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Abstract

®

CrossMark

Plasma ionisation avalanche under constant electric field is well described by classical theory. It
is the standard tokamak start-up method. In this work, we investigate an analogous avalanche
process driven by electron cyclotron resonance (ECR). This is a typical plasma initiation
method in stellarators. At low plasma temperatures, the typical wave—particle interactions result
in complex trajectories. These allow electrons to gain energy beyond their initial value in a
single wave encounter. We present a heating model applicable to the standard second-harmonic
start-up in stellarators. The model is based on scaling laws derived from wave—particle
Hamiltonian dynamics. It relies on a dimensionless numerical coefficient that encapsulates
geometric and experimental specifics. This coefficient is calibrated via test-particle simulations.
The absorption model is coupled with a collisional-radiative description of hydrogen ionisation,
radiation losses, and recombination to simulate the evolution of the ECR-driven ionisation
avalanche. The breakdown condition is shown to be related to the maximum temperature
achieved during the early stages of start-up. A semi-analytical expression for this temperature is
given. The predicted plasma breakdown times show reasonable agreement with experimental

observations in the Wendelstein 7-X and TJ-II stellarators.

Keywords: ECRH, breakdown, start-up, ionisation avalanche, W7-X, TJ-II, stellarator

(Some figures may appear in colour only in the online journal)

1. Introduction

Plasma initiation can be achieved through various heating
mechanisms. In present stellarators, electron cyclotron reson-
ance heating (ECRH) is the typical method for energising elec-
trons. These energised electrons collide with neutrals, leading

2 See Grulke er al 2024 (https://doi.org/10.1088/1741-4326/ad2f4d) for the
W7-X Team.
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to ionisation and triggering an avalanche process that results
in plasma formation.

In contrast, present-day tokamaks initiate the avalanche
primarily through an inductive electric field. The initial phase
of this global electric field is called Townsend avalanche [1].
This is followed by the burn-through phase and a current ramp.
The resulting electron population generates a toroidal plasma
current, which ultimately defines the equilibrium magnetic
configuration (for a comprehensive overview of tokamak start-
up, see, e.g. Mueller [2]). The Paschen curve [3] has been iden-
tified as the criterion for an inductive ionisation avalanche in
tokamaks.

Restrictions imposed on the maximum achievable induct-
ive field strength can benefit from the use of an ECRH
assisted start-up, thereby reducing the minimum loop
voltage required. This reduction is especially important in

© 2025 The Author(s). Published by IOP Publishing Ltd on behalf of the IAEA
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large superconducting tokamaks, such as ITER [4]. The
fundamental and second harmonic ECRH-assisted start-up
has been investigated in devices such as DIII-D [5, 6], Tora
Supre [7], AUG [8], FTU [9], KSTAR [10], or JT-60U [11],
demonstrating that its use ensures reliable and reproducible
plasma discharges over a broader operational range.

Even though stellarators routinely utilise ECRH for plasma
formation, the condition for ECRH-driven ionisation ava-
lanches in stellarators has yet to be determined. This is despite
it having several advantages over the tokamak start-up, such
as initialising the magnetic configuration before the plasma
generation. Therefore, the ECRH-assisted start-up in toka-
maks, which involves additional important physical phenom-
ena (flux surface formation, loop voltage, efc), will not be
addressed here. Instead, the primary objective of this work is
to establish the breakdown criteria for ECRH-driven start-up
in a stellarator.

In order to model ECRH-driven ionisation avalanches,
it is first necessary to develop a comprehensive under-
standing of resonant power absorption at the very early
stages of plasma formation. In this study, we charac-
terise electron cyclotron resonance (ECR) power absorp-
tion for the second-harmonic X-mode waves, which are
employed to initiate breakdown in Wendelstein 7-X. The
absorption model is coupled to a hydrogen gas model to
describe the evolution of the ionisation avalanche. A condi-
tion for the power threshold required to achieve breakdown is
deduced.

The seminal work of Cappa and Castejon [12] utilised an
effective ECR interaction width [13] to determine the elec-
tron distribution function. Moreover, in the model described
in Cappa and Castejon [12], the simplified non-linear energy
source developed in [13] was implemented using an average
stray radiation intensity homogeneously distributed around
the torus with half of its polarisation in the right hand mode.
The direct interaction with localised beam power, which does
not meet the conditions for magnetic field structure assumed
in [13], was disregarded. In addition, this effective interac-
tion falls short in capturing key dependencies that have been
observed in experimental contexts (see Cappa et al [14]).
In particular, the influence of the parallel refractive index,
beam width [15] and magnetic field inhomogeneity [16] on
the breakdown condition is not accounted for.

Capturing these dependencies can be achieved through ana-
lysis of the Hamiltonian dynamics of the wave—particle inter-
action. The relevant Hamiltonian formalism [17-19] has been
studied in detail in the adiabatic regime, wherein it is assumed
that a particle undergoes an extended interaction with the
beam prior to decorrelation (e.g. in [15, 18-23]). In contrast,
interaction with fast decorrelation is described by the quasi-
linear regime (e.g. in [24-27]). However, the plasma condi-
tions during the ionisation avalanche in a stellarator typically
fall outside both these regimes. Nevertheless, the Hamiltonian
approach provides insight into how energy absorption scales
with key physical parameters. The absorption can thus be
reduced to a general scaling law multiplied by a functional that

depends on magnetic geometry, ECRH beam configuration,
and the electron distribution function. This functional is stud-
ied numerically for Maxwell distributed electrons, and is
found to attain values of 25-800, where the most import-
ant parameters are the magnetic field structure and beam
width.

The absorption model, when paired with the ionisation,
recombination and radiation processes in a 1D cylindrical
diffusive model, is capable of characterising the ionisation-
avalanche stage.

