KIT | KIT-Bibliothek | Impressum | Datenschutz

Evaluation Matrix for Smart Machine-Learning Algorithm Choice

Pistorius, Felix 1; Grimm, Daniel ORCID iD icon 1; Erdosi, Florian 1; Sax, Eric 1
1 Institut für Technik der Informationsverarbeitung (ITIV), Karlsruher Institut für Technologie (KIT)

Abstract:

In Machine Learning, algorithm choice greatly affects the performance on a problem. Different advantages and disadvantages have to be taken into account in view of the specific use case. For critical applications, like in the medical field, model accuracy is paramount, while in the environment of embedded systems high computational efficiency may be of greater importance. Generally, expert knowledge is used to estimate a suitable algorithm for a defined application. However, the use of Machine Learning and Data Mining through non expert users is increasing.To simplify the process of algorithm choice for these inexperienced users, we propose an evaluation matrix for ranking machine learning algorithms, based on efficiency criteria. These criteria consist of different metrics, like accuracy, model complexity or scalability, which then in turn can be weighted for the underlying problem and evaluated to yield a use case specific algorithm ranking.Therefor efficiency criteria are discussed and assessment methods are defined. Resulting is a practicable evaluation matrix, which can be adapted to specific use cases through choice of importance weighting on the different efficiency criteria. ... mehr


Originalveröffentlichung
DOI: 10.1109/IBDAP50342.2020.9245610
Scopus
Zitationen: 10
Zugehörige Institution(en) am KIT Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 25.09.2020
Sprache Englisch
Identifikator ISBN: 978-1-7281-8106-6
KITopen-ID: 1000190330
Erschienen in 2020 1st International Conference on Big Data Analytics and Practices (IBDAP); Bangkok, Thailand, 25.-26.09.2020
Veranstaltung 1st International Conference on Big Data Analytics and Practices (2020), Bangkok, Thailand, 25.09.2020 – 26.09.2020
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–6
Schlagwörter Classification, Data Mining, Machine Learning
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page