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We develop a unified theory of weakly probed differential observables for currents and noise in transport
experiments. Our findings uncover a set of universal transport relations between thermoelectric and noise
properties of a system probed through a tunnel contact, with the Wiedemann-Franz law being just one
example of such universality between charge and heat currents. We apply this theory to various quantum
systems, including multichannel Kondo, quantum Hall and Sachdev-Ye-Kitaev quantum dots, resonant
impurity, and two-stage Kondo models and demonstrate that each of the microscopic theories is
characterized by a set of universal relations connecting conductance and thermoelectrics with noise.

Violations of these relations indicate additional energy scales emerging in a system.
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Quantum transport probes are widely used for obtaining
information about mesoscopic systems. Thermoelectric and
shot noise measurements are employed for detecting sig-
natures of Kondo physics [1-3] and characterization of
quantum dots [4,5] serve as direct quantum information
probes [6]. In heavy fermion materials and strange metals,
they provide experimental [7,8] and theoretical [9-11]
insights into the nature of the charge carriers and interactions
dominating in different regimes. In holographic systems, the
transport observables are related to thermodynamics of
black holes [12-14]. In addition to widely used thermo-
electric and shot noise measurements [15], delta-T noise,
arising purely due to temperature bias, has been recently
measured experimentally [ 16—18], which opens possibilities
for utilizing it as an experimental probe. Nevertheless, it is
often experimentally challenging to probe differential trans-
port observables, as this procedure requires a simultaneous
control over different biases applied to a system [1].
Furthermore, such probes may give ambiguous results about
the microscopic properties of the system. For instance,
violations of the Wiedemann-Franz (WF) law may have
various underlying reasons [19-21].

In this Letter, we develop a linear response theory for
transport through a tunnel contact that treats all currents and
noise on the same footing. This theory provides a set of
universal relations between different transport observables,
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leading to one-to-one connections between various Fano
factors, and establishes regimes of equivalence between
thermoelectric and noise measurements. The obtained
universality allows for experimental flexibility regarding
a choice of observables for obtaining the same information
about the probed system. At the same time, violations of the
established universal relations provide a more nuanced
information about the microscopic properties of the system
comparing to existing analysis. After presenting the general
theory, we illustrate its application to a wide variety of
systems, including multichannel Kondo devices, quantum
Hall systems, holographic systems [Sachdev-Ye-Kitaev
(SYK) model and its generalizations [22,23] ], the resonant
impurity model, and the two-stage charge Kondo model.
Generalizing the concept of the Lorenz number and the
Lorenz ratio, we show that each of the microscopic theories
results into a specific set of universal constants relating
different transport observables to each other. Violations of
these relations point to additional energy scales that
effectively emerge within the system.

Model—We consider a quantum system (S) weakly
coupled through a tunnel junction to a metallic lead (L).
This is a typical setup for tunneling spectroscopy and
transport probes widely used in mesoscopic and nanoscopic
experiments [1-5,24—43]. The temperature of the system is
T, while the temperature of the lead is 7+ AT. There is a
voltage bias AV between them; both AV and AT are
assumed to be small enough so the linear response theory
can be justified. For now, we do not specify the nature of
the probed system. It can be another metallic lead, a
quantum dot of various types (e.g., a multiterminal
Kondo device, an SYK quantum dot), or some extended
non-Fermi-liquid system [44]. Throughout the Letter, we
puth=e=kg=1.
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In the following, we consider transport of charge and
heat across the tunnel junction, induced due to the voltage
and temperature bias. Within the considered setup, there are
two types of current—charge current /. and heat current /.
For these two currents, there are three possible types of
current-current correlations that constitute noise: charge
noise S, heat noise S, and mixed noise S,, (that accounts
for correlations between charge and heat currents) [61-63].
This consideration can easily be extended to other types
of transport (e.g., spin transport [64]), multiterminal
setups [65,66], and higher moments of the corresponding
currents.

