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Abstract

Uncertainty quantification (UQ) has become a critical component in computational fluid dynamics
(CFD), particularly for assessing the reliability of simulation results in the presence of uncertain
parameters such as inlet velocity, viscosity, or boundary conditions. The lattice Boltzmann method
(LBM), a mesoscopic CFD technique known for its parallel scalability and flexibility with complex
geometries, provides a promising platform for integrating UQ. However, systematic UQ capabilities
remain underdeveloped in current LBM-based frameworks.

This dissertation develops a unified UQ framework for incompressible LBM simulations, combin-
ing both non-intrusive and intrusive approaches. The non-intrusive strategy is implemented by
extending the open-source OpenLB library with a modular UQ module that supports Monte Carlo
sampling, quasi-Monte Carlo methods, and stochastic collocation (SC) based on generalized polyno-
mial chaos (gPC). The OpenLB-UQ module automates sampling, parallel execution, and statistical
post-processing, enabling scalable UQ workflows. Validation on canonical benchmarks—such as the
Taylor–Green vortex and flow past a cylinder—demonstrates accurate moment estimation and parallel
performance gains.

In parallel, the first fully coupled stochastic Galerkin (SG) LBM is proposed, which reformulates
the LBM equations using polynomial chaos expansions. The proposed intrusive SG LBM directly
evolves the coefficients of the discrete-velocity distribution functions obtained via polynomial chaos
expansion. Its algorithmic structure fully preserves the LBM streaming and collision processes,
ensuring structural consistency with standard LBM frameworks. The SG LBM achieves spectral
convergence and reduces computational cost by a factor of five to six compared to Monte Carlo
methods in representative cases.

To demonstrate real-world applicability, we applied an uncertain data assimilation workflow based
on OpenLB-UQ to an urban wind simulation around an isolated building in Reutlingen (Germany).
Measurement uncertainty was directly injected into the inflow boundary data and propagated through
a non-intrusive SC LBM pipeline, yielding spatio-temporal statistics of the velocity field across
the domain. The workflow enabled the computation of mean and standard deviation fields, the
identification of flow-sensitive zones such as wakes and shear layers, and the derivation of confidence
intervals at monitoring probes. This provided interpretable uncertainty maps that respect the statistical
nature of measurement-driven inflow and highlighted their relevance for urban planning and wind
engineering applications.
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Abstract

Together, these contributions provide a scalable and comprehensive, open-source UQ toolkit for LBM-
basedCFD.Conclusively, thiswork advances efficient uncertainty-aware simulations of incompressible
flows across scientific and engineering domains.
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1 Introduction

Uncertainty Quantification (UQ) plays an essential role in computational modeling by rigorously
characterizing the influence of input uncertainties on simulation outcomes [73, 76]. In Computational
Fluid Dynamics (CFD), such uncertainties may arise from model parameters, boundary conditions,
or geometric and environmental factors [58]. Without accounting for them, deterministic simulations
may yield misleading predictions and compromise the robustness of engineering decisions. For
example, UQ has been applied to ship motion prediction in irregular waves [14], heat transfer in
turbine blade cooling [61], and pollutant dispersion in urban environments [60].

UQ methods are typically classified into non-intrusive and intrusive categories, see Figure 1.1. Non-
intrusive techniques, such as Monte Carlo sampling (MCS), treat the solver as a black box and are
favored for their generality and ease of implementation, although they suffer from slow convergence.
To address this, more efficient variants have been developed, including quasiMonte Carlo (QMC) [57],
multi-level Monte Carlo (MLMC) [22], and stochastic collocation (SC) methods based on generalized
polynomial chaos (gPC) [2, 91]. Intrusive approaches, such as the stochastic Galerkin (SG) method,
modify the governing equations to explicitly represent uncertainty, enabling spectral convergence
when the model response is sufficiently smooth [90, 93].

There is now an expanding research field that integrates UQ with CFD across a wide range of flow
regimes, numerical schemes, and UQ methodologies. Early intrusive and non-intrusive approaches
applied gPC expansions to incompressible Navier–Stokes equations(NSE) [89]. MLMCmethods have
been implemented for problems ranging from elliptic diffusion [4] to unsteady open–cavity flows [5]
and aerospace applications [20]. For turbulent Reynolds-averagedNavier–Stokes (RANS) simulations,
Bayesian calibration techniques have been employed to quantify model-form uncertainty [59]. UQ
for hyperbolic systems of conservation laws has also been systematically reviewed, encompassing SG
and SC methods, MC and MLMC techniques, as well as alternative formulations such as measure-
valued and statistical solutions [1]. Recent developments include intrusive high-order discontinuous
Galerkinmethods that incorporate SGprojections to simulate compressible flows under uncertainty [6].
Collectively, these contributions demonstrate the increasing integration of sampling-based, projection-
based, Bayesian UQ frameworks into modern CFD workflows.

The Lattice BoltzmannMethod (LBM) is a mesoscopic CFD technique well-suited for incompressible
and weakly compressible flows, offering simplicity, excellent parallel scalability, and adaptability to
complex geometries [24, 75]. OpenLB [33, 36], a modern open-source LBM framework, provides a
robust foundation for integrating uncertainty quantification. Non-intrusive UQ techniques have been
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1 Introduction

Figure 1.1: Classification of UQ methods into non-intrusive and intrusive categories. Non-intrusive approaches include MCS, QMC
(with LHS), and SC. Intrusive approaches involve reformulation of the governing equations, such as the stochastic Galerkin
method.

successfully applied in this context, such as the recent work byMcCullough et al. [51], which used SC-
gPC to analyze uncertainty in human-scale vascular flow simulations. Other studies have employed
collocation and sparse grid methods for porous media and urban wind flow applications simulated
with OpenLB [29, 84]. Further, the MC LBM has been used to compute statistical solutions of the
incompressible Navier–Stokes and Euler equations for the first time in [62, 65] and enabled large-scale
training data generation for generative diffusion models such as GenCFD [56]. In contrast, intrusive
formulations remain relatively underdeveloped. Some prior works reformulate macroscopic equations
using SG projection [94], while others apply SG to simplified LBMmodels [16], but a general-purpose
intrusive UQ framework directly based on the standard LBM has yet to be established.

This dissertation addresses this gap by developing a comprehensive and scalable UQ framework for
incompressible flows using the LBM. On the one hand, it introduces a non-intrusive UQ module
integrated into OpenLB, enabling efficient MC LBM, QMC LBM, and SC LBM simulations with
automated sampling and post-processing, while retaining compatibility with the existing parallel
infrastructure. While demonstrated on fluid dynamics cases, this framework is general and readily
applicable to other mesoscopic models currently supported by OpenLB, including thermal transport,
radiative transfer, and reactive flows.

On the other hand, it presents the first full implementation of a SG LBM,which solves for the evolution
of uncertainty modes within the mesoscopic LBM framework. Comparative benchmarks on canonical
test cases, such as the Taylor–Green vortex (TGV) and lid-driven cavity flow (LDC), demonstrate
that the SG LBM achieves spectral convergence and offers substantial speed-up of up to five to six
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1.1 Research objectives and contributions

times faster than traditional MC simulations—especially when the model response is smooth and the
number of uncertain parameters remains moderate.

By developing both a non-intrusive UQ extension to OpenLB and a separate SG LBM solver, this work
advances the methodological and software foundations for uncertainty quantification in CFD. These
complementary tools enable robust, uncertainty-aware simulations across a range of fluid dynamics
applications, from biomedical engineering to environmental flow modeling.

Figure 1.2: Overview of the UQ strategies used in this dissertation. The left two branches represent non-intrusive UQ methods: MC
LBM using random sampling, and SC LBM using quadrature rule sampling. The right branch illustrates the intrusive SG
LBM, which solves a coupled system for the gPC coefficients.

1.1 Research objectives and contributions

The overarching aim of this dissertation is to advance UQ for incompressible fluid flow simulations
by embedding both non-intrusive and intrusive methodologies directly into the LBM framework.

Achieving this aim requires a dual focus:

1. extending the open-source library OpenLB with an efficient, scalable non-intrusive UQmodule

2. formulating the first SG LBM that evolves uncertainty modes within the mesoscopic solver
itself.

3



1 Introduction

The research is therefore structured around five tightly inter-linked objectives, each paired with a
concrete contribution.

Objective 1: Non-intrusive UQ framework for LBM.
The first objective is to design and implement a UQ extension that integrates MCS, QMC, SC into
OpenLB, while preserving the modularity and high performance of the original solver.
Contribution: This effort results in the OpenLB-UQ module, which provides automated sampling,
parallel execution, and statistical post-processing, all seamlessly integrated into the existing LBM code
base.

Objective 2: Verification on canonical benchmarks.
To validate the correctness and efficiency of the developed framework, the second objective focuses
on numerical experiments involving the Taylor–Green vortex and cylinder-flow benchmarks under
stochastic inputs. The performance of the methods is assessed through convergence studies and
parallel scaling analyses.
Contribution: The dissertation provides a benchmark suite and reproducible reference data that
quantify the accuracy and efficiency of the non-intrusive UQ methods within the LBM context.

Objective 3: Comparative performance assessment.
A systematic comparison is conducted between non-intrusive and intrusive UQ approaches to evaluate
their accuracy, computational cost, and parallel scalability.
Contribution: The study offers practical guidance on selecting appropriate UQ methods for different
problem classes, balancing the trade-offs between accuracy, dimensionality, and computational budget.

Objective 4: Application to an urban-airflow scenario.
To demonstrate practical applicability, the framework is applied to an urban flow case with uncertain
wind inflow conditions. The SC-gPC method is used to propagate uncertainty in measurements of
wind speed and direction across a realistic domain in a data-assimilated LBM simulation.
Contribution: A surrogate-based workflow is developed that captures the stochastic behavior of key
flow features while reducing computational cost by an order of magnitude compared to direct sampling.

Objective 5: Development of an intrusive SG LBM.
The final objective is to develop a fully intrusive SG formulation of the LBM. This includes reformu-
lating the LB equation in terms of gPC, deriving the coupled equations for the gPC coefficients, and
addressing numerical stability for stochastic collision operators.
Contribution: The result is the first SG LBM solver for incompressible flows, offering spectral
convergence and demonstrating a 5–6× speed-up over MC LBM in representative test cases [98].

By fulfilling these objectives, this dissertation provides a comprehensive and extensible UQ framework
for LBM-based incompressible flow simulations. It lowers the barrier to uncertainty-aware CFD in
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1.2 Structure of the thesis

both academic and engineering contexts and lays the foundation for future developments, such as
adaptive or hybrid UQ strategies tailored for modern high-performance computing platforms.

1.2 Structure of the thesis

The dissertation is organized into three parts comprising seven chapters.

• Chapter 1 introduces the context of UQ in CFD, defines the research objectives, and outlines the
dissertation structure. It motivates the use of both non-intrusive and intrusive UQ methods with
LBM.

• Chapter 2 reviews the mathematical foundations of incompressible CFD and presents the LBM
as a scheme constructed to recover the incompressible Navier–Stokes equations, emphasizing its
consistency and its advantages for UQ, such as locality and parallel scalability.

• Chapter 3 surveys UQ theory, covering sampling-based methods, gPC, and sparse-grid tech-
niques. It explains how these approaches propagate input uncertainty and form the basis for the
non-intrusive and intrusive methods developed later.

• Chapter 4 presents the intrusive SG LBM, derived by applying Galerkin projection to the
polynomial-expanded LB equations. It validates the method on canonical benchmarks, showing
preserved accuracy and up to 5.7× speedup over MC LBM, highlighting SG LBM as an efficient
intrusive UQ approach for CFD.

• Chapter 5 introduces the OpenLB-UQ software module and its non-intrusive workflow.

• Chapter 5 introduces the OpenLB-UQ software module, which implements a non-intrusive
UQ workflow using MC LBM, QMC LBM, and SC LBM methods. It details the integration
into OpenLB and demonstrates automated sampling, parallel execution, and post-processing
capabilities.

• Chapter 6 evaluates non-intrusive UQ methods for LBM through convergence and parallel-
scaling studies on benchmark cases. The results confirm spectral accuracy of SC LBM and
highlight the scalability and efficiency of the OpenLB-UQ module.

• Chapter 7 applies the complete UQ framework to an urban-wind simulation with uncertain inflow
conditions. Using SC LBM, it quantifies the impact of wind speed and direction variability and
demonstrates the framework’s applicability to realistic, data-driven CFD problems.

Overall, the streamlined structure of this work spans theoretical foundations, methodological develop-
ments, extensive validation on benchmarks, and a real-world application to urban airflow simulation
under uncertainty.
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2 Mathematical Background

This chapter recalls the mathematical foundations for simulating fluid dynamics in the presence of
uncertainty. We beginwith a review of the deterministic incompressibleNSE, followed by its extension
into a stochastic framework. The LBM is then introduced from a kinetic theory perspective, leading
to its discrete form suitable for numerical simulation. Finally, we formulate a stochastic LBM that
incorporates parametric uncertainties, laying the groundwork for subsequent uncertainty propagation
techniques.

This section is organized as follows. Section 2.1 presents the deterministic NSE and their extension to
account for uncertainty. Section 2.2 details the derivation and key components of the LBM, followed
by its extension to incorporate uncertainty.

2.1 Incompressible Navier–Stokes equations
with uncertainty

The incompressible NSE describes the motion of a viscous, incompressible fluid. In the deterministic
form, they are given by

∂tu+ (u ·∇)u− ν∇2u = −
1

ρ
∇p+ g, in X × I ⊆ Rdx × R>0, (2.1)

∇ · u = 0, in X × I, (2.2)

with appropriate boundary and initial conditions, which model the behavior of Newtonian fluids at
low Mach numbers. Here, ρ > 0 denotes fluid density, u : X × I → Rdx represents the velocity
vector, p : X × I → R is the pressure, ν > 0 is the kinematic viscosity, and g : X × I → Rdx

represents an external force. In our study, the external force is neglected (g = 0).

In many practical fluid dynamics applications, precise knowledge of the model parameters, boundary
conditions, or initial conditions is often unavailable. This lack of information introduces uncertainty
into the system and motivates the incorporation of uncertainty into the governing equations.

7



2 Mathematical Background

To incorporate uncertainty, we extend the deterministic NSE (Eq. (2.1), Eq. (2.2)) to a stochastic
framework by introducing random variables into selected input parameters. LetZ = (Z1, ..., Zd) ∈
Z ⊆ RdZ be a vector of independent random variables defined on a probability space (Ξ,F ,P). The
stochastic form of the NSE thus reads

∂tu(Z) + (u(Z) ·∇)u(Z)− ν(Z)∇2u(Z) = −
1

ρ
∇p(Z), in X × I × Z, (2.3)

∇ · u(Z) = 0, in X × I × Z, (2.4)

where we neglected the space-time arguments (x, t) ∈ X × I of u for the sake of readability. In
this work, we consider both one- and multi-dimensional uncertainties. Two representative cases are
examined, based on uncertainty in the velocity fieldu(Z) induced by (i) stochastic boundary or initial
conditions or (ii) uncertainty in the viscosity ν(Z). In both cases, the random variables are uniformly
distributed. Notably, for a fixed vector Z, the stochastic NSE ( Eq. (2.3), Eq. (2.4) ) becomes a
version of the deterministic NSE ( Eq. (2.1), Eq. (2.2) ), which forms the basis of the non-intrusive
methodology in our framework.

This stochastic formulation provides the mathematical foundation for the uncertainty quantification
techniques introduced later. It enables us to analyze how uncertain inputs influence the output
quantities of interest, such as velocity fields, pressure distributions, or integral quantities like drag and
lift.

2.2 Lattice Boltzmann method

The LBM is a mesoscopic numerical scheme for fluid dynamics, bridging the gap between molecular
and continuum scales. Its foundation lies in kinetic theory, particularly the Boltzmann transport
equation, which governs the evolution of the single-particle distribution function. In this section, we
recall basic principles of LBM and subsequently extend it with a random variable in the arguments to
account for uncertainty in the numerical scheme.

2.2.1 From kinetic theory to the Boltzmann–BGK
equation

TheBoltzmann equation (BE) governs the evolution of the single-particle distribution function f : X×
Rdξ × I → R≥0, which describes the probability density of finding a particle at position x ∈ X ⊆
Rdx , with velocity ξ ∈ Rdξ , at time t ∈ I ⊆ R>0. The equation reads

∂tf + ξ ·∇xf = Ω(f), in X × Rdξ × I, (2.5)

8



2.2 Lattice Boltzmann method

where Ω(f) denotes the collision operator, which encapsulates the effects of particle collisions.
In general, Ω(f) is a nonlinear integral operator, making the direct numerical solution of the BE
computationally expensive and challenging.

To simplify the collision operator Ω(f), the Bhatnagar–Gross–Krook (BGK) approximation [7] is
commonly used. It models particle collisions as a relaxation toward a local equilibrium distribution
and is defined by

Ω(f) = −
1

τ
(f − feq) , (2.6)

where τ > 0 is the relaxation time, and feq = feq(x, ξ, t) denotes the Maxwell–Boltzmann
equilibrium distribution function. This approximation reduces the complexity of the collision term
while retaining essential physical properties such as mass, momentum, and energy conservation.

Substituting the BGK approximation Eq. (2.6) into the BE Eq. (2.5) yields the Boltzmann–BGK
equation

∂tf + ξ ·∇xf = −
1

τ
(f − feq) in X × Rdξ × I. (2.7)

The macroscopic fluid quantities, namely the density ρ and velocity u are computed as moments of
the distribution function with respect to the microscopic velocity ξ:

ρ(x, t) =

∫
Rdξ

f(x, ξ, t) dξ =

∫
Rdξ

feq(x, ξ, t) dξ, (2.8)

ρ(x, t)u(x, t) =

∫
Rdξ

ξ f(x, ξ, t) dξ =

∫
Rdξ

ξ feq(x, ξ, t) dξ. (2.9)

In lattice units, the kinematic viscosity ν is related to the relaxation time τ by

ν = c2s

(
τ −

1

2

)
△t,

where cs is the lattice speed of sound and△t is the time step.

This kinetic formulation provides the theoretical foundation for the LBM. The next subsection intro-
duces its discrete form by applying velocity and spatial discretization to derive the fully discrete LB
equation (LBE).

9



2 Mathematical Background

2.2.2 Lattice Boltzmann equation

The LBM provides a mesoscopic approach for simulating fluid dynamics by tracking the evolution
of particle distribution functions fi(x, t) along discrete velocity directions ci. In the absence of
uncertainty, the deterministic LBE is given by

fi(x+ ci△t, t+△t) = fi(x, t)−
△t

τ

(
fi(x, t)− feq

i (x, t)
)
, in X△x × I△t (2.10)

where τ > 1
2
is the relaxation time, and feq

i is the local equilibrium distribution function. The
LBE Eq. (2.10) can be derived from discretizing the continuous BGK-Boltzmann equation in velocity,
space, and time. For further details, see e.g. [44, 64].

Through the Chapman–Enskog (CE) expansion [11], it can be shown that the Boltzmann–BGK
equation Eq. (2.7) asymptotically recovers the incompressible NSE in the low Mach number regime.

2.2.3 Discrete velocity models

In the LBM, the continuous velocity space Rdξ from kinetic theory is discretized into a finite set of
discrete velocities {ci}q−1

i=0 ⊂ Rdq , where q is the number of discrete velocities. The discrete set is
constructed to ensure isotropy of the velocity moments and to recover the incompressible NSE up to
second order through a suitable moment expansion.

For two-dimensional flows, we adopt the widely used D2Q9 model, which consists of q = 9 discrete
velocities

ci =


(0, 0), i = 0,

(±1, 0), (0,±1), i = 1, 2, 3, 4,

(±1,±1), i = 5, 6, 7, 8,

(2.11)

with corresponding weights wi given by

wi =


4
9
, i = 0,

1
9
, i = 1, . . . , 4,

1
36

, i = 5, . . . , 8.

(2.12)
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2.2 Lattice Boltzmann method

For three-dimensional flows, the D3Q19 model is used, featuring q = 19 discrete velocities

ci =


(0, 0, 0), i = 0,

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1, . . . , 6,

(±1,±1, 0), (±1, 0,±1), (0,±1,±1), i = 7, . . . , 18,

(2.13)

with the corresponding weights

wi =


1
3
, i = 0,

1
18

, i = 1, . . . , 6,
1
36

, i = 7, . . . , 18.

(2.14)

These discrete velocity sets are designed to satisfy isotropy of the second-order moments, a crucial
requirement for recovering the correct viscous stress tensor in themacroscopic equations. Additionally,
their Cartesian structure enables efficient streaming operations on uniform grids.

In thiswork, two-dimensional simulations are performed using theD2Q9model and three-dimensional
simulations are performed using the D3Q19 model, respectively with uniform lattice spacing and time
step.

