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ABSTRACT

Protein aggregation poses a significant risk to biopharmaceutical product quality, as even minor amounts of oligomeric species can
compromise efficacy and safety. Rapid and reliable detection of protein aggregates thus remains a major challenge in bio-
pharmaceutical manufacturing. Although traditional offline methods such as size-exclusion chromatography provide accurate results,
their inherent time delays limit real-time process control capabilities. Consequently, there is an urgent scientific need for inline
analytical techniques capable of selectively quantifying protein monomers and aggregates in real time to facilitate immediate corrective
actions and enhance overall process robustness. Raman spectroscopy, as a tool for a process analytical technology application, is
especially suitable due to its molecular specificity, rapid data acquisition, and compatibility with aqueous solutions commonly used in
biopharmaceutical manufacturing. Addressing this need, this study establishes a Raman spectroscopy-based strategy for the selective
detection and quantification of monomeric and aggregated forms of a model protein (bovine serum albumin). Controlled stress
conditions were applied to generate aggregated species reproducibly, and a Latin Hypercube sampling design was used to indepen-
dently vary protein concentration and aggregate fraction, ensuring that observed spectral effects were attributable to aggregation rather
than concentration differences. Furthermore, spectral markers identified in spectra acquired from multiple chromatographic runs
were qualitatively compared with offline reference measurements from size-exclusion chromatography. This limitation in real-time
applicability was circumvented by chemometric machine learning approaches. The use of convolutional neural networks enabled the
selective quantification of the protein monomers and aggregates and delivered superior predictive performance and robustness across
cross-validation, independent testing, and synthetic perturbation scenarios compared to traditional chemometric approaches. Col-
lectively, these results demonstrate that the selected Raman spectral markers, combined with advanced chemometric modeling, enable

reliable, real-time monitoring of protein size variants in biopharmaceutical downstream processes.

1 | Introduction

Protein aggregation is a critical quality attribute (CQA) and a
major challenge in the manufacturing of biopharmaceuticals.
Aggregates can form throughout the product lifecycle—

including upstream production, downstream purification,
formulation, and storage (Vazquez-Rey and Lang 2011;
Roberts 2014; Pham and Meng 2020)—potentially compromis-
ing both the safety and efficacy of therapeutic proteins
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(Rosenberg 2006; Moussa et al. 2016). To address this issue,
there is an increasing need for real-time monitoring of protein
structural integrity under application-relevant conditions. Im-
plementing such monitoring, particularly in downstream pro-
cessing, is essential to ensure consistent product quality and
meet regulatory requirements.

The introduction of the process analytical technology (PAT)
initiative by the US Food and Drug Administration (FDA)
aimed to enable real-time, inline measurement and control of
critical process parameters and quality attributes (FDA 2004).
Univariate sensors are commonly applied to monitor critical
process parameters in upstream and downstream unit opera-
tions. Modern PAT frameworks integrate spectroscopic tools
and chemometric models (Rolinger et al. 2020a) to enable real-
time impurity quantification (Brestrich et al. 2015; Capito
et al. 2015; Wei et al. 2022; Chen et al. 2024), protein structure
assessment (Riidt et al. 2019), reaction monitoring (Schiemer
et al. 2023), or precipitation behavior (Dietrich et al. 2024).
These innovations support a shift toward Quality by Design
(QbD) approaches in biopharmaceutical production (Glassey
et al. 2011).

Early studies using vibrational spectroscopy techniques, such as
Raman and FTIR, reported changes in the amide I and III bands
and the appearance of intermolecular (-sheet structures for
proteins subjected to heat stress (Alizadeh-Pasdar et al. 2002;
Militello et al. 2004). It has been shown that environmental
stresses (e.g., pH, temperature, and ionic strength) induce spe-
cific conformational changes that can be spectroscopically
monitored and are commonly associated with protein aggre-
gation (Ettah and Ashton 2018). Later studies reported similar
spectral changes in the amide bands for different naturally oc-
curring proteins as well as for common therapeutic proteins
such as immunoglobulin G (IgG) (Gémez de la Cuesta
et al. 2014; Lewis et al. 2014; Barnett et al. 2015; Zhou
et al. 2015). Aside from the changes in the amide bands, mul-
tiple studies also report the shifts in the vibrational bands of
aromatic amino acid side chains like tryptophan, tyrosine, or
phenylalanine, which undergo changes in their solvatization
during protein aggregation (Barnett et al. 2015; Zhou
et al. 2015). However, the vibrational spectra are not only
affected by protein aggregation but also by other environmental
factors such as pH, protein concentration, or excipients (Ota
et al. 2016; Sato et al. 2023; Makki et al. 2021) as well as intrinsic
fluorescence and Rayleigh scattering of the protein analytes
requiring targeted preprocessing of the collected Raman spectra
(Rolinger et al. 2020a; Dietrich et al. 2024).

Due to fine differences between the native and the aggregated
proteins and the influence of environmental factors on the
Raman spectra, multivariate data analysis is commonly used to
monitor purification processes and, in particular, protein
aggregation during process development and early formulation
stages (Gomez de la Cuesta et al. 2014; Zhang et al. 2019; Wei
et al. 2022; Wang et al. 2023). While these methods often
indicate a correlation between spectral features and aggregation
state, the specific spectral changes directly linked to aggrega-
tion and the detection limits for low aggregate levels remain
uncertain. Hence, despite the reported evidence of Raman ef-
fects corresponding to protein aggregation, a reliable method for
real-time quantification of protein aggregates in downstream

process operations using structural markers is not yet fully
established.

To be used for real-time process monitoring via spectroscopic
techniques, multivariate regression models have been estab-
lished for various separation processes such as precipitation
(Dietrich et al. 2024), chromatography (Riidt et al. 2017), or
filtration (Rolinger et al. 2020b). Raman spectroscopy has pre-
viously been used in bioseparations, but has been shown to
have limited accuracy due to the inherent variation in spectral
signals (Feidl et al. 2019; Rolinger et al. 2020b, 2023). Previous
studies have shown that these limitations can be circumvented
when combining chemometric models with mechanistic pro-
cess models (Rolinger et al. 2023; Schiemer et al. 2023) or using
machine learning models such as convolutional neural net-
works (CNNs) (Schiemer et al. 2024).

To address these limitations, in this study, protein aggregates
are generated under controlled conditions, using bovine serum
albumin (BSA) as a model system, to isolate and characterize
their spectral signatures. The objective is to identify reliable
spectral markers capable of distinguishing between native and
aggregated BSA species. These markers should enable a quan-
titative assessment of monomer and aggregate content. Subse-
quently, these markers are evaluated for their suitability in the
inline monitoring of the separation of BSA monomers and
dimers via anion-exchange chromatography (AEX). Finally, the
recorded spectral data are used to train chemometric partial
least squares (PLS) and CNN models that enable real-time
discrimination and quantification of BSA size variants.

