
www.kit.eduKIT – The Research University in the Helmholtz Association

Correctness-by-Construction for
Pancake Programs

Master’s Thesis
of

Jakob Jarebica

at the Department of Informatics
Institute of Information Security and Dependability

Test, Validation and Analysis (TVA)

Reviewer: Prof. Dr.-Ing. Ina Schaefer
Second Reviewer: Assoc. Prof. Dr. Alex Potanin
Advisor: Maximilian Kodetzki, M.Sc.

Completion period: June 30, 2025 – February 6, 2026

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder
inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des
KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung
beachtet habe.

Karlsruhe, den 6. Februar 2026 Jakob Jarebica

Abstract

In safety-critical environments, operating systems are commonly used. Therefore,
they need to satisfy strict requirements on their functional correctness, making them
a suitable target for the application of formal techniques, such as formal verification.
Existing research on the verification of systems software, e.g., work on the seL4
microkernel, shows that this process is time consuming and expensive. The systems
programming language Pancake addresses this issue through its language design,
featuring a verified compiler, based on a semantics formalized in the interactive
theorem prover HOL4.

However, existing formal techniques for systems programming languages are limited
to post-hoc approaches, i.e., the verification of a completed implementation against a
specification. Since this specification is typically known before implementation, there
is potential for improvement. In contrast to post-hoc approaches, refinement-based
techniques like Correctness-by-Construction (CbC) exploit this knowledge by using
the specification as the origin for correctness-preserving refinement steps, resulting
in a program which fulfills the initial specification a priori. The refinement steps in
CbC consist of the user-guided application of proven-correct refinement rules which
simplify selecting correct refinement steps.

In this thesis, we introduce a CbC calculus for a Turing-complete subset of the
systems programming language Pancake which allows developers to implement
Pancake programs by refining a Hoare-style specification into programs using a set of
26 refinement rules. Our CbC calculus is implemented in HOL4, leveraging the formal
semantics of Pancake to achieve provable end-to-end correctness. To demonstrate
the feasibility of our approach, we present an implementation of linear search as a
case study as well as an approach to automate the refinement proofs.

Kurzfassung

In sicherheitskritischen Umgebungen werden häufig Betriebssysteme eingesetzt. Daher
müssen sie strikte Anforderungen an ihre funktionale Korrektheit erfüllen, was sie zu
einem geeigneten Ziel für die Anwendung formaler Techniken macht, beispielsweise für
formale Verifikation. Bestehende Forschungsarbeiten, zum Beispiel die Arbeiten zum
seL4 -Mikrokernel, zeigen, dass die Verifikation von Systemsoftware zeitaufwändig
und kostspielig ist. Die Systemprogrammiersprache Pancake geht dieses Problem
durch ihr Sprachdesign an, das einen verifizierten Compiler umfasst, der auf einer im
interaktiven Theorembeweiser HOL4 formalisierten Semantik basiert.

Die bestehenden formalen Techniken für Systemprogrammiersprachen beschränken
sich jedoch auf Post-Hoc-Ansätze, das heißt die Verifikation einer abgeschlossenen Im-
plementierung gegen eine Spezifikation. Da diese Spezifikation in der Regel bereits vor
der Implementierung bekannt ist, besteht hier Verbesserungspotenzial. Im Gegensatz
zu Post-Hoc-Ansätzen nutzen Refinement-basierte Techniken wie Correctness-by-
Construction (CbC) dieses Wissen, indem sie die Spezifikation als Ausgangspunkt für
korrektheitserhaltende Refinement-Schritte verwenden, was zu einem Programm führt,
das die ursprüngliche Spezifikation a priori erfüllt. Die Refinement-Schritte in CbC
bestehen in der benutzergeführten Anwendung formal bewiesener Refinement-Regeln,
welche die Auswahl korrekter Refinement-Schritte vereinfachen.

In dieser Arbeit stellen wir einen CbC-Kalkül für eine Turing-vollständige Teilmenge
der Systemprogrammiersprache Pancake vor, der es Entwicklern ermöglicht, Pancake-
Programme zu implementieren, indem sie eine Hoare-Spezifikation unter Verwendung
von 26 Refinement-Regeln zu einem Pancake-Programm zu verfeinern. Unser CbC-
Kalkül ist in HOL4 implementiert und nutzt die formale Semantik von Pancake,
um beweisbare Ende-zu-Ende-Korrektheit zu erreichen. Um die Machbarkeit unseres
Ansatzes zu zeigen, präsentieren wir eine Implementierung der linearen Suche als
Fallstudie sowie einen Ansatz zur Automatisierung der Refinement-Beweise.

Contents

Abbreviations v

1 Introduction 1

2 Foundations 3
2.1 Correctness-by-Construction . 3

2.1.1 Programs, Specifications, and Contracts 4
2.1.2 Refinement of Contracts . 7
2.1.3 Refinement Rules . 8

2.2 Pancake . 10
2.2.1 Syntax . 10
2.2.2 Semantics . 11

2.3 Goal-Directed Proofs in HOL4 . 13

3 CbC Calculus for Pancake 17
3.1 Hoare Specifications . 17
3.2 Weakest Preconditions . 18
3.3 Contracts and Refinement . 21
3.4 Refinement Rules . 22

3.4.1 Refinement Rule: Skip . 23
3.4.2 Refinement Rule: Seq . 23
3.4.3 Refinement Rule: While . 25
3.4.4 Other Top-Down Refinement Rules 27
3.4.5 Bottom-Up Refinement Rules 29

4 Case Study: Linear Search 31
4.1 Specification . 31
4.2 Refinement Proof . 33
4.3 Automating Refinement Proofs . 41

4.3.1 Top-Down Refinement Steps 42
4.3.2 Bottom-Up Refinement Steps 44

5 Related Work 45

6 Conclusion 47

Bibliography 49

A HOL4 Proof Example 53

ii Contents

B CbC for GCL in HOL4 57
B.1 Syntax and Semantics of GCL . 57
B.2 Specifications and Weakest Preconditions 59
B.3 Contracts and Refinement . 61
B.4 Refinement Rules . 62

C The Pancake Semantics 65

D CbC for Pancake in HOL4 69
D.1 Clock-Freeness and Variable-Freeness 69
D.2 Conditions and Operators . 71
D.3 Specifications and Weakest Preconditions 73
D.4 Refinement and Refinement Rules . 76
D.5 Automating Refinement . 81

List of Figures

2.1 Syntax of GCL . 5

2.2 Abstract Syntax of Pancake . 11

2.3 Concrete Syntax of Pancake: Linear Search 12

2.4 Semantics of Pancake: Program State 13

2.5 Semantics of Pancake: Evaluation of While Loop 13

2.6 ASCII and Unicode Notations of Common HOL4 Symbols 14

2.7 Defintion of the Factorial of a Natural Number in HOL4 14

2.8 HOL4 Proof: The Factorial of n ≥ 2 is Even 15

4.1 Pancake Semantics: Evaluation of Memory Loads 32

4.2 Case Study: Refinement Steps 1 and 13 34

4.3 Case Study: Refinement Steps 2 and 12 35

4.4 Case Study: Refinement Steps 3 and 11 36

4.5 Case Study: Refinement Steps 4 and 10 37

4.6 Case Study: Refinement Steps 5 and 9 38

4.7 Case Study: Refinement Steps 6, 7, and 8 39

iv List of Figures

Abbreviations

CbC Correctness-by-Construction

HOL higher order logic

GCL Guarded Command Language

LEM law of excluded middle

SIL safety integrity level

SML Standard ML

WP weakest precondition

vi Abbreviations

1. Introduction

Operating systems are prevalent in most safety-critical environments. The applica-
ble standards for software quality assurance, especially IEC 61508 [Int10], highly
recommend the usage of formal techniques for applications that require a elevated
safety integrity level (SIL), i.e., SIL 3 or 4. One of the most common formal tech-
niques is formal verification, i.e., proving that a given implementation fulfills a given
specification of functionality. Existing work on the formal verification of low-level
software, e.g., the work on the seL4 microkernel [Kle+14], shows that the verification
of low-level software implemented in common systems languages, i.e., C and Rust, is
time consuming and thus expensive.

Pohjola et al. [Poh+23] approach this issue focusing on the programming language
design, introducing the systems language Pancake. Pancake is a programming lan-
guage at a level of abstraction between C and assembly which eliminates undesirable
properties from C, e.g., the complex memory model while being sufficiently expressive
for systems programming. The semantics of Pancake is defined formally in higher
order logic (HOL), allowing Pohjola et al. [Poh+23] to prove their Pancake compiler
correct using the interactive theorem prover HOL4. Ongoing work on formal verifiers
for Pancake code aims to enable the development of proven-correct Pancake software,
providing provable correctness from source code down to binaries using the verified
compiler.

Additional potential to simplify the application of formal methods to systems software
lies in the choice of the techniques: formal verification is a post-hoc technique, i.e.,
software is verified against a given specification after it is implemented. This
leaves room for improvement, as the desired functionality is usually known before
implementation. Using a refinement-based process can exploit this knowledge to allow
the implementation of software that is formally correct a priori. There are multiple
advancements in defining an approach based on refining a formal specification of
functionality into software that fulfills this specification. This type of approach is
initially described by Dijkstra [Dij68] and advanced by Morgan [Mor94]. A modern
approach in this direction is Correctness-by-Construction (CbC) [KW12]. In CbC, a
formal specification of functionality is given as a Hoare triple {P} S {Q}, where P
and Q are precondition and postcondition, both given in first-order logic, and S is a

2 1. Introduction

statement placeholder. CbC defines a set of refinement rules which specify how a root
Hoare triple can be refined into one or multiple Hoare triples or program statements.
Correctly applying the refinement rules repetitively results in an implementation
in Dijkstra’s Guarded Command Language (GCL) [Dij75] that fulfills the initial
specification. The set of refinement rules within the CbC calculus is proven sound
and complete for terminating programs. CbC forces the developer to make formally
correct refinements; still, it is not an automated process comparable to program
synthesis. The decision of which refinement rule to use is left to the developer who
remains responsible for all design decisions during the implementation.

The existing CbC processes are designed for high-level programming languages
and cannot be easily transferred to low-level programming languages, as the CbC
refinement rules do not resemble some constructs of low-level programs, especially the
access to addressable memory. Additionally, the current CbC implementations rely
on Java-specific verifiers [Bor+23]. Although using specialized systems programming
languages, e.g., Pancake, facilitates the formal verification of low-level programs, the
existing approaches are limited to post-hoc approaches.

To close this gap, this thesis introduces a CbC process for the implementation of
programs in a subset of the programming language Pancake. Our CbC process
allows the developer to refine a formal specification of the desired functionality into
Pancake code that fulfills the functionality described by the formal specification. It
is implemented and proven in the interactive theorem prover HOL4 which allows us
to utilize the formal semantics of Pancake, ensuring the end-to-end correctness of our
calculus. This extends the CbC paradigm to the domain of systems programming.

The remainder of this thesis is structured as follows: in Chapter 2, we introduce the
foundations of this thesis, focussing on the origins and state of the art in CbC and
providing an introduction into Pancake and HOL4. In Chapter 3, we describe our
CbC calculus for Pancake programs, including a formalization of Hoare triples for
Pancake, weakest preconditions for Pancake statements, the definition of contract
refinement, and refinement rules. To demonstrate the feasibility of our approach, we
provide a case study in Chapter 4, in which we develop a Pancake implementation of
linear search from its specification using our CbC calculus. In Chapter 5, we give an
overview about existing research related to this thesis. In Chapter 6, we conclude
this thesis by drawing an conclusion and giving an outlook to future work.

2. Foundations

In this chapter, we introduce into the foundations of our contributions which are
documented in Chapter 3. In Section 2.1, we describe the development paradigm
Correctness-by-Construction (CbC), embedded in its historical context and using CbC
for Dijkstra’s Guarded Command Language (GCL) as an example. In Section 2.2,
we provide an introduction into the programming language Pancake, focussing on its
semantics. In Section 2.3, we explain the basics of goal-directed proofs in HOL4.

2.1 Correctness-by-Construction

Correctness-by-Construction (CbC) is a development paradigm. A developer using
CbC begins by providing a formal specification of a required functionality, usually as
Hoare-style preconditions and postconditions. Following that, the developer uses a
set of proven-correct refinement rules to transform this initial specification. Each
refinement rule introduces a construct of the used programming languages, e.g., a
selection or a repetition statement, leaving new specifications to refine to create
their statement bodies. Using the right refinement rules, this step-wise refinement
ultimately results in a concrete program which implements the required functionality.

This type of development approach, beginning with a specification and transforming
it into a program, is called an a priori approach. A priori approaches to program
correctness were first proposed by Dijkstra in 1968 who describes them as being
similar to the behavior of a developer. Dijkstra does not provide a detailed description
of a process, but describes his ideas on a complex example, and concludes:

I have not done much more than to make explicit what the competent
programmer has already done for years, be it mostly intuitively and
unconsciously. [Dij68]

In 1981, Back makes the first steps towards an a priori approach that uses formal
methods by proving a refinement calculus for programs in the Guarded Command
Language (GCL) [Dij75; Bac81]. This calculus is enhanced in the following years

4 2. Foundations

[Bac88; BW90] and used by Morgan in 1994 to formalize an a priori approach for
GCL programs [Mor94].

More recently, Kourie and Watson rephrase these ideas using a more modern ter-
minology, calling the development paradigm Correctness-by-Construction (CbC)
[KW12]. Modern style CbC is similar to the approach described by Morgan, but
focusses more strongly on the developer’s perspective, simplifying its application by
casting the allowed refinements into simple rules.

To facilitate the use of these approaches, there is tool support: The calculus by Back
has been implemented multiple times [BL96; Car+98]. Kourie’s and Watson’s CbC
has been implemented by Runge et al. in the graphical tool CorC [Run+19].

This thesis is based on the concepts developed by the authors mentioned above.
The contributions of Morgan, Kourie, and Watson are the closest to our own work.
Therefore, we explain their terminology and concepts in the remainder of this section,
using CbC for GCL as a running example.

2.1.1 Programs, Specifications, and Contracts

For introducing CbC as a development paradigm, we initially have to specify which
kind of product is developed using CbC. Commonly, the resulting products of software
development processes are called programs, but it seems relativelty complicated to
describe what the term program exactly refers to. The most obvious definition
matches our colloquial use of the term program and can be found in ISO/IEC 2382-1
[II15]:

Definition 2.1 (Program – ISO/IEC 2382-1). Syntactic unit that conforms to the
rules of a particular programming language and that is composed of declarations and
statements or instructions needed to solve a certain function, task, or problem.

This definition hints at two aspects to initially address for our running example,
CbC for GCL: (1) the syntactic rules for GCL programs and (2) in which cases a
program solves a task. In other words, we have to define both (1) the syntax of the
programming language and (2) a way to specify functionality. Beginning with the
first aspect, we define the syntax of GCL as follows:

Definition 2.2 (GCL Programs). In this thesis, we use a subset of Dijkstra’s original
GCL [Dij75]. The syntax of this subset is given as a BNF grammar in Figure 2.1.
GCL programs are statements that can be constructed by this grammar.

To address the second aspect of programs, specify their functionality, we also consult
ISO/IEC 2382-1 [II15] which defines program specification as follows:

Definition 2.3 (Program Specification – ISO/IEC 2382-1). Document that describes
the structure and functions of a program in sufficient detail to permit programming
and to facilitate maintenance.

According to this definition, specifications can be given in different forms: a document
in a natural language that is sufficiently detailed can permit programming, a formal
specification can as well. The difference between both is the used notation and the
resulting difference in ambiguity as ISO/IEC 2382-1 [II15] hints at:

2.1. Correctness-by-Construction 5

Expr e ::= v variable
| c integer constant
| e+ e addition
| e− e subtraction
| e = e equal comparison
| e < e less-than comparison
| e ≤ e less-or-equal comparison

Stmt s ::= Skip empty statement
| v := e variable assignment
| s; s sequence statement
| If { b } selection statement
| While { b } repetition statement

Body b ::= e → s guarded command
| e → s, b guarded command list

Figure 2.1: Syntax of GCL

Definition 2.4 (Formal Specification – ISO/IEC 2382-1). Specification written in a
formal notation, often for use in correctness proving.

For CbC, we require formal specifications, as we want to achieve provable correctness.
One kind of formal specification are Hoare-style precondition and postcondition
pairs. For this thesis, we use Hoare triples as specifications of total correctness, i.e.,
requiring termination, and define them as follows:

Definition 2.5 (Hoare Triple). A program S fulfills the specification given as the
precondition P and postcondition Q iff executing the program S terminates in a state
fulfilling Q when executed from any initial state fulfilling P . If this holds, we say
that the Hoare triple {P} S {Q} holds.

Applying this definition to our running example, GCL, we first have to define a
semantics for the language, i.e., what executing a program means. For the sake of
simplicity, we generally assume the standard semantics of GCL [Dij75], but make
the following two adaptions: (1) We assume that all programs terminate. A more
complex semantics that allows diverging programs is demonstrated in Appendix B
using the interactive theorem prover HOL4. (2) For guarded commands, we make
the simplification to always select the first matching guard, allowing deterministic
evaluation. In combination, both adaptions allow us to assume a total and determin-
istic evaluation function for GCL statements. Given this semantics, we define Hoare
triples for GCL as follows:

Definition 2.6 (Hoare Triples for GCL). The program states s of a GCL program
consists of the values of its variables, i.e., s : varname −→ int. Non-assigned variables
are assumed as zero-initialized. Preconditions P and postconditions Q are both sets
of program states, specifying which states are legal.

For a given GCL statement stmt, {P} stmt {Q} holds iff

∀s : s ∈ P ⇒ evaluate(stmt, s) ∈ Q,

where evaluate is the total evaluation function on statements.

6 2. Foundations

Having defined GCL programs and Hoare triples for GCL as formal specifications,
we can continue specifying CbC for GCL. In the terms defined above, CbC is a
development paradigm in which a formal specification, usually a Hoare specification,
is refined into a program by step-wise application of refinement rules. However,
there are intermediate products created in the process: After the application of
one refinement rule to a initial formal specification, the developer usually does not
receive a program, rather an object that formalizes requirements to the syntax of
the program, but leaves some gaps in the syntax, only specifying the semantics of
these gaps. We can demonstrate this in the following example for the GCL sequence
statement:

Example 2.1 (Intermediate Products). Given a refinement rule that allows the
refinement of a Hoare specification of P and Q towards a GCL program containing a
sequence statement s1; s2, the smallest possible refinement step would be introducing
the sequence itself, but leaving s1 and s2 as gaps. To preserve correctness, the rule
would enforce {P} s1 {M} and {M} s2 {Q} for some intermediate condition M .

We could specify the full rule as follows, denoting gaps as (·):

{P} · {Q} ⊑ {P} · {M}; {M} · {Q}

The term {P} ·{M}; {M} ·{Q} in the example above is neither a formal specification
in the usual sense, as it talks about program syntax, nor is it a program, as it contains
indirect specification of semantics. Morgan calls these terms sub-specifications, alter-
natively super-programs, and proposes to subsume all three, programs, specifications,
and sub-specifications, under the term program [Mor94]. This is justified by the
fact that we treat them quite similar in refinement-based techniques, as all of them
specify functionality in some way. On the other hand, this terminology complicates
talking about programs and specifications, each in the sense of ISO/IEC 2382-1 [II15],
requiring the usage of longer terms like concrete program and abstract program.

To keep the terminology in this thesis simple, we will use the terms (1) program and
(2) specification in the sense of ISO/IEC 2382-1 [II15], the term (3) sub-specification
in the sense of Morgan [Mor94], and subsume all of them under the term contract
which is also used by Morgan.

Programs can satisfy contracts, informally defining:

Definition 2.7 (Satisfication of Contracts). Given a set of statements Stmt and a set
of contracts Contract, we can define a relation sat ⊆ Stmt× Contract that specifies
which statements satisfy which contracts.

A program satisifies

1. itself and no other program,
2. a Hoare specification if the Hoare triple as defined above holds, and
3. a sub-specification if it fulfills all syntactic and semantic requirements.

We can define contracts for the refinement-based development in GCL and their
satisfication as follows:

Definition 2.8 (Contracts for GCL). The contracts to be used for refinement-based
programming in GCL are constructed by the BNF grammar below. The symbols s
and e denote statements and expressions, defined in Figure 2.1.

2.1. Correctness-by-Construction 7

Contract c ::= HoareC P Q hoare contract
| SeqC c c sequence contract
| IfC b selection contract
| WhileC b repetition contract
| ProgC s program contract

Body b ::= e → c guarded contract
| e → c, b guarded contract list

Let [ei → pi]
k
1 be a shorthand notation for a list of guarded commands or guarded

contracts. We define the satisfication relation sat as follows:

stmt sat (HoareC P Q) ⇐⇒ ∀s : s ∈ P ⇒ evaluate(stmt, s) ∈ Q
stmt sat (SeqC c1 c2) ⇐⇒ ∃p1, p2 : stmt = (Seq p1 p2)∧

p1 sat c1 ∧ p2 sat c2
stmt sat (IfC [ei → ci]

k
1) ⇐⇒ ∃p1, . . . , pk : stmt = (If [ei → pi]

k
1)∧

∀i, 1 ≤ i ≤ k : pi sat ci
stmt sat (WhileC [ei → ci]

k
1) ⇐⇒ ∃p1, . . . , pk : stmt = (While [ei → pi]

k
1)∧

∀i, 1 ≤ i ≤ k : pi sat ci
stmt sat (ProgC p) ⇐⇒ stmt = p

2.1.2 Refinement of Contracts

As discussed in the previous section, the objects refined into each other in a CbC
process are contracts. Following the definition by Kourie and Watson [KW12], we
define the refinement relation on contracts and prove some basic properties:

Definition 2.9 (Refinement of Contracts). Let sat ⊆ Stmt×Contract be the satisfication
relation between programs and contracts, i.e., p sat c iff p satisfies c.

