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ABSTRACT
Protein aggregation poses a significant risk to biopharmaceutical product quality, as even minor amounts of oligomeric species can 
compromise efficacy and safety. Rapid and reliable detection of protein aggregates thus remains a major challenge in bio
pharmaceutical manufacturing. Although traditional offline methods such as size‐exclusion chromatography provide accurate results, 
their inherent time delays limit real‐time process control capabilities. Consequently, there is an urgent scientific need for inline 
analytical techniques capable of selectively quantifying protein monomers and aggregates in real time to facilitate immediate corrective 
actions and enhance overall process robustness. Raman spectroscopy, as a tool for a process analytical technology application, is 
especially suitable due to its molecular specificity, rapid data acquisition, and compatibility with aqueous solutions commonly used in 
biopharmaceutical manufacturing. Addressing this need, this study establishes a Raman spectroscopy‐based strategy for the selective 
detection and quantification of monomeric and aggregated forms of a model protein (bovine serum albumin). Controlled stress 
conditions were applied to generate aggregated species reproducibly, and a Latin Hypercube sampling design was used to indepen
dently vary protein concentration and aggregate fraction, ensuring that observed spectral effects were attributable to aggregation rather 
than concentration differences. Furthermore, spectral markers identified in spectra acquired from multiple chromatographic runs 
were qualitatively compared with offline reference measurements from size‐exclusion chromatography. This limitation in real‐time 
applicability was circumvented by chemometric machine learning approaches. The use of convolutional neural networks enabled the 
selective quantification of the protein monomers and aggregates and delivered superior predictive performance and robustness across 
cross‐validation, independent testing, and synthetic perturbation scenarios compared to traditional chemometric approaches. Col
lectively, these results demonstrate that the selected Raman spectral markers, combined with advanced chemometric modeling, enable 
reliable, real‐time monitoring of protein size variants in biopharmaceutical downstream processes.

1 | Introduction 

Protein aggregation is a critical quality attribute (CQA) and a 
major challenge in the manufacturing of biopharmaceuticals. 
Aggregates can form throughout the product lifecycle— 

including upstream production, downstream purification, 
formulation, and storage (Vázquez‐Rey and Lang 2011; 
Roberts 2014; Pham and Meng 2020)—potentially compromis
ing both the safety and efficacy of therapeutic proteins 
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(Rosenberg 2006; Moussa et al. 2016). To address this issue, 
there is an increasing need for real‐time monitoring of protein 
structural integrity under application‐relevant conditions. Im
plementing such monitoring, particularly in downstream pro
cessing, is essential to ensure consistent product quality and 
meet regulatory requirements.

The introduction of the process analytical technology (PAT) 
initiative by the US Food and Drug Administration (FDA) 
aimed to enable real‐time, inline measurement and control of 
critical process parameters and quality attributes (FDA 2004). 
Univariate sensors are commonly applied to monitor critical 
process parameters in upstream and downstream unit opera
tions. Modern PAT frameworks integrate spectroscopic tools 
and chemometric models (Rolinger et al. 2020a) to enable real‐ 
time impurity quantification (Brestrich et al. 2015; Capito 
et al. 2015; Wei et al. 2022; Chen et al. 2024), protein structure 
assessment (Rüdt et al. 2019), reaction monitoring (Schiemer 
et al. 2023), or precipitation behavior (Dietrich et al. 2024). 
These innovations support a shift toward Quality by Design 
(QbD) approaches in biopharmaceutical production (Glassey 
et al. 2011).

Early studies using vibrational spectroscopy techniques, such as 
Raman and FTIR, reported changes in the amide I and III bands 
and the appearance of intermolecular ‐sheet structures for 
proteins subjected to heat stress (Alizadeh‐Pasdar et al. 2002; 
Militello et al. 2004). It has been shown that environmental 
stresses (e.g., pH, temperature, and ionic strength) induce spe
cific conformational changes that can be spectroscopically 
monitored and are commonly associated with protein aggre
gation (Ettah and Ashton 2018). Later studies reported similar 
spectral changes in the amide bands for different naturally oc
curring proteins as well as for common therapeutic proteins 
such as immunoglobulin G (IgG) (Gómez de la Cuesta 
et al. 2014; Lewis et al. 2014; Barnett et al. 2015; Zhou 
et al. 2015). Aside from the changes in the amide bands, mul
tiple studies also report the shifts in the vibrational bands of 
aromatic amino acid side chains like tryptophan, tyrosine, or 
phenylalanine, which undergo changes in their solvatization 
during protein aggregation (Barnett et al. 2015; Zhou 
et al. 2015). However, the vibrational spectra are not only 
affected by protein aggregation but also by other environmental 
factors such as pH, protein concentration, or excipients (Ota 
et al. 2016; Sato et al. 2023; Makki et al. 2021) as well as intrinsic 
fluorescence and Rayleigh scattering of the protein analytes 
requiring targeted preprocessing of the collected Raman spectra 
(Rolinger et al. 2020a; Dietrich et al. 2024).