2.2.4 Equilibrium distribution function

The equilibrium distribution function feq
i plays a central role in LBM and ensures the correct

recovery of macroscopic hydrodynamics. For incompressible flows in the low-Mach number limit,
feq
i is typically given by a second-order expansion of the Maxwell–Boltzmann distribution:

feq
i = wiρ

(
1 +

ci · u
c2s

+
(ci · u)2

2c4s
−

u · u
2c2s

)
, (2.15)

where

ρ(x, t) =

q−1∑
i=0

fi(x, t), (2.16)

u(x, t) =
1

ρ(x, t)

q−1∑
i=0

fi(x, t) (2.17)

approximate the macroscopic fluid density, and the macroscopic fluid viscosity, respectively, cs is
the lattice speed of sound (with c2s = 1/3 in lattice units for the here used velocity sets) Eq. (2.11)
Eq. (2.12), ci are the respective discrete velocities and wi denote the associated quadrature weights
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2 Mathematical Background

Eq. (2.13) Eq. (2.14). The equilibrium distribution Eq.(2.15) satisfies the following moment con-
straints: ∑

i

feq
i = ρ, (2.18)

∑
i

cif
eq
i = ρu, (2.19)

ensuring consistency with the continuity and momentum equations, respectively.

2.2.5 Lattice Boltzmann equation with uncertainty

To incorporate uncertainty, the LBM is extended by modeling selected parameters, such as viscosity,
boundary conditions, or initial fields, as random variables. Let Z = (Z1, . . . , ZdZ ) ∈ RdZ be
a vector of independent random variables defined on a probability space (Ξ,F ,P), capturing the
system’s parametric uncertainty.

As a consequence, the distribution functions become stochastic fields fi(x, t,Z), evolving under
uncertain inputs. The stochastic LBE takes the form

fi(x+ci△t, t+△t,Z) = fi(x, t,Z)−
△t

τ(Z)

(
fi(x, t,Z)− feq

i (x, t,Z)
)
, in X△x×I△t×Z

(2.20)
where τ(Z) is a stochastic relaxation time. Other uncertain quantities, such as the initial condition
fi(x, 0,Z) or inflow velocity uin(Z) are modeled similarly.

The stochastic kinematic viscosity is given by

ν(Z) = c2s

(
τ(Z)−

1

2

)
△t, (2.21)

generalizing the standard viscosity relation to account for uncertainty. To ensure numerical stability
and positivity of the viscosity, it is required that τ(Z) > 1

2
almost surely, i.e., for all realizations of

Z.

The equilibrium distribution also depends on Z and is defined analogously to the deterministic case:

feq
i (Z) = wiρ(Z)

(
1 +

ci · u(Z)

c2s
+

(ci · u(Z))2

2c4s
−

u(Z) · u(Z)

2c2s

)
. (2.22)
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2.2 Lattice Boltzmann method

The macroscopic fluid quantities are computed by taking velocity moments of the stochastic distribu-
tion functions, i.e.

ρ(Z) =

q−1∑
i=0

fi(Z), (2.23)

ρ(Z)u(Z) =

q−1∑
i=0

cifi(Z). (2.24)

Depending on the source of uncertainty, different scenarios can be modeled:

• Uncertain viscosity: τ(Z) varies, affecting the relaxation dynamics.

• Uncertain inflow: boundary velocity uin(Z) is prescribed by a probability distribution.

• Uncertain initial fields: Initial conditions fi(x, 0,Z), or equivalently ρ0(x,Z), u0(x,Z),
are random.

Despite the introduction of uncertainty, the LBM algorithm retains its structure and efficiency. Each
time step consists of:

collision: f⋆
i (x, t,Z) = fi (x, t,Z)−

1

τ(Z)

(
fi (x, t,Z)− feq

i (x, t,Z)
)
, (2.25)

streaming: fi (x+ ci△t, t+△t,Z) = f⋆
i (x, t,Z) , (2.26)

where the upper index ·⋆ denotes post-collision variables.

Crucially, the stochastic formulation does not alter the algorithm’s local communication pattern.
Since the random variables Z are sampled independently for each realization, all samples evolve
independently and can be computed in parallel. Within each realization, the LBM maintains its high
data locality and is well suited for parallel execution on distributed-memory systems.

The stochastic LBE thus governs the evolution of a random process and provides a basis for uncertainty
quantification. In this work, non-intrusive techniques such asMCS and gPC are employed to propagate
input uncertainties and analyze their impact on macroscopic quantities of interest.
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3 Uncertainty Quantification

This chapter introduces forward UQ, beginning with a general overview that distinguishes between
aleatoric and epistemic uncertainty and motivates the focus on forward propagation of aleatoric
variability. Next, uncertain inputs are modeled as random variables or fields on a probability space
under simplifying assumptions. Building on this, numerical methods for forward propagation are
presented, including sampling-based approaches such as MCS and QMC, as well as spectral methods
based on gPC. The latter are discussed in both non-intrusive form, via SC with tensor-product or
sparse-grid quadrature, and intrusive form, via SG projection.

This chapter is organized as follows. Section 3.1 introduces the foundations of UQ. Section 3.2
presents the modeling of uncertain inputs. Section 3.3 describes forward propagation techniques,
covering sampling-based methods, non-intrusive SC-gPC, and the intrusive SG approach.

3.1 Introduction to uncertainty quantification

UQ provides a mathematical and computational framework for modeling, propagating, and analyzing
uncertainties in physical systems and simulations. In CFD, uncertainties arise from various sources,
includingmeasurement errors, geometric tolerances, material variability, limited resolution, andmodel
approximations. These uncertainties can significantly impact quantities of interest (QoIs), such as
velocity, pressure, or drag coefficients, especially in nonlinear or multiscale flows.

Deterministic simulations, which assume exact input parameters, often fail to capture the variability
inherent in real-world applications. UQ methods, in contrast, characterize the distribution of possible
outcomes, enabling assessments of simulation reliability, robustness, and risk.

Uncertainties are commonly classified into two categories:

• Aleatoric uncertainty: Represents intrinsic randomness, such as turbulent fluctuations or
environmental disturbances. It is typically modeled using probability distributions over input
parameters.

• Epistemic uncertainty: Arises from incomplete knowledge, including unknown model coef-
ficients or insufficient data. It is often reducible through additional information and addressed
using Bayesian inference or model calibration.
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3 Uncertainty Quantification

This work focuses on aleatoric uncertainty, assuming that epistemic sources such as model form
errors or incomplete boundary data are either negligible or incorporated into the prescribed variability
of the input parameters.

In some applications, such as urban flow simulations [17, 77], input data (e.g., wind speed and
direction) may contain measurement error and is traditionally viewed as epistemic. However, we
adopt a modeling strategy that treats such uncertainties as effective aleatoric variability, represented
via random variables or fields.

UQ tasks are typically divided into:

• Forward UQ: Propagating input uncertainties through the simulation to quantify their effect
on output statistics e.g., mean, variance, or probability density of QoIs.

• Inverse UQ: Inferring uncertain model inputs from observational data, often within a Bayesian
framework.

This dissertation is concerned solely with forward UQ, focusing on how input uncertainty influences
fluid dynamic responses computed via the LBM. Forward UQ begins by modeling uncertain inputs as
stochastic processes or random fields over a complete probability space (Ξ,F ,P).

Given a deterministic modelM : RdZ → Rm and a random input vectorZ ∈ RdZ with probability
law PZ , cumulative distribution function (CDF) FZ , and probability density function (PDF) πZ , the
goal is to compute statistical quantities of the model outputM(Z), such as

E[M(Z)], Var[M(Z)].

The remainder of this chapter introduces mathematical representations of uncertainties (random vari-
ables and fields), followed by a detailed discussion of numerical techniques for forward propagation.

3.2 Modeling uncertainty

A key step in uncertainty quantification is to represent uncertain inputs using appropriate mathe-
matical structures. In this work, we focus on parametric uncertainty, where inputs, such as inflow
profiles, material properties, or source terms—are modeled as random variables on a probability space
(Ξ,F ,P) (see Chapter 2 for formal definitions).

We adopt the following modeling assumptions:
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3.3 Forward uncertainty propagation methods

1. all random variables are defined on a common probability space and are assumed mutually
independent unless explicitly stated otherwise, which simplifies the joint distribution and
facilitates tensor-product or sparse-grid quadrature;

2. the marginal distribution of eachZi is chosen from a standard parametric family (e.g., uniform,
Gaussian, Beta) that is orthogonal to a known polynomial basis, enabling direct application of
generalized polynomial chaos expansions.

These assumptions imply certain limitations. Independence neglects any dependence structure be-
tween uncertain parameters, potentially underestimating or misrepresenting joint variability when
correlations are significant. Restricting marginals to standard distributions simplifies the numerical
framework but may introduce modeling error if the true input distributions are complex, multimodal,
or heavy-tailed. In practice, such discrepancies can be mitigated by transforming empirical distribu-
tions into standard forms (e.g., via the Rosenblatt or Nataf transformation), but this step is not pursued
in the present work.

3.3 Forward uncertainty propagation methods

Once input uncertainty has been represented via random variables or fields, the next step is to
propagate this uncertainty through the model and quantify its impact on output QoIs. Mathematically,
this involves estimating statistical descriptors, such as mean, variance, or probability distributions—of
the model outputM(Z) that is defined implicitly by numerical simulations.

Since the model responseM(Z) is generally not available in closed form, various numerical methods
have been developed to approximate its statistics efficiently. These methods differ in accuracy,
computational cost, and suitability for high-dimensional problems.

We group the approaches into two main categories:

• Sampling-based methods: These estimate statistics by repeatedly evaluating the deterministic
model at different input realizations. They are non-intrusive, embarrassingly parallel, and
straightforward to implement. Typical examples include MCS and QMC.

• Spectralmethods based on gPC: These approximate themodel output as a polynomial function
of the inputs, with coefficients determined either non–intrusive (SC) and intrusive (SG)method.

The following subsections provide a concise overview of these methods, including practical consider-
ations for applying them in LBM fluid simulations.
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3 Uncertainty Quantification

3.3.1 Monte Carlo sampling

MCS is a fundamental and broadly applicable method for forward uncertainty quantification. It
approximates statistical properties of a model response by evaluating the deterministic solver at
independently sampled realizations of the uncertain input.

Assuming the notation from Section 3.1, letM(Z) ∈ L2(Ξ;Rm), i.e., it has finite second moments.
Let {Z(i)}Nq

i=1 be independent and identically distributed (i.i.d.) samples drawn from the joint
distribution of Z. The Monte Carlo estimators for the mean and covariance are given by:

E[M(Z)] ≈ µ̂Nq :=
1

Nq

Nq∑
i=1

M(Z(i)), (3.1)

Cov[M(Z)] ≈ Σ̂Nq :=
1

Nq − 1

Nq∑
i=1

(
M(Z(i))− µ̂Nq

)(
M(Z(i))− µ̂Nq

)⊤
. (3.2)

These estimators are unbiased and converge almost surely to the true moments as Nq → ∞, by the
strong law of large numbers:

µ̂Nq

a.s.−−−→ E[M(Z)], Σ̂Nq

a.s.−−−→ Cov[M(Z)].

Moreover, by the multivariate Central Limit Theorem, the Monte Carlo mean estimator satisfies√
Nq
(
µ̂Nq − E[M(Z)]

) d−→ N (0,Σ),

where Σ = Cov[M(Z)] ∈ Rm×m. As a consequence, the root-mean-square error (RMSE) of the
estimator converges as

∥µ̂Nq − E[M(Z)]∥L2(Ξ) = O(Nq
−1/2).

This convergence rate is independent of the input dimension dZ or the regularity of the response
function M, making MCS particularly attractive for high-dimensional or non-smooth problems.
Furthermore, it is trivially parallelizable, as each model evaluationM(Z(i)) is independent of the
others, which is especially advantageous in high-performance computing (HPC) environments such
as those used for LBM-based simulations.

The main drawback of MCS is its relatively slow convergence, which may require a large number
of samples when each model evaluation is computationally expensive. For this reason, it is often
employed as a reference baseline to assess the efficiency of more advanced approaches, such as
spectral or surrogate-based methods.
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3.3 Forward uncertainty propagation methods

3.3.2 Quasi Monte Carlo

QMCmethods enhance classicalMCby replacing random samples with deterministic low-discrepancy
sequences, whichmore uniformly cover the integration domain and reduce integration error for smooth
functions.

Using the notation from Section 3.1, the goal is to approximate

E[M(Z)] =

∫
RdZ

M(z)πZ(z) dz.

QMC maps low-discrepancy points {u(i)}Nq

i=1 ⊂ [0, 1]dZ (e.g., Sobol’, Halton) to the target distri-
bution via a transformation T : [0, 1]dZ → RdZ , such as inverse cumulative distribution functions.
The QMC estimator is

µ̂QMC
Nq

:=
1

Nq

Nq∑
i=1

M(T (u(i))). (3.3)

While QMC estimators are generally biased, they converge faster than MCS under regularity assump-
tions. ForM ∈ VHK([0, 1]dZ ) (bounded Hardy–Krause variation), the Koksma–Hlawka inequality
gives ∣∣∣µ̂QMC

Nq
− E[M(Z)]

∣∣∣ ≤ D∗({u(i)}) · VHK(M),

whereD∗ is the star discrepancy and VHK the variation ofM. For smooth integrands, QMC achieves
convergence rates of

O
(
(logNq)dZ

Nq

)
,

which outperform theO(Nq
−1/2) rate of MCS.

QMC remains non-intrusive and easily parallelizable. However, its efficiency degrades in high
dimensions or for irregular responses. Remedies include:

• Randomized QMC (e.g., scrambled Sobol’) for variance estimation,

• Dimension reduction via sensitivity reordering or active subspaces,

• Smoothness-enhancing transformations of input space.

In this work, QMC is applied to benchmark LBM simulations with moderate-dimensional smooth
uncertainties, offering a more efficient alternative to standard MCS.
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3 Uncertainty Quantification

3.3.3 Spectral methods: generalized polynomial chaos

gPC provides a spectral framework for representing square-integrable random variables or model
outputs in terms of orthogonal polynomials with respect to the input distribution. It generalizes
Wiener’s original construction [85] for Gaussian inputs to a broader class of probability measures.

For any model responseM(Z) ∈ L2(Ξ;Rm) as defined in Section 3.1, the gPC expansion reads:

M(Z) =
∑

α∈NdZ
0

M̂α Φα(Z), (3.4)

where:

• α = (α1, . . . , αdZ ) is a multi-index,

• Φα(Z) =
∏dZ

i=1 Φ
(i)
αi

(Zi) is a multivariate orthonormal polynomial,

• M̂α = E[M(Z)Φα(Z)] are the projection coefficients.

The univariate polynomials Φ
(i)
αi

are orthonormal with respect to the marginal distribution of Zi,
chosen from the Askey scheme (see Table 3.1).

Table 3.1: Common distributions and their associated orthogonal polynomials in gPC.

Distribution Support Orthogonal Polynomial

Gaussian (N (0, 1)) (−∞,∞) Hermite
Uniform (U [−1, 1]) [−1, 1] Legendre
Beta (Beta(a, b)) [0, 1] Jacobi
Gamma (Γ(k, θ)) [0,∞) Laguerre
Exponential (λe−λz) [0,∞) Laguerre
Poisson (Pois(λ)) {0, 1, 2, . . . } Charlier
Binomial (Bin(n, p)) {0, 1, . . . , n} Krawtchouk
Negative Binomial {0, 1, . . . } Meixner

The basis functions satisfy:
E[Φα(Z)Φβ(Z)] = δα,β,

ensuring orthonormality and enabling the coefficient projection formula above.
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3.3 Forward uncertainty propagation methods

IfM∈ L2(Ω), the expansion converges in the L2-norm, and convergence is spectral (i.e., exponen-
tial) ifM is analytic in Z. In practice, the infinite series is truncated. A common strategy is the
total-degree truncation, in which only multi-indices with total degree

|α| :=
dZ∑
i=1

αi ≤ P

are retained. Here, P ∈ N0 denotes the total polynomial order of the expansion. The number of
resulting basis functions is

N =
(dZ + P

P

)
, (3.5)

which grows combinatorially with the stochastic dimension dZ and the total order P .

For general models, exact computation of ĝα is infeasible. Instead, we use non-intrusive spectral
projection via numerical quadrature:

M̂α ≈
Nq∑
j=1

a(j)M(Z(j))Φα(Z(j)), (3.6)

where {Z(j), w(j)}Nq

j=1 are quadrature nodes and weights.

This method requires only sample evaluations ofM(Z) and thus is non-intrusive, making it well-
suited for designing UQ frameworks that couple to deterministic simulation codes.

In low dimensions, tensor-product Gauss quadrature is efficient:

Nq = ndZ ,

where n is the number of nodes per dimension. However, this scaling is exponential in dZ , a
manifestation of the curse of dimensionality.

To overcome this, sparse grid quadrature is introduced in Section 3.3.3.1, offering substantial compu-
tational savings while retaining accuracy.

3.3.3.1 Sparse grid quadrature

Sparse grid quadrature is an efficient numerical integration technique for approximating high-
dimensional expectations, such as those arising in the non-intrusive spectral projection of gPC
coefficients. Its key advantage is the mitigation of the exponential growth in quadrature nodes that
occurs in tensor-product rules.
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3 Uncertainty Quantification

To compute the projection coefficient

M̂α = E[M(Z)Φα(Z)], (3.7)

we approximate the expectation using a weighted sum of model evaluations:

M̂α ≈
Nq∑
j=1

a(j)M(Z(j))Φα(Z(j)), (3.8)

where {Z(j), w(j)}Nq

j=1 are the quadrature nodes and weights.

In a full tensor grid, the number of nodes scales as Nq = ndZ . This growth quickly becomes pro-
hibitive for even moderate dZ . Sparse grids address this challenge using the Smolyak algorithm [74],
which constructs a sparse tensor-product quadrature of level l ≥ dZ from one-dimensional quadrature
rules Q(i)

ℓ of level ℓ in each dimension i.

We define the difference operator

∆
(i)
ℓ := Q

(i)
ℓ −Q

(i)
ℓ−1, Q

(i)
0 := 0, (3.9)

and express the Smolyak quadrature operator as

A(dZ)
l =

l+dZ−1∑
|ℓ|=l

ℓ∈NdZ

 dZ⊗
i=1

∆
(i)
ℓi

 , |ℓ| :=
dZ∑
i=1

ℓi. (3.10)

This construction prioritizes low-dimensional interactions while controlling the overall resolution
level l. The node count scales as

Nq = O(2l · ldZ−1), (3.11)

which grows sub-exponentially in dZ and thus offers a significant improvement over full tensor grids.

The choice of one-dimensional rulesQ(i)
ℓ influences both the accuracy and efficiency of the method.

Gauss-type rules (e.g., Gauss–Legendre or Gauss–Hermite) are well suited to match input marginals,
whereas nested rules (e.g., Clenshaw–Curtis or Genz–Keister) allow for node reuse across levels and
therefore reduce redundant model evaluations.

In this work, we employ the Smolyak sparse grid construction with Genz–Keister quadrature rules
for Gaussian random variables and Clenshaw–Curtis rules for uniform random variables. This choice
ensures maximal reuse of nodes across levels and is particularly beneficial for our high-resolution
LBM simulations, where each model evaluation is computationally expensive.
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3.3 Forward uncertainty propagation methods

For sufficiently smooth functionsM∈ Ck([0, 1]dZ ), the interpolation error satisfies

∥M−A(dZ)
l [M]∥∞ = O(N−k log(k+1)(dZ−1) Nq), (3.12)

indicating near-spectral accuracy with polynomial cost in Nq .

In the gPC framework, sparse grid quadrature enables the simultaneous projection of all coefficients
M̂α with a greatly reduced computational burden. The integration of this method into our non-
intrusive UQ framework significantly improves efficiency in the moderate-dimensional parameter
spaces considered in our numerical experiments.

3.3.3.2 Stochastic collocation generalized polynomial chaos

Using the notation from Section 3.3.3, the truncated gPC expansion of the model response is

M(Z) ≈
∑

|α|≤P

M̂α Φα(Z),

where P is the total polynomial order. The projection coefficients are approximated via numerical
quadrature:

M̂α ≈
Nq∑
j=1

w(j)M(Z(j))Φα(Z(j)),

with Nq quadrature nodes {Z(j), w(j)} obtained from tensor-product or sparse-grid rules (cf. Sec-
tion 3.3.3.1).

Each model evaluationM(Z(j)) = S(Z(j)) is obtained by calling the deterministic solver S at
inputZ(j). Since these evaluations are independent, the method is embarrassingly parallel and scales
well on high-performance computing architectures.

Once all coefficients M̂α are computed, statistical moments follow directly, e.g.:

E[M] = M̂0, (3.13)

Var[M] =
∑
α ̸=0

M̂2
α. (3.14)

The resulting gPC surrogate serves as an efficient approximation of the full model. For any new input
Z, the surrogate output is evaluated by:

MgPC(Z) =
∑

|α|≤p

M̂α Φα(Z),
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3 Uncertainty Quantification

requiring only polynomial evaluations. This enables fast uncertainty propagation, sensitivity analysis,
and real-time inference.

