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Abstract: Interoperability and data integration are significant challenges in production
planning and control (PPC) due to heterogeneous data formats and fragmented software
systems. This paper introduces aas-middleware, an open-source software system leveraging
Asset Administration Shells (AAS) to enable interoperable, real-time integration for smart
manufacturing. By realizing service-orientation, aas-middleware addresses data heterogeneity
and system integration challenges, facilitating automation and information orchestration in
PPC. This research details the middleware’s architecture and showcases its application and
evaluation in a modular assembly station, demonstrating its ability to bridge IT and OT systems
effectively in real-time and to orchestrate complex planning tasks automatically.
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1. INTRODUCTION

Volatile market conditions and changing customer require-
ments demand that production systems adapt efficiently to
changes without significant planning efforts or downtime
(Mack et al., 2016). Although digitization shows the poten-
tial to enable rapid adaptations of a production system, it
comes with the cost of managing the increased complexity
of software systems due to a multitude of services, inter-
faces, and data sources (Monostori, 2014). To maximize
the benefits of digitization in manufacturing and avoid
additional IT and planning costs, a scalable approach is
needed that addresses the complexity of digitalized pro-
duction systems, makes them manageable, and enables
automation in production planning and control (PPC).

Smart production planning and control (SPPC) is a re-
search field focused on improving the efficiency and effec-
tiveness of PPC by considering methods and technologies
of Industry 4.0. SPPC’s main drivers, as identified by
Bueno et al. (2020) in their systematic review, are digi-
tization, integration of software systems, and automation
in PPC. Despite significant advances in digitization to
overcome previous technological limitations with solutions
such as OPC UA or the Asset Administration Shell (AAS),
PPC processes still face significant challenges in interop-
erability and automation of information flow (Napoleone
et al., 2020; Qu et al., 2019). Key issues include data
heterogeneity, as various systems (ERP, MES, shop-floor
control) employ diverse formats (e.g., JSON, XML, CSV)
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and custom schemas, complicating integration. Addition-
ally, many legacy systems and PPC software tools are not
integrated and remain isolated due to proprietary data
formats and communication protocols. This fragmentation
contrasts with the vision of Industry 4.0: an interoperable
information network without technical barriers between
assets and software (Trunzer et al., 2019). Lastly, PPC
software tools are often not configurable via interfaces
other than a user interface. Thus, substantial manual input
is required to use PPC software tools, limiting the po-
tential for automation, integration, and reusability across
different production setups (Bueno et al., 2020).

A suitable software architecture enabling data integration
and interoperability is foundational for SPPC. Lee et al.
(2015) propose a layered software architecture concept
that enables interoperability by structuring integration in
multiple layers, each concentrating on specific aspects such
as data exchange and transformation. A frequent method
to apply such an architecture for SPPC is by integrating
services with a unified domain data model (Liu et al.,
2020). Similarly, simplifying and scaling integration of
enterprise applications has been explored by disassembling
them into distinct services (Wang et al., 2020). Alter-
natively, dedicated parsers have been used to integrate
information into other systems (Biesinger et al., 2019).

However, current approaches often fail to fully address
these challenges. For instance, while established SCADA
platforms or MES systems provide extensive connectiv-
ity, they are typically proprietary, costly, and lack na-
tive support for the AAS, hindering semantic interoper-
ability. Other solutions often rely on extensive, custom-
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coded integrations, which are brittle, difficult to scale,
and require significant domain expertise for each new
component. A unified framework for interoperability and
information exchange across all PPC services with real-
time synchronization and handling of data heterogeneity,
especially when involving different data formats, schemas,
and communication protocols, is missing.

To address these research gaps and build on our previous
conceptual work presented in Behrendt et al. (2023), we
introduce aas-middleware (Behrendt, 2025) !, an open-
source software system designed to support interoperabil-
ity and integration of planning software through service-
oriented information flow orchestration for PPC. It lever-
ages AAS while maintaining compatibility with other com-
monly used IIoT and IT standards. The rest of this pa-
per details the design and architecture of aas-middleware
(Section 2), demonstrates and evaluates its application on
a modular assembly station to realize SPPC (Section 3),
and concludes with a summary and outlook (Section 4).