Due to fine differences between the native and the aggregated 
proteins and the influence of environmental factors on the 
Raman spectra, multivariate data analysis is commonly used to 
monitor purification processes and, in particular, protein 
aggregation during process development and early formulation 
stages (Gómez de la Cuesta et al. 2014; Zhang et al. 2019; Wei 
et al. 2022; Wang et al. 2023). While these methods often 
indicate a correlation between spectral features and aggregation 
state, the specific spectral changes directly linked to aggrega
tion and the detection limits for low aggregate levels remain 
uncertain. Hence, despite the reported evidence of Raman ef
fects corresponding to protein aggregation, a reliable method for 
real‐time quantification of protein aggregates in downstream 

process operations using structural markers is not yet fully 
established.

To be used for real‐time process monitoring via spectroscopic 
techniques, multivariate regression models have been estab
lished for various separation processes such as precipitation 
(Dietrich et al. 2024), chromatography (Rüdt et al. 2017), or 
filtration (Rolinger et al. 2020b). Raman spectroscopy has pre
viously been used in bioseparations, but has been shown to 
have limited accuracy due to the inherent variation in spectral 
signals (Feidl et al. 2019; Rolinger et al. 2020b, 2023). Previous 
studies have shown that these limitations can be circumvented 
when combining chemometric models with mechanistic pro
cess models (Rolinger et al. 2023; Schiemer et al. 2023) or using 
machine learning models such as convolutional neural net
works (CNNs) (Schiemer et al. 2024).

To address these limitations, in this study, protein aggregates 
are generated under controlled conditions, using bovine serum 
albumin (BSA) as a model system, to isolate and characterize 
their spectral signatures. The objective is to identify reliable 
spectral markers capable of distinguishing between native and 
aggregated BSA species. These markers should enable a quan
titative assessment of monomer and aggregate content. Subse
quently, these markers are evaluated for their suitability in the 
inline monitoring of the separation of BSA monomers and 
dimers via anion‐exchange chromatography (AEX). Finally, the 
recorded spectral data are used to train chemometric partial 
least squares (PLS) and CNN models that enable real‐time 
discrimination and quantification of BSA size variants.

2 | Materials and Methods 

2.1 | Experimental 

2.1.1 | Forced Degradation by Heat Incubation 

Forced degradation was performed to generate BSA aggregates 
and to identify Raman spectral features associated with aggrega
tion. A BSA stock solution at a concentration of approximately 60 
g/L was prepared by dissolving lyophilized BSA (Sigma‐Aldrich, 
St. Louis, Missouri, the United States) in ultrapure water 
(PURELAB Ultra, ELGA LabWater, Celle, Germany). The stock 
solution was subsequently diluted 1:2 using a mixture of 500 mM 
NaCl solution and ultrapure water to prepare BSA samples with 
final NaCl concentrations of 0, 50, 100, and 250 mM, maintaining 
a total protein concentration of approximately 30 mg/mL. Based 
on these experiments, a NaCl concentration of 150 mM was 
identified as providing reproducible aggregation kinetics and was 
therefore selected for all subsequent studies. Aliquots of these 
BSA solutions were transferred into 1 mL Eppendorf tubes 
(Eppendorf SE, Hamburg, Germany), which were incubated at 
65 C for durations of 0, 30, 60, 90, and 120 min in a stationary 
state (without agitation) using a heat block (Eppendorf SE, 
Hamburg, Germany). Each condition was prepared and incu
bated in triplicate. Following incubation, samples were filtered 
using 0.2 µm cellulose acetate syringe filters (Sigma‐Aldrich, St. 
Louis, Missouri, the United States). Raman spectroscopy mea
surements were conducted offline and automated using a custom‐ 
built automated Raman measurement platform (ARMP) 
(described in Section 2.1.4). Residual samples were diluted 1:100 
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and analyzed by ultrahigh‐performance–size‐exclusion chroma
tography (UHP‐SEC) for reference analytics.

2.1.2 | Mixing Studies 

Mixing studies were conducted to evaluate whether previously 
identified spectral features are sustained while varying the total 
protein concentration and aggregate content in an independent 
manner. Therefore, an aggregate‐enriched BSA solution was 
prepared by heat incubation. A 300 mL BSA stock solution was 
prepared (225 mL centrifuge tubes, Thermo Scientific, Wal
tham, the United States) at a protein concentration of 30 g/L 
and a NaCl concentration of 50 mM. All subsequent experi
ments were conducted at a NaCl concentration of 150 mM, 
chosen as it provided reproducible aggregation kinetics, while 
heating time was systematically varied to control aggregate 
formation. A 200 mL aliquot was incubated at 65 C for 24 hours 
(Incubated orbital shaker, Thermo Scientific, Waltham, the 
United States) to induce aggregation, while the rest was left 
unstressed and stored at 4 C until further use. After incubation, 
the stressed solution was filtered using a 0.2 µm cellulose ace
tate vacuum filtration membrane (Sigma‐Aldrich, St. Louis, 
Missouri, the United States).