Compared toMCS, SC-gPC achieves faster convergence—typically exponential in the total polynomial
order P whenM is analytic in Z whereas MCS converges at O(Nq

−1/2) regardless of regular-
ity. This spectral convergence makes SC-gPC highly efficient for smooth problems with moderate
stochastic dimensionality.

However, the curse of dimensionality limits the scalability of SC-gPC: the number of required samples
grows rapidly with both dZ and P . In contrast, MCS remains dimension-independent and is preferred
in high-dimensional or non-smooth settings.

In this work, SC-gPC is adopted for cases where the model response is smooth and the stochastic
dimension is moderate (dZ ≲ 10), as it combines high accuracy with non-intrusiveness and efficient
parallel scalability. Its use enables the construction of surrogate models that support rapid post-
processing tasks such as sensitivity analysis and real-time evaluations.

3.3.3.3 Stochastic Galerkin method

The SG method provides an intrusive approach to solving stochastic PDEs by projecting the governing
equations onto a gPC basis. Unlike non-intrusive methods, SG requires modifying the numerical
solver to operate directly on the system of coupled gPC modes.

Using the gPC representation from Section 3.3.3, the truncated expansion of the model response with
total polynomial order P is

M(Z) ≈
∑

|α|≤P

M̂α Φα(Z),

where the coefficients M̂α are computed via numerical quadrature.

Substituting this expansion into the stochastic PDE L[M] = 0 and applying Galerkin projection
yields a deterministic coupled system:〈

L
(∑

α

M̂αΦα

)
,Φβ

〉
= 0, ∀β, (3.15)

where ⟨·, ·⟩ denotes the L2(Ω) inner product. The result is a deterministic PDE system for the
N =

(dZ+p
p

)
coefficient fields {M̂α}, with couplings induced by products of gPC basis functions.

In practice, the Galerkin projection leads to the evaluation of expected residuals:

E
[
L(MgPC)Φβ

]
, (3.16)
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3.3 Forward uncertainty propagation methods

which reduce to tensor contractions over basis products. These integrals can be computed analytically
for polynomial data or precomputed offline and stored for repeated use.

While the SG method yields complete statistical information (e.g., mean, variance, higher moments)
from a single simulation, it introduces several challenges:

• Intrusiveness: The solver must be modified to operate directly on the coupled gPC system.

• Computational complexity: The number of coupled equations grows linearly with the spatial
degrees of freedom but combinatorially with dZ and P , often producing dense coupling
structures.

• Stability concerns: For nonlinear systems, hyperbolicity and conservation may be lost; stabi-
lization techniques such as modal filtering or artificial dissipation may be required.

Despite these challenges, SG methods are highly effective for problems with smooth stochastic de-
pendence and low-to-moderate input dimensions, where they can deliver spectral accuracy in the
stochastic space at a significantly reduced cost compared to repeated deterministic runs.

In this work, we extend the SG methodology to the LBM framework (Chapter 4), deriving the
Galerkin-projected collision and streaming operators, and implementing modal filtering to maintain
numerical stability. This intrusive SG-LBM formulation enables high fidelity, uncertainty-aware flow
simulations with full statistical output in a single solver execution.
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4 Stochastic Galerkin Lattice
Boltzmann Method

This chapter introduces the intrusive UQ approach developed in this dissertation, namely the SG
LBM. Starting from the theoretical foundations of gPC expansions, which provide a systematic
representation of stochastic model responses, we integrate this expansion directly into the LBE. The
Galerkin projection then yields a coupled system for the polynomial expansion coefficients, enabling
efficient propagation of parametric uncertainty while preserving the collision streaming structure of
the solver. In contrast to non-intrusive methods, this approach reformulates the governing equations
themselves and achieves significant gains in accuracy and efficiency. The methodology and results
presented in this chapter have been published in [98].

This chapter is organized as follows. Section 4.1 derives the gPC expansion of the LBE and discusses
the treatment of the collision operator, equilibrium distributions, and consistency analysis via CE
expansion. Section 4.2 extends classical boundary conditions to the SG setting. Section 4.3 outlines
implementational details of the proposed SG LBM algorithm. Finally, Section 4.4 presents numer-
ical examples, including TGV flow, LDC flow, and isentropic vortex convection (IVC) flow, before
conclusions are drawn in Section 4.5.

4.1 Generalized polynomial expansion of the
lattice Boltzmann equation

The gPC framework introduced in Chapter 3 and Section 3.3.3 provides a systematic approach
to represent the stochastic model response using orthogonal polynomial bases. Building on these
foundations, we now apply the gPC-based SG approach to the LBE.

Let the model responseM depend on the random vectorZ, and consider a truncated series expansion
in terms of orthogonal basis functions Φα:

M(Z) ≈MN (Z) =

N∑
α=0

M̂αΦα (Z) . (4.1)
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4 Stochastic Galerkin Lattice Boltzmann Method

The computation of expansion coefficients M̂α and the evaluation of statistical quantities such as the
mean M̄ and the variance σ2(M) follow the standard projection approach. These procedures are
described in detail in Section 3.3.3.

Considering the LBE as a stochastic model, we form the stochastic evolution equation

fi (x+ ci△t, t+△t,Z)− fi (x, t,Z) = Ωi (f (x, t,Z)) . (4.2)

For all i, we form the gPC expansion of the particle distribution fi with degree N , so that

fi (x, t,Z) ≈ fN
i (x, t,Z) =

N∑
α=0

f̂iα (x, t)Φα (Z). (4.3)

Notably, a gPC approximation of the distribution function fi could lead to the loss of the positivity of
the reconstructed fN

i , whichmight cause instability in the gPC system. In some specific configurations
of the numerical tests presented in Section 4.4, non-positivity of populations indeed occurs. From
another perspective, hyperbolicity is based on non-negative physical quantities. The LBM does not
inherently preserve the hyperbolic nature of the underlying equations, so the non-negativity problem
in our proposed system is negligible. To still enforce the positivity of physical quantities, existing
filtering strategies could be used [42, 52, 87].

The stochastic LBM can be expressed in terms of the non-projected gPC expansion via

collision: fN,⋆
i (x, t,Z) = fN

i (x, t,Z)− ΩN
i

(
fN (x, t,Z)

)
, (4.4)

streaming: fN
i (x+ ci△t, t+△t,Z) = fN,⋆

i (x, t,Z) . (4.5)

By performing the standard SG projection on Eq. (4.4) and Eq. (4.5), we obtain

collision: f̂⋆
iα (x, t) = f̂iα (x, t) + Ω̂iα

(
fN (x, t,Z)

)
, (4.6)

streaming: f̂iα (x+ ci△t, t+△t) = f̂⋆
iα (x, t) , (4.7)

respectively. Note that in the collision step Eq. (4.6), the expansion coefficients f̂n
iα are updated

by adding the contribution from the collision term Ω̂α(fn,N ). The streaming step Eq. (4.7) only
propagates the post-collision expansion coefficients f̂n,⋆

α . In summary, Eq. (4.6) and Eq. (4.7)
describe the Galerkin projection of the LBM using the gPC expansion, allowing for the representation
and manipulation of the stochastic variables within the simulation.
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4.1 Generalized polynomial expansion of the lattice Boltzmann equation

4.1.1 Collision term in generalized polynomial chaos

Regarding the collision term Eq. (2.6), the relaxation time τ and thus the corresponding relaxation
frequency ω = 1/τ is determined by the kinematic viscosity ν via

ν = c2s

(
τ −

1

2

)
. (4.8)

In the present setting, the following two distinct cases are to be considered:

1. Deterministic relaxation time: If we assume that the collision frequency is constant, using
Galerkin projection the coefficient of the collision term can be easily calculated as

Ω̂iα

(
f̂α (x, t)

)
= −ω

(
f̂iα (x, t)− f̂eq

iα (x, t)
)
. (4.9)

2. Stochastic relaxation time: If we consider the kinematic viscosity ν as stochastic, the collision
frequency is stochastic, too, and thus should be decomposed with the same polynomial basis
and order, i.e.

ωN (Z) =

N∑
α=0

ω̂αΦα (Z), (4.10)

where ω̂α are the expansion coefficients. In this case, the collision term is expanded in a
different form, namely

ΩN
i

(
fN (x, t,Z)

)
= ωN (Z)

(
feq,N
i (x, t,Z)− fN

i (x, t,Z)
)
. (4.11)

Using SG projection once again

Ω̂iα

(
f̂α

)
=

1

γα

(
N∑

j=0

N∑
k=0

ω̂j f̂
eq
iαE [ΦjΦkΦα]

−
N∑

j=0

N∑
k=0

ω̂j f̂iαE [ΦjΦkΦα]

)
. (4.12)

In Eq. (4.12), the collision term coefficients Ω̂α(f̂α) are calculated based on the expansion
coefficients ω̂j and f̂iα, as well as the quadratures of the products of the orthogonal basis
functions Φj , Φk , and Φα. This formulation allows for the treatment of stochastic kinematic
viscosity and provides a novel way to incorporate the stochastic nature of the collision term in
the LBM. Note that the methodology is similar to the one proposed in [87] for the gas kinetic
scheme.
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4 Stochastic Galerkin Lattice Boltzmann Method

4.1.2 Moments and equilibrium populations in
generalized polynomial chaos

In the deterministic LBE Eq. (2.10), obtaining the equilibrium distribution function is straight-forward
usingEq. (2.15). However, in the stochastic system, directmultiplication and division cannot be applied
to the stochastic moments. Therefore, we propose a method to obtain stochastic moments based on
the existing stochastic distribution function and lattice velocity. The moments are defined as

ρN (Z) =

q∑
i=0

N∑
α=0

f̂iαΦα (Z) , (4.13)

(ρu)N (Z) =

q∑
i=0

N∑
α=0

f̂iαciΦα (Z) . (4.14)

By calculating the moments on quadrature points Qj , for j = 0, 1, . . . , Nq we can directly obtain
the velocity on those quadrature points via

uN (Qj) =
(ρu)N (Qj)

ρN (Qj)
. (4.15)

To calculate the equilibrium populations on the quadrature pointsQj , we use the velocity and density
on the same quadrature points, so that

feq,N
i (x, t, Qj) = wiρ

N (Qj)

(
1 +

uN (Qj) · ci
c2s

+

(
uN (Qj) · ci

)2
2c4s

−
uN (Qj) · uN (Qj)

2c2s

)
. (4.16)

Next, we decompose the equilibrium distribution into a gPC expansion

feq,N
i (x, t,Z) =

N∑
α=0

f̂eq
iαΦα (Z) (4.17)

The coefficients of the equilibrium distribution function are calculated using a quadrature rule

f̂eq
iα =

E
[
feq,N
i (x, t,Z)Φα (Z)

]
E [Φ2

α (Z)]
, (4.18)

for all i = 0, 1, . . . q − 1. When combined, the above expressions Eq. (4.13), Eq. (4.14), Eq. (4.15),
Eq. (4.16), Eq. (4.17), and Eq. (4.18) provide a clear description of the moments and the computation
of the equilibrium distribution function within the gPC expansion.
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4.1 Generalized polynomial expansion of the lattice Boltzmann equation

4.1.3 Chapman–Enskog expansion analysis

We use the CE expansion to provide a formal consistency analysis of the proposed SG LBM in
terms of orders of magnitude O(·) obtained in a multi-scale expansion. To the knowledge of the
authors, this is the first CE expansion analysis of an SG LBM. For simplicity, we assume deterministic
relaxation according to Eq. (4.8) and nondimensionalize the relaxation time. Since LBE asymptotically
approaches the incompressible NSE, we directly make the incompressibility assumption.

With that, we start with the gPC expanded SG LBE

f̂iα (x+ ci△t, t+△t) = f̂iα (x, t)−△tω
(
f̂iα (x, t)− f̂eq

iα (x, t)
)
. (4.19)

The expansion coefficients of the density distribution function, the temporal and the spatial derivatives
are expanded as

f̂iα =
∞∑

k=0

εk f̂
(k)
iα , (4.20)

∂t = ε∂
(1)
t + ε2∂

(2)
t , (4.21)

∇ = ε∇(1), (4.22)

respectively, where ∂· = ∂/(∂·) denotes the partial derivative with respect to ·, and ε > 0 is an
expansion parameter which indicates the terms of order O(Kn) with the Knudsen number denoted
asKn. Using a Taylor expansion, the SG LBE Eq. (4.19) becomes

△t (∂t + ci ·∇) f̂iα +
△t2

2
(∂t + ci ·∇)2 f̂iα +△tω

(
f̂iα − f̂eq

iα

)
= O

(
δt3
)
. (4.23)

Neglecting terms of O(△t3) and higher, and substituting the multi-scale expansions Eq. (4.20),
Eq. (4.21), and Eq. (4.22) into Eq. (4.23), we can split the equation in terms of orders of magnitudes
O(εk). For k = 0, 1, 2, we obtain

O
(
ε0
)
: f̂

(0)
iα − f̂eq

iα = 0, (4.24)

O
(
ε1
)
:
(
∂
(1)
t + ci ·∇(1)

)
f̂
(0)
iα = −ωf̂ (1)

iα , (4.25)

O
(
ε2
)
: ∂

(2)
t f̂

(0)
iα +

(
1−

1

2
△tω

)(
∂
(1)
t + ci ·∇(1)

)
f̂
(1)
iα = −ωf̂ (2)

iα , (4.26)
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respectively. Obviously, from Eq. (4.24), we have that f̂ (0)
iα = f̂eq

iα . To proceed with the CE analysis,
we form a gPC expansion of the stochastic density and the stochastic momentum density via

ρN (x, t,Z) =

N∑
α=0

ρ̂α (x, t)Φα (Z) , (4.27)

(ρu)N (x, t,Z) =

N∑
α=0

(ρ̂u)α (x, t)Φα (Z) , (4.28)

respectively, where

ρ̂α (x, t) =

q−1∑
i=0

f̂iα (x, t) , (4.29)

(ρ̂u)α (x, t) =

q−1∑
i=0

cif̂iα (x, t) . (4.30)

To restore the stochastic macroscopic equation, the equilibrium distribution should meet the require-
ments of the following equations: ∑

i

f̂eq
iα = ρ̂α, (4.31)

∑
i

cif̂
eq
iα = ρ̂uα. (4.32)

Here, we make an assumption that the density is asymptotically constant in incompressible fluids,
which yields

ûα =
(ρ̂u)α
ρ̂α

. (4.33)

Simultaneously, with equations Eq. (4.29), Eq. (4.30), Eq. (4.31), and Eq. (4.32), we can easily obtain∑
n

f
(n)
iα = 0, ∀n ̸= 0, (4.34)

∑
n

cif
(n)
iα = 0, ∀n ̸= 0. (4.35)

Thus, the zeroth and first order moment summation Eq. (4.25) are

∂
(1)
t ρ̂+∇(1) · (ρ̂u) = 0, (4.36)

∂
(1)
t ˆρub +∇(1) · ( ˆρuaub) = −∇(1)p̂. (4.37)
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4.1 Generalized polynomial expansion of the lattice Boltzmann equation

The zeroth and first order moment summation Eq. (4.26) are

∂
(2)
t ρ̂ = 0, (4.38)

∂
(2)
t ˆρub +

(
1−

ω

2

)
∇(1) ·

(∑
i

ciacibf̂
(1)
iα

)
= 0. (4.39)

Finally, with the help of Eq. (4.25), we obtain

∑
i

ciacibf̂
(1)
iα = −

1

ω

[
∂
(1)
t

(
( ˆρuaub)α + ρ̂αc

2
sδab

)
+∇(1) ·

(∑
i

ciacibcicf̂
eq
iα

)]
(4.40)

∂
(1)
t

(
( ˆρuaub)α + ρ̂αc

2
sδab

)
= ∂

(1)
t ( ˆρuaub)α + c2s∇(1) · (ρ̂uα)δab. (4.41)

Note that the deterministic term ∂
(1)
t (ρuaub) can be expanded as

∂
(1)
t (ρuaub) = −c2sua∇ · ρ− c2sub∇ · ρ−∇ · (ρuaubuc). (4.42)

In Eq. (4.42), under the incompressibility assumption, the density is asymptotically constant, allowing
for the cancellation of the first two terms on the right. Moreover, the velocity in incompressible
flow is significantly lower than the sound speed. By using the sound speed to make the last term
dimensionless, it becomes a third-order small quantity, which can also be neglected. This implies
that the term ∂

(1)
t (ρuaub) can be disregarded under the incompressibility assumption. Therefore,

its gPC coefficient, ∂t(1)( ˆρuaub)α, can be assumed to be negligible. Considering the latticed
equilibrium distribution function, with a simple algebra we have that

∇(1) ·
(∑

i

ciacibcicf̂
eq
iα

)
= c2s∇(1) · (ρ̂u)δab + ρ̂c2s(∇ · ûa +∇ · ûb). (4.43)

After sorting terms, we observe that

∂tρ̂α +∇ · (ρ̂u)α = 0, (4.44)

∂t (ρ̂u)α +∇ ·
(
(ρ̂u)α ⊗ ûα

)
= −∇p̂α + µ∇ ·

[
∇ûα + (∇ûα)

T
]
, (4.45)

where the pressure expansion coefficient is defined as p̂α = c2s ρ̂α. Again, assuming asymptotically
incompressible flow, Eq. (4.44) becomes

∇ · ûα = 0. (4.46)
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Then, using the classical simplification steps for modeling deterministic incompressible fluid flow
based on the weakly compressible NSE, e.g. ∇ · (∇ûα)

T = ∇ (∇ · ûα) = 0, can be used in
Eq. (4.44) and Eq. (4.45). Based on that, it is observed that Eq. (4.44) and Eq. (4.45) structurally
correspond to the stochastic weakly compressible NSE in terms of expansion coefficient variables
ρ̂α and (ρ̂u)α. Conclusively, we thus have formally proven the consistency of order two of the
proposed SG LBM to stochastic density and density momentum moments Eq. (4.13) and Eq. (4.14),
respectively.

4.2 Lattice Boltzmann boundary conditions in
generalized polynomial chaos

4.2.1 No-slip wall boundary condition

The classical implementation of the mesoscopic bounce-back boundary condition for obtaining a
macroscopic no-slip wall for the fluid velocity used in the present configuration. The standard
streaming is replaced by switching the distribution function in the opposite velocity direction (see
e.g. [78] and references therein). For our SG LBM, the expansion coefficients are switched instead of
the distribution function. For example, in a specific setting in two dimensions, the coefficient for the
incoming distribution function f̂eq

2α is set equal to the coefficient of the outgoing distribution function
f̂eq
4α.

f̂2α (xb, t+△t) = f̂⋆
4α (xb, t) , (4.47)

f̂5α (xb, t+△t) = f̂⋆
7α (xb, t) , (4.48)

f̂6α (xb, t+△t) = f̂⋆
8α (xb, t) . (4.49)

4.2.2 Moving wall boundary condition

For realizing macroscopic moving wall boundary conditions, we adopt the non-equilibrium extrapo-
lation method. In the deterministic non-equilibrium extrapolation method [95], the following steps
are performed at time step tn, wall node xwall, and incoming node xin:

ρ (xwall, tn) = ρ (xin, tn) , (4.50)

u (xwall, tn) = uwall, (4.51)

fi (xwall, tn) = feq
i (xwall, tn) +

(
fi (xin, tn)− feq

i (xin, tn)
)
, (4.52)
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for all i = 0, 1, . . . q−1, whereuwall denotes the moving wall velocity. To account for the stochastic
information, we apply the gPC expansion to Eq. (4.50), Eq. (4.51), and Eq. (4.52), respectively. The
resulting stochastic non-equilibrium extrapolation method hence reads

ρ̂α (xwall, t) = ρ̂α (xin, t) , (4.53)

ûα (xwall, t) = ûwall,α, (4.54)

f̂iα (xwall, t) = f̂eq
iα (xwall, t) +

(
f̂iα (xin, t)− f̂eq

iα (xin, t)
)
. (4.55)

4.3 Implementational details

The deterministic LBEupdates the distribution functionf itself from time step t to t+△t (cf. Eq. (4.4)
and Eq. (4.5)). However, in the here proposed SGLBM,we update the expansion coefficients f̂α of the
approximate stochastic distribution function fN (Z) instead. The updating procedure is summarized
as follows:

1. Calculate the expansion coefficients f̂eq
iα using Eq. (4.18).

2. Compute the collision term using either Eq. (4.9) or Eq. (4.12), depending on whether the
collision frequency is constant or stochastic.

3. Perform the collision and streaming by applying Eq. (4.6) and Eq. (4.7), respectively. This
step involves combining the collision term with the current expansion coefficients to obtain the
updated coefficients.

4. Apply the appropriate boundary conditions to ensure the desired behavior at the boundaries of
the computational domain.

5. Update the moments of the distribution function using Eq. (4.13), Eq. (4.14) and Eq. (4.15).
Based on these equations we calculate the stochastic moments, density ρN (Z) and velocity
uN (Z) using the expansion coefficients f̂iα.