The work is organised in the following way. Initially,
the beam absorption is considered. Secondly, the neutral-
ion model is presented. Thirdly, the model is compared to
experimental data from W7-X, wherein the model predicts a
stage with a quasi-steady state temperature. Finally, a rela-
tion between power and achieved steady-state temperature is
derived. Time to achieve breakdown is compared to previous
TJII discharges.

2. Model for second harmonic ECRH absorption

The power absorption is characterised by the attenuation coef-
ficient. It is given by the negative power absorbed by the elec-
trons averaged over velocity space and integrated over the sur-
face orthogonal to the wave vector, divided by the power:

LorP 1 ,dy
e L M)

where n, is the electron density, ~ is the electron relativistic
Lorentz factor, and the average (-), = [[[ fd®v is the velocity
space average, where the distribution function f{r,v,f) is nor-
malised to unity such that (1), = 1.

For the sake of convenience the power absorption length
scale is defined in this work through a direction that is ortho-
gonal to the magnetic field. We therefore choose the coordin-
ates to be defined such that x is aligned with the magnetic-
field direction and Z || x X (k x x) where k is the wave vector,
and call it the modified attenuation coefficient. Due to the fact
that the wave extent is typically negligible in comparison to
the machine size, the bending of the magnetic field lines is
ignored.

The time derivative of the energy can be expressed as ‘;—7 =

‘%vx. In accordance with the principle of phase space con-
servation, the function fn,v, remains constant. Consequently,
the integration over x can be carried out analytically, thereby
yielding the energy gain per single beam crossing, A~y. In
the integration leading to A-y, the change of variables from
time to space, f+— x introduces a sign reversal for negative
velocities, resulting in v, — |v,|. The ionisation and recom-
bination that occur inside the small wave-field extent is
ignored.

The quantity (Ay|v,|), determines the modified attenuation
coefficient. The interaction between the wave and electrons is
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governed by a Hamiltonian. The Hamiltonian for second har-
monic interaction is given by

Yrep)
2eBI (7 + x) w,
m2c? 2 (2)

_ .2
H=mc 1+m2c2
NJ_EW

+ 2B Elcos (2x),

where I = % is the magnetic moment times m /e, and conjug-
ates to the gyro-phase variable x = ¢ — %7+ %k -R, where ( is
a gyro-angle, w the wave-frequency, and R the guiding-centre
position. The wave-vector is denoted by k, and k| and k| refer
to the magnitude of the parallel and perpendicular compon-
ents of k with respect to the magnetic field B. The canonical
momentum Py = p|| — ]%I is conjugate to the coordinate x. B
denotes the magnetic field strength, e the elementary charge,
m the electron mass, ¢ the speed of light and N| =k, w/c.
Here, E is the electric field strength, assuming linear polarisa-
tion. For arbitrary polarisation, E should be replaced by twice
the part of the electric field rotating in the electron direction,
orthogonal to the magnetic field. See f.e. [28, 29] and refer-
ences therein. For kH ~ 0, this corresponds to the X2-mode
polarisation.

Since the Hamiltonian is explicitly time-independent, the
electron phase space trajectory and therefore its energy gain
are fully determined by the initial conditions. Representative
orbits are demonstrated in figure 1. Electrons with high par-
allel velocity experience a small energy kick. An example of
such trajectory is provided in the left panel of figure 1. When
multiple such kicks determines the heating rate, quasi-linear
theory applies (see e.g. [24, 25,27, 30]). In contrast in the adia-
batic regime (right panel) the electron experiences multiple
energy excursion as it traverses the beam. Consequently, its
motion can be characterised by an additional adiabatic invari-
ant, whereby the energy change becomes known (see e.g. [15,
17,19, 22]).

However, during the initial stages of ionisation ava-
lanche, neither of these limiting regimes is expected to
apply. Instead, electrons may experience energy jumps sig-
nificantly larger than their typical energy, yet without a
clear time-scale separation that would permit a simplific-
ation. Examples of such trajectories are demonstrated in
the central panel of figure 1. Whilst it is only possible
to obtain A~ numerically within this regime, the struc-
ture of the Hamiltonian equation (2) will be exploited in
order to extract the key scaling dependencies of the energy
gain.

Unless the electron is in the adiabatic regime, only even
powers of the E term contribute to the average energy gain,
due to the phase-averaging over the initial value of y. Since E
is a small parameter, we expect the energy gain to scale as E?.
Indeed, in the small kick regime, an analytical expression for
the change in the action A7 can be obtained. Averaging over

Small-kick Adiabatic

Inbetween

600 1000
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| 500

450 0
-10 0 10 -10 0 10 -10 0 10
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Figure 1. Example electron orbits from equation (2) for different
initial parallel velocity. Wave frequency is 140 GHz, with 800 kW
spread over a 4 cm beam waist Gaussian beam. The wave
polarisation is linear and the electric field is perpendicular to the
background magnetic field. Magnetic field strength is constant

B =2.502 548 T and orthogonal to the wave vector.

the initial phase x yields:
1 7 ( [NiEw \
- Aldy ~ — —dr
1/ X3 ( / B 2 )

Using (A~|v,|), o< E? leaves an unknown proportionality
function A:

2 2 2
™NIE"w

~row a8 O

(Aylvl)y _, NG 4P

(vel)y 2B mw?’

where A = A(%, e m‘”—CIZ, %)[%} depends on the independ-
ent parameters of the Hamiltonian, and is determined by
the exact wave—particle interaction. These parameters are
the parallel wave-vector kH, beam width w, initial value
of the velocity-space coordinates and it is a functional of
the magnetic-field strength B(z) [16]. The wave frequency
w determines the time-scale normalisation. Normalisation is
such that A is dimensionless, where E is related to the power

“

2 2 . .
through P = %3 2577, where 7 is the vacuum impedance.