2 | Materials and Methods
2.1 | Experimental
2.1.1 | Forced Degradation by Heat Incubation

Forced degradation was performed to generate BSA aggregates
and to identify Raman spectral features associated with aggrega-
tion. A BSA stock solution at a concentration of approximately 60
g/L was prepared by dissolving lyophilized BSA (Sigma-Aldrich,
St. Louis, Missouri, the United States) in ultrapure water
(PURELAB Ultra, ELGA LabWater, Celle, Germany). The stock
solution was subsequently diluted 1:2 using a mixture of 500 mM
NacCl solution and ultrapure water to prepare BSA samples with
final NaCl concentrations of 0, 50, 100, and 250 mM, maintaining
a total protein concentration of approximately 30 mg/mL. Based
on these experiments, a NaCl concentration of 150 mM was
identified as providing reproducible aggregation kinetics and was
therefore selected for all subsequent studies. Aliquots of these
BSA solutions were transferred into 1 mL Eppendorf tubes
(Eppendorf SE, Hamburg, Germany), which were incubated at
65°C for durations of 0, 30, 60, 90, and 120 min in a stationary
state (without agitation) using a heat block (Eppendorf SE,
Hamburg, Germany). Each condition was prepared and incu-
bated in triplicate. Following incubation, samples were filtered
using 0.2 um cellulose acetate syringe filters (Sigma-Aldrich, St.
Louis, Missouri, the United States). Raman spectroscopy mea-
surements were conducted offline and automated using a custom-
built automated Raman measurement platform (ARMP)
(described in Section 2.1.4). Residual samples were diluted 1:100
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and analyzed by ultrahigh-performance-size-exclusion chroma-
tography (UHP-SEC) for reference analytics.

2.1.2 | Mixing Studies

Mixing studies were conducted to evaluate whether previously
identified spectral features are sustained while varying the total
protein concentration and aggregate content in an independent
manner. Therefore, an aggregate-enriched BSA solution was
prepared by heat incubation. A 300 mL BSA stock solution was
prepared (225 mL centrifuge tubes, Thermo Scientific, Wal-
tham, the United States) at a protein concentration of 30 g/L
and a NaCl concentration of 50 mM. All subsequent experi-
ments were conducted at a NaCl concentration of 150 mM,
chosen as it provided reproducible aggregation kinetics, while
heating time was systematically varied to control aggregate
formation. A 200 mL aliquot was incubated at 65°C for 24 hours
(Incubated orbital shaker, Thermo Scientific, Waltham, the
United States) to induce aggregation, while the rest was left
unstressed and stored at 4°C until further use. After incubation,
the stressed solution was filtered using a 0.2 um cellulose ace-
tate vacuum filtration membrane (Sigma-Aldrich, St. Louis,
Missouri, the United States).

The methodology resulted in two BSA stock solutions with
concentrations of 30g/L and 19.85g/L, containing 25% and
50% aggregates, respectively, as determined by the ratio of the
aggregate peak area to the total peak area in the UHP-SEC
analysis. This aggregate yield in the stressed stock is consider-
ably lower than for the forced degradation experiments. This is
believed to be due to the scaling of the volume from 1 mL to
200mL. The lower aggregate yield restricted the covered
aggregate range in the mixing study.

For the remainder of this manuscript, we will refer to these as
the unstressed stock and stressed stock. To prepare samples
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where the protein concentration and aggregate fraction are
varied independently, a Latin hypercube sampling (LHS) design
with two dimensions, with 48 samples, was used. The LHS was
scaled to cover the ranges from 0 to 15 g/L total protein con-
centration and 25%-50% aggregates. Each condition was pre-
pared in duplicate at a total sample volume of 800 1L, resulting
in 96 samples in total. For each sample, a Raman spectrum was
collected using the ARMP, with 20 acquisitions averaged in the
mixing experiments to improve the signal-to-noise ratio (SNR).
The aggregate content was determined via UHP-SEC. Com-
prehensive information on sample compositions, mixing ratios,
concentrations, and the replicate structure is provided in
Table S1. The corresponding experimental workflow is depicted
in Figure 1.

2.1.3 | Bind-Elute AEX Experiments

To generate process data for the separation of BSA monomers
and aggregates, bind-elute AEX experiments with inline Raman
measurements were conducted using a 5 mL Eshmuno Q col-
umn (Merck KGaA, Darmstadt, Germany) on an Akta Pure
system (Cytiva, Uppsala, Sweden). Unstressed BSA stock solu-
tions at a concentration of approx. 15 g/L and 25% aggregate
content, prepared in 20 mM Tris, pH 8, were used as feedstock.
The column was equilibrated for 5 column volume (CV) using
20 mM Tris, pH 8, prior to sample loading. Following sample
loading, the column was washed for 5 CV using equilibration
buffer. Gradient elution was performed at different lengths
ranging from 0 to 500 mM Nacl, followed by a strip phase at 1
M NaCl for 5 CVs. The column was subsequently regenerated
using 1 M NaOH for 5 CVs and reequilibrated using equili-
bration buffer. During the elution phase using a flow rate of
1 mL/min, fractions were collected at intervals of 200 uL, and
Raman spectra were recorded at an exposure time of 500 ms at a
laser power of 495 mW, resulting in 24 acquisitions per fraction.

Raman
Measurement

Chromatography system  Autosampler

Raman
Measurement

(BB

Sample Mixing

Agoregase racson in %

e

Schematic representation of the forced degradation (A) and mixing study workflows (B). (A) Heat-induced BSA aggregation was

generated by incubating samples at 60°C for 0-120 rhin at defined NaCl concentrations, followed by offline Raman spectroscopy and UHP-SEC
reference analytics. (B) To assess spectral features under independently varied protein concentration and aggregate levels, unstressed and heat-
stressed BSA stock solutions were combined according to a Latin hypercube design spanning 0-15 g/L protein and 25%-50% aggregates, with Raman

spectra and UPSEC data collected for all conditions.
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In contrast to the spectra generated during the mixing studies,
where 20 acquisitions were averaged to improve the SNR, single
500 ms acquisitions were used during inline AEX to preserve
temporal resolution. These single acquisitions were subse-
quently averaged over the time intervals corresponding to each
UPLC-analyzed fraction. The Raman spectrometer was incor-
porated into the flow path between the outlet valve and the
fractionator. In total, 7 AEX experiments were performed using
different loading densities, gradient lengths, and feedstocks,
which were prepared from two different batches. An overview
of the experimental conditions is presented in Table 1.

