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Lattice-induced sound trapping in biperiodic metasurfaces of acoustic resonators
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A referential example of a physical system that supports bound states in the continuum (BICs) with an infinite
quality factor (Q factor) is a metasurface of discrete scatterers (resonators), whose response can be significantly
modified by exploiting lattice interactions. In this work, we explore the multipole-interference mechanism for
realizing accidental acoustic BICs (trapped modes) at I" point (in-plane Bloch wave vector k; = 0) of biperiodic
metasurfaces of acoustic resonators with one resonator per unit cell. To do so, we expand the pressure field
from the metasurface into a series of scalar zonal (m = 0) spherical multipoles, carried by a normally incident
plane wave, and formulate analytical conditions on the resonator multipole moments under which an eigenmode
becomes a BIC. The conditions enable us to determine the lattice constant and frequency values that facilitate the
formation of an axisymmetric BIC with a specific parity, resulting from destructive interference between zonal
multipoles of the same parity, despite each moment radiating individually. By employing the T-matrix method
for acoustic metasurfaces, we numerically investigate the BIC resonance in various structures, including finite
arrays, and also the transformation of such resonances into high-Q quasi-BIC regimes, which can be excited by

a plane wave at normal incidence.

DOI: 10.1103/wnmk-zhrb

I. INTRODUCTION

The physics of discrete electromagnetic or acoustic scatter-
ers arranged in periodic lattices attracts significant attention
because their electromagnetic or acoustic spectra can sup-
port additional collective resonances inaccessible with single
scatterers [1-5]. Interactions between an infinite number of
scatterers within a lattice can lead to the formation of lat-
tice eigenmodes and significantly modify the lattice response
compared to that of isolated scatterers or finite ensembles
[6-8]. Among these eigenmodes, trapped modes or bound
states in the continuum (BICs) are of particular interest in pho-
tonics and acoustics due to their unique characteristics [9—14].
A genuine BIC has a frequency embedded in the continuum of
radiating modes, but an infinite quality factor and no radiative
losses [15]. This leads to confinement (trapping) of the mode
energy near or inside the system [16].
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The formation of BICs has been demonstrated in photonic
and acoustic systems using various mechanisms [17-24].
One of these mechanisms involves coupling between discrete
scatterers (particles) arranged in subwavelength biperiodic lat-
tices, also referred to as metasurfaces. The electromagnetic (in
photonic or microwave systems) or acoustic (in acoustic sys-
tems) lattice-induced coupling can lead to the formation of
a nonradiant eigenmode if the lattice constant is smaller than
the wavelength in the background. In such a situation, a lattice
eigenmode can radiate only in directions determined by its
in-plane Bloch wave vector k. If the far field of the mode
vanishes in these directions, the mode is commonly referred to
as a symmetry-protected (or I'-point) BIC for k; = 0, and as
an accidental (or parametric) BIC for k; # 0 [25]. However,
this distinction is not exclusive, and accidental BICs have also
been shown to occur in photonic systems at k; = 0 [26-29].
One approach involves forming a nonradiant state through
destructive interference of multipoles with the same parity
(symmetry with respect to inversion r — —r) [29].

A comprehensive description of BICs in metasurfaces can
be obtained using the multipole decomposition method [25],
which has been successfully applied to describe lattice reso-
nant effects in photonics and acoustics [29-34]. This method
expands an arbitrary field into mutually orthogonal functions
with unique radiation patterns, called multipoles, providing
a set of basic solutions to the Helmholtz equation [35].
Here, multipoles are assumed to be spherical waves. It is
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important to note that the multipole decomposition differs be-
tween electromagnetics and acoustics: electromagnetic waves
are vectorial and transverse, whereas acoustic pressure waves
are scalar and longitudinal. In electromagnetics, the decom-
position involves vector electric and magnetic multipoles
of degree ¢ > 1, while in acoustics, it only involves scalar
multipoles of degree £ > 0. Thus, photonic systems possess
two types of multipoles and resonances, providing multiple
degrees of freedom to tailor the optical response [36-39].
Although acoustic scatterers possess only scalar multipoles,
the presence of the monopole (¢ = 0), which can interfere
with the dipole (¢ = 1) and higher-degree multipoles, gives
rise to acoustics-specific effects, such as the acoustic Kerker
effect [40,41] and the lateral recoil force [42].

The distinction outlined above necessitates different ap-
proaches to realize a BIC response in photonic and acoustic
systems. The multipolar content of a symmetry-protected BIC
(s-BIC) can contain only multipoles with m # %1, which do
not radiate in the normal direction with respect to the lattice
[25]. The simplest example of an electromagnetic s-BIC is
a lattice of vertically oriented electric or magnetic dipoles
€ =1,m = 0) [12,25]. Such a dipole does not radiate trans-
verse waves in the normal direction, making the entire lattice
nonradiant if the dipole moments of all particles have the same
amplitude and phase, i.e., k; = 0. Moreover, such a mode can
be excited under normal incidence only by breaking the parti-
cle symmetry [43—47], which breaks inversion and rotational
symmetry with respect to the z axis [48]. This can be achieved,
for example, by replacing a sphere with a nonequilateral
prism. This symmetry breaking enables bianisotropy-induced
coupling between the nonradiant electric dipole from the s-
BIC with m = 0 and the magnetic dipole of the external wave
with m = +£1, or vice versa [49,50]. This state is referred to
as a quasi-s-BIC to emphasize its finite but large Q factor. A
quasi-BIC can be more practically important than a genuine
BIC, as it can be excited by an external plane wave at normal
incidence [51,52].

In acoustics, a normally incident pressure plane wave
is a superposition of scalar multipoles that always radi-
ate in the normal direction—so-called zonal multipoles with
m = 0. Although scalar multipoles with m # 0 do not radi-
ate in the normal direction and can form acoustic s-BICs,
it can be hindered, if not impossible, to efficiently excite an
acoustic quasi-s-BIC with a high Q factor under normal inci-
dence without breaking the particle rotational symmetry [53].
Recently, Allayarov et al. [29] showed that lattice-induced
coupling between multipoles of the same parity (and m = +1)
can enable accidental optical BICs (a-BICs) at the I point
of a metasurface of spherical resonators. In this case, each
multipole can be excited by an external wave, resulting in
quasi-a-BICs with high-Q resonances under normal incidence
without breaking metasurface symmetry.

Therefore, in this work, we extend and explore this ap-
proach for acoustic metasurfaces excited by a normally
incident pressure wave [see Fig. 1(a)], showing its consistency
when mapped onto a different wave propagation platform.
We demonstrate that metasurfaces with inversion symmetry
can also support accidental acoustic BICs and quasi-BICs
for k; =0, arising from monopole-quadrupole or dipole-
octupole coupling that suppresses acoustic radiation in the
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FIG. 1. (a) Sketch of a biperiodic lattice of spherical particles
(resonators) with a subwavelength lattice constant of L; the structure
supports accidental acoustic bound states in the continuum (trapped
modes) with a certain parity at the I' point (normal incidence).
(b) Formation of the acoustic BICs owing to destructive interference
between scalar zonal multipoles with the same parity (with respect
to r — —r). The diagrams illustrate the intensity of the pressure
field in the far-field region, r >> Ay, generated by a unit cell. The
color represents the pressure field phase, while the radius indicates
its amplitude.

normal direction [see Fig. 1(b)]. In Sec. II, we present a com-
prehensive theoretical model to describe the acoustic response
of metasurfaces and their eigenmodes. This model enables
us to derive in Sec. III, analytical conditions under which
axisymmetric acoustic BICs emerge. Moreover, in Sec. III,
we model them in infinite arrays of spherical resonators and
discuss their transformation into quasi-BICs as the lattice
constant and frequency are tuned. Finally, in Sec. IV, we
investigate the quasi-BIC regime under realistic conditions,
such as the presence of material losses in the particles or a
substrate, as well as finite array sizes.