2. ARCHITECTURE AND DESIGN

The design of aas-middleware aims to provide a foundation
for SPPC by enabling automated and continuous infor-
mation flow between software systems and manufacturing
equipment. To realize this goal, the following requirements
were considered:

e Enable interoperability between services and manu-
facturing equipment.

e Resolve data heterogeneity by supporting systematic
data integration.

e Allow for complex real-time orchestration of informa-
tion flows.

e Utilize principles of service-oriented architecture (SOA)
for modularity, scalability, and flexibility.

e Manage information flow for PPC with minimal effort
and required expert knowledge.

In general, a middleware is a software that connects and
facilitates communication between different applications
or systems, enabling them to work together and share
data effectively. In the past, the integration capabilities
of middlewares were mostly limited to technical integra-
tion without consideration of semantic interoperability.
This limitations is resolved by aas-middleware for PPC
in industrial environments, enabling continuous informa-
tion flow between software systems and IoT components
within an industrial information network, as envisioned in
Industry 4.0. Consequently, aas-middleware realizes seam-
less technical, syntactical and semantic integration of the
industrial communication standards OPC UA and AAS,
aligning with proposals by standardization organizations
(Drath et al., 2023). Furthermore, it supports commu-
nication standards commonly used in IT, such as JSON
Schema, OpenAPI, REST, and GraphQL, demonstrating
its potential in IT/OT integration scenarios.

The software architecture of aas-middleware, visualized in
Figure 1, is based on a modular design that allows defined,
yet extensible and flexible interaction with data sources

1 The open-source project is available at: https://github.com/
sdm4fzi/aas_middleware
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Fig. 1. Software architecture of aas-middleware based
on a modular approach consisting of integration,
representation and orchestration of information.

and sinks, following the concepts of Integration, Repre-
sentation, and Orchestration (Behrendt et al., 2023; Lee
et al., 2015). The architecture consists of five core building
blocks: Datamodel, Connector, Formatter, Mapper, and
Workflow.

The Datamodel forms the basis for data representation,
allowing the specification of data schemas (e.g., using
JSON Schema, AAS Templates) and serving as a container
for instances of these schemas. By providing functionality
for efficient data management, including querying (e.g.,
via JSONPath) and validation, the Datamodel provides a
defined foundation for data integration tasks.

The integration framework used in aas-middleware to cre-
ate interoperability and resolve data integration problems
relies on a generic 3-step approach based on Connectors,
Formatters, and Mappers. This integration approach pro-
vides a structured framework that guides data integration
projects while offering the flexibility needed for complex
industrial integrations.

A Connector handles technical data integration by en-
abling communication with data sources and sinks via in-
terfaces to various communication protocols, such as OPC
UA, MQTT, HTTP (REST), WebSocket, and direct in-
terfaces like Robot Teach Pendant Ethernet (RTDE). For
real-time capabilities, aas-middleware can be deployed in
real-time operating systems, utilizing protocols like RTDE
and OPC UA PubSub to enable real-time IoT control.

Formatters are responsible for changing the notation
of data retrieved or sent via Connectors, thus cov-
ering notational data integration. Most notably, aas-
middleware supports the transformation between object-
oriented schemas/instances (JSON Schema, OpenAPI,
GraphQL) and representations conforming to the AAS
Meta Model (Industrial Digital Twin Association (IDTA),
2023), facilitating the use of AAS as a canonical data
model.

Mappers address conceptual data integration by allowing
the flexible definition and use of data transformation pro-
cedures to integrate different schemas. Mappers translate
data structures between different contexts (e.g., from an
OPC UA structure to an AAS submodel structure, or to
the input format of a planning service).