2.1.4 | Automated Raman Measurement Platform

Offline Raman spectroscopy measurements were conducted
using an in-house developed system referred to as ARMP. The
platform consists of an Akta purifier system equipped with an
autosampler A-905 combined with a Raman spectrometer. The
Raman BioReactor BallProbe, inserted a Raman flow cell with a
dead volume of 240 uL (both MarqMetrix, Seattle, Washington,
the United States), was connected to a HyperFlux™ PRO Plus
785 spectrometer, operated by SpectralSoft 3.2.600.1 software
(Tornado Spectral Systems, Mississauga, Ontario, Canada). The
ARMP automatically injects samples into the Raman flow cell
and collects Raman spectra using predefined configurations.
For technical details about the ARMP, we refer the reader to
Heyer-Miiller et al. (2025).

2.1.5 | Raman Spectroscopy—Acquisition Settings

All measurements were conducted using the maximum laser
power of 495 mW. For the forced degradation experiments and
the mixing studies, the exposure time was set to 1200 ms per
acquisition. Each collected spectrum was averaged from 20
acquisitions. For inline measurements during AEX experi-
ments, the exposure time was set to 500 ms per acquisition. The
raw Raman signal was treated by a Y-correction and a cosmic
ray filter as directly implemented in the operating software
SpectralSoft. The Raman spectrometer was calibrated using a
white light source at regular intervals.

21.6 | UHP-SEC

To enable precise determination of size-variant distributions,
samples were analyzed via UHP-SEC. Therefore, a TSKgel Su-
perSW mAb HTP column (4 um particle size, 4.6 X 150 mm)

operated at a flow rate of 0.3 mL/min was used. The mobile
phase consisted of 15 mM sodium phosphate buffer at pH 6.2.
Before injection, all samples were diluted to achieve a protein
concentration within the range of 0-1 mg/mL. Analysis was
conducted using a Vanquish UHPLC system controlled by
Chromeleon software (version 7.2) (both Thermo Fisher Sci-
entific, Waltham, Massachusetts, the United States).

2.2 | Data Analysis

All data analysis and computations were performed in
Python 3.12.7.

2.2.1 | Spectral Preprocessing

Raman spectral processing consisted of multiple steps, includ-
ing cropping, normalization, baseline and background correc-
tion, smoothing, and derivative computation. Each operation
and its rationale are detailed below, with processing chains
optimized based on empirical testing across different data types.

All spectra were first cropped to 500-3250cm !, followed by
normalization to the water band at 3250cm ~!. Truncation was
performed to remove irrelevant spectral regions and improve
the quality of correction steps downstream. The lower bound of
500cm~! was chosen as smaller wavenumbers solely contain
baseline drift and bands stemming from the sapphire glass built
into the probe head. The upper bound of 3250cm ~! corresponds
to the maximum of the water band in the covered bandwidth
(Furi¢ et al. 2000) and was hence used for normalization.
Normalization was done to compensate for small variations in
total intensity potentially induced by turbidity (Dietrich
et al. 2024). Subsequently, background subtraction was per-
formed. For forced degradation and mixing experiments, a
water spectrum was subtracted. For AEX experiments, a buffer
spectrum originating from the start of the respective elution
phase was subtracted. Background subtraction was performed
to remove the overlapping water and buffer bands and enable
better visualization of the spectral effects. Furthermore, base-
line correction was performed using a Whittaker filter through
the derivative peak-screening asymmetric least squares algo-
rithm (DERPSALSA) algorithm, as implemented in the pyba-
selines library (v. 1.1.0), with parameters A = 10°, k = 0.02, and
d =2 (Erb 2025). Finally, the Savitzky-Golay (SG) filter as
implemented in scipy (v. 1.14.1) was employed both for spectral

TABLE 1 | Experimental conditions for the bind-elute AEX experiment used in the inline Raman monitoring of BSA monomer and aggregate

separation.
Run ID Gradient length Load density Total feed concentration HMWC content Dataset

(cv) (mg/mL resin) (mg/mL) (%) )

Batch 1 5 CV 5 15 15 25.33 Train
Batch 1 15 CV 15 22.5 15 25.33 Train
Batch 2 10 CV 10 30 15 15.67 Train
Batch 1 10 CV 10 17.5 15 25.33 Test
Batch 1 Step Step 22.5 15 25.33 Test
Batch 2 5 CV 5 22.5 15 15.67 Test
Batch 2 15 CV 15 45 15 15.67 Test
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smoothing and derivative computation to enhance subtle
spectral variations. Here, a second-order polynomial and a
window size of 21 were used in all cases. In the following,
spectral data are displayed either after smoothing only or
after second derivative computation.

2.2.2 | Evaluation of Spectral Bands and Correlation

To evaluate the changes of spectral bands and their correlation
with the aggregate content, multiple spectral markers or metrics
were used throughout this study.

It is known that the amide I and III vibrations carry the most
structural information of proteins, which are located at
1500-1800 cm™* and 1200-1400 cm™?, respectively (Lippert
et al. 1976; Williams 1986; Rygula et al. 2013). While the amide
I region is largely overlapped with the water bending vibra-
tion, the amide III region is largely unaffected by water and,
depending on the used buffer system, free of other interfering
species. In addition, the Fermi doublet of tryptophan side
chains is known to be located at the frequencies of approx.
1340 and 1360 cm™" (Rygula et al. 2013) and to provide an
informative marker of local solvent environment (Harada
et al. 1986; Eisenberg and Juszczak 2012). Given the local
superposition of the amide IIT and tryptophan vibrations, we
chose to observe the ratio of the intensities at 1341 and 1320
cm™! as the most prominent bands in this region. We will refer
to this intensity ratio as the amide III ratio for the remainder
of this manuscript.

To compress the information contained in the amide I band into
a single spectral marker, the center of mass was calculated as
the intensity-weighted average wavenumber within the chosen
spectral range (1500-1800cm 1),

ZiIiVi
il

P =

()

where I; and v; are the intensity and wavenumber at point i,
respectively. The center of mass is a common marker summa-
rizing observed spectral shifts in an easy-to-comprehend man-
ner. To improve the precision of the calculation, the acquired
spectra were interpolated to a resolution of 1000 steps in the
given spectral range.

Finally, the SNR was used as a correlation metric between the
spectral intensity and the aggregate content. The SNR was
calculated as

Var(x;4) @

6.2

SNR =

with f being the regression coefficients of a univariate linear
model of type y = x;8 + ¢ with normally distributed errors
¢ and &% being the residual variance of the linear model for
wavenumber A according to Soch and Allefeld (2018). To cal-
culate SNR for the Raman spectroscopy data using Equation (2),
a linear model was built for each wavenumber individually. A
spectral feature is considered to be correlated with aggregate
content if it shows high SNR. Low values indicate a high degree
of noise and no linear correlation. For all spectral markers in
the mixing study (Figure 3), error bars represent the standard

deviation of two independent replicates, each derived from an
averaged spectrum comprising 20 acquisitions.