That (Av|v,|), < E? implies that the modified attenuation
coefficient is independent of wave power, or (Avy|vy|)y),
P X Pprofile> Where pprofile is the local wave intensity profile. The
modified attenuation coefficient can be expressed as

1 OP mc(AY|ve|)y.max
—— = —(n, Y—’}T7 5
P az <n >\ P ( )
where (Av|vi|)ymax 1s the velocity-space average of the
product of energy gain and initial particle velocity, evaluated
along the path that intersects the peak electric field. The trans-
verse density weighting is defined by:

_ f NePprofile dy

<ne>y = # ) (6)

where F(z) = f Pprofiledy is the power form factor. For a
Gaussian beam, the form factor reduced to F = /7 /2w(z),
where w(z) denotes the beam waist. We denote the value of
A at maximum field along y with A. The modified attenuation
coefficient is

10P

SN 4
;E = —F<Ane>ym?rwz<|vx|>v (7)



Nucl. Fusion 66 (2026) 026011

C. Albert Johansson et al

200 =

<q 80 =
&
g 150 —
g
60 —
| 1 | ! | | 1 | 1 |
20 60 100 20 60 100
T. (eV) T. (eV)
|
<E:o 100 = 55 —
q
W
g
=90 = 50 =
| 1 | ! | | 1 | I |
—0.5 0.0 0.5 —0.5 0.0 0.5
Nj Ny
<t 300 = 75 -
Qq
g 200 = 50 =
= 100 =—
25 =
| | | | | | | | | |
2 3 4 5 6 2 3 4 5
<
(=}
g
W
<
g

d lodg;(‘B) (m71 )

Figure 2. The coefficient A dependences on different parameters
variations in solid lines. In the left-hand column, non-varying
parameters are held fixed at reference values:

Ny =0,P=0.5MW,w=4cm, 22 = 0.1m™", 7= 10eV and
w/2m = 140.2GHz. In the right-hand column, these values are:
Ny =0,P=02MW,w=33cm, 42 =0.13m™",T=10eV and
w/2m = 53.2GHz. The expected 1/ d:fxB dependence for large

1/ % dependence is shown with a dashed line, where the critical
gradient for this scaling is marked with a vertical line. To obtain A
for a different wave frequency, lengths must be normalised to ¢/w

(see the arguments for A given after equation (4)).

To evaluate the parameter A, we numerically solve the
equations of motion (equation (3.7) in [16]), and use the result-
ing trajectories to compute the absorption via equation (5). The
corresponding value of A is then extracted from equation (7).

Figure 2 illustrates the parametric dependence of the aver-
aged coefficient A. The parameters were varied over the fol-
lowing ranges: N|| € [-0.5,0.5], w € [2cm,6cm], and T, €
[10eV,110eV]. The B-field derivative ranges from dgf €
[0.016m™",0.19m™"] in the left-hand column, and 49 €

[0.004m~',0.24m™!] in the right-hand column.

When varying one parameter, each of the others attain their
own reference value. The two columns share the reference
values N, | = 0, and T = 10eV. The reference values for the
input power P, beam width w, and magnetic field gradient
0B are slightly different in the two columns. In the left-
hand column, these values are chosen to be similar to those
of W7-X, while those in the right-hand column are similar
to those of TJ-II. In the left-hand column, P = 0.5MW, w =

4cm, and dinB _ 0.1m~"', whereas in the right-hand column

dz
P=02MW,w=33cm, and 422 =0.13m™". In the left-
hand column, the wave-frequency corresponds to that used in
W7-X: w/2m = 140.2 GHz, whereas in the right-hand column
it corresponds to that utilised in TJ-II: w/27m = 53.2 GHz.

The magnetic field strength on the beam axis, By, is selec-
ted to maximise A. This is justified by the observation that the
beam traverses a range of magnetic field strengths and will
typically encounter the optimal value along its path.

Below, we analyse the dependencies obtained from rigor-
ous trajectory calculations and provide corresponding estim-
ates where appropriate limits exist.

For most parameters A is close to 100. The temperature
scaling does not follow the quasi-linear scaling, which would
prohibit absorption near 7, = 0. The difference between the
left-hand and right-hand column of figure 2 can be explained
by noting that A is almost proportional to w =~ 2eB/m if the rest
of the parameters are kept constant in SI-units. This is realised
by inspecting equation (7), where one power of B normalises
vy, which has a minor impact on the value of A, leaving only
one power of B, i.e. one power of w.

The most significant parameter that enhances the resonance
is the magnetic field derivative along the field line. Johansson
and Aleynikov [16] demonstrated that a magnetic field derivat-
ive can yield a strong correlated interaction and enhancement
to the energy gain, that is A reaches high values. However, at
fixed derivative, A can often be treated as constant.

In the limit of strong magnetic field gradient along the field
line, the energy gain observed in figure 1 is limited by detuning
in the resonance parameter . Accordingly, optimal interaction
occurs when the change of x is of order unity.

Assuming that % sets the characteristic detuning times-
cale, the corresponding interaction time can be estimated as

2, 2
At~ 7(”’11(3) , (8)
eBo—g, 1|

where the p|| is assumed to be constant within the beam.
Substituting this into the expression for the interaction
strength, equation (3), one finds that the average amplitude
A scales as 1/ dh?T(Bﬁ in the high-gradient limit. This scaling
is indeed observed numerically as shown in the fourth panel
of figure 2. The anticipated 1/ dh;—dim scaling is indicated by
the dashed lines and agrees well with the numerical results for
sufficiently large %.

