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Abstract

Simulating object deformations is a critical challenge across many scientific domains, including
robotics, manufacturing, and structural mechanics. Learned Graph Network Simulators
(GNSs) offer a promising alternative to traditional mesh-based physics simulators. Their
speed and inherent differentiability make them particularly well suited for applications
that require fast and accurate simulations, such as robotic manipulation or manufacturing
optimization. However, existing learned simulators typically rely on single-step observations,
which limits their ability to exploit temporal context. Without this information, these models
fail to infer, e.g., material properties. Further, they rely on auto-regressive rollouts, which
quickly accumulate error for long trajectories. We instead frame mesh-based simulation as a
trajectory-level meta-learning problem. Using Conditional Neural Processes, our method
enables rapid adaptation to new simulation scenarios from limited initial data while capturing
their latent simulation properties. We utilize movement primitives to directly predict fast,
stable and accurate simulations from a single model call. The resulting approach, Movement-
primitive Meta-MeshGraphNet (M3GN), provides higher simulation accuracy at a fraction
of the runtime cost compared to state-of-the-art GNSs across several tasks.

1 Introduction

The simulation of complex physical systems is crucial to a wide variety of engineering disciplines, including
solid mechanics (Yazid et al., 2009; Zienkiewicz & Taylor, 2005; Stanova et al., 2015), fluid dynamics (Chung,
1978; Zienkiewicz et al., 2013; Connor & Brebbia, 2013), and electromagnetism (Jin, 2015; Polycarpou, 2022;
Reddy, 1994). In particular, the simulation of object deformations under external forces finds widespread
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Figure 1: Movement-Primitive Meta-MeshGraphNet (M3GN) aims to learn accurate simulation dynamics
from a few initial observations, enabling it to infer material properties from limited historical data. Given
a context set of initial system states, node-level latent features are computed for every pair of states using
a shared Graph Neural Network (GNN) encoder. These features are then aggregated to form a node-level
latent task description zv. This description is concatenated with the last system state to predict Probabilistic
Dynamic Movement Primitive (ProDMP) weights, which are used to compute per-node trajectories.

application in, e.g., robotic applications (Scheikl et al., 2022; Wang & Zhu, 2023; Linkerhägner et al., 2023).
Mesh-based simulations are appealing for such problems due to the computational efficiency and accuracy of
the underlying finite element method (Brenner & Scott, 2008; Reddy, 2019). However, the diversity of the
problems to be modeled usually demands task-specific simulators in order to accurately capture the relevant
physical quantities (Reddy & Gartling, 2010). Such specialized simulators can be slow and cumbersome to
use, especially for large-scale simulations (Paszynski, 2016; Hughes et al., 2005).

Thus, data-driven surrogate models trained on reference simulations have become an appealing alternative (Guo
et al., 2016; Da Wang et al., 2021; Li et al., 2022). Among them, general-purpose Graph Network Simulators
(GNSs) have recently become increasingly popular (Battaglia et al., 2018; Pfaff et al., 2021; Allen et al., 2022b;
2023; Lippe et al., 2023; Linkerhägner et al., 2023; Yu et al., 2024; Würth et al., 2025). GNSs encode the
simulated system as a graph of interacting entities whose dynamics are predicted using GNNs (Bronstein et al.,
2021). GNS are one to two orders of magnitude faster than classical simulators (Pfaff et al., 2021) while being
fully differentiable. These properties make them highly effective for, e.g., inverse design problems (Allen et al.,
2022b; Xu et al., 2021), robotics (Shi et al., 2023; Hoang et al., 2025), and other engineering applications that
benefit from fast simulation surrogates (Simon, 2021). However, existing GNS-based models rarely exploit
historical context, limiting their ability to infer material properties or long-term system behavior.

Consider, for example, a robotic manipulation task, where the robot needs to maintain an accurate model
of some deformable object with unknown material properties to achieve a certain goal (Antonova et al.,
2022; Shi et al., 2023; Hoang et al., 2025). Current learned models rely mainly on the current observation,
preventing them from using the historical context to infer knowledge about the material or other relevant
behaviors (Linkerhägner et al., 2023). To alleviate this issue, we propose to provide a few initial mesh states
to learned simulators, allowing the model to observe how the given system behaves before having to simulate
subsequent steps. Equipped with this knowledge, the model may infer latent material properties, facilitating
for more accurate simulations that precisely extend the previous context. To the best of our knowledge, we
are the first to study this specific experimental setup.

This setting naturally fits into a meta-learning framework (Schmidhuber, 1992; Thrun & Pratt, 1998; Vilalta &
Drissi, 2005; Hospedales et al., 2022), where the sequence of initial states induces the unique task of predicting
its subsequent simulated trajectory. Concretely, we employ Conditional Neural Processs (CNPs) (Garnelo
et al., 2018a) to aggregate the provided context sets and the dynamics inferred from them into a latent
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descriptor, which is then used to predict the rest of the trajectory. This formulation reveals opportunities to
better adapt the standard GNS training setup to meta-learning scenarios, particularly when models must
condition on initial context.

GNSs are typically trained through simple next-step supervision (Battaglia et al., 2018; Pfaff et al., 2021;
Allen et al., 2023). During inference, entire trajectories are simulated by iteratively predicting per-node
dynamics from an initial system state in an autoregressive manner, only ever considering the previous system
state or a fixed-size history. This approach is prone to error accumulation over time, decreasing accuracy for
longer time horizons (Brandstetter et al., 2022; Han et al., 2022; Radler et al., 2025).

Since the initial context set influences the full trajectory, we decide to utilize trajectory-level predictions,
where our model consumes the context steps and directly outputs the remaining simulation in a single forward
pass. This formulation offers several advantages over alternatives such as recurrent architectures (Hochreiter
& Schmidhuber, 1997; Ruiz et al., 2020; Mienye et al., 2024) or multi-step training (Shi et al., 2023). By
predicting the entire trajectory in a single forward pass, we improve training stability and memory efficiency
by avoiding gradient updates across multiple passes. This single-pass approach also increases inference speed
and completely sidesteps the error accumulation common in autoregressive rollouts.

To this end, we employ node-level Probabilistic Dynamic Movement Primitives (ProDMPs) (Schaal, 2006;
Paraschos et al., 2013; Li et al., 2023), which allow us to output complete trajectories using only the latent
descriptor as inputs. By representing trajectories with basis functions, ProDMPs neither require autoregressive
rollouts, which is costly and error-prone for long horizons, nor large memory for constructing temporal
convolutions, unlike prior works (Dahlinger et al., 2025; Xu et al., 2024; Cini et al., 2025). These components
enable efficient training and rapid adaptation to trajectory-specific simulation parameters, such as unknown
material properties, without requiring explicit parameter knowledge during training or inference.

The resulting method, called Movement-Primitive Meta-MeshGraphNet (M3GN), allows the generation of
context-dependent simulation trajectories that accurately infer and integrate unknown system properties.
Figure 1 provides an overview of our approach, while Figure 2 shows examples for different tasks. To validate
the effectiveness of M3GN, we adapt existing experiment suites (Linkerhägner et al., 2023; Dahlinger et al.,
2025) to our trajectory-based meta-learning setup, and additionally introduce two novel tasks based on
challenging deformable object simulations with varying object materials. Our results show that our method
provides superior simulation accuracy compared to several variants of MeshGraphNet (MGN) (Pfaff et al.,
2021) and recent trajectory-based learned simulators (Xu et al., 2024; Dahlinger et al., 2025)1. Further,
M3GN’s ProDMPs trajectory representation reduces the number model calls at inference, improving inference
runtime by up to 32 times compared to MGN.

In summary, we propose M3GN, a novel GNS that (i) extracts a latent descriptor from initial states and uses
it to generate the remaining node-level trajectory in a single shot, while rapidly adapting to varying material
properties; (ii) achieves state-of-the-art inference speed by coupling CNP-based context aggregation with a
physically consistent trajectory formulation via ProDMPs; and (iii) surpasses recent GNSs on challenging
deformation benchmarks, yielding superior long-horizon accuracy and stability. To support our claims, we
introduce a new experimental setup in which the initial part of each trajectory serves as context data for the
model.