Noise coefficients—A steady state tunneling current and
zero frequency noise power (which we further refer as noise
for simplicity) across a tunnel junction connecting two
systems depend on the local density of states (DOS) of the
systems and their occupation numbers. To characterize the
charge and heat transport through a tunnel junction, it is
convenient to introduce the energy-dependent transmission
coefficient (more generally, imaginary part of the 7-matrix)
T (&) = 2x|A]>p; (€)ps(e) [67-69], where 1 is the tunneling
amplitude through the barrier and p;(e) (i = L, S) are the
DOS of the lead and the system. Since the probe is a
metallic lead, its DOS can be approximated (close to the
Fermi level) by a constant value p; = (2zvg)~!, where vy
is the Fermi velocity. In the weak tunneling limit, one can
consider the 7-matrix in the lowest order of the tunneling
amplitudes. Employing Keldysh Green’s functions [70,71],
one can express the currents and the noises in this regime as

I = /_ ™ dee — AV (¢)

(5]

x [n (e = AV, T+ AT) —ng(e, T)], (1)

Se/min = /m de(e — AV)!'T ()

(e8]

[n(e = AV, T + AT) + ng(e,T)
—2n; (e — AV, T + AT)ng(e, T)), (2)

where n = 0, 1 for charge /.. and heat current /,; [l = 0, 1, 2
for charge S., mixed S,,, and heat noise S, correspond-
ingly [66,72]. AV and AT are voltage and temperature
drops, respectively, across the tunnel junction. n(e, T) =
(e¥/T +1)7! is the Fermi-Dirac function (u is the
chemical potential).

The linear response theory of thermoelectric transport
expresses currents via the transport coefficients that capture
the system’s response to small biases. These responses can
be expressed in terms of the Onsager transport integrals [73]
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This defines charge conductance G = L, thermoelectric co-
efficient G; = (1/T)L,, heat conductance Gy = (1/T)L,,
Peltier coefficient IT = (£,/L,), Seebeck coefficient (also
known as thermopower) S = (£,/TL,), and thermal con-
ductance K = Gy — TGS [66]. With the same approach,
we generalize this idea and introduce the noise coefficients

/ ® o7 (e) S 2 G

cosh? (%)

1
Nn_ﬁ

n=0,1,2,3. (5)
Within the linear response, each type of noise can be
decomposed into three components: equilibrium (also known

as Johnson-Nyquist) noise $7% . which is present at finite

temperature even without any bias; shot noise 583 , =
(0Scmn/OAV)|s7_o induced due to the voltage bias; and
delta-T noise 6557 = (0S..,,,,/0AT)|,y_, induced due to
the temperature bias [74]. It brings us to nine different types of
noise, but only four of them are independent. Using Eqgs. (4)
and (5), all types of noise in the weak tunneling regime can be
brought into a form similar to Eq. (3):

A\ 2T L, N() %Nl 1
Sa | = 2TL, N, =2TLy +N, AV |. (6)
Sh 2T£2 Nz - 4T£1 %N’; AT

Note that the Johnson-Nyquist noise is fully determined by
the transport coefficients £, [63,75], and none of the mixed
noise §,, components are independent; they are related to
charge and heat noise as
SS3N = T5SAT — §IN, SSIN = TsSoT =28V (7)
Detailed derivations of these results are given in [76]. The
expressions (7) extend the Onsager reciprocity relations [77]
to noise and have the same origin.

For our purpose, it will be more convenient to represent
the transmission coefficient as a function of real time. For
that, one switches to the time domain and makes an analytic

continuation that accounts for finite temperature, as
detailed in [78]:

1 € oo 1 H iet
T(e) = —;coshﬁ n dtT <ﬁ + lt) e, (8)

This expression can be substituted to Egs. (4) and (5) by
integrating out the energy dependence and expressing all
transport coefficients through integrals in the time domain,
which are calculated explicitly in [76].

The transport integrals (4) depend on the spectral
symmetry of the system due to the structure of their
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kernels, which are either symmetric (n =0, 2) or anti-
symmetric (n = 1) functions of energy. For instance, the
differential thermopower, which is proportional to L, is
zero for particle-hole symmetric systems [79]. The same
symmetry considerations apply to the noise coefficients (5).
Coefficients Ly, £,, N;, and N5 depend only on the
symmetric part of 7 (¢), while coefficients £;, Ny, and N,
depend only on the antisymmetric part of 7 (¢).