II. THEORETICAL MODEL

A. Basic equations

In linear acoustics, the propagation of a monochromatic
acoustic wave in a medium with compressibility § and mass
density p is described by pressure p(w; r) and velocity v(w; )
that obey the laws of mass and linear momentum conservation
[54,55]:

iwBp(w;r) =V -v(w;r), iwpv(w;r) = Vp(w;r). (1)
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By substituting the second equation into the first one, we see
that the pressure field obeys the acoustic wave equation,

wz
Ap(w;r) + C—zp(w;r) =0, (2)

where ¢ = 1/4/Bp is the speed of sound. Formally, Eq.
(2) presents the homogeneous Helmholtz equation with
wavenumber k = w/c.

B. T-matrix approach to scattering of acoustic waves
1. Single resonator

Let us consider the scattering of an acoustic wave pjp.(w; )
by an acoustic resonator. The linearity of Eq. (2) allows us to
write the total pressure field in the system as the sum of the
incident and scattered pressure fields,

ptot(w; l‘) = pinc(a); I') + psca(w; r)~ (3)

An efficient approach to calculate the scattered field in spher-
ical coordinates, which involves expanding pin.(w;r) and
Psca(@; 1) into a series of fundamental solutions of Eq. (2),
was laid out by Lord Rayleigh in his seminal work, The
Theory of Sound (see Chap. 17 of Ref. [56]). In today’s no-
tation, such fundamental solutions, the scalar spherical waves
or simply multipoles \I!g',:l(a); r) with £=0,1,2,... and
m=—¢,—€+1,..,¢— 1, £ being the degree and order [57],
are commonly used to model acoustic sources and scatterers.
The definition of ‘lly'rzl (w;r) is given in Appendix A. In the
case of the acoustic scattering by an individual particle (res-
onator), the series takes the following form (we assume that
the series converges to the actual fields outside the smallest
sphere encapsulating the entire scatterer):

Pinc(@;1) =Y by m(@)¥() (@1 = 19), )
l,m

Peca(@i1) = Y ap (@)W (@1 — 1), )
L,m

where ", =3/ ¢ __,. The arguments of the expan-
sion coefficients include the origin of the multipole expansion,
denoted here as ry. Following Ref. [58], we assume that ry
coincides with the center of mass of the scatterer and the
origin of the coordinate system to omit the dependence on ry
further. To highlight the dependence of the coefficients on the
frequency w in the general case, we explicitly write it as an
argument. However, for a pressure plane wave, the coefficients
b m(w) do not depend on the frequency w, but depend on the
direction of incidence (see Appendix B).

The expansion coefficients ag ,(w) of the scatterer can be
calculated through the expansion coefficients b ,,(w) of the
source and the transition matrix (T matrix) of the scatterer as

arm(@) =Y Ty (@) (@), 6)
o.m
or, in matrix form,
a(w) = T(w)b(w), @)

where a(w) and b(w) are the column vectors of the
corresponding coefficients arranged in ascending order of
£=0,1,2,...and m=—€,—€+1, ..., £, and T(w) is the T

matrix after a truncation of the series at £;,,x (large enough
to reach convergence). The T matrix contains the necessary
and sufficient “information” about the scatterer to describe
the scattering of an arbitrary field pj,.(w;r) at a given fre-
quency [59,60]. The elements of the T matrix are calculated
analytically for the spherical scatterers (see Ref. [33] and
also Appendix C) and numerically for arbitrarily shaped
scatterers [61].

2. Biperiodic metasurface of resonators

The T matrix method also provides an analytical, clear,
and efficient treatment of the scattering of a plane wave by
periodic metasurfaces [32,62]. We assume a lattice in the xy
plane with a simple unit cell, i.e., one acoustic scatterer per
unit cell [see Fig. 1(a)]. First, we notice that, because of the
translation symmetry, the multipole moments of the unit cell
at R are linked to those of the reference unit cell at 0 via
Bloch’s theorem,

eff ik;-R

ag =e acff, 8)

where the in-plane wave vector k| determines the phase shift
between the unit cells. In the presence of an incident plane
wave, k| is determined by the in-plane component of its

wave vector, ie., k =k, £ /k? — kﬁ'i, where Z is the unit

out-of-plane vector directed along the z axis of the Cartesian
coordinate system in Fig. 1(a). In the case of an eigenmode,
k; is its Bloch wave vector from the first Brillouin zone.
A subscript “eff” is introduced to distinguish the multipole
moments of the scatterer embedded in the lattice (11) from
the moments a(w) of the isolated scatterer from Eq. (7).
This difference arises because, when a scatterer is placed on
a lattice, the scatterers interact with each other. Hence, the
unit cell with one scatterer placed at ryp = 0 (reference unit
cell) experiences (1) the incident field pj,c(w;r) and (2) the
secondary fields, rescattered by all the other scatterers located
at the lattice nodes R # 0 and determined by the multipole
coefficients af{f. The lattice-induced interaction between the
unit cells can be accommodated within the T-matrix method
by multiplication with the lattice sum matrix X'(w, k;) in
Eq. (7), where ' denotes that the reference unit cell is excluded
from the sum [see Eq. (D6)]. Hence, the multipole coefficients
of the reference unit cell can be computed by solving the
following equation (see Appendix D for details):

a* = T(w)[b + X'(w, kj)a™"] ©9)
or
T () - T(0)T (v, k)] 2" = b, (10)
T (0.k))

where I is the identity matrix of the required size,
Tett (0, k) = [I — T(0) X' (0, k)] "' T(w) is the effective
acoustic T matrix of the resonator on the lattice, and b con-
tains the frequency-independent expansion coefficients of a
plane wave into scalar spherical multipoles (see Appendix B).

Equation (10) can be used to compute the acoustic response
of a metasurface to an external plane wave. In this case, a
formal solution to Eq. (10) is given by

a’l = Tep(w, kb = [I — T(0) X' (0, ky)]'a, (11)
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where we have used Eq. (7). To recall the dependence of the
vector of effective multipole coefficients on w and k;, we
write a as a®ff (w, k) if such a highlight is needed.

Note that while vector a of the single scatterer in Eq. (11)
depends on w, it also depends on k|, but only because the
expansion of a plane wave into spherical multipoles b depends
on k (see Appendix B). In contrast to the single-particle T
matrix T(w), which is calculated once at a given frequency
and used for an arbitrary incident wave, the matrix Te (0, k)
in Eq. (11) must be recomputed for all the desired values of
k; at a given frequency.

It also follows from Eq. (11) that the coupling between
an infinite number of scatterers within a metasurface leads
to the renormalization of their acoustic multipole response
af = [I - T(w)Y (v, Kk )]~ 'a. The scattered (radiated) pres-
sure field for a metasurface is a superposition of the fields
emitted by an infinite number of particles on the lattice [see,
e.g., Eq. (13)]. When the determinant of Te_ffl in Eq. (10)
approaches zero, we observe resonant features in the spectrum
of the metasurface. A detailed discussion of these features, re-
lated to the lattice eigenmodes [34,62,63], is given in Sec. III.

C. Selection rules for multipole coupling in metasurfaces

Further consideration is facilitated by the symmetry anal-
ysis and associated selection rules that constrain which
multipoles interact in structures with a given symmetry
[48,53,64], or in other words, which off-diagonal elements of
T (», k;) in Eq. (10) do not vanish.