2 Related Work

Graph Network Simulators. Deep neural networks for physical simulations can provide significant speedups
over traditional simulators while being fully differentiable (Pfaff et al., 2021; Allen et al., 2022a), making them
a natural choice for applications like model-based Reinforcement Learning (Mora et al., 2021) and Inverse
Design problems (Baqué et al., 2018; Durasov et al., 2021; Allen et al., 2022a). A popular class of learned
neural simulators are Graph Network Simulators (GNSs) (Battaglia et al., 2016; Sanchez-Gonzalez et al., 2020).
GNSs utilize Message Passing Networks (MPNs), a special type of GNN (Scarselli et al., 2009; Bronstein et al.,
2021) that representationally encompasses the function class of many classical solvers (Brandstetter et al.,

1Code is provided in the supplement. Here, the reviewers can also find videos showing the qualitative results of M3GN
predictions and comparisons to existing baselines.
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Sheet Deformation Deformable Block Tissue Manipulation Falling Teddy Bear

Figure 2: Final M3GN simulation steps for different evaluation tasks. From left to right: a sheet deforms
under two orthogonal forces, a falling collider deforming a block in 2D, a surgical tool dragging tissue, and a
falling teddy bear. All visualizations present the predicted mesh (blue) alongside a reference wireframe
(red) of the ground-truth simulation. M3GN takes the deformable object positions from a few initial time
steps to predict the remaining simulation steps using per-node movement primitives.

2022). GNS handle physical data by modeling arbitrary entities and their relations as a graph. Applications
of GNSs include particle-based simulations (Li et al., 2019; Sanchez-Gonzalez et al., 2020; Whitney et al.,
2023), atomic force prediction (Hu et al., 2021), and fluid dynamic problems (Brandstetter et al., 2022).
These models have additionally been applied to the mesh-based prediction of deformable objects (Pfaff et al.,
2021; Weng et al., 2021; Han et al., 2022; Fortunato et al., 2022; Linkerhägner et al., 2023). Recent extensions
handle rigid objects (Allen et al., 2022b; 2023; Lopez-Guevara et al., 2024) and integrate learned adaptive
meshing strategies (Plewa et al., 2005; Freymuth et al., 2023; 2025) into the simulator (Wu et al., 2023).

Existing work that considers unknown material properties in simulations of deformable objects combines the
GNS prediction with point cloud information to improve long-term predictions Linkerhägner et al. (2023).
This method requires a constant stream of point clouds to ground the simulation in, but can not aggregate
this information into a description of the material properties. Additionally, the DEL method (Wang et al.,
2024) integrates physical priors from the Discrete Element Analysis (DEA) framework with learnable graph
kernels, addressing the challenges of simulating 3D particle dynamics from 2D images.

In the context of larger-scale simulations, foundation models are gaining traction in neural simulation tasks,
as exemplified by Aurora (Bodnar et al., 2024), a large-scale model trained on extensive climate data. While
Aurora demonstrates impressive performance on atmospheric predictions, including global air pollution and
weather forecasts, it requires significantly more data for fine-tuning compared to our approach, which focuses
on efficient adaptation with fewer data points. Notably, all previously mentioned GNSs predict system
dynamics iteratively from a given state, whereas we directly estimate entire trajectories, improving rollout
stability and reducing function calls. Related to our approach is the Equivariant Graph Neural Operator
(EGNO) (Xu et al., 2024), which also predicts full trajectories using SE(3) equivariance to model 3D dynamics
and capture spatial and temporal correlations.

All previously discussed approaches rely on supervised learning or fine-tuning large foundation models,
whereas we employ meta-learning to enable efficient adaptation to new simulation conditions. Recently,
the Meta Neural Graph Operator (MaNGO) (Dahlinger et al., 2025) introduced meta-learning into Graph
Network Simulators. Our work differs in several key aspects: MaNGO requires access to simulation parameters
at least for the training set, while our method remains fully parameter-agnostic during both training and
inference. Moreover, the meta-learning setup in MaNGO uses different simulation trials with the same
material properties as context, whereas we exploit the temporal evolution within a single simulation to infer
latent material characteristics. Finally, MaNGO’s trajectory representation is less memory-efficient, as it
does not employ a compact formulation such as ProDMPs.

Meta-Learning. Meta-learning (Schmidhuber, 1992; Thrun & Pratt, 1998; Vilalta & Drissi, 2005; Hospedales
et al., 2022) extracts inductive biases from a training set of related tasks in order to increase data efficiency
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on unseen tasks drawn from the same task distribution. In contrast to other multi-task learning methods,
such as transfer learning (Krizhevsky et al., 2012; Golovin et al., 2017; Zhuang et al., 2020), which merely
fine-tune or combine standard single-task models, meta-learning makes the multi-task setting explicit in the
model architecture (Bengio et al., 1991; Ravi & Larochelle, 2017; Andrychowicz et al., 2016; Volpp et al.,
2019; Santoro et al., 2016; Snell et al., 2017). This explicit architecture allows the resulting meta-models to
learn how to learn new tasks from a small number of example contexts. A popular variant is Model-Agnostic
Meta-Learning (MAML) (Finn et al., 2017; Grant et al., 2018; Finn et al., 2018; Kim et al., 2018), which
employs standard single-task models and formulates a multi-task optimization procedure.

Neural Processes (NPs) (Garnelo et al., 2018a;b; Kim et al., 2019; Gordon et al., 2019; Louizos et al.,
2019; Volpp et al., 2021; 2023) instead build on a multi-task model architecture (Heskes, 2000; Bakker &
Heskes, 2003) but employ standard gradient based optimization algorithms (Kingma & Ba, 2015; Kingma
& Welling, 2014; Rezende et al., 2014; Zaheer et al., 2017). Here, we use Conditional Neural Processes
(CNPs) (Garnelo et al., 2018a), which aggregate learned features over a variable-sized context set to yield
a latent task description that our downstream GNS is conditioned on. Compared to regular NPs, CNPs
assume a deterministic task description, eliminating the need for a distribution over latent variables. This
assumption simplifies and accelerates the training process, as our objective is to predict a single precise
simulation trajectory from the context set. While epistemic uncertainty cannot be fully eliminated, the
simulation data itself is deterministic and lacks aleatoric noise, making a distributional latent formulation
less appealing and inconsistent with the probabilistic assumptions that motivate Neural Processes.

3 Movement-Primitive Meta-MeshGraphNets

In this section, we present the theoretical foundation of the M3GN method, detailing the algorithmic design
choices that guided its development.

Graph Network Simulators. Consider a graph G = (V, E , XV , XE) with nodes V , edges E , and associated
vector-valued node and edge features XV and XE . An MPN (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021)
consists of M message passing steps, which iteratively update the node and edge features based on the graph
topology. Each such step is given as

hm+1
e = fm

E (hm
v , hm

e ),

hm+1
v = fm

V (hm
v ,

⊕
e∈Ev

hm+1
e ),

where hm
v and hm

e denote embeddings of the system state per node and edge at message passing iteration m,
respectively. Ev ⊂ E are the edges connected to v. Further,

⊕
denotes a permutation-invariant aggregation

operation such as the sum, the max, or the mean. The functions fm
V and fm

E are learned Multilayer Perceptrons
(MLPs). The network’s final output are the node-wise learned representations hv := hM

v that encode local
information of the initial node and edge features.

Conventional GNSs encode the state of the simulated system as a graph, feed it through the MPN, and
interpret the per-node outputs as velocities or accelerations (Pfaff et al., 2021). These dynamics are used to
forward the simulation in time using, e.g., a forward-Euler integrator (Sanchez-Gonzalez et al., 2020). The
graph encodes relative distances and velocities between entities instead of absolute ones, as the resulting
equivariance to translation improves generalization (Sanchez-Gonzalez et al., 2020). GNSs usually minimize a
next-step Mean Squared Error (MSE) per node during training, adding carefully tuned implicit denoising
strategies (Pfaff et al., 2021; Brandstetter et al., 2022) to stabilize long-term predictions. During inference,
they compute trajectories by iteratively predicting and integrating their output in an autoregressive fashion.
If some simulated objects, like the collider, are known, only the remaining nodes are predicted. Our method
instead uses a ProDMP to predict a compact representation of a whole trajectory per system node.