Lorenz ratio—There is a well-known relation between
coefficients £, and L, that constitutes the WF law
(conventionally, it is represented as a relation between K
and G that holds for small values of the thermoelectric
coefficient and is violated by the strong thermoelectric
effects [66]). As we show in the following, as long as the
ratio between these two transport coefficients is universal,
there are universal ratios between all coefficients within the
symmetric and antisymmetric categories.

The WF law is known to hold (up to subleading finite
temperature corrections) whenever charge and heat are
transferred by the same carriers, which (in the zero-7 limit)
is equivalent to the condition of existing a well-defined
Fermi surface [20], and scattering processes in the probed
system are elastic (so there are no competition between the
elastic and inelastic processes) [7]. The generalized WF law
(L£,/T*Ly) = LyR; goes beyond the Fermi liquid (FL)
paradigm and constitutes the same relation between the
heat conductance and the charge conductance up to a
modified proportionality constant [81]. Here, L, = (7%/3)
is the Lorenz number, and R; is the Lorenz ratio that
accounts for the deviations from the FL relation (R; =1
for the FL).

The Lorenz ratio can be written as

R 6 J%3, dicosh™(aT)T (35 + i) 5 o)
b= dicosh™! (aTt)T (55 + it) '

The generalized WF law holds at finite temperatures
(meaning that R; is a constant universal number over a
certain window of temperatures) as long as 7 in Eq. (9)
scales as a function of a single parameter (the temperature).
In general, an interplay of several energy scales for 7 and a
competition between elastic and inelastic processes break
this universality and violate the generalized WF law [21].
As an example, the WF law may be fulfilled at low and high
temperatures but broken at the scale of mesoscopic fluc-
tuations [19]. We stress out that so far we did not put any
constraints on the 7 structure. A quantum dot below the
Kondo temperature (which is proportional to the charging
energy) with negligible level spacing 6 (so T > 6 [82])
is characterized by the transmission coefficient
T[(1/2T) + it] ~ [1/cosh®(#Tt)]. This structure of the
transmission coefficient covers a broad variety of systems.
For example, @ = 1 for FL and a € [1, 3] for an N-channel
Kondo quantum dot [83] or a quantum Hall simulator [84]
[N€([l, ), a = 1+ 2/N]. The same structure with a = 1

is applicable to a quantum dot with SYK interactions in the
conformal regime [85]. In all these cases, the cosh-like
structure of the 7-matrix stems from the conformal sym-
metry [86]. The Lorenz ratio in this case reads

_ 3a
C24a’

R, (10)

We illustrate these Lorenz ratios in Fig. 1. The Lorenz
ratio for Kondo and quantum Hall devices is always
enhanced comparing to the FL due to the Anderson
orthogonality catastrophe [83,91-93]. In contrary, the
reduced Lorenz ratio is realized for the SYK model, and
an arbitrary small Lorenz ratio can be achieved within the
double-scaled SYK (DSSYK) model [94,95], a g-body
generalization of the SYK model [its saddle-point Green’s
function scales as cosh™>/7 (zTt), so @ = (2/q)], including
R; =0 at g — oo. In this limit, DSSYK belongs to the
same universality class as the random matrix theory [96].
Furthermore, it can happen that the transmission coefficient
is fully determined by inelastic processes, as is the case for
an SYK dot deep within the Coulomb blockade [85]. In this
case, the universality of the generalized WF law can be
restored whenever a single energy parameter governs the
T-matrix (or at least its symmetric part) behavior over some
range of temperatures (the detailed analysis is provided
in [76]). We illustrate it for the SYK model in conformal
and Schwarzian regimes in Fig. 1 (for comparison, we put
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FIG. 1. Lorenz ratio given by Eq. (9). Red solid line, Lorenz