4.4 Numerical examples

To evaluate the proposed SG LBM, we consider a series of benchmark problems of increasing
complexity: the TGV flow with uncertain viscosity, its four–dimensional uncertain initial velocity,
the LDC flow with uncertain boundary conditions, and the IVC problem with uncertain inflow.

35



4 Stochastic Galerkin Lattice Boltzmann Method

4.4.1 Taylor–Green vortex flow with uncertain viscosity

We begin our numerical experiments with the two-dimensional decaying TGV flow, a classic bench-
mark problem for incompressible flow simulation [54]. The TGV flow is fully periodic and admits
an analytical solution to the NSE, making it ideal for validating numerical methods by comparing
against reference solutions. Based on this periodic test case we assess the accuracy and consistency.
The TGV flow, given by

u (x, y, t) =

(
u (x, y, t)

v (x, y, t)

)
=

−u0 cos (kxx) sin (kyy) e
− t

td

u0 sin (kxx) cos (kyy) e
t
td

 , (4.56)

p (x, y, t) = −
1

4
u2
0

[
cos (2kxx) +

(
kx

ky

)2

cos (2kyy)

]
e
− 2t

td + P0, (4.57)

In these equations, u0 = 0.01 is the initial velocity amplitude, kx and ky are wavenumbers corre-
sponding to the domain length in the x and y directions, and td is a characteristic decay time that
depends on the fluid viscosity.

We define a square domain Ω = [ 0, nx ] × [ 0, ny ] in lattice units, where nx and ny denote the
number of grid, we set the physical domain size to L = 2π. Hence, the wavenumbers become

kx =
2π

nx
, ky =

2π

ny
. (4.58)

The initial density is determined via the ideal equation of state ρ = p/c2s , with cs the speed of sound.

We also fix a (nominal) shear viscosity ν via the chosen Reynolds number Re = 15, so that

ν =
u0 L

Re
, td =

1

ν0 (k2x + k2y)
, (4.59)

and the relaxation time is set as

τ =
ν

c2s
+ 0.5, (4.60)

where ν can itself be a constant or—when modeling uncertainty—an uncertain parameter drawn from
a specified distribution.
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To investigate the impact of input uncertainty on flow evolution, we introduce stochasticity into the
TGV setup by modeling the kinematic viscosity ν as an uncertain parameter. Specifically, we define

ν = ζν0, with ζ ∼ U [0.8, 1.2], (4.61)

where ν0 is the nominal viscosity corresponding to the prescribed Reynolds number Re = 15. This
formulation reflects a ±20% variability around the reference viscosity.

All simulations in this work enforce periodic boundary conditions in both directions.

In this test case, the normalized total kinetic energy is computed as

K(t) =
2

|Ω|u2
0

∫
Ω

(
u2(x, y, t) + v2(x, y, t)

)
dxdy, (4.62)

where the integral is approximated with averaging over the domain constituted by grid nodes (x, y) ∈
[0, nx]× [0, ny ].

Here, we also apply gPC expansion to the normalized total kinetic energy, which is computed as

K̂α(t) =
2

|Ω|u2
0

∫
Ω

(
(û2)α(x, y, t) + (v̂2)α(x, y, t)

)
dxdy, (4.63)

the gPC coefficient for normalized total kinetic energy K̂(t) is calculated based on the gPC coefficients
for the squared velocities (û2) and (v̂2). These coefficients for the squared velocities are determined
as follows:

(û2)α =
N∑

j=0

N∑
k=0

ûj ûαE [ϕjϕkϕα] (4.64)

(v̂2)α =
N∑

j=0

N∑
k=0

v̂j v̂αE [ϕjϕkϕα] (4.65)

Across different resolutions, we compare the computed mean of normalized total kinetic energy with
its analytical reference at two points in time t = 0.2td and t = 0.5td, respectively.

Initially, we perform a stochastic consistency study for SG LBM on the two-dimensional TGV
flow. This evaluation is based on the relative error, denoted as δ(t), of the mean and standard
deviation of normalized total kinetic energy K(t) concerning the results obtained at various points
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(a) Relative error (δ(t)) at t = 0.2td

(b) Relative error (δ(t)) at t = 0.5td

Figure 4.1: Relative error (δ(t)) of expectation value (K̄(t)) and standard deviation (σ(K(t))) of normalized total kinetic energy
K(t) for two-dimensional TGV flow computed with SG LBM with respect to highest polynomial order results at different
points in time t = 0.2td, 0.5td . Several spatial resolutions (nx = 32, 64, 128, 256) and polynomial orders
(N = 1, 2, 3, . . . , 8) are tested.

in time, namely, t = 0.2td and 0.5td. We investigate this across different spatial resolutions (here
nx = 32, 64, 128, 256) and polynomial orders (N = 1, 2, 3, . . . , 8). Hence, we compute

δ(t) =

∣∣K̄nx
N (t)− K̄nx

9 (t)
∣∣∣∣K̄nx

9 (t)
∣∣ , (4.66)

δ(t) =

∣∣σ (Knx
N (t)

)
− σ

(
Knx

9 (t)
)∣∣∣∣σ (Knx

9 (t)
)∣∣ , (4.67)
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respectively. The convergence results in terms of the obtained relative error over several resolutions
and polynomial orders are presented in Figure 4.1 for two dedicated points in time. The results show
that a polynomial order of N = 5 is sufficient for achieving the highest accuracy. Hence, all of the
following tests use the polynomial orderN = 5. From Figure 4.1, it can be observed that the relative
errors converge exponentially to machine precision. This indicates that the here proposed SG LBM
achieves spectral accuracy in the random space.

Moreover, we assess the spatial consistency of SG LBM by measuring the experimental order of
convergence (EOC). This is done by comparing the results obtained at different resolutions with
the analytical solution at the highest resolution. To validate the spatial consistency of our proposed
method, we implemented it using a polynomial order of N = 5 and compute the following error

δ =

∣∣K̄nx
5 (t)−K128(t)

∣∣
|K128(t)|

, (4.68)

Here, K̄nx
N (t) represents the total kinetic energy K(t) using polynomial order N winth resolution

nx.

The results of this EOC study are summarized in Table 4.1 and plotted in Figure 4.2. The linear
regression fit validates a second order consistency in space.

Table 4.1: Spatial EOC results of SG LBM in terms of δ (see (4.68)).

Resolution 8 16 32 64 Order
δ 0.1512 0.04435 0.01104 0.002262 2.02

Figure 4.2: Spatial EOC results of SG LBM for TGV flow in terms of δ (see (4.68)).
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Moreover, the EOC study shows that a grid size of 32× 32 achieved a relative error of 1% compared
to the highest resolution. Consequently, the computational domain was discretized into a grid size of
(nx = ny = 32).

For the purpose of comparison, we analyzed the expectation and standard deviation of the velocity
component u in the x-direction at t = 0.5td and compared it with the results obtained from the
MCS for different sample sizes (1E2, 1E3, 1E4). These comparison results, illustrated in Figure 4.3,
demonstrate the high accuracy achieved by our proposed method with small polynomial orders and a
significantly improved convergence rate compared to MCS.

(a) Expectation (b) Standard deviation

Figure 4.3: Expectation values (ū) and standard deviations (σ(u)) of velocity in thex-direction along the central vertical line. Spatial
resolution nx = 32 and polynomial orderN = 5 are used.

We conducted a comparison of computational time costs among different numerical methods, and the
results are presented in Table 4.2. This study was conducted using an 8-core, 16-thread Intel Core i7-
10700KF processor with OpenMP support. For the comparison, we utilized SGLBMwith polynomial
orders of N = 5 and Nq = 11 to simulate the TGV flow with resolution nx = 32. The number of
quadrature points,Nq = 2N + 1, ensures that the gPC provides a robust approximation [28].

Additionally, we implemented MCS on the deterministic LBM part of our SG LBM code as well as on
OpenLB. Both MCS employed 10,000 samples to ensure convergence in the TGV flow problem. The
results demonstrate that MCS with OpenLB achieves a good speed-up rate (factor eleven) compared
to the LBM code without any optimization. Moreover, our proposed SG LBM exhibits a significantly
high speed-up rate (factor 334) compared to the MC LBM.

It is notable that the computational cost of SG LBM is influenced by the resolution, polynomial
order, and quadrature points. While the resolution influence is similar to that of the standard LBM,
the polynomial order and quadrature points are unique characteristics of SG LBM, and their specific
impact remains unknown. Therefore, it is imperative to conduct an analysis of these factors. To ensure
sufficient data for an efficiency study, we choose a spatial resolution of nx = 64. Subsequently,
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Table 4.2: Computational time costs of several numerical methods in seconds for TGV flow.

method cpu time [s]

SG LBM (OpenMP) 1.02

MC LBM (OpenMP) 341.05

MC LBM (OpenLB, MPI) 240.395

we investigate the individual influence of polynomial order and quadrature points separately, and the
results are presented in Figure 4.4 and Figure 4.5, respectively. The results demonstrate that both
polynomial order and quadrature points exhibit a linear increase in computational cost.

Figure 4.4: Influence of number of quadrature points Nq for different polynomial orders N = 1, 2, 3, 4, 5 on time cost of TGV
flow simulation with SG LBM at spatial resolution nx = 64.

In our analysis, we evaluate and compare the performance of the SG LBM against the MC LBM for
simulating TGV flow at t = 0.5td on an Intel Xeon Platinum 8368 CPU. This comparative study is
conducted across various resolutions to understand the efficiency with respect to consistency of the
here usedmethods in handling stochastic variables. In the implementation of the SGLBM, polynomial
orders ranging from 1 to 8 are employed. For the MC LBM, 200 samples are used, with the number
of samples denoted as n. The CPU time for 2, 10, and 100 samples is used for comparison. The
results (efficiency with respect to consistency), as illustrated in the series of plots in Figure 4.6, reveal
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4 Stochastic Galerkin Lattice Boltzmann Method

Figure 4.5: Influence of polynomial order (tested n = 1, 2, 3, 4, 5) with number of quadrature points Nq = 640 on time cost of
TGV flow simulation with SG LBM at spatial resolution nx = 64.

that the SG LBM exhibits strongly increased consistency orders and reduced computational demand,
compared to the MC LBM. The relative error metric used in this comparison is defined as

δSGLBM =

∣∣K̄nx
N − K̄nx

8

∣∣∣∣Knx
8

∣∣ , (4.69)

δMCLBM =

∣∣K̄nx
n − K̄nx

200

∣∣∣∣K̄nx
200

∣∣ . (4.70)

Tomeasure the efficiencywith respect to accuracy of SGLBMcompared toMCLBM, an experimental
speedup analysis is conducted. For the MC LBM, the resolutions nx = 16, 32, 128, 256 are used,
with sample numbers of Nq = 12, 25, 50, 100, 200, respectively. For the SG LBM, polynomial
orders N = 5, 6, 7 are used. Since exact statistical solutions for a given problem are generally
unknown [3], we study accuracy with respect to the highest spatial and stochastic resolution MCS.
The converged MC LBM results at resolution nx = 256 are considered as the reference solution with
a sample number of Nq = 60000. The relative error σ with respect to this reference solution of K̄
has been computed as above. The speedup results according to

speedupSG =

(
δMCLBM

δSGLBM

) 1
2

(4.71)

are presented in Figure 4.7. On average, our novel SG LBM shows a conventional speedup factor of
δMCLBM/δSGLBM ≈ 5.72.
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(a) nx = 32 (b)nx = 64

(c) nx = 128 (d) nx = 256

Figure 4.6: Comparative performance analysis of the SG LBM and MC LBM for the TGV flow at several spatial resolutions nx =
32, 64, 128, 256. The error σ is measured in terms of (4.69) and (4.70). CPU time in seconds for MC LBM measured
for Nq = 2, 10, 100 samples and for SG LBM for polynomial orders from 1 to 8, respectively.

4.4.2 Taylor–Green Vortex flow with four-dimensional
uncertain initial velocity

The initial condition of the TGV flow with four-dimensional uncertainties is defined as [62, 65]

u (x, y, 0) =

(
u (x, y, 0)

v (x, y, 0)

)
=

(
−uR

0 cos (kxx) sin (kyy)

uR
0 sin (kxx) cos (kyy)

)
, (4.72)

p (x, y, 0) = −
1

4
(uR

0 )2

[
cos (2kxx) +

(
kx

ky

)2

cos (2kyy)

]
+ P0, (4.73)

where all deterministic parameters are kept the same in the Section 4.4.1. The difference is that
uncertainties are introduced into the velocity uR

0 = u0 + ϵd(x), where the perturbation ϵd is given
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Figure 4.7: Speedup analysis of SG LBM (polynomial orders of N = 5, 6, 7) compared to MC LBM (resolutions are nx =
16, 32, 128, 256with corresponding sample numbers ofNq = 12, 25, 50, 100, 200) according to (4.71) measured
in terms of to CPU time over accuracy with respect to MC LBM reference solution with resolution nx = 256 and
Nq = 60000 samples.

by the first-order harmonics with four-dimensional i.i.d. uniformly distributed random amplitude
ζd,i,j ∼ U(−0.025, 0.025), i.e.

ϵd(x, y) =
1

4

∑
(i,j)∈{0,1}2

ζd,i,jαi(4x)αj(4y), (4.74)

where

αi(x) =

{
sin(x) if i = 0,

cos(x) if i = 1.
(4.75)

The computational results are shown in Figure 4.8 and Figure 4.9, demonstrating that the velocity field
obtained from the SG LBM is consistent with those from the MC LBM.

For the purpose of comparison, we analyze the expectation and standard deviation of the velocity
component u in the x-direction at t = 0.5td and compare it with the results obtained from the
MC LBM for different sample sizes 1E3, 1E4, and 1E5. These comparison results, illustrated in
Figure 4.10, demonstrate the higher accuracy achieved by our proposed method compared to MC
LBM.

We also evaluate and compare the performance of the SG LBM and the MC LBM on an Intel
Xeon Platinum 8368 CPU. In the implementation of the SG LBM, polynomial orders ranging from
N = 1 to N = 5 are used. For the reference MC LBM, 106 samples are used. The CPU time
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(a) ū for t = 0.5td , SG LBM (b) ū for t = 0.5td , MC LBM

(c) σu for t = 0.5td , SG LBM (d) σu for t = 0.5td , MC LBM

Figure 4.8: Expectation values (ū) and standard deviations (σ(u)) of velocity in thex-direction of TGV flow computed with SG LBM
and MC LBM (sample numbers Nq = 10000). Spatial resolution nx = 33, polynomial order N = 3, and number
of quadrature pointsNq = 7 are used.

for Nq = 10, 102, 103 samples in MC LBM is used for comparison. The relative error in this
comparison is defined as follows:

δSGLBM =

∣∣K̄32
N − K̄32

8

∣∣∣∣K̄32
5

∣∣ , (4.76)

δMCLBM =

∣∣K̄32
n − K̄32

100000

∣∣∣∣K̄32
100000

∣∣ . (4.77)

The results are illustrated in Figure 4.11. It is found that both the expectation K̄ and the standard
deviation σ(K) from the SG LBM converge very quickly, indicating that the TGV flow is not sensitive
to this four-dimensional uncertainty in velocity. Although the computational cost of the SG LBM
increases exponentially with the number of uncertainties, for the four-dimensional uncertainty case,
it remains a superior choice for this test problem compared to the MC LBM.
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(a) v̄ for t = 0.5td , SG LBM (b) v̄ for t = 0.5td , MC LBM

(c) σv for t = 0.5td , SG LBM (d) σv for t = 0.5td , MC LBM

Figure 4.9: Expectation values (v̄) and standard deviations (σ(v)) of velocity in the y-direction of TGV flow computed with SG LBM
and MC LBM (sample numbers Nq = 10000). Spatial resolution nx = 33, polynomial order N = 3, and number
of quadrature pointsNq = 7 are used.

4.4.3 Lid-driven cavity flow with uncertain lid-driven
velocity

The classical incompressible LDC flow involves a square cavity filled with fluid, where the top wall
is driven to move while the other three walls remain stationary. The velocity of the top wall is set to
a constant value, denoted as uw = 1.0, and the characteristic length is defined as L = 1.0. This
case is characterized solely by the Reynolds number Re = uwL/ν = 1000, which governs the flow
behavior. We have chosen a relaxation time of τ = 0.5384 for our simulations.

To evaluate the effect of input variability, we introduce parametric uncertainty in the boundary
condition. Specifically, the top-wall velocity is treated as a random variable:

uw ∼ U [0.9, 1.1], (4.78)
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Figure 4.10: Expectation values ū (left) and standard deviations (σ(u)) (right) of velocity in the x-direction along the central vertical
line computed with MC LBM for sample sizes 1E3, 1E4, 1E5 and with SG LBM. The spatial resolution isnx = 32 and
for SG LBM a polynomial orderN = 3 andNq = 7 quadrature points are used.

(a)

Figure 4.11: Comparative performance analysis of the SG LBM and MC LBM for the TGV flow with spatial resolution nx = 32
and four-dimensional uncertainties. The error σ is measured in terms of (4.69) and (4.70). CPU time in seconds for MC
LBM measured forNq = 10, 100, 1000 samples and for SG LBM for polynomial orders from 1 to 4, respectively.

representing a ±10% perturbation around the nominal velocity. [86].

To capture the uncertainty in the system, we utilize a polynomial order of N = 3 and a set of
quadrature points withNq = 7.

The computational domain in our simulation is discretized into a grid (x, y) ∈ [0, nx] × [0, ny ].
The mean and standard deviation of velocity in the x-direction on a grid nx = ny = 128 are shown
in Figure 4.12.
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(b) Standard deviation (σ(u))

Figure 4.12: Expectation values (ū) and standard deviations (σ(u)) of velocity in the x-direction of LDC flow computed with SG
LBM. Spatial resolution nx = 128, polynomial orderN = 3, and number of quadrature pointsNq = 7 are used.

To enable a comprehensive comparison, we include benchmark solutions from Ghia et al. [21] and
results obtained using the MC LBM. Figure 4.13 and Figure 4.14 illustrate the comparison of the
expectation and standard deviation of the velocity in the x-direction along the central vertical line
and the y-direction along the central horizontal line, respectively. The results demonstrate that the
expectation values of SG LBM approximate the reference result from Ghia et al. [21]. In addition
SG LBM exhibits a significantly faster convergence rate compared to the MC LBM (tested for sample
sizes 1E3 and 1E4) as indicated by the standard deviations plotted in Figures 4.13 and 4.14.

(a) Expectation (b) Standard deviation

Figure 4.13: Expectation values (ū) and standard deviations (σ(u)) of velocity in the x-direction along the central vertical line of
LDC flow computed with SG LBM. Spatial resolutionnx = 128, polynomial orderN = 3, and number of quadrature
pointsNq = 7 are used.
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(a) Expectation (b) Standard deviation

Figure 4.14: Expectation values (ū) and standard deviations (σ(u)) of velocity in the y-direction along the central horizontal line of
LDC flow computed with SG LBM. Spatial resolutionnx = 128, polynomial orderN = 3, and number of quadrature
pointsNq = 7 are used.

We investigate the spatial consistency of SG LBM also for the LDC flow. The relative L2-norm error
is measured based on the velocity along the central line, i.e.

δ2 =

∥∥∥∥∥
(∣∣ūnx

3 − ū512
3

∣∣∣∣ū512
3

∣∣
)∥∥∥∥∥

2

, (4.79)

and plotted in Figure 4.15. As expected, the results reveal a second-order convergence rate in space.

Figure 4.15: Spatial EOC results of SG LBM for LDC flow in terms of δ2 (see (4.79)).

The stochastic consistency is also investigated for several resolutions based on δ (see Eq. (4.66) with
respect to u-velocity). The results are shown in Figure 4.16, which shows that unlike the TGV flow,
the LDC flow requires a higher polynomial order to converge. However, the spectral convergence rate
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is also numerically approved for the LDC flow. In case of a polynomial order N = 8, the results
reach machine precision.

(a) Expectation (b) Standard deviation

Figure 4.16: Relative error (δ, see (4.66)) of expectation value (ū) and standard deviation (σ(u)) ofu-velocity along the central vertical
line of LDC flow computed with SG LBM. Several spatial resolutions (nx = 64, 128, 256, 512) and polynomial
orders (N = 1, 2, 3, . . . , 13) are tested.

4.4.4 Isentropic vortex convection

As a final test case, we consider the IVC, which involves the advection of a smooth, inviscid vortex
by a uniform background flow with free-stream Mach number Ma = 0.042, corresponding to a
free-stream velocity u∞ = 0.05.

The computational domain is defined as [0, 10]× [0, 10], discretized into a 100× 100 uniform grid.
This yields a characteristic length L = 10 and a spatial resolution △x = 0.1. Periodic boundary
conditions are imposed on all boundaries to ensure continuous convection [97].

To emulate nearly inviscid conditions, the viscosity is set to ν = 10−15, resulting in a very high
Reynolds number Re = 5× 1014.