Probabilistic Dynamic Movement Primitives. Movement Primitives (MPs) (Schaal, 2006; Paraschos
et al., 2013) allow for compact and smooth trajectory representations y via a set of basis functions parameterized
by a set of weights w. This temporal smoothness is highly beneficial for, e.g., robotic applications (Li
et al., 2024; Otto et al., 2022). Recent methods integrate MPs with neural networks to enhance their
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expressive capabilities (Seker et al., 2019; Bahl et al., 2020; Li et al., 2023). Dynamic Movement Primitives
(DMPs) (Schaal, 2006) use a spring-damper dynamical system governed by parameters α and β. To manipulate
the trajectory, an external forcing term f is added, before the system converges to a predefined goal g:

τ2ÿ = α (β(g − y) − τ ẏ) + f(x), f(x) = xφ⊺w. (1)

Here, τ influences execution speed, while f depends on the basis functions φ in force-space, the weights w and
the exponential decaying phase x. Solving this equation typically is computationally intensive, particularly
when the gradient dy/dw is required (Bahl et al., 2020). ProDMPs (Li et al., 2023) instead solve Equation (7)
with pre-computed basis functions Φ in position-space as

y(t) = c1y1(t) + c2y2(t) + Φ(t)⊤w.

The term c1y1(t) + c2y2(t) only depends on the initial conditions [y(t0), ẏ(t0)]. ProDMPs thus generate
smooth trajectories at an arbitrary temporal resolution from low-dimensional weights w. They crucially allow
for efficient gradient computation, and can respect different initial conditions such as positions or velocities.
We provide an extensive mathematical background of ProDMPs in Appendix A.

Meta-Learning and Graph Network Simulators. To enable generalization across tasks with varying
properties, we frame GNS as a meta-learning problem. In this setup, each task corresponds to a simulation
of a deformable object with unknown material properties. The goal is to learn a simulator that can adapt
quickly to a specific scenario using a limited amount of context data. Following the notation of Volpp et al.
(2021), the meta-dataset D = D1:L consists of simulation trajectories Dl = {Gl,1 . . . Gl,T }, where T is the
trajectory length. Each simulation step Gl,t = (ml,t, ul,t) represents a graph capturing both the deformable
object mesh ml,t (describing its position and topology) and an optional rigid collider ul,t. Physical proximity
is used to define graph edges that model interactions between the deformable object and the collider. At
test time, the first T c ≪ T simulation frames, Gl,1:T c , are observed as a context set to predict the remaining
trajectory. Following prior work (Pfaff et al., 2021), we assume access to the full collider trajectory during
prediction2, resulting in the complete context set:

Dc
l = {Gl,1, . . . Gl,T c} ∪ {ul,T c+1, . . . , ul,T }. (2)

To provide a clear reference point for discussion, we define the anchor time step as the final time step T c

of the context set. The corresponding anchor graph, Gl,T c , represents the system’s state at this point and
serves as the starting state for trajectory prediction by the GNSs. Notably, the anchor graph Gl,T c alone does
not capture the complete system state, as the material properties of the deformable object remain unknown.
These properties must be inferred from the prior simulation steps, Gl,1:T c , to enable accurate simulation
predictions. Figure 3 illustrates this setup.

Model Architecture. Our model architecture, M3GN, is designed to learn from context data and predict
future simulation steps by leveraging a combination of graph network simulation and meta-learning techniques.
The architecture consists of two parts: the computation of the latent task description from the context data
and the actual graph network simulation of future simulation steps. We base our context processing on
the Conditional Neural Process (CNP) (Garnelo et al., 2018a), as it efficiently encodes a latent description
over tasks given a set of context observations. Omitting the task index l to avoid clutter, CNPs expect a
context set {(x1, y1), . . . , (xT c , yT c)} consisting of inputs xt and corresponding targets yt. We translate our
context set Dc from Equation 2 to this format by using each graph Gt as an input, and setting its labels
as the node-wise velocities. This approach allows the model to focus on dynamics rather than absolute
positions, which are more task-specific. Assuming a forward-Euler integration scheme with a time step of 1,
we numerically approximate the velocities as the difference between the node positions of two consecutive
simulation steps. The input graph xt represents the simulation state at time step t, including mesh and
collider, while yt encodes the change in positions between consecutive time steps.

xt = Gt, yt = pos(Gt+1) − pos(Gt).
2This assumption is commonly satisfied in practical scenarios. For instance, in robotic planning tasks, the robot generates

multiple candidate future end-effector trajectories and requires predictions of the resulting deformation to select the most suitable
plan.
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Figure 3: Left: M3GN and MGN task setup. Both methods predict mesh positions based on the initial mesh
at the anchor time step. M3GN utilizes previous mesh positions and the last step of the collider trajectory for
its latent task description, whereas MGN disregards past information and integrates the ground truth collider
trajectory into its step-based model. Right: Exemplary final simulation steps on the Sheet Deformation task
of M3GN given different context set sizes. A larger context size results in a more accurate prediction (blue)
of the ground truth (red wireframe) simulation.

To account for the known collider trajectory, we add its relative position as an additional node feature.
Specifically, we include the position of the collider at the last time step T of the simulation, pos(uT ), relative
to its current position, pos(ut). Preliminary testing indicated that incorporating the complete future collider
trajectory pos(uT c), ...pos(uT ) did not improve the results on our tasks. Given a context set Dc with anchor
time step T c, this results in T c − 1 tuples (xt, yt). A shared GNN encoder hθ computes node-level latent
features

zt,v = hθ(xt, yt) ∈ RT c×|V|×dz (3)

for each context time step with feature dimension dz. We then aggregate over the time domain of the context
set to obtain zv =

⊕
t zt,v ∈ R|V|×dz , using

⊕
= max as the aggregation operator. Intuitively, zv is a

representation of the task inferred from the context data Dc, and encodes material properties, future collider
movements, and high-level deformations of the simulation. While we use node-level latent features for M3GN,
one could additionally aggregate over the nodes to obtain a graph-global task descriptor z =

⊗
zv ∈ Rdz .

We explore this choice and different aggregation functions
⊕

,
⊗

in Section 4.

Once the task descriptor has been computed, it serves as the input to the predictive stage, enabling simulation
of future trajectories. We concatenate the latent description zv with the node features of the anchor graph
GT c and subsequently use a GNN gθ to predict per-node ProDMP weights

wv = gθ(GT c , zv) ∈ R|V|×dw . (4)

GNNs provide the flexibility to incorporate arbitrary node features. To better capture short-term dynamics,
we augment the input with node velocities from the anchor time step (T c); the inclusion of velocity information
was determined through hyperparameter optimization on a per-task basis. The ProDMP trajectory generator
f(wv) ∈ RT ×|V|×dworld transforms the predicted outputs of the simulator GNN into per-node object trajectories
over the entire simulation horizon. This approach can be seen as a form of temporal bundling (Brandstetter
et al., 2022), requiring a single function call. In comparison, existing GNS train mostly on next-step dynamics
and require one call per step during their auto-regressive inference scheme (Pfaff et al., 2021; Allen et al.,
2023). The trajectory-level view further allows us to omit noise injection during training, which MGN
requires to generalize from learned next-step predictions to multi-step rollouts during inference. We provide a
visualization of our model architecture in Figure 1 and refer to Appendix B for further details.

Meta Training. The goal of meta-learning is to automatically encode inductive biases towards the task
distribution extracted from the meta-dataset D into the task-global parameter θ. To this end, we minimize
the negative conditional log probability (Garnelo et al., 2018a)

L(θ) = −El∼1:L

[
ET c∼Tmin:Tmax

[
log pθ(pos(ml,1:T ) | Dc

l )
]]

. (5)

Each training batch consists of a task Dl for which we sample a context size T c uniformly between Tmin and
Tmax to ensure that the model learns to handle different context set sizes. We then compute the latent task
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Figure 4: Comparison of the final simulation step between M3GN (blue) and MGN (orange) on all datasets.
From (Left) to (Right): (Top) Sheet Deformation and Deformable Block with an anchor time step of 2.
(Bottom) Tissue Manipulation with a context size of 5, and Falling Teddy Bear and Mixed Objects Falling
with an anchor time step of 20. M3GN provides much better alignment to the ground truth (red wireframe)
simulation on all tasks, except for Tissue Manipulation, where MGN also solves the task well. A

descriptor zv and subsequently the predicted node trajectories f(gθ(Gl,T c , zv)) as described in Equation 3
and Equation 4. The likelihood pθ is defined to be the Gaussian

pθ(pos(ml,1:T ) | Dc
l ) = N (pos(ml,1:T ) | f(gθ(Gl,T c , zv)), σo). (6)

Since the training simulations are not affected by noise, we are not modeling the output variance and set it
to σ0 = 1. Together with taking the mean over the nodes and time steps to stabilize training, optimizing the
Gaussian log likelihood from Equation 6 is equivalent to minimizing the MSE

log pθ(pos(ml,1:T ) | Dc
l ) ≃ 1

T |V| dworld

∑
t,v,i

(
pos(ml,t)v,i − f(gθ(Gl,T c , zv))t,v,i

)2
.