ratio given by Eq. (10). Blue dotted line, a range of Lorenz ratios
for an N-channel Kondo or quantum Hall simulator; vertical
dotted lines at @« = 1 and a = 3 depict the range of a for the
Kondo or quantum Hall simulator (they values reproduce the
results obtained in [83,84,97] for these systems). The black
square corresponds to the Fermi liquid regime. Gray diamond,
SYK in the conformal regime. Downward violet triangle,
inelastic tunneling regime for the conformal SYK. Blue star,
large-g conformal regime of the double-scaled SYK. Upward
cyan triangle, SYK dot in the Schwarzian regime. Green cross,
Schwarzian SYK regime with only inelastic tunneling. Dashed
lines are used as eye guides.
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the corresponding points at the same «a values that are
realized for their conformal counterparts). Though the
transmission coefficient of the system departs from
the cosh-like behavior within the Schwarzian regime, the
generalized WF law is still obeyed. We analyze the WF law
for the resonant impurity model and the two-stage Kondo
model in [44].

Within the elastic tunneling regime, the Lorenz ratio
effectively probes the DOS in the vicinity of the zero
energy. For FL, the DOS saturates in this area to some finite
value and can be approximated by a constant (which results
in a = 1). If DOS is suppressed due to strong electron-
electron correlations, approaching zero at zero energy, the
Lorenz ratio is boosted, as is the case for the multichannel
Kondo simulators and quantum Hall devices (resulting in
a > 1). The conformal regime of the (double-scaled) SYK
model provides an opposite example—the DOS diverges in
this case, leading to @« < 1 and R; > 1. The SYK model
provides a particular well-controlled example here, since its
DOS switches between ¢~'/2 divergence within the con-
formal regime to &'/? convergence within the Schwarzian
regime, and the corresponding Lorenz ratio immediately
changes from R; = % < 1toR; ~1.06 > 1 (gray diamond
and cyan upward triangle in Fig. 1). The vanishing Lorenz
ratio R, = 0 for the DSSYK at ¢ — oo arises from &'
divergence of the DOS [98]. Generally speaking, other
scaling laws for divergent DOS may be realized. For
instance, some conformal field theories exhibit the
logarithmic DOS divergency [99]. The Van Hove singu-
larities [100] result into the logarithmic or power-law
divergencies [101-104] of the DOS (see also connections
to multicritical Lifshitz points [105]), that strongly affect
their transport properties [106—109]. The emergent noise
relations for these theories may provide tools for distin-
guishing different divergencies in experiments, but such a
consideration is beyond the scope of this Letter.

Universal noise relations—As long as the universality of
Eq. (9) holds (i.e., the generalized WF law is obeyed), one
can construct similar relations involving other transport
coefficients. We detail this procedure in End Matter.
Overall, there are five independent ratios (including the
WF law) that relate all the coefficients between each
other. For instance, one can define the ratio between the
delta-T charge noise and the electric conductance. This is
identical to the ratio of the following coefficients:
8SAT /G = (N /TLy) = L R2T. Here, we denoted L, =
1 as the first extended Lorenz number for FL, and R2T is
the deviation of this ratio from the FL value. Furthermore,
one can define (6547 /T*G) = (N3/T3Ly) = LR} with
L2 = 71'2, (6S§N/GT) = (TN()/E]) = L3RZ~ Wlth L3 = %,
and (N,/TL;) = L4R};, with Ly = [(12 + #?)/9] ~2.43.

Having established these relations between the symmet-
ric and antisymmetric coefficients, we can identify other
characteristics of transport that acquire certain universality.

Let us consider the Fano factor of charge transport, which
constitutes a ratio between the shot noise and charge
current due to the voltage bias, F3¥ = S./I.. Note that
in the zero temperature limit this ratio becomes exactly
unity, which is a universal property of a weak tunneling
contact—this can be seen from Egs. (1) and (2) for an
arbitrary 7 (¢), as the Fermi-Dirac distribution becomes an
idempotent function n; (¢ + AV, T)Tfoe(e + AV). For the

linear response regime, which is valid at AT, AV < T, let
us subtract the equilibrium component of the noise,
defining F3V = 655V /G. We introduce the delta-7 Fano
factor as the ratio between the delta-7 charge noise and the
charge current induced due to temperature imbalance,
FAT = §SAT /Gr. We have

FNFRT = (N1 /Lo)(No/Ly) = L L3RE"RY. = const.
(11)

We can further use the Fano factors for the heat current in
the same scheme (F), = S,,/TI},), obtaining

Ny —4L, N5 LRy
El £2 B LORL

FSNFAT — (L4R), —4). (12)

Furthermore, we can write the thermopower S as

s _Gr_FN 1 N

G LsR. LRV L,

(13)

Within the universality regime, the shot noise Fano factor
provides us with the same information as the Seebeck
coefficient. As is evident from Egs. (11) and (12), a
suppression of the Fano factor for the shot noise leads
to an enhancement of the Fano factor for the delta-T" noise
(see also Ref. [110]).