This test is designed to validate the ability of the SG LBM to accurately capture smooth vortical flow
under parametric uncertainty. In particular, we introduce uncertainty in the background flow velocity
by defining:

ρ∞ = 1.0, u∞ = 0.05 ζ, v∞ = 0.0, ζ ∼ U [0.9, 1.1], (4.80)

where ζ is a uniformly distributed random variable modeling ±10% variability in the free-stream
speed. This represents potential fluctuations or control uncertainty in inflow conditions.
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The isentropic vortex is embedded into this uncertain background flow through the following pertur-
bations:

ρ(x, y) =

[
1−

(γ − 1)b2

8γπ2
exp

(
1− r2

)] 1
γ−1

, (4.81)

u(x, y) = u∞ −
b

2π
exp

(
1

2
(1− r2)

)
(y − yc), (4.82)

v(x, y) = v∞ +
b

2π
exp

(
1

2
(1− r2)

)
(x− xc), (4.83)

where b = 0.05 denotes the vortex strength, and the distance from the vortex center is given by
r =

√
(x− xc)2 + (y − yc)2 with (xc, yc) = (5, 5).

To capture the uncertainty in the system, we utilize a polynomial order of N = 4 and a set of
quadrature points with Nq = 9. The velocity profile is extracted from the flow field evolved for 20
flow-through-times Figure 4.17 shows the expectation values and standard deviation specifically at
t = 20FFTs. The SG LBM results for approximating inviscid flows show good agreement to the
exact prediction as well as to the MC LBM (OpenLB) results.

(a) Expectation (b) Standard deviation

Figure 4.17: Expectation values (ū) and standard deviations (σ(u)) of velocity in the y-direction along the central horizontal line
of IVC computed with SG LBM. Spatial resolution nx = 100, polynomial order N = 4, and Nq = 9 quadrature
points are tested. MC LBM (OpenLB) results and an exact prediction are plotted as a reference.

4.5 Conclusion

In conclusion, by decomposing the LBE into polynomials and employing the Galerkin projection,
we have first implemented the Stochastic Galerkin method on the conventional lattice Boltzmann
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equation. This work aims to address the need for a more efficient and accurate UQ method in CFD
problems.

Our numerical results, obtained through simulations of TGVflow, LDC flow, and IVC flow, showcased
the accuracy and computational efficiency of the SG LBM approach. The comparison with MC LBM
as a benchmark demonstrated the superior convergence rate and smaller computational cost of SG
LBM. Compared to MC LBM the novel SG LBM reaches a speedup factor of 5.72 on average in a
randomized two-dimensional Taylor–Green vortex flow test case.

Overall, our study highlights the potential of the SG LBM as an intrusive UQ technique for UQ in CFD
simulations. The combination of high efficiency, accuracy, and computational effectiveness makes SG
LBM a valuable tool for addressing uncertainties arising from various sources in CFD.
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5 OpenLB-UQ Framework

In this chapter, we present the OpenLB-UQ framework, a modular and extensible software extension
for UQ in LBM simulations. Building upon the deterministic capabilities of OpenLB, the framework
introduces a non-intrusive UQ layer that orchestrates sample generation, solver execution, and statisti-
cal postprocessing. It supports multiple sampling and collocation techniques, including MCS, QMC,
and SC. This design enables efficient uncertainty propagation without requiring modifications to ex-
isting OpenLB applications. The framework, including its class hierarchy and runtime workflow, has
been developed as part of this dissertation and is documented in [99]. Most of its core functionalities
have already been released in OpenLB versions 1.8 [39] and 1.8.1 [40].

5.1 Software architecture

The software architecture of the proposed framework is designed to enable UQ on top of the existing
deterministic LBM simulations provided by OpenLB. Instead of modifying the internal solver kernel,
the UQ layer operates as a high-level orchestrator that coordinates the sampling process, invokes the
existing LBM application for each realization, and subsequently aggregates statistical results.

As illustrated in Figure 5.1, the architecture consists of two loosely coupled layers:

• UQ layer: This layer is responsible for generating samples from uncertain inputs, managing the
configuration ofUQmethods, and performing statistical postprocessing. It includes components
such as Distribution, SamplingStrategy, and QuadratureRule, all orchestrated by
the manager class called UncertaintyQuantification. The UQ layer is agnostic to the
underlying LBM discretization and solver details.

• OpenLB layer: This layer runs the deterministic simulation for each sample provided by
the UQ layer. It utilizes OpenLB’s existing modular structure, including SuperLattice,
BlockLattice, and user-defined boundary/initial conditions. From the perspective of the
LBMsolver, each realization is simply a deterministic runwith a specific set of input parameters.

Based on the above architecture, the overall execution follows a three-phase workflow:
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Figure 5.1: Class hierarchy for OpenLB-UQ framework.
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5.2 Core class design

1. Sampling: The UQ module generates a set of Nq samples {Z(i)}Nq

i=1 ⊂ RdZ from the
prescribed input distribution using a chosen sampling or quadrature method (e.g., Monte Carlo,
quasi-Monte Carlo, or gauss quadrature).

2. Simulation: Each sample Z(i) is passed to the OpenLB application, which performs a de-
terministic simulation and returns a scalar quantity of interest M(Z(i)), such as the drag
coefficient or probe velocity.

3. Postprocessing: The UQ module collects the model outputs {M(Z(i))}Nq

i=1 and computes
statistical quantities (e.g., mean and variance).

This design cleanly separates uncertainty propagation logic from the numerical solver implementation.
As a result, all existing LBM applications in OpenLB (also beyond CFD) can be used without
modification, and new UQ methods can be integrated into the framework by extending the modular
interfaces of the UQ layer.

5.2 Core class design

The core of theOpenLB-UQ framework is organized as a collection ofmodular C++ classes, structured
around abstract base classes and template-based specializations. This design enables flexibility in
composing different UQ strategies and facilitates seamless integration of new methods.

Figure 5.1 presents the class hierarchy underlying the UQ layer. The framework is centered around
the UncertaintyQuantification manager class, which coordinates all stages of the UQ process,
including sampling, solver invocation, and postprocessing. Its functionality is composed of the
following key components.

5.2.1 Distribution and polynomial basis

The Distribution class hierarchy defines input uncertainty models. It supports common univariate
distributions such as uniform and Gaussian, as well as joint multivariate distributions constructed
through product or correlated measures. Each distribution instance provides sampling functions and
moments necessary for stochastic analysis.

To support spectralmethods such as SC-gPC, each distribution is associatedwith an orthogonal polyno-
mial basis through the PolynomialBasis interface. Concrete implementations like LegendreBasis
and HermiteBasis correspond to uniform and Gaussian inputs, respectively. This automatic pairing
guarantees consistency between sampling and projection in gPC expansions.
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5.2.2 Sampling strategies

The SamplingStrategy interface defines a general contract for generating sample points in the
stochastic space. It is implemented by various non-intrusive UQ methods, including:

• MonteCarloSampling

• QuasiMonteCarloSampling

• LatinHypercubeSampling

• StochasticCollocation (gPC)

Each strategy class produces a sample matrix {Z(i)}Nq

i=1 ⊆ RdZ , which is passed to the deterministic
solver.

For sampling-based methods, samples are drawn from the input distribution. For collocation-based
methods, points are selected via tensor-product or sparse-grid quadrature rules.

5.2.3 Quadrature and collocation

The QuadratureRule component handles the numerical integration over the stochastic space. This
base class, QuadratureBase, defines the interface for evaluating quadrature points and weights. Cur-
rently, Gauss–Quadrature is implemented and available in OpenLB release 1.8 and 1.8.1. Additional
quadrature rules, including Genz–Keister and Clenshaw–Curtis, as well as support for sparse Smolyak
grids [18, 19, 79], will be included in the next release. The selection of quadrature rules is managed
through a type-safe enumerator QuadratureMethod, which ensures consistency in point generation
and projection.

For SC, the class GeneralizedPolynomialChaos computes the gPC coefficients by projecting the
QoIs onto the polynomial basis using a quadrature rule. Its primary functionality is to compute
statistical moments, such as the mean and variance directly from the gPC coefficients, which are
obtained from deterministic solver outputs evaluated at the quadrature points.

5.2.4 Solver orchestration and data management

The UncertaintyQuantification class acts as the top-level orchestrator. It holds instances of
SamplingStrategy, Distribution, and QuadratureRule, and manages all simulation inputs
and outputs. For each sample, it launches the solver, collects the quantity of interest, and updates
statistical aggregates.
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5.3 Runtime workflow

To interface with existing OpenLB applications, the UQ layer requires only a minimal wrapper that
connects input samples to solver parameters and extracts output quantities. This lightweight coupling
preserves the modularity of both the UQ and LBM components.

5.3 Runtime workflow

The execution of OpenLB-UQ follows a modular, three-phase runtime workflow: (i) sample gener-
ation, (ii) deterministic simulation, and (iii) statistical postprocessing. This structure enables a clear
separation between the UQ logic and the numerical solver. Algorithm 1 provides a high-level overview
of this process. At runtime, the UncertaintyQuantification manager orchestrates the following

Algorithm 1 Non-intrusive UQ algorithm in OpenLB-UQ.

1: Input: random input Z ∼ h(Z), LBM solver S, number of samples Nq

2: Output: mean E[M] and standard deviation σ(M) of the quantity of interestM

3: Generate sample set {Z(i)}Nq

i=1 from h(Z)
4: for i = 1, . . . , Nq do
5: M(i) ← S(Z(i)) ▷ Run LBM simulation with sample Z(i)

6: end for
7: if Monte Carlo sampling then
8: E[M]← 1

N

∑N
i=1M(i) ▷ Eq. (3.1)

9: σ(M)←
√

1
N

∑N
i=1

(
M(i) − E[M]

)2
▷ Eq. (3.2)

10: end if
11: if Stochastic collocation then
12: Approximate:M(Z) ≈

∑N
α=0 M̂α Φα(Z) ▷ Eq. (3.4)

13: Compute coefficients: M̂α ≈ 1
γ

∑Nq

i=1 aiM
(i) Φα(Z(i)) ▷ Eq. (3.6)

14: E[M]← M̂0 ▷ Eq. (3.13)

15: σ(M)←
(∑N

α=1 M̂2
α

)1/2
▷ Eq. (3.14)

16: end if

steps:

1. Initialization: The UQ configuration is defined directly within the C++ application code. This
includes the choice of sampling strategy, distribution parameters, quadrature rule (if applicable),
and the number of samplesNq . These parameters are passed to theUncertaintyQuantification
manager.

2. Sample generation: A set of input samples {Z(i)}Nq

i=1 ⊂ RdZ is generated in the stochastic
space using the selected SamplingStrategy instance. Depending on the method, samples
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may come from random draws (e.g., Monte Carlo), low-discrepancy sequences (e.g., Sobol), or
deterministic collocation points (e.g., Clenshaw–Curtis sparse grids).

3. Deterministic simulation: For each sample Z(i), a corresponding deterministic simulation
input is assembled and passed to the OpenLB solver. The solver executes a complete LBM run
and computes a quantity of interestM(Z(i)). The UQ layer treats each run as a black box and
stores only the scalar outputM(i).

4. Postprocessing: The outputs {M(i)}Nq

i=1 are aggregated after all simulations are completed.
For sampling-based methods, statistical moments such as the mean and standard deviation are
computed directly from the ensemble. For SC, the outputs are projected onto a polynomial
chaos basis {ΦN} using quadrature or regression to obtain the gPC coefficients {M̂N}.

5. Output: Final results including statistical summaries and surrogate models (e.g., gPC ex-
pansions)—are written to disk. Optional postprocessing modules compute spatial statistics
(e.g., pointwise mean and variance fields) and export them in .vti format for visualization in
ParaView.

This workflow is inherently parallelizable. Currently, two levels of parallelism are supported: (i)
sample-level, and (ii) domain-level. Sample-level parallelism distributes simulation runs across avail-
able cores or nodes, while domain-level parallelism is managed internally by OpenLB usingMPI. This
hybrid parallelization strategy enables the UQ framework to scale efficiently from desktop machines
to high-performance clusters with minimal configuration changes.

The modular architecture and parallelization capabilities of the OpenLB-UQ framework enable ef-
ficient uncertainty propagation across a wide range of CFD applications. In the following chapter
(Chapter 6), we validate the framework and assess its performance and scalability through numerical
experiments and benchmark studies.
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In this chapter, we validate the OpenLB-UQ framework through a series of numerical experiments
and performance evaluations. Benchmark cases, including flow past a circular cylinder and TGV
flow are simulated under parametric uncertainties to assess the accuracy and convergence behavior
of non-intrusive UQ methods such as MCS, QMC, and SC. We investigate the statistical consistency,
spectral convergence, and sample efficiency of each method using reference solutions. Furthermore,
we evaluate the computational performance of the framework on a modern supercomputing platform,
comparing sample-level and domain-level parallelization strategies in terms of speedup and scalability.
These results confirm the effectiveness, robustness, and parallel efficiency of our proposed OpenLB-
UQ framework.

6.1 Numerical experiments

To demonstrate the effectiveness and applicability of the proposedOpenLB-UQ framework, we present
results from benchmark simulations of a 2D flow past a circular cylinder as well as a 2D TGV flow,
both with parametric uncertainties up to dimension four. Relative error metrics are used to determine
the convergence behavior with respect to references of high polynomial order.

The errors are then compared for various numbers of samples to approve individual accuracy orders
of MCS-, QMC- and SC LBM, respectively. Finally, we validate the convergence of our framework in
terms of a Wasserstein metric when computing statistical solutions with four-dimensional uncertainty.

6.1.1 Flow past a circular cylinder with uncertain inlet
velocity

We consider a standard benchmark of incompressible flow past a circular cylinder, extended to account
for uncertainty in the inlet velocity. The inlet velocity is modeled as

uin(ζ) = 0.2 + 0.04 ζ, ζ ∼ U(−1, 1),
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which enters a parabolic inflow profile and induces variability in the Reynolds number and drag
coefficient.

The domain is a two-dimensional channel of size 22D × 4D, with a cylinder of diameter D placed
near the inlet and vertically centered. The inlet velocity profile is prescribed as

u(0, y, t, ζ) =

4uin(ζ)
y(H − y)

H2

0

 , y ∈ [0, H], t ≥ 0, H = 4D. (6.1)

The Reynolds number is defined using the peak inlet velocity:

Re =
uinD

ν
,

with a nominal value of Re = 20 corresponding to uin = 0.2.

Boundary conditions are set as follows. At the inlet, an interpolated velocity boundary condition is
applied [47]; at the outlet, an interpolated pressure condition ensures free outflow [47]. The cylinder
surface is treated with a second-order accurate no-slip condition using the Bouzidi scheme [8], and
the top and bottom walls are set to no-slip. The simulation is initialized with equilibrium populations,
and the inflow is gradually ramped up to avoid transient oscillations.

The drag and lift forces are computed as surface integrals over the cylinder boundary S,

FD =

∫
S

(
−p n1 + ρν

∂vt

∂n
n2

)
dS, (6.2)

FL =

∫
S

(
−p n2 − ρν

∂vt

∂n
n1

)
dS, (6.3)

where n = (n1, n2)T is the outward unit normal vector on S, and vt = u · s is the tangential
velocity, with the unit tangent vector defined as s = (s1, s2)T = (n2,−n1)T. The derivative
∂vt/∂n denotes the directional derivative along n, i.e., n · ∇vt.

The drag and lift coefficients are defined as

CD =
2FD

ρ u2
in D

, (6.4)

CL =
2FL

ρ u2
in D

, (6.5)
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6.1 Numerical experiments

Let Cref
D denote a reference value of the mean drag coefficient, obtained from a high-fidelity compu-

tation. Given an estimated mean C̄D, the relative error is computed as

δ :=

∣∣Cref
D − C̄D

∣∣∣∣Cref
D

∣∣ . (6.6)

This quantity is reported in decimal units throughout the results.

Before performing UQ, we need a deterministic solver that computes the drag coefficient for a
given inlet velocity. In OpenLB, setting up a flow solver involves defining the computational domain,
specifying boundary conditions, and executing the time-stepping loop until convergence. The function
simulateCylinder(...) encapsulates this process. A typical OpenLB setup follows these steps
[37]:

1. Initialize the unit conversion:
TheUnitConverter handles transformations between physical and lattice units. It is initialized
based on the resolution and relaxation time.

1 UnitConverterFromResolutionAndRelaxationTime <T, DESCRIPTOR > const converter
(...);

2. Prepare the computational geometry:
The computational domain, including the flow boundaries and obstacle, is defined using the
SuperGeometry class.

1 SuperGeometry <T,2> superGeometry (...);

3. Prepare the LBM grid:
The flow is simulated on a discrete lattice. A D2Q9 lattice is commonly used.

1 SuperLattice2D <T, DESCRIPTOR > lattice (...);
2 prepareLattice (...);

4. Time-stepping loop:
The solver iterates over time steps until the solution reaches a steady state or periodic behavior.
Boundary conditions are also enforced at each time step.

1 for (std:: size_t iT = 0; iT <= converter.getLatticeTime(maxPhysT); ++iT) {
2 // Update boundary conditions
3 setBoundaryValues (...);
4
5 // Execute collide and stream step
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6 Non-Intrusive Uncertainty Quantification

6 lattice.collideAndStream ();
7
8 // Compute and output results at regular intervals
9 if (iT % converter.getLatticeTime (.1) == 0) {
10 drag = getResults (...);
11 }
12 }

After setting up the deterministic solver, we integrate it into the UQ framework. A function
simulateCylinder(...) internally executes the steps above while allowing variations in the
inlet velocity for different UQ samples.

In the following, we document how the uncertainty in the inlet velocity is incorporated into the
cylinder flow simulation. The quantity of interest is the drag coefficient on the cylinder surface, which
is sensitive to variations in the inflow velocity. By performing multiple simulations (referred to as
samples), we can capture how uncertain inlet conditions affect the overall flow behavior, particularly
the drag coefficient.

To account for uncertainty in the inlet velocity, we specify a uniform distribution over a user-defined
range. In code, we define this range with:

1 auto dist = uniform (0.8 * u0, 1.2 * u0);

This object, dist, specifies that our inlet velocity is drawn from a uniform distribution with minimum
0.8 * u0 and maximum 1.2 * u0.

Depending on the desired approach, the user can choose either MCS or a SC-gPC method for the UQ:

• MCS:This approach samples the distributionmultiple times (denoted byN) to gather a statistical
representation of the drag coefficient. A seed value can be used for reproducibility:

1 UncertaintyQuantification uq(UQMethod :: MonteCarlo);
2 unsigned int seed = 123456;
3 uq.initializeMonteCarlo(N, dist , seed);

• SC-gPC: This method uses polynomial expansions to more efficiently approximate the depen-
dence of the drag coefficient on the inlet velocity:

1 UncertaintyQuantification uq(UQMethod ::GPC);
2 uq.initializeGPC(order , N, dist);

The parameter order refers to the polynomial order in the generalized polynomial chaos ex-
pansion, and the parameter N refers to the quadrature points used in each uncertainty dimension.
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6.1 Numerical experiments

After setting up the desired UQ method, the user extracts the actual sample points (inlet velocity
values) to be used in the flow solver:

1 auto samples = uq.getSamplingPoints ();

Each element samples[n][0] corresponds to one instance of the inlet velocity for the nth simulation.

With the sample velocities at hand, we can run the cylinder flow solver for each sample. In this test
case, the solver computes the flow around the cylinder on a mesh of resolution resolution, and
outputs the drag coefficient:

1 for (size_t n = 0; n < samples.size(); ++n) {
2 // Run the cylinder simulation with the given inlet velocity
3 dragCoefficients[n] = simulateCylinder(
4 resolution ,
5 samples[n][0],
6 exportResults
7 );
8 }

Once all simulations are completed, the drag coefficients which are stored in dragCoefficients can
be processed to compute the mean and standard deviation, thereby quantifying the statistical response
of the flow to uncertain inflow conditions:

1 double meanDrag = uq.mean(dragCoefficients);
2 double stdDrag = uq.std(dragCoefficients);

Initially, we perform a stochastic consistency study for SC-gPC on the 2D cylinder flow described
above. This evaluation is based on the relative error, denoted as δ, of themean and standard deviation of
drag coefficientCD. We investigate this across different spatial resolutions (herenx = 10, 20, 40, 80)
and polynomial orders (N = 1, 2, 3, . . . , 10), quadrature points (Nq = 2N+1). Hence, we compute

δ =

∣∣C̄D
nx − C̄D

nx
10

∣∣∣∣C̄D
nx
10 (t)

∣∣ , (6.7)

δ =

∣∣σ (CD
nx
N (t)

)
− σ

(
CD

nx
10 (t)

)∣∣∣∣σ (CD
nx
10 (t)

)∣∣ , (6.8)

respectively.