Let us first analyze the acoustic coupling of scalar mul-
tipoles induced by a two-dimensional (2D) Bravais lattice
with rotational symmetry of order n, considering rotations
by 27 /ny, around the z axis. We also assume that each unit
cell contains only one sphere, for which the single-particle
T matrix is diagonal Ty ¢ = 0¢8¢.¢8m ., Where 8¢ ¢ is
the Kronecker symbol (see Appendix C for the definition of
a,). Hence, the diagonal elements of T} become (T[ri om =
X} mem)» While the off-diagonal elements are (=%, , ;v .)
with £ # £’ and m # m’. Thus, the metasurface has inversion
symmetry (considering r — —r) and rotational symmetry
of order ny. Lattice-induced coupling between two different
multipoles (¢, m) and (¢', m') is allowed (%, , ,, # 0) for
an arbitrary k; if (£ + €)= (m —m’) mod 2 [65]. Under
normal incidence k; = 0, the following conditions must also
be satisfied (see Appendix E):

£=¢mod2, m=m modn. (12)

The first condition states that the multipoles must have the
same parity, which follows from the inversion symmetry of
the metasurface, while the second condition follows from its
rotational symmetry.

However, even though X, , ,, .. = 0, the particle-induced
coupling due to off-diago’nél’ entries of the T matrix
Ty.mew 7 0 can be present for nonspherical acoustic res-
onators. Shortly, the inversion symmetry of the particle
requires £ = ¢’ mod 2, while the rotational symmetry of or-
der np implies m = m’ mod np [thus, the unit cell has the
rotational symmetry of order n = min(ng, np)]. Note that res-
onators can have other symmetries (e.g., reflection), which
determine additional selection rules but are not considered

here. The full list of selection rules for single acoustic res-
onators of different symmetries can be found in Ref. [53].

D. Reflection and transmission coefficients

Effective multipole moments (11) allow us to calculate the
reflection and transmission coefficients of a metasurface for
an acoustic plane wave. To do this, we consider the pressure
field in the far-field zone for z < 0 and z > 0. The inci-
dent wave is a pressure plane wave pin(w;T) = poel*" with

k=k + /k*— kﬁi and |k| = k. Using Egs. (3) and (5) with

multipole coefficients (11), one can write the total pressure
after the summation over the lattice sites as

Pa(@;r) = po| e T+ " afll Bon | (13)

L,m
where the lattice field sum is

Sem(o, kyir) =Y WP (@ir —R)eM®. (14)
R

Note that the second term in the brackets in Eq. (13) corre-
sponds to the scattered field in the presence of an external
field py # 0 and the field of a lattice eigenmode in the absence
po = 0 (see Sec. IIT A).

If the lattice constant is smaller than the wavelength in
the background medium with c¢,, L < Ay, lattice field sums
(14) can be written in the far-field region (r > XAp) as (see
Appendix F)

2
(-

Yem(ow,Kp;r) = A

D Yok, o )e™", (15)

where the wave vectors are ky =k £ /k? — kﬁi forz =20

and A is the area of a lattice unit cell (A = L? for a square
unit cell). By inserting Eq. (15) into Eq. (13), we obtain the
pressure field reflection and transmission coefficients for a
metasurface as

l"((,(), k”) =P_ ((,(), kH ),
t(w, kH) =14+ 73+(w, kH)’

(16a)
(16b)

while the intensity reflectance and transmittance are given by
R = |r|* and T = |t|?, respectively. Here, the far-field ampli-
tudes of the scattered waves for z 2 0 are

2 ol of
Palw,ky) = 157 g(—l)faeffnn,m(eki, o) (17

The quantities in Eqs. (16a)—(17) depend on w and k due to
a = a§f (o, k). In Eq. (17), k. points into the direction
of propagation of the incident and transmitted plane waves,
while k_ is the wave vector of the reflected wave. Thus, a
subwavelength biperiodic lattice can radiate only in two direc-
tions k_ and k. with the amplitude and phase dictated by P_
and P4, respectively. The response of the lattice is determined
by the effective multipole moments, i.e., the renormalized
response of one unit cell (11). Moreover, the lattice coupling
does not change the angular dependence of the multipoles
of a unit cell, given by Y, ,,(6k., ¢k, ), but only changes the
multipole moments from Eqgs. (7) to (11). Thus, one can
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control the radiation pattern of the unit cell by tailoring the
values of the multipole coefficients. Note also that, in the
absence of the incident field b = 0, expressions (17) describe
the far-field amplitudes of the scattered waves radiated by a
lattice eigenmode (see Sec. IIT A).

Finally, let us consider the case of normal incidence
k; = 0. For the arguments cos ;. = %1 corresponding to 6 =
0 (+z direction) and 8 = mw (—z direction), the associated
Legendre polynomials (A3) take the following values [32]:

0, 0
FEGED = {(ﬂ)ﬁ Z i 0.

From Eq. (17), we see that for k; = 0, the amplitudes of the
scattered (radiated) fields separate into two subseries corre-
sponding to even and odd multipoles, in full agreement with
the first selection rule from Eq. (12),

(18)

2:( V20 + 1af
even {
0 Z( —)'V20 + 1aT), (19)
odd ¢

where Pi = P(w, 0) and 4§ = 4T (o, 0) for compactness.
Thus, the response of a metasurface at normal incidence can
be considered as a superposition of the responses of two
noninteracting sublattices, each of which includes either only
even multipoles or only odd multipoles, respectively.

III. ACCIDENTAL BOUND STATES IN THE CONTINUUM
A. Eigenmode and BIC condition

Lattice eigenmodes can be obtained by solving Eq. (10) in
the absence of external fields (b = 0),

T (0, k))a" = 0. (20)

According to Cramer’s theorem, nontrivial solutions to ho-
mogeneous Eq. (20) exist if the inverse effective T matrix
is singular, i.e., det Te_ffl (w0, k) =0 [66]. The singularity of
the inverse effective T matrix indicates that the system has
reached a resonance mode where a self-sustaining solution
can exist without external stimulus.

For an open system and real Kk, a nontrivial solution to
Eq. (20) can generally be found for a complex frequency
[w(ky) — iyr(Ky) — ivar (K], where y;(K)) and vy (K)) define
energy dissipation due to radiative and nonradiative losses,
respectively. However, photonic and acoustic metasurfaces
can support eigenmodes without radiative losses (y; = 0),
which are just called bound states in the continuum or BICs.
Moreover, in the absence of nonradiative losses (absorption),
BICs emerge for pure real-valued frequencies due to y,, = O.
Hence, a criterion of the BIC occurrence can be formulated as
[26,67]

det Ty (0, k) =0, weR. 1)

Since the matrix Te_ffl (w, k) can be subject to the sin-
gular value decomposition (SVD), the absolute value of its
determinant is equal to the product of its singular values,
which are nonnegative real-valued numbers [68]. Thus, if a
singular value of the matrix is zero, then the determinant is

also zero. Hence, the solution to Eq. (20) is the right singular
vector of matrix T (w, k;) with a singular value equal to zero
[62,69]. After denoting the operator that picks the smallest
singular value of a matrix with sy,;,, BIC condition (21) reads
as

smin[ Togf (@, k)] =0,

Conditions (21) and (22) ensure the existence of a lattice
eigenmode with a real eigenfrequency, i.e., a BIC. If this
condition is satisfied, the right singular vector a®f(w, k)
corresponding to the eigenfrequency w = wgic contains
the multipole coefficients a, (w,k|). Inserting them into
Eq. (17) or (19) must give us that the far-field radiation ampli-
tudes for the BIC are P, = P_ = 0. It is worth mentioning
that criteria (21) and (22) are directly applicable to optical
BICs with the corresponding change of the effective T matrix.

weR. (22)

B. Even BIC in the monopole-quadrupole approximation

Equation (22) can provide us with resonance frequencies
of BICs in arbitrary systems. Here, we give an example of
the matrix Te_ffl (w, k) for which Eq. (22) has a solution with
k) =0 and a real eigenfrequency. For this mode, acoustic
radiation in the £z directions is suppressed, so that the meta-
surface does not radiate at all, and the mode can be referred
to as an accidental BIC at the I" point. According to selection
rules (12), eigenmodes (including BICs) of a lattice of spheres
can have either even or odd parity, which also determines
their multipolar content. In the following, we choose the case
of even parity. However, the odd-parity modes, which can
also enable an accidental BIC, can be considered in the same
manner (see Appendix I).