A contract c1 can be refined into a contract c2, denoted by c1 ⊑ c2, iff

∀p : p sat c2 ⇒ p sat c1,

i.e., that all programs satisfying c2 also satisfy c1.

Theorem 2.1 (Reflexivity and Transitivity of Refinement). The refinement relation
⊑ is reflexive and transitive, i.e.,

∀c : c ⊑ c
∀c1, c2, c3 : c1 ⊑ c2 ∧ c2 ⊑ c3 ⇒ c1 ⊑ c3

Proof. Let c1, c2, c3 be contracts and p be a program.

For reflexivity: p sat c1 ⇒ p sat c1 holds trivially, and thus c1 ⊑ c1 per Definition 2.9.

For transitivity: Let c1 ⊑ c2 and c2 ⊑ c3. According to Definition 2.9, p sat c3 ⇒
p sat c2 and p sat c2 ⇒ p sat c1 hold. By transitivity of the implication, p sat c3 ⇒
p sat c1, and therefore, c1 ⊑ c3.

Corollary 2.2 (Refinement from Specification to Programs). Let c1 be a specification,
c2, . . . , ck−1 be sub-specifications, and ck be a program. By transitivity,

∀i, 1 ≤ 1 ≤ k − 1 : ci ⊑ ci+1

implies that c1 ⊑ ck, i.e., programs obtained by multiple refinement steps from a
specification fulfill that specification.

8 2. Foundations

As proven above, the refinement relation is reflexive and transitive without knowl-
edge of the satisfication relation. Knowing the language-specific definition of the
satisfication relation sat, we can prove another property of GCL contract refinement
often used in practice:

Theorem 2.3 (Monotonicity of GCL Contract Refinement). The composition of
contracts is monotonic with respect to the refinement relation, i.e., given cj ⊑ c∗j , it
holds that

SeqC cj c ⊑ SeqC c∗j c
SeqC c cj ⊑ SeqC c c∗j
IfC [ei → ci]

k
1 ⊑ IfC [ei → ci]

k
1 \ [ej → c∗j]j

WhileC [ei → ci]
k
1 ⊑ WhileC [ei → ci]

k
1 \ [ej → c∗j]j,

where [ei → ci]
k
1 \ [ej → c∗j]j denotes a list of guarded contracts, in which cj is replaced

with c∗j at index j.

Proof. In Theorem B.11 in Appendix B, we prove a corresponding theorem for the
GCL semantics that allows diverging programs. The proof of the theorem above
is a special case of the proof developed using HOL4 in Appendix B and therefore
omitted for brevity. ♢

2.1.3 Refinement Rules

The definitions and theorems presented in the preceding section lay the formal
foundations of CbC, but are difficult to use for a specification-to-program refinement
proof: Although it is possible to prove, e.g., a refinement of a initial specification
into a sub-specification correct, the definitions above do not help choosing that
sub-specification. Additionally, the correctness proofs of a refinement given only the
definitions above is usually rather intricate, as every single refinement proof has to
deal with the semantic properties of the evaluation function.

To simplify the use of refinement techniques, we capture this complexity in refinement
rules. Refinement rules already occur in Morgan’s contributions; he lists more than
70 rules in the appendix to his work [Mor94]. Kourie and Watson state that most of
these rules are more of a theoretical interest than of pracical relevance, limiting the
refinement rules for modern-style CbC to a smaller number of rules [KW12]. Their
refinement rules follow a common pattern which we present in following definition:

Definition 2.10 (CbC Refinement Rules). Refinement rules for modern-style CbC
formalize the introduction of a statement type, the strengthening of a postcondition,
or the weakening of a precondition.

Before applying a CbC refinement rule to a specification, the developer has to prove
that the precondition implies the rule’s side conditions. The application of a CbC
rule leads to a contract, i.e., a specification, a sub-specification, or a program, that
can be the starting point of further refinement steps. Therefore, CbC refinement rules
share the following pattern:

(side conditions) ⇒ (specification) ⊑ (contract)

If a rule has no side conditions, the implication is omitted.

2.1. Correctness-by-Construction 9

To visualize this definition, we list the refinement rules by Kourie and Watson for
GCL [KW12].

Example 2.2 (Refinement Rules for GCL). Let ⇛ the implies everywhere relation
on conditions, i.e.,

P ⇛ Q ⇐⇒ ∀s : s ∈ P ⇒ s ∈ Q,

Gi the condition equivalent to the expression ei evaluating to a greater-zero value,
and GG = G1 ∨ · · · ∨Gk the disjunction of all Gi.

The following refinement rules hold for GCL:

1. Strengthen Postcondition Rule:
(Q′ ⇛ Q) ⇒ (HoareC P Q) ⊑ (HoareC P Q′)

2. Weaken Precondition Rule:
(P ⇛ P ′) ⇒ (HoareC P Q) ⊑ (HoareC P ′ Q)

3. Skip Rule:
(P ⇛ Q) ⇒ (HoareC P Q) ⊑ (ProgC Skip)

4. Assignment Rule:
(P ⇛ Q[v \ e]) ⇒ (HoareC P Q) ⊑ (ProgC (Assign v e))

5. Sequence Rule:
(HoareC P Q) ⊑ (SeqC (HoareC P M) (HoareC M Q))

6. Selection Rule:
(P ⇛ GG) ⇒ (HoareC P Q) ⊑ (IfC [ei → (HoareC (P ∧Gi) Q)]k1)

7. Repetition Rule (without termination):
(P ⇛ I ∧ I ⇛ ¬GG) ⇒ (HoareC P Q) ⊑ (WhileC [ei → (HoareC (I ∧Gi) I)]

k
1)

In the following, we exemplarily prove the sequence rule. The remaining rules are
omitted for brevity and proven in Appendix B using HOL4.

Theorem 2.4 (GCL Sequence Rule). The refinement rule

HoareC P Q ⊑ SeqC (HoareC P M) (HoareC M Q)

holds.

Proof. By applying the definitions we present above, it holds that

HoareC P Q ⊑ SeqC (HoareC P M) (HoareC M Q)
def 2.9⇐===⇒ ∀s : s sat (SeqC (HoareC P M) (HoareC M Q)) ⇒

s sat (HoareC P Q)
def 2.8⇐===⇒ ∀p1, p2 : p1 sat (HoareC P M) ∧

p2 sat (HoareC M Q) ⇒
(Seq p1 p2) sat (HoareC P Q)

def 2.8⇐===⇒ ∀p1, p2 : (∀t : t ∈ P ⇒ evaluate(p1, t) ∈ M) ∧
(∀t : t ∈ M ⇒ evaluate(p2, t) ∈ Q) ⇒
(∀t : t ∈ P ⇒ evaluate(Seq p1 p2, t) ∈ Q).

The consequent of this implication requires that evaluating a sequence statement
Seq p1 p2 from an initial state s ∈ P results in a state t ∈ Q. Assuming the GCL

10 2. Foundations

semantics discussed in Section 2.1.1, evaluating a sequence statement Seq p1 p2 from
an initial state s ∈ P means (1) first evaluating p1 from s resulting in a state t1,
(2) then evaluating p2 from t1 resulting in a state t2, requiring t2 ∈ Q. By the first
conjunct of the antecedent, it holds that s ∈ P implies t1 ∈ M , and by the second
conjunct, t1 ∈ M implies t2 ∈ Q.

2.2 Pancake

Pancake is a systems programming language introduced by Pohjola et al. [Poh+23]
which is part of the CakeML ecosystem [Kum+14]. Pancake is targeted to improve
the security of operating systems by simplifying the verification of device drivers,
which is reflected in the language’s syntax and semantics.

Pancake features an abstraction level between C and assembly and a minimal type
system, only supporting machine words and nestable structs of machine words. In
Pancake, these types are called shapes. Local variables are stack-allocated, values
may also be saved and loaded from global variables and a statically allocated heap.
We present the subset of the Pancake syntax we support in this thesis in Section 2.2.1.

The developers of Pancake formalize the language’s semantics as functional big-step
semantics [Owe+16], embedded in a theory for the theorem prover HOL4 [SN08].
The Pancake compiler is proven correct and uses parts of the compiler stack of
CakeML [Kum+14]. We explain the most relevant properties of Pancake’s semantics
in Section 2.2.2 and the very basics of proofs in HOL4 in Section 2.3.

As Pancake is a programming language under ongoing development, we decided
to freeze the Pancake version used for this thesis at the Git commit 721c4576e of
CakeML1. This was the up-to-date version when finalizing our refinement calculus
proofs. For HOL4, we use the release version Trindemossen 2 2.

2.2.1 Syntax

For this thesis, we decided to limit ourselves to a Turing-complete subset of Pancake,
leaving function calls, the foreign function interface, and shared memory operations
for future work. The abstract syntax of this language subset is shown in Figure 2.2,
where the algebraic data types exp and prog represent Pancake expressions and
statements. The type variable α stands for the word size of the hardware platform.

We illustrate the concrete syntax of Pancake with the example in Figure 2.3 where
we implement a linear search on the heap. The example especially shows the concrete
syntax of Pancake shapes : Function arguments are statically typed by prefixing their
shape, e.g., declares 2 array a two-element struct. The contents of structs can be
accessed as, e.g., array.1 and array.2. The load shape statement lds requires the
static specification of the shape to fetch.

For the remainder of this thesis, we focus on HOL4 proofs about language properties
and thus on the abstract syntax, making the following definition:

Definition 2.11 (Pancake Program). A Pancake program is a HOL4 term of the type
α prog, shown in Figure 2.2.

1https://github.com/CakeML/cakeml
2https://github.com/HOL-Theorem-Prover/HOL

https://github.com/CakeML/cakeml
https://github.com/HOL-Theorem-Prover/HOL

2.2. Pancake 11

α exp =
Const (α word)
| Var varkind mlstring

| Struct (α exp list)
| Field num (α exp)
| Load shape (α exp)
| Load32 (α exp)
| LoadByte (α exp)
| Op binop (α exp list)
| Panop panop (α exp list)
| Cmp cmp (α exp) (α exp)
| Shift shift (α exp) num

| BaseAddr

| TopAddr

| BytesInWord

α prog =
Skip

| Dec mlstring shape (α exp) (α prog)
| Assign varkind mlstring (α exp)
| Store (α exp) (α exp)
| Store32 (α exp) (α exp)
| StoreByte (α exp) (α exp)
| Seq (α prog) (α prog)
| If (α exp) (α prog) (α prog)
| While (α exp) (α prog)
| Break

| Continue

| Raise mlstring (α exp)
| Return (α exp)
| Annot mlstring mlstring

Figure 2.2: Abstract Syntax of Pancake

2.2.2 Semantics

The semantics of pancake is formally defined as a functional big-step semantics
[Owe+16], i.e., Pohjola et al. provide an evaluation function which yields a result
and successor state for each program and initial state [Poh+23]. The evaluation
results of Pancake are of the type α result option where a value of NONE represents
normal termination and values of SOME r represent different reasons for abnormal
termination.

To ensure termination of the evaluation function, the program state is equipped
with a clock variable which is decremented in every loop iteration. If the clock
value reaches zero, evaluation is terminated, yielding a result of SOME TimeOut. This
behavior can be retraced by studying the record data type for the program state and
the evaluation function for while loops, both presented in Figure 2.4 and Figure 2.5.
The complete definition of evaluate is omitted here and can be found in Appendix C.

For use in the later chapters of this thesis, we formally define:

Definition 2.12 (Pancake Program State). A Pancake program state is a HOL4 term
of the type state, shown in Figure 2.4.

Definition 2.13 (Termination of Pancake Programs). A Pancake program prog is said
to terminate when evaluated from a state s iff

∃ k. (let
(r,t) = evaluate (p,s with clock := k)

in
r ̸= SOME TimeOut)

holds, i.e., if there is an initial clock value, such that evaluation does not time out.
Otherwise, the Pancake program is said to diverge.

In addition to these definitions, Pohjola et al. provide a large set of proofs about
properties of Pancake’s semantics [Poh+23]. As we will use some of these theorems
for our own proofs, we introduce the most relevant ones in the remainder of this
section. The proofs of all following theorems are completed in HOL4 and therefore
omitted here.

12 2. Foundations

// Linear Search

// Arguments:

// to_find: word to search for

// array: struct <start_address,length> to search in

// Returns:

// Index of first occurrence in array, -1 if none

fun search(1 to_find, 2 array) {

var curr_index = 0;

// iterate while index is lower than array length

while (curr_index < array.2) {

// load word (shape 1) from current address

var curr_value = lds 1 (array.1 + curr_index);

if (curr_value == to_find) {

return curr_index;

}

curr_index = curr_index + 1;

}

return -1;

}

Figure 2.3: Concrete Syntax of Pancake: Linear Search

Theorem 2.5 (Evaluation of Expressions is Clock-Independent). For any expression e,
program state s, and clock value ck, it holds that

eval (s with clock := ck) e = eval s e,

i.e., the evaluation of Pancake expressions is clock-independent.

Theorem 2.6 (Increasing the Clock when Evaluating Programs). For any program p,
program states s and t, results r , and clock increasements ck, it holds that

evaluate (p,s) = (r,t) ∧ r ̸= SOME TimeOut ⇒
evaluate (p,s with clock := s.clock + ck) =

(r,t with clock := t.clock + ck),

i.e., if a program terminates with one initial clock value, it terminates with any greater
initial clock value in the same resulting state, and the clock increase propagates through
to the resulting state.

Theorem 2.7 (Minimal Initial Clock Value for Terminating Programs). For any
program p, program states s and t, results r , and clock increasements ck, it holds
that

evaluate (prog,s) = (r,t) ∧ r ̸= SOME TimeOut ⇒
∃ k. evaluate (prog,s with clock := k) =

(r,t with clock := 0),

i.e., there exists a minimal initial clock value for any terminating program.

2.3. Goal-Directed Proofs in HOL4 13

α state = <|

locals : mlstring 7→ α v;
globals : mlstring 7→ α v;
eshapes : mlstring 7→ shape;
memory : α word → α word_lab;
memaddrs : α word → bool;
clock : num;
be : bool;
base addr : α word;
top addr : α word

|>

Figure 2.4: Semantics of Pancake: Program State

⊢ evaluate (While e c,s) =
case eval s e of

NONE ⇒ (SOME Error,s)
| SOME (ValWord w) ⇒

if w ̸= 0w then
if s .clock = 0 then (SOME TimeOut,empty_locals s)
else

(let
(r ,s1) = evaluate (c,dec_clock s)

in
case r of

NONE ⇒ evaluate (While e c,s1)
| SOME Error ⇒ (r ,s1)
| SOME TimeOut ⇒ (r ,s1)
| SOME Break ⇒ (NONE,s1)
| SOME Continue ⇒ evaluate (While e c,s1)
| SOME (Return v5) ⇒ (r ,s1)
| SOME (Exception v6 v7) ⇒ (r ,s1))

else (NONE,s)
| SOME (Struct v9) ⇒ (SOME Error,s)

Figure 2.5: Semantics of Pancake: Evaluation of While Loop

2.3 Goal-Directed Proofs in HOL4

HOL4 is an interactive theorem prover [SN08]. It allows specifications and proofs
in classical HOL and is implemented in Standard ML (SML). In this section,
we introduce the basics of goal-directed proofs in HOL4. For a more systematic
introduction, we refer the interested reader to the overview paper by Slind and
Norrish [SN08] and the HOL4 Description manual3.

3https://hol-theorem-prover.org/#doc.

https://hol-theorem-prover.org/#doc

14 2. Foundations

Notations

HOL4 allows the user to use two different notations: ASCII and Unicode. Editors
for HOL4 support converting ASCII keyboard input to Unicode. Thus, HOL4 files
usually contain the Unicode notation.

For the sake of introduction, we use the ASCII notation within this section and
pretty-printed Unicode in the remainder of this thesis. The most common notations
are displayed in Figure 2.6.

~ ¬ Boolean Negation
/\ ∧ Boolean And
\/ ∨ Boolean Or
==> ⇒ Boolean Implication
<=> ⇔ Boolean Equality
! ∀ Universal Quantifier
? ∃ Existential Quantifier
\ λ Lambda Abstraction
’a α Type Variable Alpha

Figure 2.6: ASCII and Unicode Notations of Common HOL4 Symbols

Writing Definitions

To write a definition in HOL4, the user can use the Definition environment.
Definitions in HOL4 are made in a functional syntax using equalities. They can
contain multiple cases and can be recursive. As an example, we present a HOL4
definition for the factorial of natural numbers in Figure 2.7.

Definition fact_def:

(fact 0 = 1) /\

(fact (SUC n) = (SUC n) * fact n)

End

Figure 2.7: Defintion of the Factorial of a Natural Number in HOL4

When presented with a recursive definition, HOL4 tries to prove the termination of
this definition automatically. If this fails, HOL4 requires its user to prove termination
manually, usually by providing a measure on the arguments of the definition and
by showing that the value of this measure decreases. An example for a termination
proof is explained when defining evaluate for GCL in Definition B.7 in Appendix B.

HOL4 also allows the definition of algebraic and record data types using the Datatype
environment. We provide multiple examples of such data types in Appendix B.

Proving Theorems

To prove a theorem in HOL4, the user specifies the theorem to prove in the Theorem
environment. This term is then loaded into HOL4 as a proof goal. By applying
tactics, the user tells HOL4 how to transform this goal, possibly proving multiple
subgoals, until HOL4 can trace the correctness of the remaining goal.

2.3. Goal-Directed Proofs in HOL4 15

The built-in HOL4 tactics include diverse approaches on proving theorems, including
induction, case splits, automatic simplifiers and reasoners, and many domain specific
tactics. Tactics can be combined using tacticals to provide one single tactic to solve
an initial proof goal.

We provide an example proof in Figure 2.8 where we prove that the factorial of n ≥ 2
is even. The HOL4 proof consists of a tactic which solves the initial proof goal. We
explain the details of this proof in Appendix A.

Theorem fact_even:

!n. n >= 2 ==> EVEN (fact n)

Proof

Induct

>> rw[fact_def]

>> Cases_on ‘n >= 2‘

>| [ALL_TAC, ‘n = 1‘ by gvs[]]

>> irule (iffRL EVEN_MULT)

>> gvs[]

QED

Figure 2.8: HOL4 Proof: The Factorial of n ≥ 2 is Even

16 2. Foundations

3. CbC Calculus for Pancake

In this chapter, we describe our CbC calculus for Pancake programs. Our calculus
allows developers to refine Hoare specifications into Pancake programs which are
formally ensured to have the functionality initially specified.

At first, we define Hoare specifications for Pancake in Section 3.1. In Section 3.2,
we prove weakest preconditions of Pancake statements which capture the language’s
semantics more compactly than the evaluation function. In Section 3.3, we introduce
functional and structural contracts for Pancake and their refinement which we
complement with refinement rules in Section 3.4.

This chapter contains multiple definitions and theorems which we develop and prove
in HOL4, guaranteeing the soundness of our calculus. Within this chapter, we provide
our definitions and theorems in both natural language and HOL4 notation but omit
the proofs for brevity, as they are developed using HOL4. In Appendix D, we give a
complete overview about the theorems and lemmas we used to prove our calculus. In
addition to the formalization of our calculus, we provide a case study for evaluation
in Chapter 4.

3.1 Hoare Specifications

As Hoare specifications are the initial specification in any CbC process, we need to
formalize them based on the programming language’s semantics. We introduced
the semantics of Pancake and defined Pancake programs and program states in
Section 2.2. Based on our definition of program states in Definition 2.12, we continue
by defining preconditions and postconditions as predicates on program states and
evaluation results:

Definition 3.1 (Preconditions and Postconditions). A precondition is a predicate on
program states, i.e., a term of type α state → bool.

A postcondition is a predicate on tuples of results and program states, i.e., a term of
type α result option × α state → bool.

18 3. CbC Calculus for Pancake

As Definition 2.12 specifies that the clock value is part of the program state, we require
a formalization of clockfree conditions. Knowing that conditions are clockfree allows
us to use a more simple reasoning about clock values in later proofs. Additionally, it
is also not in the interest of users to allow them to reason about clock values, as clock
values only exist in the formal semantics but not in the products of the Pancake
compiler. We define clock-freeness as follows:

Definition 3.2 (Clockfree Conditions). A precondition or postcondition is called
clockfree iff it does not restrict the clock value of the program states.

⊢ clkfree_p P ⇐⇒
∀ s k1 k2.

P (s with clock := k1) ⇐⇒ P (s with clock := k2)
⊢ clkfree_q Q ⇐⇒

∀ r s k1 k2.
Q (r,s with clock := k1) ⇐⇒ Q (r,s with clock := k2)

Using the common definition of Hoare triples as notations for total correctness in
Definition 2.5 as well as the formal definition of Hoare triples for GCL in Definition 2.6,
we define Hoare triples for Pancake as follows:

Definition 3.3 (Hoare Triples for Pancake). A Hoare triple {P} prog {Q} holds iff
both P and Q are clockfree and there is an initial clock value k for any program state
s with P s such that the program evaluates without an error and without a time out,
and the result (r,t) of the evaluation fulfills Q (r,t).

⊢ hoare P prog Q ⇐⇒
clkfree_p P ∧ clkfree_q Q ∧
∀ s. P s ⇒

∃ k. (let
(r,t) = evaluate (prog,s with clock := k)

in
r ̸= SOME Error ∧ r ̸= SOME TimeOut ∧ Q (r,t))

In this definition, we exclude two result values: (1) SOME TimeOut, as this forces
termination according to Definition 2.13, (2) SOME Error, as programs executing
erroneously are not interesting for the real-world programmer. Additionally, erroneous
programs also complicate proving weakest preconditions as done in the following
section, as they introduce multiple cases in definitions arising from multiple error
sources.