The convergence results in terms of the obtained relative error over several resolutions and polynomial
orders are presented in Figure 6.1 for two dedicated points in time. The results show that a polynomial
order ofN = 5 is sufficient for achieving the highest accuracy.
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6 Non-Intrusive Uncertainty Quantification

FromFigure 6.1, it can be observed that the relative errors converge exponentially tomachine precision.
This indicates that here the SC-gPC achieves spectral accuracy in the random space. The mean and

Figure 6.1: Relative error (δ) of expectation value (C̄D) and standard deviation (σ(CD)) of drag coefficientCD for two-dimensional
cylinder flow computed with SC-gPC with respect to highest polynomial order result. Several spatial resolutions (nx =
10, 20, 40, 80) and polynomial orders (N = 1, 2, 3, . . . , 10) are tested.

standard deviation of the velocity magnitude of the flow field, computed using a 5th-order SC-gPC
method with 11 quadrature points (Nq = 11), are shown in Figure 6.2.

Comparing MCS at resolution nx = 20, we consider different numbers of samples (Nq =

10, 20, 40, 80, 100). The results are compared with SC-gPC to analyze the convergence behav-
ior. As shown in Figure 6.3, the relative error of the estimated mean and standard deviation of theCD

decreases as the number of MCS samples increases.

The SC-gPC results serve as a reference, demonstrating the efficiency of spectral approaches in
capturing uncertainty with fewer samples.

Table 6.1: Comparison of mean drag coefficient C̄D and standard deviation σ(CD) across different UQ methods with resolution
nx = 20.

MC QMC SC-gPC deterministic
C̄D 5.66731 5.67270 5.67261 5.63208
σ(CD) 0.34896 0.34890 0.34888 –
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6.1 Numerical experiments

(a) Mean velocity magnitude, ¯|u|

(b) Standard deviation of velocity magnitude, σ(|u|)

Figure 6.2:Mean ( ¯|u|) and standard deviation (σ(|u|)) of the velocity magnitude in the two-dimensional cylinder flow, computed
using SC-gPC with a 5th-order polynomial expansion and 11 quadrature points (Nq = 11).

Figure 6.3: Relative error of the expectation value (δ(C̄D)) and standard deviation (δ(σ(CD))) of the drag coefficient for the
two-dimensional cylinder flow at nx = 20. The MCS and QMC results are computed with different sample sizes
(Nq = 10, 20, 40, 80, 100) and compared against SC-gPC.
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6 Non-Intrusive Uncertainty Quantification

Figure 6.4: Relative error of the expectation value δ(C̄D) and standard deviation δ(σ(CD)) of the drag coefficient for the two-
dimensional cylinder flow at nx = 20. The MCS and QMC results are computed with several sample sizes (Nq =
10, 100, 1000, 8000).

6.1.2 Taylor–Green vortex flow with uncertain viscosity

We proceed with the TGV flow in a two-dimensional periodic domain dx = 2, a classical benchmark
problem for incompressible flow simulations. The TGV flow is fully periodic and admits a known
analytical solution to the NSE, making it ideal for validating numerical methods by direct comparison
with reference solutions.

In this test case, we introduce uncertainty in the flow viscosity via a random Reynolds number.
Specifically, we model the Reynolds number as a uniformly distributed random variable,

Re ∼ U(0.8Re0, 1.2Re0), with Re0 = 15.

The corresponding kinematic viscosity is computed per realization as

ν =
u0L

Re
,

which induces uncertainty in the decay rate of the flow. This allows us to quantify the resulting
variation in the velocity field and its kinetic energy. Statistical estimates (e.g., mean and standard
deviation of velocity magnitude and kinetic energy) are computed using SC-gPC and MCS.

66



6.1 Numerical experiments

The exact velocity field u(x, y, t) and pressure field p(x, y, t) are given by

u(x, y, t) =

−u0 cos
(
kxx

)
sin
(
kyy
)
e
−t
td

u0 sin
(
kxx

)
cos
(
kyy
)
e
−t
td

 , (6.9)

p(x, y, t) = −
1

4
u2
0

[
cos (2kxx) +

(
kx

ky

)2

cos (2kyy)

]
e
−2t
td + P0. (6.10)

In Eq. (6.9) and Eq. (6.10), u0 is the initial velocity amplitude, kx and ky are wavenumbers corre-
sponding to the domain length in the x and y directions, and td is a characteristic decay time that
depends on the fluid viscosity.

We define a square domain Ω = [ 0, nx ] × [ 0, ny ] in lattice units, where nx and ny denote the
number of grid nodes in each direction. For simplicity, we let nx = ny , and we set the physical
domain size to L = 2π. Hence, the wavenumbers become

kx =
2π

nx
, ky =

2π

ny
. (6.11)

The initial density is determined via the ideal equation of state ρ = p/c2s , where cs is the speed of
sound. The characteristic decay time is defined by

td =
1

ν, (k2x + k2y)
(6.12)

and the corresponding lattice Boltzmann relaxation time is given by

τ =
ν

c2s
+

1

2
. (6.13)

All simulations for this test case enforce periodic boundary conditions in both spatial directions
to obtain a periodic numerical solution. The first global statistical quantity that we study is the
(normalized) total kinetic energy, defined as

K(t) =
2

|Ω|u2
0

∫
Ω

(
u2(x, y, t) + v2(x, y, t)

)
dx dy, (6.14)

where Ω is the two-dimensional computational domain [0, nx] × [0, ny ]. The factor of 2/(|Ω|u2
0)

ensures normalization by the domain area |Ω| and the square of the initial velocity amplitude u0. In
practice, we approximate the integral via a discrete sum over the lattice nodes, i.e.

K(t) ≈
2

nxnyu2
0

nx−1∑
x=0

ny−1∑
y=0

[
u2(x, y, t) + v2(x, y, t)

]
. (6.15)
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6 Non-Intrusive Uncertainty Quantification

The implementation of the case in OpenLB-UQ follows the same guidelines as explained in detail for
the flow around a cylinder case in Section 6.1.1.

To assess convergence toward a reference solution Kref(t), we define the relative error in the mean
kinetic energy as

δ(t) =

∣∣K(t)−Kref(t)
∣∣

|Kref(t)|
, (6.16)

where K(t) is the computed mean and Kref(t) is obtained from a finer spatial or stochastic dis-
cretization.

In SC-gPC, accuracy depends on both the polynomial orderN and the quadrature points numberNq ,
since a deterministic solve is performed at each quadrature node. To study the effect of N alone, we
fix Nq = 1000 and varyN from 1 to 8.

Figure 6.5 shows δ(t) for the mean K(t) and the standard deviation σ(K(t)) of the normalized
total kinetic energy at t = 0.5 td, measured against the highest polynomial order solution. The
error decreases exponentially with N , confirming the spectral convergence of SC-gPC when Nq is
sufficiently large.

Beyond a certain order (e.g.,N ≈ 3–4), the convergence curves flatten, indicating that the total error
is dominated by the deterministic discretization in physical space.

In other words, at sufficiently high polynomial order, the SC approach becomes more accurate than
the underlying spatial grid can represent, and hence the relative error plateaus at the level prescribed
by the spatial discretization error.

(a) Expectation value errors δ(K̄(0.5td)) (b) Standard deviation errors δ(σ(K(0.5td)))

Figure 6.5: Relative error (δ(t), Eq (6.16)) of expectation value K̄(t) and standard deviation σ(K(t)) of normalized total kinetic
energy K(t) for TGV flow with uncertain viscosity computed with SC LBM with respect to highest polynomial order
(k = 8) results, respectively for individual resolutions at time t = 0.5td . Several spatial resolutions (nx =
33, 65, 129, 257) and polynomial orders (N = 1, 2, 3, . . . , 8), quadrature points (Nq = 1000) are tested.
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6.1 Numerical experiments

Following the convergence analysis in Figure 6.5, we fix the polynomial order atN = 5 and investigate
the effect of the quadrature resolutionNq in SC-gPC, comparing it against MCS.

Figure 6.6 compares SC-gPC (N = 5) and MCS for the two-dimensional TGV flow at nx = 33,
showing the relative error of the mean and standard deviation of K(t) at t = 0.5 td as functions of
the number of quadrature points (SC-gPC) or samples (MCS).

For MCS, the errors decay at the expected O(N−0.5) rate for both mean and standard deviation.
With SC-gPC at fixed polynomial order (N = 5), increasing the number of quadrature points still
yields a much faster convergence than MCS.

(a) Expectation value errors δ(K̄(0.5td)) (b) Standard deviation errors δ(σ(K(0.5td)))

Figure 6.6: Relative error (δ(t), Eq (6.16)) of expectation value K̄(t) and standard deviation σ(K(t)) of normalized total kinetic
energy K(t) for TGV flow with uncertain viscosity computed with SC LBM with respect to highest quadrature points
number (Nq = 10000) results at time t = 0.5td . Several spatial resolutions (nx = 33) and quadrature points
(Nq = 10, 100, 200, . . . , 10000), Monte Carlo samples (Nq = 10, 100, 10000) are tested.

6.1.3 Taylor–Green vortex flow with four-dimensional
uncertain initial velocity perturbation

This second version of the TGV flow is taken from [65, 98]. The velocity field and the pressure of the
TGV are defined as

u (x, y, t) =

(
u (x, y, t)

v (x, y, t)

)
=

−uR
0 cos (2x) sin (2y) e

− t
td

uR
0 sin (2x) cos (2y) e

t
td

 , (6.17)

p (x, y, t) = −
1

4
uR
0

2

[
cos (4x) +

(
2

2

)2

cos (4y)

]
e
− 2t

td + P0, (6.18)
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6 Non-Intrusive Uncertainty Quantification

respectively, where, x, y ∈ [0, 2π]. The uncertain velocity uR
0 = u0 + ϵd(x) is based on the

perturbation ϵd given by the first-order harmonics with four-dimensional uniformly i.i.d. random
amplitude ζd,i,j ∼ U(−0.025, 0.025), i.e.

ϵd(x, y) =
1

4

∑
(i,j)∈{0,1}2

ζd,i,jki(4x)kj(4y), (6.19)

where

ki(x) =

{
sin(x), if i = 0,

cos(x), if i = 1.
(6.20)

The four-dimensional uncertainty is straightforward to set up in our framework by defining a joint
distribution as follows:

1 auto perturb1 = uniform (-0.025, 0.025);
2 auto perturb2 = uniform (-0.025, 0.025);
3 auto perturb3 = uniform (-0.025, 0.025);
4 auto perturb4 = uniform (-0.025, 0.025);
5 auto jointPerturb = joint({perturb1 , perturb2 , perturb3 , perturb4 });

The maximum simulation time is Tmax = 100. Other parameter settings for the test case are
described below and summarized in Table 6.2. The number of samples N , the spatial resolution
nx = ny , and the Reynolds number Re scale linearly, while the Mach number Ma scales inversely
proportional. Based on the latter three parameters, the relaxation time τ , the time step △t, and the
grid spacing△x are determined.

Table 6.2: Simulation parameters for the TGV with four-dimensional uncertain initial condition.

N nx = ny Ma Re τ △x △t

8 8 0.2 320 0.501206 0.897598 0.103646

16 16 0.1 640 0.500646 0.418879 0.024184

32 32 0.05 1280 0.500334 0.202683 0.005850

64 64 0.025 2560 0.500170 0.099733 0.001439

128 128 0.0125 5120 0.500085 0.049473 0.000357

256 256 0.00625 10240 0.500043 0.024639 0.000088

Snapshots of the velocity magnitude computed from the TGV for deterministic and perturbed initial
conditions (expected value in the latter case), respectively, are shown for t = Tmax in Figure 6.7.
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(a) Deterministic (b) Expected value

Figure 6.7: Deterministic and expected velocity magnitude of the TGV with four-dimensional uncertain initial velocity computed with
OpenLB-UQ for a resolution of n = 256 at t = Tmax .

Figure 6.8: 1-Wasserstein distance at several time steps of the numerical statistical solutions with respect to the most resolved one
(nx = 256) for the TGV with four-dimensional uncertain initial velocity computed with OpenLB-UQ.

To evaluate the inviscid statistical convergence [45] of OpenLB-UQ,we approximate the 1-Wasserstein
distance defined as

W1(Q1, Q2) =

(
inf

γ∈Γ(Q1,Q2)

∫
X2
|x− y| dγ(x, y)

)
, (6.21)

where Γ(Q1, Q2) denotes the set of all joint distributions γ onM ×M whose marginals areQ1 and
Q2 respectively, d(x, y) is the distance between points x and y in the metric spaceM . Here,Q1 and
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Q2 are numerical statistical solutions for resolutions nx < 256 and the reference numerical statistical
solution with resolution nx = 256 (with matching parameters according to Table 6.2), respectively.

The time-dependent numerical statistical solutions are constructed by expectation values of Dirac
measures from computed sample velocity fields at time t. Hence, with each spatial resolution nx, we
approximate the continuous statistical solutions to an initially perturbed NSE on X = Rdx defined
by probability measures on L2

div(X ;U) [65].

We approximate the Wasserstein distance from the computed sample data using the function
scipy.stats.wasserstein_distance in SciPy [82]. If the approximated Wasserstein dis-
tance of the numerical statistical solutions for nx = 8, 16, 32, 64, 128 to the most resolved one for
nx = 256, i.e. W1(|u|nx (t), |u|nx=256(t)) converges, we thus indicate Wasserstein convergence
towards a unique statistical solution of the incompressible Euler equations [45]. The results indeed
show thatW1(|u|n, |u|nx=256) converges as the Reynolds number increases with nx, cf. Figure 6.8.
The estimated convergence rates are provided in Figure 6.9. Note that the decrease of the Wasserstein
convergence order over time toward a value of 0.5 (see Figure 6.9f) is expected for MCS.

6.2 Performance evaluation

To evaluate the scalability of OpenLB-UQ, we conducted additional performance tests on the HoreKa
supercomputer. Specifically, we utilized a CPU-only compute node with two Intel Xeon Platinum
8368 processors, offering a total of 76 physical cores (152 hardware threads) per node. Each processor
operates at a base frequency of 2.40 GHz. All simulations were executed on a single node to focus
exclusively on intra-node parallel efficiency.

To assess the practical benefits of different parallelization strategies, we compared the total simulation
time required to process all 137 samples using two parallelization strategies:

1. Sample-level decomposition: Each sample is executed independently on different processes
or cores, without MPI-based domain decomposition within a single sample.

2. Domain-level decomposition: Each sample runs in parallel using MPI across multiple cores
with domain decomposition.

First, we evaluate the scalability of the domain-level (MPI-based) parallelization strategy using the
cylinder2d test case. For each resolution (nx = 10, 20, 40, and 80), we perform strong-scaling
tests by varying the number of MPI processes from 2 to 64. As shown in Figure 6.10, the performance
gain of domain-level parallelization is saturated by communication overhead at different process counts
depending on the spatial resolution. To ensure efficient resource utilization without incurring excessive
parallel overhead, we selected the saturation point for each resolution as the number of processes used
in subsequent tests. The chosen MPI process counts for each resolution are summarized in Table 6.3.
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(a) t = 0.2 ∗ Tmax (b) t = 0.4 ∗ Tmax

(c) t = 0.6 ∗ Tmax (d) t = 0.8 ∗ Tmax

(e) t = Tmax (f) Convergence order over time

Figure 6.9: Convergence orders of 1-Wasserstein distance at several time steps (a,b,c,d,e) and over time (f) of the numerical statistical
solutions with respect to the most resolved one (nx = 256) for the TGV with four-dimensional uncertain initial velocity
computed with OpenLB-UQ.

These configurations are consistently applied in all domain-level simulations and postprocessing runs
presented in the following analyses.

Subsequently, we assessed the overall parallel performance of both sample-level and domain-level
decomposition strategies on the cylinder2d case. For each resolution, we performed 100 Monte
Carlo samples. Table 6.4 summarizes the average computational time per sample, total simulation
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Figure 6.10: Strong-scaling performance of the domain-level parallelization (MPI) for the cylinder2d case. The plot shows the mean
computational time per sample as a function of the number of processes for different resolutions nx .

Table 6.3: Selected number of MPI processes at which domain-level parallelization saturates for each spatial resolution nx in
cylinder2d. These configurations are used in all subsequent domain-level simulations and postprocessing.

nx 10 20 40 80

MPI processes 2 4 16 64

time, and the resulting speedup factors relative to the fully sequential execution. The speedup S

achieved by each parallelization strategy is computed as

S =
Tseq

Tpar
, (6.22)

where Tseq denotes the total execution time of the fully sequential baseline and Tpar represents the
total execution time of the corresponding parallel execution.

In addition to the total simulation time, we also analyzed the parallel performance of the postpro-
cessing phase, which aggregates and processes the results from all Monte Carlo samples. Table 6.5
reports the total postprocessing time required for 100 samples at each resolution. The results demon-
strate that domain-level parallelization significantly reduces postprocessing time compared to the
sample-level approach. Since the postprocessing under sample-level decomposition is executed se-
quentially—identical to the baseline—we omit it from the domain-level-only comparison.

Figure 6.11 presents the overall speedup factors achieved by the two parallelization strategies across
different resolutions.
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Table 6.4: Comparison of parallel performance for the cylinder2d case under sample-level and domain-level decomposition on a
single node. The time per sample represents the average time across all samples.

nx Parallelization strategy Time per sample [s] Total time [s] Speedup

10
Sequential 15.92 1645.49 –
Sample-level 17.24 1004.09 1.63
Domain-level 8.99 1025.20 1.60

20
Sequential 252.21 25473.95 –
Sample-level 256.54 6689.76 3.80
Domain-level 69.55 7151.24 3.56

40
Sequential 3814.69 382457.32 –
Sample-level 4041.55 28971.26 13.20
Domain-level 291.12 29433.72 12.99

80
Sequential 61535.14 6153514.42 –
Sample-level 76213.13 152881.41 40.25
Domain-level 1391.92 139358.12 44.15

Table 6.5: Comparison of parallel postprocessing time for 100 Monte Carlo samples of the cylinder2d case under sample-level and
domain-level decomposition on a single node.

nx Parallelization strategy Total postprocessing time [s]

10 Sample-level 51.37
Domain-level 24.71

20 Sample-level 202.76
Domain-level 50.66

40 Sample-level 802.26
Domain-level 51.32

80 Sample-level 3213.26
Domain-level 50.27

To visualize the relative contribution of sampling and postprocessing phases under different strategies
and resolutions, Figure 6.12 shows the breakdown of the total computational time for 100Monte Carlo
samples.

Figure 6.13 shows weak scaling results for the cylinder2d case using sample-level parallelization
without postprocessing. Each process is assigned 100 samples, resulting in batch sizes of 200, 400,
800, and 1600 samples for 2, 4, 8, and 16 processes, respectively. This batch configuration is kept
consistent across all spatial resolutions. As expected for MCS, the total simulation time remains
nearly constant across batch sizes due to the embarrassingly parallel nature of the computation. Since
SC-gPC also employs non-intrusive sampling, this result equally confirms the scalability of SC-based
UQ methods.
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Figure 6.11: Speedup factors achieved by sample-level and domain-level parallelization strategies for the cylinder2d case at different
resolutions nx . The reference baseline for speedup calculation is the sequential execution time.

In summary, the choice between sample-level and domain-level parallelization depends strongly on
the problem size and grid resolution. For coarse grids, the sample-level decomposition exhibits a clear
advantage due to its embarrassingly parallel nature and minimal communication overhead. However,
as the grid resolution increases, the scalability of domain-level (MPI-based) parallelization tends
to improve, offering higher speedup for large-scale problems. Therefore, selecting the appropriate
parallelization strategy requires balancing between available computational resources, problem size,
and desired time-to-solution.

To evaluate the computational efficiency of the SC-gPC method, we compare the relative error of the
mean and standard deviation of the drag coefficient CD with respect to the total CPU time at multiple
grid resolutions. The results are shown in Figure 6.14.

For the TGV case with four-dimensional uncertainty (tgv2d), a third-order, three-level Smolyak
sparse grid quadrature was employed to compute the SC-gPC approximation. This configuration
required a total of 137 quadrature samples, which provides a reasonable approximation of the target
statistics.

To optimize parallel performance, we first evaluated the mean computational time per sample under
domain-level MPI decomposition for different spatial resolutions nx ∈ {64, 128, 256, 512}. The
goal was to identify the optimal number of MPI processes for each grid size. The results, shown in
Figure 6.15, indicate that process number {2, 8, 32, 64} will get the best parallel performance.

As above, due to the saturation points, the chosen MPI process counts for each resolution are summa-
rized in Table 6.6. These configurations are consistently applied in all domain-level simulations and
postprocessing runs presented below.
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Figure 6.12: Breakdown of total computational time for 100 Monte Carlo samples of cylinder2d at different resolutions nx ,
comparing sequential execution, sample-level parallelization, and domain-level parallelization. Each bar shows the
sampling time and the postprocessing time.

Table 6.6: Selected number of MPI processes at which domain-level parallelization saturates for each spatial resolution nx in tgv2d.
These configurations are used in all subsequent domain-level simulations and postprocessing.

nx 64 128 256 512

MPI Processes 2 4 16 64

Table 6.7 summarizes the average time per sample, total simulation time, and speedup relative to
the fully sequential baseline for each strategy and resolution. As shown, sample-level decomposition
exhibits superior performance for fine grids, achieving up to a speedup of 30.78 at nx = 512.
However, the domain-level strategy demonstrates increasing scalability as the grid size grows. For
nx = 512, it achieves a speedup of 30.97, closing the gap to sample-level decomposition.

