KIT | KIT-Bibliothek | Impressum | Datenschutz

AdaINR: Locally Adaptive Implicit Neural Representation of Diffusion Currents for Mechanistic Electrophysiology Simulations

A. Vadhavkar, Sumeet; Wang, Linwei; Appel, Stephanie 1; Alberto Barrios Espinosa, Cristian; Loewe, Axel ORCID iD icon 1; Meisenzahl, Casey
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)

Abstract:

Mechanistic electrophysiology simulations provide detailed insights into arrhythmia mechanisms but are hindered by high computational cost. Recent emergence of reaction-eikonal models rely on efficient surrogates for the diffusion current to maintain scalability, although existing approximations struggle to generalize across heterogeneous conduction properties and complex arrhythmic dynamics. This paper presents adaINR – a novel implicit neural representation (INR) for the diffusion current that is adaptive to local conduction characteristics. Trained and tested on data from a simulated reentry scenario in cardiac tissue, we demonstrated the ability of adaINR to efficiently capture the key features of diverse diffusion current morphologies - including planar, curved, and colliding wavefronts - with an average mean squared error of 33.8 (μA/cm$^2$)$^2$. It has the potential to facilitate faster and more scalable simulations of complex arrhythmias.


Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2325-887X
KITopen-ID: 1000190314
Erschienen in Proceedings of the 52nd Computing in Cardiology Conference (CinC 2025); Santo Andre, Brasilien, 14.-17.09.2025
Veranstaltung 52nd Computing in Cardiology Conference (CinC 2025), Santo André (São Paulo), Brasilien, 14.09.2025 – 17.09.2025
Verlag Computing in Cardiology
Seiten 1
Serie Computing in Cardiology Conference (CinC) ; 52
Vorab online veröffentlicht am 12.12.2025
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page