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For a long time, the lack of archived radar data in Germany prevented 
comprehensive, long-term studies of convective storms. However, the recent 
availability of a 20-year, homogeneous dataset based on 16, and in some years 17, 
single-polarization C-band radars now allows for consistent, national-scale 
analyses. This dataset provides a solid foundation for more precise hail 
statistical assessments and long-term hail frequency estimation, including 
potential trends. A tracking algorithm (TRACE3D), which was specifically 
modified to detect severe convective cells with the potential to produce hail, 
was used to identify 15,577 potential hail tracks (PHTs) during the summer half- 
year period from 2005 to 2024. Validation against building insurance data shows 
that the modified TRACE3D algorithm performs reasonably well and can 
adequately reproduce hail statistics in Germany. The spatial distribution of the 
PHTs reveals distinct regional patterns, including a north-to-south gradient 
influenced by the proximity to seas and orographic features. The highest hail 
frequency occurs south of Stuttgart and over the Bavarian Prealps. Most tracks are 
shorter than 40 km and last no more than 75 min (both at the 75th percentile). 
Nearly 60% of the tracks show a propagation direction from southwest to 
northeast, which aligns with typical mid-tropospheric conditions favoring 
convection. Furthermore, half of the days with PHTs are associated with 
atmospheric blocking regimes, such as Scandinavian, European, or Greenland 
blocking. Hail events in Germany are unevenly distributed in time. Sixty-three 
percent of days record no PHTs, and there are only occasional periods of intense 
hail activity with many tracks per day. While many hail days tend to be isolated 
(40%), under certain weather conditions, serial clustering of several hail days can 
form. However, such episodes rarely last more than 2 weeks and are often 
associated with prolonged blocking. Trend analyses show a high annual variability 
in PHTs with no clear trend for entire Germany. However, significant regional 
differences emerge: northern and central Germany show a decreasing tendency 
in PHT occurrence, whereas southern Germany exhibits a significant increase.
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1 Introduction

Severe hail events, causing billions of euros of damage to 
buildings, vehicles, infrastructure, and agriculture, are a recurring 
weather phenomenon in Germany and have been well documented 
over the last 2 decades (e.g., Kunz et al., 2018; Púčik et al., 2019; 
Wilhelm et al., 2024; GDV, 2024a). For instance, the Munich 
hailstorm on 12 July 1984 (Heimann and Kurz, 1985; Höller and 
Reinhardt, 1986), with hailstones up to 10 cm in diameter, still tops 
the loss statistics in motor vehicle damage insurance, with 
230,000 vehicles damaged and damage costs of 2.9 billion euros 
(adjusted for inflation to 2023 values; GDV, 2024a; GDV, 2024b). 
More than 300 injured people required hospital treatment and three 
people died of shock (SPIEGEL, 1984). While some insurers had 
already included hail before, this event led others to expand their 
natural hazard insurance accordingly (Allianz, 2009). Previously, 
coverage typically included only winter storms (or damage caused 
by at least Beaufort 8) and fires.

In terms of property damage, the hailstorms of 27–28 July 2013 
(known as hailstorm Andreas; Kunz et al., 2018) are considered the 
costliest hail-related event in Germany. According to the insurance 
industry’s standard 72-h event definition, these storms caused a total 
of 4.05 billion euros in insured losses (2.6 billion euros in property 
damage, 1.45 billion euros in motor vehicle damage; GDV, 2024a; 
GDV, 2024c). A few days later, on 6 August 2013, the largest 
hailstone ever recorded in Germany was registered in Undingen 
(14 km south of Reutlingen; see Figure 1) on the Swabian Jura. 
According to the European Severe Weather Database (ESWD; 

Dotzek et al., 2009), it reached a maximum diameter of 14.1 cm 
(Punge and Kunz, 2016).

Despite the wealth of well-documented damage-related events 
based on claims data from the insurance industry, there is a 
significant lack of comprehensive, homogeneous long-term hail 
observations (Martius et al., 2018; Kunz et al., 2025). While some 
regions of the world (e.g., France and Italy) have operated dense 
hailpad networks that allow trend estimations (Hermida et al., 2013; 
Dessens et al., 2015; Manzato et al., 2022), such datasets are not 
available for Germany.

In contrast, remote sensing products, such as those derived from 
satellite observations, enable indirect estimation of hail probability 
on continental or even global scales, either through cloud top 
features like overshooting tops (OTs; e.g., Bedka, 2011; Mikuš 
and Mahović, 2013; Punge et al., 2017; Christo et al., 2025) or 
via passive microwave measurements (e.g., Zipser et al., 2006; Ni 
et al., 2017; Bang and Cecil, 2019; Laviola et al., 2020). While OTs 
indicate strong updrafts at the cloud top, often associated with hail- 
producing storms, microwave sensors supply physical information 
on frozen hydrometeors inside clouds. Both approaches remain 
constrained: non-geostationary passive microwave sensors provide 
only intermittent coverage, and OT analyses suffer from limited 
spatial resolution and high false positive rates, despite recent 
improvements (e.g., Bedka et al., 2012; Khlopenkov et al., 2021).

Conversely, radar measurements enable more direct, high- 
resolution, and temporally continuous observation of 
precipitation and hail processes, making them the most powerful 
remote sensing instrument for indirect hail detection (Allen et al., 
2020), although this is usually only possible at the national level. In 
particular, algorithms that analyze volumetric radar reflectivity 
provide reliable estimates of hail frequency on the ground (e.g., 
Witt et al., 1998; Delobbe and Holleman, 2006; Kunz and Kugel, 
2015; Murillo and Homeyer, 2019). In Germany, radar data have 
been used for several years to estimate hail occurrence. Kunz and 
Puskeiler (2010) created the first comprehensive proxy-based hail 
climatology for southwest Germany (1997–2008) based on the 
Waldvogel et al. hail criterion (1979). This climatology was 
developed using three-dimensional (3D) reflectivity from a 
single-polarization C-band Doppler radar combined with 
insurance loss data. According to this study, the hail hotspot is 
located in the Neckar valley downstream of the Black Forest 
mountains. Building upon this study, Kunz and Kugel (2015)
used five established criteria for hail estimation to evaluate the 
quality of different methods. They found that for the Hail Detection 
Algorithm (HDA; Smart and Alberty, 1985) and the Probability Of 
Severe Hail (POSH; Witt et al., 1998) had the highest hail detection 
skill over a 15-year period, as verified by building insurance data. 
Puskeiler (2013) and Puskeiler et al. (2016) then applied their 
findings to 3D reflectivity from the operational radar network of 
the German Weather Service (Deutscher Wetterdienst, DWD), 
which at that time consisted of 16 single-polarization C-band 
radars. The cell tracking algorithm TRACE3D (Handwerker, 
2002) was used to estimate individual tracks of convective cells 
with high reflectivity and, consequently, a high probability of hail on 
the ground. Their analysis showed that the number of radar- 
detected hail days increases from north to south. Enhanced hail 
occurrence is also expected on the leeward side of low mountain 
ranges. Similar distributions of hail days were also found by 

FIGURE 1 
Topographic (height) map of the study area, Germany and its 
neighboring countries: Netherlands (NL), Belgium (BE), Luxembourg 
(LU), France (FR), Switzerland (CH), Austria (AT), the Czech Republic 
(CZ), Poland (PL), and Denmark (DK). Various cities and mountain 
regions (marked in capital letters) are included for orientation: (A) 
Vosges, (B) Black Forest, (C) Swabian Jura, (D) Bavarian Prealps, (E) 
Rhenish Mountains, (F) Hessian Highlands, and (G) Ore Mountains. The 
federal states addressed in the paper are marked with their 
corresponding abbreviations: Baden-Württemberg (BW), Bavaria (BY), 
Hesse (HE), Rhineland-Palatinate (RP), Saarland (SL), Saxony-Anhalt 
(ST), and Schleswig-Holstein (SH).
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Junghänel et al. (2016) based on the same radar network for the 
period from 2002 to 2011. However, they used only the precipitation 
scan at the lowest terrain-following scan level in combination with 
hail observations from various sources.