However, the scaling changes if the intrinsic frequency of
the nonlinear energy excursion, the energy oscillations in right
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Figure 3. Gaussian fit of the absorption amplitude A as a function
of ABy, using the reference parameters from figure 2.

panel of figure 1, exceeds the detuning frequency imposed by

din(B o .
%. In such cases, the gradient is irrelevant for detuning.
The nonlinear excursion frequency in our case is approxim-

ately (see also Seol et al [15]),
fu=Ex933Hzm V' 9)

Equating this frequency to the detuning rate yields a critical
gradient, beyond which nonlinear dynamics dominate:

din(B)|  4V2m*?(Ex93.3Hzm V')’

10
dx g eBoVT {10

The critical gradient given in equation (10) is indicated with
the vertical lines.

The parameters discussed above, namely 7, Ny, w and
%, govern the integrated power absorption length scale for
the optimal By. The width of the absorption profile is governed
by the dependence of A on the magnetic field strength By, with
ABy = 0 corresponding to the optimal interaction condition.
In the small kick regime, the absorption amplitude is propor-
tional to E?, evaluated in the vicinity of this optimal By. At a
different field line, the location of optimal B is shifted along the
magnetic field line by dx such that ABy/B = ‘HI;T@ dx. At this
location, the value of E? is modulated by its Gaussian trans-
verse profile, yielding a factor

202 (1 —Nﬁ) 2AB(2)(1 —N’ﬁ)

= exp .
B (dh:i(xB)) W2

Accordingly, the absorption profile is expected to exhibit a
Gaussian dependence on ABy:

A= max (A) - exp (_(Ali;/B)) )

exp
W2

an

where a fit of this form to the numerical results using reference
parameters is shown in figure 3.

The dependence of the Gaussian width parameter d on sys-
tem parameters is shown in figure 4, over the same parameter

d (mT/T)
| |
I I

d (mT/T) d (mT/T)
o [N} =~ [N} w [
1 1 1 1 1 1
\ : \
S =
: .
1 1 1 1 1 1

0.0 0.1 0.2 0.0 0.1 0.2
dlog(B — dlog(B —
SE £ (mh

Figure 4. Variation of the Gaussian width parameter d across the
same parameter space as shown in figure 2.

space as maxg, A in figure 2. As anticipated, d scales linearly

with both 4% and the beam width w.

The spatial extent of the absorption region across the field
line can therefore be approximated as a Gaussian with char-

acteristic length scale L:d/dh;gB), by identifying ABj =~
din(B) )
dz .

Finally, we verify the power scaling assumption introduced
in equation equation (4). The power dependence of A is shown
in figure 5. As expected, the A becomes independent of wave
power for higher temperatures (i.e. within the small kick
regime). In the low-temperature regime relevant to our study,
A exhibits a power dependence due to the nonlinear nature
of wave—particle interactions. However, within the parameter
range of interest, this variation remains within 30%, and is
therefore neglected in our analysis of plasma start-up.

In summary, equation (7) provides the absorption for elec-
trons crossing the beam once (fast-traversing, adiabatic or
anything in between), where the function A has been stud-
ied numerically. In the following sections, equation (7) will
determine the absorbed power, and A is approximated using
the data shown in figure 2.
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3. lonisation-avalanche model

The ionisation process is predominantly driven by the thermal
bulk as long as the neutral density is sufficiently high. This
occurs despite of the acceleration of a supra-thermal popu-
lation driven by the wave—particle interaction [31]. The bulk
primarily drives ionisation due to two factors: Firstly, the
ionisation rate coefficient exhibits a maximum at approxim-
ately 100 eV and remains high at lower energies. Secondly,
during the initial phase of the ionisation avalanche pro-
cess, the thermal bulk experiences an exponential increase in
density. Furthermore, because of the low density of supra-
thermal electrons, their contribution to the energy balance is
negligible. Consequently, the influence of the wave is con-
sidered to be the indirect heating of the thermal bulk plasma,
as outlined in the preceding section’s power absorption
model.

The atomic and molecular processes under consideration
are

H+e— H"+2e (12)
Hf +H—H" +H, (13)
e+H, —e+2H (14)
e+H, — 2e+HS (15)
H" +H, — H+HS (16)
e+H" —H (17)
e+HS —2H (18)
e+Hf —e+H+H" (19)
H, +Hf — H +H, (20)
H+H" — H"+H. (1)

The rate coefficients are calculated using EIRENE fits [32],
except for the ionisation of H and the recombination of HT,
for which data are taken from the ADAS database [33]. The
coefficients equations (13), (16), (20) and (21) are calculated
as Hollmann et al [34]. The ADAS rate coefficient assumes
an equation for each (meta)stable excited atom. Hydrogen has
two such states: 1 s and 2 s. However, we combine these
into one because the neutral density quickly becomes isotropic
across the entire machine.

The density of the neutral species evolves according to

ann 1 8 ann
5 = 7By (anar) + Zj:"u”z,iRiUi,fa (22)

where o, ; are the stoichiometric coefficients for element i of
reaction j, R; is the rate coefficient for the process j, n;; and
ny; are the densities of the reactants. The sum is taken over all
reactions (equations (12)—(21)). The neutral diffusion coeffi-
cient D,, is calculated as [34]

Dy,

Dl‘l = 1 Dthn b (23)

1
77nVih

where Dy, = V3, /v, is an approximate thermal diffusion coef-
ficient, vy, = \/kT,/m, is the thermal speed with T,, = 300K,
and v, is the total collision frequency (see Hollmann ef al [34]
near equation (A.2) for details). This form ensures that the
neutral flux does not exceed a quarter of the thermal speed,
which is consistent with kinetic theory. In essence, this diffu-
sion is extremely rapid, and distributes the neutrals evenly and
quickly across all radii.