2.2.3 | Regression Modeling

Data Split Regression models were calibrated using inline
collected data from AEX experiments with their respective as-
signments to training and test sets presented in Table 1. Raman
spectra were preprocessed as laid out in Section 2.2.1 and used
as inputs to the regression models. As outputs, the absolute
concentrations of monomers and aggregates were chosen as
determined by UHP-SEC for all collected fractions. A leave-one-
batch-out (LOBO) scheme was chosen for cross-validation for
all regression models. The LOBO cross-validation iterates
through all experiments included in the training set, leaving
each of them out once. The LOBO scheme has been found to
provide more realistic estimates of prediction errors than more
common K-fold cross-validation schemes and was hence
selected for model evaluation (Rolinger et al. 2020b; Dietrich
et al. 2024).

PLS Regression PLS regression models were calibrated as
single-output (PLS1) and multi-output (PLS2) models. To
improve model accuracy, additional preprocessing was applied
to the input data. Additional preprocessing involved truncating
the Raman spectra to 600-1800cm ~!, followed by SG filtering
with a window size of 15 and varying derivative orders (0, 1,
or 2). Finally, the input data was mean-centered. The number of
latent variables and the SG derivative order were optimized
during cross-validation by grid search in the ranges 2-14 and
0-2, respectively. In total, eight different PLS model variants
were calibrated. For each combination of preprocessing opera-
tions, a PLS1 and PLS2 model was calibrated. Aside from the
previously mentioned preprocessing operations, there are two
PLS variants that are calibrated using synthetic data. For more
details on the generation of these synthetic data, we refer to
Section 2.2.3.

CNN CNN models were calibrated as multi-output models,
predicting the monomer and aggregate concentrations simul-
taneously. The CNNs were implemented in tensorflow (v. 2.11).
The model architecture and training methodology were similar
to Schiemer et al. (2024). The model architecture consisted of
three convolutional layers with defined kernel sizes of 15, 7, and
3 and a rectified linear unit (ReLU) activation function. Average
pooling with a pool size of 2 was employed after each con-
volutional layer. Each convolutional layer was configured to use
5 kernels. After the convolutional block, a flattening operation
was implemented to project all kernel outputs onto a single
vector. A fully connected (FC) layer with 50 units and a ReLU
activation function was used as the subsequent layer. Finally,
the output layer was configured to use 2 FC units and a ReLU
activation function.

CNN models were calibrated with and without synthetic data
augmentation, which will be denoted CNN and CNN-Aug for
the remainder of this manuscript. For non-augmented CNN and
the augmented CNN, training was conducted over 500 and 50
epochs, respectively, with a batch size of 32 using the mean
squared error (MSE) as the loss function. The target variables
were standardized using a min-max scaler to ensure equal
contribution of both targets despite absolute concentration
differences. The learning rate was initially set to 0.001, and a
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learning rate scheduler was configured to halve the learning
rate if the validation loss was not reduced for 5 consecutive
epochs. The non-augmented CNN used the original training
data as input data. To be able to compute the validation loss at
every epoch of the training cycle, the training data was ran-
domly divided into calibration and validation sets, reserving
25% of the original training data points for calculating the val-
idation loss. In the case of the augmented CNN, data aug-
mentation was employed to generate a set of 10,000 synthetic
data points, which served for calibration. The validation loss
was calculated using 100% of the original training data. For the
details of the data augmentation method, we refer to
Section 2.2.3.

Data Augmentation Data augmentation was used to enhance
model robustness, utilizing the local subset augmentation (LSA)
technique introduced in Schiemer et al. (2024). In short, the
LSA technique extracts the theoretical pure component spectra
from a subset of the training data and generates synthetic
spectra by recombining the pure component spectra. A local
subset size of 39 was used in all instances. The standardized

[ _v)2
Euclidean distance as given by [d x,y) = \/ Y %) was
used as a metric to select the local subset. Random white noise
with a standard deviation of 0.0001 intensity counts and nor-
mally distributed shifts along the wavenumber axis with a
standard deviation of 0.25cm~! were further introduced to the

synthetic spectra.

Error Metrics Model performance was assessed using the R?
and root mean squared error (RMSE) metrics. In all cases, these
metrics are reported separately for the monomer and aggregate
species. Additionally, R*> and RMSE are provided for the
aggregate fraction as determined by Vs = Cagg/(Cagg + Cmono)s
where cpono and ¢, denote the absolute concentration of
monomer and aggregate species given in g/L, respectively. To
avoid division by small values, v, was calculated only for
samples where the denominator summed to values greater than
0.1 g/L. The metrics for cross-validation were calculated based
on the predicted values for the iterations when the respective
experiments were assigned to the validation set.

Augmentation Test To assess the selectivity of the evaluated
models, an augmentation test was conducted using the LSA
technique described in Section 2.2.3 to evaluate whether the
models correctly predict monomer and aggregate combinations
that were not covered in the experimental data. To provide a
challenging dataset, the synthetic spectra were generated based
on the experimental data originating from the test set. The LSA
algorithm was used in the same configuration as laid out in
Section 2.2.3. The monomer and aggregate combinations cov-
ered in the augmentation test were sampled from a uniform
distribution in the ranges [0, 20] and [0, 5] for the monomer and
aggregate species, respectively. In total, 1000 random samples
were drawn for which synthetic spectra were generated. The
calibrated models were finally used to predict the monomer and
aggregate concentrations from the synthetic spectra, and the
model accuracy was evaluated based on the sampled values as
the ground truth. The distribution of the sampled values is
visualized in Figure S1. This methodology makes use of the test
set data by diversifying the obtained data through synthetic
amplification. Further, it enables a more systematic evaluation
of the model selectivity for the individual species.

Test Set Rotation Test To further compare the robustness and
accuracy of the different model variants, we conducted a test set
rotation based on a Leave-P-Batches-Out scheme with P=4.
With 7 experiments in total, this yielded 35 different train-test
splits. We conducted the rotation test with the best-performing
PLS model and the two different CNN models, one without and
one with data augmentation. In each rotation, the respective
model was calibrated using the selected training batches. For
both model types, the methodology introduced in Section 2.2.3
was used. For the PLS model, the number of components and
the derivative order were fixed to the optimal setting found for
the training-test split used in the rest of this study; that is, no
individual optimization was performed for each rotation. The
optimal number of components was 2 and 14, and the order of
derivative was 0 and 1 for the monomer and aggregate species,
respectively, for the Crop-SG-PLS1 model.