Building on the work of Puskeiler (2013), Schmidberger (2018)
refined the track identification algorithm to ensure homogeneous 
tracking and to improve hail detection in a coarse radar dataset (PZ 
product; see Section 2.1), which is the only product available for a 
long-term period. Because radar-based methods do not necessarily 
ensure hail on the ground, the identified tracks are hereinafter 
referred to as potential hail tracks (PHTs). The PHTs generated 
with TRACE3D (2005–2015) formed the basis for a stochastically 
generated event set of hail tracks that is used as input of a hail risk 
model for building damage. For instance, a simulation period of 
10,000 years provided a sufficiently large sample size to estimate the 
probable maximum loss for a 200-year return period, which is 
required by insurance industry regulations. This PHT catalog is 
currently being expanded annually and serves as a basis for 
addressing additional scientific questions. For example, Kunz 
et al. (2020) studied the environmental conditions during hail 
events, particularly in the context of cold fronts and high-shear 
environments. They found that frontal storm tracks associated with 
hail produce larger hailstones and longer tracks on average. They 
also found that deep-layer shear or storm-relative helicity plays an 
important role in differentiating hail diameter and, in particular, hail 
track length. In another study (Tonn et al., 2023), the Bunkers’ storm 
motion parameterization of hail-producing supercells (Bunkers 
et al., 2000), originally developed for the USA, was tested for its 
applicability in Germany. Due to the different ambient conditions 
associated with supercells in Europe and the USA (Taszarek et al., 
2020a; Taszarek et al., 2020b), adjustments were recommended to 
improve the estimation of storm motion and to allow more accurate 
nowcasting of supercell potential. Finally, Li et al. (2025) used the 
catalog to create and validate a machine learning-based hail 
prediction model using only convective environmental 
parameters. The model achieved a Heidke Skill Score of up to 
0.66 for areas affected by hail.

With the annual extension of the catalog, PHTs calculated 
according to the method of Schmidberger (2018) are now 
available for a 20-year period (2005–2024). This allows more 
robust analyses of the spatial distribution of hail frequency as 
well as detailed investigations of their characteristics, such as life 
cycle or diurnal and annual cycles. Additionally, the 20-year data 
allow an initial estimation of possible temporal developments and 
emerging trends.

Therefore, the central research questions of this study are as 
follows: (i) How reliably can a meaningful proxy-based hail 
climatology for Germany be derived from 3D radar data using a 
tracking method for severe convective storms with hail potential? (ii) 
What is the regional hail frequency across Germany? Which areas 
constitute hot spots, and which factors explain the observed spatial 
variability? (iii) What are the average characteristic properties of the 
PHTs? (iv) Is there evidence of temporal clustering of PHTs? (v) 
Which large-scale weather patterns favor the occurrence of PHT 
days? (vi) How have the frequency and characteristics of PHTs in 
Germany evolved over the past 20 years, and are there spatial 
differences in these trends?

The paper is structured as follows: Section 2 provides an 
overview of the datasets and methods used in this study. 
Section 3 presents the radar-based hail climatology, focusing on 
the spatial distribution of PHTs and their main characteristics. This 
includes clustering patterns, such as the daily frequency of PHTs and 
their occurrence over multiple days. Section 4 investigates trends in 
PHT’s frequency, with a particular focus on regional variations. 
Finally, Section 5 summarizes the main findings and draws 
conclusions.

2 Data and methods

Our radar-based hail analysis covers all of Germany (see 
Figure 1). Neighboring countries and areas over the sea that are 
partially covered by the DWD radar network were excluded from 
the analysis. The time period ranges from 2005 to 2024 and covers 
the months from April to September (summer half-year, SHY), 
when severe convective storms (SCSs) occur almost exclusively in 
central Europe (e.g., Wapler, 2013; Punge and Kunz, 2016; Taszarek 
et al., 2019).

2.1 Radar data

Hail signals were identified from radar reflectivity composites 
using the operational C-band radar network of the DWD. This 
network currently consists of 17 weather radars (16 prior to 
2013 and between 2018 and 2021; see Supplementary Figure S1
for locations and Supplementary Table S1 for further details in the 
supplementary material). It is now equipped with the latest dual- 
polarization Doppler technology. To cover the longest possible 
period, our study used only single-polarization radar data. Note 
that the upgrade from single- to dual-polarization radar began in 
2011 and concluded in 2021 (Wilke et al., 2025). Although 3D radar 
data with higher spatial and temporal resolutions, as well as finer 
intensity classes are now available, we exclusively used the so-called 
PZ product (single-radar CAPPI reflectivity product) with low 
resolution (DWD, 2024; DWD, 2025), which has been available 
since 2005, in order to maintain the comparability and homogeneity 
of the data basis and to enable consistent statements about 
temporal trends.

This paragraph describes the main radar specifications that 
remain the same throughout the study period. A volume scan is 
performed every 15 min at 18 elevation angles ranging from 0.5° to 
37° (Bartels et al., 2005). The scan consists of an intensity mode with 
a range of 230 km, covering the lowest 4.5°, and a Doppler mode 
with a range of 120 km, covering all elevations above. The original 
PZ product derived from this scan has an original spatial resolution 
of 2 km. For our study, it was resampled to a horizontal resolution of 
1 × 1 km2 and covers an area of 400 × 400 km2 for each radar. It has 
been available every 15 min since 2005 (since 2013 every 5 min). 
Radar reflectivity is converted into six discrete reflectivity classes: 
(7,19], (19,28], (28,37], (37,46], (46,55] and (55,∞) dBZ, at 
12 equidistant altitude layers between 1 and 12 km. The two 
highest classes, (46, 55] and (55,∞) dBZ, are particularly 
important to our tracking algorithm. Individual PZ volumes were 
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merged into a radar composite to create the tracks by retaining the 
highest reflectivity values at overlapping volume points.

Overall, data availability is high, ranging between 87% and 99% 
depending on the radar location and year. The exception is 
2005 with 82.3%, as the PZ product was only available starting in 
May of that year. Outages due to maintenance and, more 
importantly, the modernization of the radar network, especially 
in 2013 and 2014, were compensated for by neighboring radars 
(backup radars). More detailed information including specific values 
are listed in the Supplementary Section A1. In the case of radar 
outages, the composite was constructed using all available radars, 
partially compensating for spatial gaps through the substantial 
overlap of the individual PZ volumes (see Supplementary Figure 
S1). A Doppler filter eliminates ground clutter in the data from fixed 
objects, mainly at low elevations.