Workflows orchestrate the information flow by connect-
ing Datamodels, Connectors, Formatters, and Mappers
in defined sequences. This enables automation workflows
that integrate different data sources and sinks with het-
erogeneous communication protocols, data formats, and
data structures. Workflows provide a flexible foundation
for automation as they support various execution poli-
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cies (manual trigger, event-based, periodic execution), can
contain error-handling logic, and allow for reusability and
composition into more complex orchestration logic.

The components of aas-middleware can be defined and
configured in two ways: programmatically using a Python
Software Development Kit (SDK) or via a declarative
REST API. The SDK offers full flexibility for defining
components with custom code, while the REST API al-
lows dynamic configuration and execution. SDK-defined
components can be containerized and exposed via au-
tomatically generated REST APIs for deployment. The
service-orientation and container-based architecture of
aas-middleware inherently supports scalability in practice.

aas-middleware allows specifying a persistence connector
for a Datamodel, acting as the ground truth. Other con-
nectors linked to this Datamodel can be automatically syn-
chronized with the persistence, ensuring data consistency
across the network. Upon deployment, aas-middleware au-
tomatically creates CRUD (Create, Read, Update, Delete)
APIs (REST and GraphQL) for interaction with its man-
aged Datamodels, alongside endpoints for executing Con-
nectors, Formatters, Mappers, and Workflows.

3. DEMONSTRATION AND EVALUATION

This section evaluates how aas-middleware manages to
tackle the challenges of interoperability and real-time
synchronization by application in a use case.

Use Case Setup

The use case for evaluation features a modular assembly
station, whose architecture is conceptually shown in Figure
2. The physical realization of this station, used for our
evaluation, is depicted in the photograph within the same
figure. The use case demonstrates the capabilities of aas-
middleware in complex industrial integration and auto-
mated workflow orchestration scenarios relevant to SPPC.

The station comprises of a handling robot and various
process modules equipped with universal hardware and
electrical interfaces that facilitate their flexible relocation.
To detect the current configuration, RFID sensors are
positioned at potential module locations, identifying each
module along with its precise position and orientation.
Building on this adaptable hardware setup, the use case
objective is to enable flexible operation by dynamically
generating and executing assembly sequences. These se-
quences should be derived based on a given high-level pro-
cess list and the station’s current, RFID-detected layout.

A key enabler for the automatic adaptation is the AAS
provided by each station module, which details its specific
capabilities, processes, handling points, and communica-
tion interfaces (e.g., OPC UA or RTDE).

The approach for flexible operation involves automati-
cally planning the required robot movements for material
handling with a Robot Planning Service (RPS) and the
orchestration of commands for process modules, gripper,
and robot. Crucially, the AAS self-descriptions allow the
system, orchestrated by aas-middleware, to autonomously
deduce these necessary handling steps and interaction de-
tails without manual intervention, directly realizing the
goal of adaptable automation.

Middleware Implementation

In this use case, aas-middleware serves as the central
integration and orchestration hub by implementing the
following core components.

The Datamodel maintains a real-time digital representa-
tion of the station’s state, including module configurations
and operational statuses. It utilizes a standardized data
model — the SDM reference model (Ellwein et al., 2023)
— represented as AAS instances stored persistently on a
BaSyx server. This standardized representation is key to
achieving semantic interoperability.

The Integration components bridges the gap between
diverse systems:

e Connectors handle technical communication with
OT components (Robot via RTDE, Process Modules
and RFID sensors via OPC UA) and IT services (UI,
RPS, 3D Visualization and AAS Server via REST).
This directly addresses protocol heterogeneity.

e Formatters manage notational transformations, con-
verting between JSON (common in IT/UI), OPC UA
variables and the AAS format used for persistence
and module descriptions, tackling data format het-
erogeneity.

e Mappers resolves conceptual heterogeneity by trans-
lating data structures between the context of AAS
self-descriptions, the internal state model, and the
specific input/output requirements of external ser-
vices like the RPS.