The ion densities are modelled analogously to the neutral
species:

88”;1 — %% (}"Lll ij;f) —+ ;nlanJRjUj7 (24)
where L;; is the Maxwell-averaged diffusion-coefficient (see
e.g. Beidler er al [35]). This coefficient is computed by
approximating the mono-energetic collision-frequency with
its Maxwellian average. This enables pre-computation of L,
for a significant numerical speed-up at the expense of accur-
acy. Unlike neutrals, ion diffusion occurs on timescales much
longer than the ionisation avalanche and therefore plays a sec-
ondary role in the avalanche dynamics. The electron density is
calculated using the condition for quasi-neutrality.

The electron temperature and the ion temperature are
assumed to be equal and are calculated using energy balance,

CTE R A
o zl’le 27’ZH+ 2nH2+ e| = Pabs — Ploss

(25)

(3ne+3ma+3ms) o ¢ o,
+ = | rla )
r or or

where p,,s and pjoss represent the absorbed and lost power
per volume, respectively. The diffusion term is the Maxwell-
averaged neoclassical electron diffusion coefficient L, [35].
As we will see later, the transport does not greatly affect the
core temperature value, which is mainly determined by power
balance. Ly, is computed analogously to L;;. Here, H;L is
assumed to have seven degrees of freedom: three translational,
two vibrational and two rotational. These internal modes are
saturated for H, at temperatures exceeding 0.6 eV [36]. The
temperature equation can be reformulated to

T, 10 A
ot —rar(’LDar>+S‘L~

(26)
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A normalised source term was defined as

Q 2pabs
S=—=—, 27
an, 27
and a normalised loss through
£ 2ploss 2T, a%ne + %nHJr + %nH;
L=———= . (28)
dn, dn, ot
The averaged degrees of freedom d is given by
_ N+
d=34300 77 29)
ne ne
The power loss is divided into several components:
Dloss = Prad + Pi + Pd + pcx + PR, (30

where pr,q represents radiation, p; represents the ionisation
losses, pg represents dissociation loss, pcx represents the
losses associated with charge exchange between a neutral and
a charged particle, and finally pr represents the loss due to
recombination.

The radiation loss takes both continuum power and line
power into account:

Drad = Riinehte (nH + 2”]{2 + I’lH;r)
(31
+ Rcomne (nH+ + I’lH;—) .

The rate coefficients for line power Ry, and continuum
power Rgon are calculated using the ADAS database [33].
Accordingly, the corresponding loss terms are evaluated using
the total density of H, and HT. The line radiation is the dom-
inant loss mechanism during a successful breakdown.

The ionisation loss is given by

pi—13.6eVmax<0,(ane) )
at coll.

where the partial derivative is taken with respect to all ion-
isation and recombination processes. Each time an electron is
created, 13.6 eV is lost from the internal energy due to the
ionisation potential. Balance of recombination and ionisation
does not impact the collisional derivative of the electron dens-
ity, (%<)..,. - but this energy loss is accounted for in the con-
tinuum radiation loss term.

The dissociation loss is given by

(32)

Pd = nenHzRequation(M) 10.5eV + nenHjRequation(19)6'2eV7
(33)

where the energy change is taken as the average energy change
of charged particles as listed by Janev et al [37].

Charge exchange losses are modelled on the basis of an
immediate energy loss to the wall by the charge exchange neut-
ral, thanks to its very long mean free path. This is equivalent
to assuming that previous ion energy is lost to the wall, i.e.

d
pcx = Z EjTeRCXJnlJHZJz (34
J

where d; is the degree of freedom of the ion. The sum is taken
over the charge exchange processes equations (13, (16), (20)
and (21). This loss term is dominant in a very slow or failed
breakdown.

Similarly to the charge exchange, the recombination loss
accounts for the loss of previous ion energy to the wall

PR = Requalion(19)nenH;' %Te + Z <; + d21> Teneanj7 (35)
J
where the sum is taken over recombination events
equations (17) and (18). We assumed that H attain half the
energy of H;r in equation (19) (and is thus lost).
The heating p,,s is determined by the absorbed power
through equation (7), which is spread over the full cylindrical
volume:

_¥p dr 1
Ox0ydz  dr 4w2rRy’

Pabs = (36)
where Ry is the (effective) major radius. In an off-axis heat-
ing scenario, where the electron orbits that pass through the
ECRH beam cover the entire flux surface (for example, irra-
tional iota), the surface area 4w2rRy is to be replaced with
%‘r/. Here V denotes the flux surface volume. When (col-
lisional) electron orbits that pass through the ECRH beam
do not cover the entire flux surface, a 1D radial model is
inaccurate.

When on-axis heating is utilised, the radial deposition-
profile is obtained by accounting for the Gaussian beam pro-
file pprofite = exp(—2y*/w?) and a Gaussian profile in z direc-
tion. According to equation (11), this has a width of L = 5.

dz

Assuming circular flux surfaces the resulting power density %
from integrating over the angle, 6, forboth r < Land r > L, is

P 217
dp o, min | v/7r,Lexp | —— | |.
dr w?

The proportionality constant is set by the total absorbed power
from equation (7).

(37

4. lonisation avalanche in Wendelstein 7-X

The above model is used to simulate the plasma start-up under
conditions relevant to the Wendelstein 7-X (W7-X) stellar-
ator. W7-X is equipped with superconducting coils that gen-
erate a magnetic field with an accuracy of one part in 100 000
[38]. Plasma breakdown is typically achieved via ECRH, using
140 GHz gyrotrons that launch Gaussian beams in X2-mode
polarisation [39].

The model parameters are chosen to reflect the W7-X geo-
metry and operating conditions. The radial size is set to ryax =
0.51m, the beam width w = 4 cm, the diffusion coefficient L;;
is derived from D;; following Beidler et al [35]. The power is
setto P =2MW.