The methodology resulted in two BSA stock solutions with 
concentrations of 30 g/L and 19.85 g/L, containing 25% and 
50% aggregates, respectively, as determined by the ratio of the 
aggregate peak area to the total peak area in the UHP‐SEC 
analysis. This aggregate yield in the stressed stock is consider
ably lower than for the forced degradation experiments. This is 
believed to be due to the scaling of the volume from 1 mL to 
200 mL. The lower aggregate yield restricted the covered 
aggregate range in the mixing study.

For the remainder of this manuscript, we will refer to these as 
the unstressed stock and stressed stock. To prepare samples 

where the protein concentration and aggregate fraction are 
varied independently, a Latin hypercube sampling (LHS) design 
with two dimensions, with 48 samples, was used. The LHS was 
scaled to cover the ranges from 0 to 15 g/L total protein con
centration and 25%–50% aggregates. Each condition was pre
pared in duplicate at a total sample volume of 800 µL, resulting 
in 96 samples in total. For each sample, a Raman spectrum was 
collected using the ARMP, with 20 acquisitions averaged in the 
mixing experiments to improve the signal‐to‐noise ratio (SNR). 
The aggregate content was determined via UHP‐SEC. Com
prehensive information on sample compositions, mixing ratios, 
concentrations, and the replicate structure is provided in 
Table S1. The corresponding experimental workflow is depicted 
in Figure 1.

2.1.3 | Bind‐Elute AEX Experiments 

To generate process data for the separation of BSA monomers 
and aggregates, bind‐elute AEX experiments with inline Raman 
measurements were conducted using a 5 mL Eshmuno Q col
umn (Merck KGaA, Darmstadt, Germany) on an Äkta Pure 
system (Cytiva, Uppsala, Sweden). Unstressed BSA stock solu
tions at a concentration of approx. 15 g/L and 25% aggregate 
content, prepared in 20 mM Tris, pH 8, were used as feedstock. 
The column was equilibrated for 5 column volume (CV) using 
20 mM Tris, pH 8, prior to sample loading. Following sample 
loading, the column was washed for 5 CV using equilibration 
buffer. Gradient elution was performed at different lengths 
ranging from 0 to 500 mM NaCl, followed by a strip phase at 1 
M NaCl for 5 CVs. The column was subsequently regenerated 
using 1 M NaOH for 5 CVs and reequilibrated using equili
bration buffer. During the elution phase using a flow rate of 
1 mL/min, fractions were collected at intervals of 200 µL, and 
Raman spectra were recorded at an exposure time of 500 ms at a 
laser power of 495 mW, resulting in 24 acquisitions per fraction. 

FIGURE 1 | Schematic representation of the forced degradation (A) and mixing study workflows (B). (A) Heat‐induced BSA aggregation was 
generated by incubating samples at 60 C for 0–120 ṁin at defined NaCl concentrations, followed by offline Raman spectroscopy and UHP‐SEC 
reference analytics. (B) To assess spectral features under independently varied protein concentration and aggregate levels, unstressed and heat‐ 
stressed BSA stock solutions were combined according to a Latin hypercube design spanning 0–15 g/L protein and 25%–50% aggregates, with Raman 
spectra and UPSEC data collected for all conditions. 
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In contrast to the spectra generated during the mixing studies, 
where 20 acquisitions were averaged to improve the SNR, single 
500 ms acquisitions were used during inline AEX to preserve 
temporal resolution. These single acquisitions were subse
quently averaged over the time intervals corresponding to each 
UPLC‐analyzed fraction. The Raman spectrometer was incor
porated into the flow path between the outlet valve and the 
fractionator. In total, 7 AEX experiments were performed using 
different loading densities, gradient lengths, and feedstocks, 
which were prepared from two different batches. An overview 
of the experimental conditions is presented in Table 1.

2.1.4 | Automated Raman Measurement Platform 

Offline Raman spectroscopy measurements were conducted 
using an in‐house developed system referred to as ARMP. The 
platform consists of an Äkta purifier system equipped with an 
autosampler A‐905 combined with a Raman spectrometer. The 
Raman BioReactor BallProbe, inserted a Raman flow cell with a 
dead volume of 240 µL (both MarqMetrix, Seattle, Washington, 
the United States), was connected to a HyperFluxTM PRO Plus 
785 spectrometer, operated by SpectralSoft 3.2.600.1 software 
(Tornado Spectral Systems, Mississauga, Ontario, Canada). The 
ARMP automatically injects samples into the Raman flow cell 
and collects Raman spectra using predefined configurations. 
For technical details about the ARMP, we refer the reader to 
Heyer‐Müller et al. (2025).

2.1.5 | Raman Spectroscopy—Acquisition Settings 

All measurements were conducted using the maximum laser 
power of 495 mW. For the forced degradation experiments and 
the mixing studies, the exposure time was set to 1200 ms per 
acquisition. Each collected spectrum was averaged from 20 
acquisitions. For inline measurements during AEX experi
ments, the exposure time was set to 500 ms per acquisition. The 
raw Raman signal was treated by a Y‐correction and a cosmic 
ray filter as directly implemented in the operating software 
SpectralSoft. The Raman spectrometer was calibrated using a 
white light source at regular intervals.