3.2 Weakest Preconditions

The semantics of Pancake is presented by Pohjola et al. as functional big-step
semantics [Poh+23], which is convenient for their compiler correctness proofs. For
refinement proofs, existing literature usually uses weakest preconditions of programs as
a starting point [Mor94; KW12]. To follow this path, we define weakest preconditions
(WPs) for Pancake programs as follows:

3.2. Weakest Preconditions 19

Definition 3.4 (Weakest Preconditions for Pancake Programs). A program state s
fulfills the weakest precondition (WP) of a program prog and a clockfree postcondition
Q iff there is an initial clock value k such that the program evaluates from this state
without an error and without a time out, and the result (r,t) of the evaluation fulfills
Q (r,t).

⊢ wp prog Q s ⇐⇒
clkfree_q Q ∧
∃ k. (let

(r,t) = evaluate (prog,s with clock := k)
in

r ̸= SOME Error ∧ r ̸= SOME TimeOut ∧ Q (r,t))

As a first sanity check for this definition, we prove that the WP as defined above is
clockfree:

Theorem 3.1 (Clock-Freeness of Weakest Precondition). The weakest precondition of
a Pancake program prog and a postcondition Q is clockfree.

⊢ clkfree_p (wp prog Q)

Additionally, we ensure that the WP defined above has its two eponymous properties:

Theorem 3.2 (Properties of the Weakest Precondition). The WP wp prog Q as
defined in Definition 3.4 fulfills that (1) it is a precondition for the program prog and
postcondition Q, and (2) it is the weakest of preconditions, i.e., that it is implied by
all clockfree preconditions P.

⊢ clkfree_p P ∧ clkfree_q Q ⇒
hoare (wp prog Q) prog Q ∧
(hoare P prog Q ⇐⇒ ∀ s. P s ⇒ wp prog Q s)

Using our definition of the WP, we prove the WPs of the different statement types
in Pancake. For brevity, we only demonstrate the WP of the Skip and Seq p1 p2
statements in this section, each with a proof sketch to show the general approach on
these proofs and the included construction of clock values. The remaining WPs can
be found in Appendix D.

Theorem 3.3 (Weakest Precondition of Skip). The WP of Skip and the postcondition
Q is exactly fulfilled by the states s which fulfill Q (NONE,s), i.e., all states allowed
with normal termination in Q.

⊢ clkfree_q Q ⇒ (wp Skip Q s ⇐⇒ Q (NONE,s))

Proof Sketch. By applying Definitions 3.2 and 3.4 and the definition of the evaluation
function (see Appendix C), we have to show that

∀ r s k1 k2. Q (r,s with clock := k1) ⇐⇒ Q (r,s with clock := k2)

Q (NONE,s) ⇐⇒ ∃ k. Q (NONE,s with clock := k)

holds. For the forward implication, let k = s.clock. For the reverse implication, use
the assumption instantiated with (r,s,k1,k2) = (NONE,s,k,s.clock). ♢

20 3. CbC Calculus for Pancake

Theorem 3.4 (Weakest Precondition of Seq p1 p2). The WP of Seq p1 p2 and the
postcondition Q is exactly fulfilled by the states s which fulfill (1) the WP of p1 and
the postcondition λ (r,t). r = NONE ∧ wp p2 Q t , or (2) the WP of p1 and the
postcondition λ (r,t). r ̸= NONE ∧ Q (r,t) .

⊢ clkfree_q Q ⇒
(wp (Seq p1 p2) Q s ⇐⇒
wp p1 (λ (r,t). r = NONE ∧ wp p2 Q t) s ∨
wp p1 (λ (r,t). r ̸= NONE ∧ Q (r,t)) s)

Proof Sketch. After applying Definitions 3.2 and 3.4 and the definition of the evalua-
tion function (see Appendix C), we continue as follows:

For the forward implication, we distinguish two cases: (1) If the evaluation of p1
results in NONE, we have to show that there is an initial clock value k ′ for the successive
execution of p1 and p2 as given by the nested WPs in the consequent. This nested
execution has to terminate in a result fulfilling Q (r,t). The necessary clock value
can be constructed using Theorems 2.6 and 2.7 from the initial clock values of the
single executions of p1 and p2. The result fulfills Q (r,t) by construction as required
by the antecedent of the implication. (2) If the evaluation of p1 does not result in
NONE, we have to show that there is an initial clock value k ′ for the execution of p1
as given by the WP in the consequent. This execution has to terminate in a result
fulfilling Q (r,t). The necessary clock value is exactly the clock value from the
antecedent, which also guarantees Q (r,t).

For the reverse implication, we prove the implication for both disjunctive terms in
the antecedent: (1) Given the successive execution of p1 and p2 as given with the
nested WPs in the antecedent, we have to show that there is an initial clock value for
the execution of Seq p1 p2, and that this execution terminates in a result fulfilling
Q (r,t). After applying Theorem 2.7, this clock value can be constructed as the
sum of the minimal clock values for p1 and p2, and the result fulfills Q (r,t) by
construction. (2) Given the execution of p1 to a result not equal to NONE as given
with the WP in the antecedent, we have to show that there is an initial clock value for
the execution of p1, and that this execution terminates in a result fulfilling Q (r,t).
The necessary clock value is exactly the clock value from the antecedent, which also
guarantees Q (r,t). ♢

In general, we use these WPs to prove refinement rules for Pancake in Section 3.4,
with the exception of the rule for while loops. As the weakest precondition in
Section 3.2 is a specification of total correctness, it also specifies the termination of a
program. Therefore, it is not possible to find an expressive notation of a while loop’s
WP as we prove in the following theorem:

Theorem 3.5 (Weakest Precondition of While Loop). There are Pancake while loops
for which it is not decidable whether a state fulfills the WP of the loop.

Proof. Let tmProg be the Pancake program that simulates a Turing machine, struc-
tured as a while loop doing one step of the Turing machine per iteration. If it was
decidable whether a state fulfilled the WP of the main loop in tmProg , it would
decide whether the simulated Turing machine would halt, as the WP is a specification
of total correctness, and therefore deciding the halting problem.

3.3. Contracts and Refinement 21

3.3 Contracts and Refinement

Following the path we sketched for GCL in Chapter 2, we continue by specifying
a language of contracts which we use in our refinement calculus. According to our
informal definitions in Section 2.1.1, we define the language of contracts for our
subset of Pancake as follows:

Definition 3.5 (Pancake Contracts). The contracts to be used for refinement-based
programming in Pancake are terms of the datatype shown below. The types α prog

and α exp denote programs and expressions (see Figure 2.2), α state denotes
program states as defined in Figure 2.4, and α result denotes possible evaluation
results listed in Appendix C.

α Contract =

HoareC (α state → bool) (α result option × α state → bool)

| DecC mlstring shape (α exp) (α Contract)

| SeqC (α Contract) (α Contract)

| IfC (α exp) (α Contract) (α Contract)

| WhileC (α exp) (α state → bool) (α state → num) (α Contract)

| PanC (α prog)

| DCC

As the Pancake semantics allows diverging programs, other than the semantics of
GCL in Section 2.1, we have to add a variant to allow us to force the termination of
loops, similiarly to the GCL semantics discussed in Appendix B. We define a variant
of a loop as follows:

Definition 3.6 (Loop Variant). A loop variant v for the loop body p is a clockfree
term of type α state → num whose value decreases after evaluation of p given that
the invariant i holds.

⊢ is_variant i v p ⇐⇒
(∀ s. i s ⇒ v (SND (evaluate (p,s))) < v s) ∧
∀ s k1 k2.

v (s with clock := k1) = v (s with clock := k2)

As done for GCL in Definition 2.7, we continue by defining the satisfication relation
for the contracts defined above:

Definition 3.7 (Satisfication of Pancake Contracts). The satisfication relation sat ⊆
prog× Contract for Pancake contracts is defined by the following equalities. For all
remaining cases, the reader may assume non-satisfication.

⊢ sat (HoareC P Q) prog ⇐⇒ hoare P prog Q
⊢ sat (DecC nl sl el c) (Dec nr sr er p) ⇐⇒

nl = nr ∧ sl = sr ∧ el = er ∧ sat c p
⊢ sat (SeqC c1 c2) (Seq p1 p2) ⇐⇒ sat c1 p1 ∧ sat c2 p2
⊢ sat (IfC l c1 c2) (If r p1 p2) ⇐⇒

l = r ∧ sat c1 p1 ∧ sat c2 p2
⊢ sat (WhileC l i v c) (While r p) ⇐⇒

l = r ∧ sat c p ∧ is_variant i v p
⊢ sat (PanC l) r ⇐⇒ l = r
⊢ sat DCC v0 ⇐⇒ T

22 3. CbC Calculus for Pancake

In these equalities, hoare P prog Q is the Hoare triple relation as defined in Def-
inition 3.3 and is_variant i v p is the requirement that v is a variant for the
program p as defined in Definition 3.6.

In Section 2.1.2, we use the satisfication relation to define a refinement relation
between contracts. Similarly, we define the refinement relation for Pancake contracts:

Definition 3.8 (Refinement of Pancake Contracts). Let sat ⊆ prog× Contract be the
satisfication relation between programs and contracts, i.e., p sat c iff p satisfies c.

A contract c1 can be refined into a contract c2, denoted by refine c1 c2, iff the
satisfication of c2 implies the satisfication of c1.

⊢ refine c1 c2 ⇐⇒ ∀ prog. sat c2 prog ⇒ sat c1 prog

As proven in Theorem 2.1, the refinement relation between contracts is both reflex-
ive and transitive without knowledge of the definition of the satisfication relation.
Therefore, these properties also hold for the refinement of Pancake contracts. As
for the GCL contracts, the composition of Pancake contracts is also monotonic with
respect to the refinement relation:

Theorem 3.6 (Monotonicity of Refinement). The composition of contracts is mono-
tonic with respect to the refinement relation.

⊢ refine A B ⇒ refine (DecC v sh exp A) (DecC v sh exp B)

⊢ refine A B ⇒
refine (SeqC A C) (SeqC B C) ∧
refine (SeqC C A) (SeqC C B)

⊢ refine A B ⇒
refine (IfC e A C) (IfC e B C) ∧
refine (IfC e C A) (IfC e C B)

⊢ refine A B ⇒ refine (WhileC e i v A) (WhileC e i v B)

3.4 Refinement Rules

Using the definition of refinement from the preceding section, we continue with
proving refinement rules for Pancake programs as discussed for GCL in Section 2.1.3.

In this section, we discuss two types of refinement rules: in Sections 3.4.1 to 3.4.4, we
prove top-down refinement rules, i.e., rules that introduce new contracts starting from
HoareC specifications. For this part, we present the refinement rules used in the case
study in Chapter 4, which are the refinement rules for Skip, variable declarations and
assignments, program sequencing, conditionals, while loops, and return statements.
Of these, we provide proof sketches for the rules for Skip, program sequencing, and
while loops. The remaining refinement rules are listed in Appendix D.

In Section 3.4.5, we additionally discuss bottom-up refinement rules, i.e. rules from
composite contracts like SeqC and WhileC to PanC contracts. These refinement rules
finalize the refinement of sub-programs and are usually trivial to apply with an
exception for the rule dealing with WhileC which ensures the termination of the loop.

We provide an overview of all refinement rules in Appendix D.

3.4. Refinement Rules 23

3.4.1 Refinement Rule: Skip

Inspecting the WP of Skip proven in Theorem 3.3 as well as the definition of
refinement in Definition 3.8, we obtain three side conditions for a refinement rule
for Skip: (1) the clock-freeness of the precondition, (2) the clock-freeness of the
postcondition, and (3) the precondition implying the postcondition, fixed to normal
termination. Therefore, we prove:

Theorem 3.7 (Refinement Rule: Skip).

⊢ clkfree_p P ∧ clkfree_q Q ∧ (∀ s. P s ⇒ Q (NONE,s)) ⇒
refine (HoareC P Q) (PanC Skip)

Proof Sketch. After applying Definitions 3.7 and 3.8, it remains to be shown that
the side condition

clkfree_p P ∧ clkfree_q Q ∧ ∀ s. P s ⇒ Q (NONE,s)

implies hoare P Skip Q .

Using the right-to-left implication of the second conjunct in Theorem 3.2, the term
above has to imply

(∀ s. P s ⇒ wp Skip Q s) ∧ clkfree_p P ∧ clkfree_q Q .

The second and third conjunct is directly implied by the side condition, the first
cunjunct is solved by applying Theorem 3.3. ♢

3.4.2 Refinement Rule: Seq p1 p2

For program sequencing, we observe two cases in the WP proven in Theorem 3.4: if
p1 evaluates successfully, the resulting state has to fulfill the WP of p2. Otherwise,
this resulting state has to fulfill the postcondition Q , as p2 is not executed.

Due to the multiple cases in the WP, we are also able to provide multiple refinement
rules for program sequencing, each targeting one or both of the cases above. For
this section, we focus on the refinement rule which allows a termination in both
subprograms p1 and p2. The refinement rules targeting the single cases are shown in
Appendix D.

As for Skip, we see in Definition 3.8, that the clock-freeness of both precondition
and postcondition is a necessary side condition for the sequence rule. Additionally,
the intermediate condition M reached after evaluating p1 needs to be clockfree, as it
possibly is a precondition for p2. For the subcontracts in SeqC c1 c2, we choose

HoareC P (λ (r,t). if r ̸= NONE then Q (r,t) else M t)

and HoareC M Q , as this resembles the cases in the WP and allows a termination
in both subprograms. Therefore, we prove

Theorem 3.8 (Refinement Rule: Seq p1 p2).

⊢ clkfree_p P ∧ clkfree_q Q ∧ clkfree_p M ⇒
refine (HoareC P Q)

(SeqC

(HoareC P
(λ (r,t). if r ̸= NONE then Q (r,t) else M t))

(HoareC M Q))

24 3. CbC Calculus for Pancake

Proof Sketch. After applying Definitions 3.7 and 3.8, it remains to be shown that
the side conditions and the right-hand side of the WP, i.e.,

clkfree_p P ∧ clkfree_q Q ∧ clkfree_p M ∧
hoare P p1 (λ (r,t). if r ̸= NONE then Q (r,t) else M t) ∧
hoare M p2 Q

imply hoare P (Seq p1 p2) Q .

Using the right-to-left implication of the second conjunct in Theorem 3.2 on both as-
sumptions and the goal, and after solving both clock-freeness subgoals clkfree_p P
and clkfree_q Q with the corresponding side conditions, it remains to be shown
that the postcondition for p1 is clockfree, i.e.,

clkfree_q (λ (r,t). if r ̸= NONE then Q (r,t) else M t)

and that the assumptions

∀ s. P s ⇒ wp p1 (λ (r,t). if r ̸= NONE then Q (r,t) else M t) s
∀ s. M s ⇒ wp p2 Q s

imply ∀ s. P s ⇒ wp (Seq p1 p2) Q s .

In the remainder of this proof, we use a set of monotonicity theorems for predicate
constructions and WPs. These are listed in Appendix D and only referenced here.

We solve the clock-freeness subgoal using Theorem D.12 and continue with the WP
subgoal by applying Theorem D.22 to the first assumption. This results in a new
assumption stack:

∀ s. P s ⇒
wp p1 (λ (r,t). r ̸= NONE ∧ Q (r,t)) s ∨
wp p1 (λ (r,t). r = NONE ∧ M t) s

∀ s. M s ⇒ wp p2 Q s

Using the theorem Theorem D.13 on the second assumption, we obtain

∀ s. P s ⇒
wp p1 (λ (r,t). r ̸= NONE ∧ Q (r,t)) s ∨
wp p1 (λ (r,t). r = NONE ∧ M t) s

∀ s. (λ (r,t). r = NONE ∧ M t) s ⇒
(λ (r,t). r = NONE ∧ wp p2 Q t) s.

Using Theorem D.21 on the second assumption yields the new assumptions

∀ s. P s ⇒
wp p1 (λ (r,t). r ̸= NONE ∧ Q (r,t)) s ∨
wp p1 (λ (r,t). r = NONE ∧ M t) s

∀ s. (λ (r,t). r = NONE ∧ M t) s ⇒
(λ (r,t). r = NONE ∧ wp p2 Q t) s,

having to prove the clock-freeness of both predicates

λ (r,t). r = NONE ∧ M t
λ (r,t). r = NONE ∧ wp p2 Q t .

The clock-freeness can be proved using Theorems D.9 and D.18. The remaining goal
is solved by applying the WP proven in Theorem 3.4. ♢

3.4. Refinement Rules 25

3.4.3 Refinement Rule: While e p

As shown in Theorem 3.5, there is no notation for the WP of a while loop, such that
it is decidable whether a state fulfills the WP. Therefore, we cannot use the proof
pattern presented for Skip and Seq p1 p2 above to prove a refinement rule for the
while loop.

To allow the refinement of while loops, we follow a similar path as done for GCL in
Section 2.1.3 and Appendix B: we introduce a refinement rule that uses an invariant
to demonstrate correct functionality as well as a variant to demonstrate termination.

For the invariant, we set similar side conditions as for GCL, i.e., that (1) the
precondition implies the invariant, that (2) the invariant and the negation of the
guard implies the postcondition fixed to normal termination, and (3) the loop body
re-establishes the invariant when started from the invariant.

As Pancake has different properties than GCL, we have to make adaptions to these
properties: Pancake supports the abnormal termination of loops, i.e., the termination
of a loop due to exceptions, break, and return. This requires us to tweak (3), such that
the invariant only needs to be re-established when there was no abnormal termination
in this iteration. It also requires us to amend to (2), linking the abnormal termination
of the loop body to the abnormal termination of the whole loop. This is done by
adding sub-postconditions, implying special cases of the postcondition. In addition
to (1), we have to take into account that Pancake expressions do not necessarily
evaluate in any state, adding the requirement that the invariant implies that the
guard can be evaluated.

For the variant, we do not introduce requirements in the while refinement rule,
as the requirement to a variant is already introduced in the satisfication relation
defined in Definition 3.7. As is_variant i v p is defined on Pancake programs p,
this only can be resolved within the refinement of a WhileC to a PanC discussed in
Section 3.4.5.

We continue by introducing two abbreviations used in the while refinement rule:

Definition 3.9 (Precondition and Postcondition for While Loop Bodies). We define
the following shorthand notations where evaluates_to_true e s is fulfilled iff the
expression e evaluates to true from state s and QB, QR, and QE are the sub-
postconditions for termination due to break, return and exceptions.

⊢ while_body_pre i e = (λ s. i s ∧ evaluates_to_true e s)
⊢ while_body_post i QB QR QE =

(λ (r,t).
case r of
NONE ⇒ i t

| SOME Error ⇒ i t
| SOME TimeOut ⇒ i t
| SOME Break ⇒ QB t
| SOME Continue ⇒ i t
| SOME (Return v) ⇒ QR (t,v)
| SOME (Exception eid e) ⇒ QE (t,eid,e))

Formalizing the requirements stated above, we introduce the following refinement
rule, providing only a rough proof sketch:

26 3. CbC Calculus for Pancake

Theorem 3.9 (Refinement Rule: While e p). Let the predicates evaluates_to_word
and evaluates_to_false be fulfilled iff an expression evaluates to a word or to false
in a given state. In this case, it holds that

clkfree_p P ∧ clkfree_q Q ∧ clkfree_p i ∧ (∀ s. P s ⇒ i s) ∧
(∀ s. i s ⇒ evaluates_to_word e s) ∧
(∀ s. i s ∧ evaluates_to_false e s ⇒ Q (NONE,s)) ∧
(∀ t. QB t ⇒ Q (NONE,t)) ∧
(∀ t v. QR (t,v) ⇒ Q (SOME (Return v),t)) ∧
(∀ t eid v. QE (t,eid,v) ⇒ Q (SOME (Exception eid v),t)) ⇒
refine (HoareC P Q)

(WhileC e i v
(HoareC (while_body_pre i e)

(while_body_post i QB QR QE)))

Proof Sketch. After applying Definitions 3.3, 3.7, and 3.8, and the abbreviations
above, we have to prove that

∀ s. P s ⇒
∃ k. (λ (r,t).

r ̸= SOME Error ∧ r ̸= SOME TimeOut ∧ Q (r,t))
(evaluate (While e p,s with clock := k))

holds as a consequence of the given assumptions in the goal’s antecedent. In the
remainder of this proof, we will refer to these assumptions by their index in the goal
above.

We continue by replacing P s with i s in the antecedent, justified by the fourth
assumption, and commence a inductive proof using the variant v as a measure to
induct on. This allows us to input the definition of evaluate which is shown in
Figure 2.5 in the relevant excerpts.

To simplify the goal, we use the fifth assumption as well as Theorem 2.5 to reduce
the case expression to its second case.

The remaining goal now contains two branches, one per evaluation result of the
guard. To solve the terminating case, i.e., the guard evaluating to false, we use the
sixth assumption and specify the required clock value as s.clock. We continue with
the case in which the guard does not cause termination.

We now may use the assumption obtained by the right-hand-side of the refinement
rule, as while_body_pre i e s is now fulfilled by excluding the guard evaluating
to false, yielding while_body_post i QB QR QE s as a new assumption.

We distinguish two cases on how to construct the required clock value: (1) The
loop continuing after the current iteration, i.e., the body evaluating to NONE or
SOME Continue, or causing an Error or a TimeOut, and (2) the loop abnormally
terminating, i.e., the body evaluating to any other result.

For (1), we use the clock-freeness of i from the third assumption to show that the
invariant also holds for the clock value k necessary to evaluate the loop body. Applying
the definition and the clock-freeness of the variant, guaranteed by is_variant in
the satisfication relation, we obtain v t < v s where t is the program state after
evaluating the loop body.

3.4. Refinement Rules 27

This allows us to use the induction hypothesis introduced earlier, yielding that there
is a clock value such that the recursive evaluation of the loop following after the
body will terminate, starting with an initial clock value k ′.