2.2 3D tracking of potential hail- 
bearing cells

The temporal and spatial evolution of PHTs was tracked by 
applying an adjusted version of the cell tracking algorithm 
TRACE3D (Handwerker, 2002) to the 3D radar product. For this 
purpose, Puskeiler et al. (2016) adapted the algorithm for the binned 
PZ product in Cartesian coordinates, whereas Handwerker (2002)
used single-radar 3D continuous reflectivity in spherical 
coordinates.

Several radar-based hail studies have used a threshold of 55 dBZ, 
known as the Mason criterion (Mason, 1971), to detect hail in 2D 
radar data (Schiesser, 1990; Hohl et al., 2002; Kunz and Kugel, 2015; 
Junghänel et al., 2016; Fluck et al., 2021). Therefore, identifying 
potential hail-bearing cells in a PZ composite volume works as 
follows (see also Schmidberger, 2018): 1. High reflectivity areas were 
identified by the existence of at least four radar bins of the highest 
class (55,∞) dBZ. 2. The surrounding (46, 55] dBZ bins were then 
added to form the so-called reflectivity core (RC). 3. To exclude 
erroneous radar signals, an RC must have a minimum area of 
5 · 106 km2, and a minimum volume of 3 · 109 km3, and at least 
50% of an RC must extend over two elevation levels.

After detection of potential hail-bearing RCs, their weighted 
centers were tracked over a constant time interval dt to create PHTs. 
In the PZ product, dt is 15 min. In this step, TRACE3D attempts to 
establish a temporal connection between the detected RCs in two 
time steps. To do so, a 2D shift velocity vector vT was calculated for 
each RC at time t1. If an RC has already been identified in a previous 
time step, the shift vector sT was computed using the positions at 
t−1 � t1 − 2dt and t0 � t1 − dt. If an RC has already been detected in 
several previous time steps, vT was computed as the weighted sum of 
the velocity vectors from the previous time steps. If an RC is detected 
for the first time, the shift velocity vector vT was estimated from the 
mean velocity of neighboring RCs. Convective cells are assumed to 
propagate mainly with the mean wind, which does not exhibit 
significant spatial variation. The new position of an RC was 
calculated by sT � vT · dt. Here, the actual RC was identified by 
searching all possible RCs within a certain radius. The search radius 
is not fixed; rather, it depends on the distance sT and the distance to 
the nearest neighboring RC. The above-described method was 

repeated several times for subsequent scans until a complete 
track of the barycenter of an RC is determined.

Due to the limited number of reflectivity classes available on the 
equidistant grid, the cells sometimes exhibit only slight differences 
in their structure. Consequently, TRACE3D may misinterpret the 
distances and volume structures of potential subsequent cells when 
linking cells. This incorrect assignment results in an abrupt change 
in the track direction from one time step to the next. To address this 
issue, an additional filter criterion has been implemented: a change 
in track direction of more than 45° with a distance greater than 
30 km within 15 min is considered a mismatch and is removed from 
the dataset. If the mismatch occurs at the beginning or end of a track, 
the first or last track point is deleted. If the track shift occurs between 
two RC detections, it was checked to see if two different tracks may 
be present. This check requires at least three time steps before and 
after the track shift. Real cell splits and merges, which often involve a 
significant change in track direction, are unaffected by this 
correction. Further details on TRACE3D can be found in 
Handwerker (2002); further details on the adjustment for the PZ 
product can be found in Schmidberger (2018).

2.3 Potential hail tracks

As described above, the adapted version of TRACE3D was 
applied to the PZ product (Sect. 2.1) from 2005 to 2024 (SHY) to 
calculate individual PHTs, which form the basis for the subsequent 
investigations (PHT catalog). Because a cell lifetime of at least 
30 min can be assumed for hailstorms and hail formation 
(Changnon, 1977; Kumjian et al., 2021), a minimum duration of 
45 min, i.e., three time intervals, is required to reconstruct a 
complete PHT. Additionally, some PHTs are completely outside 
of mainland Germany because radar data were also available in the 
surrounding area. Furthermore, some other PHTs extend beyond 
the border if the cells have formed or dissipated in an adjacent 
country. However, the dataset only includes PHTs that crossed the 
German border at some point.

Each PHT contains the following information: start time and 
lifetime of the cell, cell center at each individual detection (latitude 
and longitude), total track length (distance between start and end 
points), mean width (of all RCs relative to the direction of 
movement), mean direction (angle between start and end points), 
and mean velocity. Based on the detections of the RCs, polygons 
with a constant track width perpendicular to the direction of travel 
were determined (for details, see Section A2 in the supplementary 
material). For the study, these polygons were gridded at a resolution 
of 1 × 1 km2, forming the basis for further statistical analyses. Some 
analyses use a coarser grid of 25 × 25 km2.

As part of a comparison between the RCs derived from the 
volume scan of the PZ product and those obtained from a higher- 
resolved radar product with a 500-m range bin available for a 
subdomain, it was observed that the widths of the RCs in the 
previous version of Schmidberger (2018), which were based on 
the lower-resolved PZ product, were systematically overestimated. 
This overestimation was largely independent of the size of the 
associated RCs. Therefore, the width of the RCs derived from the 
PZ product was adjusted by applying a correction factor of 0.6. A 
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detailed explanation can be found in the supplement 
material Section A2.

2.4 Residential building insurance data 
in Germany

This study uses insurance data to validate the accuracy of the 
radar-based PHT catalog. The data source is the German Insurance 
Association (in German: Gesamtverband der Deutschen 
Versicherungswirtschaft e. V., GDV), an umbrella organization 
representing all primary insurers in Germany. The data pertain 
to standard residential building insurance, covering classic risks 
such as fire, lightning, and water damage, as well as the natural 
hazards storm and hail (GDV, 2023). The GDV aggregates claims 
and contract data from all insurers, providing a comprehensive, 
standardized database. Statistics are available for each of Germany’s 
400 districts from 2005 to 2023, including the number of daily 
reported claims and the total annual number of contracts. From 
these, the claim frequency, i.e., the ratio of reported claims to insured 
risks (i.e., contracts), is calculated. Setting a threshold allows this 
measure to serve as an objective indicator of the number of hail days 
in each district.

Compared to manually collected datasets such as ESWD hail 
reports, GDV insurance data are more homogeneous, objective, and 
comprehensive. In 2022, the average insurance density for standard 
residential building insurance in Germany was about 95% (GDV, 
2025). Regional differences are minor: Bavaria has the lowest 
coverage at 88%, followed by Rhineland-Palatinate (91%) and 
Hesse (92%). In all other states, coverage is at least 97% 
(Küpfer, 2025).

Despite its strengths, GDV data are not free of uncertainty. The 
number of damage reports is particularly influenced by the 
vulnerability of buildings and the density of buildings in a region. 
Modern buildings with solar panels, conservatories, or skylights are 
more susceptible to damage than older buildings (Stucki and Egli, 
2007). Additionally, claim dates often differ by ± 1 day from the actual 
event, because reports are not always assigned precisely. The most 
restrictive criterion is that the data only includes hail events involving 
larger, damage-relevant hailstones (≥ 2 cm; e.g., Hohl et al., 2002; 
Brown et al., 2015; Xiao et al., 2025). A further limitation is that storm 
and hail claims are recorded jointly, so these damage causes are 
indistinguishable. Nevertheless, a distinction can be made based on 
the seasonal distribution of these extremes: storm damage (defined as 
wind speeds ≥ 18 m/s) occurs mainly in winter, while hail damage is 
almost exclusively reported in summer (Küpfer, 2025). The few 
summer storm claims usually stem from SCSs with convective 
gusts or derechos, which often produce hail simultaneously (Pacey 
et al., 2021). Pure synoptic storms are rare in this season (Mohr 
et al., 2017).