3 | Results and Discussion
3.1 | Forced Degradation Studies

The primary objective of forced degradation studies was to identify
Raman spectral features associated with aggregation. Therefore,
samples with a concentration of 30 g/L BSA were exposed to
thermal stress at 65°C and analyzed for their aggregate content via
UHP-SEC and Raman spectroscopy. Figure 1A schematically
presents the methodology and the aggregate content over time.
The UHP-SEC results illustrated in Figure 1 demonstrate a time-
dependent formation of aggregated species, which saturates after
roughly 90 min. Comparative retention time analysis showed that
heat-induced aggregates elute earlier than native aggregates, sug-
gesting the formation of higher-order multimers (data not shown).
Notably, the data indicate that with increasing ionic strength, heat-
induced aggregate formation decreased. Forced degradation has
been commonly used in Raman spectroscopy studies for aggregate
detection (Boulet-Audet et al. 2014; Barnett et al. 2015; Zhou
et al. 2015), as batch-to-batch variations do not cover the experi-
mentally interesting range to study the spectral effects of protein
aggregation. However, the aggregates produced by, for example,
heat stress are not necessarily structurally coherent with naturally
occurring aggregates. Nevertheless, forced degradation is a helpful
tool to efficiently produce aggregated proteins for further investi-
gation. The authors considered the use of non-native aggregates
sufficient for initially investigating spectral features affected by the
structural changes induced by aggregation, but acknowledge the
need for validation in native aggregate species.

To further investigate the structural changes affected by
aggregation, offline-recorded Raman spectra of the thermally
stressed samples were evaluated. Figure 2A,F shows
background-corrected and second derivative Raman spectra for
the different sampling time points, respectively. The upper
panels in (B) and (G) depict the SNR between the single spectral
features and the aggregate content. The top correlative features
together with manually selected (manual selection was based
on visual inspection of all wavenumber ranges, in addition to
those previously identified in literature) ones are shown in the
lower panels (B-E) and (G-K) over time with their respective
standard deviations. In the background-corrected spectra (cf.
Figure 2A), the top correlative features appear in the region of
the phenylalanine band between 990 and 1010cm ~!. Spectral
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FIGURE 2 | Results of the forced degradation experiment. Offline recorded Raman spectra and SNR for each wavenumber (A). Spectra are

shown after preprocessing as described in Section 2.2.1. The color gradient reflects the increasing duration of heating. Intensities at 999 and 1241, the

ratio 1341/1320 cm™", and the center of mass of the amide I region (1500-1800cm ') were extracted from the preprocessed Raman spectra and

highlight the evolution over time (B-E). Second-derivative Raman spectra and corresponding SNR (F). Temporal evolution of selected wavenumbers
(1368, 1397, 1398, 1651, and 1673cm ') corresponding to the top five SNR values (G-K).

features in the amide regions (amide III at 1241 cm ~! and amide
I between 1550 and 1700cm %, as expressed by the center of
mass show minor correlations with higher standard deviations.
The center of mass of the amide I band was calculated ac-
cording to Equation (1). The amide III ratio (L340 /L1321) Was not
affected. When additionally treated with the second derivative
SG filter, the SNR displays a high degree of correlation in the
fingerprint region, mainly between 1200 and 1400cm 7!, as well
as in the amide I between 1550 and 1700cm ~!, with values of
up to 300 and 500, respectively.

The amide I region has previously been identified as a reliable
marker for aggregation in Raman spectroscopy studies (Zhou
et al. 2015; Shivu et al. 2013). Especially for proteins with pre-
dominantly a-helical structures such as BSA, the amide I band
is considered a reliable structural marker. In particular, the
formation of intermolecular $-sheets is known to cause a shift
in the amide I band with decreasing intensity around 1650 cm™"
and increasing intensity around 1670 cm™'. This shift may

either be observed in second-derivative spectra thanks to the
enhanced selectivity by this treatment or on a macroscopic scale
by a shift in center of mass (Militello et al. 2004). Moreover, the
amide I is the most promising structural marker in Raman
spectroscopy of proteins due to the high intensity compared to
amide II and III vibration modes or those of tyrosine and
tryptophan side chains (Zhou et al. 2015). However, the over-
lapping water band, which was removed in this analysis, may
pose a challenge in determining accurate amide I patterns as
the water band may be affected by the solution environment,
such as salt concentrations (Fontana et al. 2013).

3.2 | Mixing Studies

Following the identification of Raman spectral features associ-
ated with aggregation, samples were prepared from an
unstressed and a stressed BSA stock solution, where protein
concentration and aggregate content were systematically varied
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(cf. Section 2.1.2) to evaluate the robustness of the spectral ef-
fects found in Section 3.1. LHS was employed as a statistical
approach to efficiently cover the possible design space with a
given number of samples. For each sample, Raman spectros-
copy measurements were subsequently performed offline using
the ARMP. Figure 1B schematically depicts the described
workflow, and Figure 3A-F presents the strongest correlations
of individual spectral features with overall protein concentra-
tion and aggregate content.

The spectral intensities at 999cm ~!, representing the phenyl-
alanine band, closely follow protein concentration in the samples
with standard deviations below 5 %. A slight nonlinear trend to-
ward higher concentrations, along with a few outliers at high
concentrations, can be observed. The nonlinearity highlights the
complexity of Raman spectroscopy data, as the raw signals undergo
multiple preprocessing steps, which may influence the extent of
nonlinearity observed. Amide I-related spectral features, such as
the 1673 cm ™! bands in the second derivative spectra, as well as
the center of mass of the amide I, linearly follow the aggregate
content. In all instances, outliers can be observed. These outliers
mainly originate from samples with low protein concentrations
(< 3g/L), where analysis becomes more challenging due to the
overall low signal intensity. These results corroborate findings from
forced degradation experiments and demonstrate the potential of
the identified spectral features as reliable markers for quantifying
protein aggregation.

The selection of the 1673 and 1651cm ™! features in Figure 3
reflects the outcomes of the forced degradation study (Figure 2),

where the amide I region exhibited the strongest and most
consistent correlation with aggregation. These wavenumber
regions correspond to opposing components of the amide I band
associated with shifts from native «-helical structure
(approximately 1651cm 1) toward intermolecular -sheet for-
mation (approximately 1673cm~'). Their inclusion in the
mixing-study analysis therefore provides a mechanistic link to
the structural transitions identified earlier and enables an eva-
luation of whether these aggregation-related spectral changes
remain robust when protein concentration and aggregate con-
tent are varied independently.