Let us consider an eigenmode with even parity of the
square lattice [ny, = 4 in Eq. (12)] of spheres, for which the
following multipole coefficients can be nonzero:

ailh; a5 s a5y 5 g 23)
where ¢ € INy and m’ € Z, such that |2m | < €. The other
multipole contributions must be zero according to selection
rules (12). Furthermore, we also consider spherical scatterers
(resonators) whose acoustic response in the given frequency
range can be sufficiently described by the zonal monopole
(M), dipole (D), quadrupole (Q), and octupole (O). At the
same time, higher-degree multipoles can be neglected (see
Fig. 2). In this case, we can keep only two terms from Eq.

(23), the zonal monopole ai,flf = agff) and the zonal quadrupole

ag’ = . For kj = 0, all unit cells in the array will have

identical zonal monopole agj and zonal quadrupole aff mo-

ments, according to Eq. (8) In Eq. (10), the parts of the
single-particle T matrix and the lattice sum matrix corre-
sponding to the zonal monopole and the zonal quadrupole
read as

_(Tmm Tvq ron_ (Zvv Zmo

24
where  Tvm., Tmg. Tom. and Tog [resp. Xy =
25.0.00@,0), Tho = o020, 0),  and o, =

¥ 02,0, 0)] are couplings between the corresponding
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FIG. 2. Scattering efficiency of a spherical particle as a function
of its size parameter and frequency (blue solid) and contributions to
scattering from the monopole (dashed orange), dipole (dashed-dotted
green), quadrupole (dotted red), and octupole (dashed violet). The

maximum multipole degree is £, = 6, and the other parameters are
listed in Sec. III C.

multipoles induced by the particle [resp. lattice]. The
definition of %, ., . (o,k) is given by Eq. (D6). An
isolated sphere does not possess particle-induced coupling;
therefore, Tvq = Tom = 0. Therefore, the matrix Te_ffl (w)
from Eq. (9), when only the even multipoles are considered,
becomes

T — 2
T (@) = ( MM
MQ

) e
QQ QQ
where, for a sphere, Ty = a9 and Tog = a; (see Appendix C
for the definition of a;). Thus, for a biperiodic lattice of
spheres, the monopole-quadrupole coupling is fully induced
by the lattice. It can be considered as a channel that enables the
formation of the BIC in the symmetric metasurface with two
subsystems, the sublattices of monopoles and quadrupoles.
For even zonal multipoles, P, = P_ according to Eq. (19).
The formation of a BIC corresponds to P, = P_ = 0, which
implies the following relationship between the multipole
moments of the even BIC:

sl — V548" = 0. (26)

Condition (26) ensures that the eigenmode is nonradiant
(trapped), i.e., a BIC. The nontriviality of the solution ail # 0
and a" # 0 is guaranteed by condition (22) [or (21)] being
satisfied. We also recall that identity (26) is equivalent to
solving Eq. (20) with (25) under the assumption that L < Ay
(see Appendix H).

The BIC formation in this system occurs when two ra-
diating multipoles (in our case, zonal) with the same parity
interfere, creating a nonradiant state. This mechanism is
accessible for an acoustic resonator on an infinite lattice
only when acoustic radiation must be suppressed solely in
the normal directions. Since the radiation patterns of the
multipoles do not overlap [see Fig. 1(b)], it is impossible in
this case to suppress the omnidirectional acoustic radiation for
a single resonator through destructive interference between

two multipoles. Moreover, BIC formation in a metasurface via
this mechanism is possible only when at least two zonal mul-
tipoles are taken into account. In contrast, a single-multipole
approximation is insufficient to obtain a nontrivial solution,
because a single zonal multipole always radiates acoustic
waves along its axis.

It is worth mentioning that the considered metasurface can
also support an odd BIC formed due to destructive interfer-
ence between the dipole and the octupole that satisfy the
following constraint (see Appendix I):

ast —/7/3a8" = 0. 27)

The odd BIC emerges close to the frequency of the octupole
resonance of a single scatterer, similar to the even BIC, which
occurs close to the quadrupole resonance of a single scatterer.

Finally, let us discuss the impact of lattice and resonator
symmetries. The form of matrix (25) remains the same for
the hexagonal lattice [ny, = 6 in Eq. (12)], but with different
values of the lattice sums. The monoclinic and orthorhom-
bic lattices (n, = 2) enable the coupling between the zonal
multipoles and the multipoles with m = £2, which, however,
do not radiate acoustic waves in the normal direction [see
Eq. (19)]. For a nonspherical resonator on a metasurface,
the eigenmodes, including BICs, can be classified by parity
as long as the metasurface possesses inversion symmetry. In
its absence, the zonal even and odd multipoles are coupled,
and the genuine BICs with even or odd parity transform into
quasi-BICs for the parameters when Eq. (26) or (27) is satis-
fied, respectively (small shape asymmetries of the resonators,
which can occur in reality, will also lead to a decrease in the
radiative Q factor). To establish a genuine BIC in a meta-
surface without inversion symmetry, the multipole moments
must simultaneously satisfy Eqs. (26) and (27). In contrast,
breaking rotational symmetry of the resonator with respect
to the z axis while preserving inversion symmetry induces
only coupling between zonal and nonzonal multipoles with
the same parity [53], which does not affect Eqs. (26) and
(27); therefore, genuine BICs with a certain parity can exist
in such metasurfaces. Note that additional off-diagonal terms
due to Tmq = Tom # O appear in Eq. (25) for nonspherical
particles.