2.5 Atlantic-European weather regimes

Because SCSs are linked to large-scale atmospheric circulation 
patterns, we analyzed their relationship with the Atlantic-European 
weather regimes developed by Grams et al. (2017). These regimes 
were calculated using the ERA5 reanalysis (Hersbach et al., 2020) 

from the European Centre for Medium-Range Weather Forecasts 
(ECMWF) at 12 UTC (Grams et al., 2025; Grams, 2026). The 
regimes are derived by applying empirical orthogonal functions 
(EOFs) to mean geopotential height fields (Z500) followed by 
k-means clustering, yielding seven objectively defined large-scale 
atmospheric patterns (Grams et al., 2017). Four of these are blocking 
regimes characterized by positive geopotential height anomalies: 
Atlantic Ridge (AR), European Blocking (EuBL), Scandinavian 
Blocking (ScBL), and Greenland Blocking (GL). The regime GL 
is similar to the negative phase of the North Atlantic Oscillation 
(NAO; Beerli and Grams, 2019), while EuBL and ScBL represent two 
variants of the classical blocking pattern (Büeler et al., 2021). The 
remaining three regimes–the Atlantic Trough (AT), Zonal Regime 
(ZO), and Scandinavian Trough (ScTr) – are cyclonic regimes with 
negative geopotential height anomalies and enhanced cyclonic 
activity. They correlate to varying degrees with the positive NAO 
phase, with ZO showing the strongest resemblance. An additional 
“no regime” category is included for days without a dominant large- 
scale pattern, representing the climatological mean state and 
capturing transitional or mixed-flow situations. More details are 
given in Grams et al. (2017) and Büeler et al. (2021).

3 Spatio-temporal radar-based hail 
statistics

The following sections present the spatial distribution and main 
characteristics of the PHTs in Germany. TRACE3D (Section 2.2) 
identified a total of 15,577 PHTs for the SHY period from 2005 to 
2024, resulting in an average of approximately 780 PHTs per year. 
We analyze the spatial and temporal distributions, emphasizing 
regional hotspots, as well as the primary characteristics of the tracks, 
including their length, width, duration, and speed.

FIGURE 2 
Mean annual number of 3D radar-derived potential hail tracks 
(PHTs) per 1 × 1 km2 in Germany during the summer half-year 
(2005–2024). Four grid points reach higher values than 1.3, with a 
maximum hail occurrence of 1.45 over Germany (all south 
of Stuttgart).
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3.1 Spatial distribution of potential hail tracks

The spatial distribution of days with PHTs in Germany reveals 
distinct regional patterns, influenced by both climatic and 
orographic features, as evidenced by the high spatial variability in 
the mean annual number of PHTs per grid point (Figure 2). The 
median value for Germany as a whole is 0.3 PHT days per year, with 
the 25th and 75th percentiles at 0.2 and 0.4, respectively. On the 
larger scale, a pronounced north-to-south gradient is apparent. In 
northern Germany, the average is 0.1–0.3 per grid point per year, 
whereas in southern regions, most values range from 0.3 to 0.6 per 
grid point per year. A peak of 1.45 occurs near Reutlingen (south of 
Stuttgart), a well-known hail hotspot in Germany. This large-scale 
pattern is mainly influenced by the distance to the sea (North Sea 
and Baltic Sea) and the degree of continentality, which affects the 
climatological distribution of atmospheric stability in Europe in 
summer (Mohr and Kunz, 2013; Taszarek et al., 2018; Feldmann 
et al., 2025b).

In addition, the distribution is shaped by several regional 
substructures related to orographic features, particularly in 
mountainous areas and, most notably, downstream of the 
mountains. For example, pronounced maxima are observed 
downstream of the Black Forest, over the Swabian Jura and the 
Bavarian Prealps (see Figure 1, which shows the various low 
mountain ranges). Supercells with a high potential for large hail 
are particularly common in the Lech Valley of the Bavarian Prealps 
(DWD, 2021). Based on high-resolution simulations, Feldmann 
et al. (2025a) also found an increased frequency of supercells in 
both the Bavarian Prealps and the lee side of the Black Forest. An 
increased PHT likelihood is also observed near mountain ranges 
such as the Ore Mountains, the Hessian Highlands, and the Rhenish 
Massif. In contrast, some regions in Germany statistically experience 
fewer than one PHT event every 2 years (84.5% of grid points). The 
spatial variability of PHT days is primarily driven by flow deviations 
around orographic obstacles, thermally induced wind systems, and 
localized convergence of moisture transport (de la Torre et al., 2015; 
Punge and Kunz, 2016; Allen et al., 2020; Fischer et al., 2025a). Kunz 
and Puskeiler (2010) and Fluck et al. (2021), for example, 
hypothesized that the increased hail frequency downstream of the 
Black Forest (Germany) and the Massif Central (France) is due to 
relatively high atmospheric instability and low wind speeds in pre- 
convective conditions. This results in Froude numbers below 1, 
allowing the air to flow partly around the mountains at low levels. A 
zone of horizontal flow convergence downstream is created that may 
initiate convection. The Swabian MOSES field campaign in 2023 
(Handwerker et al., 2025) partly confirmed this hypothesis, finding 
that low-level convergence downstream of the southern Black Forest 
coincided with convective cell development during several intensive 
observation periods.

Previous hail statistics for Germany, based on both 2D or 3D 
radar data, reveal patterns of hail frequency that are similar to those 
found in our study. This is especially true with regard to the north- 
to-south distribution of hail frequency and the hotspot regions 
(Kunz and Puskeiler, 2010; Kunz and Kugel, 2015; Puskeiler, 
2013; Puskeiler et al., 2016; Junghänel et al., 2016; Schmidberger, 
2018; Fluck et al., 2021; Wilke et al., 2025; Feldmann et al., 2025a). 
Slight differences in the results are due to several factors: (a) different 
hail detection methods or criteria, (b) different radar data (2D or 3D, 

single or dual-polarimetric) and (c) other data sources included (e.g., 
weather station data, severe weather reports, lightning data). The 
underlying study periods are usually shorter (maximum 10 years for 
all of Germany). For example, the most noticeable discrepancy to 
Wilke et al. (2025) is that the maximum south of Stuttgart is more 
pronounced in our study than that over the Bavarian Prealps. This 
difference can primarily be attributed to the different hail detection 
methods applied by Wilke et al. (2025), who used vertically 
integrated ice (VII) and maximum estimated size of hail (MESH) 
derived from radar reflectivity, rather than to the shorter 6-year 
analysis period (2018–2023; not shown).