Beyond amide I-related markers, various Raman intensity
ratios involving protein-specific bands were investigated as
potential indicators of protein aggregation. Specifically, the
amide IIT ratio (Ij340/I1321) and the peak maximum within
the 920-950cm™' range were assessed (Ashton and
Blanch 2010; Militello et al. 2004; Li and Li 2009; Zhou
et al. 2015; Alizadeh-Pasdar et al. 2002). However, both
showed only weak -correlations with aggregate levels,
accompanied by large standard deviations (>20%) and the
presence of significant outliers, limiting their reliability.
Although the 1341/1320cm ™! ratio is included for com-
pleteness because it has been reported as a potential
aggregation-sensitive marker in prior Raman studies, our
results demonstrate that it is not consistently responsive
under the conditions tested here. We therefore treat it as an
auxiliary rather than a primary structural marker and do not
rely on it for quantitative interpretation.
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FIGURE 3 | Spectral features observed in offline-recorded Raman spectra of BSA obtained during mixing studies, preprocessed as described in

Section 2.2.1. Raman intensities, peak shifts, and band ratios are plotted as functions of total protein concentration (g/L), aggregate fraction (%), and
high molecular weight component (HMWC) content (%). Error bars represent standard deviations of replicate measurements. Color scale from dark
to light indicates increasing protein concentration (g/L). The Raman bands or markers 1004, 1673, 1651, 1341/1320, Peak Maximum of 920-950 and

the center of mass of 1500-1800 are shown in (A-F), respectively.
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These findings highlight that while spectral features beyond the
Amide I band can provide supplementary structural insights
into aggregation processes, their robustness and reproducibility
for aggregate quantification remain limited. The phenylalanine
band, as well as the amide I region, remains the most reliable
spectral marker for accurately monitoring aggregation dynam-
ics. In contrast, other markers showed high variability and
limited statistical significance, reducing their suitability for
quantitative analysis.

33 |
331 |

Bind-Elute AEX Experiments
Qualitative Spectral Analysis

Building on insights from the mixing studies, bind-elute AEX
experiments were conducted to assess inline Raman detection
capabilities for naturally occurring BSA aggregates under
operational conditions. Chromatographic conditions comprised
gradient elutions with varying loading densities from two BSA
batches and one step elution (cf. Table 1). Continuous Raman
spectra acquisition during the elution phases facilitated direct
comparison with UHP-SEC analyses of collected fractions.
Compared to the heat-induced aggregation system, where ag-
gregates with higher-order structures formed rapidly at elevated
temperatures and low ionic strength, the chromatography load
material was solely comprised of monomeric and dimeric BSA
species.

In Figure 4, fraction analytics from all AEX experiments are
overlaid with selected spectral markers, namely the amide III
ratio L34 /L3 and the center of mass of the amide I band,
obtained from inline acquired Raman spectra. The raw spectra
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©

were averaged over the collection interval of each fraction and
preprocessed the same way as in the forced degradation and
mixing experiments. Due to the buffer system used in the
chromatographic separations, the spectral background correc-
tion was performed using the first acquired spectrum in the
elution phase. In case the previously defined spectral markers
prove selective for aggregate detection, we expect the following
behavior during AEX elutions: Due to the timely separation of
monomeric and dimeric species, the spectral markers would
initially remain constant until the co-elution of the dimeric
species, which is more strongly retained by the chromatography
resin. When the co-elution begins, the spectral marker is ex-
pected to increase as the relative content of the dimeric species
is successively increasing until the elution peak ends. For non-
separating conditions, the spectral markers are expected to
remain constant over the entire elution phase. The absolute
value depends on the aggregate content in the elution pool.

In Figure 4, both the amide III ratio and the center of mass
follow the described behavior for all tested chromatographic
conditions, despite some non-idealities. For runs from Batch 1
(A-C), the loading densities ranged from 15 to 22.5g/L resin.
For the longer gradients of 10 and 15 CVs (B, C), this led to an
eluate pool dilution with maximum monomer concentrations of
<15 g/L. In those cases, the spectral markers appear unstable
with a high degree of scattering. As a result, it is vaguely pos-
sible to deduce the onset of the co-elution of the dimeric spe-
cies. For experiments from Batch 2 (D-F), for which loading
densities ranged from 22.5 to 40 g/L, the spectral markers show
a lower degree of scattering, and fewer outliers were observed.
While for the 10 and 15 CV runs (E, F), the actual onset of co-
elution after approximately 52 and 62 min, respectively, is
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Elution profiles and structural markers of BSA under varying process conditions. Protein separation from two BSA batches was

performed using different gradient lengths: (A, D) 5 CV; (B, E) 10 CV; (C, F) 15 CV; and (G) step elution. Blue and red bars represent monomer and
aggregate concentrations (g/L), respectively. Black lines indicate aggregate fractions across elution time. Black circles and black triangles denote
Raman spectral markers: intensity ratio (1341 cm™/1320 cm™") and amide I band center of mass (cm™"), respectively. To improve legibility for panels
(A-F), Raman marker traces were smoothed by plotting the mean of three consecutive spectra at the corresponding mean elution time; Panel (G)

shows all measured points.
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accurately represented by the spectral markers, the spectral
markers in the 5 CV run (C) do not match the fraction analytics.
Notably, the step elution experiment (G) fulfills the expecta-
tions, and the spectral markers remain constant in the width of
the elution profile. As the elution occurred within approxi-
mately 2 min, the number of collected fractions and corre-
sponding Raman spectra is comparably low. In all experiments,
outliers can be observed, which mostly correspond to fractions
at the front and end of the elution peak with low concentrations
(<3 g/L).

The depicted selection of spectral markers for AEX experiments
is not exhaustive. However, they showed the best qualitative
behavior among the studied markers. Notably, previously
identified amide I-related markers such as the 1651 and
1673cm ! intensities in the second derivative spectra were not
found to be selective for aggregate content as they were affected
by the total protein concentration and therefore followed the
overall elution profile. Hypothetically, the higher-order struc-
ture aggregates generated during the heat treatment may form
more intermolecular §-sheets than natively occurring dimers
and hence show a pronounced effect in the amide I region,
which upholds variations in protein concentration (Barnett
et al. 2015; Zhou et al. 2015). Inversely, the amide III ratio,
which showed no significant effect in forced degradation or
mixing experiments, served as a valid indicator in AEX ex-
periments. This is likely because pH and salt gradients in AEX
can alter hydrogen bonding and polarity around tyrosine resi-
dues, enhancing spectral differences between monomeric and
aggregated forms (Antosiewicz and Shugar 2016). Despite the
ineffectiveness of the amide I-related single-variable intensities,
the cumulative measure of the center of mass proved suitable
across all experimental modes. Across the studied literature, the
center of mass appears to be the most reliable qualitative
spectral marker for protein aggregation. However, it is difficult
to use this marker for direct quantification of aggregate content,
due to possible nonlinearities or background effects. Especially
when used in biopharmaceutical processes, such as chroma-
tography, changing buffer environments or excipients is com-
mon. Even in AEX gradient elutions, the salt concentration is
constantly changing, which has an effect on the water band
(Furi¢ et al. 2000) and therefore affects background correction
steps in Raman spectroscopy. In summary, these results present
the first direct illustration of how protein aggregation affects
Raman spectra in chromatographic separation processes and
shows applicability of Raman spectroscopy to monitoring bio-
pharmaceutical downstream operations. Due to concentration
variations and spectral noise, the use of Raman spectroscopy for
direct quantification necessitates the calibration of statistical
models.