2.1.6 | UHP‐SEC 

To enable precise determination of size‐variant distributions, 
samples were analyzed via UHP‐SEC. Therefore, a TSKgel Su
perSW mAb HTP column (4 µm particle size, 4.6 × 150 mm ) 

operated at a flow rate of 0.3 mL/min was used. The mobile 
phase consisted of 15 mM sodium phosphate buffer at pH 6.2. 
Before injection, all samples were diluted to achieve a protein 
concentration within the range of 0–1 mg/mL. Analysis was 
conducted using a Vanquish UHPLC system controlled by 
Chromeleon software (version 7.2) (both Thermo Fisher Sci
entific, Waltham, Massachusetts, the United States).

2.2 | Data Analysis 

All data analysis and computations were performed in 
Python 3.12.7.

2.2.1 | Spectral Preprocessing 

Raman spectral processing consisted of multiple steps, includ
ing cropping, normalization, baseline and background correc
tion, smoothing, and derivative computation. Each operation 
and its rationale are detailed below, with processing chains 
optimized based on empirical testing across different data types.

All spectra were first cropped to 500–3250cm 1, followed by 
normalization to the water band at 3250cm 1. Truncation was 
performed to remove irrelevant spectral regions and improve 
the quality of correction steps downstream. The lower bound of 
500cm 1 was chosen as smaller wavenumbers solely contain 
baseline drift and bands stemming from the sapphire glass built 
into the probe head. The upper bound of 3250cm 1 corresponds 
to the maximum of the water band in the covered bandwidth 
(Furić et al. 2000) and was hence used for normalization. 
Normalization was done to compensate for small variations in 
total intensity potentially induced by turbidity (Dietrich 
et al. 2024). Subsequently, background subtraction was per
formed. For forced degradation and mixing experiments, a 
water spectrum was subtracted. For AEX experiments, a buffer 
spectrum originating from the start of the respective elution 
phase was subtracted. Background subtraction was performed 
to remove the overlapping water and buffer bands and enable 
better visualization of the spectral effects. Furthermore, base
line correction was performed using a Whittaker filter through 
the derivative peak‐screening asymmetric least squares algo
rithm (DERPSALSA) algorithm, as implemented in the pyba
selines library (v. 1.1.0), with parameters k= 10 , = 0.025 , and 
d = 2 (Erb 2025). Finally, the Savitzky–Golay (SG) filter as 
implemented in scipy (v. 1.14.1) was employed both for spectral 

TABLE 1 | Experimental conditions for the bind‐elute AEX experiment used in the inline Raman monitoring of BSA monomer and aggregate 
separation.

Run ID Gradient length Load density Total feed concentration HMWC content Dataset
(CV) (mg/mL resin) (mg/mL) (%) (−)

Batch 1 5 CV 5 15 15 25.33 Train
Batch 1 15 CV 15 22.5 15 25.33 Train
Batch 2 10 CV 10 30 15 15.67 Train
Batch 1 10 CV 10 17.5 15 25.33 Test
Batch 1 Step Step 22.5 15 25.33 Test
Batch 2 5 CV 5 22.5 15 15.67 Test
Batch 2 15 CV 15 45 15 15.67 Test
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smoothing and derivative computation to enhance subtle 
spectral variations. Here, a second‐order polynomial and a 
window size of 21 were used in all cases. In the following, 
spectral data are displayed either after smoothing only or 
after second derivative computation.

2.2.2 | Evaluation of Spectral Bands and Correlation 

To evaluate the changes of spectral bands and their correlation 
with the aggregate content, multiple spectral markers or metrics 
were used throughout this study.

It is known that the amide I and III vibrations carry the most 
structural information of proteins, which are located at 
1500–1800 cm−1 and 1200–1400 cm−1, respectively (Lippert 
et al. 1976; Williams 1986; Rygula et al. 2013). While the amide 
I region is largely overlapped with the water bending vibra
tion, the amide III region is largely unaffected by water and, 
depending on the used buffer system, free of other interfering 
species. In addition, the Fermi doublet of tryptophan side 
chains is known to be located at the frequencies of approx. 
1340 and 1360 cm−1 (Rygula et al. 2013) and to provide an 
informative marker of local solvent environment (Harada 
et al. 1986; Eisenberg and Juszczak 2012). Given the local 
superposition of the amide III and tryptophan vibrations, we 
chose to observe the ratio of the intensities at 1341 and 1320 
cm−1 as the most prominent bands in this region. We will refer 
to this intensity ratio as the amide III ratio for the remainder 
of this manuscript.

To compress the information contained in the amide I band into 
a single spectral marker, the center of mass was calculated as 
the intensity‐weighted average wavenumber within the chosen 
spectral range (1500–1800cm 1),

I
I

¯ = i i i

i i
(1) 

where Ii and i are the intensity and wavenumber at point i, 
respectively. The center of mass is a common marker summa
rizing observed spectral shifts in an easy‐to‐comprehend man
ner. To improve the precision of the calculation, the acquired 
spectra were interpolated to a resolution of 1000 steps in the 
given spectral range.

