KIT | KIT-Bibliothek | Impressum | Datenschutz

Uncertainty-Aware Prognostics of Ball Bearings Using Physics-Based Simulation and Conditional Normalizing Flows

Bott, Alexander 1; Liu, Bolin; Nuding, Linus; Wachsmuth, Julian; Puchta, Alexander 1; Jürgen, Fleischer 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Accurate and uncertainty-aware prediction of the remaining useful life (RUL) of ball bearings is crucial for reliable condition-based maintenance, yet real run-to-failure data are scarce, and most data-driven prognostic models lack calibrated uncertainty estimates. This work proposes a unified framework that combines physics-informed simulation, normalizing-flow-based distribution alignment, and principled uncertainty quantification. A dynamic bearing degradation simulator is used to generate diverse synthetic trajectories, and conditional normalizing flows are employed to align simulated features with real vibration measurements while preserving physically meaningful RUL labels. Deterministic models are trained exclusively on the XJTU-Bearing data set and show good performance, with the best predictor (ExtraTrees) achieving an MAE of 0.0898, an MSE of 0.0113, and an R2 of 0.8658, but lack qualified uncertainty estimates. Building on this base model, we then evaluate several uncertainty-estimation techniques. Quantile regression and conformalized quantile regression reach the nominal 90% (empirical 0.95%) with average interval widths of 0.54, while symmetric conformal prediction attains 0.919 coverage with a width of 0.654. ... mehr


Download
Originalveröffentlichung
DOI: 10.1109/ACCESS.2026.3661174
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2026
Sprache Englisch
Identifikator ISSN: 2169-3536
KITopen-ID: 1000190305
Erschienen in IEEE Access
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 14
Heft 1
Seiten 1
Schlagwörter Ball bearings, uncertainty quantification, predictive maintenance, RUL prediction, physics-informed simulation, normalizing flows, sim-to-real transfer, distribution alignment, synthetic data generation, PHM
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page