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Abstract

This study evaluates large language models (LLMs) for their effectiveness in
long-term action anticipation. Traditional approaches primarily depend on
representation learning from extensive video data to understand human activities,
a process fraught with challenges due to the intricate nature and variability
of these activities. A significant limitation of this method is the difficulty in
obtaining effective video representations. Moreover, relying solely on video-
based learning can restrict a model’s ability to generalize in scenarios involving
long-tail classes and out-of-distribution examples. In contrast, the zero-shot or
few-shot capabilities of LLMs like ChatGPT offer a novel approach to tackle the
complexity of long-term activity understanding without extensive training. We
propose three prompting strategies: a plain prompt, a chain-of-thought-based
prompt, and an in-context learning prompt. Our experiments on the procedural
Breakfast dataset indicate that LLMs can deliver promising results without
specific fine-tuning.
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1 Introduction

Understanding human activities from video data presents significant challenges
due to the inherent variability and complexity of these activities. Traditional
methods, which rely heavily on learning representations from large-scale video
datasets, face two key limitations. First, the intricacy of human activities makes
it difficult to obtain comprehensive representations, especially for longer videos.
Second, dependence on extensive datasets restricts the models’ ability to gener-
alize to less common, long-tail classes and unseen scenarios.

Recent research has begun to explore the use of large language models [16]
(LLMs) to overcome these challenges. These models, equipped with billions
of parameters, can utilize training data aggregated from vast, unlabeled text
corpora, and have demonstrated exceptional few-shot and zero-shot performance
across various tasks. Prior methods [[19} |12]] have used LLMs for egocentric
action anticipation, typically integrating an action recognition model to supply
the LLMs with historical action sequence. However, this integration complicates
the LLMS’ process, leading to less intuitive results.

In this study, we aim to utilize LL.Ms for long-term action anticipation, mini-
mizing the dependency on action recognition models. We evaluate procedural
activities such as breakfast preparation, relying on ground-truth action histories.
Our approach departs from traditional methods that are reliant on extensive
video data and are limited by the respective training data distributions, focusing
instead on the procedural knowledge and generalization ability of LLMs. We
design three prompting strategies based on chain-of-thought [18]] and in-context
learning [1]]. These strategies enable LLM:s to anticipate future actions by provid-
ing a sequence of past observed actions in discrete text. Our experimental results
on the Breakfast dataset demonstrate the effectiveness of LLMs in understanding
the human activities, showcasing the potential of LLMs in a new domain of
activity prediction and understanding.
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2  Related Work

Action Anticipation aims to predict future actions given a video clip of the past
and present. Many approaches initially investigated different forms of action
and activity anticipation from third person video [7} |5, [9]. Recently, along
with development of multiple challenge benchmarks [2} 3, |15} |10], the first-
person (egocentric) vision has also gained popularity. To accurately predict
future actions, the summarization of temporal progression of past actions is
essential. To model the past action progression, earlier methods mainly used
RNN [15, 6] or TCN [11]-based architectures, which have been shown to be
inferior to the recent Transformer-based approaches [8}21,(9,[22]]. Based on the
predicted time horizon, action anticipation approaches can be broadly grouped
into two categories [20]: short-term anticipation approaches [2, 3] and long-term
anticipation approaches [5,|10]. While short-term approaches predict actions a
few seconds into the future, long-term approaches aim to predict a sequence of
future actions (with their durations) up to several minutes into the future.

Large language models [/1}|17]] have significantly influenced the natural lan-
guage processing (NLP) field, exhibiting an impressive capacity to generalize
across unseen tasks. With their extensive training data and large parameter
size, LLMs have demonstrated the ability to learn from examples provided in
input prompts, a concept known as in-context learning [1]]. Additionally, LLMs
utilize a chain-of-thought [[18] reasoning approach. This involves breaking
down complex questions into simpler sub-questions, which are then sequentially
addressed. This step-by-step reasoning enhances the accuracy and coherence of
responses, especially for complex queries, and provides a transparent rationale
for the model’s thought process.