Finally, the SNR was used as a correlation metric between the 
spectral intensity and the aggregate content. The SNR was 
calculated as

SNR x= Var( ˆ)
ˆ 2

(2) 

with ˆ being the regression coefficients of a univariate linear 
model of type y x= + with normally distributed errors 

and ˆ 2 being the residual variance of the linear model for 
wavenumber according to Soch and Allefeld (2018). To cal
culate SNR for the Raman spectroscopy data using Equation (2), 
a linear model was built for each wavenumber individually. A 
spectral feature is considered to be correlated with aggregate 
content if it shows high SNR. Low values indicate a high degree 
of noise and no linear correlation. For all spectral markers in 
the mixing study (Figure 3), error bars represent the standard 

deviation of two independent replicates, each derived from an 
averaged spectrum comprising 20 acquisitions.

2.2.3 | Regression Modeling 

Data Split Regression models were calibrated using inline 
collected data from AEX experiments with their respective as
signments to training and test sets presented in Table 1. Raman 
spectra were preprocessed as laid out in Section 2.2.1 and used 
as inputs to the regression models. As outputs, the absolute 
concentrations of monomers and aggregates were chosen as 
determined by UHP‐SEC for all collected fractions. A leave‐one‐ 
batch‐out (LOBO) scheme was chosen for cross‐validation for 
all regression models. The LOBO cross‐validation iterates 
through all experiments included in the training set, leaving 
each of them out once. The LOBO scheme has been found to 
provide more realistic estimates of prediction errors than more 
common K‐fold cross‐validation schemes and was hence 
selected for model evaluation (Rolinger et al. 2020b; Dietrich 
et al. 2024).

PLS Regression PLS regression models were calibrated as 
single‐output (PLS1) and multi‐output (PLS2) models. To 
improve model accuracy, additional preprocessing was applied 
to the input data. Additional preprocessing involved truncating 
the Raman spectra to 600–1800cm 1, followed by SG filtering 
with a window size of 15 and varying derivative orders (0, 1, 
or 2). Finally, the input data was mean‐centered. The number of 
latent variables and the SG derivative order were optimized 
during cross‐validation by grid search in the ranges 2–14 and 
0–2, respectively. In total, eight different PLS model variants 
were calibrated. For each combination of preprocessing opera
tions, a PLS1 and PLS2 model was calibrated. Aside from the 
previously mentioned preprocessing operations, there are two 
PLS variants that are calibrated using synthetic data. For more 
details on the generation of these synthetic data, we refer to 
Section 2.2.3.

CNN CNN models were calibrated as multi‐output models, 
predicting the monomer and aggregate concentrations simul
taneously. The CNNs were implemented in tensorflow (v. 2.11). 
The model architecture and training methodology were similar 
to Schiemer et al. (2024). The model architecture consisted of 
three convolutional layers with defined kernel sizes of 15, 7, and 
3 and a rectified linear unit (ReLU) activation function. Average 
pooling with a pool size of 2 was employed after each con
volutional layer. Each convolutional layer was configured to use 
5 kernels. After the convolutional block, a flattening operation 
was implemented to project all kernel outputs onto a single 
vector. A fully connected (FC) layer with 50 units and a ReLU 
activation function was used as the subsequent layer. Finally, 
the output layer was configured to use 2 FC units and a ReLU 
activation function.

CNN models were calibrated with and without synthetic data 
augmentation, which will be denoted CNN and CNN‐Aug for 
the remainder of this manuscript. For non‐augmented CNN and 
the augmented CNN, training was conducted over 500 and 50 
epochs, respectively, with a batch size of 32 using the mean 
squared error (MSE) as the loss function. The target variables 
were standardized using a min–max scaler to ensure equal 
contribution of both targets despite absolute concentration 
differences. The learning rate was initially set to 0.001, and a 
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learning rate scheduler was configured to halve the learning 
rate if the validation loss was not reduced for 5 consecutive 
epochs. The non‐augmented CNN used the original training 
data as input data. To be able to compute the validation loss at 
every epoch of the training cycle, the training data was ran
domly divided into calibration and validation sets, reserving 
25% of the original training data points for calculating the val
idation loss. In the case of the augmented CNN, data aug
mentation was employed to generate a set of 10,000 synthetic 
data points, which served for calibration. The validation loss 
was calculated using 100% of the original training data. For the 
details of the data augmentation method, we refer to 
Section 2.2.3.

Data Augmentation Data augmentation was used to enhance 
model robustness, utilizing the local subset augmentation (LSA) 
technique introduced in Schiemer et al. (2024). In short, the 
LSA technique extracts the theoretical pure component spectra 
from a subset of the training data and generates synthetic 
spectra by recombining the pure component spectra. A local 
subset size of 39 was used in all instances. The standardized 

Euclidean distance as given by 
i
k
jjjj

y
{
zzzzd x y( , ) = i

n x y
S=1

( )i i

i

2

2 was 

used as a metric to select the local subset. Random white noise 
with a standard deviation of 0.0001 intensity counts and nor
mally distributed shifts along the wavenumber axis with a 
standard deviation of 0.25cm 1 were further introduced to the 
synthetic spectra.

