Ω
𝜓cond(∇𝑠(𝒖0 + 𝒖)) + 𝒇 ⋅ 𝒖 d𝑉 + ∫Γ𝑁

𝒕 ⋅ 𝒖 d𝐴⟶ min
𝒖∈𝐻1

𝐷(Ω)
𝑛
. (C.43)

The key properties required for establishing the validity of this statement are the bounds (3.33)
𝑐− ‖ε‖2 ≤ 𝜓cond(ε) ≤ 𝐶+ + 𝑐+ ‖ε‖2, ε ∈ Sym(𝑛), (C.44)

valid with constants 𝑐± and 𝐶+ independent of the strain and the convexity of the condensed incremental energy 𝜓cond. Then, the 
existence of minimizers for the function  follow from standard arguments, more precisely the direct method in the calculus of 
variations. Let (𝒖𝑘) be a minimizing sequence in 𝐻1

𝐷(Ω)
𝑛, i.e.,

lim
𝑘→∞

 (𝒖𝑘) = ∗ ≡ min
𝒖∈𝐻1

𝐷(Ω)
𝑛
 (𝒖). (C.45)
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The lower bound (C.43) implies the inequality

∫Ω
𝑐−‖∇𝑠(𝒖0 + 𝒖)‖2 + 𝒇 ⋅ 𝒖 d𝑉 + ∫Γ𝑁

𝒕 ⋅ 𝒖 d𝐴 ≤  (𝒖), 𝒖 ∈ 𝐻1
𝐷(Ω)

𝑛, (C.46)

or, put differently

‖∇𝑠(𝒖0 + 𝒖)‖2
𝐻1
𝐷(Ω)

𝑛 ≤ 𝐶

[

 (𝒖) +

(

‖𝒇‖𝐻−1
𝐷 (Ω)𝑛 + ‖𝒕‖

𝐻
− 1
2

𝐷 (Γ𝑁 )𝑛

)

‖∇𝑠(𝒖0 + 𝒖)‖𝐻1
𝐷(Ω)

𝑛

]

(C.47)

for some constant 𝐶 independent of 𝒖 ∈ 𝐻1
𝐷(Ω)

𝑛. As a consequence of the definition (C.45), the sequence (𝒖𝑘) is uniformly bounded 
in 𝐻1

𝐷(Ω)
𝑛. By the weak compactness of bounded sets in Hilbert spaces, there is a limit 𝒖∗ ∈ 𝐻1

𝐷(Ω)
𝑛, s.t., possibly up to selecting a 

subsequence, the sequence (𝒖𝑘) converges weakly to 𝒖∗, i.e.,
𝒖𝑘 → 𝒖∗ strongly in 𝐿2(Ω)𝑛, (C.48)

∇𝒖𝑘 ⇀ ∇𝒖∗ weakly in 𝐿2(Ω)𝑛×𝑛. (C.49)

As integral functionals with convex integrands satisfying the upper bound (C.43) are weakly lower semicontinuous in 𝐿2, see, e.g., 
Dacorogna [62], we deduce

 (𝒖∗) ≤ lim inf
𝑘→∞

 (𝒖) ≡ ∗ ≡ min
𝒖∈𝐻1

𝐷(Ω)
𝑛
 (𝒖) (C.50)

where we used the construction (C.45). In particular, 𝒖∗ ∈ 𝐻1
𝐷(Ω)

𝑛 represents the sought minimizer.
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