The value of the coefficient A relevant for W7-X condition

1 dB

is around 650. It corresponds to 3 ‘&> ~ 0.03m~! (see figure 2).

The major radius is set to R = 5.52m and the magnetic field
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Figure 6. Density evolution at r =0.

strength is 2.5T on axis. Perpendicular wave propagation is
assumed. The absorption length-scale L is given by the reson-
ance width in figure 4, thatis ABy/B = 0.77 mTT ! (figure 4).
For W7-X, ‘é—f ~0.97Tm"!, and thus L ~ 2mm.

The typical pre-fill hydrogen density is ny, =
1 x 10"m~3. We begin our computation with an initial ion
density of ny = ny+ =1 x 10"*m~3. The initial temperature
is assumed to be room temperature of 300 K. The equations
(equations (24) and (26)) are numerically integrated using the
FiPy finite-volume solver [40].

The temporal evolution of the core densities for all spe-
cies is presented in figure 6. Initially, o is the dominant ion
species. As the dissociation rate of Nyt increases, the dens-
ity of ny+ eventually surpasses that of Mg > thereby becom-
ing the dominant ion species. The atomic hydrogen density ny
exceeds the molecular hydrogen density ny, towards the end
of the avalanche process.

Figure 7 shows the line-integrated electron density
predicted by the model alongside data from a selec-
tion of W7-X discharges (#20221129.36, #20221130.31,
#20230117.40, #20230316.16, #20230315.20, #20230316.23,
#20230316.51). These discharges have similar key paramet-
ers, including a total ECRH power of 2 MW, on-axis heating,
and hydrogen pre-fill conditions, as inferred from the final
electron density. The experimental values obtained from the
interferometer diagnostic [41] are shown as dashed lines,
while the model prediction is represented by the solid line.
Time zero, t=0, is defined as the moment when the line-
integrated electron density reaches f n.dl=1x10%¥m=2,
There is reasonable agreement between the model and the
aggregated experimental data, except at very early times,
when the measurements are inherently unreliable.

The ionisation avalanche is characterised by a distinct
phase of nearly constant electron temperature, which is estab-
lished after an initial rapid temperature rise. This behaviour
is illustrated in figure 8, which shows the temporal evolu-
tion of the electron temperature at » =0 for the above para-
meters. Initially, the heating exceeds the energy loss plus
change in internal energy. However, a balance between heat-
ing, energy loss, and rise in internal energy establishes quickly.
Even though this balance occurs at an electron temperature

?‘A 1018 =
£ = I
%M 7 '
S 1017 = !
— = o g |
) = a | e model
4 s L exp
16 e
1077 = I 1 I I I I
~1.50 —1.25 —1.00 —0.75 —0.50 —0.25 0.00
t (ms)

Figure 7. Line-integrated density from several W7-X experiments
in dashed lines and from modelling in solid line.
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Figure 8. Temperature evolution at the core.

below 13.6 eV, the tail of the Maxwellian distribution
suffices to drive the ionisation avalanche depicted in
figure 6.

During the temperature plateau phase, the heating power
approximately balances the rise in internal energy due to ion-
isation, and losses due to ionisation, charge exchange, and
radiation. As the dominant losses, rise in internal energy as
well as power absorption scale linearly with the electron dens-
ity, the system naturally evolves towards a temperature plat-
eau. Eventually, as the plasma approaches full ionisation, these
loss processes diminish sharply, leading to an increase in tem-
perature. At this stage, the model assumptions are no longer
valid.

Notably, the temperature plateau phase emerges robustly
across a wide range of power levels. The only exception occurs
for a very high power such that the gas becomes ionised dur-
ing the initial heating phase, thereby bypassing the plateau
entirely.

The contributions to the change in electron temperat-
ure are shown in figure 9. The dominant term is the line
radiation, primarily because the hydrogen density is much
higher than that of any other species. The second domin-
ant term is the heating and overcoming of the ionisation
potential. Charge exchange is important for temperatures
near one to two eV. At low T,, the ionisation process can
stagnate.
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Figure 9. Evolution of the temperature loss terms.

5. Condition for sufficiently fast breakdown

A stagnation in electron density, 7., indicates a failed break-
down scenario. One possible cause of such failure is insuf-
ficient plateau temperature. A critical electron temperature
exists: for T, exceeding this threshold, the decrease in neut-
ral hydrogen density, H, leads to a reduction in power losses,
allowing the electron temperature to rise. Conversely, if T,
remains below this critical value, the system settles into a true
steady state characterised by partial ionisation.

Near the critical temperature, ionisation dynamics are par-
ticularly slow. For instance, achieving a 50/50 mixture of H
and H™ requires an electron temperature of approximately
T, ~ 1.3eV. At this temperature, the ionisation rate coeffi-
cient of hydrogen is roughly 2000 times lower than in the W7-
X breakdown scenario previously discussed, implying break-
down timescales on the order of tens of seconds.

Breakdown failure may also result from excessive radiative
losses exceeding the available input power. To prevent this, the
required input power for achieving 7, = 4eV is given by

Py > 4.4 x 107 MWm? /// niy, dV,

where n; g, denotes the initial molecular hydrogen density.
Here, the radiative loss term (2ny, + ny )7, has been replaced
by its optimal estimate ny, for simplicity. Assuming a uniform
distribution of electron density over one Gaussian beam width,
yields

Py 2 0.9kW - njy w?Ry,

where w is the beam width in centimetres, Ry is the charac-
teristic scale length in metres, and ny, is expressed in units of
1 x 10" m~3. For typical machine parameters such as those of
W7-X or TJ-II, this threshold is generally exceeded.

