KIT | KIT-Bibliothek | Impressum | Datenschutz

Full- and Low-Rank Exponential Euler Integrators for the Lindblad Equation

Chen, Hao ; Borzì, Alfio; Janković, Denis ORCID iD icon 1; Hartmann, Jean-Gabriel; Hervieux, Paul-Antoine
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

The Lindblad equation is a widely used quantum master equation to model the dynamical evolution of open quantum systems whose states are described by density matrices. These solution matrices are characterized by semipositiveness and trace preserving properties, which must be guaranteed in any physically meaningful numerical simulation. In this paper, novel full- and low-rank exponential Euler integrators are developed for approximating the Lindblad equation that preserve positivity and trace unconditionally. Theoretical results are presented that provide sharp error estimates for the two classes of exponential integration methods. Results of numerical experiments are discussed that illustrate the effectiveness of the proposed schemes, beyond present state-of-the-art capabilities.


Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 28.02.2026
Sprache Englisch
Identifikator ISSN: 1064-8275, 0196-5204, 1095-7197, 2168-3417
KITopen-ID: 1000190265
Erschienen in SIAM Journal on Scientific Computing
Verlag Society for Industrial and Applied Mathematics (SIAM)
Band 48
Heft 1
Seiten A1 - A26
Vorab online veröffentlicht am 02.01.2026
Schlagwörter open quantum systems, Lindblad equation, positivity and trace preservation, exponential integrators, error analysis
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page