Error Metrics Model performance was assessed using the R2

and root mean squared error (RMSE) metrics. In all cases, these 
metrics are reported separately for the monomer and aggregate 
species. Additionally, R2 and RMSE are provided for the 
aggregate fraction as determined by v c c c= ( + )agg agg agg mono , 
where cmono and cagg denote the absolute concentration of 
monomer and aggregate species given in g/L, respectively. To 
avoid division by small values, vagg was calculated only for 
samples where the denominator summed to values greater than 
0.1 g L. The metrics for cross‐validation were calculated based 
on the predicted values for the iterations when the respective 
experiments were assigned to the validation set.

Augmentation Test To assess the selectivity of the evaluated 
models, an augmentation test was conducted using the LSA 
technique described in Section 2.2.3 to evaluate whether the 
models correctly predict monomer and aggregate combinations 
that were not covered in the experimental data. To provide a 
challenging dataset, the synthetic spectra were generated based 
on the experimental data originating from the test set. The LSA 
algorithm was used in the same configuration as laid out in 
Section 2.2.3. The monomer and aggregate combinations cov
ered in the augmentation test were sampled from a uniform 
distribution in the ranges [0, 20] and [0, 5] for the monomer and 
aggregate species, respectively. In total, 1000 random samples 
were drawn for which synthetic spectra were generated. The 
calibrated models were finally used to predict the monomer and 
aggregate concentrations from the synthetic spectra, and the 
model accuracy was evaluated based on the sampled values as 
the ground truth. The distribution of the sampled values is 
visualized in Figure S1. This methodology makes use of the test 
set data by diversifying the obtained data through synthetic 
amplification. Further, it enables a more systematic evaluation 
of the model selectivity for the individual species.

Test Set Rotation Test To further compare the robustness and 
accuracy of the different model variants, we conducted a test set 
rotation based on a Leave‐P‐Batches‐Out scheme with P = 4. 
With 7 experiments in total, this yielded 35 different train‐test 
splits. We conducted the rotation test with the best‐performing 
PLS model and the two different CNN models, one without and 
one with data augmentation. In each rotation, the respective 
model was calibrated using the selected training batches. For 
both model types, the methodology introduced in Section 2.2.3
was used. For the PLS model, the number of components and 
the derivative order were fixed to the optimal setting found for 
the training–test split used in the rest of this study; that is, no 
individual optimization was performed for each rotation. The 
optimal number of components was 2 and 14, and the order of 
derivative was 0 and 1 for the monomer and aggregate species, 
respectively, for the Crop‐SG‐PLS1 model.

3 | Results and Discussion 

3.1 | Forced Degradation Studies 

The primary objective of forced degradation studies was to identify 
Raman spectral features associated with aggregation. Therefore, 
samples with a concentration of 30 g/L BSA were exposed to 
thermal stress at 65 C and analyzed for their aggregate content via 
UHP‐SEC and Raman spectroscopy. Figure 1A schematically 
presents the methodology and the aggregate content over time. 
The UHP‐SEC results illustrated in Figure 1 demonstrate a time‐ 
dependent formation of aggregated species, which saturates after 
roughly 90 min. Comparative retention time analysis showed that 
heat‐induced aggregates elute earlier than native aggregates, sug
gesting the formation of higher‐order multimers (data not shown). 
Notably, the data indicate that with increasing ionic strength, heat‐ 
induced aggregate formation decreased. Forced degradation has 
been commonly used in Raman spectroscopy studies for aggregate 
detection (Boulet‐Audet et al. 2014; Barnett et al. 2015; Zhou 
et al. 2015), as batch‐to‐batch variations do not cover the experi
mentally interesting range to study the spectral effects of protein 
aggregation. However, the aggregates produced by, for example, 
heat stress are not necessarily structurally coherent with naturally 
occurring aggregates. Nevertheless, forced degradation is a helpful 
tool to efficiently produce aggregated proteins for further investi
gation. The authors considered the use of non‐native aggregates 
sufficient for initially investigating spectral features affected by the 
structural changes induced by aggregation, but acknowledge the 
need for validation in native aggregate species.

To further investigate the structural changes affected by 
aggregation, offline‐recorded Raman spectra of the thermally 
stressed samples were evaluated. Figure 2A,F shows 
background‐corrected and second derivative Raman spectra for 
the different sampling time points, respectively. The upper 
panels in (B) and (G) depict the SNR between the single spectral 
features and the aggregate content. The top correlative features 
together with manually selected (manual selection was based 
on visual inspection of all wavenumber ranges, in addition to 
those previously identified in literature) ones are shown in the 
lower panels (B–E) and (G–K) over time with their respective 
standard deviations. In the background‐corrected spectra (cf. 
Figure 2A), the top correlative features appear in the region of 
the phenylalanine band between 990 and 1010cm 1. Spectral 
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features in the amide regions (amide III at 1241cm 1 and amide 
I between 1550 and 1700cm 1, as expressed by the center of 
mass show minor correlations with higher standard deviations. 
The center of mass of the amide I band was calculated ac
cording to Equation (1). The amide III ratio (I I1340 1321) was not 
affected. When additionally treated with the second derivative 
SG filter, the SNR displays a high degree of correlation in the 
fingerprint region, mainly between 1200 and 1400cm 1, as well 
as in the amide I between 1550 and 1700cm 1, with values of 
up to 300 and 500, respectively.