C. Realization in an infinite metasurface

We consider spheres of diameter a = 50 um made of
material with density p; = 360kg/m> and speed of sound
¢s = 600 m/s corresponding to aerogel in the ultrasound
range [70]. The background medium has the parameters p, =
998 kg/m? and ¢, = 1500m/s that correspond to water at
room temperature. For now, material losses are absent. Note
that the considered effects can potentially be demonstrated
with other high-index acoustic scatterers, for example, air
bubbles in water [71-74], or labyrinthine resonators in air
[75]. The spherical scatterers are arranged in a square lat-
tice with a lattice constant of L, which is the same in both
the x and y directions [see Fig. 1(a)]. The T matrix of the
isolated sphere, as well as the metasurface response, is sim-
ulated using our open-source code acoustotreams (v.0.2.5)
available as a Python package [76]. The lattice sums X’ are ef-
ficiently and accurately calculated using Ewald’s summation
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FIG. 3. Even BIC in the metasurface of spherical resonators depicted in Fig. 1(a). (a) The lowest singular value of the inverse effective T
matrix in the monopole-quadrupole approximation (25). (b) Transmittance of the metasurface T = |¢|? for a normally incident pressure plane
wave with £,,,x = 6 in Eq. (16b). The quantities in panels (a) and (b) are plotted as a function of the normalized lattice constant L/a and size
parameter wa/cy,, where a = 50 um and ¢, = 1500 m/s (the other parameters are listed in the text). The red circles indicate the lattice constant
and the frequency for which the even BIC appears. (c) Effective zonal monopole and quadrupole coefficients for the even BIC. (d) Normalized
absolute value of the pressure field generated by the BIC in the xz plane outside the spherical resonators. Transmittance of the metasurface as
a function of frequency for normalized lattice constants [panel (e)] L/a = 1.5, [panel (f)] L/a = 1.395, and [panel (g)] L/a = 1.2. The solid
blue and dashed orange curves correspond to the values computed by the T-matrix method (in acoustotreams) and the finite element method
(pressure acoustics, frequency domain interface in COMSOL Multiphysics™, v. 5.5), respectively. (h) Q factor of the quasi-BIC resonance as
a function of the normalized lattice constant offset AL/a = (L/a — Lgic/a), where Lgic/a = 1.395.

technique [65] numerically implemented in the subpackage
treams.lattice [63]. For a sphere diameter of 50 um, we con-
sider the ultrasound frequency range, namely, 1-20 MHz. This
leads to a size parameter of wa/cy, ranging from 0.21 to 4.19.
In Fig. 2, one can see that the scatterer exhibits a resonant
response that can be approximated in this spectral range by
the first four multipoles, i.e., £, = 3. We note that we can
alternate the frequency range by varying the scatterer size a
or the background material ¢, due to the scaling character of
the problem as wa/cy,.

To perform the singular decomposition of matrix (25),
we employ the function numpy.linalg.svd in Python 3.11.
Figure 3(a) shows the lowest singular value of matrix (25)
as a function of the normalized lattice constant L/a and
the size parameter wa/cy. One can see that the value tends
to zero for wa/c, =2.975 and L/a = 1.395 [respectively,
w/(2r) = 14.2MHz and L = 69.75 um], indicated by the red
marker. Thus, the lattice response is resonant for a real-valued
frequency, as Eq. (22) dictates. Hence, this eigenmode is sup-
posed to correspond to the even BIC. Indeed, Fig. 3(c) depicts
the effective monopole and quadrupole moments of a unit cell

for the BIC obtained as the right singular vector correspond-
ing to the zero singular value of Eq. (25). One can clearly
see that the moments obey condition (26), which guarantees
the absence of acoustic radiation. Moreover, each moment
separately is not equal to zero since Eqgs. (21) and (22) are
satisfied. Therefore, the pressure field of the BIC is not zero,
but is trapped near the structure, as shown in Fig. 3(d). Indeed,
although the intensity of the radiated pressure field in the
far-field region is zero (Ps = 0), the near field corresponding
to the BIC is nonzero, since evanescent multipole fields of
different degrees decay differently when moving away from
the source.

Furthermore, the resonance associated with the BIC can
also be observed in the transmittance spectrum for a normally
incident pressure plane wave pin.(r) = e*2. To find the meta-
surface response, we calculate effective multipole moments
(11) up to £max = 6 and then calculate transmission (16b)
using acoustotreams. Figure 3(b) displays the transmittance
T = |t]* of the metasurface as a function of the normalized
lattice constant and size parameter, while Figs. 3(e)-3(g) plot
it as a function of the size parameter for the different values
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of the normalized lattice constant. In Fig. 3(b), one can see
that the transmittance exhibits a resonant feature associated
with the BIC for the same lattice constant and frequency
where the lowest singular value vanishes. Note that exactly at
the frequency of the BIC formed by the resonant monopole
and quadrupole, the resonance disappears from the spec-
trum because the incident wave cannot excite a nonradiant
mode, and the transmittance is therefore entirely determined
by the nonresonant multipoles (dipole and octupole) [see
also Fig. 3(f)]. However, as shown in Figs. 3(e) and 3(g),
one can observe the development of Fano-type resonances
(quasi-BICs) with relatively high quality factors (Q factors)
by gradually varying the lattice constant. Note that the Fano
profile of the considered resonances arises from the interfer-
ence (overlapping) of the incident field and the fields of the
even multipoles (monopole and quadrupole) from the resonant
quasi-BIC mode, with the addition of odd multipoles (dipole
and octupole) from the nonresonant mode [29]. To estimate
the Q factor of a Fano-type profile of the quasi-BIC, we fit
the transmittance spectrum for a given lattice constant with
a sum of several Fano resonances as described in Ref. [77].
In Fig. 3(h), the Q factor decreases as the inverse square of
the normalized lattice constant offset |AL|/a = |L — Lgic|/a,
where the normalized lattice constant of the BIC is Lgjc/a =
1.395, since Eq. (26) ceases to hold when |AL|/a > 0. Note
that the Q factor of the genuine BIC at Lgic/a is infinite.
Finally, to verify the transmittance calculated with the T-
matrix method, we also compare it in Figs. 3(e)-3(g) with
that computed by the pressure acoustics module of COMSOL
Multiphysics™, v.5.5 [78]. Appendix K concisely describes
the model. The figures confirm that both methods demonstrate
perfect agreement.

IV. QUASI-BIC REGIME

As shown in the previous section, infinite lattices of
spherical particles can support acoustic BICs resulting from
multipole interference at specific frequencies and lattice con-
stants. By tuning the lattice constant, the BIC with an infinite
Q factor can be transformed into a quasi-BIC, which manifests
itself in the spectrum as a Fano resonance with a large QO
factor compared to resonances of an isolated resonator. In
practice, the quasi-BIC can be more important in applications
than the genuine BIC, since it can be excited by a normally
incident plane wave. The acoustic quasi-BICs have already
been utilized to enhance the acoustic Purcell factor [13,79],
and to achieve perfect absorption [23,80] or localization of
sound energy [16]. In this section, we discuss the acoustic
quasi-BIC regime under realistic conditions, where either ma-
terial losses or a substrate is present, and also its manifestation
in finite-size arrays.

The total Q factor of an eigenmode can be decomposed into
two terms as

Ol = 0t + 01 (28)

where Qg and Q,, are responsible for radiative and nonra-
diative (material) losses respectively. For a genuine BIC in
the infinite lattice, Q .0 = 0 and consequently the Q factor
is limited by Qi = Onr even for a genuine BIC [12]. For a
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FIG. 4. Influence of material losses in scatterers (resonators) on
the quasi-BIC resonance. (a) Transmittance of the metasurface |¢|
[see Eq. (16b)] in the quasi-BIC regime for different values of ma-
terial loss tangent being 0 (blue), 10~ (orange), and 1072 (green).
The normalized lattice constant is L/a = 1.5. (b) The corresponding
absorptance (1 — |r|> — |¢|*) of the metasurface. (c) Total Q factor of
the quasi-BIC as a function of material loss tangent.

quasi-BIC in both finite and infinite structures, Q .d > 0 and
Eq. (28) should be used to calculate the Q factor.