By applying Theorem 2.7 to both the loop body and the recursive evaluation of
the loop, yielding minimal clock values k ′′ and k ′3′, we use Theorem 2.6 to show
that the loop body will also terminate from the clock value k ′′ + k ′3′. By providing
k ′′ + k ′3′ + 1 as clock value for the existential quantifier in the goal, we solve this
first case.

For (2), it suffices to provide k + 1 as clock value for the existential quantifier
in the goal, solving the second case with respect to the seventh, eighth, and ninth
assumption. ♢

3.4.4 Other Top-Down Refinement Rules

The remaining top-down refinement rules we use in Chapter 4 are presented in the
theorems below. Their proofs follow the structure of the proof for Theorem 3.8 and
are therefore omitted for brevity.

Refinement Rules: Dec v sh src prog

For the variable declaration Dec, we provide two refinement rules: both require
the newly declared variable to use a fresh variable name, which is without loss of
generality but simplifies their application. The first rule targets variable declarations
from expressions with known value, usually constants, while the second rule targets
variable declarations from memory loads.

In the theorems below, the predicates varfree_p and varfree_q ensure that the
precondition and postcondition do not contain the variable to be declared, as the
assumption ¬MEM v (var_exp ad) ensures that the expression for the memory
address does not contain the variable as well. The predicates evaluates_to and
evaluates_shape ensure that an expression evaluates to the given value or to a
value of the given shape. The predicates var_eq_val and var_eq_mem ensure that
the provided variable has the given value or the value at the given point in memory.

Theorem 3.10 (Refinement Rule: Dec v One src prog with known value of src).

⊢ clkfree_p P ∧ clkfree_q Q ∧ varfree_p v P ∧ varfree_q v Q ∧
(∀ s. P s ⇒ evaluates_to src val s) ⇒
refine (HoareC P Q)

(DecC v sh src
(HoareC (λ s. P s ∧ var_eq_val Local v val s) Q))

Theorem 3.11 (Refinement Rule: Dec v sh (Load sh ad) prog).

⊢ clkfree_p P ∧ clkfree_q Q ∧ varfree_p v P ∧ varfree_q v Q ∧
(∀ s. P s ⇒ evaluates_shape (Load sh ad) sh s) ∧
¬MEM v (var_exp ad) ⇒
refine (HoareC P Q)

(DecC v sh (Load sh ad)
(HoareC (λ s. P s ∧ var_eq_mem Local v ad sh s) Q))

28 3. CbC Calculus for Pancake

Refinement Rule: Assign k v src

For variable assignments to local and global variables, i.e., both k = Local and
k = Global, we provide one refinement rule.

In the theorem below, the predicate valid_value ensures that the value to be
assigned is of the same shape as the existing value of the variable. The predicate
operator subst is defined as follows:

Definition 3.10 (Variable Substitution). A variable is substituted in a predicate to
the value of an expression, if this expression evaluates and a state updated with this
value fulfills the predicate.

⊢ subst k v e P s ⇐⇒
∃ value.
eval s e = SOME value ∧
case k of
Local ⇒ P (s with locals := s.locals |+ (v,value))

| Global ⇒
P (s with globals := s.globals |+ (v,value))

Theorem 3.12 (Refinement Rule: Assign k v src).

⊢ clkfree_p P ∧ clkfree_q Q ∧
(∀ s. P s ⇒

valid_value k v src s ∧
subst k v src (λ s. Q (NONE,s)) s) ⇒

refine (HoareC P Q) (PanC (Assign k v src))

Refinement Rule: If e p1 p2

For the conditional, we provide one refinement rule.

In the theorem below, the predicates evaluates_to_word, evaluates_to_true, and
evaluates_to_false ensure that an expression can be interpreted as a boolean value,
evaluates to true, or evaluates to false.

Theorem 3.13 (Refinement Rule: If e p1 p2).

⊢ clkfree_p P ∧ clkfree_q Q ∧
(∀ s. P s ⇒ evaluates_to_word e s) ⇒
refine (HoareC P Q)

(IfC e (HoareC (λ s. P s ∧ evaluates_to_true e s) Q)

(HoareC (λ s. P s ∧ evaluates_to_false e s) Q))

Refinement Rule: Return r

For the return statement, we provide one refinement rule.

In the theorem below, the predicate evaluates_to e val s ensures that the pro-
vided expression evaluates to a value val . size_of_shape (shape_of val) ≤ 32
requires this value to have a maximum size of 32 words. The operator empty_locals
empties the local values in a program state.

3.4. Refinement Rules 29

Theorem 3.14 (Refinement Rule: Return r).

⊢ clkfree_p P ∧ clkfree_q Q ∧
(∀ s. P s ⇒

∃ val.
evaluates_to e val s ∧
size_of_shape (shape_of val) ≤ 32 ∧
Q (SOME (Return val),empty_locals s)) ⇒

refine (HoareC P Q) (PanC (Return e))

3.4.5 Bottom-Up Refinement Rules

The refinement rules presented in the preceding sections each introduce new contracts,
either composite contracts like SeqC and WhileC or program contracts PanC. After
applying these refinement rules, the developer ultimately reaches the refinement into
a contract which does not allow any further refinement but is also not a program
contract PanC. To achieve a program contract as the final result of our refinement
process, we are required to add bottom-up rules that allow the refinement of composite
contracts to program contracts.

In general, these rules are trivial as the following example shows:

Theorem 3.15 (Bottom-Up Refinement Rule: Seq p1 p2).

⊢ refine (SeqC (PanC l) (PanC r)) (PanC (Seq l r))

Proof Sketch. Apply Definitions 3.7 and 3.8. ♢

For WhileC, the satisfication relation requires us to prove the variant within this
refinement as proven in the following theorem:

Theorem 3.16 (Bottom-Up Refinement Rule: While e p).

⊢ is_variant i v p ⇒
refine (WhileC e i v (PanC p)) (PanC (While e p))

Proof Sketch. Apply Definitions 3.7 and 3.8. ♢

30 3. CbC Calculus for Pancake

4. Case Study: Linear Search

In this chapter, we demonstrate the feasibility of our CbC calculus for Pancake
by providing a refinement proof for an implementation of linear search, using the
refinement rules we introduce in Section 3.4. The resulting Pancake program of
this chapter is structured as the program shown in Figure 2.3, while making two
adaptions: (1) we model the function inputs as constants and (2) we require that
the sought-after item appears in the provided array.

The remainder of this chapter is structured as follows: in Section 4.1, we develop
a formal specification for linear search, which we refine into a Pancake program
in Section 4.2. In Section 4.3, we discuss our current progress towards automatic
step-wise refinement proofs in HOL4 as well as challenges arising with larger case
studies.

As in the preceding chapters, we omit the detailled proofs, as they are developed in
HOL4.

4.1 Specification

To formalize the functionality of an implementation of linear search in Pancake, we
need to inspect both the properties of the algorithm itself as well as the properties
of the language’s semantics which require us to introduce additional conditions.

Properties of the Algorithm

Beginning with the properties of the algorithm, we specify the functionality of any
search algorithm: Our implementation of linear search shall receive an array, i.e., a
base address and an array length, and a word to search for in this array. We require
that this word appears in the array. The implementation shall return a memory
address within the array, at which there is an occurrence of the provided word. To
formalize these properties, we intoduce two abbreviations, where (<+) and (≤+)

are unsigned comparison operators:

Definition 4.1 (Appearance of Words in Arrays).

⊢ appears x b l =

(λ s. ∃ addr. b ≤+ addr ∧ addr <+ b + l ∧ s.memory addr = x)

32 4. Case Study: Linear Search

Definition 4.2 (Memory Equality).

⊢ mem_eq x addr = (λ s. s.memory addr = x)

Using these definitions, we can set the following terms as conjuncts within our
precondition and postcondition:

P1 = (λ s. appears (Word x) b l s)
Q1 =

(λ (r,t).
∃ ret.

r = SOME (Return (ValWord ret)) ∧ b ≤+ ret ∧
ret <+ b + l ∧ mem_eq (Word x) ret t)

As an example for relevant side conditions of searching, we additionally introduce
the requirement that the search algorithm leaves the memory unchanged, yielding
the following additional conjuncts:

P2 = (λ s. s.memory = the_mem)

Q2 = (λ (r,t). t.memory = the_mem)

Properties of the Language’s Semantics

As shown in Figure 2.4, the Pancake semantics models memory as a function from
α word to α word_lab, where α word_lab is an algebraic data type which used
to contain a word or a function label in earlier versions of Pancake. Since function
labels were removed in April 20251, α word_lab may only contain words, effectively
making the memory model a function from α word to α word.

⊢ eval s (Load shape addr) =
case eval s addr of

NONE ⇒ NONE

| SOME (ValWord w) ⇒ mem_load shape w s .memaddrs s .memory
| SOME (Struct v5) ⇒ NONE

⊢ mem_load sh addr dm m =
case sh of

One ⇒ if addr ∈ dm then SOME (Val (m addr)) else NONE

| Comb shapes ⇒
case mem_loads shapes addr dm m of

NONE ⇒ NONE

| SOME vs ⇒ SOME (Struct vs)

Figure 4.1: Pancake Semantics: Evaluation of Memory Loads

Inspecting the semantic’s definition of memory loads shown in Figure 4.1, we deduct
another requirement to be added: mem_load One, which we use to fetch items from
the array, checks if the provided address is member of the domain s.memaddrs. Thus,
we have to ensure that this is the case for all items in our array.

Additionally, as we do arithmetic on fixed-width words, we have to ensure that our
array specification consisting of base address and array length is sound, i.e., that
there is no overflow between base address and the last item of the array.

1Commit 5712647 of the Git repository at https://github.com/CakeML/cakeml

https://github.com/CakeML/cakeml

4.2. Refinement Proof 33

As both properties characterize an array as an accessible and contiguous part of the
memory, we summarize them in the following abbreviation:

Definition 4.3 (Array in Memory).

⊢ array_in_mem b l =

(λ s.
b <+ b + l ∧
∀ addr. b ≤+ addr ∧ addr <+ b + l ⇒ s.memaddrs addr)

Using this as a last conjunct for our precondition, we define the specification for the
remainder of this chapter as

HoareC

(λ s.
appears (Word x) b l s ∧ s.memory = the_mem ∧
array_in_mem b l s)

(λ (r,t).
t.memory = the_mem ∧
∃ ret.

r = SOME (Return (ValWord ret)) ∧ b ≤+ ret ∧
ret <+ b + l ∧ mem_eq (Word x) ret t),

additionally initializing α word as word64 to simplify some later proof steps.

4.2 Refinement Proof

We begin the refinement proof in top-down direction by closely following the example
shown in Figure 2.3. After finishing the top-down direction in Step 8, we continue
with the bottom-up direction, mostly using transitivity (Theorem 2.1), monotonicity
(Theorem 3.6), and bottom-up refinement rules.

To visualize the process, we present the refinement steps as a graphs in Figures 4.2
to 4.7. An edge between two contract edges c1 and c2 represents refine c1 c2.

Step 1: Initialize Counter

We decide to begin with a variable declaration, initializing a counter variable as zero.
This can be done by applying the declaration refinement rule for known values shown
in Theorem 3.10. This refinement step is shown in Figure 4.2.

To fulfill the proof goal

refine (HoareC P Q)

(DecC v One (Const 0w)

(HoareC (λ s. P s ∧ var_eq_val Local v (ValWord 0w) s)
Q)),

we have to prove the side conditions

clkfree_p P ∧ clkfree_q Q ∧ varfree_p v P ∧ varfree_q v Q ∧
∀ s. P s ⇒ evaluates_to (Const 0w) (ValWord 0w) s,

i.e., the clock-freeness and variable-freeness of precondition and postcondition, and
that the precondition implies the evaluation of Const 0w to ValWord 0w.

These goals can be solved by applying Definitions 3.2 and 4.1 to 4.3, as well as the
definitions of varfree_p and varfree_q. For brevity, we will refer to the precondition
of the resulting subcontract as

P ′ = (λ s. P s ∧ var_eq_val Local v (ValWord 0w) s).

34 4. Case Study: Linear Search

HoareC P Q

DecC v One (Const 0w) (HoareC P ′ Q)

DecC v One (Const 0w)
(PanC

(While e
(Dec v2 One (Load One ad)

(Seq (If e ′ (Return ad) Skip)
(Assign Local v vpp)))))

PanC

(Dec v One (Const 0w)
(While e

(Dec v2 One (Load One ad)
(Seq (If e ′ (Return ad) Skip)

(Assign Local v vpp)))))

Step 1 using Theorem 3.10

Step 13 using Theorem 3.6
and Step 12

Step 13 using
DecC Bootom-Up Rule

Step 13 using
Theorem 2.1

Figure 4.2: Case Study: Refinement Steps 1 and 13

Step 2: While Loop

We continue by introducing the while loop. This can be done by applying the
while refinement rule shown in Theorem 3.9, choosing the guard e, the invariant i ,
the variant var ensuring the termination, and the partial postconditions QB , QR,
and QE , each implying the postcondition Q for a fixed result Break, Return, or
Exception:

e = Cmp Lower (Var Local v) (Const l)
i =

(λ s.
array_in_mem b l s ∧ s.memory = the_mem ∧
∃w. var_eq_val Local v (ValWord w) s ∧ w <+ l ∧

appears (Word x) (b + w) (l − w) s)
var =

(λ s.
if FLOOKUP s.locals v ̸= NONE then w2n (l − var_word v s)
else 0)

QB = (λ s. F)

QR =

(λ (s,r).
∃ ret.

r = ValWord ret ∧ b ≤+ ret ∧ ret <+ b + l ∧
array_in_mem b l s ∧ s.memory = the_mem ∧
s.memory ret = Word x)

QE = (λ (s,eid,e). F),

4.2. Refinement Proof 35

HoareC P ′ Q

WhileC e i var (HoareC P ′′ Q ′)

WhileC e i var
(PanC

(Dec v2 One (Load One ad)
(Seq (If e ′ (Return ad) Skip)

(Assign Local v vpp))))

PanC

(While e
(Dec v2 One (Load One ad)

(Seq (If e ′ (Return ad) Skip)
(Assign Local v vpp))))

Step 2 using Theorem 3.9

Step 12 using Theorem 3.6
and Step 11

Step 12 using
WhileC Bootom-Up Rule

Step 12 using
Theorem 2.1

Figure 4.3: Case Study: Refinement Steps 2 and 12

where w2n is the word-to-number conversion and var_word gets the word-value of a
variable. This refinement step is shown in Figure 4.3.

Using these abbreviations, we want to prove that

refine (HoareC P ′ Q)

(WhileC e i var
(HoareC (while_body_pre i e)

(while_body_post i QB QR QE))),

by applying the while refinement rule and proving the side conditions

clkfree_p P ′ ∧ clkfree_p i ∧ clkfree_q Q ∧
(∀ t. QB t ⇒ Q (NONE,t)) ∧
(∀ t v. QR (t,v) ⇒ Q (SOME (Return v),t)) ∧
(∀ t eid v. QE (t,eid,v) ⇒ Q (SOME (Exception eid v),t)) ∧
(∀ s. P ′ s ⇒ i s) ∧ (∀ s. i s ⇒ evaluates_to_word e s) ∧
∀ s. i s ∧ evaluates_to_false e s ⇒ Q (NONE,s),

i.e., the clock-freeness of precondition, invariant, and postcondition, the implication
between partial postconditions and postcondition, the necessary properties of the
invariant.

These goals can be solved by applying Definitions 3.2, 3.9, and 4.1 to 4.3, as well
as the definitions of the predicates evaluates_to_word, evaluates_to_true, and
evaluates_to_false.

For brevity, we refer to the precondition and postcondition of this subcontract as

P ′′ = while_body_pre i e
Q ′ = while_body_post i QB QR QE .

36 4. Case Study: Linear Search

Step 3: Load Word from Memory

HoareC P ′′ Q ′

DecC v2 One (Load One ad)
(HoareC P ′3′ Q ′)

DecC v2 One (Load One ad)
(PanC

(Seq (If e ′ (Return ad) Skip)
(Assign Local v vpp)))

PanC

(Dec v2 One (Load One ad)
(Seq (If e ′ (Return ad) Skip)

(Assign Local v vpp)))

Step 3 using Theorem 3.11

Step 11 using Theorem 3.6
and Step 10

Step 11 using
DecC Bottom-Up Rule

Step 11 using
Theorem 2.1

Figure 4.4: Case Study: Refinement Steps 3 and 11

We commence the loop body by loading a word from the position in the array
indicated by the counter variable v . Assuming that we want to load this word to a
fresh variable, this can be achieved using the declaration assignment rule for memory
loads shown in Theorem 3.11. This refinement step is shown in Figure 4.4.

Abbreviating the load address as ad = Op Add [Const b; Var Local v], we want
to prove that

v ̸= v2 ⇒
refine (HoareC P ′′ Q ′)
(DecC v2 One (Load One ad)

(HoareC (λ s. P ′′ s ∧ var_eq_mem Local v2 ad One s) Q ′))

by applying the refinement rule and proving the side conditions

clkfree_p P ′′ ∧ clkfree_q Q ′ ∧ ¬MEM v2 (var_exp ad) ∧
varfree_p v2 P ′′ ∧ varfree_q v2 Q ′ ∧
∀ s. P ′′ s ⇒ evaluates_shape (Load One ad) One s,

i.e., the clock-freeness and variable-freeness of the precondition and postcondition,
that v2 does not appear in ad , and that the precondition implies Load One ad
evaluating to the shape One.

This can be done by applying Definitions 3.2, 3.9, and 4.1 to 4.3, as well as the
definitions of varfree_p, varfree_q, evaluates_to_true, evaluates_shape, and
var_exp.

We again abbreviate the precondition of this subcontract as

P ′3′ = (λ s. P ′′ s ∧ var_eq_mem Local v2 ad One s).

4.2. Refinement Proof 37

Step 4: Sequence for Loop Body

HoareC P ′3′ Q ′

SeqC (HoareC P ′3′ Q ′′) (HoareC M Q ′)

SeqC (PanC (If e ′ (Return ad) Skip))
(HoareC M Q ′)

SeqC (PanC (If e ′ (Return ad) Skip))
(PanC (Assign Local v vpp))

PanC

(Seq (If e ′ (Return ad) Skip)
(Assign Local v vpp))

Step 4 using Theorem 3.8

Step 10 using Theorem 3.6
and Step 9

Step 10 using Theorem 3.6
and Step 8

Step 10 using Theorem 3.15

Step 10 using
Theorem 2.1

Figure 4.5: Case Study: Refinement Steps 4 and 10

We want to structure the remainder of the loop body as a sequence: We first want
to check if the fetched word is the sought-after word, possibly returning the address,
and then we possibly want to increment the counter variable. Therefore, we need to
apply a sequence refinement rule that allows the termination in both sub-programs,
i.e., the rule introduced in Theorem 3.8. This refinement step is shown in Figure 4.5.

Introducing an intermediate condition

M =

(λ s.
P ′3′ s ∧ ¬var_eq_val Local v2 (ValWord x) s ∧
∃w. var_eq_val Local v (ValWord w) s ∧ w + 1w <+ l),

we want to prove that

v ̸= v2 ⇒
refine (HoareC P ′3′ Q ′)
(SeqC

(HoareC P ′3′

(λ (r,t). if r ̸= NONE then Q ′ (r,t) else M t))
(HoareC M Q ′))

by applying the refinement rule and proving the side conditions

clkfree_p M ∧ clkfree_p P ′3′ ∧ clkfree_q Q ′.

38 4. Case Study: Linear Search

This can be done by applying Definitions 3.2, 3.9, and 4.1 to 4.3, as well as the
definitions of var_eq_val, var_eq_mem, and evaluates_to_true.

We abbreviate the postcondition of the first subcontract as

Q ′′ = (λ (r,t). if r ̸= NONE then Q ′ (r,t) else M t).

Step 5: Conditional on Memory Value

HoareC P ′3′ Q ′′

IfC e ′ (HoareC P ′4′ Q ′′)
(HoareC P ′5′ Q ′′)

IfC e ′ (PanC (Return ad))
(HoareC P ′5′ Q ′′)

IfC e ′ (PanC (Return ad)) (PanC Skip)

PanC (If e ′ (Return ad) Skip)

Step 5 using Theorem 3.13

Step 9 using Theorem 3.6
and Step 6

Step 9 using Theorem 3.6
and Step 7

Step 9 using
IfC Bootom-Up Rule

Step 9 using
Theorem 2.1

Figure 4.6: Case Study: Refinement Steps 5 and 9

For the left-hand side of the sequence, we want to introduce a conditional on the
value of variable v2. Abbreviating e ′ = Cmp Equal (Var Local v2) (Const x),
we use the if refinement rule shown in Theorem 3.13, proving

v ̸= v2 ⇒
refine (HoareC P ′3′ Q ′′)
(IfC e ′

(HoareC (λ s. P ′3′ s ∧ evaluates_to_true e ′ s) Q ′′)
(HoareC (λ s. P ′3′ s ∧ evaluates_to_false e ′ s) Q ′′))

by proving the side conditions

clkfree_p P ′3′ ∧ clkfree_q Q ′′ ∧
∀ s. P ′3′ s ⇒ evaluates_to_word e ′ s,

i.e., the clock-freeness of precondition and postcondition and that the precondition
ensures the evaluation of the guard to a boolean value. This refinement step is shown
in Figure 4.6.

This can be done by applying Definitions 3.2, 3.9, and 4.1 to 4.3, as well as the defini-
tions of var_eq_val, var_eq_mem, evaluates_to_word, and evaluates_to_true.

We abbreviate the preconditions of both branches as

P ′4′ = (λ s. P ′3′ s ∧ evaluates_to_true e ′ s)
P ′5′ = (λ s. P ′3′ s ∧ evaluates_to_false e ′ s).