3.3.2 | Statistical Model Building

To enable quantitative prediction of protein size variants from
Raman spectra, multiple regression models were calibrated
targeting the concentrations of monomeric and dimeric BSA
species. Model training incorporated spectra from three repre-
sentative bind-elute AEX experiments, while testing was per-
formed on four independent datasets to assess generalizability
across varying chromatographic conditions (cf. Table 1). Mul-
tiple different statistical model variants were compared using

different performance criteria, namely their prediction error on
training, cross-validation, augmentation test, and external test
sets. For PLS models, every preprocessing variant was tested
using a single-output (PLS1) and a multi-output version (PLS2).
The studied CNNs were exclusively multi-output. The per-
formance metrics of the different model variants are reported in
terms of R* and RMSE in Tables 2A and 2B.

Figure S2 presents RMSE values for monomer and aggregate
components in absolute terms (A and B), as well as RMSE for
the aggregate fraction calculated from the predicted monomer
and aggregate concentrations (C). This systematic comparison
reveals distinct performance patterns both within and between
PLS and CNN model families across different evaluation sce-
narios. For monomer prediction (A), CNN models demonstrate
lower RMSE during training, cross-validation, and augmenta-
tion test phases. However, this advantage largely disappears in
the external test, where PLS and CNN models achieve compa-
rable performance. This convergence suggests that the apparent
superiority of CNN models in earlier phases may reflect over-
fitting rather than genuine generalization capability for mono-
mer prediction. The aggregate prediction results (B) show a
more consistent pattern, with CNN models maintaining lower
RMSE across all evaluation splits. While individual PLS variants
occasionally match CNN performance for specific datasets, no
single PLS model achieves comparable accuracy across all sce-
narios, indicating more robust performance by the CNN
approach for this target. Figure S2C confirms this trend for
aggregate fraction prediction, with selected PLS models
approaching but not consistently matching CNN-type model
performance. Notably, data augmentation consistently increases
RMSE relative to non-augmented variants across all model
types and evaluation scenarios, suggesting that the augmenta-
tion strategy employed does not improve generalization and
may introduce artifacts that degrade prediction quality.

To better visualize the accuracy of the different model variants,
parity plots of observed versus predicted HMWC (%) for all
calibrated PLS models are shown in Figures S4-S13, where
Panels (A)-(D) represent the model performance on the train-
ing, cross-validation, augmentation test, and test datasets,
respectively.

To resolve the ambiguity regarding data augmentation effec-
tiveness, we conducted a comprehensive leave-4-groups-out
rotation test (Figure S3), evaluating all possible training/test
splits for each model type. The results demonstrate that the base
CNN performs slightly better than the augmented CNN variant
for both monomer and aggregate predictions. Both CNN ap-
proaches achieve substantially lower RMSE on average com-
pared to the best-performing PLS model (Crop-SG-PLS1),
particularly for aggregate prediction, where the median RMSE
is reduced by approximately 50%. The more compact distribu-
tions and lower median values for CNN models confirm their
superior generalization capability when evaluated across
diverse data splits.

Figure 5 presents the model predictions for the Crop-SG-PLS1
and the CNN models in dashed and solid lines, respectively, for
training (A), cross-validation (B), and test (C) sets. For the AEX
runs in the training set, both models fit the UHP-SEC data
accurately with minor deviations. For the Batch-1-5CV run, the
PLS model closely follows the sharp dimer elution profile, while
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TABLE 2(A) | Coefficient of determination (R?) for the prediction of monomer and aggregate concentrations across all data splits and models.
Model Analyte Train Ccv Augmentation test External test
PLS1 Monomer (g/L) 0.9761 0.9417 —0.1489 0.8474

Aggregate (g/L) 0.9765 —0.5345 0.6823 0.6210
PLS2 Monomer (g/L) 0.9911 0.8710 —0.1621 0.8389
Aggregate (g/L) 0.9878 —0.7969 0.5123 0.5756
SG-PLS1 Monomer (g/L) 0.9709 0.9422 0.1993 0.9030
Aggregate (g/L) 0.6014 —0.3389 —0.2459 0.0365
SG-PLS2 Monomer (g/L) 0.9670 0.9313 0.5027 0.9323
Aggregate (g/L) 0.5195 —0.2045 —0.4069 0.0371
Crop-SG-PLS1 Monomer (g/L) 0.9706 0.9529 —0.2536 0.7954
Aggregate (g/L) 0.9642 0.2039 —2.9519 —0.2070
Crop-SG-PLS2 Monomer (g/L) 0.9772 0.9555 0.3686 0.9108
Aggregate (g/L) 0.7694 —1.4017 0.8421 0.6350
PLS1-augmented Monomer (g/L) 0.9632 0.9464 0.9152 0.8779
Aggregate (g/L) —0.0479 —0.1968 0.7373 —1.2896
PLS2-augmented Monomer (g/L) 0.9625 0.9438 0.8955 0.8841
Aggregate (g/L) —0.0915 —0.2479 0.7803 —1.2446
CNN Monomer (g/L) 0.9850 0.9752 0.9126 0.8274
Aggregate (g/L) 0.9525 0.7804 0.6874 0.6894
CNN-augmented Monomer (g/L) 0.6775 0.8584 0.7112 0.5756
Aggregate (g/L) 0.4114 0.3097 —0.0137 0.3051

TABLE 2(B) | Root-mean-square error (RMSE, g/L) for prediction of monomer and aggregate concentrations across all data splits and models.
Model Analyte Train Ccv Augmentation test External test
PLS1 Monomer 1.6568 2.5848 6.0818 6.8610