Moving beyond the linear response regime, one can
construct multiple universal ratios between the currents and
noises components quadratic with respect to biases, as
demonstrated in [44]. In particular, the quadratic compo-
nents of the currents can be expressed in a closed form
through the linear-response components of noises, and a
product of the generalized charge Fano factor (used
to quantify nonlinear corrections to charge noise and
current [111,112]) and the linear-response charge Fano
factor forms another universal relation.

Conclusions—The introduced noise coefficients provide
a complete characterization of the zero-frequency noise
power in mesoscopic and nanoscopic transport [Eq. (6)] in
a system weakly coupled to a metallic contact. There are
seven independent differential observables that characterize
current and noise. Indeed, the Johnson-Nyquist charge,
mixed and heat noise exactly replicate the differential
transport coefficients—conductance, thermoelectric coef-
ficient, and heat conductance, correspondingly. Moreover,
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the mixed shot noise and the charge delta-T noise, and the
heat shot noise and the mixed delta-T noise, are connected
though the reciprocity relations (7), similar to the Onsager
reciprocity relation that connects the Seebeck and Peltier
coefficients. Therefore, the mixed noise does not have
independent components. It leaves only four potentially
independent noise coefficients which can be treated on the
same footing with the three independent transport coef-
ficients characterizing currents. These coefficients are
grouped into two categories: symmetric and antisymmetric
ones with respect to their dependence on the spectral
asymmetry. As we have shown, the generalized
Wiedemann-Franz law, the relation that connects two
symmetric transport coefficients, is just one of the relations
that connect all the symmetric transport and noise coef-
ficients with each other as long as the transmission
coefficient of the system can be approximated as a
single-parameter function. The same consideration holds
for the antisymmetric coefficients, so in this universality
regime all transport and noise features of the system are
determined by just two independent observables. This
redundancy of the noise features can be used to extract
the same information about the system from different
measurements. In particular, the thermoelectric measure-
ments can be substituted by the shot noise measurements,
which require only the voltage bias instead of tuning
between the voltage and temperature biases. The estab-
lished relations between the Fano factors signify that the
delta-T" noise can be a valuable experimental signature in
cases when the shot noise is suppressed. These findings
provide new tools for experimental studies of strongly
correlated systems and understanding properties of non-
Fermi-liquid materials, quantum information probes in
nanotransport [113-116], studies of holographic systems
[117], design of quantum heat engines [72,118,119],
insights into quantum Hall and fractional quantum Hall
devices [84,87-90,120-125], and thermoelectric experi-
ments in cold atoms [126,127]. An interesting open
question is how the relations between the noise and
thermoelectrics behave beyond the weak tunneling limit,
especially in the opposite limit of an open quantum point
contact. A rigorous quantum field theoretical quantum
point contact investigation of the noise including large-
scale numerical simulations [128] can be carried out in
future studies.
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End Matter

Universal noise relations—Within the universality
regime, one can construct a set of ratios that connect all
the transport and noise coefficients. Overall, there are
five independent ratios (including the WF law) that
relate all the coefficients between each other; other
relations are redundant. For instance, one can define the
ratio between the delta-7 charge noise and the electric
conductance. This is identical to the ratio of the
following coefficients: 6527 /G = (N|/TLy) = L, RAT.
Here, we denoted L; =1 as the first extended Lorenz
number for FL, and R27 is the deviation of this ratio
from the FL value:

2 [= dix TtMT(§+it)

RAT — o _ cosh?(zTt) (Al)
c = .
[, dtcosh™ (zTt)T (% + it)
This ratio has the same universality range and
applicability conditions as R; of the WF law.