4.2. Refinement Proof 39

Step 6: Then-Branch

HoareC P ′4′ Q ′′

PanC (Return ad)

HoareC P ′5′ Q ′′

PanC Skip

HoareC M Q ′

PanC (Assign Local v vpp)

Step 6 using
Theorem 3.14

Step 7 using
Theorem 3.7

Step 8 using
Theorem 3.12

Figure 4.7: Case Study: Refinement Steps 6, 7, and 8

For the then-branch of the conditional, we want to return ad , which can be done by
applying the return refinement rule presented in Theorem 3.14. This refinement step
is shown in Figure 4.7. Therefore, we want to prove

v ̸= v2 ⇒ refine (HoareC P ′4′ Q ′′) (PanC (Return ad))

by applying the return refinement rule and proving the side conditions

clkfree_p P ′4′ ∧ clkfree_q Q ′′ ∧
∀ s. P ′4′ s ⇒

∃ val.
evaluates_to ad val s ∧
size_of_shape (shape_of val) ≤ 32 ∧
Q ′′ (SOME (Return val),empty_locals s),

i.e., the clock-freeness of precondition and postcondition, and that the precondition
implies the evaluation of ad to a valid return value.

This can be done by applying Definitions 3.2, 3.9, and 4.1 to 4.3, as well as the defini-
tions of the predicates and operators var_eq_val, var_eq_mem, evaluates_to_true,
evaluates_to, size_of_shape, shape_of, and empty_locals.

Step 7: Else-Branch

For the else-branch of the conditional, we want to apply the skip refinement rule,
as this is the equivalent of a missing else branch. This refinement step is shown in
Figure 4.7. Therefore, we want to prove

v ̸= v2 ⇒ refine (HoareC P ′5′ Q ′′) (PanC Skip)

by applying the skip refinement rule and proving the side conditions

clkfree_p P ′5′ ∧ clkfree_q Q ′′ ∧ ∀ s. P ′5′ s ⇒ Q ′′ (NONE,s),

i.e., the clock-freeness of precondition and postcondition and the implication between
them.

This can be done by applying Definitions 3.2, 3.9, and 4.1 to 4.3, as well as the defini-
tions of var_eq_val, var_eq_mem, evaluates_to_true and evaluates_to_false.

40 4. Case Study: Linear Search

Step 8: Counter Increment

To increment the counter in the right-hand side of the sequence, we apply the
assignment refinement rule shown in Theorem 3.12. This refinement step is shown in
Figure 4.7. Abbreviating

vpp = Op Add [Const 1w; Var Local v],

we want to prove

v ̸= v2 ⇒ refine (HoareC M Q ′) (PanC (Assign Local v vpp))

by applying the assign refinement rule and proving the side conditions

clkfree_p M ∧ clkfree_q Q ′ ∧
∀ s. M s ⇒

valid_value Local v vpp s ∧
subst Local v vpp (λ s. Q ′ (NONE,s)) s,

i.e., the clock-freeness of precondition and postcondition, that the term vpp evaluates
to the same shape as v , and that the state with v substituted fulfills the postcondition.

This can be done by applying Definitions 3.2, 3.9, and 4.1 to 4.3, as well as the
definitions of var_eq_val, var_eq_mem, subst, valid_value, evaluates_to_true
and evaluates_to_false.

This finishes the top-down refinement steps, allowing us to continue with the bottom-
up steps.

Steps 9 to 13: Bottom-Up Steps

The bottom-up steps 9 to 13 are all structured similarly, each incorporating the
application of monotonicity (Theorem 3.6), transitivity (Theorem 2.1), and bottom-
up refinement rules. For brevity, we only describe Step 12, i.e., the bottom-up step
for the while loop. This refinement step is particularly interesting, as it contains the
termination proof of the loop. The Steps 9 to 11 and 13 can be traced by inspecting
Figures 4.2 to 4.7, in which the bottom-up refinement steps are each visualized with
their corresponding top-down refinement steps.

Beginning with the proof of Step 12, we know from Step 11 that

v ̸= v2 ⇒
refine (HoareC P ′′ Q ′)
(PanC

(Dec v2 One (Load One ad)
(Seq (If e ′ (Return ad) Skip) (Assign Local v vpp)))).

By applying Theorem 3.6, it holds that

v ̸= v2 ⇒
refine (WhileC e i var (HoareC P ′′ Q ′))
(WhileC e i var

(PanC

(Dec v2 One (Load One ad)
(Seq (If e ′ (Return ad) Skip)

(Assign Local v vpp))))).

4.3. Automating Refinement Proofs 41

To apply the bottom-up refinement rule for while loops shown in Theorem 3.16, we
have to show that

v ̸= v2 ⇒
is_variant i var
(Dec v2 One (Load One ad)

(Seq (If e ′ (Return ad) Skip) (Assign Local v vpp)))

holds. This can be done by applying Definition 3.6, followed by the application of the
definition of evaluate shown in Appendix C and multiple goal-oriented case splits.

Applying the bottom-up refinement rule for while loops yields

v ̸= v2 ⇒
refine

(WhileC e i var
(PanC

(Dec v2 One (Load One ad)
(Seq (If e ′ (Return ad) Skip)

(Assign Local v vpp)))))
(PanC

(While e
(Dec v2 One (Load One ad)

(Seq (If e ′ (Return ad) Skip)

(Assign Local v vpp))))),

and by transitivity (Theorem 2.1), it holds that

v ̸= v2 ⇒
refine (WhileC e i var (HoareC P ′′ Q ′))
(PanC

(While e
(Dec v2 One (Load One ad)

(Seq (If e ′ (Return ad) Skip)

(Assign Local v vpp))))).

Using Step 2 and transitivity (Theorem 2.1) yields

v ̸= v2 ⇒
refine (HoareC P ′ Q)

(PanC

(While e
(Dec v2 One (Load One ad)

(Seq (If e ′ (Return ad) Skip)

(Assign Local v vpp))))).

4.3 Automating Refinement Proofs

As it is visible in Section 4.2, the single refinement steps share a common proof
structure. We use this property to provide users of our calculus with a HOL4 tactic
which is able to solve most of the proof goals arising in a refinement proof. In this
section, we describe the general proof scheme encapsuled in this tactic, focussing on
top-down refinement steps in Section 4.3.1 and on bottom-up refinement steps in
Section 4.3.2. In both sections, we discuss the limitations of our proof tactic and
provide suggestions for improvements. The HOL4 implementations of our tactics
can be found in Section D.5.

42 4. Case Study: Linear Search

4.3.1 Top-Down Refinement Steps

For top-down refinement steps, i.e., refinement steps introducing new constracts from
HoareC contracts, we provide a parameterized proof tactic which takes a refinement
rule and a set of theorems as arguments. The proof tactic consists of two major steps:
(1) matching the provided refinement rule with the proof goal and (2) proving the
side conditions by the application of definitions and theorems from our calculus, as
well as the ones provided for the tactic application. To explain the process in detail,
we use Step 6 of the preceding case study as a running example for this subsection.

For rule matching (1), we ensure a successful match of a refinement rule by requiring
the user to provide suitable abbreviations, if a precondition P or a postcondition Q
appears as a subterm on both sides of a refinement. This can be done using tactics
from HOL4’s bossLib, e.g., qabbrev_tac, which abbreviates a term occurring in the
proof goal if it matches the provided pattern. As in our example

refine (HoareC P ′4′ Q ′′) (PanC (Return ad))

does not contain a condition on both sides of the refinement, no abbreviation is
needed.

Once the goal matches the refinement rule, one may use irule to match the right-
hand side of the refinement rule with the goal and to replace it with the side conditions

clkfree_p P ′4′ ∧ clkfree_q Q ′′ ∧
∀ s. P ′4′ s ⇒

∃ val.
evaluates_to ad val s ∧
size_of_shape (shape_of val) ≤ 32 ∧
Q ′′ (SOME (Return val),empty_locals s),

After this step, the remaining goal is unabbreviated to allow proving the side
conditions.

For subgoal proving (2), we provide the set of relevant definitions and theorems of
our calculus as a HOL4 simpset, which is combined with the user-supplied theorems.
The resulting set is applied to the side conditions using repeated use of rw_tac until
the goal remains unchanged. In our example, this yields the goal depicted below and
two clock-freeness goals.

0. v <> v2

[...]

10. (case

OPTION_BIND (OPTION_BIND (FLOOKUP s.locals v)

(\ h. SOME [h])) (\ t. SOME (ValWord b::t))

of

[...]) = SOME (ValWord addr’)

11. s.memaddrs addr’

12. FLOOKUP s.locals v2 = SOME (Val (s.memory addr’))

13. (case FLOOKUP s.locals v2 of

[...]) = SOME (ValWord w’’)

14. w’’ <> 0w

b <=+ addr’ /\ addr’ <+ b + l /\ s.memory addr’ = Word x

4.3. Automating Refinement Proofs 43

Next, we try to instantiate possibly occurring existential subgoals as the goal above
by using HINT_EXISTS_TAC, which matches existential quantifiers with terms from
the assumptions. In our example, there is quantifier to instantiate.

The goals remaining after this step often contain terms allowing case splits, e.g., the
assumptions 10 and 13 in the example above, most of them leading to contradictions.
Therefore, we continue with repeated applications of every_case_tac, splitting
these terms and producing multiple subgoals, each followed by an application our
refinement simpset, until the goal is unchanged. In our example, this yields

0. v <> v2

1. b <+ b + l

2. !addr. b <=+ addr / addr <+ b + l ==> s.memaddrs addr

3. FLOOKUP s.locals v = SOME (ValWord w)

4. w <+ l

5. b + w <=+ addr

6. addr <+ b + l

[...]

b <=+ b + w /\ b + w <+ b + l

After this step, the subgoals occurring for our case study can be distinguished in three
groups: (1) goals of first-order logic, where an assumption has not been matched
with the goal, (2) clock-freeness goals, and (3) goals of word arithmetic.

The goals of type (1) can be solved by matching universally quantified assumptions
with the goal. In our example, there is no goal of this type.

The goals of type (2) are clock-freeness goals of conditions, which could not be shown
to be a composition of other clockfree conditions using theorems from Section D.1.
In this case, it is sufficient to apply Definition 3.2 and theorem 2.5 with the simplifier
gvs. In our example, this is necessary for both P ′4′ and Q ′′.

The goals of type (3) which mostly arise from word arithmetic inequalities, e.g., the
goal provided in the example above, generally could be solved by strategic application
of theorems from HOL4’s wordsTheory. In the course of this thesis, we were not
able to provide an automated strategy based on wordsTheory which is sufficient for
all goals arising in our case study. Instead, we decided to use HOL4’s blastLib to
solve the goals for a given word size, i.e., by converting the proof goal to propositions
about a word’s bits and solving them using a SAT solver.

For our case study, blastLib was able to solve these goals, but took up to 20 seconds
for subgoals with a large number of assumptions. To improve the usability of our
automated proof tactic, we additionally implemented an amended version of our
tactic, in which we replaced blastLib with a call to the SMT solver Z3 [MB08] using
z3o_tac from HOL4’s HolSmtLib. This usually allows us to decrease the completion
time to less than a second by giving up end-to-end correctness, as the conversions
within z3o_tac are not verified. We ruled out to use the verified z3_tac, as the
included verification of Z3 proof scripts is even slower than using blastLib.

Developers using our automated proof tactic might choose between HolSmtLib and
blastLib, considerating the required execution time and reliability,

44 4. Case Study: Linear Search

4.3.2 Bottom-Up Refinement Steps

For bottom-up refinement steps, we can distinguish three cases, as our case study
in Section 4.2 shows: (1) steps by transitivity, i.e., using Theorem 2.1, (2) steps by
monotonicity, i.e., using Theorem 3.6, and (3) steps by bottom-up refinement rules.

Both (1) and (2) are trivially proven by initializing both Theorem 2.1 and Theorem 3.6
with the results from other refinement steps. For (3) in all cases except the bottom-
up rule for while loops, it is sufficient to apply the refinement rule, e.g., using a
built-in simplifier like gvs. For while loops, the application of the refinement rule
(Theorem 3.16) is not sufficient, as it requires proving the variant.

For examples smaller than our case study, we were able to show that applying our
tactic from Section 4.3.1, i.e., repeated application of definitions and theorems, each
followed by case splits, is sufficient. For our case study, the body of the loop contains
a large number of cases, causing the repeated case splits to combinatorically explode.
To still complete the proofs for our case study within decent time, we manually
choose goal-directed case splits which allow a quick termination.

Limited by the completion time of this thesis, we are not able to provide an automated
approach solving this issue. For future work, we see two possible approaches for a
solution: (1) selecting case splits more carefully than using every_case_tac, e.g.,
with an outside-in approach, or (2) mitigating the issue completely by integrating
the variant into the sub-contract of a WhileC, simplifying the bottom-up rule, but
possibly requiring larger adaptions in the remainder of the calculus.

5. Related Work

In this chapter, we discuss existing research with relevance to the topic of this
thesis. As the work on CbC and refinement-based programming as well as Pancake
is discussed in detail in Chapter 2, we focus on two research areas close to our
contribution: (1) the formalization of refinement concepts like CbC using theorem
provers, and (2) the verification of systems software, including verified microkernels
and verification tools for systems programming languages.

Refinement Concepts in Theorem Provers

Back and Wright formalize Back’s refinement calculus in HOL88, a precursor of HOL4
[BW90]. Using the GCL statements’ WP as formal semantics of the programming
language, they define a refinement relation between two programs as the implication
between their WPs, allowing them to prove program-to-program refinement rules. In
contrast to our contribution, they do not discuss refinements between specifications
and programs.

Von Wright et al. extend the preceding contribution by formalizing additional refine-
ment concepts, e.g., the refinement between data structures [Von+93]. Additionally,
they rephrase the calculus as a calculus of predicate transformers, enabling the
refinement of a specification to a program. In their conclusion, they state that a
better user interface than HOL is necessary to allow the use of their implementation
on larger programs.

Based on the contributions above, Butler and L̊angbacka provide a graphical user in-
terface to provide support for refinement proofs [BL96]. This interface is implemented
as an extension to the HOL window library TkWinHOL, adding refinement-specific
features. It especially allows the user to perform sub-derivations, i.e., using the
monotonicity of program construction, by selecting sub-terms with the mouse.

More recently, Alpuim and Swierstra implement the refinement calculus as described
by Morgan in the theorem prover Coq [AS18]. As the contributions above, they
implement the refinement relation as a relation on predicate transformers but add
a special value SPEC as a program, indicating a specification. This resembles
Morgan’s terminology discussed in Section 2.1.1 and is similar to our approach with

46 5. Related Work

our contracts being equivalent to Alpuim’s and Swierstra’s programs who provide
predicates on programs to destinguish between specifications and programs in our
sense.

Verification of Systems Software

For the verification of systems software, we discuss two kinds of existing work: (1)
contributions towards verified kernels and operating systems, and (2) verification
techniques and tools for systems programming languages. All discussed contributions
focus on post-hoc verification techniques, in contrast to our implementation of an a
priori approach.

Klein provides an overview about the state of the art in verified kernels and operating
systems in 2009 [Kle09]. As the first steps towards a verified operation system,
Klein lists the developments of UCLA Secure Data Unix [WKP80], the Provable
Secure Operating System (PSOS) [FN79], and the Kernel for Isolated Tasks (KIT)
[Bev89]. For both UCLA Secure Data Unix and PSOS, the correctness proofs were
not finished, making KIT the first verified kernel, with its features limited to task
isolation, asynchronous I/O, exception handling, and single-word message passing.

For the more recent approaches on scaling kernel verification, Klein names the seL4
and L4.verified projects which focus on a new implementation of the L4 microkernel
and its verification, resulting in the later seL4 [Kle+14]. After the completion of
the kernel correctness proofs in 2009, there have been multiple contributions proving
properties of seL4, including the correctness of its machine code and the security
properties of integrity and confidentiality. The kernel seL4 and especially its driver
framework, sDDF 1, are closely related to our contribution, as Pancake is targeted
to be used in sDDF for driver development and used as the target programming
language of our CbC calculus.

For verification tools for systems programming languages, Klein lists the Verisoft
project which implements an end-to-end post-hoc verification approach from applica-
tion to gate level [Alk+08], strongly focussing on verification of the different compiler
steps. It targets systems programs written in the C-subsets C0 and C0A and uses
verified compilation to machine code for the VAMP microprocessor.

A larger subset of C is supported by the post-hoc verification tool VCC which was
implemented in the successor project of Verisoft [Coh+09]. It performs correctness
proofs for concurrent C programs by transpiling them and their specifications into
the intermediate language Boogie, followed by a call to the Boogie program verifier.
This verifier calls the SMT solver Z3 which we use within this thesis for automatic
refinement proofs.

Besides tools for C, the most notable verification tool is Verus, a post-hoc verification
tool for Rust [Lat+23]. As VCC, Verus is based on a SMT solver but strongly relies
on the properties of Rust’s typesystem, i.e., linear types and borrow checking.

1https://trustworthy.systems/projects/drivers/

https://trustworthy.systems/projects/drivers/

6. Conclusion

Operating systems and drivers are prevalent in safety-critical environments and
can thus profit from formal verification. Current verification approaches for low-
level software are limited to post-hoc techniques, leaving potential for improvement
through an a priori, refinement-based approach.

In this thesis, we introduced a CbC calculus for a subset of the systems programming
language Pancake. Our calculus allows the a priori correct implementation of
Pancake programs, using correctness-preserving refinement steps from Hoare-style
specifications into Pancake programs. It supports a Turing-complete subset of the
programming language, consisting of 15 statement types which we introduce in
Section 2.2. For these 15 statement types, we provided 22 top-down refinement
rules, listed in Section D.4, each dealing with the introduction of a statement type,
possibly distinguishing multiple cases in the WP of the statement type. Additionally,
we provided four bottom-up refinement rules for the compositional statement types
which can be used to transform compositional contracts requiring programs into
program.

To demonstrate the feasibility of our approach, we provided a case study in Chapter 4
in which we implemented linear search in Pancake using our calculus. To allow
developers without detailled knowledge of HOL4 to use our calculus, we implemented
an automated proof tactic which is able to solve most proof goals occurring in our
case study, with the relevant limitation of while loop variant proofs.

Future Work

For future work on CbC for systems programming, we plan to investigate the following
leads: Initially, we plan to extend our CbC calculus to the remaining statement
types of Pancake, i.e., adding shared memory and function calls. The former requires
new user-facing syntax for preconditions and postconditions which allows the simple
specification of interactions with Pancake’s foreign function interface. The latter
requires reasoning about the termination of recursion which might be approached as
while loops, i.e., using variants.

Secondly, we intend to restructure the inclusion of while loops in our calculus, as
the current solution of postponing the termination proof introduces problems for the

48 6. Conclusion

automated proof of refinement steps. Therefore, our goal is to integrate the loop
variant into the Hoare contract for the loop body, but the implications of this change
on the remainder of the calculus should be studied carefully.

Thirdly, we plan to continue the work towards an automated proof tactic which
is able to deal with all real-world refinement steps, especially with proving loop
variants which might also be mitigated by solving the issue above. To demonstrate
the feasibility of the automated proof tactic, it is necessary to provide multiple larger
case studies which use all statement types and a multitude of specification styles.
Additionally, it would be particularly interesting to enhance automated proofs for
word-arithmetic goals, possibly removing Z3 from our dependencies.

At last, we aim to integrate our approach into more user-friendly CbC tool support,
e.g., into the CorC [Bor+23] successor, which is currently under development. Using
an enhanced automated proof tactic, it might be possible to add a new backend to
the existing software which creates HOL4 proof scripts from user-provided top-down
refinement applications and automatically selected bottom-up rules applications.

Bibliography

[Alk+08] Eyad Alkassar et al. “The Verisoft Approach to Systems Verification”.
In: Verified Software: Theories, Tools, Experiments. Ed. by Natarajan
Shankar and Jim Woodcock. Berlin, Heidelberg: Springer, 2008, pp. 209–
224. isbn: 978-3-540-87873-5. doi: 10.1007/978-3-540-87873-5 18.

[AS18] João Alpuim and Wouter Swierstra. “Embedding the refinement calculus
in Coq”. In: Science of Computer Programming. Special issue of selected
papers from FLOPS 2016 164 (Oct. 15, 2018), pp. 37–48. issn: 0167-6423.
doi: 10.1016/j.scico.2017.04.003.

[Bac81] R. J. R. Back. “On correct refinement of programs”. In: Journal of
Computer and System Sciences 23.1 (Aug. 1, 1981), pp. 49–68. issn:
0022-0000. doi: 10.1016/0022-0000(81)90005-2.

[Bac88] R. J. R. Back. “A calculus of refinements for program derivations”. In:
Acta Informatica 25.6 (Aug. 1, 1988), pp. 593–624. issn: 1432-0525. doi:
10.1007/BF00291051.

[Bev89] W.R. Bevier. “Kit: a study in operating system verification”. In: IEEE
Transactions on Software Engineering 15.11 (Nov. 1989), pp. 1382–1396.
issn: 1939-3520. doi: 10.1109/32.41331.

[BL96] Michael Butler and Thomas L̊angbacka. “Program derivation using the
refinement calculator”. In: Theorem Proving in Higher Order Logics. Ed.
by Gerhard Goos et al. Berlin, Heidelberg: Springer, 1996, pp. 93–108.
isbn: 978-3-540-70641-0. doi: 10.1007/BFb0105399.

[Bor+23] Tabea Bordis et al. “Correctness-by-Construction: An Overview of the
CorC Ecosystem”. In: Ada Lett. 42.2 (Apr. 5, 2023), pp. 75–78. issn:
1094-3641. doi: 10.1145/3591335.3591343.

[BW90] R. J. R. Back and J. von Wright. “Refinement concepts formalised in
higher order logic”. In: Form. Asp. Comput. 2.1 (Mar. 1, 1990), pp. 247–
272. issn: 0934-5043. doi: 10.1007/BF01888227.