The whole architecture is trained end-to-end using the loss L(θ) from Equation 5. After the meta-training,
we fix θ, which now encodes inductive biases towards the meta-data D.

4 Experiments

Setup. We model mesh vertices as graph nodes and establish edges according to the mesh topology, using
additional edges between different objects based on Euclidean distance. We employ one-hot encoding to
distinguish deformable objects from colliders, using a homogeneous graph representation (Pfaff et al., 2021).
The edges additionally encode the relative distances between their connected nodes. Compared to existing
work (Linkerhägner et al., 2023), we include a small initial context sequence covering time steps 1, . . . , T c for
each simulation, with T c being the anchor time step. Both the context and simulator MPNs use 15 message
passing steps. Each message passing step uses separate 1-layer MLPs with a latent dimension of 128 and
LeakyReLU activations for its node and edge updates.

We evaluate the Full-rollout MSE, computed as the average simulation MSEs following all time steps after the
anchor time step, and the Per-timestep MSE, defined as the MSE at each individual time step. Both metrics
are averaged over all trajectories in the test set. For each experiment, we report the mean and bootstrapped
confidence intervals (Agarwal et al., 2021) over 8 random seeds. We evaluate both metrics for various context
sizes ranging from 2 to 30 steps. Appendix C provides additional details on our experimental setup.

Datasets. We validate our method on five different simulation datasets based on three different mesh-based
physics simulators. These include a Deformable Block (DB) task in 2D and a 3D Tissue Manipulation (TM)
task (Linkerhägner et al., 2023), generated using Simulation Open Framework Architecture (SOFA) (Faure
et al., 2012). In both datasets, the Poisson’s ratio (Lim, 2015) acts as the randomized material property.
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Figure 5: MSE (on a log scale) over full rollouts for different methods across all tasks, including an additional
plot for the Sheet Deformation task evaluated on an out-of-distribution (OOD) test set of material properties.
Overall, M3GN steadily improves its performance when provided with additional context information. Our
method generally outperforms both MGN variants, likely due to the MP-based trajectory formulation and the
latent material property representation, with the exception of the Tissue Manipulation task. Equivariant Graph
Neural Operator (EGNO) exhibits instability for later anchor time steps and only performs competitively on
the Sheet Deformation (ID) task.

Deformable Block simulates different trapezoids that are deformed by a circular collider with constant velocity
and varying size and starting position. Each trajectory consists of a mesh with 81 nodes that is deformed
over 39 time steps. Tissue Manipulation considers a surgical robotics scenario where a piece of tissue is
deformed by a gripper. The gripper is attached to a fixed object position and moves in a random direction
with constant velocity. The mesh comprises 361 nodes and the simulation has 100 steps.

We further consider the Sheet Deformation (SD) dataset (Dahlinger et al., 2025), which simulates how a sheet
deforms under two constant forces that are applied at different positions of the sheet plane. As the Young’s
modulus is varied between sheets, this dataset constitutes a simplified stamp forming process, as common in
mechanical engineering (Zimmerling et al., 2022). The simulations are generated with Abaqus (Smith, 2009),
comprising 50 time steps and a plate with 225 nodes. We test two different data splits: The in-distribution
(ID) split tests on material properties that the model has seen during training, while the out-of-distribution
(OOD) split evaluates Young’s modulus values outside the training domain.

The final two tasks place a randomly rotated deformable object at a specific height and let it fall to and collide
with the ground. Falling Teddy Bear (FTB) considers the titular teddy bear as its only object, whereas six
different objects are considered for Mixed Objects Falling (MOF). Each trajectory assigns a random Poisson’s
ratio and random Young’s modulus to the falling object, thus influencing its deformation upon contact with
the floor. Each trajectory in the last two tasks consists of 200 time steps. The object meshes have up to 350
nodes and are shown in Figure 11 in the appendix. For simplicity, we only consider the triangular surface
meshes for the experimental setup. All task spaces are normalized to [−1, 1]3. Appendix B.1 details the
graph encoding, while Appendix D provides further information on dataset sizes and preprocessing.

Baselines and Ablations. We compare to MGN(Pfaff et al., 2021), evaluating its performance both with
and without additional material information provided as a node feature. Importantly, we never supply this
feature to M3GN.
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Figure 6: Per-timestep MSE for different methods across all tasks, showing the temporal evolution of
prediction error averaged over all test trajectories. For DB, SD (ID), and SD (OOD), the context size is set
to 2, whereas TM, FTB, and MOF use a context size of 20. The step-based MGN variants exhibit clear error
accumulation over time, whereas M3GN maintains stable accuracy throughout the rollout likely due to its
temporally consistent MP-based trajectory formulation.

MGN generates the next mesh state by iteratively predicting the velocities for the current simulation step.
It is trained to minimize the 1-step MSE over node velocities, incorporating Gaussian input noise during
training (Brandstetter et al., 2022). This noise serves to mitigate error accumulation and stabilize auto-
regressive rollouts during inference. To ensure a fair comparison, we adopt the same hyperparameters as our
method and optimize the input noise level per task.

We also explore the effect of incorporating historical information, specifically previous velocities, as node
features for both MGN and M3GN. For MGN, using both the current and previous velocities improves
performance significantly on many tasks. For M3GN, including only the current velocity yields similar
benefits. Figure 12 in the Appendix presents the results of preliminary tuning experiments on a validation
split. Additionally, Table 1 summarizes the specific history configurations and other relevant hyperparameter
for each method and task. As a comparison to a graph-based meta-learning method, we evaluate M3GN
against the Meta Neural Graph Operator (MaNGO) (Dahlinger et al., 2025). To adapt MaNGO to our
trajectory-based meta-learning setup, we modify its architecture accordingly. Specifically, we remove the
MaNGO encoder, which aggregates information across multiple trajectories. Instead, we provide the context
data as the initial position in the unprocessed input trajectory of the MaNGO decoder and repeat the
anchor-timestep data until the end of the trajectory. MaNGO then processes this sequence using spatial
message passing and temporal convolution to produce its predicted trajectory. We discard the predicted
portion corresponding to the context time steps and use the remaining time steps as the MaNGO prediction.

As an additional baseline, we compare our approach to the Equivariant Graph Neural Operator (EGNO) (Xu
et al., 2024), which employs equivariant message-passing layers and predicts the remaining simulation steps
in a single pass, closely aligning with our setup. However, training EGNO proved unstable with 15 message-
passing steps, and the best results were achieved using only 5 steps. We hypothesize that this instability
may stem from the longer prediction horizon of up to 200 steps in our experiments, as the baseline was
originally evaluated on tasks with a much shorter prediction horizon of only 8 steps. Further details on the
implementation of these baselines can be found in Appendix C.

We further study different design choices of M3GN on Sheet Deformation and Deformable Block. To investigate
the effect of the meta-learning approach, we train an MGN (MP) variant that uses ProDMPs predictions,
but omits a context aggregation and thus has no latent task description zv. Similarly, we compare to
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Figure 7: MSE on a log scale over full rollouts for the Sheet Deformation (Left) and Deformable Block (Right)
tasks for different meta-learning and MP variants. Using a ProDMP representation for MGN improves
performance. CNPs and NPs with a next-step prediction do not improve over standard MGN. A NP instead
of an CNP architecture for M3GN slightly reduces performance.

M3GN (Step-based), which performs a next-step prediction of the dynamics instead of predicting ProDMP
parameters, but otherwise follows the CNP training scheme to learn a latent task description. Finally, we
compare the deterministic CNP approach to both MP and step-based probabilistic Neural Process (NP)
approaches. Here, we get diagonal Gaussian distributions as the outputs of the context MPN, which we
aggregate using Bayesian context aggregation (Volpp et al., 2021). We further investigate if node aggregation
of the latent task description is beneficial by applying a maximum aggregation of the node features before the
context aggregation. While standard CNPs require a permutation-invariant context aggregation, our context
has a temporal structure. We thus experiment with a small transformer model with 4 transformer blocks, 4
attention heads, temporal encoding and a latent dimension of 32 as an aggregator. The transformer takes the
sequence of outputs of the context MPN and predicts the aggregated node-level task description zv.