3 Method

To assess the effectiveness of LLMs in action anticipation, we utilize a procedural
dataset, the Breakfast [[13]] dataset. The LLM is tasked with predicting future
actions based on an input sequence of observed human actions, [a1, ..., an],
where M represents the total number of observed actions. The objective is
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Role:

1 {’role’: ’system’,

2 >content’: ’You are a predictive AI assistant
focused on Breakfast preparation. All fine-
grained action classes are: [...].°}

Plain Prompt:

1 {’role’: ’user’,
2 ’content’: ’Given the observed fine-grained actions
[...], predict the next {N} actions using only
the predefined action classes. Do not include
actions outside the predefined list. Respond
only in this format: <actionl>, <action2>, ...’}

Figure 3.1: Plain setup. The LLM model is asked to predict N future actions based on a sequence
of observations.

to forecast a subsequent series of N actions, [aps41,- - ., anr+n], Which the
human actor is likely to perform. To achieve this goal, we introduce three
prompts that are described in the following paragraphs. Additionally, we outline
a post-processing methedology to align the outputs of LLMs with the desired
format requirements.

Prompt Design. In our initial approach, we present a straightforward setup,
as illustrated in Fig. 3] To improve the output quality of the LLM model
(ChatGPT in our case), we configure the model as a predictive Al assistant
specifically tailored for breakfast preparation tasks. To restrict the scope of
predictions, we incorporate all action classes from the dataset into the model’s
setup. This prompt includes the task description and defines the input, i.e., a
sequence of observations. In addition, the prompt also defines the output format,
mandating the model to predict only actions that are contained in the predefined
list.

In our second approach, we adopt a top-down approach [|19], utilizing chain-of-
thoughts prompts [[18] (CoT), as illustrated in Fig.[3.2} This approach initially
deduces the overarching activity from the history of actions and then formulates

112



LLMs for Action Anticipation

Role:

1 {’role’: ’system’,

2 ’content’: ’You are a predictive AI assistant
focused on Breakfast preparation. All fine-
grained action classes are: [...]. All
activities are: [...].°’}

Intention Prompt:

1 {’role’: ’user’,
2 ’content’: ’Given the observed fine-grained actions
[...], identify the current activity based on

these actions and then predict the subsequent {N
} actions. Use only the predefined action and
activity classes. Do not include actions or
activities outside the predefined list. Respond
only in this format: <activity>; <actionl>, <
action2>, ...’}

Figure 3.2: Top-down setup. The LLM model is first asked to identify the current activity given a
sequence of observations, and then to predict IV future actions based on both the inferred high-level
activity and observations.

a plan considering both the historical actions and the intended goal. We con-
struct two CoT questions: Q1.What’s the current activity according
to previous actions? Q2.What are the future actions based on
the inferred activity and previous actions? To limit the predic-
tive range for activity forecasts, we also incorporate all high-level activity classes
into the model’s setup.

In our last approach, we incorporate a few examples from the training set into the
prompt to enable in-context learning [T]] (ICL), as outlined in Fig.[3.3] Unlike
fine-tuning, which involves backward passes through the entire or partial model,
ICL leverages the inherent generalization capabilities of LLMs without being
constrained to particular datasets or scenarios.

Inference of LLM and Post-processing. It is important to recognize that
the outputs generated by LLMs may not always adhere to the required for-
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1 >Given the observed fine-grained actions: [...],
identify the current activity based on these
actions and then predict the subsequent {N}
actions. Use only the predefined action and
activity classes. Do not include actions or
activities outside the predefined 1list.

Example 1 - Observed: [...], Activity: [...],
Predicted actioms: [...].

%)

4+ Example 4 - Observed: [...], Activity: [...],
Predicted actions: [...].
5 Respond only in this format: <activity>; <actionl>,

<action2>, ’

Figure 3.3: Top-down prompt with in-context learning (ICL). A few examples are added to the
prompt in Fig. @to enable in-context learning.

mat and taxonomy, even when the input prompts explicitly include classes
from a predefined domain and request predictions within a certain format.
For instance, the LLM model might predict Activity: making tea\nNext
predicted action: pour_water, which deviates from the expected format
of <activity>; <actions>. This discrepancy complicates the process of
metric calculation. To address this, we implement a string matching rule to iden-
tify relevant activity or actions for metric evaluation. For simplicity, predictions
that fall outside the predefined list are considered false predictions.