In W7-X, maximum allowable breakdown time is set by
the stray radiation limits. In particular, this sets the power
required for a breakdown. Theoretically, lower power than
this threshold could achieve breakdown. However, because
the reaction rate coefficient decreases sharply with elec-
tron core temperature, such a breakdown would require an

unreasonably long time. Such discharges are therefore abor-
ted. The breakdown time is therefore determining the break-
down condition in practice. It manifests as a sufficiently
high plateau temperature equation (26) so that the ionisa-
tion process is sufficiently fast to avoid excessive stray
radiation. Below, we derive an estimate for the plateau
temperature.

In an optimised configuration, the diffusion term can be
neglected. The steady state of equation (26) is given by

S—L=0. (38)
In the case of weak absorption, this equation becomes
o)y Agm2N? L 2r?
Py {re), 2L in l,—exp| ——
ne mRoB*w? T w?
- (39)
__4 ;
2wl
This equation is written so that the Ileft-hand side

depends on both n.(r,f), and r, while the right-hand
side depends on T,(r). The weak dependence of n, on
the right-hand side via the reaction rates is ignored.
To determine the plateau temperature, % must be
calculated, which in principle requires the exact time
evolution.

However, since the gradient of 7, must be 0 at the core,
the right-hand side must be approximately independent of r,
implying the same for the left-hand side. Therefore, we assume
the following form for the electron density profile:

N, &~ n,omin liex —E
e ™~ Ie() ’V\/% P W2 )

where n, is the core density.

The density profile is shown in figure 10. The analytically
predicted density profile in equation (40) is shown with the
dashed line, and the solid line displays a snapshot of the pro-
file from the numerical solution presented in figures 8 and 9.
Despite the predicted profile not taking the density evolution
equation into account, the two profiles agree.

The y-averaging in the power deposition term can then be
performed analytically, yielding

[ neomin (1, ﬁ exp (—%2) exp (—%2) dy
[7 exp (—%2) dy

2L 412
R~ neoi <2 —Ei <—2>>
W W

where Ei is the exponential integral. The quasi steady-state
core temperature is thus given by the solution to

2L 412\ Agm2N? d .
py 2L (2—Ei<— )) om2Nn__d ;.
W

aw? ) ) m2RoB2w?  2(|v,|)

(40)

<”e>y =

(41)

(42)

This dependence of the plateau temperature is shown in
figure 11, where the plasma is assumed to contain only ny,
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Figure 10. Predicted electron density profile from equation (40) in
dashed. Electron density profile at —0.96 ms of model showed in
figures 6 and 7 with black line. Initial electron density was
2x10"m™—.
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Figure 11. Plateau temperature from equation (42) as function of
machine parameters in solid line. Achieved plateau temperature
through different simulations are shown with dots for initial H, gas.
The power loss given by the solid line has different contributions.
These are charge exchange, given by the dotted line, radiation, given
by the dashed line and ionisation, recombination and disassociation,
given by the dash-dotted line. The sum of all three for fixed
temperature yields the solid line. These contribution depend on the
exact mixture of constituents, and are here given by

ng, =5 x 10" m~3 and ny+ =1X 10" m™3. Although the power
loss is dependent on exact (iensities, the variation of the solid line is
slight in the limit of non-equilibrium high neutral density.

and Ny The rh.s. scales linearly with the former and is
indeperident of the latter, whereas the lLh.s. is independ-
ent of both. Simulated plateau temperatures from full time-
dependent solutions are shown with circles.

Despite knowing the radial density profile and plateau
temperature, a numerical solution is necessary to determine
the ionisation avalanche time. We will compare several of
such numerical solutions with the breakdown times presen-
ted in figure 10(a) and 10(b) by Cappa et al [14], which were
obtained experimentally. This time is defined as the first H,
peak. These discharges were performed in TJ-II.

TJ-II has the following parameters R =1.5m, B=0.95T

\/g\/(élcm)z +(2.4cm)? ~ 3.3cm [42, 43], where
the beam width differs in different directions and the root mean

squared value was taken. For the coefficient Ao, and L, the
different B-field derivatives are summarised in table 1. The

and w =

Table 1. The different B derivatives for the different N cases and
their respective A and resonance length scales L.

N 4B (m~") % (Tm™") A L (mm)
0 0.06 1.03 124 1.3
0.3 0.11 1.07 65 2.2
0.57 0.23 1.00 33 4.6

values of A and L are calculated using the scaling compared
to the reference value in figures 2 and 4.

The initial experimental pressure was P~ 5 x 10~ mbar
[14], which translates to ny, = 1.2 x 10'¥m~3. Determining
the initial electron density is challenging. However, the break-
down time only depends on it logarithmically. We take the ini-
tial density to be 1 x 10’ m~3, which corresponds to the dens-
ity expected at an altitude of 60 km [44].

In this parameter regime, the ratio of the electron toroidal
transit time to the electron-neutral collision time is slightly less
than unity. This condition formally violates the assumption of
a Maxwellian velocity distribution. Since some particles will
not slow down between the interactions. However, this does
not compromise the validity of the model significantly, since
the distribution function f may be represented as a superposi-

tion of Maxwellian distributions:
1
(-57) +(7)
T

i 1

i o(a)e
where 3(1/T) is the inverse Laplace transform of f(v), up to
a normalisation factor. Under this decomposition, the tem-
perature dependence of the averaged absorption amplitude
A is captured through integration over the weighting func-
tion B(1/T). However, since this dependence is relatively
week (see figure 5), we neglect it when taking the integral.
Additionally, the width parameter d, which characterises the
absorption profile, was found to be nearly independent of
temperature.