A. Influence of material absorption and substrate

First, we assume that the particles have material losses
by considering the complex-valued acoustic impedance
Zy = Z; +iZ], where Z, = psc; = 0.216 MRayl. The ratio of
the imaginary part to the real part defines the so-called loss
tangent tan$ = Z/Z!. Figure 4(a) shows the transmittance
spectra of the metasurface with the normalized lattice con-
stant of L/a = 1.5 for different values of the loss tangent,
while Fig. 4(b) shows the corresponding absorptance spectra.
Figure 4(c) plots the values of the total Q factor of the quasi-
BIC, which are estimated using the procedure from Ref. [77]
to fit the resonances in Fig. 4(a). For the resonators without
material losses, the quasi-BIC has the radiative Q factor and
consequently the total Q factor of Qi = QOraqa = 129, whereas
the absorptance is zero [see the blue curves in Figs. 4(a) and
4(b)]. Meanwhile, one can observe that, as the material losses
increase, the total Q factor decreases [Fig. 4(c)], the absorp-
tance at the quasi-BIC frequency increases [Fig. 4(b)], and the
resonance in the transmittance spectrum weakens [Fig. 4(a)].
Thus, an acoustic quasi-BIC resonance in a lossy system
appears as an absorptance resonance, as well as its electro-
magnetic counterpart [29]. Moreover, for the lossy resonators,
the decrease in the nonradiative Q factor with increasing loss
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normalized substrate impedance Z,/Z, with Z, = 1.497 MRayl.

tangent can be justified by its approximate upper-bound ex-
pression, Q,, = 1/tan§ [77].

Similarly, we can analyze the impact of a substrate. Since
the considered BIC emerges for the specific values of the
parameters, it is sensitive to symmetry breaking, as well as
other accidental BICs [12]. Hence, the larger the impedance
contrast between the upper and lower half-spaces, the smaller
the Q factor. Figure 5(a) shows the transmittance spectra
of the metasurface with the normalized lattice constant of
L/a = 1.5 for different substrates. The material parameters
of the substrates are taken from Ref. [54]. Figure 5(b) plots
the Q factor of the resonance as a function of the normal-
ized substrate impedance Zg,/Zy, where Zy = ppc, = 1.497
MRayl is the impedance of the upper half space (note that
0. = 0). One can clearly see that if the impedance contrast
Zab/Zy increases, the Q factor decreases. Thus, acoustic meta-
surfaces in the quasi-BIC regime are strongly responsive to
background variations and can therefore serve as the basis for
highly sensitive acoustic sensors.

B. Realization in finite-size arrays

The considered BIC has an infinite Q factor because trans-
lation symmetry of the lattice allows for only one radiation
channel, being the z axis, whereas the scattering amplitudes
(19) for the directions —z and +z are zero for the BIC due
to Eq. (26). Therefore, the overall radiation of the lattice
eigenmode is zero, and the mode is trapped (BIC). In the ex-
periment, all structures have finite sizes along all dimensions.
Since a finite-size array has an infinite number of allowed

radiation channels, it always possesses nonzero radiation
losses [10,12,81]. Thus, finite-size structures can possess nei-
ther electromagnetic nor acoustic BICs with an infinite Q
factor. Note that elastic spherical resonators, which support
shear waves, can possess a genuine transversely polarized BIC
due to the polarization orthogonality between the fields inside
and outside the resonator [22], but we do not consider them in
this work. Thus, if a lattice of acoustic resonators becomes a
finite-size N x N array, the considered BIC always transforms
into a quasi-BIC. Moreover, the response of finite-size arrays
can remarkably differ from that of an infinite lattice [82—-84].
Hence, we also discuss the development of the BIC resonance
for finite arrays.

To simulate the acoustic response of finite-size arrays, we
also use the T-matrix-based formalism. Within the approach,
the scattered pressure field of the ith sphere is again de-
scribed by a vector of multipole coefficients a(r;) as well as
in the infinite-lattice case. However, because of the broken
translation symmetry, the coefficients are no longer linked
through the Bloch theorem, but via a system of linear equa-
tions considering mutual coupling between resonators (see
Appendix J). A solution to system (J4), which can be obtained
using acoustotreams code, provides us with the self-consistent
response of the finite-size array. We can also calculate the
scattering cross section of the N x N array oy(w) and divide
it by N?0geom to obtain the effective scattering efficiency of a
particle in the array. In Fig. 6(a), it is plotted as a function of
frequency and N when the normalized lattice constant is fixed
at the value of L/a = 1.5 corresponding to the quasi-BIC
resonance in the infinite metasurface [see Fig. 3(e)]. First, it
is notable that even the response of the 3 x 3 array differs
significantly from that of the single scatterer. Namely, the
quasi-BIC resonance appears already for N = 3, correspond-
ing to a minimum in the scattering efficiency. Moreover, as
N increases, the resonance frequency approaches the infinite-
array limit and converges by N = 11.

Figures. 6(b) and 6(c) show the multipole moments of the
resonators on the 11 x 11 array and the pressure field, gen-
erated by this array in the near-field region. One can see that
the farther a resonator is from the center, the lower the near
field is above it and the weaker the multipole moments are
induced in the resonator, forming approximately a standing-
wave pattern between the edges of the array with the wave
vector ky =k, = m [see Eq. (2) in Ref. [85]]. Thus, a
normally incident plane wave mostly excites resonators that
are close to the center, yielding strong (enhanced) near fields.
In particular, it implies that the quasi-BIC should be better
coupled to an external source that is located above the array
center rather than above its edges.

V. CONCLUSION

In this work, we investigate acoustic bound states in the
continuum (trapped modes) in biperiodic metasurfaces with
one acoustic resonator (scatterer) per unit cell. First, we
develop a comprehensive theoretical model based on the T-
matrix method and symmetry analysis that enables us to
obtain the analytical conditions of the BIC formation. Next,
we show that an accidental acoustic BIC can emerge at the
I'point of a metasurface with inversion symmetry due to
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destructive interference between two effective zonal multi-
poles of the same parity. Our numerical simulations reveal a
spectral feature associated with the BIC in the spectrum of the
metasurface when a pressure plane wave is normally incident.
Furthermore, a slight detuning of the lattice constant trans-
forms the genuine BIC into a quasi-BIC, which manifests in
the spectrum as a Fano resonance.

Focusing on the experiment, we also consider the quasi-
BIC regime under realistic assumptions, including either
material losses in the resonators or a substrate. Moreover, we
investigate the development of the quasi-BIC resonance in
finite N x N arrays of particles as a function of N and identify
the values of N sufficient for convergence to the infinite-lattice
limit.

Our results not only provide the theoretical and numerical
foundations for acoustic BICs in metasurfaces with inversion
symmetry but also demonstrate their practical feasibility un-
der realistic conditions. The ability to control the transition
from genuine BICs to quasi-BICs through simple geomet-
ric tuning provides a versatile mechanism for engineering
highly selective, low-loss acoustic responses. This approach
opens opportunities for designing advanced acoustic metasur-
faces with tunable functionalities. Potential applications range
from ultranarrowband acoustic filters and high-sensitivity
sensors to energy-harvesting devices and medical ultrasound

technologies. By bridging fundamental physics and practical
design strategies, our work paves the way for next-generation
acoustic systems that exploit the unique properties of BICs for
enhanced wave control and device performance.
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APPENDIX A: SCALAR SPHERICAL WAVES AND THEIR
TRANSLATION COEFFICIENTS

The scalar
£=0,1,2,..
defined as

spherical wave (multipole) of degree
and order m=—¢,—£¢+1,...,£—1,¢ is

W (1) = 2" (0r [c)Yeu(®, ¢), (AD)
where the auxiliary index is used to distinguish the regular
waves of n = 1, which are finite at r = 0, from the singu-
lar ones of n = 3, which are singular for r — 0 and obey
the Sommerfeld radiation condition for » — 4-00. The radial
dependence is described by the spherical Bessel function of
the first kind zle)(a)r/c) = jy(wr/c), or the spherical Han-
kel function of the first kind zf)(a)r/c) = hzl)(a)r/c). The
spherical harmonics are defined by [86]

2041 —m)!