4 Experiments

Dataset. The Breakfast dataset comprises 1,712 videos of 52 different
individuals making breakfast in 18 different kitchens, totalling 77 hours. Every
video is categorized into one of the 10 activities related to breakfast preparation.
The videos are annotated by 48 fine-grained actions.
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Recognition Anticipation
Prompt
Top-1 1 Top-11T  Top-1agnostict  Edit]
Plain - 12.084£0.90  31.784+0.97  0.8740.02
Top-down 62.014+2.37 14.83+£0.93  3341£090  0.84+0.01

Top-down ICL  94.07+£1.14 35.05+1.20  66.46+1.50  0.5540.02

Table 4.1: Comparison of three presented prompting strategies on the Breakfast [[13]] dataset. We
report the mean performance and the standard deviation of five runs.

Metrics. We evaluate three metrics in this work: top-1 accuracy, top-1 order-
agnostic accuracy, and edit distance (ED). Top-1 accuracy measures the precision
of predictions in their chronological sequence. In contrast, top-1 order-agnostic
accuracy focuses on the presence of correct predictions, regardless of their
temporal order, reflecting scenarios where identifying future key actions is cru-
cial, irrespective of preceding or succeeding actions. For instance, in robotic
applications, foreseeing a need for assistance, such as an object hand-over, is
pivotal, while the exact sequence of preceding or subsequent human actions is
less critical. Additionally, we adopt ED [4}|14]] to assess the sequential align-
ment of predictions with actual events. ED incorporates insertions, deletions,
substitutions, and transpositions in the predicted actions. A lower ED indicates
a higher similarity between the predicted and actual sequences.

Evaluation Details. In our experiments, we utilize the ChatGPT-3.5-turbo [|16]
model, to serve as the LLM model. The LLM model processes two observed past
actions (M = 2) and forecasts the next /N actions. /N is a variable number in our
setup and is set as the number of ground-truth actions minus the observed actions
for each sequence. In the in-context learning (ICL) setup, illustrated in Fig.[3.3]
we select four training examples, following [[12]. Specifically, for each sequence
in the test set, we identify diverse examples in the training set that include the
observed test actions. If the number of identified training examples exceed four,
only the initial four are chosen. Conversely, if less than four examples are found,
all available examples are utilized in the ICL setup.
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Results. In each experimental setup, we execute the Large Language Model
(LLM) five times and present both the mean performance and the standard
deviation in Table Beyond evaluating the accuracy of future action predic-
tions, we also compute the Top-1 accuracy for activity inference in top-down
approaches. The results indicate a consistent enhancement in anticipation capa-
bilities through the top-down method, which prioritizes identifying the current
activity before predicting future actions. Furthermore, when in-Context learning
(ICL) is activated using select examples from the training set, there is a notable
improvement in both anticipation and activity recognition performance. Specif-
ically, anticipation accuracy approximately doubles, and activity recognition
accuracy increases by 52% (62.01 — 94.07). Additionally, the relatively narrow
standard deviation across all metrics suggests that the LLM effectively leverages
the provided context to refine its outputs.

5 Conclusion

In this study, we conduct an extensive evaluation of large language models,
such as ChatGPT-3.5-turbo, focusing on their capability for long-term action
anticipation, particularly leveraging their impressive zero-shot and few-shot
learning abilities. This evaluation utilizes the procedural Breakfast dataset. Our
findings indicate that these Large Language Models (LLMs) can accurately
recognize current activities at an early stage and demonstrate commendable
performance in predicting future actions. This underscores the potential of using
LLMs for long-term anticipation tasks within the language domain. In the future,
we aim to extend the application of LLMs to real-world anticipation scenarios
by integrating an action recognition model.
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