Main Results. Figure 4 visualizes exemplary final simulation steps for M3GN and MGN for all tasks.
M3GN aggregates context information to condition node-level ProDMP representations of the simulated
trajectory. This approach leads to accurate simulations, providing much better alignment to the ground
truth simulation than the step-based MGN on all tasks. Appendix E.4 shows visualizations of full simulation
rollouts for all tasks and methods.3

Figure 5 provides the full-rollout MSE for M3GN, MGN, and MGN (with Material Information) across tasks.
Adding material information improves performance only on the Deformable Block and Tissue Manipulation
datasets. In contrast, on the Falling Teddy Bear and Sheet Deformation (OOD) tasks, MGN (with Material
Information) tends to overfit, likely resulting in decreased performance when material information was
provided. In general, using a later anchor time step improves performance across all methods, presumably
due to a shorter prediction horizon. The main exception is EGNO on Sheet Deformation (OOD), which
becomes unstable for later anchor time steps.

M3GN surpasses all baselines Deformable Block. For Sheet Deformation, M3GN and EGNO significantly
outperform the other baselines across context sizes. Furthermore, M3GN generalizes well to unseen material
properties in the OOD setup, whereas, e.g., MGN and MaNGO fail to properly extrapolate. For Tissue
Manipulation, the step-based baselines slightly outerperform M3GN in terms of MSE. Yet, M3GN and MaNGO
provide plausible and visually consistent simulations, with the step-based baselines primarily capturing finer
details more accurately. In contrast, EGNO performs significantly worse in this setting, achieving an MSE
that is an order of magnitude higher than that of M3GN.

On Falling Teddy Bear and Mixed Objects Falling, the step-based MGN without material information performs
well on the former but, along with the other step-based method, fails to provide accurate long-term simulations
on the latter. For Mixed Objects Falling, the predicted trajectories of both MGN variants qualitatively deviate
from the ground truth. Both MGN and MGN (with Material Information) exhibit object drift or misalignment,
e.g., between colliding bodies. In contrast, for M3GN, the ProDMP’s temporally consistent movements

3Videos of these simulations are in the supplementary material.
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Figure 8: MSE on a log scale over full rollouts for the Sheet Deformation (Left) and Deformable Block (Right)
tasks for different context and node aggregation methods. The node-level maximum context aggregation of
M3GN performs best for Sheet Deformation, while all methods work roughly equally well on the Deformable
Block task.

combined with context aggregation produce stable and coherent simulations, substantially improving over the
step-based baselines. Examples of these behaviors are shown at the bottom of Figure 4. MaNGO achieves
exceptional good results on Falling Teddy Bear, but it is surpassed by M3GN on Mixed Objects Falling.
Interestingly, trajectory-based methods do not benefit from later anchor steps on these tasks. We suspect the
increase in MSE is a consequence of how the metric is averaged: early timesteps are trivial (the object is
simply falling), so including them lowers the mean error. When anchoring later, these easy steps are removed,
and the MSE is computed only over the harder, post-impact segment, leading to a higher average error.
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Figure 9: Runtime comparison on four
tasks between the learned methods and
the different ground truth simulators.
Note the log scale on the y-axis.The
complete runtime and memory usage
evaluation is in Appendix, Table 3.

Additional Experiments. Figure 6 shows representative Per-
timestep MSE results, while Appendix E provides the complete set
of evaluations for different context sizes. These figures highlight the
error accumulation common in step-based learned simulatiors. In
contrast, M3GN maintains stable accuracy throughout the rollout. In
Sheet Deformation (ID), we observe a temporary increase in error for
M3GN around time steps 2 to 5. This behavior seems to stem from
a rapid change in node velocities, which our ProDMP representation
smooths over. While additional basis functions would increase the
ProDMP’s capacity and thus likely mitigate this issue, we deliberately
avoided excessive hyperparameter tuning to ensure a fair comparison
and comparable optimization budgets across methods.

Next, Figure 7 finds that both MP representations and a meta-
learning objective are crucial for accurate simulations. Interestingly,
using NPs with ProDMPs only slightly degrades performance com-
pared to M3GN, suggesting that the NP’s latent distribution does
not benefit our GNS setup. Figure 8 additionally compares different
methods to aggregate the context set. The node-level maximum con-
text aggregation works best for Sheet Deformation. For Deformable
Block, there is no significant difference between aggregations, causing
us to use the comparatively simple node-level maximum context
aggregation for all experiments.

Figure 19 in the Appendix presents two additional ablation studies that further characterize the behavior of
M3GN. We first investigate the stability of M3GN under noisy context observations and compare it against
MGN as well as a variant of M3GN that does not receive any context data. While M3GN remains robust
under moderate noise levels, we observe that the highest noise setting leads to worse performance than the
no-context variant, which we attribute to overfitting to uninformative and misleading context signals. We
further evaluate generalization across materials using a dataset composed of five distinct material parameter
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settings by comparing it to specialized baselines. Five separate MGN models are trained, each specialized
to a single material and evaluated on unseen initial conditions with the same material properties, serving
as an upper bound for single-material approaches. In contrast, a single M3GN model is trained on the
combined dataset and must infer material properties from the context set. For small context sizes, M3GN
achieves performance comparable to the specialized MGN models, while for larger context sizes M3GN slightly
outperforms MGN, demonstrating in total its ability to effectively leverage context information and generalize
across materials within a unified model.

We additionally present a visualization of the latent space for M3GN in Figure 20 in the Appendix, showing
that simulations with similar material properties are clustered together. This latent structure highlights the
model’s ability to differentiate between material behaviors while preserving the relationships between similar
properties.

Figure 9 compares the inference speed of M3GN to that of the step-based MGN. M3GN’s ProDMP trajectory
representation significantly decreases the amount of required model calls for the simulation, since, after
encoding, a single GNN forward pass can is used to compute the full trajectory. Additionally, the context set
is easily encoded in parallel, resulting in a relatively minor cost for the context computation and aggregation
for all tasks. While MGN does not perform any context processing, it requires one forward pass per timestep,
making its rollout inherently sequential. Together, these properties result in an inference-time speedup of up
to a factor of 32 for M3GN compared to MGN (for the Tissue Manipulation task), and up to a factor of
700 compared to the ground-truth simulators (for the Sheet Deformation task). A complete comparison of
execution time and memory consumption during inference is provided in Table 3 in the Appendix. Improving
over existing learned simulators by more than one, and over classical simulators by more than two orders
of magnitude enables rapid development for downstream engineering applications, such as manufacturing
optimization.

5 Conclusion

We introduce Movement-Primitive Meta-MeshGraphNet (M3GN), a novel Graph Network Simulator
that combines movement primitives with trajectory-level meta-learning for efficient and accurate long-term
predictions in physical simulations. Our method dynamically adapts to available context information during
inference, enabling accurate prediction of deformations under unknown object properties. Additionally, it
effectively mitigates error accumulation while reducing the number of required learned simulator function
calls. To validate the effectiveness of M3GN, we propose two new deformation prediction tasks with uncertain
material properties. Results on these tasks and existing datasets demonstrate that our method consistently
outperforms two strong Graph Network Simulator baselines, even when the baselines are provided with oracle
information about the material properties.

Limitations and Future Work. Our method may struggle to capture rapid, high-frequency dynamics, as
the smooth ProDMP formulation can lead to temporary errors when node velocities change abruptly. We also
plan to integrate online re-planning of trajectories, predicting trajectory segments with every model forward
pass. This process may enhance coordination between simulated nodes across segments while maintaining the
benefits of a compact multi-step trajectory representation. In addition, the M3GN framework is not limited
to deformation tasks; it can be extended to new settings such as fluid simulations or other non-mesh-based
environments, provided that an appropriate graph structure can be constructed from the underlying data.

Broader Impact Statement Our proposed Graph Network Simulator can positively impact various fields
relying on computational modeling and simulation by significantly reducing computational cost compared
to traditional simulators while providing accurate simulations. However, efficient and accurate simulation
of physical systems also comes with potential negative impacts, such as, e.g., the development of advanced
weapon models.
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A Mathematical formulations of Movement Primitives

We provide an overview of the probabilistic dynamic movement primitives (ProDMP) formulations utilized in
this paper, starting with the foundational methods: Dynamic Movement Primitives (DMPs) and Probabilistic
Movement Primitives (ProMPs).

A.1 DMPs

Schaal (2006) introduced Dynamic Movement Primitives (DMPs), which integrate a forcing term into a
dynamical system to generate smooth trajectories from given initial conditions4, such as a robot’s position
and velocity at a particular time. A DMP trajectory is governed by a second-order linear ordinary differential
equation (ODE) as follows:

τ2ÿ = α(β(g − y) − τ ẏ) + f(x), f(x) = x

∑
φi(x)wi∑
φi(x) = xφ⊺

xw, (7)

where y = y(t), ẏ = dy/dt, and ÿ = d2y/dt2 denote the position, velocity, and acceleration of the system at a
specific time t, respectively. Constants α and β are spring-damper parameters, g is the goal attractor, and τ
is a time constant modulating the speed of trajectory execution.