The breakdown times dependency of a transmitted ECRH
power and N| is shown in figure 12. The square markers rep-
resent N = 0, the circles represent N, | = 0.3, and the triangles
represent N = 0.57. Although the value of N|| determines the
label, the beam path differs for each Ny This results in a
change to the magnetic field derivative, see table 1. The break-
down time obtained by numerical solution is shown with black
markers, whereas the experimental data from Cappa et al [14]
is shown with grey markers. The vacuum polarisation of the
ECRH beam is such that the power couples only with E? to
within 0.5 %. The transmitted power in the experiments is cal-
culated from the gyrotron power via an approximate transmis-
sion efficacy of 90 % [42].

The experimental breakdown time is defined as the time
from the gyrotron turn-on to the first H, emission peak.
The model breakdown time is defined similarly, however the
volume integrated H,, emission is considered. Good quantit-
ative agreement is found. The power required for a specific
breakdown time is in the correct order of magnitude, differing
by no more than a factor of 1.8.

2

f)
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Figure 12. Breakdown time versus transmitted ECRH power for
different V). Numerical solutions using the model in black markers,
experimental data from Cappa et al [14] in grey markers.

N € {0,0.3,0.57} are shown with squares, circles and triangles
respectively. Each N is associated with different B-field derivatives,
which are reported in table 1.

The qualitative dependence is also captured: triangles are
above circles, which are above squares, for both the experi-
ments displayed with grey markers and the simulations dis-
played with black markers. Despite the N label, the actual
change in breakdown time is caused by the different magnetic
field derivative at the beam centre. The corresponding change
in d{%B for different N|| is found in table 1. This derivative
change affects the efficacy of the electron wave coupling, as
can be seen in the bottom row of figure 2.

Note that the relation between breakdown time and power
can be roughly estimated by solving

on
7; = n.ngy, (Re+H2b—>H;r 42 +Re+H2»—>H++H+Ze> y 43)
with solution
log (%)

thd ~ (44)

nH, (Re-l-Hz»—)H;r 42¢ T Renysm+ +H+2e>

where n is the initial free electron density and the rates
R, FHy H 4200 and Ry, ,u+ 412 are evaluated at the plat-
eau temperature equation (42). This estimate gives a max-
imum factor of 5.2 between experimental and estimated power
needed for a specific breakdown time, i.e. 3 times worse than
that of the simulation. As discussed previously, the prac-
tical breakdown condition is set by the acceptable experi-
mental time for plasma formation, i.e. sufficiently large reac-
tion rates R, at the plateau temperature. For high temperatures,
these reaction rates stagnate, thus explaining the weaker power
dependence for high input powers in figure 12.

6. Conclusion

Although second-harmonic X-mode ECRH is routinely
employed for plasma start-up in stellarators, a quantitative cri-
terion for plasma breakdown has not yet been established. In
this work, a model for ECRH power absorption in the low-
density pre-fill phase is formulated and coupled to a simplified

hydrogen ionisation framework to describe the onset of ionisa-
tion avalanche. A semi-analytical expression for the electron
temperature during the avalanche phase is derived as a func-
tion of relevant machine parameters, providing an estimate for
successful breakdown condition.

To this end, electron orbits crossing the beam are analysed.
For the typical electron energy during ionisation avalanche,
these orbits neither constitute of an adiabatic orbit, nor a small
energy kick. Electrons can gain substantial energy without
experience several non-linear energy excursions. The average
power absorption of electrons is studied numerically. This is
combined with the power loss during the ionisation avalanche.

It turns out that the electron temperature reaches a quasi-
steady state during the ionisation avalanche due to a balance
of power between losses from radiation, ionisation and charge
exchange, and wave absorption—all of which scale approxim-
ately linearly with electron density. To achieve plasma forma-
tion, the quasi-steady-state temperature must be sufficiently
high for the ionisation rate to overcome the recombination
rate. Despite this formal condition for plasma breakdown, in
practice, the breakdown condition is set by a sufficiently high
ionisation rate such that the ionisation occurs before maximal
allowable stray radiation occurs.

Despite knowing the quasi-steady state temperature and the
electron density profile, the time taken to achieve breakdown
needs to be obtained numerically. We compare this break-
down time with experimental data and find good qualitative
agreement, despite the fact that the initial electron density is
not known, since the breakdown time only logarithmically
dependent on the initial condition.
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Appendix. Maxwell distribution assumption

An electron, accelerated by the wave, to some random speed
Vo undergo several collisions, after each obtaining a new speed
V; from a push Av;. The end speed Vy =V + Z?’:] Av; is
Maxwell distributed as N — oo if Av; are independent. The
velocity change Av; is however dependent on V;_; through
the double collisional cross sections. However, the sequence is
an adapted process and according to the Doob decomposition
theorem Av; can be decomposed into a sum of a Martingale
and a predictable process (an predictable process is adapted



Nucl. Fusion 66 (2026) 026011

C. Albert Johansson et al

and can be decomposed once again). The central limit the-
orem also holds for Martingales (under some conditions for
the variance). It is not unreasonable to expect (after suffi-
ciently many collisions), although not proved, that an elec-
tron, regardless of collisional form, attains a Maxwell distri-
bution. A clear counter example of random interactions not
attaining the Maxwell distribution is the quasi-linear wave—
particle interaction, but there the wave contains non-thermal
free energy (whereas the neutrals do not).

A.1. Small discussion of other harmonics

For other harmonics, the Hamiltonian does attain the same
form as equation (2), albeit the factor before cos(x) changes
(see for example [22]). Nevertheless, if the energy change
scales with E2, a similar analysis can be made to extract
some information of A~. One must then calculate A, for
some wave-mode * (X1, Ol, X3, etc) to find the effective-
ness of the wave-mode. As an example, some typical value
of Axs for W7-X relevant parameters are several orders of
magnitude lower than for X2, implying that several orders of
magnitude more power is most likely necessary to achieve
start up with pure X3. At such powers, it is questionable
if the assumptions made to obtain equation (2) are still
valid.
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