The amide I region has previously been identified as a reliable 
marker for aggregation in Raman spectroscopy studies (Zhou 
et al. 2015; Shivu et al. 2013). Especially for proteins with pre
dominantly α‐helical structures such as BSA, the amide I band 
is considered a reliable structural marker. In particular, the 
formation of intermolecular β‐sheets is known to cause a shift 
in the amide I band with decreasing intensity around 1650 cm−1 

and increasing intensity around 1670 cm−1. This shift may 

either be observed in second‐derivative spectra thanks to the 
enhanced selectivity by this treatment or on a macroscopic scale 
by a shift in center of mass (Militello et al. 2004). Moreover, the 
amide I is the most promising structural marker in Raman 
spectroscopy of proteins due to the high intensity compared to 
amide II and III vibration modes or those of tyrosine and 
tryptophan side chains (Zhou et al. 2015). However, the over
lapping water band, which was removed in this analysis, may 
pose a challenge in determining accurate amide I patterns as 
the water band may be affected by the solution environment, 
such as salt concentrations (Fontana et al. 2013).

3.2 | Mixing Studies 

Following the identification of Raman spectral features associ
ated with aggregation, samples were prepared from an 
unstressed and a stressed BSA stock solution, where protein 
concentration and aggregate content were systematically varied 

FIGURE 2 | Results of the forced degradation experiment. Offline recorded Raman spectra and SNR for each wavenumber (A). Spectra are 
shown after preprocessing as described in Section 2.2.1. The color gradient reflects the increasing duration of heating. Intensities at 999 and 1241, the 
ratio 1341/1320 cm−1, and the center of mass of the amide I region (1500–1800cm 1) were extracted from the preprocessed Raman spectra and 
highlight the evolution over time (B–E). Second‐derivative Raman spectra and corresponding SNR (F). Temporal evolution of selected wavenumbers 
(1368, 1397, 1398, 1651, and 1673cm 1) corresponding to the top five SNR values (G–K). 
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(cf. Section 2.1.2) to evaluate the robustness of the spectral ef
fects found in Section 3.1. LHS was employed as a statistical 
approach to efficiently cover the possible design space with a 
given number of samples. For each sample, Raman spectros
copy measurements were subsequently performed offline using 
the ARMP. Figure 1B schematically depicts the described 
workflow, and Figure 3A–F presents the strongest correlations 
of individual spectral features with overall protein concentra
tion and aggregate content.

The spectral intensities at 999cm 1, representing the phenyl
alanine band, closely follow protein concentration in the samples 
with standard deviations below 5 %. A slight nonlinear trend to
ward higher concentrations, along with a few outliers at high 
concentrations, can be observed. The nonlinearity highlights the 
complexity of Raman spectroscopy data, as the raw signals undergo 
multiple preprocessing steps, which may influence the extent of 
nonlinearity observed. Amide I‐related spectral features, such as 
the 1673 cm 1 bands in the second derivative spectra, as well as 
the center of mass of the amide I, linearly follow the aggregate 
content. In all instances, outliers can be observed. These outliers 
mainly originate from samples with low protein concentrations 
(< 3 g/L), where analysis becomes more challenging due to the 
overall low signal intensity. These results corroborate findings from 
forced degradation experiments and demonstrate the potential of 
the identified spectral features as reliable markers for quantifying 
protein aggregation.

The selection of the 1673 and 1651cm 1 features in Figure 3
reflects the outcomes of the forced degradation study (Figure 2), 

where the amide I region exhibited the strongest and most 
consistent correlation with aggregation. These wavenumber 
regions correspond to opposing components of the amide I band 
associated with shifts from native ‐helical structure 
(approximately 1651cm 1) toward intermolecular ‐sheet for
mation (approximately 1673cm 1). Their inclusion in the 
mixing‐study analysis therefore provides a mechanistic link to 
the structural transitions identified earlier and enables an eva
luation of whether these aggregation‐related spectral changes 
remain robust when protein concentration and aggregate con
tent are varied independently.

Beyond amide I‐related markers, various Raman intensity 
ratios involving protein‐specific bands were investigated as 
potential indicators of protein aggregation. Specifically, the 
amide III ratio ( I I1340 1321) and the peak maximum within 
the 920–950 cm−1 range were assessed (Ashton and 
Blanch 2010; Militello et al. 2004; Li and Li 2009; Zhou 
et al. 2015; Alizadeh‐Pasdar et al. 2002). However, both 
showed only weak correlations with aggregate levels, 
accompanied by large standard deviations (> 20%) and the 
presence of significant outliers, limiting their reliability. 
Although the 1341/1320cm 1 ratio is included for com
pleteness because it has been reported as a potential 
aggregation‐sensitive marker in prior Raman studies, our 
results demonstrate that it is not consistently responsive 
under the conditions tested here. We therefore treat it as an 
auxiliary rather than a primary structural marker and do not 
rely on it for quantitative interpretation.