Table 6.8 reports the total postprocessing time required for 100 samples at each resolution. The results
demonstrate a similar behavior as in the cylinder2d case.

77



6 Non-Intrusive Uncertainty Quantification

Figure 6.13:Weak scaling performance of sample-level parallelization for the cylinder2d case at several resolutions (nx =
10, 20, 40, 80) without postprocessing. The black line shows the mean total time per batch size, with the blue shaded
area indicating the standard deviation across repeated runs. Each MPI process is assigned 100 samples, resulting in batch
sizes of 200, 400, 800, and 1600 for 2, 4, 8, and 16 processes, respectively. This batch configuration is applied uniformly
across all resolutions.

Table 6.7: Comparison of parallel performance for the tgv2d case under sample-level and domain-level decomposition on a single node.
The time per sample represents the average time across all samples.

nx Parallelization strategy Time per sample [s] Total time [s] Speedup

64
Sequential 13.79 2031.12 –
Sample-level 13.31 972.00 2.08
Domain-level 7.17 1087.00 1.86

128
Sequential 209.23 28933.79 –
Sample-level 210.23 7363.00 3.92
Domain-level 56.00 7802.00 3.70

256
Sequential 3208.57 440211.52 –
Sample-level 3240.71 29153.00 15.10
Domain-level 233.05 32232.00 13.65

512
Sequential 50440.64 5046437.85 –
Sample-level 60496.05 163902.88 30.78
Domain-level 1180.67 162909.53 30.97

Figure 6.16 presents the overall speedup factors achieved by the two parallelization strategies across
different resolutions. The sample-level strategy outperforms domain-level parallelization at all reso-
lutions except for nx = 512.
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6.2 Performance evaluation

Figure 6.14: Performance of the SC-gPC method for estimating the mean and standard deviation of the drag coefficient CD at spatial
resolutions nx = 10, 20, 40, 80. Each data point corresponds to a different polynomial order N ∈ {1, . . . , 8},
and the reference solution is taken from the result at the highest order N = 9. The relative error is plotted against the
total CPU time (sampling plus postprocessing).

Figure 6.15: Strong-scaling performance of the domain-level parallelization (MPI) for the tgv2d case. The plot shows the mean
computational time per sample as a function of the number of processes for different resolutions nx .
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6 Non-Intrusive Uncertainty Quantification

Figure 6.16: Speedup factors achieved by sample-level and domain-level parallelization strategies for the tgv2d case at different
resolutions nx . The reference baseline for speedup calculation is the sequential execution time.

Table 6.5 reports the total postprocessing time required for 100 samples at each resolution. The results
demonstrate that domain-level parallelization significantly reduces postprocessing time compared to
the sample-level approach. Since the postprocessing under sample-level decomposition is executed
sequentially—identical to the baseline—we omit it from the domain-level-only comparison.

To visualize the relative contribution of sampling and postprocessing phases under different strategies
and resolutions, Figure 6.17 shows the breakdown of the total computational time for 100Monte Carlo
samples.

Table 6.8: Comparison of parallel postprocessing time for third-order, three-level sparse grid samples of the tgv2d case under sample-
level and domain-level decomposition on a single node.

nx Parallelization strategy Total postprocessing time [s]

64 Sample-level 39.139
Domain-level 20.605

128 Sample-level 150.6
Domain-level 38.812

256 Sample-level 605.141
Domain-level 39.119

512 Sample-level 2373.85
Domain-level 42.530
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6.2 Performance evaluation

Figure 6.17: Breakdown of total computational time for 100 Monte Carlo samples of tgv2d at different resolutions nx , comparing
sequential execution, sample-level parallelization, and domain-level parallelization. Each bar shows the sampling time
and the postprocessing time.
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7 Uncertain Data Assimilation for
Urban Wind Flow Simulations

In this chapter, we apply the OpenLB-UQ framework to the urban wind simulation with uncertain
inflow conditions derived from measurements. Hourly wind speed and direction data from the
Reutlingen weather station are introduced with uncertainty and imposed as boundary conditions in
a large-eddy LBM simulation. Uncertainty is propagated using SC LBM, yielding ensembles from
which spatio-temporal statistics such as mean fields, standard deviations, and confidence intervals
at probe locations are computed. This study demonstrates how measurement uncertainty can be
assimilated into CFD boundary data and translated into probabilistic flow predictions, providing
interpretable diagnostics for urban design and environmental assessment, as further detailed in part
of the preprint [100].

7.1 Deterministic lattice Boltzmann method
(non-intrusive core)

We approximate the deterministic version of Eq. (2.3) and Eq. (2.4) using a recursive regularized
LBM based on a third-order expanded equilibrium function and combined with a Smagorinsky–Lilly
subgrid scale (SGS) model. An advanced version of this collision model, including hybridization and
homogenization, is further described in [77]. The following quantities are thus assumed as filtered
variables and not further denoted as such.

x

y

z

Figure 7.1: A schematic illustration of the discrete velocity set D3Q19. Coloring refers to energy shells: orange, cyan, green denote
zeroth, first, second order, respectively. Figure from [62].
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7 Uncertain Data Assimilation for Urban Wind Flow Simulations

The evolution equation for the (filtered) particle distribution function f = {fi}i=0,1,...,q−1 ∈ Rq

is given by

fi(x+ ci△t, t+△t) = feq
i (x, t) +

(
1−

1

τeff(x, t)

)
f
(1)
i (x, t), in X△x × I△t, (7.1)

for i = 0, 1, . . . , q−1, where ci are the discrete lattice velocities of theD3Q19model and (x, t) are
grid nodes in the Cartesian discrete space-time cylinderX△x×I△t. Moreover, τeff is the space-time
adaptive, effective relaxation time of the SGS model, given by

τeff(x, t) =
νeff(x, t)

c2s

△t

△x2
+

1

2
, (7.2)

with νeff = ν + νturb representing the combined molecular (ν) and turbulent viscosity

νturb(x, t) = (CS△x)
2 |S(x, t)| , (7.3)

where CS = 0.25 is the Smagorinsky constant, △x is the filter width, and S is the (filtered) strain
rate tensor

Sαβ =
1

2

(
∂uα

∂xβ
+

∂uβ

∂xα

)
. (7.4)

Here, cs is the lattice speed of sound, and we use c2s = 1/3 in lattice units. The regularization in
Eq. (7.1) is based on the non-equilibrium function f

(1)
i = fi − f

(0)
i that is expanded as

f
(1)
i (x, t) = ωi

N=3∑
n=0

1

c2ns n!
H

(n)
i : a

(n)
1 (x, t), (7.5)

where ωi are the lattice weights and we denote by H
(n)
i the nth order Hermite polynomial with the

ith discrete velocity ci as an argument. The Hermite coefficient for the non-equilibrium is defined as

a
(n)
1 (x, t) =

q−1∑
i=0

H
(n)
i f

(1)
i (x, t). (7.6)

Note that according to [32], we use Hermite polynomials that have correct orthogonality for D3Q19

only. The equilibrium distribution feq
i (f) is computed by an expansion using Hermite polynomials

and Hermite equilibrium coefficients (Eq. (7.6) for feq
i ) up to order three, i.e.

feq
i (x, t) = ωiρ(x, t)

(
1 +

ci · (u(x, t))
c2s

+
H

(2)
i : a

(2)
eq (x, t)

2c4sρ(x, t)
+

H
(3)
i : a

(3)
eq (x, t)

2c6sρ(x, t)

)
,

(7.7)
where the zeroth-order moment is denoted by ρ =

∑q−1
i=0 fi and the first-order local velocity moment

is u = (1/ρ)
∑q−1

i=0 cifi.
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7.2 Uncertainty quantification workflow

In addition, we prescribe deterministic initial conditions and stochastic boundary conditions to
Eq. (2.3) and Eq. (2.4) to form a stochastic initial boundary value problem that models uncertain
wind flow in an urban geometry. In this work, we focus on uncertainty in the inlet velocity due to
measurement errors. Specifically, we model the uncertainty in the measured wind speed and direction
with a respective relative perturbation ζ1 and ζ2, resulting in a logarithmic wind profile

ŷ(x, t,Z), where Z := ζ = (ζ1, ζ2)
T ∼ N (1, 0.12)×N (0, 62). (7.8)

The computational domain X△x is configured as a disc where the building geometry is centered on
the ground. The boundary conditions are handled as follows:

• Horizontal boundaries (mantle of cylinder): The surrounding wind velocity ŷ(x, t,Z) is
prescribed via a (circular) local velocity boundary condition [33], where both the magnitude
and the wind flow direction are treated as uncertain quantities (see Section 7.3).

• Building walls and ground (bottom of cylinder): A no-slip condition is enforced with the
classical bounce-back method.

• Sky (top of cylinder): A free-slip condition is used by enforcing a zero normal velocity and a
zero normal gradient of the tangential velocity.

The populations are initialized to equilibrium values, and the horizontal boundary conditions are
increased to the first target values over time to stabilize the simulation. For a smooth change in the
magnitude and direction of horizontal velocity boundaries, an interpolation time interval is used, and
the boundary velocity is gradually transformed to the subsequent magnitude and direction.

that is further described below in Section 7.3 and realized as a convective boundary condition at the
horizontal domain boundaries.

7.2 Uncertainty quantification workflow

Building on this deterministic setup, the following workflow is employed to propagate measurement
uncertainty through the urban wind simulation:

1. Select inputmeasurement data. Hourly wind speedUH(t) and directionΘ(t) recorded at the
Reutlingen station (Germany, 48.4914◦N, 9.2043◦E), from 2024-11-07 20:00 to 2024-11-09
19:00 (CET).

2. Define the input model. Specify uncertain parameters, e.g., inlet velocity magnitude ζ1 ∼
N (1, 0.12) and inflow direction ζ2 ∼ N (0, 62). Select an appropriate polynomial basis (e.g.,
Hermite) for the expansion.

85



7 Uncertain Data Assimilation for Urban Wind Flow Simulations

3. Generate the quadrature rule. Construct collocation nodes {Z(j)} and weights {aj} using
a dense tensor-product Gauss–Hermite quadrature.

4. Apply boundary conditions. For each node j, compute the inlet velocity uncertainty
ŷ(x, t,Z(j)) via Eq. (7.8).

5. Run deterministic simulations. For each Z(j), solve the LBM problem including hourly
uncertain measurement data-assimilation during the simulation. Obtain the sample velocity
u(x, t,Z(j)).

6. Extract QoIs. Examples include:

• Domain-wide fields: single-sample, time-dependent and time-averaged velocity magni-
tudes at a given time (e.g., Figure 7.3 and Figure 7.4).

• Local probes: vertical velocity profiles at different probe locations (e.g., Figure 7.7).

7. Compute statistics. Evaluate mean (e.g., Figure 7.5 and Figure 7.6), variance (e.g., Figure 7.8),
and confidence intervals (e.g., Figure 7.7) using Eq. (3.13) and Eq. (3.14) or the gPC expansion
coefficients.

7.3 Simulation case setup and parameter
configuration

To represent input uncertainty in the inflow boundary condition, both the reference wind speed and
direction are modeled with artificial measurement perturbation, respectively

ÛH(t, ζ1) = UH(t)ζ1, ζ1 ∼ N
(
1, 0.12

)
,

Θ̂(t, ζ2) = Θ(t) + ζ2, ζ2 ∼ N
(
0, 62

)
,

where UH(t) and Θ(t) are the recorded wind speed and direction (the latter is given in radians).

In summary, we prescribe a logarithmic wind profile at horizontal boundaries

ŷ(x, t,Z) = ŷ(x, t, ζ) =
ÛH(t, ζ1)

ln

(
H + z0

z0

) ln

(
h+ z0

z0

)
cos
(
Θ̂(t, ζ2)

)
sin
(
Θ̂(t, ζ2)

)
0

 , (7.9)

where the roughness length of the surface is z0 = 0.1[m], H[m] is the reference height and h = |z|
is the vertical coordinate in meters above ground, where x = (x, y, z)T ∈ R3.
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7.4 Uncertain data-assimilated simulation results

Figure 7.2a shows the hourly reference wind speed UH(t) together with wind direction, recorded
at the Reutlingen station (Germany, 48.4914◦N, 9.2043◦E) from 2024-11-07 20:00 to 2024-11-09
19:00 (local time, CET). Figure 7.2b displays the same wind speed data along with the shaded 95%

confidence interval (CI) band. Our simulations use the 48-hour measurement shown in Figure 7.2.

The simulation was performed using a dense-grid quadrature scheme with a polynomial order of
N = 5 and 11 quadrature points per stochastic dimension, resulting in a total of Nq = 121

collocation points (i.e. samples). The physical and numerical parameters of the case are summarized
in Table 7.1. The simulation domain is configured as a circular disk region (with radiusR = 270 [m]
and height H = 40 [m]. Two buildings from the city of Reutlingen are placed in the center of the
domain.

Table 7.1: Physical and numerical parameters.

△x △t Ma Re T #cells
1 [m] 0.00111 [s] 0.034641 1.8 × 106 48 [h] 10.27 × 106

All simulations were executed on the HoreKa supercomputer on CPU-only compute nodes equipped
with two Intel Xeon Platinum 8368 processors, providing 76 physical cores (152 hardware threads)
per node at 2.40 GHz. At the job level, 42 samples were launched concurrently across 168 nodes, with
each sample run in parallel on 304 MPI ranks. The wall-clock time per simulation was 5.4 × 104 s

(about 15.0 hours), corresponding to approximately 4560 CPU core-hours per sample. In total, 121
samples were completed within a turnaround time of about 2.1 days, yielding a total computational
cost of about 5.5 × 105 CPU core-hours, followed by an additional 3.6 × 103 s (one hour) for
postprocessing. Theoretically, with 484 dedicated nodes, the sampling stage alone could be finished
in 5.4× 104 s (15 hours).

In the SCLBM framework, uncertainty is propagated by assigning each collocation node j a realization
of the random multipliers ζ(j)1 and ζ(j)2 , drawn fromN (1, 0.12) andN (0, 62).

7.4 Uncertain data-assimilated simulation
results

To illustrate the variability across individual samples, we highlight two representative cases from
the stochastic collocation ensemble. Figure 7.3 shows results for sample 10 (out of 121), which
lies farthest from the expected mean and exhibits a pronounced deviation in terms of instantaneous
velocity field structures. In contrast, Figure 7.4 presents sample 60, which lies closest to the expected
mean. For both cases, the time-dependent velocity magnitudes are shown at three selected instants
(2024-11-07 22:00:00 CET, 2024-11-08 10:00:00 CET, and 2024-11-09 08:00:00 CET) alongside
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7 Uncertain Data Assimilation for Urban Wind Flow Simulations

(a)Wind speed and wind direction measurements

(b) Wind speed measurements with 95% confidence interval

Figure 7.2: Hourly reference wind speed UH (t) recorded at the Reutlingen station (Germany, 48.4914◦N, 9.2043◦E) from
2024-11-07 20:00 to 2024-11-09 19:00 (local time, CET), obtained from https://meteostat.net/. Subfigure (a)
shows wind speed and direction; subfigure (b) displays wind speed with the shaded 95% confidence interval.

their corresponding time-averaged fields. The isocontours of theQ-criterion (Q = 1) reveal coherent
vortical structures, where differences between sample 10 and sample 60 highlight the spread of local
flow features induced by input uncertainty.

To further quantify the uncertainty in the simulated flow field, we perform postprocessing over all 121
samples to evaluate the mean and standard deviation of the velocity magnitude.

Figure 7.5 shows the statistics of the time-dependent velocitymagnitude at three representative instants
(2024-11-07 22:00:00 CET, 2024-11-08 10:00:00 CET, and 2024-11-09 08:00:00 CET). The mean
fields (a–c) capture the predominant flow structures around the buildings, whereas the corresponding
standard deviation fields (d–f) highlight regions of elevated variability, particularly in the wakes and
shear layers.

Complementing this, Figure 7.6 presents themean and standard deviation of the time-averaged velocity
magnitude. Here, the mean field emphasizes the dominant flow patterns, while the standard deviation
field identifies persistent regions of high variability. Together, these statistical characterizations
provide a comprehensive picture of the flow, offering insight into the reliability of the simulations and
pinpointing regions most sensitive to input uncertainty.
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7.4 Uncertain data-assimilated simulation results

(a) 2024-11-07 22:00:00 CET (b) 2024-11-08 10:00:00 CET (c) 2024-11-08 21:00:00 CET

(d) 2024-11-07 22:00:00 CET (e) 2024-11-08 10:00:00 CET (f) 2024-11-08 21:00:00 CET

Figure 7.3: Simulated (SC LBM) single sample (number 10 out of 121) time-dependent velocity field magnitude at (a) 2024-11-07
22:00:00 CET, (b) 2024-11-08 10:00:00 CET, (c) 2024-11-09 08:00:00, and time-averaged velocity field magnitude at (d)
2024-11-07 22:00:00 CET, (e) 2024-11-08 10:00:00 CET, (f) 2024-11-09 08:00:00, respectively. Isocontours are colored
in velocity magnitude and represent the Q-criterion at Q = 1, of the local-in-time results (a,b,c) and the time-averaged
time averaged results (d,e,f), respectively.

To further investigate the vertical wind profile and its uncertainty at selected positions in the urban
domain, we place three virtual probes at the coordinates listed in Table 7.2 (see also pink points in
Figure 7.5), representing distinct flow regions.

Table 7.2: Probe locations and associated flow regions in the urban domain (see also black line markers in Figure 7.5b). The computed
vertical velocity magnitude profiles at these probe locations are shown in Figure 7.7.

Probe specifier Coordinates (x, y, z)
P1 (30, 87, z), z ∈ [0, 40]

P2 (78, 60, z), z ∈ [0, 40]

P3 (130, 15, z), z ∈ [0, 40]

Figure 7.7 shows the vertical distribution of the velocity magnitude at each probe, including the mean,
95% CI, and individual sample realizations obtained from the SC LBM simulation. The width of the
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7 Uncertain Data Assimilation for Urban Wind Flow Simulations

(a) 2024-11-07 22:00:00 CET (b) 2024-11-08 10:00:00 CET (c) 2024-11-08 21:00:00 CET

(d) 2024-11-07 22:00:00 CET (e) 2024-11-08 10:00:00 CET (f) 2024-11-08 21:00:00 CET

Figure 7.4: Simulated (SC LBM) single sample (number 60 out of 121, nearest to expected mean) time-dependent velocity field magni-
tude at (a) 2024-11-07 22:00:00 CET, (b) 2024-11-08 10:00:00 CET, (c) 2024-11-09 08:00:00, and time-averaged velocity
field magnitude at (d) 2024-11-07 22:00:00 CET, (e) 2024-11-08 10:00:00 CET, (f) 2024-11-09 08:00:00, respectively.
Isocontours are colored in velocity magnitude and represent the Q-criterion at Q = 1, of the local-in-time results (a,b,c)
and the time-averaged time averaged results (d,e,f), respectively.

confidence bands varies significantly between locations, indicating different levels of flow variability
depending on the local building-induced effects and turbulent mixing intensity.

Figure 7.8 shows a horizontal slice of the urban domain at a height of 2m above ground level. The
background colormap represents the mean velocity magnitude (time-averaged field in Figure 7.8a and
time-dependent in Figure 7.8b ), while two iso-contours highlight regions of reduced variability: the
white contour corresponds to σu ≈ 0.8 and the green contour to σu ≈ 0.4, which refer to 50%

and 25% of the absolute standard deviation, respectively. In this slice, the standard deviation ranges
from 0 to 1.63, decreasing outside the white contour and further increasing inside the green contour.
The other regions of enhanced fluctuations are primarily associated with wake zones, shear layers,
and open channels between buildings. The probe locations P1–P3 are also indicated as pink dots.
Notably, P1 is located in a flow region with an expected mean velocity magnitude smaller than 50%
of the maximum and a standard deviation that is below 25%. Thus, based on our simulation results,
we are also able to isolate flow regions that have critical features, e.g. wind velocity magnitude, up to
a specific certainty.
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7.5 Conclusion

(a) 2024-11-07 22:00:00 CET (b) 2024-11-08 10:00:00 CET (c) 2024-11-08 21:00:00 CET

(d) 2024-11-07 22:00:00 CET (e) 2024-11-08 10:00:00 CET (f) 2024-11-08 21:00:00 CET

Figure 7.5: Simulated (SC LBM)mean of the time-dependent velocity field magnitude at (a) 2024-11-07 22:00:00 CET, (b) 2024-11-08
10:00:00 CET, (c) 2024-11-09 08:00:00, and std of the time-dependent velocity field magnitude at (d) 2024-11-07 22:00:00
CET, (e) 2024-11-08 10:00:00 CET, (f) 2024-11-09 08:00:00, respectively, both computed from 121 samples. Isocontours
are computed from mean velocity magnitudes and represent the Q-criterion at Q = 1. The isocontours are respectively
colored in mean (a,b,c) and std (d,e,f) of the time-dependent velocity magnitude. The probe probe location lines P1, P2,
P3 are shown in pink (b), further specified in Table 7.2, and evaluated in Figure 7.7.