[Car+98] D. Carrington et al. “A Program Refinement Tool”. In: Formal Aspects
of Computing 10.2 (Nov. 1998). Publisher: Association for Computing
Machinery (ACM), pp. 97–124. issn: 0934-5043, 1433-299X. doi: 10.
1007/s001650050006.

[Coh+09] Ernie Cohen et al. “VCC: A Practical System for Verifying Concurrent
C”. In: Theorem Proving in Higher Order Logics. Ed. by Stefan Berghofer
et al. Berlin, Heidelberg: Springer, 2009, pp. 23–42. isbn: 978-3-642-
03359-9. doi: 10.1007/978-3-642-03359-9 2.

https://doi.org/10.1007/978-3-540-87873-5_18
https://doi.org/10.1016/j.scico.2017.04.003
https://doi.org/10.1016/0022-0000(81)90005-2
https://doi.org/10.1007/BF00291051
https://doi.org/10.1109/32.41331
https://doi.org/10.1007/BFb0105399
https://doi.org/10.1145/3591335.3591343
https://doi.org/10.1007/BF01888227
https://doi.org/10.1007/s001650050006
https://doi.org/10.1007/s001650050006
https://doi.org/10.1007/978-3-642-03359-9_2

50 Bibliography

[Dij68] Edsger W. Dijkstra. “A constructive approach to the problem of program
correctness”. In: BIT Numerical Mathematics 8.3 (Sept. 1, 1968), pp. 174–
186. issn: 1572-9125. doi: 10.1007/BF01933419.

[Dij75] Edsger W. Dijkstra. “Guarded commands, nondeterminacy and formal
derivation of programs”. In: Commun. ACM 18.8 (Aug. 1, 1975), pp. 453–
457. issn: 0001-0782. doi: 10.1145/360933.360975.

[FN79] Richard J. Feiertag and Peter G. Neumann. “The foundations of a prov-
ably secure operating system (PSOS)”. In: 1979 International Workshop
on Managing Requirements Knowledge (MARK). 1979 International
Workshop on Managing Requirements Knowledge (MARK). ISSN: 2164-
0149. June 1979, pp. 329–334. doi: 10.1109/MARK.1979.8817256.

[II15] International Organization for Standardization and International Elec-
trotechnical Commission. ISO/IEC 2382:2015 - Information technology.
Version 2015. Geneva, Switzerland, May 2015.

[Int10] International Electrotechnical Commission. IEC 61508:2010 - Functional
safety of electrical/electronic/programmable electronic safety-related sys-
tems. Version 2010. Geneva, Switzerland, Apr. 2010.

[Kle+14] Gerwin Klein et al. “Comprehensive formal verification of an OS micro-
kernel”. In: ACM Transactions on Computer Systems 32.1 (Feb. 2014),
pp. 1–70. issn: 0734-2071, 1557-7333. doi: 10.1145/2560537.

[Kle09] Gerwin Klein. “Operating system verification—An overview”. In: Sad-
hana 34.1 (Feb. 1, 2009), pp. 27–69. issn: 0973-7677. doi: 10.1007/
s12046-009-0002-4.

[Kum+14] Ramana Kumar et al. “CakeML: a verified implementation of ML”. In:
SIGPLAN Not. 49.1 (Jan. 8, 2014), pp. 179–191. issn: 0362-1340. doi:
10.1145/2578855.2535841.

[KW12] Derrick G. Kourie and Bruce W.Watson. The Correctness-by-Construction
Approach to Programming. Berlin, Heidelberg: Springer, 2012. isbn: 978-
3-642-27918-8 978-3-642-27919-5. doi: 10.1007/978-3-642-27919-5.

[Lat+23] Andrea Lattuada et al. “Verus: Verifying Rust Programs using Linear
Ghost Types”. In: Software Artifact (virtual machine, pre-built distribu-
tions) for ”Verus: Verifying Rust Programs using Linear Ghost Types” 7
(OOPSLA1 Apr. 6, 2023), 85:286–85:315. doi: 10.1145/3586037.

[MB08] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”.
In: Tools and Algorithms for the Construction and Analysis of Sys-
tems. Ed. by C. R. Ramakrishnan and Jakob Rehof. Berlin, Heidelberg:
Springer, 2008, pp. 337–340. isbn: 978-3-540-78800-3. doi: 10.1007/978-
3-540-78800-3 24.

[Mor94] Carroll Morgan. Programming from specifications (2nd ed.) GBR: Pren-
tice Hall International (UK) Ltd., Aug. 1994. 332 pp. isbn: 978-0-13-
123274-7.

[Owe+16] Scott Owens et al. “Functional Big-Step Semantics”. In: Proceedings of
the 25th European Symposium on Programming Languages and Systems -
Volume 9632. Berlin, Heidelberg: Springer-Verlag, Apr. 2, 2016, pp. 589–
615. isbn: 978-3-662-49497-4. doi: 10.1007/978-3-662-49498-1 23.

https://doi.org/10.1007/BF01933419
https://doi.org/10.1145/360933.360975
https://doi.org/10.1109/MARK.1979.8817256
https://doi.org/10.1145/2560537
https://doi.org/10.1007/s12046-009-0002-4
https://doi.org/10.1007/s12046-009-0002-4
https://doi.org/10.1145/2578855.2535841
https://doi.org/10.1007/978-3-642-27919-5
https://doi.org/10.1145/3586037
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-49498-1_23

Bibliography 51

[Poh+23] Johannes Åman Pohjola et al. “Pancake: Verified Systems Programming
Made Sweeter”. In: Proceedings of the 12th Workshop on Programming
Languages and Operating Systems. PLOS ’23. New York, NY, USA:
Association for Computing Machinery, Oct. 23, 2023, pp. 1–9. isbn:
979-8-4007-0404-8. doi: 10.1145/3623759.3624544.

[Run+19] Tobias Runge et al. “Tool Support for Correctness-by-Construction”. In:
Fundamental Approaches to Software Engineering. Ed. by Reiner Hähnle
and Wil van der Aalst. Cham: Springer International Publishing, 2019,
pp. 25–42. isbn: 978-3-030-16722-6. doi: 10.1007/978-3-030-16722-6 2.

[SN08] Konrad Slind and Michael Norrish. “A Brief Overview of HOL4”. In:
Theorem Proving in Higher Order Logics. Ed. by Otmane Ait Mohamed,
César Muñoz, and Sofiène Tahar. Berlin, Heidelberg: Springer, 2008,
pp. 28–32. isbn: 978-3-540-71067-7. doi: 10.1007/978-3-540-71067-7 6.

[Von+93] J. Von Wright et al. “Mechanizing some advanced refinement concepts”.
In: Formal Methods in System Design 3.1 (Aug. 1, 1993), pp. 49–81.
issn: 1572-8102. doi: 10.1007/BF01383984.

[WKP80] Bruce J. Walker, Richard A. Kemmerer, and Gerald J. Popek. “Speci-
fication and verification of the UCLA Unix security kernel”. In: Com-
mun. ACM 23.2 (Feb. 1, 1980), pp. 118–131. issn: 0001-0782. doi:
10.1145/358818.358825.

https://doi.org/10.1145/3623759.3624544
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/BF01383984
https://doi.org/10.1145/358818.358825

52 Bibliography

A. HOL4 Proof Example

To demonstrate proofs in HOL4, we prove that the factorial of all natural numbers
n ≥ 2 is even, i.e., in HOL4 notation:

!n. n >= 2 ==> EVEN (fact n)

The definition of fact is given in Figure 2.7.

We begin the proof by applying the induction tactic Induct, yielding two subgoals,
a basis subgoal for n = 0 and the induction step. Multiple subgoals are treated as a
stack in HOL with the first subgoal being the one displayed at the bottom.

0. n >= 2 ==> EVEN (fact n)

SUC n >= 2 ==> EVEN (fact (SUC n))

0 >= 2 ==> EVEN (fact 0)

The second of these goals, the one at the top, is a goal with an assumption, i.e., a
temporary theorem that holds in the context of this subgoal which can be used to
prove it.

For both subgoals, we continue with rewriting with the definition of the factorial,
using one of the builtin simplification tactics, rw. The basic subgoal is solved as
the antecedent of the implication is false. For the induction step, we receive a new
subgoal.

0. n >= 2 ==> EVEN (fact n)

1. SUC n >= 2

EVEN (SUC n * fact n)

To allow the use of the assumption 0, we make a case split on n >= 2, yielding two
subgoals.

54 A. HOL4 Proof Example

0. n >= 2 ==> EVEN (fact n)

1. SUC n >= 2

2. ~(n >= 2)

EVEN (SUC n * fact n)

0. n >= 2 ==> EVEN (fact n)

1. SUC n >= 2

2. n >= 2

EVEN (SUC n * fact n)

We now leave the first subgoal unchanged by applying ALL_TAC while suggesting
that n = 1 for the second subgoal by applying ‘n = 1‘ by gvs[], where gvs is a
builtin simplification tactic. This yields two new subgoals.

0. n >= 2 ==> EVEN (fact n)

1. SUC n >= 2

2. ~(n >= 2)

3. n = 1

EVEN (SUC n * fact n)

0. n >= 2 ==> EVEN (fact n)

1. SUC n >= 2

2. n >= 2

EVEN (SUC n * fact n)

For both subgoals, we apply the theorem EVEN_MULT:

⊢ EVEN (m × n) ⇐⇒ EVEN m ∨ EVEN n

More precisely, we continue by matching the right-to-left implication’s consequent
with our goal and by replacing the goal by this implication’s antecedent. Therefore,
we use iffRL to get the implication and use irule for matching and replacing,
yielding two new subgoals.

0. n >= 2 ==> EVEN (fact n)

1. SUC n >= 2

2. n >= 2

EVEN (SUC n) \/ EVEN (fact n)

0. n >= 2 ==> EVEN (fact n)

1. SUC n >= 2

2. ~(n >= 2)

3. n = 1

EVEN (SUC n) \/ EVEN (fact n)

55

Finally, both goals are solved by applying the simplification tactic gvs. For the first
goal, it concludes that SUC 1 is 2, which is even, which solves the goal. For the
second goal, it matches assumption 2 with the antecedent in assumption 0. The
assumption’s consequent solves the goal.

Combining these steps with the tacticals >> and >|, also called THEN and THENL,
yields the proof shown in Figure 2.8. The tactical >> sequences tactics, applying
them to all current subgoals. The tactical >| sequences tactics as well but takes a
list of tactics as the second argument, containing one tactic per subgoal.

56 A. HOL4 Proof Example

B. CbC for GCL in HOL4

In this chapter, we prove the correctness of the existing Correctness-by-Construction
(CbC) calculus for Dijkstra’s Guarded Command Language (GCL) using the in-
teractive theorem prover HOL4. We adapt the calculus presented by Kourie and
Watson [KW12], making the simplification to always select the first the first matchig
guard of a guarded command list, allowing us to define a deterministic evaluation
function. In contrast to Chapter 2, we assume Hoare specifications as specifications
of total correctness, i.e., enforcing the termination of resulting programs. This is
achieved by defining the semantics as a functional big-step semantics [Owe+16] as
discussed for Pancake in Section 2.2.2.

As all proofs within this chapter are developed in HOL4, we omit the detailled proof
scripts, only providing the proved theorems.

To structure this chapter as done for Pancake in Appendix D, we begin by defining the
syntax and semantics of GCL in Section B.1 and extract the WPs of GCL statements
from these definitions in Section B.2. In Section B.3, we continue by defining a
language of contracts and a refinement relation, as well as proving properties of
refinement, and end in Section B.4 with the well-known GCL refinement rules.

B.1 Syntax and Semantics of GCL

We define the syntax of GCL as the following algebraic data type:

Definition B.1 (Syntax of GCL).

Op = Add | Sub | Mul | Div | Eq | Less | LessEq

Expr = Var string | BinOp Expr Op Expr | Const int

Stmt =

Skip

| Assign string Expr

| Seq Stmt Stmt

| If ((Expr × Stmt) list)

| While ((Expr × Stmt) list)

58 B. CbC for GCL in HOL4

As Pohjola et al. do for Pancake [Poh+23], we define the semantics of GCL as
functional big-step semantics [Owe+16], assuming integer-valued variables and deter-
ministic evaluation. Initially, we define program states as the following record data
type:

Definition B.2 (GCL Semantics: Program States).

state = <| vars : string 7→ int; clock : num |>

We continue by defining the evaluation of expressions, evaluating uninitialized vari-
ables to 0, and using 0 and 1 as integer-values for false and true:

Definition B.3 (GCL Semantics: Evaluation of Expressions).

eval (Var v) s
def
= case FLOOKUP s.vars v of NONE ⇒ 0 | SOME c ⇒ c

eval (BinOp e1 Add e2) s
def
= eval e1 s + eval e2 s

eval (BinOp e1 Sub e2) s
def
= eval e1 s − eval e2 s

eval (BinOp e1 Mul e2) s
def
= eval e1 s × eval e2 s

eval (BinOp e1 Div e2) s
def
= eval e1 s / eval e2 s

eval (BinOp e1 Eq e2) s
def
=

if eval e1 s = eval e2 s then 1 else 0
eval (BinOp e1 Less e2) s

def
=

if eval e1 s < eval e2 s then 1 else 0
eval (BinOp e1 LessEq e2) s

def
=

if eval e1 s ≤ eval e2 s then 1 else 0
eval (Const c) s

def
= c

We prove that the evaluation of expressions is clock-independent:

Theorem B.1 (Evaluation of Expressions is Clock-Independent).

⊢ eval e (s with clock := k) = eval e s

For the deterministic selection of guarded commands, we define the following ab-
breviation in which we find the first matching guard, assuming positive integers to
represent true:

Definition B.4 (GCL Semantics: Find First Matching Guard).

find_first [] s
def
= NONE

find_first (h::es) s
def
=

if eval (FST h) s > 0 then SOME h else find_first es s

We prove that finding the first matching guard is clock-independent:

Theorem B.2 (Finding the First Maching Guard is Clock-Independent).

⊢ find_first es (s with clock := k) = find_first es s

For decrementing the clock, we define the following abbreviation:

Definition B.5 (GCL Semantics: Decrementing the Clock).

dec_clock s
def
= s with clock := s.clock − 1

As results for the evaluation of statements, we define the following data type, in
which OK represents normal termination, Abort abnormal termination due to no
matching guard in a selection statement, and TimeOut the termination due to a
timeout ot the clock:

Definition B.6 (GCL Semantics: Evaluation Results).

result = OK | Abort | TimeOut

B.2. Specifications and Weakest Preconditions 59

Using the abbreviations find_first and dec_clock, and the result data type, we
define the evaluation of statements as follows:

Definition B.7 (GCL Semantics: Evaluation of Statements).

evaluate Skip s
def
= (OK,s)

evaluate (Assign v e) s
def
=

(OK,s with vars := s.vars |+ (v,eval e s))
evaluate (Seq p1 p2) s

def
=

(let
(r,t) = evaluate p1 s

in
if r = OK then evaluate p2 t else (r,t))

evaluate (If es) s
def
=

case find_first es s of
NONE ⇒ (Abort,s)

| SOME (e,p1) ⇒ evaluate p1 s
evaluate (While es) s

def
=

case find_first es s of
NONE ⇒ (OK,s)

| SOME (e,p1) ⇒
if s.clock = 0 then (TimeOut,s)
else
(let

(r,t) = evaluate p1 (dec_clock s)
in

if r = OK then evaluate (While es) t else (r,t))

For this inductive definition, we have to provide HOL4 with a termination proof
because the internal termination prover does not succeed. As a termination argument,
we need to provide a well-founded relation R on Stmt × state, i.e., the argument
type of evaluate. We additionally need to show that each argument of the calls of
evaluate are R-related to the arguments of the caused recursive calls. This can be
done by providing the relation

inv_image (measure I LEX measure Stmt_size)

(λ (xs,s). (s.clock,xs)),

i.e., a lexicocraphical composition of measure-based relations on the size of the
provided statement and on the state’s clock value, as at least one of both decreases
with every call.

Given the terminating evaluation of a statement from an initial clock value, we prove
that the evaluation terminates in the same resulting state from any greater clock
value, and that the clock increase propages through:

Theorem B.3 (Increasing the Clock when Evaluating Statements).

⊢ evaluate p s = (OK,t) ⇒
evaluate p (s with clock := s.clock + ck) =

(OK,t with clock := t.clock + ck)

B.2 Specifications and Weakest Preconditions

As discussed in Section 3.1, it is advantageous to require the clock-freeness of
preconditions and postconditions in Hoare specifications. Similar to Definition 3.2,
we define:

60 B. CbC for GCL in HOL4

Definition B.8 (Clockfree Conditions).

clkfree P
def
= ∀ s k. P s ⇒ P (s with clock := k)

Based on the evaluation function, we define a Hoare specification as a precondition
and a postcondition in which the precondition establishes both the postcondition
and the termination, i.e., a specification of total correctness.

Definition B.9 (Hoare Specification).

hoare P prog Q
def
=

clkfree P ∧ clkfree Q ∧
∀ s. P s ⇒

∃ k. (let
(r,t) = evaluate prog (s with clock := k)

in
r = OK ∧ Q t)

Similarly, we define the weakest precondition (WP) of a statement:

Definition B.10 (Weakest Precondition).

wp prog Q s
def
=

clkfree Q ∧
∃ k. (let

(r,t) = evaluate prog (s with clock := k)
in

r = OK ∧ Q t)

As done in Theorems 3.2 and D.18, we show that a WP is a clockfree condition and
that a WP has its eponymous properties:

Theorem B.4 (Clock-Freeness of Weakest Precondition).

⊢ clkfree (wp prog Q)

Theorem B.5 (Properties of the Weakest Precondition).

⊢ clkfree P ∧ clkfree Q ⇒
hoare (wp prog Q) prog Q ∧
(hoare P prog Q ⇐⇒ ∀ s. P s ⇒ wp prog Q s)

As it is a useful lemma, we prove that the WP is a monotonic operator.

Theorem B.6 (WP is a Monotonic Operator).

⊢ clkfree A ∧ clkfree B ⇒
(∀ s. A s ⇒ B s) ⇒
∀ s. wp p A s ⇒ wp p B s

Based on these definitions and theorems, we prove the well-known WPs of Skip,
Assign, and Seq.

Theorem B.7 (Weakest Precondition of Skip).

⊢ clkfree Q ⇒ (wp Skip Q s ⇐⇒ Q s)

Theorem B.8 (Weakest Precondition of Assign).

⊢ clkfree Q ⇒
(wp (Assign v e) Q s ⇐⇒
Q (s with vars := s.vars |+ (v,eval e s)))

Theorem B.9 (Weakest Precondition of Seq).

⊢ clkfree Q ⇒ (wp (Seq p1 p2) Q s ⇐⇒ wp p1 (wp p2 Q) s)

B.3. Contracts and Refinement 61

For the selection statement If, the adapted semantics, i.e., deterministically selecting
the first matching guard, causes the WP to be weaker than usual:

Theorem B.10 (Weakest Precondition of If).

⊢ clkfree Q ⇒
(wp (If es) Q s ⇐⇒
∃ e. find_first es s = SOME e ∧ wp (SND e) Q s)

As shown in Theorem 3.5, we cannot provide an expressive notation of the WP of
While, requiring us to prove the corresponding refinement rule independently.

B.3 Contracts and Refinement

We define the language of contracts to be used for refinement as follows:

Definition B.11 (GCL Contracts).

Contract =

HoareC (state → bool) (state → bool)

| SeqC Contract Contract

| IfC ((Expr × Contract) list)

| WhileC (state → bool) (state → num)

((Expr × Contract) list)

| ProgC Stmt

To enforce the termination of loops, we use a loop variant as defined in Definition 3.6.
In HOL4, we define for our calculus:

Definition B.12 (GCL Loop Variant).

is_variant i v es
def
=

EVERY (λ p. ∀ s. i s ⇒ v (SND (evaluate p s)) < v s)
(MAP SND es) ∧ ∀ s k. v s = v (s with clock := k)

Using this definition, we define the satisfication relation between contracts and
statements. For the cases omitted in the following definition, the reader may assume
non-satisfication.

Definition B.13 (Satsification of GCL Contracts).

sat (HoareC P Q) prog
def
= hoare P prog Q

sat (SeqC c1 c2) (Seq p1 p2)
def
= sat c1 p1 ∧ sat c2 p2

sat (IfC ls) (If rs)
def
=

MAP FST ls = MAP FST rs ∧
LIST_REL (λ c p. sat (SND c) (SND p)) ls rs

sat (WhileC i v ls) (While rs)
def
=

MAP FST ls = MAP FST rs ∧ is_variant i v rs ∧
LIST_REL (λ c p. sat (SND c) (SND p)) ls rs

sat (ProgC l) r
def
= l = r

sat (SeqC v6 v7) Skip
def
= F

As done in Definition 3.8, we define refinement as a relation of contracts:

Definition B.14 (Refinement of GCL Contracts).

refine c1 c2
def
= ∀ p. sat c2 p ⇒ sat c1 p

The refinement relation is reflexive and transitive, as proven in Theorem 2.1. Addi-
tionally, the composition of contracts is monotonic with respect to the refinement
relation:

62 B. CbC for GCL in HOL4

Theorem B.11 (Monotonicity of GCL Contract Composition).

⊢ (∀ a b c.
refine a b ⇒
refine (SeqC a c) (SeqC b c) ∧
refine (SeqC c a) (SeqC c b)) ∧

(∀ a b es e n.
refine a b ∧ n < LENGTH es ∧ EL n es = (e,a) ⇒
refine (IfC es) (IfC (LUPDATE (e,b) n es))) ∧

∀ a b es e n i v.
refine a b ∧ n < LENGTH es ∧ EL n es = (e,a) ⇒
refine (WhileC i v es)
(WhileC i v (LUPDATE (e,b) n es))

B.4 Refinement Rules

We continue by proving the correctness of the well-known CbC refinement rules
for GCL as presented by Kourie and Watson [KW12]. In addition to the top-down
refinement rules they introduce, i.e., rules that introduce new statements from Hoare
specifications, we prove bottom-down refinement rules which allow us to make the
mostly syntactic step from contracts back to statements.