3.2 Validation of potential hail tracks against 
building insurance data

We use categorical verification with a 2 × two contingency table 
and the GDV insurance data to assess how closely the radar-based 
hail statistic in Section 3.1, i.e., a proxy derived from remote sensing, 
aligns with events that occurred. Please note that the insurance data 
also not fully reflect reality (see Section 2.4). From this table, we 
compute common skill metrics (Wilks, 2006): the Probability of 
Detection (POD), measuring the share of correctly forecasted 
events; the False Alarm Ratio (FAR), indicating incorrect 
forecasts; and the Heidke Skill Score (HSS; Heidke, 1926), a 
normalized measure accounting for chance agreement. Ideally, 
POD and HSS would be close to one, reflecting perfect detection 
and maximum skill, while FAR would approach zero, indicating an 
absence of false alarms.

The verification period spans from May 2005 to August 2023, when 
both datasets are available. To avoid potential storm damage reports in 
April or September (see Section 2.4), the validation only considers the 
four summer months most relevant to hail: May, June, July, and August 
(see Section 3.3). The maximum spatial allocation distance is 20 km 
between a track and an affected district. An insurance-based hail day is 
defined by two thresholds, derived from sensitivity analyses that improve 
the HSS results: at least five claims per district per day (to filter out days 
with too few reports, especially in small counties with few contracts) and 
a claim frequency of 0.0001 (to exclude an excessive number of false 
reports in densely populated regions such as Berlin or Hamburg). Both 
thresholds address different distortions and help prevent 
misclassifications caused, for example, by incorrect time allocation.

The evaluation shows that the modified TRACE3D algorithm 
(Section 2.2) can essentially reproduce hail statistics in Germany 
(Figure 3). For the entire study area, the results yield a median HSS 
value of 0.47, with an interquartile range of 0.41–0.52 (25th/75th 
percentiles). The corresponding POD values are 0.43, ranging from 
0.35 to 0.51 (25th/75th percentiles), while the FAR values are 0.36, 
ranging from 0.27 to 0.49 (25th/75th percentiles). The latter 
demonstrates that many tracks occur without any associated 
claim reports. However, this does not necessarily mean that the 
method is flawed. It may instead indicate that the hail was small and 
therefore did not cause any damage. Note that the TRACE3D-based 
algorithm was originally designed to detect hail in general (cf. 
Puskeiler et al., 2016; Schmidberger, 2018), including smaller 
events. For this purpose, the original calibration used insurance 
data from the agricultural sector, in which hailstones larger than 
5 mm are considered relevant in terms of causing damage.
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Moreover, regional differences exist. Good HSS values between 
0.5 and 0.7 are found in southern, central, and eastern Germany 
(Figure 3A). The best performance is found in Saxony-Anhalt 
(median: 0.55, 25th/75th percentiles: 0.52–0.57), Hesse (median: 
0.54, 25th/75th percentiles: 0.50–5.55), and Baden-Württemberg 
(median: 0.52, 25th/75th percentiles: 0.49–0.58). Lower accuracy 
appears near some state borders, for example, in the eastern corner 
of Bavaria (near Passau; see Figure 1) and in Saarland, mainly due to 
limited radar coverage and outages (see supplementary material 
Section A1). Skills are also reduced in western North Germany, 
especially Schleswig-Holstein, which has the lowest median HSS 
value of 0.31 (25th/75th percentiles: 0.25–0.39). In addition to the 
issue of radar availability, this could also be due to the fact that the 
GDV data in this region considers storm damage in some cases. Due 
to their proximity to the sea, these areas are more exposed to such 
events. Despite the inherent uncertainties in both datasets, the 
calculated metrics yield results comparable to those of other 

studies (e.g., López and Sánchez, 2009; Kunz and Kugel, 2015; 
Puskeiler et al., 2016; Voormansik et al., 2017; Schmidberger, 
2018; Kopp et al., 2024). Overall, these findings underscore the 
reliability of the modified TRACE3D algorithm in reproducing 
radar-based hail statistics in Germany, establishing a solid basis 
for subsequent evaluations.

3.3 Spatio-temporal characteristics of 
potential hail tracks

An analysis of the temporal distribution of the PHT catalog 
reveals clear seasonal patterns and a preference for specific months 
of the year (Figure 4). Most of the PHTs occurred in the warm 
summer season, with a peak in July (31.6%), followed by June 
(26.4%), August (22.2%), and May (12.8%). Only a small proportion 
occurred in April (1.2%) and September (5.8%). Almost half of the 
PHTs (43.1%) reached the detection threshold of 55 dBZ between 
13 and 17 UTC (not shown). In general, these temporal patterns 
align well with the findings of previous studies in Germany (e.g., 
Schmidberger, 2018; Fluck et al., 2021) and fit into the European 
context: The hail season generally begins in April/May and ends in 
August/September (Punge and Kunz, 2016). However, there are 
regional differences in the main peaks: in central Europe, France, the 
Alps, and the Po Valley, hail activity is mainly concentrated from 
June to August. In contrast, in the Mediterranean region (from 
Spain to Turkey), the highest frequency generally occurs in autumn 
(Punge and Kunz, 2016; Laviola et al., 2022).

Most of the PHTs are shorter than 50 km (Figure 5A), with a 
median length of 24.0 km, while the 25th and 75th percentiles are 
15.5 and 39.4 km, respectively. In terms of width, the tracks typically 
measure 3.2 km on average (median), ranging from 2.2 to 4.7 km 
(25th/75th percentiles; Figure 5B). The PHTs persist on average 
about 60 min, with durations ranging between 45 and 75 min (25th/ 
75th percentiles; Figure 5C). The statistical characteristic of the 
mean track speed per cell is 33.0 km h−1 on average (median), 
ranging from 21.7 to 46.4 km h−1 (25th/75th percentiles; Figure 5D). 

FIGURE 3 
Validation of radar-based potential hail tracks (PHTs) using the standard residential building insurance data from the GDV based on the following 
metrics: (A) Heidke Skill Score (HSS), (B) Probability of Detection (POD), and (C) False Alarm Ratio (FAR) for the period May 2005 to August 2023.

FIGURE 4 
Monthly distribution of all 15,577 potential hail tracks (PHTs) from 
2005 to 2024.
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Note that in environments with many convective cells, links between 
consecutive time steps can influence the calculated track speed if the 
algorithm jumps between neighboring cell cores. Such jumps, which 
may occur on days with a high density of closely spaced cells (e.g., in 
mesoscale convective systems), can artificially increase the recorded 
displacement. Even though the track still represents an area 
potentially affected by hail, these jumps can lead to an 
overestimation of track speed. For this reason, we have not 
specified a maximum value for track speed (as it was observed 
especially at the upper end of the distribution). On average, however, 
the values remain realistic, as confirmed by plausibility checks.

Figure 6 clearly illustrates that the majority of tracks propagate 
from southwest to northeast (53% PHTs are between 202.5° and 
270.0°). This aligns with various studies on SCSs that link heavy rain 

or hail events in central Europe with mid-tropospheric flow 
characteristics (e.g., Wapler and James, 2015; Piper et al., 2019; 
Merino et al., 2019; Whitford et al., 2024), which in turn influence 
the movement direction of the associated cells. Additionally, the 
advection of warm, moist and thus often unstable air masses from 
the south and southwest is well-known to create optimal settings for 
convection-favoring conditions over western and central Europe 
(van Delden, 2001; Mohr et al., 2019; Barras et al., 2021).

