KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep Learning for Amplified P-Wave Duration Annotation

Becker, Silvia 1; Krishna, Ajay; Jadidi, Amir Sherwan; Loewe, Axel ORCID iD icon 1; Krishna, Ajay; Eichenlaub, Martin; Keller, Till; Westermann, Dirk; Arentz, Thomas
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)

Abstract:

Atrial cardiomyopathy (AtCM) is associated with newonset atrial fibrillation (AF), higher AF recurrence rates after pulmonary vein isolation (PVI), and increased risk for ischemic stroke. Automated diagnosis of AtCM using electrocardiograms (ECGs) could enable non-invasive screening of large cohorts. The amplified P-wave duration (APWD) holds potential for diagnosing and staging AtCM. In this study, we propose a long short-term memory (LSTM) model to annotate APWD. The model’s training involved two phases: initial pretraining with weak labels and subsequent fine-tuning with expert labels. We investigated the effects of pretraining, trimming input signals, and upsampling on the absolute error between predictions and labels. The best-performing model was a bidirectional LSTM with 16 hidden units using pretraining, no trimming, and upsampling during fine-tuning, resulting in absolute errors of 13.9 ± 24.9, 15.4 ± 17.4, and 18.2 ± 19.8 ms for the P-wave onset, offset and duration, respectively. On the independent data set, errors were 7.3 ± 7.4, 15.6 ± 16.5, and 16.5 ± 21.1 ms, accordingly. The model showed little systematic bias and generalized well to unseen data. ... mehr


Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2325-887X
KITopen-ID: 1000190312
Erschienen in Proceedings of the 52nd Computing in Cardiology Conference (CinC 2025); Santo Andre, Brasilien, 14.-17.09.2025
Veranstaltung 52nd Computing in Cardiology Conference (CinC 2025), Santo André (São Paulo), Brasilien, 14.09.2025 – 17.09.2025
Verlag Computing in Cardiology
Seiten 1
Serie Computing in Cardiology Conference (CinC) ; 52
Vorab online veröffentlicht am 12.12.2025
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page