Equation (Al) is general for any form of 7. For the
T[(1/2T) + it] ~ cosh™(xT1) transmission coefficient,
it becomes

2a

RAT — .
¢ 14+ a

(A2)

We further explore universality of the RAT ratio for
elastic and inelastic tunneling regimes, as well as
breaking of this universality, for the SYK dot in [76].

We introduce further (6547 /T*G) = (N3/T3Ly) =
L,R&T, where L, = #n* is the second extended Lorenz
number for FL. R is the deviation of this ratio from the
FL value:

2

AT _ 2a + 6a . (A3)
34+4a+a

With Egs. (10), (A1), and (A3), one can trivially find the

three remaining ratios between the symmetric coefficients

(ﬁz, Nl? and N3)

The same type of universal relations holds between the
antisymmetric coefficients. Coefficients £;, N, and N,
do not vanish only if the system is away from the hole-
particle symmetric regime; this deviation can be charac-
terized by the spectral asymmetry parameter £ [76]. In most
cases, all the antisymmetric coefficients are proportional to
~& for weak particle-hole asymmetry. Nevertheless, this
proportionality cancels in their ratios [up to O(£?) correc-
tions], which remain finite even in the £ — 0 limit. In some
special cases, e.g., for the two-channel charge Kondo
system [59], the prefactor at £ for the antisymmetric
coefficients is zero, so the leading contribution is ~E?
(or £", n €N most generally), which again cancels in their
ratios. These ratios can be found by introducing small
spectral asymmetry into the transmission coefficient
T [(1 /2T) + it]. This generates odd-in-¢ terms in 7, so
the antisymmetric coefficients are nonzero. Subsequently,
one can take the & — 0 limit. In addition to the even part
(which does not play a role for the antisymmetric coef-
ficients), there is the odd component of the transmission
coefficient ~ that  contributes to  these  ratios

Odd[(1/2T) + zt] [i€t/cosh®(xTt)], and the vanishing
& cancels in the nominator and denominator, providing
universal asymptotic relation. Strictly speaking, the odd
component of the transmission coefficient may have more
complicated ¢ dependence, but this simple estimate cap-
tures its leading contribution at z7t < 1, while contribu-
tions from its larger values are exponentially suppressed
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due to cosh terms in the denominator. Nevertheless, one can
calculate the odd component exactly by substituting the
exact expression of Eq. (8) in the antisymmetric transport
and noise integrals.

For the ratio (8S3V/Gr) =
has L3 =73

(TNo/Ly) =

3RC, one

6 [, dxx*cosh™'7%(x)
)

RY. =
¢ [, dxx sinh(x)cosh™%(x

~—

1 1 .3 3 3ta.
o P 1 e e e )

s (e () ()

N

where I'(+) is the Gamma function and ,F5(-;-;-) is the
generalized hypergeometric function.

The ratio (N,/TL;)=L4R}, contains L, =
(12 + 72)/9] =~ 2.43:
4 4 2 h—B—a
LRY, =~ s dueosh ™ (x) — LRV +4.  (AS)

B[ dxxsinh(x)cosh™~%(x)

Using this expression, we can define (5S3"/T°Gy) =
L4R), — 4. The explicit form of R}, is a cumbersome
comblnatlon of the generalized hypergeometric functions,
so we rather plot the exact value of R}; in Fig. 2 along with
all other extended Lorenz ratios. For a = %, we reproduce
the corresponding ratios numerically from the exact

6.0 ——T———T———T——— T

50F : ) i

FIG. 2. Extended Lorenz ratios as functions of a. R stands for
R, (solid blue line), R2T (dashed red line), R4 (dotted black
line), RY. (dash-dotted green line), R}, (short-dotted orange line).
All ratios are normalized by the extended Lorenz numbers L;,
i=0,...,4such that R, = 1 at @ = 1 (Fermi liquid regime, thin
vertical dotted line).

expressions in [76]. The precision of such an estimate
comparing to exact calculations is further analyzed in [44]
for the two-channel charge Kondo system. We also analyze
in [44] all the noise coefficients for the noninteracting two-
stage Kondo problem, which has the FL set of the ratios at
the first stage of the screening and its own unique set of the
ratios at the second stage.
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