These findings are further supported when the analyses are 
combined with large-scale weather patterns such as the Atlantic- 
European weather regimes according to Grams et al. (2017). The 
results (Figure 7) show that half (50.0%) of days with PHTs are 
primarily associated with the three blocking regimes: Scandinavian 
Blocking (23.4%), European Blocking (13.2%), and Greenland 
Blocking (13.3%). All of these regimes support the convection- 
favoring large-scale atmospheric condition with a south-to- 
southwesterly mid-tropospheric flow direction over central 

FIGURE 5 
Frequency distributions of various potential hail track characteristics (total number: 15,577 PHTs, 2005–2024, SHY): (A) Track length in km, (B) track 
width in km, (C) track lifetime in min (15 min resolution), (D) mean track speed in km h−1. The interquartile range is represented by the boxes, the median by 
the white line, and the mean by the white cross. Whiskers display the 2nd and 98th percentiles. Few events exceed the shown range of values. Maxima for 
the respective characteristics are: (A) 446 km, (B) 34 km, and (C) 525 min.

FIGURE 6 
Frequency distribution of track motion direction in ° for all 
15,577 PHTs (2005–2024, SHY).

FIGURE 7 
Distribution of the PHT days occurring under the different 
Atlantic-European weather regimes (2005–2024, SHY), using the 
regime classification of Grams et al. (2017).

Frontiers in Environmental Science frontiersin.org08

Mohr et al. 10.3389/fenvs.2026.1736782

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2026.1736782


Europe. In contrast, the remaining four regimes play a minor role 
(21.5%): Atlantic Trough (7.2%), Atlantic Ridge (3.1%), Zonal 
Regime (5.0%), and Scandinavian Trough (6.2%). Days without a 
clearly defined regime (so-called no regime), representing the 
climatological mean, account for about 28.5%. Similar 
relationships between these weather regimes and SCSs in general 
have already been observed in central Europe (Mohr et al., 2019; 
Augenstein, 2025). Overall, this indicates that PHTs occurred 
predominantly under blocking regimes (50%) or during periods 
without a clearly defined large-scale flow pattern (“no regime”), 
together accounting for approximately 80% of all PHT days.

To study the spatial variability of events with different 
characteristics, the PHT catalog was aggregated onto a coarser 
25 × 25 km2 grid, ensuring a sufficient number of events in all 
grid points. Considering only PHTs of at least 50 km (approximately 
the 83rd percentile of the track length distribution), the spatial 
distribution of the PHTs (Figure 8A) remains similar to that of all 

tracks (Figure 2), although only 17.0% of all tracks reach this length. 
Nevertheless, a conspicuous maximum is visible southeast of 
Reutlingen with almost four events per grid point. Higher values 
also occur in southern Bavaria around Munich, as well as in the area 
between Frankfurt, Kassel, and Cologne. PHTs reaching 100 km in 
length are rare, accounting for only 5.0% of all PHTs, which results 
in fewer events per grid point (Figure 8B). In the same areas, maxima 
of approximately 1.5 PHTs per year are observed, but differences 
compared to the surrounding regions are minor. In the end, this 
highlights that long hail tracks can occur across all parts of Germany.

In order to examine whether the results in Figure 6 show a 
uniform distribution across Germany or if regional differences exist, 
PHTs with a direction between 0° and 180° were defined in this 
study as eastern tracks, and those between 180° and 360° as western 
tracks. As shown in Figure 6, western tracks dominate the dataset 
(80.0%). The spatial distribution of the annual number of hail events 
with western directions (Figure 8C) is close to that of all tracks, with 

FIGURE 8 
Mean annual number of 3D radar-derived potential hail tracks (PHTs; SHY, 2005–2024) per 25 × 25 km2 area, categorized by specific characteristics: 
(A) Tracks with a minimum length of 50 km, (B) tracks with a minimum length of 100 km, (C) tracks originating from the west (between 180° and 360°) and 
(D) tracks originating from the east (between 0° and 180°). Note: Plot (C) uses a different color scale.
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a clear maximum of more than nine events southeast of Reutlingen. 
High values also occur in the Bavarian Prealps. The strong 
maximum over the Swabian Jura supports the hypothesis of flow 
convergence in this zone for (south)westerly flow directions (see 
Section 3.1). In contrast, the distribution of eastern tracks (20.0%) 
shows different patterns (Figure 8D): No maxima are found over 
southern Germany. The highest numbers, with values below two 
PHTs per year, occur in eastern Germany, north of Frankfurt, and 
north of Cologne. Overall, the number of eastern tracks is 
significantly smaller than that of western tracks. The small 
regional variations suggest a more uniform spatial distribution 
across Germany.

3.4 Clustering characteristics of potential 
hail tracks

Investigating the temporal clustering of extreme events, which 
can often be linked to persistent large-scale weather patterns, is also 
relevant, as periods with repeated occurrences (compound events) 
can lead to cumulative impacts (e.g., Zscheischler et al., 2020; 
Xoplaki et al., 2025; Küpfer et al., 2025). The following analysis 
examines whether days with detected PHTs cluster in time, either on 
the daily scale (spatial clustering) or with respect to their persistence 
across consecutive days (serial clustering). On a daily scale, 61.3% of 
all days in the study period had no PHTs across Germany (not 
shown). Of the remaining days with at least one PHT, most contain 
only a few tracks (Figure 9A): 28.5% show one or two PHTs, about 
half (47.2%) have up to five, and roughly 65% have no more than 
10 tracks. However, there are also some days with significantly 
higher amounts. For instance, on 30 May 2017, a record of 94 PHTs 
occurred over large parts of Germany. Additionally, some other days 
feature a substantial number of PHTs. Approximately 2.4% of all 
days with tracks have at least 50 PHTs per day. Most of these days fall 
in June and July.

The serial clustering can provide information about the 
persistence of the underlying atmospheric conditions and thus 
also about an ongoing hazard. As with the PHT amounts per day 
(above), the following statistics refer to the whole of Germany. 
Therefore, two consecutive hail days do not mean that a particular 

location was hit by potential hail twice, only that a potential 
hailstorm occurred somewhere in Germany on both days. In 
extreme cases, this could mean that 1 day, a PHT occurred in 
the far north of Germany, and the next day, it occurred in the far 
south. Of the days with at least one PHT, 41.6% appear isolated 
(Figure 9B), meaning that the day before and the day after have no 
PHT anywhere across Germany. In 20.8% of the cases, two 
consecutive days have at least one PHT, in 12.0% they have three 
consecutive days. Longer continuous periods are uncommon, as a 
single day without PHTs resets the count. The longest continuous 
period with PHTs was 14 days, and this was observed three times 
during the 20-year study period. Notably, two of these episodes 
occurred in quick succession with only a brief interruption, 
spanning from 18 June to 1 July 2021 and from 4 July to 17 July 
2021. Both periods were accompanied by different blocking regimes 
(cf. Kunz et al., 2022). Initially, there were 4 days with no regime, 
followed by a prolonged blocking phase. During this phase, the 
atmospheric circulation alternated between European blocking, 
Scandinavian blocking, and then European blocking again. The 
third 14-day period occurred from 26 May to 8 June 2016, when 
atmospheric blocking caused also favorable convective conditions 
over 2 weeks (cf. Piper et al., 2016).