Top-Down Refinement Rules

For the top-down refinement rules, we prove the well-known refinement rules. Each
rule introduces one statement type, requiring the clock-freeness of the involved
conditions and statement-specific side conditions.

For introducing the Skip statement, one needs to show that the precondition implies
the postcondition:

Theorem B.12 (Refinement Rule: Skip).

⊢ clkfree P ∧ clkfree Q ∧ (∀ s. P s ⇒ Q s) ⇒
refine (HoareC P Q) (ProgC Skip)

For introducing the Assign statement, one needs to show that the precondition
implies the postcondition after substituting the new value for the assigned variable:

Theorem B.13 (Refinement Rule: Assign).

⊢ clkfree P ∧ clkfree Q ∧
(∀ s. P s ⇒ Q (s with vars := s.vars |+ (v,eval e s))) ⇒
refine (HoareC P Q) (ProgC (Assign v e))

For introducing the Seq statement, one needs to show the clock-freeness of the
intermediate condition, requiring the sub-statements to establish the intermedi-
ate condition from the precondition, and the postcondition from the intermediate
condition:

Theorem B.14 (Refinement Rule: Seq).

⊢ clkfree P ∧ clkfree M ∧ clkfree Q ⇒
refine (HoareC P Q) (SeqC (HoareC P M) (HoareC M Q))

For introducing the If statement, one needs to show that there is a matching guard,
requiring each sub-statement to establish the postcondition from the precondition and
the guard evaluating to true. This well-known rule establishes stronger conditions as

B.4. Refinement Rules 63

necessary for our adapted semantics, as the weakest precondition would only require
the first matching guard to have a sub-statement establishing the postcondition.
However, for consistency with existing research, we decided to present the well-known
refinement rule.

Theorem B.15 (Refinement Rule: If).

⊢ clkfree P ∧ clkfree Q ∧
(∀ s. P s ⇒ EXISTS (λ e. eval e s > 0) es) ⇒
refine (HoareC P Q)

(IfC

(MAP (λ x. (x,HoareC (λ s. P s ∧ eval x s > 0) Q)) es))

For introducing the While statement, one needs to show the clock-freeness of the
invariant, that the precondition implies the invariant, and the invariant and all
guards evaluating to false implies the postcondition, requiring each sub-statement
to establish the invariant from the invariant and the guard evaluating to true. The
termination of the loop is enforced separately through the corresponding bottom-up
refinement rule.

Theorem B.16 (Refinement Rule: While).

⊢ clkfree P ∧ clkfree Q ∧ clkfree i ∧ (∀ s. P s ⇒ i s) ∧
(∀ s. i s ∧ EVERY (λ e. eval e s ≤ 0) es ⇒ Q s) ⇒
refine (HoareC P Q)

(WhileC i v
(MAP (λ x. (x,HoareC (λ s. i s ∧ eval x s > 0) i)) es))

Bottom-Up Refinement Rules

We end this chapter with the bottom-up refinement rules for the composite contracts
which allow their refinement back into ProgC contracts.

The bottom-up refinement rule for Seq is trivial:

Theorem B.17 (Bottom-Up Refinement Rule: Seq).

⊢ refine (SeqC (ProgC l) (ProgC r)) (ProgC (Seq l r))

For If and While, we introduce the following abbreviation to extract statement
from ProgC contracts. As it is a partial function, it has the arbitrary value ARB as a
possible return value.

Definition B.15 (Getting a Statement from a ProgC).

get_prog cs
def
=

MAP

(λ (e,c).
case c of
HoareC v v1 ⇒ ARB

| SeqC v4 v5 ⇒ ARB

| IfC v8 ⇒ ARB

| WhileC v10 v11 v12 ⇒ ARB

| ProgC p ⇒ (e,p)) cs

From here, the bottom-up refinement rule for If is also trivial:

Theorem B.18 (Bottom-Up Refinement Rule: If).

⊢ EVERY (λ (e,c). ∃ p. c = ProgC p) ec ⇒
refine (IfC ec) (ProgC (If (get_prog ec)))

64 B. CbC for GCL in HOL4

The bottom-up refinement rule for While requires to prove the termination of the
loop through the variant. As discussed in Section 4.3.2, this imposes challenges for
the automatic application of the refinement rule. However, a different design was
not feasible due to the limited completion time of this thesis.

Theorem B.19 (Bottom-Up Refinement Rule: While).

⊢ EVERY (λ (e,c). ∃ p. c = ProgC p) ec ∧
is_variant i v (get_prog ec) ⇒
refine (WhileC i v ec) (ProgC (While (get_prog ec)))

C. The Pancake Semantics

In this thesis, we use a subset of Pancake [Poh+23] presented in Section 2.2.

The semantics of Pancake is formalized as functional big-step semantics [Owe+16].
The record data type representing the program state is shown in Figure 2.4, the
evaluation function and result types for our language subset are shown below. All
definitions occurring below are unchanged from the definitions made in the CakeML
repository1, Git commit 721c4576e.

α result =

Error

| TimeOut

| Break

| Continue

| Return (α v)

| Exception mlstring (α v)

evaluate (Skip,s)
def
= (NONE,s)

evaluate (Dec v shape e prog,s)
def
=

case eval s e of
NONE ⇒ (SOME Error,s)

| SOME value ⇒
(let

(r,t) =

evaluate

(prog,s with locals := s.locals |+ (v,value))
in
(r,
t with

locals := res_var t.locals (v,FLOOKUP s.locals v)))

1https://github.com/CakeML/cakeml

https://github.com/CakeML/cakeml

66 C. The Pancake Semantics

evaluate (Assign Local v src,s)
def
=

case eval s src of
NONE ⇒ (SOME Error,s)

| SOME value ⇒
if is_valid_value s.locals v value then
(NONE,s with locals := s.locals |+ (v,value))

else (SOME Error,s)
evaluate (Assign Global v src,s)

def
=

case eval s src of
NONE ⇒ (SOME Error,s)

| SOME value ⇒
if is_valid_value s.globals v value then
(NONE,s with globals := s.globals |+ (v,value))

else (SOME Error,s)
evaluate (Store dst src,s)

def
=

case (eval s dst,eval s src) of
(NONE,v3) ⇒ (SOME Error,s)

| (SOME (Val v8),NONE) ⇒ (SOME Error,s)
| (SOME (ValWord addr),SOME value) ⇒
(case

mem_stores addr (flatten value) s.memaddrs s.memory
of
NONE ⇒ (SOME Error,s)

| SOME m ⇒ (NONE,s with memory := m))

| (SOME (Struct v9),v3) ⇒ (SOME Error,s)
evaluate (Store32 dst src,s)

def
=

case (eval s dst,eval s src) of
(NONE,v3) ⇒ (SOME Error,s)

| (SOME (Val v8),NONE) ⇒ (SOME Error,s)
| (SOME (ValWord adr),SOME (ValWord w)) ⇒
(case

mem_store_32 s.memory s.memaddrs s.be adr (w2w w)
of
NONE ⇒ (SOME Error,s)

| SOME m ⇒ (NONE,s with memory := m))

| (SOME (Val v8),SOME (Struct v15)) ⇒ (SOME Error,s)
| (SOME (Struct v9),v3) ⇒ (SOME Error,s)

evaluate (StoreByte dst src,s)
def
=

case (eval s dst,eval s src) of
(NONE,v3) ⇒ (SOME Error,s)

| (SOME (Val v8),NONE) ⇒ (SOME Error,s)
| (SOME (ValWord adr),SOME (ValWord w)) ⇒
(case

mem_store_byte s.memory s.memaddrs s.be adr (w2w w)
of
NONE ⇒ (SOME Error,s)

| SOME m ⇒ (NONE,s with memory := m))

| (SOME (Val v8),SOME (Struct v15)) ⇒ (SOME Error,s)
| (SOME (Struct v9),v3) ⇒ (SOME Error,s)

67

evaluate (Seq c1 c2,s)
def
=

(let
(r,s1) = evaluate (c1,s)

in
if r = NONE then evaluate (c2,s1) else (r,s1))

evaluate (If e c1 c2,s)
def
=

case eval s e of
NONE ⇒ (SOME Error,s)

| SOME (ValWord w) ⇒
evaluate (if w ̸= 0w then c1 else c2,s)

| SOME (Struct v5) ⇒ (SOME Error,s)
evaluate (Break,s)

def
= (SOME Break,s)

evaluate (Continue,s)
def
= (SOME Continue,s)

evaluate (While e c,s)
def
=

case eval s e of
NONE ⇒ (SOME Error,s)

| SOME (ValWord w) ⇒
if w ̸= 0w then

if s.clock = 0 then (SOME TimeOut,empty_locals s)
else
(let

(r,s1) = evaluate (c,dec_clock s)
in

case r of
NONE ⇒ evaluate (While e c,s1)

| SOME Error ⇒ (r,s1)
| SOME TimeOut ⇒ (r,s1)
| SOME Break ⇒ (NONE,s1)
| SOME Continue ⇒ evaluate (While e c,s1)
| SOME (Return v5) ⇒ (r,s1)
| SOME (Exception v6 v7) ⇒ (r,s1))

else (NONE,s)
| SOME (Struct v9) ⇒ (SOME Error,s)

evaluate (Return e,s)
def
=

case eval s e of
NONE ⇒ (SOME Error,s)

| SOME value ⇒
if size_of_shape (shape_of value) ≤ 32 then
(SOME (Return value),empty_locals s)

else (SOME Error,s)
evaluate (Raise eid e,s)

def
=

case (FLOOKUP s.eshapes eid,eval s e) of
(NONE,v3) ⇒ (SOME Error,s)

| (SOME sh,NONE) ⇒ (SOME Error,s)
| (SOME sh,SOME value) ⇒

if
shape_of value = sh ∧
size_of_shape (shape_of value) ≤ 32

then
(SOME (Exception eid value),empty_locals s)

else (SOME Error,s)
evaluate (Annot v0 v1,s)

def
= (NONE,s)

68 C. The Pancake Semantics

D. CbC for Pancake in HOL4

In this chapter, we list the HOL4 definitions and theorems for our CbC calculus for
Pancake. In Section D.1, we begin by defining the clock-freeness und variable-freeness
of conditions, as well as composition rules for clockfree conditions. We continue by
defining conditions on program states, as well as condition operators in Section D.2.
In Section D.3, we define Hoare specifications and WPs for Pancake, followed by
the theorems specifying the WP for the single Pancake statements. In Section D.4,
we define contracts, their satisfication, and their refinement, and provide theorems
specifying the refinement rules of our CbC calculus. Finally, we provide the HOL4
implementations of our automated refinement proof tactics in Section D.5.

As all proofs within this chapter are developed in HOL4, we omit the detailled proof
scripts, only providing the proven theorems.

D.1 Clock-Freeness and Variable-Freeness

In this section, we provide the definitions of clock-freeness and variable-freeness of
conditions. As our case study in Chapter 4 shows, clock-freeness proofs are common
when applying our calculus. Thus, we aim to reduce the proof load by providing
theorems about the compositionality of clockfree conditions.

Definitions

We define clock-freeness and variable-freeness as follows:

Definition D.1 (Clock-Freeness of Preconditions).

clkfree_p P
def
=

∀ s k1 k2.
P (s with clock := k1) ⇐⇒ P (s with clock := k2)

Definition D.2 (Clock-Freeness of Postconditions).

clkfree_q Q
def
=

∀ r s k1 k2.
Q (r,s with clock := k1) ⇐⇒ Q (r,s with clock := k2)

70 D. CbC for Pancake in HOL4

Definition D.3 (Variable-Freeness of Preconditions).

varfree_p v P
def
=

∀ s val.
P s ⇒
P (s with locals := s.locals |+ (v,val)) ∧
P (s with locals := s.locals \\ v)

Definition D.4 (Variable-Freeness of Postconditions).

varfree_q v Q
def
=

∀ r t val.
Q (r,t) ⇒
Q (r,t with locals := t.locals |+ (v,val)) ∧
Q (r,t with locals := t.locals \\ v)

Theorems about Compositionality

For the compositionality of clockfree conditions, we begin by proving the trivial base
cases, i.e., the clock-freeness of λ s. T, λ s. F, and postconditions which only have
requirements on the result type.

Theorem D.1 (Clock-Freeness of Preconditions: Base Cases).

⊢ clkfree_p (λ s. T) ∧ clkfree_p (λ s. F)

Theorem D.2 (Clock-Freeness of Postconditions: Base Cases).

⊢ clkfree_q (λ s. T) ∧ clkfree_q (λ s. F) ∧
∀R. clkfree_q (λ (r,t). R r)

We continue by showing that clock-freeness is compositional with the boolean opera-
tors for conjunction (∧) and disjunction (∨):

Theorem D.3 (Clock-Freeness of Preconditions: Conjunctions).

⊢ clkfree_p P ∧ clkfree_p R ⇒ clkfree_p (λ s. P s ∧ R s)

Theorem D.4 (Clock-Freeness of Preconditions: Disjunctions).

⊢ clkfree_p P ∧ clkfree_p R ⇒ clkfree_p (λ s. P s ∨ R s)

Theorem D.5 (Clock-Freeness of Postconditions: Conjunctions).

⊢ clkfree_q Q ∧ clkfree_q R ⇒
clkfree_q (λ (r,t). Q (r,t) ∧ R (r,t))

Theorem D.6 (Clock-Freeness of Postconditions: Disjunctions).

⊢ clkfree_q Q ∧ clkfree_q R ⇒
clkfree_q (λ (r,t). Q (r,t) ∨ R (r,t))

Additionally, we show that clock-freeness is a monotonic operator:

Theorem D.7 (Clock-Freeness of Preconditions: Monotonicity).

⊢ (∀ s. P s ⇐⇒ P ′ s) ⇒ (clkfree_p P ⇐⇒ clkfree_p P ′)

Theorem D.8 (Clock-Freeness of Postconditions: Monotonicity).

⊢ (∀ r. Q r ⇐⇒ Q ′ r) ⇒ (clkfree_q Q ⇐⇒ clkfree_q Q ′)

Finally, we prove some selected composition rules that are necessary to deal with the
conditions occurring in our refinement rules:

D.2. Conditions and Operators 71

Theorem D.9 (Clock-Freeness: Postconditions from Preconditions).

⊢ clkfree_p P ⇒
clkfree_q (λ (r,t). P t) ∧
∀R. clkfree_q (λ (r,t). R r ∧ P t)

Theorem D.10 (Clock-Freeness: Preconditions from Postconditions).

⊢ clkfree_q Q ⇒ clkfree_p (λ s. Q (r,s))

Theorem D.11 (Clock-Freeness: Postconditions with Result Requirement).

⊢ clkfree_q Q ⇒ clkfree_q (λ (r,t). r ̸= r ′ ∧ Q (r,t))

Theorem D.12 (Clock-Freeness: Postconditions with Result Cases).

⊢ clkfree_q Q ∧ clkfree_p M ⇒
clkfree_q (λ (r,t). if r ̸= r ′ then Q (r,t) else M t)

In combination with the clock-freeness of the conditions from the following section,
these theorems can be used to prove the clock-freeness of most conditions arising
when using our calculus.

D.2 Conditions and Operators

To improve the readability of our refinement rules and to simplify the refinement
proofs, we introduce a set of conditions and condition operators, each paired with
its clock-freeness theorem. For these clock-freeness theorems, we provide one initial
example, as the remaining theorems are structured similarly. Where it is useful, we
provide additional theorems about the conditions.

Initially, we prove a monotonicity theorem for constructing postconditions from
preconditions:

Theorem D.13 (Monotonicity of Postconditions from Preconditions).

⊢ (∀ s. A s ⇒ B s) ⇒
∀ s. (λ (r,t). r = r ′ ∧ A t) s ⇒ (λ (r,t). r = r ′ ∧ B t) s

Conditions: Evaluation of Expressions

We begin by defining conditions about the evaluation of expressions, including the
requirement of evaluation to a given shape or value, to a word, to a true value, and
to a false value. For the latter two, we prove a law of excluded middle (LEM) and
the contradiction between both.

Definition D.5 (Condition: evaluates).

evaluates e s
def
= ∃ v. eval s e = SOME v

Theorem D.14 (Clock-Freeness: evaluates).

⊢ clkfree_p (λ s. evaluates e s) ∧ clkfree_p (evaluates e)

Definition D.6 (Condition: evaluates_shape).

evaluates_shape e sh s
def
=

∃ v. eval s e = SOME v ∧ shape_of v = sh

Definition D.7 (Condition: evaluates_to).

evaluates_to e v s
def
= eval s e = SOME v

Definition D.8 (Condition: evaluates_word).

evaluates_to_word e s
def
= ∃w. eval s e = SOME (ValWord w)

72 D. CbC for Pancake in HOL4

Definition D.9 (Condition: evaluates_to_true).

evaluates_to_true e s
def
=

∃w. eval s e = SOME (ValWord w) ∧ w ̸= 0w

Definition D.10 (Condition: evaluates_to_false).

evaluates_to_false e s
def
=

∃w. eval s e = SOME (ValWord w) ∧ w = 0w

Theorem D.15 (Boolean Conditions: LEM).

⊢ evaluates_to_word e s ⇒
evaluates_to_true e s ∨ evaluates_to_false e s

Theorem D.16 (Boolean Conditions: Contradictions).

⊢ (evaluates_to_true e s ⇒ ¬evaluates_to_false e s) ∧
(evaluates_to_false e s ⇒ ¬evaluates_to_true e s)

Conditions and Operators: Variables

We continue with the definition of conditions about the value of variables, including
variables being equal to constant values and values on the heap. Furthermore, we
define a condition and a condition operator for variable substitution.

Definition D.11 (Condition: var_eq_val_def).

var_eq_val k v val s
def
=

case k of
Local ⇒ FLOOKUP s.locals v = SOME val

| Global ⇒ FLOOKUP s.globals v = SOME val

Definition D.12 (Condition: var_eq_mem_def).

var_eq_mem k v ad sh s
def
=

∃ addr value.
eval s ad = SOME (ValWord addr) ∧
mem_load sh addr s.memaddrs s.memory = SOME value ∧
case k of
Local ⇒ FLOOKUP s.locals v = SOME value

| Global ⇒ FLOOKUP s.globals v = SOME value

Definition D.13 (Condition: valid_value_def).

valid_value k v e s
def
=

∃ value.
eval s e = SOME value ∧
case k of
Local ⇒ is_valid_value s.locals v value

| Global ⇒ is_valid_value s.globals v value

Definition D.14 (Condition Operator: subst_def).

subst k v e P s
def
=

∃ value.
eval s e = SOME value ∧
case k of
Local ⇒ P (s with locals := s.locals |+ (v,value))

| Global ⇒ P (s with globals := s.globals |+ (v,value))

D.3. Specifications and Weakest Preconditions 73

Conditions: Exception Shapes

Next, we define a condition requiring the existence of a given exception shape:

Definition D.15 (Condition: has_eshape_def).

has_eshape eid sh s
def
= FLOOKUP s.eshapes eid = SOME sh

Conditions and Operators: Heap

Finally, we define conditions and condition operators about the heap, including
conditions for the existence of addresses on the heap and condition operators for
memory substitutions:

Definition D.16 (Condition: addr_in_mem_def).

addr_in_mem a v s
def
=

∃m. mem_stores a (flatten v) s.memaddrs s.memory = SOME m

Definition D.17 (Condition Operator: mem_subst_def).

mem_subst a v P s
def
=

∃m. mem_stores a (flatten v) s.memaddrs s.memory = SOME m ∧
P (s with memory := m)

Definition D.18 (Condition: addr_in_mem_32_def).

addr_in_mem_32 a v s
def
=

∃m. mem_store_32 s.memory s.memaddrs s.be a (w2w v) =

SOME m

Definition D.19 (Condition Operator: mem_subst_32_def).

mem_subst_32 a v P s
def
=

∃m. mem_store_32 s.memory s.memaddrs s.be a (w2w v) =

SOME m ∧ P (s with memory := m)

Definition D.20 (Condition: addr_in_mem_byte_def).

addr_in_mem_byte a v s
def
=

∃m. mem_store_byte s.memory s.memaddrs s.be a (w2w v) =

SOME m

Definition D.21 (Condition Operator: mem_subst_byte_def).

mem_subst_byte a v P s
def
=

∃m. mem_store_byte s.memory s.memaddrs s.be a (w2w v) =

SOME m ∧ P (s with memory := m)

D.3 Specifications and Weakest Preconditions

To formalize the starting point for our calculus, we define Hoare specifications. Addi-
tionally, we prove WPs of Pancake statements as a helpful intermediate representation
of the language’s semantics.

Definitions and Properties

We begin by defining Hoare specifications and WPs and by proving useful lemmas
about their properties:

74 D. CbC for Pancake in HOL4

Definition D.22 (Hoare Specification).

hoare P prog Q
def
=

clkfree_p P ∧ clkfree_q Q ∧
∀ s. P s ⇒

∃ k. (let
(r,t) = evaluate (prog,s with clock := k)

in
r ̸= SOME Error ∧ r ̸= SOME TimeOut ∧ Q (r,t))

Theorem D.17 (Hoare Specification: Monotonicity in the Precondition).

⊢ (∀ s. P s ⇐⇒ P ′ s) ⇒ (hoare P prog Q ⇐⇒ hoare P ′ prog Q)

Definition D.23 (Weakest Precondition (WP)).

wp prog Q s
def
=

clkfree_q Q ∧
∃ k. (let

(r,t) = evaluate (prog,s with clock := k)
in

r ̸= SOME Error ∧ r ̸= SOME TimeOut ∧ Q (r,t))

Theorem D.18 (WP: Clock-Freeness).