_—Pm 0 im(p’
Ir @ rm e coste

Yom(0,0) = (A2)

where the associated Legendre polynomials are given by

(="

D" d£+m
2y )

W(}Cz — 1)[

P'(x) = (A3)
The scalar spherical multipoles obey the following addition
theorem [87]:

U (@ir) =Y C L (@ir =t (wir). (A4

o.m'
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The translation coefficients of Eq. (A1) are given by

C(”)

m' L,m

(1) = /AT 20 + D20 + 1) (—1)y" i ¢
: (n) .
x Y i1/2q + " (@;r)
q

£ v

X
(m -m m

£ 4y (a3

q V4
—mo 0 0

Wigner’s 3 j symbols

where g € {¢/ + ¢, ¢ + € —2,...,max(|£' — €|, |m' — m|)}.

APPENDIX B: EXPANSION OF A PLANE WAVE INTO
SCALAR SPHERICAL WAVES

A pressure plane wave pin(w;r) = poe®™ can be ex-

panded into regular scalar spherical waves (A1) as follows:

400 m=+¢

Pine(@;1) = po - 41 Y > iV, 0k, gV (@3 T),
=0 m=—¢

(BI)

where 6k and ¢ are the spherical angles of k with |k| = w/c.
Hence, the expansion coefficients of the plane wave are by, =
poAmi'Y, (B, gi).

APPENDIX C: ACOUSTIC T MATRIX OF A SPHERE

For an isolated homogeneous sphere of diameter a, the
entries of the acoustic T matrix read as T, ¢/ = 0¢8¢.¢0m.m'»
where §, ¢ is the Kronecker symbol, and the coefficients a, are
given as [88]

Zj,(mje) — jem)j, &)

ag = - ; — ; (CD
Jemhy” (&) = Zjy(mhy" (&)
where Z = Cbpb, n= a)_a’ and & = a)_a. Thus, Tym = ap and
CsPs 265 2Cb
TQQ = ay.

We can rewrite the inverse coefficient in the absence of ma-
terial losses (absorption), i.e., when the material parameters
are real valued, as

T B~ Zi iy ®)
e Zjy(mje€) — jem)j, (&)
eR

(C2)

Here, we have used the definition of the spherical Hankel
function " (§) = j(£) + iye(£), where y,(£) is the spherical
Bessel function of the second kind. Hence,

Re |:i:| =—1, (C3)

if material losses are absent.

APPENDIX D: DERIVATION OF EQ. (9)

In a multiple scattering problem, the T matrix, computed
for an isolated object, links the expansion coefficients of the
scattered field with those of the so-called local field. The
local field for every scatterer is a superposition of the incident

and secondary fields generated by other scatterers. For the
reference unit cell at ry = 0, the local field is

Proc(@:0) = > by ¥ () (:0)

Z,m
+) ) aR Y@ —R), (DD
£,m R#0

where ag ¢, (@) are the expansion coefficients for the scatterer
located at R. For Eq. (D1) to have the same form as Eq. (4),
we use translation coefficients (A5) to transform the scattered
waves into incident ones as

o (@ -R) = _Co (@ =RV (0,0).  (D2)
.m'

If we substitute Eq. (D2) into Eq. (D1), we can expand the
local field at the reference unit cell as

Proc(@:0) =Y by Vi) (:0), (D3)
L,m

with the expansion coefficients
bewn = bem+ D D CO o (@i —R)as, .. (D)
¢ ,m' R£0
Substituting Eq. (8) into Eq. (D4) gives us the following:
b =ben+ Y Shop (@ KA, (D5)
o.m
where the lattice sum is defined as
Eé,m,(’,m’ (w’ kH) = Z C(E?rl,[’,m’(w; _R)eikH 'R' (D6)
R#0

Local field coefficients (D5) can be linked to the scattered field
coefficients via the T matrix as in Eq. (7), in which we replace
be, with by ,. Then, we obtain a system of equations to

: eff
determine ay

ff
azm = Z Tl,m,l’,m’(w)
.m

ff
X | b+ Y B (@ ki | (D)
o
If we arrange the coefficients in a vector a® in ascending
orderof £ =0,1,2,...andm = —£, —¢ + 1, ..., £, we obtain

Eq. (9).

APPENDIX E: DERIVATION OF THE SELECTION RULES
FORk; =0

Let us derive selection rules (12), i.e., determine nonzero

X} o Tor k=0 given by [see Eq. (D6)]
S (@,0)=>"CP) L (@: —R). (E1)
R£0

1. Inversion symmetry

First, we consider a lattice that has symmetry with re-
spect to the inversion R — —R. After the inversion, Eq. (E1)
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becomes the following:

w(@,0)=Y"C) , (;R). (E2)
R0

SV
E@,m,[’,

Since the parity of degree ¢ determines the parity of
a spherical multipole under the inversion \Péf’r:l(w; -r) =

(-1t \Ilz(f’rl(a); r), the translation coefficients of scalar spher-
ical waves obey the following property [89]:

c®  (@:R) = (=D)C®  (w;—R). (E3)

.m0 m .m0 m
However, since the lattice remalg\s the same upon inversion,
the lattice sums must be equal ¥ , =X, , ., which
implies that (¢ 4+ £’) is an even number. This can be true only
if £ and ¢’ are equal modulo 2; i.e., they have the same parity.

2. Rotational symmetry

Similarly, one can consider rotations around the z axis by
angle ¢ = 2m /np. According to Eq. (AS), the lattice sums can
be written upon the rotation as

B} (@,0) = 27O/ (@30), (E4)

One can clearly see that the lattice sum is preserved only if
(m —m') = sn, where s is an integer; that is, m and m’ are
equal modulo ny..

APPENDIX F: CALCULATION OF THE LATTICE
FIELD SUMS

Let us calculate lattice sums (14) in the far-field approxi-
mation kr >> 1. First, we will use the integral expansion of the
singular scalar spherical wave into plane waves [90],

—i)¢ dk,dk
) f / R T AC Ll
R

where k = w/c, y =V 1 — (k)% + kyz)/kz, and the unspecified
component of the wave vector is k; = £ky for z 2 0. Next,
we utilize the Poisson summation formula

2
Z ik—kpR _ % Z sk — k| —G), (F2)
G

R

\IJB)(

where A is the area of a unit cell, G is a vector of the recip-
rocal lattice, and 8@ is the 2D Dirac delta function, which
eliminates the integration. After combining Eqgs. (F1), (F2),
and (14), we can express the lattice sum as

S, Ky 1) = (= 1)‘2&,,,1(91(,%)6‘“, (F3)

kA

where k = k| + G £ \/k? — (k| + G)*zforz = 0

If the wavelength in the background medium with ¢y is
longer than the lattice constant L, only waves with G = 0 can
propagate in the background medium. Hence, in the far-field
approximation, Egs. (F3) and (15) coincide.