7.5 Conclusion

We presented an uncertain data assimilation workflow based on OpenLB-UQ [99], which directly
injects measurement uncertainty into boundary data and propagates it through an SC LBM simulation
of the urban wind flow around an isolated real building geometry in the city of Reutlingen (Germany,
48.4914◦N, 9.2043◦E). The resulting stochastic boundary condition ismapped to a dense quadrature
grid in the gPC space, and OpenLB-UQ is used to compute an ensemble of LBM solutions at the
collocation nodes. From these, we recover spatio-temporal statistics of wind speed and velocity
magnitude throughout the urban domain, including diagnostics tailored to urban applications. In
summary, by modeling inflow uncertainty as a relative perturbation and propagating it through a
non-intrusive SC LBM pipeline, we achieved the following:

• An efficiently scalable first application case of a combined UQ LES framework for urban wind
flow simulations in real geometries.
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(a) 2024-11-07 22:00:00 CET (b) 2024-11-08 10:00:00 CET (c) 2024-11-08 21:00:00 CET

(d) 2024-11-07 22:00:00 CET (e) 2024-11-08 10:00:00 CET (f) 2024-11-08 21:00:00 CET

Figure 7.6: Simulated (SC LBM) mean of the time-averaged velocity field magnitude at (a) 2024-11-07 22:00:00 CET, (b) 2024-11-08
10:00:00 CET, (c) 2024-11-09 08:00:00, and std of the time-averaged velocity field magnitude at (d) 2024-11-07 22:00:00
CET, (e) 2024-11-08 10:00:00 CET, (f) 2024-11-09 08:00:00, respectively, both computed from 121 samples. Isocontours
are computed from mean velocity magnitudes and represent the Q-criterion at Q = 1. The isocontours are respectively
colored in mean (a,b,c) and std (d,e,f) of the time-averaged velocity magnitude.

• Space-time-dependent estimates of measurement data-assimilated mean and standard deviation
of the velocity field in a real urban environment;

• Space-time-dependent resolved uncertainty diagnostics highlighting flow-sensitive zones (e.g.,
wakes, shear layers);

• Confidence intervals at selected monitoring probes.

Conclusively, our workflow respects the statistical nature of measurement-driven boundary data and
provides interpretable uncertainty maps for further use in downstream applications such as urban
design and planning. Promising future research directions should extend our methodology to handle
multi-modal distributions, incorporate machine learning surrogate models (e.g., variational autoen-
coder), and enable real-time integration with sensor data streams for live urban wind assessment.
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7.5 Conclusion

Figure 7.7: Time-local vertical velocity magnitude profiles at three probe positions: P1 (30, 87) at the outer corner of the left building
(shear layer), P2 (78, 60) inside the channel between the buildings (channel), and P3 (130, 15) at the outer corner of
the right building (shear layer) (see Table 7.2 and Figure 7.5b). Each subplot corresponds to a specific time: 2024-11-07
22:00:00 CET, 2024-11-08 10:00:00 CET, and 2024-11-08 21:00:00 CET, respectively. Solid lines show the mean velocity
profile, shaded regions indicate the 95% confidence intervals, and dashed lines represent five exemplary individual samples
(out of 121) from the stochastic collocation LBM simulation. This figure visualizes one selected time step per subplot.
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(a) mean average at 2024-11-08 21:00:00 CET (b) mean at 2024-11-08 21:00:00 CET

Figure 7.8: Horizontal slice of the urban domain at a height of 2m above ground, showing the mean velocity magnitude field
(background colormap), for (a) time-averaged and (b) time-dependent results, with overlaid iso-contours of the velocity
standard deviation at σu ≈ 0.8 (50% in white) and σu ≈ 0.4 (25% in green). The standard deviation in this slice
ranges from 0 to≈ 1.63, further decreases inside the isocounters. The probe locations P1–P3 are visualized as pink dots
and further specified in Table 7.2.
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8 Conclusions

The main result of this dissertation is the development of a comprehensive framework for UQ in
LBM simulations of incompressible flows (see Chapters 4–7). Two complementary approaches
are introduced. First, the intrusive SG LBM reformulates the LBE using gPC, achieving spectral
convergence and up to six-fold efficiency gains over MCS. Second, the non-intrusive OpenLB-UQ
extension integrates MC, QMC, and SC into the OpenLB library, enabling automated sampling,
parallel execution, and statistical postprocessing.

Validation on canonical benchmarks confirms accuracy and scalability, while the application to ur-
ban wind flow simulations with uncertain inflow demonstrates practical relevance. Thus, the work
establishes both a novel intrusive methodology and an open-source software framework that together
advance efficient, uncertainty-aware CFD. Specific results are summarized, contributions are assessed
with respect to the stated objectives, and directions for future research are outlined.

8.1 Summary

In Section 2.1, the deterministic incompressible NSE were extended into a stochastic framework by
introducing random variables into viscosity, boundary conditions, and initial data, thereby providing
the mathematical basis for analyzing how uncertainties propagate through fluid systems. Building
on this, Section 2.2 recalled the kinetic theory foundations of the lattice Boltzmann method, from
the Boltzmann–BGK equation to its discrete D2Q9 and D3Q19 models, with consistency to the
incompressible NSE ensured through the CE expansion. A stochastic extension of the LBE was then
formulated, incorporating random inputs and uncertain relaxation timeswhile preserving the collision–
streaming structure, which forms the basis for both intrusive and non-intrusive UQ strategies.

On this foundation, Section 3.1 introduced the general framework of UQ, distinguishing between
aleatoric and epistemic sources and focusing on forward propagation. Section 3.2 addressed the
modeling of uncertain inputs via probability distributions, noting both the advantages of orthogonal
polynomial bases and limitations such as the neglect of correlations. Finally, Section 3.3 analyzed
forward propagation methods: MCS as a scalable baseline with guaranteed convergence, QMC as
an improvement through low-discrepancy sequences, and gPC expansions forming the basis for both
non-intrusive SC and the intrusive SG projection. Special emphasis was given to sparse quadrature
rules such as Genz–Keister and Clenshaw–Curtis, which mitigate the curse of dimensionality. These
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developments together established the theoretical foundation for the intrusive SG LBM in Chapter 4
and the non-intrusive OpenLB-UQ framework in Chapter 5.

In Section 4.1, the SG formulation of the LBM was developed by expanding the distribution func-
tions into a gPC basis. The collision and streaming operators were projected accordingly, yielding
a coupled system for the polynomial coefficients. Particular emphasis was placed on stochastic re-
laxation times and equilibrium populations, where tensor contractions and quadrature rules ensured
accurate coefficient couplings. A Chapman–Enskog expansion confirmed formal consistency with
the incompressible NSE, marking the first such analysis for an SG LBM. Boundary conditions such
as no-slip and moving walls were extended into the SG framework in Section 4.2, while Section 4.3
addressed implementation aspects, demonstrating that the standard LBM structure is preserved despite
the increased dimensionality of the coefficient system. Numerical examples in Section 4.4, including
Taylor–Green vortex, lid–driven cavity, and isentropic vortex convection, showed spectral convergence
and five- to six-fold efficiency gains over MC LBM. Together, these results establish the SG LBM as
the first fully intrusive UQ method consistent with the LBM framework.

Complementing this intrusive approach, Section 5.1 introduced the software architecture of the
OpenLB-UQ extension, designed for modularity and seamless integration into the existing OpenLB
code base. Section 5.2 detailed the core class design—including probability distributions, polynomial
bases, sampling strategies, and quadrature rules, which enable both MCS and SC methods. A solver
orchestration and data management layer was developed to automate sample generation, execution,
and statistical postprocessing while preserving OpenLB’s high-performance parallel infrastructure.
Finally, Section 5.3 outlined the runtime workflow, illustrating how uncertainty-aware simulations
can be launched with minimal changes to user applications. Overall, these developments established
a practical and extensible framework that operationalizes the theoretical methods of Chapter 3 and
supports scalable non-intrusive UQ workflows in LBM simulations.

In Chapter 6, the non-intrusive UQ framework was validated on canonical benchmark problems. Flow
past a circular cylinder with uncertain inlet velocity assessed statistical accuracy in predicting drag and
lift coefficients, while Taylor–Green vortex cases with uncertain viscosity and multi-dimensional un-
certain initial conditions tested the statistical convergence ofMCS,QMC, and SCmethods. Section 6.2
further evaluated the parallel performance of the OpenLB-UQ module, demonstrating scalability and
efficiency on distributed-memory architectures. These studies confirmed the robustness of non-
intrusive approaches, highlighted the spectral convergence of SC, and provided practical guidance for
selecting UQ methods depending on problem dimensionality and computational budget.

Building on these benchmarks, Chapter 7 applied the OpenLB-UQ workflow [99] to an urban wind
flow simulation around a real urban geometry in Reutlingen, Germany (48.4914◦N, 9.2043◦E).
Measurement uncertainty was injected into the inflow boundary and propagated through a non-
intrusive SC LBM simulation. From the resulting ensemble, spatio-temporal statistics of velocity
fields were obtained, including mean, standard deviation, and flow-sensitive diagnostics such as
wakes and shear layers. This first scalable UQ LES application in real geometry demonstrates how
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measurement-driven uncertainty can be translated into interpretable maps for urban planning and
environmental assessment.

Conclusively, this work established both intrusive and non-intrusive uncertainty quantification strate-
gies consistently within the lattice Boltzmann framework. The stochastic extension of the incompress-
ible NSE and the LBM provided the theoretical foundation, while the intrusive SG LBM demonstrated
spectral convergence and significant efficiency gains through a direct reformulation of the lattice Boltz-
mann equation. In parallel, the development of the OpenLB-UQ module extended the open-source
solver with scalable non-intrusive methods, automated sampling, and parallel post-processing. Val-
idation on canonical benchmarks and application to a building-resolved urban wind flow scenario
confirmed robustness, accuracy, and practical relevance. In summary, the combination of intrusive
methodology, open-source software implementation, systematic benchmark testing, and real-world ap-
plication yields a coherent UQ framework that advances efficient, uncertainty-aware CFD simulations
within the LBM paradigm.

While the intrusive SG LBM and the non-intrusive OpenLB-UQ framework establish complementary
foundations for uncertainty-aware LBM simulation, both approaches face open challenges. Issues such
as the scalability of intrusive formulations to higher dimensions and the efficiency of non-intrusive
methods in complex settings motivate further research. These aspects are addressed in the following
section on Limitations and Outlook.

8.2 Limitations and Outlook

The present dissertation establishes intrusive and non-intrusive frameworks for uncertainty quantifi-
cation in the LBM and demonstrates their applicability to canonical benchmarks and urban wind
flows. While the main objectives have been reached, several limitations remain, which at the same
time motivate promising directions for future research:

• Scalability of SG LBM and SC LBM. The intrusive SG LBM achieves spectral convergence
and efficiency gains in low-dimensional settings, yet the tensor-product structure of gPC leads
to a rapid growth of modes. This restricts its applicability for high-dimensional or strongly
nonlinear uncertainties. Adaptive truncation or sparse representations should be explored to
mitigate this issue.

• Stability of intrusive schemes. The stochastic collision operator shows sensitivity in turbulent
or highly transient regimes. Algorithmic refinements and stability analyses are required to
extend SG LBM toward complex unsteady flows.

• Computational cost of non-intrusive methods. Although the OpenLB-UQ framework modu-
larly integrates MC, QMC, and SC, the computational burden remains high for long time series
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or high-dimensional uncertainties. Techniques such as multi-level or adaptive sparse-grid
collocation would significantly reduce cost.

• Representation of uncertainties. The current focus is on aleatoric uncertainties in boundary
data and parameters. Epistemic sources, such as incomplete geometry or model-form errors,
are not yet systematically addressed. Coupling with Bayesian inference and advanced data
assimilation offers a natural path forward.

• Time-dependent and correlated inputs. Stochastic inflows have been treated independently,
whereas realistic applications demand correlated and non-stationary models. Approaches
such as Gaussian processes or Karhunen–Loève expansions should be incorporated to capture
temporal and spatial correlations.

• Computational platforms. While the present framework benefits from the parallelizability
of LBM on HPC clusters, only the non-intrusive core can exploit heterogeneous architectures
efficiently (e.g. GPU-accelerated exascale systems). The porting of the complete UQ framework
including the postprocessing pipeline to accelerated systems remains an essential step to make
large-scale uncertainty-aware simulations feasible.

In summary, further research into adaptive algorithms, high-dimensional representations, data-driven
inference, and exascale deployment will broaden the scope and impact of the methods developed in
this dissertation. Together, these directions promise to evolve intrusive and non-intrusive UQ for LBM
into a robust platform for uncertainty-aware CFD in both science and engineering applications.
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Acronyms and symbols

Some of the frequently used acronyms and symbols are summarized below. The list raises no claim
to completeness. For the purpose of readability, symbols are renamed occasionally. In this case, the
definition or notation is explicitly stated within the respective section and is mostly used therein.

Some of the frequently used acronyms and symbols are summarized below. For readability, symbols
are occasionally renamed; in such cases the definition/notation is stated where it is used.

Frequently used acronyms

Acronym Definition Page

UQ uncertainty quantification p. 1
CFD computational fluid dynamics p. 1
MCS Monte Carlo sampling p. 1
QMC quasi Monte Carlo p. 1
MLMC multi-level Monte Carlo p. 1
SC stochastic collocation p. 1
gPC generalized polynomial chaos p. 1
SG stochastic Galerkin p. 1
NSE Navier–Stokes equations p. 1
RANS Reynolds-averaged Navier–Stokes p. 1
LBM lattice Boltzmann method p. 1
TGV Taylor–Green vortex p. 2
LDC lid-driven cavity p. 2
BE Boltzmann equation p. 8
BGK Bhatnagar–Gross–Krook p. 9
LBE lattice Boltzmann equation p. 9
CE Chapman–Enskog p. 10
QoIs quantities of interest p. 15
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Acronyms and symbols

Acronym Definition Page

EOC experimental order of convergence p. 39
IVC isentropic vortex convection p. 27
CI confidence interval p. 87

Frequently used symbol

symbol Definition Page

u : X × I → Rdx velocity vector p. 7
ρ density p. 7
ν kinematic viscosity p. 7
Z = (Z1, ..., Zd) ∈ Z ⊆ RdZ a vector of independent random variables p. 8
(Ξ,F ,P) probability space p. 8
x ∈ X ⊆ Rdx spatial position p. 8
f : X × Rdξ × I → R≥0 single-particle distribution function p. 8
t ∈ I ⊆ R>0 time p. 8
Ω(f) collision operator p. 9
τ relaxation time p. 9
cs lattice speed of sound p. 9
△t time step p. 9
M : RdZ → Rm deterministic model p. 16
Nq quadrature points number p. 18
E(·) expectation p. 18
dZ dimension of uncertainty p. 18
Φ

(i)
αi

univariate orthonormal polynomial p. 20
Φα multivariate orthonormal polynomial p. 20
M̂α gPC projection coefficients p. 20
N polynomial coefficients p. 20
Re Reynolds number p. 36
ζ uncertain variable p. 37
δ relative error p. 42
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Parts of this work have already been published in journals and software releases. The references are
given in the main body where applicable, and own publications are also summarized below. First
authorship indicates a major contribution to the work.

Peer-reviewed publications

i. M.Zhong, T.Xiao,M. J.Krause,M. Frank, S. Simonis. A stochasticGalerkin latticeBoltzmann
method for incompressible fluid flows with uncertainties. Journal of Computational Physics,
517:113344, 2024. DOI: 10.1016/j.jcp.2024.113344. Reference [98].

Preprints

ii. M. Zhong, A. Kummerländer, S. Ito, M. J. Krause, M. Frank, S. Simonis. OpenLB-UQ:
An Uncertainty Quantification Framework for Incompressible Fluid Flow Simulations. arXiv
preprint, 2025. DOI: 10.48550/arXiv.2508.13867. Reference [99].

iii. M. Zhong, D. Teutscher, A. Kummerländer, M. J. Krause, M. Frank, S. Simonis. Uncertain
data assimilation for urban wind flow simulations with OpenLB-UQ. arXiv preprint, 2025.
DOI: 10.48550/arXiv.2508.18202. Reference [100].

Conference talks

iv. M. Zhong, M. J. Krause, M. Frank, and S. Simonis. Non-intrusive uncertainty quantification
technique on Lattice Boltzmannmethod, “17th Asian Congress of FluidMechanics.” In: ACFM
2023 – 17th Asian Congress of Fluid Mechanics. Beijing, China, 2023.

v. M. Zhong, M. J. Krause, M. Frank, and S. Simonis. A stochastic Galerkin lattice Boltzmann
method for incompressible fluid flows with uncertainties, “The 20th International Conference
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for Mesoscopic Methods in Engineering and Science.” In: ICMMES 2024 – 20th International
Conference for Mesoscopic Methods in Engineering and Science. Hammamet, Tunis, 2024.

vi. M. Zhong, M. J. Krause, M. Frank, and S. Simonis. Non-Intrusive and Intrusive Uncer-
tainty Quantification for Lattice Boltzmann Method, “The 21st International Conference for
Mesoscopic Methods in Engineering and Science.” In: ICMMES 2025 – 21st International
Conference for Mesoscopic Methods in Engineering and Science. Wuhan, China, 2025.

Software releases

vii. A. Kummerländer, S. Avis, H. Kusumaatmaja, F. Bukreev, D. Dapelo, S. Großmann, N. Hafen,
C. Holeksa, A. Husfeldt, J. Jeßberger, L. Kronberg, J. Marquardt, J. Mödl, J. Nguyen, T.
Pertzel, S. Simonis, L. Springmann, N. Suntoyo, D. Teutscher, M. Zhong, and M. J. Krause.
OpenLB Release 1.5: Open Source Lattice Boltzmann Code. Version 1.5. 2022. DOI:
10.5281/zenodo.6469606.

viii. A. Kummerländer, T. Bingert, F. Bukreev, L. E. Czelusniak, D. Dapelo, S. Englert, N. Hafen,
M. Heinzelmann, S. Ito, J. Jeßberger, F. Kaiser, E. Kummer, H. Kusumaatmaja, J. E. Marquardt,
M. Rennick, T. Pertzel, F. Prinz, M. Sadric, M. Schecher, S. Simonis, P. Sitter, D. Teutscher,
M. Zhong, and M. J. Krause. OpenLB Release 1.7: Open Source Lattice Boltzmann Code.
2024. DOI: 10.5281/zenodo.10684609.

ix. A. Kummerländer, T. Bingert, F. Bukreev, L. E. Czelusniak, D. Dapelo, S. Englert, N. Hafen,
M. Heinzelmann, S. Ito, J. Jeßberger, F. Kaiser, E. Kummer, H. Kusumaatmaja, J. E. Marquardt,
M. Rennick, T. Pertzel, F. Prinz, M. Sadric, M. Schecher, S. Simonis, P. Sitter, D. Teutscher,
M. Zhong, and M. J. Krause. OpenLB Release 1.7: Open Source Lattice Boltzmann Code.
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x. A. Kummerländer, T. Bingert, F. Bukreev, L. E. Czelusniak, D. Dapelo, C. Gaul, N. Hafen, S.
Ito, J. Jeßberger, D. Khazaeipoul, T. Krüger, H. Kusumaatmaja, J. E. Marquardt, A. Raeli, M.
Rennick, F. Prinz, M. Schecher, A. Schneider, Y. Shimojima, S. Simonis, P. Sitter, P. Spelten,
A. Tacques, D. Teutscher, M. Zhong, and M. J. Krause. OpenLB Release 1.8: Open Source
Lattice Boltzmann Code. 2025. DOI: 10.5281/zenodo.15270117.
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If not stated otherwise, the computer simulations used for the present results all are based upon,
embedded in, or coupled to the open-source C++ library OpenLB [33]. The author contributed to the
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Publications

Table 3: Selected parts of the author’s contribution to OpenLB.

Keyword Commit hash / Link Section

uncertain cavity2d olb/examples/uncertaintyQuantification/cavity2d Section 4.4.3

uncertain cavity3d olb/examples/uncertaintyQuantification/cavity3d Section 4.4.3

uncertain cylinder2d olb/examples/uncertaintyQuantification/cylinder2d Section 6.1.1

uncertain cylinder3d olb/examples/uncertaintyQuantification/cylinder3d Section 6.1.1

uncertain tgv2d olb/examples/uncertaintyQuantification/tgv2d Section 6.1.3

urban wind flow 3953b0ece2caca78b10c0c8075119f0f23ce8fb1 Chapter 7

UQclass (src/uq) olb/src/uq Chapter 5

releases 1.5 [34], 1.7 [37], 1.8 [39] and 1.8.1 [40] of said library, as well as the User Guides for 1.7
[37] and 1.8 [41]. Some specific commit hashes for parts of the code (also unreleased) are listed in
Table 3 together with keywords.
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