The functions φi(x) represent the basis functions for the forcing term, as shown in Fig. 10a, while the phase
variable x = x(t) ∈ [0, 1] captures the execution progress. The trajectory’s shape is determined by the weight
parameters wi ∈ w for i = 1, . . . , N and the goal term g. The trajectory [yt]t=0:T is typically computed by
numerically integrating the dynamical system from the start to the endpoint. However, this numerical process
is computationally expensive (Bahl et al., 2020; Li et al., 2023), as its cost scales with the trajectory length
and the resolution of the numerical integration.

A.2 ProMPs

Paraschos et al. (2013) introduced the Probabilistic Movement Primitives (ProMPs) framework for modeling
trajectory distributions, effectively capturing both temporal and inter-dimensional correlations. Unlike DMPs,
which rely on a forcing term, ProMPs directly model the desired trajectory and its distribution using a linear
basis function representation. Given a weight vector w or a weight vector distribution p(w) ∼ N (w|µw, Σw),
the corresponding trajectory or trajectory distribution is computed as follows:

Compute Trajectory: [yt]t=0:T = Φ⊺w, (8)
Compute Distribution: p([yt]t=0:T ; µy, Σy) = N (Φ⊺µw, Φ⊺ΣwΦ ). (9)

Here, the matrix Φ contains the basis functions for each time step t ∈ [0, T ], shown in Fig. 10a. The trajectory
shape is determined by the weight parameters wi ∈ w through matrix-vector multiplication. Despite their
simplicity and computational efficiency, ProMPs lack an intrinsic dynamic system, limiting their ability to
specify a given initial condition for a trajectory or predict smooth transitions between two ProMP trajectories
with differing parameter vectors.

A.3 ProDMPs

Solving the ODE underlying DMPs Li et al. (2023) observed that the governing equation of DMPs, as
described in Eq. (7), admits an analytical solution. We re-express the original ODE from Eq. (7) and its
homogeneous counterpart in standard ODE forms as follows:

Non-homo. ODE: ÿ + α

τ
ẏ + αβ

τ2 y = f(x)
τ2 + αβ

τ2 g ≡ F (x, g), (10)

Homo. ODE: ÿ + α

τ
ẏ + αβ

τ2 y = 0. (11)

4In mathematics, an initial condition refers to the value of a function or its derivatives at a starting point, which can be
specified at any time, not necessarily at t = 0.
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Figure 10: Illustration of basis functions used in MP methods. (a) Normalized radial basis functions used in
DMPs in Eq.(7) and ProMPs in Eq.(8), respectively. (b) Positional basis functions of ProDMPs’ weights w
and (c) ProDMPs’ goal g in Eq.(17). In ProDMPs, g is concatenated with the weights vector w and treated
as one dimension of the resulting vector wg. Both weights and goal basis functions are computed from solving
the DMPs’ underlying ODE, following the procedure from Eq.(12) to Eq.(16)

The solution to this ODE is essentially the position trajectory, and its time derivative yields the velocity
trajectory. They are formulated through several time-dependent function as:

y =
[
y2p2 − y1p1 y2q2 − y1q1

] [
w
g

]
+ c1y1 + c2y2 (12)

ẏ =
[
ẏ2p2 − ẏ1p1 ẏ2q2 − ẏ1q1

] [
w
g

]
+ c1ẏ1 + c2ẏ2. (13)

Here, the learnable parameters [w, g]T which control the shape of the trajectory, are separable from the
remaining time-dependent functions y1, y2, p1, p2, q1, q2. These functions are computed by solving the ODE
in Eq. (10), (11):

y1(t) = exp
(

− α

2τ
t
)

, y2(t) = t exp
(

− α

2τ
t
)

, (14)

p1(t) = 1
τ2

∫ t

0
t′ exp

(
α

2τ
t′

)
x(t′)φ⊺

xdt′, p2(t) = 1
τ2

∫ t

0
exp

(
α

2τ
t′

)
x(t′)φ⊺

xdt′, (15)

q1(t) =
(

α

2τ
t − 1

)
exp

(
α

2τ
t
)

+ 1, q2(t) = α

2τ

[
exp

(
α

2τ
t
)

− 1
]

. (16)

Here, the function y1, y2 are the complementary solutions to the homogeneous ODE presented in Eq.(11),
with ẏ1, ẏ2 their time derivatives respectively.

It’s worth noting that p1 and p2 cannot be derived analytically due to the complexity of the forcing basis terms
φx. Consequently, these terms must be computed numerically. However, isolating the learnable parameters,
namely w and g, enables the reuse of other time-dependent functions across all generated trajectories.

ProDMPs identify these reusable terms as the position and velocity basis functions, denoted by Φ(t) and
Φ̇(t), respectively. Fig. 10b and Fig. 10c illustrate the resulting position basis functions for the weights
w and the goal g, respectively. These functions are pre-computed offline and treated as constants during
online learning. When w and g are combined into a concatenated vector, represented as wg, the position and
velocity trajectories can be expressed in a manner similar to that used by ProMPs:

Position: y(t) = Φ(t)⊺wg + c1y1(t) + c2y2(t), (17)
Velocity: ẏ(t) = Φ̇(t)⊺wg + c1ẏ1(t) + c2ẏ2(t). (18)

In the main paper, for simplicity and notation convenience, we use w instead of wg to describe the parameters
and goal of ProDMPs.
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Trajectory’s Initial Condition The coefficients c1 and c2 are solutions to the initial value problem defined
by Eqs.(17)(18). Assuming the trajectory starts at time tb with position yb and velocity ẏb, we denote the
values of the complementary functions and their derivatives at the condition time tb as y1b

, y2b
, ẏ1b

and ẏ2b
.

Similarly, the values of the position and velocity basis functions at tb are denoted as Φb and Φ̇b respectively.
Using these notations, c1 and c2 are computed as:

[
c1
c2

]
=

 ẏ2b
yb−y2b

ẏb

y1b
ẏ2b

−y2b
ẏ1b

+ y2b
Φ̇⊺

b
−ẏ2b

Φ⊺
b

y1b
ẏ2b

−y2b
ẏ1b

wg

y1b
ẏb−ẏ1b

yb

y1b
ẏ2b

−y2b
ẏ1b

+ ẏ1b
Φ⊺

b
−y1b

Φ̇⊺
b

y1b
ẏ2b

−y2b
ẏ1b

wg

 . (19)

Set Goal Convergence Relative to Initial Condition The goal attractor g in the ProDMPs framework
represents an asymptotic convergence point for the dynamical system as t → ∞, typically defined as an
absolute coordinate. However, the goal term can also be modeled relative to the initial position yb. In this
approach, the relative goal grel is predicted, and its absolute counterpart is computed as gabs = grel + yb.
This approach is particularly useful for predicting the goal in the coordinate system relative to a node’s
starting position. Since we aim to achieve a translation-equivariant approach (where absolute node positions
are encoded as relative edge features between nodes), predicting relative goal positions aligns well with this
design principle.

B Architecture and Method Details

This section offers detailed insights into our methodology and the architectural decisions guiding our approach.

B.1 Graph Encodings

In processing the initial graph G∗,T c , we create edges between the mesh and the collider based on a radius
graph. Specifically, we connect mesh and collider nodes for Deformable Block and Tissue Manipulation
if their euclidean distance is smaller than 0.3. In the Tissue Manipulation task, the collider is given as a
single node which is connected to the tip of the tissue. It marks the grasping point of a gripper. In the
Sheet Deformation task, we add an additional node feature to the nodes which get directly influenced by the
external force. Therefore, no collider is used in this task. For the Falling Teddy Bear and the Mixed Objects
Falling task, we implicitly model the ground as a collider by adding the current z position of every node to
its node features (Sanchez-Gonzalez et al., 2018). This quantity gets updated for the step-based methods.

B.2 ProDMP Details

Initialization of ProDMPs necessitates node velocities for the anchor time step T c. We employ a linear
approximation, leveraging data from the previous time step T c − 1.

Similar to the relative encoding of node positions in the MPN, we employ a technique in ProDMP to derive
relative trajectories. Initially, we integrate a relative goal position as part of the node weights wv. Utilizing
this approach, trajectories commence from the origin and traverse towards their respective relative goals.
Subsequently, we adjust all positions by the initial position. This strategy fosters model generalization across
various nodes.

