KIT | KIT-Bibliothek | Impressum | Datenschutz

Conquering the Retina: Bringing Visual in-Context Learning to OCT

Negrini, Alessio 1; Reiß, Simon ORCID iD icon 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Recent advancements in medical image analysis have led to the development of highly specialized models tailored to specific clinical tasks. These models have demonstrated exceptional performance and remain a crucial research direction. Yet, their applicability is limited to predefined tasks, requiring expertise and extensive resources for development and adaptation. In contrast, generalist models offer a different form of utility: allowing medical practitioners to define tasks on the fly without the need for task-specific model development. In this work, we explore how to train generalist models for the domain of retinal optical coherence tomography using visual in-context learning (VICL), i.e., training models to generalize across tasks based on a few examples provided at inference time. To facilitate rigorous assessment, we propose a broad evaluation protocol tailored to VICL in OCT. We extensively evaluate a state-of-the-art medical VICL approach on multiple retinal OCT datasets, establishing a first baseline to highlight the potential and current limitations of in-context learning for OCT. To foster further research and practical adoption, we openly release our code (https://github.com/negralessio/thesis-visual-in-context-learning both authors contributed equally to this work).


Originalveröffentlichung
DOI: 10.1007/978-3-032-13961-0_3
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2026
Sprache Englisch
Identifikator ISBN: 978-3-032-13961-0
ISSN: 0302-9743, 1611-3349
KITopen-ID: 1000190310
Erschienen in Efficient Medical Artificial Intelligence – First International Workshop, EMA4MICCAI 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings. Ed.: T. Chen
Veranstaltung 1st Efficient Medical Artificial Intelligence (2025), Daejeon, Südkorea, 23.09.2025
Verlag Springer Nature Switzerland
Seiten 21 - 30
Serie Lecture Notes in Computer Science ; 16318
Vorab online veröffentlicht am 02.01.2026
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page