Workflows automate the information flow and process
logic of the assembly station:

e Update station configuration: Uses RFID Con-
nectors to identify modules and their positions or
orientations, updating the central Datamodel (AAS
instances).

e Plan process sequence: Receives a high-level tar-
get process sequence (e.g., from the UT). It queries the
Datamodel (containing AAS information) to identify
suitable process modules and their locations. It deter-
mines necessary intermediate handling steps (robot
movements) based on module interface specifications
(from AAS). For each handling step, it invokes the
external RPS (via REST Connector, using Mappers
for data translation) providing the current station
configuration and task details and the RPS returns
a suitable robot trajectory. The workflow combines
these trajectories with commands for process mod-
ule activation (via OPC UA Connector) and robot
gripper activation (via RTDE) into a complete, exe-
cutable sequence stored within the middleware. This
exemplifies automated, context-aware planning.

e Execute process sequence: Executes the process
sequence, sending commands in the correct order to
the Robot (via RTDE Connector), Robot gripper (via
RTDE Connector) and Process Modules (via OPC
UA Connector). It uses synchronization mechanisms
(e.g., OPC UA boolean flags) to ensure proper hand-
shakes and timing between robot actions and module
operations, crucial for reliable execution.
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Fig. 2. Conceptual overview of the modular automated disassembly station showing connections managed by aas-

middleware.

The reliance on AAS self-descriptions is fundamental,
enabling the middleware, in tandem with the planning
service, to automate the understanding of module capabil-
ities and interfaces, thus facilitating dynamic planning and
execution without manual control logic reconfiguration.

Evaluation

The performance and behavior of aas-middleware were
assessed using runtime data from two operational scenar-
ios. The primary objectives were to: (1) demonstrate ef-
fective orchestration involving multiple, heterogeneous IT
and OT components, showcasing real-time interaction and
synchronization; and (2) quantify communication charac-
teristics (frequency, latency, message size) to evaluate its
ability to bridge the IT/OT gap and handle demanding
planning tasks.

The event timelines provide insight into the dynamic
orchestration capabilities. Figure 3 illustrates a scenario
involving replanning between two process sequences. It
shows, how aas-middleware starts at first with updat-
ing the station configuration, visible by the BaSyx and
OPC UA interactions at the beginning. Afterwards aas-
middleware initiates the RPS multiple times, receiving the
robot trajectories. Afterwards aas-middleware receives the
execution trigger three times from the Ul In each execu-
tion, aas-middleware coordinates the Robot, Gripper, and
OPC UA modules for execution. After the first process
sequence, a second one is provided from the Ul which is
planned and also executed three times. However, in the
execution, we see two OPC UA interactions now. The
second OPC UA interaction shows the synchronization
mechanism using OPC UA Boolean variables for hand-
shaking, ensuring precise timing between robot movements
and module actions. This highlights the system’s adapt-
ability and the middleware’s central role in managing
dynamic changes and orchestrating interaction of various
heterogeneous system components.

Figure 4 details planning and execution of a three-step
process sequence, emphasizing the possibility for more
complex process sequences. Both timelines validate the
middleware’s capacity to execute complex, dynamically
generated plans across heterogeneous resources and pro-
tocols, leveraging AAS self-descriptions for automated in-
teraction and fulfilling the need for robust real-time or-
chestration of production resources.

Analysis of interaction frequency (Figure 5) reveals a high
volume of exchanges managed by the middleware, with the
Robot dominating. This reflects the robot’s pivotal role in
physical execution and underscores the middleware’s con-
tinuous real-time coordination with station components,
including triggering process modules via OPC UA signals.