The parameter τ , as described in Equation 7, is learned globally across all tasks using a compact MLP. The
model’s final layer employs a scaled sigmoid function for parameter estimation.

C Experimental Protocol

In order to promote reproducibility, we provide details of our experimental methodology. Table 1 presents
the hyperparameters used in our experiments. For a comprehensive description of the creation of all datasets,
please refer to Appendix D.
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The training took place on an NVIDIA A100 GPU, with each method given the same computation budget
of 48 hours, except for the Sheet Deformation task, where the computation budget was set to 24 hours.
Consequently, the number of epochs varied, as the batching differed significantly between the trajectory-based
method M3GN and the step-based MGN. We adapted the batchsize of the step-based methods in order to
use the GPU memory efficiently. M3GN is always trained on one full trajectory per batch. Here, the whole
context is processed in parallel and the remaining trajectory is predicted and compared to the ground truth.

We conducted a multi-staged grid-based hyperparameter search for the learning rate, input noise, and other
hyperparameters as the latent task description dimension. In general, we optimized all methods on all tasks
separately, however, we noticed that over different tasks and methods some parameters had the same best
configuration. We did not use the test data for this, but tuned all hyperparameters on a separate validation
split. This split was also used to determine the best epoch checkpoint to mitigate any overfitting effects.

In the end, all methods worked well with a learning rate of 5.0 × 10−4 except in the Sheet Deformation task.
Here, our hyperparameter optimization indicated that the trajectory based methods benefit from a smaller
learning rate of 1.0 × 10−5. For MGN, we experimented with different input noise scales. Notably, for the
Deformable Block and the Sheet Deformation task, a smaller noise scale improved performance significantly.
In the falling objects tasks, we also explored second-order predictions, such as node accelerations, instead of
velocity predictions. Following the approach in Pfaff et al. (2021), we adjusted the labels accordingly and
conducted preliminary evaluations. However, since direct velocity predictions yielded superior results, we
opted for them as our final approach, as presented in the main paper.

C.1 EGNO Training

For the Equivariant Graph Neural Operator (EGNO) method, we used the original code from Xu et al. (2024)
for the model implementation. Since EGNO can only predict for a fixed next horizon, we cut the remaining
prediction when using a later anchor time step. This is done during training and evaluation.

C.2 MGN Training

We mainly follow Pfaff et al. (2021) for the training of the MGN baseline. The only difference is the
incorporation of current and historic velocity node features. Pfaff et al. (2021) consider this in their
experiments but they show in their experiment suite that it does not improve the results and can lead to
overfitting. This is different to our results. For us, on all tasks except Mixed Objects Falling, adding the
current and historic velocities of nodes improves the results. We follow the Gaussian random walk noise
injection for the velocity features from Sanchez-Gonzalez et al. (2020).

D Datasets and Preprocessing information

In this section, we give detailed information about the datasets we used. We report a general overview of all
datasets in Table 2. Here each dataset is abbreviated for brevity as the following:

Table 2 lists in detail the datasets used in the paper. Each dataset is abbreviated for brevity and explained
as follows:

• SD.: Sheet Deformation

• DB: Deformable Block

• TM.: Tissue Manipulation

• FTB.: Falling Teddy Bear

• MOF.: Mixed Objects Falling
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Table 1: Table listing the hyperparameters and configurations of the experiments

Parameter Value
Node feature dimension 128
Latent task description dimension 64
Decoder hidden dimension 128
Message passing blocks 15
Message passing blocks (EGNO) 5
GNN Aggregation function Mean
GNN Activation function Leaky ReLU
M3GN Context Aggregation method Max Aggr.
M3GN Latent Node Aggregation method No Aggr.
Learning rate 5.0 × 10−4

Learning rate (Sheet Def. MP-based methods) 1.0 × 10−5

Number of ProDMP basis functions 30
ProDMP τ learned

range: [0.3,3.0]
ProDMP Relative start position True
MGN input mesh noise 0.01
MGN input mesh noise (Def. Block) 0.001
MGN input mesh noise (Sheet Def.) 0.0001
MGN history length (all tasks except Mixed Objects Fall) 2
MGN history length (Mixed Objects Fall) 0
M3GN history length (all tasks except Tiss. Man. and Sheet Def. (OOD)) 1
M3GN history length (Tiss. Man. and Sheet Def. (OOD)) 0
Minimum/Maximum Train Context Size (Sheet Deformation) 2 / 15
Minimum/Maximum Train Context Size (Deformable Block) 2 / 15
Minimum/Maximum Train Context Size (Tissue Manipulation) 2 / 40
Minimum/Maximum Train Context Size (Falling Teddy Bear) 10 / 50
Minimum/Maximum Train Context Size (Mixed Objects Fall) 10 / 50
Threshold to create collider-mesh edge 0.3

Table 2: Table listing the datasets and their configurations

Name Train/Val/Test Splits Number of steps Number of Nodes Collider interaction
SD. 630/135/135 50 225 External Force
DB. 675/135/135 39 81 Rigid Collider
TM. 600/120/120 100 361 Grasping point
FTB. 700/150/150 200 304 Boundary Condition
MOF. 1800/360/360 200 up to 350 Boundary Condition

D.1 Sheet deformation

We select 9 different Young’s modulus ranging between 10 and 1000 from a very deformable to an almost
stiff sheet. Then, per material, we compute 100 simulations using Abaqus where the positions of the two
acting forces are randomized. The boundary nodes of the sheet are kept in place. From every material
configuration, we take 70 simulations for training and 15 simulations for validation and testing respectively.
For the out-of-distribution task, we trained using Young’s modulus values ranging from 60 to 500 and tested
using values of 10, 30, 750, and 1000.
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Figure 11: Six objects used in the Mixed Objects Falling task. From left to right: Teddy Bear, Bunny, Gummy
Bear, Gummy Worm 1, Gummy Worm 2, and Traffic Cone.

D.2 Deformable Block

The original task was introduced in Linkerhägner et al. (2023), generated using SOFA (Faure et al., 2012). It
uses 3 different Poisson’s ratios and 9 different trapezoidal meshes. We increase the difficulty of this dataset
by introducing more complex initial starting conditions. This is done by selecting a random Poisson’s ratio,
simulating for 11 steps, and then switching to another Poisson’s ratio. Then, the simulation continues for 39
steps. The first 11 steps are then discarded and step 12 is then the initial step for the dataset (and is referred
to step 0 throughout the paper).

D.3 Tissue Manipulation

We use the original task introduced in Linkerhägner et al. (2023) without alterations. This dataset was also
generated using SOFA (Faure et al., 2012).

D.4 Falling Teddy Bear

Each trajectory of the dataset was created by choosing an angle from [0◦, 360◦] for the first time step. To
vary the material properties, we randomly select combinations of Young’s modulus and Poisson’s ratio from
1000 uniformly spaced values of the Young’s modulus in [1 × 105, 1 × 106] and 100 uniformly spaced values
of the Poisson’s ratio in [0.0, 0.499]. This dataset is generated using NVIDIA Isaac Sim (NVIDIA, 2022a),
which utilizes PhysX 5.0 (NVIDIA, 2022b) to simulate tetrahedral meshes based on initial CAD models.

D.5 Mixed Objects Falling

The simulation uses the setup from Falling Teddy Bear. In addition to the Teddy, we include other objects to
encourage diversity. In total, there are six different objects presented in the dataset. We report an image of
their high-resolution meshes in Figure 11. From every object, we use 300 simulations for the training split
and 60 simulations for the test and validation split respectively.
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Figure 12: Log-scale MSE over full rollouts on the validation split for M3GN and MGN comparing history
features. The better performing hyperparameter configuration was chosen for the final evaluation on the test
dataset.
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Figure 13: Per-timestep MSE for the Deformable Block task.

E Additional Results

E.1 Hyperparameter Optimization

We observed that the history inclusion of previous velocities has a big impact on the result of the simulation,
depending on the task. To obtain optimal performance, we did an hyperparameter optimization on the
validation split comparing history features. The results for M3GN andMGN are given in Figure 12.

E.2 MSE over time

To gain better insights into the rollout stability of the model predictions, we report the Mean Squared Error
(MSE) over timesteps in Figure 13, 14, 15, 16, 17, and Figure 18. Overall, our model M3GN demonstrates
great robustness against error accumulation, benefiting from the inherent trajectory representation provided
by the ProDMP method. MGN works well on the Tissue Manipulation task, but fails to incorporate the
correct context information on other tasks. EGNO performs in general worse except on the Sheet Deformation
tasks.