⊢ clkfree_p (wp prog Q)

Theorem D.19 (WP: Compositionality with (∧)).
⊢ clkfree_q A ∧ clkfree_q B ⇒

∀ s. wp p (λ (r,t). A (r,t) ∧ B (r,t)) s ⇐⇒
wp p A s ∧ wp p B s

Theorem D.20 (WP: Compositionality with (∨)).
⊢ clkfree_q A ∧ clkfree_q B ⇒

∀ s. wp p (λ (r,t). A (r,t) ∨ B (r,t)) s ⇐⇒
wp p A s ∨ wp p B s

Theorem D.21 (WP: Monotonicity).

⊢ clkfree_q A ∧ clkfree_q B ⇒
(∀ s. A s ⇒ B s) ⇒
∀ s. wp prog A s ⇒ wp prog B s

Theorem D.22 (WP: Compositionality with Result Cases).

⊢ clkfree_q Q ∧ clkfree_p M ⇒
∀ s. wp p (λ (r,t). if r ̸= r ′ then Q (r,t) else M t) s ⇐⇒

wp p (λ (r,t). r ̸= r ′ ∧ Q (r,t)) s ∨
wp p (λ (r,t). r = r ′ ∧ M t) s

WPs of Pancake Statements

Using the preceding definitions, we prove the WPs of Pancake statements:

Theorem D.23 (WP: Skip).

⊢ clkfree_q Q ⇒ (wp Skip Q s ⇐⇒ Q (NONE,s))

Theorem D.24 (WP: Dec).

⊢ clkfree_q Q ⇒
(wp (Dec v sh src prog) Q s ⇐⇒
evaluates src s ∧
subst Local v src (wp prog (reset_subst v s Q)) s)

D.3. Specifications and Weakest Preconditions 75

Theorem D.25 (WP: Assign).

⊢ clkfree_q Q ⇒
(wp (Assign k v src) Q s ⇐⇒
valid_value k v src s ∧
subst k v src (λ s. Q (NONE,s)) s)

Theorem D.26 (WP: Store).

⊢ clkfree_q Q ⇒
(wp (Store dest src) Q s ⇐⇒
∃ addr val.
evaluates_to dest (ValWord addr) s ∧
evaluates_to src val s ∧ addr_in_mem addr val s ∧
mem_subst addr val (λ s. Q (NONE,s)) s)

Theorem D.27 (WP: Store32).

⊢ clkfree_q Q ⇒
(wp (Store32 dest src) Q s ⇐⇒
∃ addr val.
evaluates_to dest (ValWord addr) s ∧
evaluates_to src (ValWord val) s ∧
addr_in_mem_32 addr val s ∧
mem_subst_32 addr val (λ s. Q (NONE,s)) s)

Theorem D.28 (WP: StoreByte).

⊢ clkfree_q Q ⇒
(wp (StoreByte dest src) Q s ⇐⇒
∃ addr val.
evaluates_to dest (ValWord addr) s ∧
evaluates_to src (ValWord val) s ∧
addr_in_mem_byte addr val s ∧
mem_subst_byte addr val (λ s. Q (NONE,s)) s)

Theorem D.29 (WP: Seq).

⊢ clkfree_q Q ⇒
(wp (Seq p1 p2) Q s ⇐⇒
wp p1 (λ (r,t). r = NONE ∧ wp p2 Q t) s ∨
wp p1 (λ (r,t). r ̸= NONE ∧ Q (r,t)) s)

Theorem D.30 (WP: If).

⊢ clkfree_q Q ⇒
(wp (If e c1 c2) Q s ⇐⇒
evaluates_to_word e s ∧
(evaluates_to_true e s ⇒ wp c1 Q s) ∧
(evaluates_to_false e s ⇒ wp c2 Q s))

Theorem D.31 (WP: Break).

⊢ clkfree_q Q ⇒ (wp Break Q s ⇐⇒ Q (SOME Break,s))

Theorem D.32 (WP: Continue).

⊢ clkfree_q Q ⇒ (wp Continue Q s ⇐⇒ Q (SOME Continue,s))

76 D. CbC for Pancake in HOL4

Theorem D.33 (WP: Raise).

⊢ clkfree_q Q ⇒
(wp (Raise eid e) Q s ⇐⇒
∃ sh val.
has_eshape eid sh s ∧ evaluates_to e val s ∧
shape_of val = sh ∧ size_of_shape sh ≤ 32 ∧
Q (SOME (Exception eid val),empty_locals s))

Theorem D.34 (WP: Return).

⊢ clkfree_q Q ⇒
(wp (Return e) Q s ⇐⇒
∃ val.
evaluates_to e val s ∧
size_of_shape (shape_of val) ≤ 32 ∧
Q (SOME (Return val),empty_locals s))

Theorem D.35 (WP: Annot).

⊢ clkfree_q Q ⇒ (wp (Annot a b) Q s ⇐⇒ Q (NONE,s))

D.4 Refinement and Refinement Rules

In this section, we define contracts, their satisfication, and their refinement, and prove
some of the properties of these definitions. Using these definitions and theorems, we
prove the refinement rules for our CbC calculus for Pancake.

Definitions and Properties

We begin by defining the loop variant as a clock-independent measure on program
states which is required to decrease every loop iteration:

Definition D.24 (Loop Variant).

is_variant i v p
def
=

(∀ s. i s ⇒ v (SND (evaluate (p,s))) < v s) ∧
∀ s k1 k2. v (s with clock := k1) = v (s with clock := k2)

Next, we define contracts and their satisfication. We provide one type of contract per
compositional statement type, in addition to a contract for Hoare specifications and
a don’t care contract. For all cases not displayed in the definition of the satisfication,
the reader may assume non-satisfication.

Definition D.25 (Contract).

α Contract =

HoareC (α state → bool) (α result option × α state → bool)

| DecC mlstring shape (α exp) (α Contract)

| SeqC (α Contract) (α Contract)

| IfC (α exp) (α Contract) (α Contract)

| WhileC (α exp) (α state → bool) (α state → num) (α Contract)

| PanC (α prog)

| DCC

D.4. Refinement and Refinement Rules 77

Definition D.26 (Satisfication of Contracts).

sat (HoareC P Q) prog
def
= hoare P prog Q

sat (DecC nl sl el c) (Dec nr sr er p)
def
=

nl = nr ∧ sl = sr ∧ el = er ∧ sat c p
sat (SeqC c1 c2) (Seq p1 p2)

def
= sat c1 p1 ∧ sat c2 p2

sat (IfC l c1 c2) (If r p1 p2)
def
= l = r ∧ sat c1 p1 ∧ sat c2 p2

sat (WhileC l i v c) (While r p)
def
=

l = r ∧ sat c p ∧ is_variant i v p
sat (PanC l) r

def
= l = r

sat DCC v0
def
= T

Finally, we define the refinement relation between contracts, and prove that it is
reflexive and transitive, and that the composition of contracts is monotonic with
respect to the refinement relation:

Definition D.27 (Refinement).

refine c1 c2
def
= ∀ prog. sat c2 prog ⇒ sat c1 prog

Theorem D.36 (Refinement: Reflexivity and Transitivity).

⊢ refine A A
⊢ refine A B ∧ refine B C ⇒ refine A C

Theorem D.37 (Contract Composition and Refinement: Monotonicity).

⊢ refine A B ⇒ refine (DecC v sh exp A) (DecC v sh exp B)

⊢ refine A B ⇒
refine (SeqC A C) (SeqC B C) ∧
refine (SeqC C A) (SeqC C B)

⊢ refine A B ⇒
refine (IfC e A C) (IfC e B C) ∧
refine (IfC e C A) (IfC e C B)

⊢ refine A B ⇒ refine (WhileC e i v A) (WhileC e i v B)

Top-Down Refinement Rules

Using the preceding definitions, we prove the top-down refinement rules of our CbC
calculus, i.e., refinement rules that introduce new contract or statement types from
Hoare specifications, or refinement rules that modify the conditions on a Hoare
specification.

We begin with the refinement rules for strengthening a postcondition or weakening a
precondition on a Hoare specification.

Theorem D.38 (Refinement Rule: Strengthen Postcondition).

⊢ clkfree_q Q ∧ (∀ s. Q ′ s ⇒ Q s) ⇒
refine (HoareC P Q) (HoareC P Q ′)

Theorem D.39 (Refinement Rule: Weaken Postcondition).

⊢ clkfree_p P ∧ (∀ s. P s ⇒ P ′ s) ⇒
refine (HoareC P Q) (HoareC P ′ Q)

We continue with the refinement rules which introduce new contract or statement
types. For each statement type of our language subset, we provide at least one
refinement rule. For Dec and Seq, we provide multiple refinement rules to target
different situations, i.e., declaring a variable from a constant or from memory, and

78 D. CbC for Pancake in HOL4

using a sequence that terminates deterministically in the first sub-program, the
second sub-program, or possibly in both.

Theorem D.40 (Refinement Rule: Skip).

⊢ clkfree_p P ∧ clkfree_q Q ∧ (∀ s. P s ⇒ Q (NONE,s)) ⇒
refine (HoareC P Q) (PanC Skip)

Theorem D.41 (Refinement Rule: Dec (Fresh Variable, Constant)).

⊢ clkfree_p P ∧ clkfree_q Q ∧ varfree_p v P ∧ varfree_q v Q ∧
(∀ s. P s ⇒ evaluates_to src val s) ⇒
refine (HoareC P Q)

(DecC v sh src
(HoareC (λ s. P s ∧ var_eq_val Local v val s) Q))

Theorem D.42 (Refinement Rule: Dec (Fresh Variable, Memory)).

⊢ clkfree_p P ∧ clkfree_q Q ∧ varfree_p v P ∧ varfree_q v Q ∧
(∀ s. P s ⇒ evaluates_shape (Load sh ad) sh s) ∧
¬MEM v (var_exp ad) ⇒
refine (HoareC P Q)

(DecC v sh (Load sh ad)
(HoareC (λ s. P s ∧ var_eq_mem Local v ad sh s) Q))

Theorem D.43 (Refinement Rule: Assign).

⊢ clkfree_p P ∧ clkfree_q Q ∧
(∀ s. P s ⇒

valid_value k v src s ∧
subst k v src (λ s. Q (NONE,s)) s) ⇒

refine (HoareC P Q) (PanC (Assign k v src))

Theorem D.44 (Refinement Rule: Store).

⊢ clkfree_p P ∧ clkfree_q Q ∧
(∀ s. P s ⇒

∃ addr val.
evaluates_to dest (ValWord addr) s ∧
evaluates_to src val s ∧ addr_in_mem addr val s ∧
mem_subst addr val (λ s. Q (NONE,s)) s) ⇒

refine (HoareC P Q) (PanC (Store dest src))

Theorem D.45 (Refinement Rule: Store32).

⊢ clkfree_p P ∧ clkfree_q Q ∧
(∀ s. P s ⇒

∃ addr val.
evaluates_to dest (ValWord addr) s ∧
evaluates_to src (ValWord val) s ∧
addr_in_mem_32 addr val s ∧
mem_subst_32 addr val (λ s. Q (NONE,s)) s) ⇒

refine (HoareC P Q) (PanC (Store32 dest src))

D.4. Refinement and Refinement Rules 79

Theorem D.46 (Refinement Rule: StoreByte).

⊢ clkfree_p P ∧ clkfree_q Q ∧
(∀ s. P s ⇒

∃ addr val.
evaluates_to dest (ValWord addr) s ∧
evaluates_to src (ValWord val) s ∧
addr_in_mem_byte addr val s ∧
mem_subst_byte addr val (λ s. Q (NONE,s)) s) ⇒

refine (HoareC P Q) (PanC (StoreByte dest src))

Theorem D.47 (Refinement Rule: Seq (Terminating in First Sub-Program)).

⊢ clkfree_p P ∧ clkfree_q Q ⇒
refine (HoareC P Q)

(SeqC (HoareC P (λ (r,t). r ̸= NONE ∧ Q (r,t))) DCC)

Theorem D.48 (Refinement Rule: Seq (Terminating in Second Sub-Program)).

⊢ clkfree_p P ∧ clkfree_q Q ∧ clkfree_p M ⇒
refine (HoareC P Q)

(SeqC (HoareC P (λ (r,t). r = NONE ∧ M t)) (HoareC M Q))

Theorem D.49 (Refinement Rule: Seq (Terminating in Any Sub-Program)).

⊢ clkfree_p P ∧ clkfree_q Q ∧ clkfree_p M ⇒
refine (HoareC P Q)

(SeqC

(HoareC P
(λ (r,t). if r ̸= NONE then Q (r,t) else M t))

(HoareC M Q))

Theorem D.50 (Refinement Rule: If).

⊢ clkfree_p P ∧ clkfree_q Q ∧
(∀ s. P s ⇒ evaluates_to_word e s) ⇒
refine (HoareC P Q)

(IfC e (HoareC (λ s. P s ∧ evaluates_to_true e s) Q)

(HoareC (λ s. P s ∧ evaluates_to_false e s) Q))

Theorem D.51 (Refinement Rule: Break).

⊢ clkfree_p P ∧ clkfree_q Q ∧ (∀ s. P s ⇒ Q (SOME Break,s)) ⇒
refine (HoareC P Q) (PanC Break)

Theorem D.52 (Refinement Rule: Continue).

⊢ clkfree_p P ∧ clkfree_q Q ∧ (∀ s. P s ⇒ Q (SOME Continue,s)) ⇒
refine (HoareC P Q) (PanC Continue)

For the refinement rule for While, we introduce two abbreviations for the precondition
and postcondition used within the rule:

Definition D.28 (Precondition for While Refinement Rule).

while_body_pre i e
def
= (λ s. i s ∧ evaluates_to_true e s)

80 D. CbC for Pancake in HOL4

Definition D.29 (Postcondition for While Refinement Rule).

while_body_post i QB QR QE
def
=

(λ (r,t).
case r of
NONE ⇒ i t

| SOME Error ⇒ i t
| SOME TimeOut ⇒ i t
| SOME Break ⇒ QB t
| SOME Continue ⇒ i t
| SOME (Return v) ⇒ QR (t,v)
| SOME (Exception eid e) ⇒ QE (t,eid,e))

Theorem D.53 (Refinement Rule: While).

⊢ clkfree_p P ∧ clkfree_q Q ∧ clkfree_p i ∧ (∀ s. P s ⇒ i s) ∧
(∀ s. i s ⇒ evaluates_to_word e s) ∧
(∀ s. i s ∧ evaluates_to_false e s ⇒ Q (NONE,s)) ∧
(∀ t. QB t ⇒ Q (NONE,t)) ∧
(∀ t v. QR (t,v) ⇒ Q (SOME (Return v),t)) ∧
(∀ t eid v. QE (t,eid,v) ⇒ Q (SOME (Exception eid v),t)) ⇒
refine (HoareC P Q)

(WhileC e i v
(HoareC (while_body_pre i e)

(while_body_post i QB QR QE)))

Theorem D.54 (Refinement Rule: Raise).

⊢ clkfree_p P ∧ clkfree_q Q ∧
(∀ s. P s ⇒

∃ sh val.
has_eshape eid sh s ∧ evaluates_to e val s ∧
shape_of val = sh ∧
size_of_shape (shape_of val) ≤ 32 ∧
Q (SOME (Exception eid val),empty_locals s)) ⇒

refine (HoareC P Q) (PanC (Raise eid e))

Theorem D.55 (Refinement Rule: Return).

⊢ clkfree_p P ∧ clkfree_q Q ∧
(∀ s. P s ⇒

∃ val.
evaluates_to e val s ∧
size_of_shape (shape_of val) ≤ 32 ∧
Q (SOME (Return val),empty_locals s)) ⇒

refine (HoareC P Q) (PanC (Return e))

Theorem D.56 (Refinement Rule: Annot).

⊢ clkfree_p P ∧ clkfree_q Q ∧ (∀ s. P s ⇒ Q (NONE,s)) ⇒
refine (HoareC P Q) (PanC (Annot t1 t2))

Theorem D.57 (Refinement Rule: DCC).

⊢ refine DCC (PanC prog)

Bottom-Up Refinement Rules

Finally, we prove four bottom-up refinement rules which transform compositional con-
tracts containing only PanC sub-contracts, i.e., contracts with completed refinement,
back into PanC contracts, i.e., contracts representing the corresponding program.

D.5. Automating Refinement 81

These refinement rules are mostly trivial, except the rule for While, which requires
proving the termination of the loop by proving the variant.

Theorem D.58 (Bottom-Up Refinement Rule: Dec).

⊢ refine (DecC v sh src (PanC prog))
(PanC (Dec v sh src prog))

Theorem D.59 (Bottom-Up Refinement Rule: Seq).

⊢ refine (SeqC (PanC l) (PanC r)) (PanC (Seq l r))

Theorem D.60 (Bottom-Up Refinement Rule: If).

⊢ refine (IfC e (PanC l) (PanC r)) (PanC (If e l r))

Theorem D.61 (Bottom-Up Refinement Rule: While).

⊢ is_variant i v p ⇒
refine (WhileC e i v (PanC p)) (PanC (While e p))

D.5 Automating Refinement

In this section, we provide the implementation of our eight automated refinement
proof tactics for HOL4 as discussed in Section 4.3. All tactics described in this
section use the simpset pan_refinement_ss which consists of the definitions and
theorems provided in this chapter, selected definitions and theorems from the Pancake
semantics, and theorems from HOL4’s pred_setTheory, finite_mapTheory, and
wordsTheory.

The eight refinement tactics all derive from the following tactic, which implements
the procedure described in Section 4.3.1, except the use of blastLib or HolSmtLib.
This tactic takes two arguments: (1) a refinement rule to apply, and (2) a set of
additional theorems to apply during simplification.

val pan_refinement_thms_tac = fn refinement_rule =>

fn extra_thms =>

(* apply refinement rule, unabbreviate side condition goals *)

rw[]

>> irule refinement_rule

>> unabbrev_all_tac

>> gvs[]

(* apply pan_refinement_ss with rw until unchanged *)

>> rpt (CHANGED_TAC (rw_tac pan_refinement_ss extra_thms))

(* try to instantiate existential quantifiers *)

>> TRY (HINT_EXISTS_TAC)

(* split into all possible cases and simplify using fs *)

>> every_case_tac

>> fs[]

(* apply pan_refinement_ss with gvs and case splits until unchanged *)

>> rpt (CHANGED_TAC (global_simp_tac {elimvars = true,

strip = true,

82 D. CbC for Pancake in HOL4

droptrues = true,

oldestfirst = true}

pan_refinement_ss

extra_thms

>> every_case_tac))

(* try to match remaining implication assumptions to the goal *)

>> TRY (first_x_assum $ irule)

(* prepare proof by contradiction *)

>> spose_not_then assume_tac

(* solve remaining clock-freeness goals using definitions *)

>> gvs[...];

The next three tactics add a last step to the preceding tactic: the application of
blastLib, i.e., FULL_BBLAST_TAC, or HolSmtLib, i.e., z3_tac or z3o_tac. This can be
used to solve remaining goals of word arithmetic. As discussed in Section 4.3.1, the
user may decide which of these options to use, depending on the size of the goal to
prove and the required reliability.

val pan_refinement_thms_tac_blast = fn refinement_rule =>

fn extra_thms =>

pan_refinement_thms_tac refinement_rule extra_thms

>> FULL_BBLAST_TAC;

val pan_refinement_thms_tac_z3 = fn refinement_rule =>

fn extra_thms =>

pan_refinement_thms_tac refinement_rule extra_thms

>> z3_tac extra_thms;

val pan_refinement_thms_tac_z3o = fn refinement_rule =>

fn extra_thms =>

pan_refinement_thms_tac refinement_rule extra_thms

>> z3o_tac extra_thms;

The remaining four tactics provide a short-hand for the application of any preceding
tactic without additional theorems for simplification.

val pan_refinement_tac = fn rule =>

pan_refinement_thms_tac rule [];

val pan_refinement_tac_blast = fn rule =>

pan_refinement_thms_tac_blast rule [];

val pan_refinement_tac_z3 = fn rule =>

pan_refinement_thms_tac_z3 rule [];

val pan_refinement_tac_z3o = fn rule =>

pan_refinement_thms_tac_z3o rule [];

	Contents
	Abbreviations
	1 Introduction
	2 Foundations
	2.1 Correctness-by-Construction
	2.1.1 Programs, Specifications, and Contracts
	2.1.2 Refinement of Contracts
	2.1.3 Refinement Rules

	2.2 Pancake
	2.2.1 Syntax
	2.2.2 Semantics

	2.3 Goal-Directed Proofs in HOL4

	3 CbC Calculus for Pancake
	3.1 Hoare Specifications
	3.2 Weakest Preconditions
	3.3 Contracts and Refinement
	3.4 Refinement Rules
	3.4.1 Refinement Rule: Skip
	3.4.2 Refinement Rule: Seq
	3.4.3 Refinement Rule: While
	3.4.4 Other Top-Down Refinement Rules
	3.4.5 Bottom-Up Refinement Rules

	4 Case Study: Linear Search
	4.1 Specification
	4.2 Refinement Proof
	4.3 Automating Refinement Proofs
	4.3.1 Top-Down Refinement Steps
	4.3.2 Bottom-Up Refinement Steps

	5 Related Work
	6 Conclusion
	Bibliography
	A HOL4 Proof Example
	B CbC for GCL in HOL4
	B.1 Syntax and Semantics of GCL
	B.2 Specifications and Weakest Preconditions
	B.3 Contracts and Refinement
	B.4 Refinement Rules

	C The Pancake Semantics
	D CbC for Pancake in HOL4
	D.1 Clock-Freeness and Variable-Freeness
	D.2 Conditions and Operators
	D.3 Specifications and Weakest Preconditions
	D.4 Refinement and Refinement Rules
	D.5 Automating Refinement

