KIT | KIT-Bibliothek | Impressum | Datenschutz

Accelerating Cardiac Myocyte Simulations with Physics-Informed Neural Networks for Sodium Channel Gating

Sanchez, Jorge 1; Loewe, Axel ORCID iD icon 1
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)

Abstract:

The increasing availability of human electrophysiological data has enabled the development of refined myocyte models with detailed transmembrane current descriptions. This fidelity is typically achieved via stiff systems of ordinary differential equations (ODEs) that span disparate time scales and force small integration steps, especially for the fast sodium current I$_{Na}$ conducted by Nav1.5. Explicit schemes may require sub-microsecond steps (e.g., 0.1 μs) to resolve upstroke and refractory dynamics, causing sub- stantial computational costs for single-cell, tissue, and organ simulations. We present a hybrid approach in which a physics-informed neural network (PINN) surrogates the Nav1.5 gating kinetics for the activation m and dual inactivation gates h$_1$, h$_2$ and replaces the corresponding ODE subsystem in a human atrial action potential model. The PINN is trained to match the observed current-voltage relation while penalizing violations of the known gating ODE structure. We assess fidelity and quantify speedups up to 2.5x faster and stability with enlarged time steps in paced simulations (0.18 mV RMSE). The resulting surrogate reproduces gating-dependent I$_{Na}$ behavior while materially reducing wall-clock time, suggesting a tractable path to high-fidelity, large-scale simulations and downstream personalization workflows.


Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2325-887X
KITopen-ID: 1000190313
Erschienen in Proceedings of the 52nd Computing in Cardiology Conference (CinC 2025); Santo Andre, Brasilien, 14.-17.09.2025
Veranstaltung 52nd Computing in Cardiology Conference (CinC 2025), Santo André (São Paulo), Brasilien, 14.09.2025 – 17.09.2025
Verlag Computing in Cardiology
Seiten 1
Serie Computing in Cardiology Conference (CinC) ; 52
Vorab online veröffentlicht am 12.12.2025
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page