4 Trends of potential hail tracks

Although a 20-year period is considered relatively short for in- 
depth trend analysis, the dataset offers a valuable basis for initial 
estimates. These results should still be interpreted with caution, but 
they can help to identify early signals of shifts in hail frequency. To 
examine trends in PHTs, we counted the number of PHTs occurring 
over Germany during each of the 20 years (SHY; Figure 10). There is 
a significant year-to-year variability, with more than 1,000 PHTs in 
2006, 2014, and 2017, compared to only about 500 in 2010, 2013, and 
2023. As shown in the supplementary material (Supplementary 
Figure S4), the high annual variability is also clearly visible in the 
annual spatial distribution of the total number of PHTs. These 
findings are consistent with previous studies (e.g., Mohr et al., 2015; 
Madonna et al., 2018; Wilhelm et al., 2024). Overall, the time series 
shows no clear, statistically significant trend. A similar analysis using 

FIGURE 9 
(A) Frequency of potential hail tracks (PHTs) per day across Germany. (B) Clustering of PHTs over consecutive days across Germany. The box 
represents the interquartile range, while the whiskers indicate the 2nd and 98th percentiles. The median is shown as a white line, the mean as a white cross, 
and the maximum value as a blue cross. Light blue shadings represent the probability distribution of the respective variable.
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only PHTs longer than 50 and 100 km also reveals substantial year- 
to-year variability, but no discernible trends.

Although no nationwide trend is apparent, the question remains 
if there are regional differences. Previous studies on SCSs (western 
and central Europe; Augenstein et al., 2025), hail (Canada; Cao, 
2025), and tornadoes (United States; Graber et al., 2024) have shown 
that geographically resolved analyses can reveal deviations from the 
overall, averaged trend. For analyzing regional differences, the PHT 
catalog is used on a 25 km × 25 km grid to ensure a solid database 
for each grid point. This provides each grid point with a time series 
similar to that in Figure 10. The trend is analyzed using the non- 
parametric method of the repeated median estimator (Siegel, 1982). 
One advantage of such a non-parametric test is its robustness to 
outliers (Lanzante, 1996). After trend-free prewhitening of the time 
series (Yue et al., 2002), the Mann-Kendall test is used to calculate 
the significance of the trends (Mann, 1945; Kendall and Gibbons, 
1955). This approach has already been applied in previous studies to 
reduce autocorrelation and increase test power (e.g., Mohr and 
Kunz, 2013; Augenstein et al., 2025; Cao, 2025).

Trend analysis using the repeated mean estimator reveals clear 
regional differences. Across northern and central 
Germany–basically excluding the southern federal states of 
Baden-Württemberg and Bavaria–several grid points show no or 
only slight negative trends of mostly minus two to minus three 
events per decade over the 20-year period (Figure 11A). According 
to the Mann-Kendall test, some of the negative trends in the 
Cologne, Hamburg, and Berlin regions are statistically significant. 
The strongest negative trends indicate a reduction of around four 
events per decade east of Frankfurt. In contrast, southern Germany 
experiences an increase in PHTs. The most pronounced and also 
significant increases occur along the Bavarian Prealps and slightly 
south of the hail hotspot identified in Figure 2, southeast of 
Reutlingen, with up to ten additional events per decade. Note 
that on 3 April 2013, the DWD put an additional radar into 
operation near Memmingen (marked by a black cross in 
Figure 11A). The improved radar coverage in southern Germany 
may have contributed to the observed positive trends in this area. 

However, considering only the trends of the 12 years since 
installation, the trends remain positive but with less significance 
for this shorter time period (not shown).

As a minimum length of 100 km yields too few events for reliable 
trend analysis (see Figure 10), we concentrate in the following only 
on PHTs of at least 50 km (Figure 11B). No trend can be observed at 
many grid points, although a tendency toward similar spatial trend 
patterns can be seen. For example, some grid points in central and 
northern Germany exhibit negative trends, whereas those in the 
south exhibit positive ones. However, these trends are less 
pronounced overall. Additionally, the smaller dataset significantly 
reduces statistical significance.

When the PHTs are split by direction (analog to Figures 8C,D), 
the trends for the western tracks (Figure 11C) are very similar to 
those of all tracks (Figure 11A). This is consistent with the fact that 
the majority of the tracks originate from the western sector 
(i.e., 180 to 360°; Figure 6). Conversely, there are only 20% of all 
PHTs with eastern direction (i.e., 0 to 180°). These fewer events are 
more equally distributed, so that virtually no trends can be observed 
(only 6 of 727 grid points over Germany with a slight but 
insignificant trend) (Figure 11D).

Despite the limited database spanning only 2 decades, the results 
show clear, statistically significant patterns that extend over larger 
contiguous areas and thus are not merely isolated outliers. The 
decrease across parts of central and northern Germany is also 
consistent with the findings of Augenstein et al. (2025), who 
based their analysis on lightning data from 2001 to 2021 and 
likewise observed a decline in SCS frequency. This agreement is 
particularly noteworthy because the latter study relies on direct 
observational data. Other studies report other signals for Germany 
and surrounding European regions and often refer to an increase in 
hail occurrence. However, these findings are primarily derived from 
statistical modeling with hail-relevant parameters (ingredients- 
based forecasting; Mohr et al., 2015; Rädler et al., 2018; Taszarek 
et al., 2021; Battaglioli et al., 2023) rather than direct observational 
data. As already cited in Raupach et al. (2021), earlier hail 
observations in Europe, including Germany, show heterogeneous 
signals. For example, there is an increasing trend in parts of central 
and western Europe, including southwestern Germany and 
Switzerland, while there are decreasing or insignificant trends 
further south and east. These regional differences in historical 
hail activity underscore the need for more in-depth research to 
better understand the complex processes involved in hail formation. 
Such an understanding is also essential for evaluating the effects of 
climate change on the frequency and intensity of hail events, as well 
as for identifying factors that will significantly impact their future 
occurrence and severity.

Finally, it should be noted that radar failures may have 
potentially influenced the results. However, as mentioned above, 
the data availability is generally good at around 90%, and many areas 
are also covered by multiple radar systems (see the supplementary 
material Section A1 for details). Sensitivity studies were also 
conducted to verify the robustness of the trend analyses. 
Individual data points were systematically excluded using 
bootstrap approaches (by randomly removing between 5 and 
20% of the PHTs), as well as entire years or different subperiods. 
These tests allowed us to evaluate the sensitivity of the results to 
random data gaps, targeted failures in specific years, and shortened 

FIGURE 10 
Time series of the annual total number of potential hail tracks 
(PHTs) across Germany (2005–2024, SHY). Different line types 
represent all tracks (solid) and those with a specific minimum length 
(dashed: 50 km, dotted: 100 km).
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time series. The analyses confirm the stability of the identified trend 
tendencies.

5 Discussion and conclusion

Severe convective cells with the potential to produce hail events in 
Germany were analyzed using 3D radar composites, consisting mainly 
of 16, and in some years also 17, single-polarized C-band radars from 
the DWD. A modified version of the TRACE3D tracking algorithm 
was used to identify the cells. Handwerker (2002) originally developed 

this algorithm, which was later optimized by Schmidberger (2018) for 
detecting hail events. Additionally, Schmidberger adapted the 
algorithm to the coarse spatial and temporal resolution of the 
DWD radar product (PZ product), which has a temporal resolution 
of 15 min, 12 elevation levels, and six discrete reflectivity classes. 
However, because radar-based methods do not necessarily guarantee 
hail occurrence on the ground, the identified tracks are referred to as 
potential hail tracks (PHTs) in this study. The dataset has since been 
updated annually and is now available for a 20-year period.