Aggregate 0.1945 1.5711 0.8141 1.4377
PLS2 Monomer 1.0121 3.8464 6.1169 7.0501
Aggregate 0.1399 1.7001 1.0086 1.5213
SG-PLS1 Monomer 1.8253 2.5742 5.0772 5.4720
Aggregate 0.8007 1.4675 1.6122 2.2922
SG-PLS2 Monomer 1.9438 2.8073 4.0014 4.5705
Aggregate 0.8792 1.3919 1.7132 2.2914
Crop-SG-PLS1 Monomer 1.8360 2.3248 6.3529 7.9450
Aggregate 0.2398 1.1316 2.8712 2.5655
Crop-SG-PLS2 Monomer 1.6181 2.2585 4.5088 5.2476
Aggregate 0.6091 1.9655 0.5739 1.4108
PLS1-augmented Monomer 2.0550 2.4796 1.6523 6.1382
Aggregate 1.2983 1.3875 0.7403 3.5335
PLS2-augmented Monomer 2.0742 2.5386 1.8343 5.9808
Aggregate 1.3250 1.4168 0.6769 3.4986
CNN Monomer 1.3103 1.6861 1.6777 7.2968
Aggregate 0.2765 0.5944 0.8075 1.3015
CNN-augmented Monomer 6.0814 4.0293 3.0495 11.4429
Aggregate 0.9731 1.0537 1.4542 1.9467
Biotechnology and Bioengineering, 2026 11
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FIGURE 5 | Predictions of Crop-SG-PLS1 (dashed lines) and CNN (solid lines) regression models for training (A), cross-validation (B), and test
(C). Blue and red bars represent monomer and dimer concentrations as determined by UHP-SEC.

the CNN model predicts a more flattened, round profile. For the
Batch-1-15CV, both models exhibit scattered predictions, with
the CNN being slightly less affected for both species. In the
Batch 2-10CV run, both models match the UHP-SEC data
accurately, with the concentrations being the highest among the
training runs. In the cross-validation, the accuracy and
robustness of the CNN predictions are superior to the PLS
predictions. In addition to the higher degree of scattering of the
PLS model, the initial phases where only the monomer is
eluting are wrongly predicted by the PLS model, and the
selectivity for the monomeric species during co-elution is
compromised (cf. Batch-2-10CV). The predictions for the test
runs corroborate these findings and suggest a superiority of the
CNN model. For all gradient elutions (Batch-2-5CV, Batch-
1-10CV, and Batch-2-15CV), the CNN correctly predicts the
onset of co-elution and the absolute dimer content, while the
PLS predictions are highly scattered and predict early co-elution
onsets. Finally, the step elution confirms that both models are
able to differentiate between monomeric and dimeric species as
a negative control under non-separating conditions. Both
models accurately predict a simultaneous elution of monomers
and dimers despite an absolute offset in the monomer con-
centration compared to UHP-SEC data.

Considering all emphasized points, the CNN model is better
than the studied PLS-based models, as it combines high accu-
racy with robustness across cross-validation, test, and aug-
mentation test for both target species. These findings confirm
the work presented in (Schiemer et al. 2024), where the CNN
models have been established for quantification of different
proteins and monoclonal antibody size variants from
ultraviolet-visible absorption spectra. In contrast to Schiemer
et al. (2024), the augmented CNN model used within this study
achieved lower performance than the non-augmented variants
across all datasets and test scenarios. In direct comparison with
the PLS model, the augmented CNN was still found to be
superior. Although data augmentation was not found to be
beneficial for this particular case, it is notable that the transfer
of the LSA algorithm to Raman spectra was successful. Another
recent example of data augmentation for Raman spectra
showed a beneficial effect for chemometric modeling (Lange
et al. 2024).

Compared to established spectroscopy-based PAT applications
in biopharma, such as glucose monitoring in fermentation
processes (Cavinato et al. 1990; Miiller et al. 2024; Pontius
et al. 2020) or UFDF monitoring (Rolinger et al. 2020b, 2023;
Milewska et al. 2022), spectroscopic methods for aggregate
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quantification remain limited (Wei et al. 2022; Brestrich
et al. 2018). Brestrich et al. Brestrich et al. (2018) relied on only
four experimental runs, with just one reserved for validation,
whereas Wei et al. Wei et al. (2022) utilized aggregates derived
from forced degradation experiments, while the cross-
correlation structure in the provided data is unclear. Further-
more, reported results were predominantly acquired offline,
allowing longer spectral acquisition times and eliminating the
challenges associated with real-time process variations.

Although BSA serves as a practical and well-characterized
surrogate for method development, we acknowledge that its
structural simplicity and spectral characteristics do not fully
capture the complexity of industrially relevant biotherapeutics,
like monoclonal antibodies. Extending the approach to mAbs
requires consideration of their distinct secondary-structure
compositions, particularly their substantially higher (-sheet
content relative to the predominantly a-helical structure of
BSA. This is expected to dampen the spectral difference and
hence make the distinction of monomeric from dimeric species
more difficult. Additional factors include the higher concen-
tration ranges typically encountered for therapeutic antibodies
in downstream processing (20-60g/L), the aggregate levels
relevant to industrial polishing steps (reduction from roughly
3% to < 0.5%), and detection-limit requirements of drug product
formulations (0.1%-1% aggregates). Ongoing follow-up studies
with therapeutic antibodies aim to evaluate these aspects and
assess the transferability and robustness of the method across
biopharmaceutical modalities.

In summary, the use of CNN models demonstrated suitability
by generating selective regression models capable of accurately
quantifying monomer and dimer contents in real-time chro-
matographic processes. However, the development of robust
chemometric models requires extensive evaluation of their
selectivity and predictive performance through larger experi-
mental datasets and systematic algorithmic validation.

4 | Conclusions

This study demonstrates the feasibility of real-time aggregate
quantification in biopharmaceutical downstream processing
using Raman spectroscopy and structural spectral markers. By
applying controlled aggregation stress and an LHS design, dis-
tinct Raman features—particularly in the amide I region—were
identified as reliable indicators of protein aggregation across
varying concentrations and conditions.

These spectral markers were validated in inline measurements
during bind-elute AEX, where they successfully tracked
monomer-aggregate separation dynamics. The combination of
Raman spectroscopy with multivariate modeling approaches,
including PLS and a CNN enhanced through synthetic data
augmentation, enabled robust and accurate quantification of
size variants under process-relevant conditions. While the CNN
model outperformed traditional approaches in terms of pre-
dictive performance and selectivity, limitations arose from low
signal intensities at low protein concentrations and environ-
mental influences on background correction.

Despite these limitations, this work highlights the potential of
Raman-based structural markers and machine learning models for

real-time monitoring of protein aggregation in downstream unit
operations.

Future work should also aim to expand the experimental space
and enhance spectral preprocessing to improve model robust-
ness and transferability across different process steps and en-
vironmental conditions.
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