27



Published in Transactions on Machine Learning Research (01/2026)

M3GN (Ours) MGN MGN (with Material Information) MaNGO
EGNO

0 10 20 30 40 50
Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r o
ve

r T
im

e

1e 5 Sheet Deformation (ID)

(a) Context Size 2

0 10 20 30 40 50
Time Steps

0

2

4

6

Er
ro

r o
ve

r T
im

e

1e 6 Sheet Deformation (ID)

(b) Context Size 5

0 10 20 30 40 50
Time Steps

0

1

2

3

4

5

Er
ro

r o
ve

r T
im

e

1e 6 Sheet Deformation (ID)

(c) Context Size 10

Figure 14: Per-timestep MSE for the Sheet Deformation (ID) task.
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Figure 15: Per-timestep MSE for the Sheet Deformation (OOD) task.

E.3 Additional Ablations

Figure 19 illustrates two complementary evaluations of M3GN. On the left, we analyze the stability of M3GN
when provided with noisy context data and compare its behavior to MGN as well as to a variant of M3GN
that operates without any context observations. This experiment highlights the robustness of M3GN to
imperfect contextual information. On the right, we consider a dataset composed of five distinct material
parameter settings. We train five separate MGN models, each specialized to a single material, and evaluate
them on unseen initial conditions but with their assigned material properties. These models are therefore
specialized to a single material and serve as an upper bound for single-material approaches. In contrast,
we train one M3GN model on the union of all material splits, where the model must infer the underlying
material properties directly from the context set, demonstrating its ability to generalize across materials
within a unified model.

E.4 Visualizations

In Figure 20, we include a latent space visualization of the Sheet Deformation task, where simulations with 9
different Young’s Modulus values are clustered according to their material properties. The t-SNE projection
of the 64-dimensional latent node vectors demonstrates clear clustering, indicating that the model effectively
captures and differentiates material characteristics based on learned task representations.

We further provide additional visualizations for M3GN, MGN and MGN (with Material Information) for
exemplary simulations of all tasks. Each visualization shows the same simulated trajectory for different time
steps (columns) and different methods (rows).

• Figure 21 shows a simulation of the Sheet Deformation task for a context set size of 5.

• Figure 22 visualizes the Deformable Block task for a context set size of 6.
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Figure 16: Per-timestep MSE for the Tissue Manipulation task.
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Figure 17: Per-timestep MSE for the Falling Teddy Bear task.

• Figure 23 shows a Tissue Manipulation visualization for a context set size of 6.

• Figure 24 provides an examplary Teddy Bear Falling for a context set size of 20.

• Figure 25 and Figure 26 show two different simulated Mixed Objects Falling for a context set size of
20.

Across tasks, M3GN provides accurate simulations, whereas MGN, especially when not provided the additional
material information as oracle knowledge, sometimes fails to respect the material properties or predicts a
drift in the solution for later time steps.

E.5 Runtime, memory and parameter comparison.

In Table 3, we provide the runtime, memory, and parameter comparison of all methods on the four benchmark
task during inference. We split up the total inference time into context encoding and simulation time for
M3GN.
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Figure 18: Per-timestep MSE for the Mixed Objects Falling task.
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Figure 19: MSE on a log scale for two ablations on the Deformable Block Dataset. Left: Stability analysis of
M3GN using noisy context data, compared with MGN and a variant of M3GN that does not observe any
context data. Right: Comparison of M3GN and MGN on a special dataset. Using five different material
parameters, we train five MGN models, each on a single material, and evaluate them on unseen initial
conditions while assuming the material is known from the training set. As a comparison, we train a single
M3GN model on the combined dataset of all five materials, where the model estimates the material properties
from the context set.
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Figure 20: This figure shows a latent space visualization of the Sheet Deformation task for trajectories with 9
different Young’s Modulus values, using a context size of 10. Each dot represents a 64-dimensional latent
node vector projected to 2D using the t-SNE algorithm (van der Maaten & Hinton, 2008). Dots of the
same color correspond to latent node descriptions for the same task, each simulated with a unique Young’s
Modulus. The visualization reveals distinct clustering in the latent space, with similar material properties
grouped closer together, highlighting the relationship between material characteristics and the learned task
representations. To improve clarity, points corresponding to nodes on the plate’s edge were excluded, as their
constant boundary condition resulted in unvarying latent descriptions.
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Figure 21: Simulation over time of an exemplary test trajectory from the Sheet Deformation task by
M3GN (blue), EGNO (purple), MaNGO (red), MGN (orange), and MGN with material information (green).
The context set size is set to 5. All visualizations show the colored predicted mesh, a collider or floor,
and a wireframe (red) of the ground-truth simulation. M3GN can accurately predict the correct material
properties, resulting in a highly accurate simulation.
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Figure 22: Simulation over time of an exemplary test trajectory from the Deformable Block task by M3GN
(blue), EGNO (purple), MaNGO (red), MGN (orange), and MGN with material information (green). The
context set size is set to 5. All visualizations show the colored predicted mesh, a collider or floor,
and a wireframe (red) of the ground-truth simulation. M3GN can accurately predict the correct material
properties, resulting in a highly accurate simulation.
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Figure 23: Simulation over time of an exemplary test trajectory from the Tissue Manipulation task by
M3GN (blue), EGNO (purple), MaNGO (red), MGN (orange), and MGN with material information (green).
The context set size is set to 5. All visualizations show the colored predicted mesh, a collider or floor,
and a wireframe (red) of the ground-truth simulation. All methods can solve the task, however MGN is
drifting a tiny bit to the left over time.
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Figure 24: Simulation over time of an exemplary test trajectory from the Falling Teddy Bear task by
M3GN (blue), EGNO (purple), MaNGO (red), MGN (orange), and MGN with material information (green).
The context set size is set to 20. All visualizations show the colored predicted mesh, a collider or floor,
and a wireframe (red) of the ground-truth simulation. M3GN significantly outperforms both step-based
baselines.
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Figure 25: Simulation over time of a bunny from the Mixed Objects Fall task by M3GN (blue), EGNO
(purple), MaNGO (red), MGN (orange), and MGN with material information (green). The context set size
is set to 20. All visualizations show the colored predicted mesh, a collider or floor, and a wireframe
(red) of the ground-truth simulation. M3GN significantly outperforms both step-based baselines.
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Figure 26: Simulation over time of a traffic cone from the Mixed Objects Fall task by M3GN (blue),
EGNO (purple), MaNGO (red), MGN (orange), and MGN with material information (green). The context
set size is set to 20. All visualizations show the colored predicted mesh, a collider or floor, and a
wireframe (red) of the ground-truth simulation. M3GN significantly outperforms both step-based baselines.
The simulation generated by MGN is severly affected by drift.
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Table 3: Runtime, memory, and parameter comparison of all methods on the four benchmark tasks.

Task Metric M3GN (Ours) MGN EGNO Mango

Deformable Block

Context Encoding Time [s] 0.0062 0.0000 0.0000 0.0000
Simulation Time [s] 0.0132 0.2673 0.0134 0.0628

Total Inference Time [s] 0.0194 0.2673 0.0134 0.0628
GPU Memory Usage [MB] 68.33 26.94 121.43 126.10

# Parameters 2 542 847 1 259 394 1 000 026 2 990 082

Sheet Deformation

Context Encoding Time [s] 0.0066 0.0000 0.0000 0.0000
Simulation Time [s] 0.0132 0.3177 0.0242 0.1247

Total Inference Time [s] 0.0198 0.3177 0.0242 0.1247
GPU Memory Usage [MB] 170.27 29.12 210.69 324.03

# Parameters 2 546 206 1 259 779 999 258 2 990 211

Tissue Manipulation

Context Encoding Time [s] 0.0083 0.0000 0.0000 0.0000
Simulation Time [s] 0.0135 0.7531 0.0802 0.4705

Total Inference Time [s] 0.0218 0.7531 0.0802 0.4705
GPU Memory Usage [MB] 569.70 45.40 759.84 748.71

# Parameters 2 547 614 1 259 907 1 000 794 2 990 723

Mixed Objects Falling

Context Encoding Time [s] 0.0354 0.0000 0.0000 0.0000
Simulation Time [s] 0.0143 1.1961 0.1347 0.7442

Total Inference Time [s] 0.0497 1.1961 0.1347 0.7442
GPU Memory Usage [MB] 1340.79 42.56 1406.92 1405.34

# Parameters 2 545 950 1 259 651 999 130 2 990 083
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