A total of 15,577 PHTs were identified for the summer half-year 
from 2005 to 2024. This dataset enables consistent assessment of 

FIGURE 11 
Spatially resolved trends (per decade) of potential hail tracks (PHTs, 2005–2024, SHY) per 25 × 25 km2: (A) All PHTs across Germany, (B) PHTs with a 
minimum length of 50 km, (C) tracks originating from the west (between 180° and 360°) and (D) tracks originating from the east (between 0° and 180°). 
Small points indicate statistical significance at the 0.05 level according to the Mann-Kendall test (trend-free prewhitening). The black cross in (A) marks the 
location of the Memmingen radar, operational since April 2013.
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spatial and temporal hail patterns, as well as regional trends. The 
results show clear spatial and temporal structures. Our study is the 
first to estimate nationwide hail frequency over 2 decades based on a 
homogeneous 3D radar composite.

The main conclusions from our research are the following:

• Using building insurance data to validate radar-based PHTs 
reveals an average Heidke Skill Score (HSS) of 0.5 for 
Germany, with some regions reaching between 0.6 and 0.7. 
This confirm that the modified TRACE3D algorithm can 
accurately reproduce hail statistics, showing acceptable, 
though not exceptional, reliability. Regional skill differences 
stem from limited radar coverage (e.g., at state borders) and 
uncertainties in the GDV data (e.g., inaccurate time 
specifications). Additionally, since the validation data 
includes only events that caused damage, weak hailstorms 
with small hailstones are underrepresented.

• Hail hazard across Germany varies significantly due to the 
influence of regional orography and large-scale patterns, such 
as those influenced by the proximity to seas and continentality. 
The highest frequency of radar-identified hail days occurs over 
southern Germany and downstream of low mountain ranges. 
The 20-year, radar-based hail climatology generally aligns with 
prior climatologies that used shorter time windows (e.g., 7 and 
11 years, respectively, in Puskeiler et al., 2016; Schmidberger, 
2018) or 2D radar data (Junghänel et al., 2016; Fluck 
et al., 2021).

• Most PHTs propagate from southwest to northeast. They have 
a median length of 24 km, a median width of 3.2 km, and a 
median propagation speed of 33 km h−1, which is consistent 
with earlier studies (Schmidberger, 2018).

• Hail in Germany is usually sporadic, but frequently clusters 
under favorable large-scale flow conditions. Half of all PHT 
days occur during blocking regimes. While approximately 42% 
of PHT days are isolated, 2–3-day clusters are common, and 
rare persistent episodes can last up to 2 weeks during 
prolonged blocking. Spatial clustering also occurs, with one- 
third of hail days featuring more than ten PHTs. Blocking 
regimes create conditions that favor convection and sustain 
multi-day hail hazards, so large-scale circulation should be 
considered alongside local thermodynamic and dynamic 
indices for forecasting and risk assessment.

• During the past 20 years, the estimated hail hazard from PHTs 
has remained consistent over the entire Germany. However, 
disparate trends emerge when examining the data regionally: 
Southern hotspots, particularly near Reutlingen and the Bavarian 
Prealps, show statistically significant increases in PHTs, which 
persist for longer tracks and westward-moving events. 
Meanwhile, there is a tendency toward a decline in PHTs 
occurring in northern and central Germany. This finding is 
somewhat surprising because it contradicts the widely accepted 
assumption that an increase in temperature and moisture leads to 
more SCS. However, it aligns with Manzato et al. (2025), who 
also found negative trends in hail observations in northeastern 
Italy that differ from those expected from convective variables.

Although the 20-year radar dataset used here is longer than in 
previous hail studies (e.g., Puskeiler et al., 2016; Junghänel et al., 

2016; Nisi et al., 2018; Wilke et al., 2025), it is still relatively short for 
robust trend estimation. Therefore, the signals found should be 
interpreted as an indication of potential changes in hail frequency 
rather than as definitive evidence. Interestingly, parallel studies also 
show negative trends in convective activity, as evidenced by the rate 
of lightning over northern Germany (Augenstein et al., 2025). In the 
coming years, existing analyses can be continuously expanded to 
verify the robustness of the trends and rule out possible distortions 
due to short data segments.

The central open question is which physical processes control the 
regionally different trends in PHTs and which meteorological (e.g., 
internal climate variability) or anthropogenic factors underlie this 
pattern. Hail formation is a highly complex interaction of several 
processes (instability, moisture advection, orographic influences, 
synoptic regimes, and convective dynamics; cf. Allen et al., 2020), 
which makes it difficult to clearly assign specific causes. Furthermore, 
large uncertainties remain in how the response of large-scale 
atmospheric dynamics (e.g., prevailing weather regimes) and the 
associated environmental conditions, as well as kinematic aspects 
(e.g., updraft width and strength of supercells, cf. Fischer et al., 
2025b) will respond to a warming climate. The same applies to the 
response of microphysical processes (e.g., aerosol concentrations; cf. 
Raupach et al., 2021; Brennan and Wilhelm, 2025). Initial results 
indicate that the observed trends cannot be attributed solely to changes 
in large-scale environmental conditions such as atmospheric stability, 
moisture advection in the lower layers, vertical shear, the melting layer, 
or the frequency of favorable synoptic configurations. Recent analyses 
reveal that several factors are operating simultaneously, including 
teleconnection influences, variations in aerosol concentrations, and 
alterations in the type and dynamics of thunderstorm systems (e.g., 
Augenstein et al., 2025; Fischer et al., 2025b; Feldmann et al., 2025a; 
Manzato et al., 2025; Sperka et al., 2025; Trapp et al., 2025).

A potential limitation of this study is its reliance on the PZ 
product, which has relatively low vertical resolution and only six 
reflectivity classes. Nevertheless, this dataset is the only 3D hail- 
proxy product available consistently over a 20-year period. 
However, preliminary analyses based on the 2D precipitation 
scan from DWD with practically continuous scale (RX product, 
>55 dBZ) reveal similar spatial patterns.

In this work, we have refrained from combining our PHTs with 
hailstone size data (e.g., ESWD or crowdsourcing data from the DWD) 
to analyze their intensity. At the beginning of our analysis period, ESWD 
data with its information about hail size are relatively scarce. Therefore, 
we cannot make any statements about how the hailstone size 
distribution might change in relation to relevant environmental 
conditions. For example, initial studies have observed a tendency 
toward more days with larger hailstones than days with smaller ones 
and have linked this to an increase in the height of the melting layer (e.g., 
Dessens et al., 2015; Raupach et al., 2021; Mallinson et al., 2024). To 
expand the analyses to include an intensity dimension, it would be 
desirable for spatially and temporally homogeneous data to continue 
being available for future studies.

Data availability statement
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available through the Open Data Portal of DWD: https://opendata. 
dwd.de/weather/radar/sites/pz/. The North Atlantic-European 
weather regimes based on ERA5 can be obtained on Zenodo: 
https://zenodo.org/records/17080146.
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