APPENDIX G: CALCULATION OF THE REAL PARTS OF
LATTICE SUMS Xy, Ty, AND X,

In the following, we calculate the real parts of the lattice
sums that are present in Eq. (25). Combining Eqgs. (E1), (AS),

and (15), one can obtain that

2
2 0.0.0(@,0) =4 (20 + 1) Z /2 + 1

g even

: . By, ..
X }gr(l) [Zq.0(@, 0;1) — \I’qyo(a),r)]

2
L ¢ q
X(o 0 o>'

The lattice field sums X, o for a lattice in the xy plane with a
lattice constant L < A, read as

(G

2g+1

0
= H.

hm Y0, 0;r) = (— 1)‘1 k2A (G2)

where Pg( 1) = 1. For the second term in Eq. (G1), we use Eq.
(A1) and obtain that

- ¢® 1/A4rx, q=0,
11_r)r(1) Re [ o(w; r)] {O, q+0. (G3)
while lim,_ Im[\I/; (w;r)] does not exist. Inserting

Egs. (G2) and (G3) into Eq. (G1) and using the properties of
the Wigner’s 3j symbols [86], we obtain that

Re[EQ’O,LO(a), 0)]

)Lz 20 ) ) g 2
_ b
= 1+(2z+1)—2nA2;(2q+1)<0 0 0)’
q:
g even

(G4)

where Ay, = 27c,/w and A = L? for the square lattice. Sim-
ilarly, we can calculate the real part of the lattice sums with
even difference (£’ — £) as

2
=/Q2¢+ )¢ + 1)i¢ " o

2rA

o+ o 2
x Z(zq+1>(0 0 0) (G5)

=0'—¢
q even

Re[Z} o o(@, 0)]

=1
Hence,

2

/ / Ao
Re[Ziun(@, 0)] = Re[Tf 0 (@, 0)] = —1 + ~-

2wA’

, , 5M2

Re[ZQQ(a), 0)] =Re[X); g, 0@, 0)] = -1+ n
NEIXS
Re[Z4,4(w, 0)] = Re[T) ,0)] = ——=b,
el MQ(CU )] el 0_0,2,0(0) )] A

(Go)
APPENDIX H: RELATIONSHIP BETWEEN
THE BIC CONDITIONS

In this section, we show the equivalence of BIC con-
ditions (21) and (26) for matrix (25). First, we introduce
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the monopole and quadrupole T-matrix elements of a sphere
modified due to the monopole-monopole and quadrupole-
quadrupole coupling, respectively,

L = L —-3
Ly Taw

! = L — 0. (H1)
TQond TQQ QQ

Considering Egs. (C3) and (G6), one can see that for L < Ay,
the real parts of Eq. (H1) are related to each other as

Re[T&&d]ESRe[T%d} (H2)
The determinant of Eq. (25) being zero implies that
1 1 , ,
Tﬁn&d X @ = Zpo X Zmo- (H3)
Due to Eq. (G6), we also have for L < Ay that
Re [Tﬁi&d] = V5Re[Z{q]. (H4)
Hence, the solution to Eq. (H3) reads as
LzlE{v{ , anszx/gE/ . (HS)
Tl\r/[nl\c/)ld ﬁ Q Tél(l)od MQ

Indeed, considering (H2) and (H4), we can write that
/T8 = A +iB, /T35 = 5A +iC, and B} = V54 +
iD, where A, B, C, and D are real-valued numbers, and plug
them into Eq. (H3). Equating the real and imaginary parts of
the left and right sides of the equation yields the following
system of equations:

5B+ C =2+5D, BC =D>. (H6)
The solution is B = D/\/g and C = D«/g, and we obtain Eq.
(HS). If an eigenmode condition (HS) is satisfied for w € R,
then the lattice mode is a BIC.

If we rewrite Eq. (20) using Egs. (25) and (H1), we obtain
that

1/ Tavlas) — Shyoay =0,
—Zyoant + 1/T58%ag" = 0. (H7)

Under BIC condition (H5), we immediately obtain Eq. (26),
ie., (afff — /5a8") = 0 corresponding to the far-field inten-
sity P+ = 0. Note that, for a normally incident plane wave
of amplitude pg, Eq. (10) under the BIC condition gives that
(a5 — ~/5a8") o po and consequently P # 0. Hence, the
BIC cannot be excited by a normally incident plane wave.

APPENDIX I: ODD T point BIC IN THE
DIPOLE-OCTUPOLE APPROXIMATION

In the main text, we consider the BIC formed by the zonal
multipoles of even parity. Similarly, we can consider the BIC
formed by the multipoles with odd parity, the dipole and
octupole. The frequency and lattice constant of the odd-parity

—_
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~
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3.8 4.0 38 4.0

—_
o
~

._.
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FIG. 7. Odd BIC in the metasurface of spherical resonators
depicted in Fig. 1(a). (a) The lowest singular value of the in-
verse effective T matrix in the dipole-octupole approximation (I1).
(b) Transmittance of the lattice |¢|* for a normally incident pressure
plane wave with £,,x = 6 in Eq. (16b). The quantities in panels
(a) and (b) are plotted as a function of the normalized lattice constant
L/a and size parameter wa/cy,, where a = 50 um and ¢, = 1500 m/s
(the other parameters are listed in the text). The red circles indicate
the lattice constant and the frequency for which the odd BIC emerges.
(c) Effective zonal dipole and octupole moments of the odd BIC.
(d) Normalized absolute value of the pressure field generated by the
BIC in the xz plane outside the spheres.

BIC can also be determined by Eq. (22) with the following
inverse effective T matrix:

T — 5 -3/
Tgl(a)) — < DD DD _ DO/ >’ 1)
& —Zho Tool — X0
where, for a sphere, Tpp=a; and Tppo =a3 [see

Eq. (C1)]. Here, the lattice sums are X, = X o, o(@, 0),
Xho = 26,0’3!0((1), 0), and X4 =X, 0) [see
Eq. (D6)]. Note that additional off-diagonal terms due to
Too = Top # 0 appear in Eq. (I1) for nonspherical particles.
Using the same approach as in Appendix H, we can derive
Eq. (27) from condition [det Te’fg (w) =0] with w € R.
Figure 7 presents the same content as Fig. 3, but for the odd
BIC.

APPENDIX J: T-MATRIX APPROACH TO FINITE-SIZE
ARRAYS OF RESONATORS

The T-matrix-based formalism described in Sec. II B for
infinite lattices can be adopted to finite-size arrangements
of N, scatterers. In the latter case, the total scattered field
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reads as
MO(
3
Peca(@it) =Y > aim Vi (@ir =), (1)
i=1 €m

where a;,, are unknown coefficients. To calculate them,
we expand a given incident field around positions r; of the
scatterers,

Pinc(@iT) = Y bip (@)W} (@:ir — 1), (J2)
£,m
Next, we can write the local field coefficients as [cf. Eq. (D4)]

Z;i,e,m(w) =b;¢m(w) + Z Zcfn)wm (w;r; —x))aj e mw(w)
oo A
J3)

and substitute them into Eq. (7) for each scatterer to obtain the
following system of linear equations:

a;, = Ti b,‘ + ch)aj , (J4)
J#i

where a; = a;(w), b; = b;(w), T; = T;(w) is the acoustic T
matrix of the ith scatterer, and Cff ) is the matrix that contains

the translation coefficients Cf,i o (@3T —T;).

APPENDIX K: DESCRIPTION OF THE FEM MODEL

Simulations are performed using the finite-element method
(FEM) with the pressure acoustics, frequency domain inter-
face in COMSOL Multiphysics™ (version 5.5). The com-
putational domain consists of a rigid-walled parallelepiped
with dimensions 120 x 60 x 60 um, within which a spherical
object of radius 25 pum is centered. The surrounding water
fills the region between the surface of the sphere and the inner
boundaries of the parallelepiped. To reduce the computational
cost, symmetry boundary conditions are applied on selected
faces of the parallelepiped. Port boundary conditions are used
to excite acoustic waves entering the structure. The rectangu-
lar port option is selected, and the first four (m, n) modes of a
waveguide with a rectangular cross-section are included. The
computational domain is discretized using tetrahedral finite
elements with an extra fine element size.
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