Examining communication characteristics — latency (Fig-
ure 6) and message size (Figure 7) — reveals distinct pat-
terns confirming effective IT/OT integration. OT commu-
nication (Robot via RTDE, Process Modules via OPC UA)
exhibits very low latency, essential for real-time control
and synchronization, with small message payloads (status
updates, triggers). It should be noted here, that the in-
teraction latencies of Gripper and Robot cover not only
the trigger but also the execution, hence the values in
the range of seconds. However, the latencies of OPC UA
interactions with a mean below 9 milliseconds shows the
feasibility for fast and real-time synchronization between
IT and OT. In contrast, IT service interactions (RPS,
BaSyx) show higher latencies, acceptable for less time-
critical tasks, and often involve larger payloads (config-
uration data, complex plans). This clear differentiation
demonstrates aas-middleware’s proficiency as a bridge,
effectively managing the disparate communication require-
ments inherent in smart manufacturing environments.

In summary, the demonstration and evaluation validate
that aas-middleware effectively addresses key challenges
outlined earlier. Data heterogeneity (formats, protocols,
schemas) is managed through the modular Integration
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Fig. 3. Event timeline for an planning and execution sequence involving replanning between process steps.
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Fig. 4. Event timeline for the planning and execution of a complex three-step process sequence.
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Fig. 5. Number of Interactions per Resource managed by
aas-middleware during the evaluated period.

layer (Connectors, Formatters, Mappers). System frag-
mentation is overcome by providing a unified orchestration
platform. Lack of automation in planning and execution is
addressed by leveraging AAS self-descriptions within au-
tomated Workflows. Real-time synchronization needs are
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Fig. 6. Distribution of interaction latencies (send/receive
round-trip) for different resources.
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Fig. 7. Distribution of message sizes (sent data) for differ-
ent resources.

met through low-latency OT communication and explicit
coordination mechanisms. The ability to handle both rapid
OT interactions and complex IT service calls confirms its
role as an effective IT/OT integration bridge.
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4. CONCLUSION AND OUTLOOK

This paper introduced aas-middleware, an open-source
software system designed to address persistent chal-
lenges of interoperability, data integration, and automa-
tion within modern Production Planning and Control
(PPC). Confronting issues like heterogeneous data for-
mats, fragmented systems, and the need for real-time
IT/OT integration, aas-middleware employs a service-
oriented architecture (SOA) centered around the AAS. Tts
modular design, based on Representation (Datamodel),
Integration (Connectors, Formatters, Mappers), and Or-
chestration (Workflows), provides a scalable and flexible
solution for seamless communication across diverse indus-
trial and IT protocols.

The practical applicability and effectiveness of aas-middleware

were demonstrated in a modular assembly station use
case. The evaluation confirmed its ability to successfully
integrate disparate OT components (robot, PLCs via
OPC UA) and IT services (planning, persistence), manage
automatically dynamic reconfiguration using AAS self-
descriptions and workflow orhcestrations, and effectively
bridge the distinct communication demands of real-time
control and higher-level service interactions. The results,
evidenced by interaction patterns, latency distributions,
and event timelines, underscore its capability to fulfill
the critical requirements for building adaptable smart
manufacturing systems. By leveraging AAS, it facilitates
the automation required for Industry 4.0 scenarios, re-
ducing manual configuration effort and enabling dynamic
responses to changing production needs.

While aas-middleware offers a powerful approach, its cur-
rent practical deployment benefits most from environ-
ments with readily available digital interfaces and, ideally,
AAS descriptions. Recognizing this, future work will pri-
oritize enhancing its utility in brownfield scenarios where
digitization may be limited, exploring methods for semi-
automatic generation of interfaces or AAS models. Fur-
thermore, research into integrating Large Language Mod-
els (LLMs) to assist in the creation of complex Mappers via
schema matching holds potential for significantly reducing
the manual effort often associated with data integration.

Overall, aas-middleware constitutes a significant contribu-
tion towards realizing truly interoperable and automated
smart manufacturing. It provides a robust, flexible, and
open source toolset for integrating and orchestrating the
complex interplay of systems required for the next gen-
eration of intelligent and adaptive PPC solutions, paving
the way for more efficient and resilient production envi-
ronments.
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