FIGURE 3 | Spectral features observed in offline‐recorded Raman spectra of BSA obtained during mixing studies, preprocessed as described in 
Section 2.2.1. Raman intensities, peak shifts, and band ratios are plotted as functions of total protein concentration (g/L), aggregate fraction (%), and 
high molecular weight component (HMWC) content (%). Error bars represent standard deviations of replicate measurements. Color scale from dark 
to light indicates increasing protein concentration (g/L). The Raman bands or markers 1004, 1673, 1651, 1341/1320, Peak Maximum of 920–950 and 
the center of mass of 1500–1800 are shown in (A–F), respectively. 
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These findings highlight that while spectral features beyond the 
Amide I band can provide supplementary structural insights 
into aggregation processes, their robustness and reproducibility 
for aggregate quantification remain limited. The phenylalanine 
band, as well as the amide I region, remains the most reliable 
spectral marker for accurately monitoring aggregation dynam
ics. In contrast, other markers showed high variability and 
limited statistical significance, reducing their suitability for 
quantitative analysis.

3.3 | Bind‐Elute AEX Experiments 

3.3.1 | Qualitative Spectral Analysis 

Building on insights from the mixing studies, bind‐elute AEX 
experiments were conducted to assess inline Raman detection 
capabilities for naturally occurring BSA aggregates under 
operational conditions. Chromatographic conditions comprised 
gradient elutions with varying loading densities from two BSA 
batches and one step elution (cf. Table 1). Continuous Raman 
spectra acquisition during the elution phases facilitated direct 
comparison with UHP‐SEC analyses of collected fractions. 
Compared to the heat‐induced aggregation system, where ag
gregates with higher‐order structures formed rapidly at elevated 
temperatures and low ionic strength, the chromatography load 
material was solely comprised of monomeric and dimeric BSA 
species.

In Figure 4, fraction analytics from all AEX experiments are 
overlaid with selected spectral markers, namely the amide III 
ratio I I1341 1320 and the center of mass of the amide I band, 
obtained from inline acquired Raman spectra. The raw spectra 

were averaged over the collection interval of each fraction and 
preprocessed the same way as in the forced degradation and 
mixing experiments. Due to the buffer system used in the 
chromatographic separations, the spectral background correc
tion was performed using the first acquired spectrum in the 
elution phase. In case the previously defined spectral markers 
prove selective for aggregate detection, we expect the following 
behavior during AEX elutions: Due to the timely separation of 
monomeric and dimeric species, the spectral markers would 
initially remain constant until the co‐elution of the dimeric 
species, which is more strongly retained by the chromatography 
resin. When the co‐elution begins, the spectral marker is ex
pected to increase as the relative content of the dimeric species 
is successively increasing until the elution peak ends. For non‐ 
separating conditions, the spectral markers are expected to 
remain constant over the entire elution phase. The absolute 
value depends on the aggregate content in the elution pool.

In Figure 4, both the amide III ratio and the center of mass 
follow the described behavior for all tested chromatographic 
conditions, despite some non‐idealities. For runs from Batch 1 
(A–C), the loading densities ranged from 15 to 22.5 g/L resin. 
For the longer gradients of 10 and 15 CVs (B, C), this led to an 
eluate pool dilution with maximum monomer concentrations of 
< 15 g/L. In those cases, the spectral markers appear unstable 
with a high degree of scattering. As a result, it is vaguely pos
sible to deduce the onset of the co‐elution of the dimeric spe
cies. For experiments from Batch 2 (D–F), for which loading 
densities ranged from 22.5 to 40 g/L, the spectral markers show 
a lower degree of scattering, and fewer outliers were observed. 
While for the 10 and 15 CV runs (E, F), the actual onset of co‐ 
elution after approximately 52 and 62 min, respectively, is 

FIGURE 4 | Elution profiles and structural markers of BSA under varying process conditions. Protein separation from two BSA batches was 
performed using different gradient lengths: (A, D) 5 CV; (B, E) 10 CV; (C, F) 15 CV; and (G) step elution. Blue and red bars represent monomer and 
aggregate concentrations (g/L), respectively. Black lines indicate aggregate fractions across elution time. Black circles and black triangles denote 
Raman spectral markers: intensity ratio (1341 cm−1/1320 cm−1) and amide I band center of mass (cm−1), respectively. To improve legibility for panels 
(A–F), Raman marker traces were smoothed by plotting the mean of three consecutive spectra at the corresponding mean elution time; Panel (G) 
shows all measured points. 
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accurately represented by the spectral markers, the spectral 
markers in the 5 CV run (C) do not match the fraction analytics. 
Notably, the step elution experiment (G) fulfills the expecta
tions, and the spectral markers remain constant in the width of 
the elution profile. As the elution occurred within approxi
mately 2 min, the number of collected fractions and corre
sponding Raman spectra is comparably low. In all experiments, 
outliers can be observed, which mostly correspond to fractions 
at the front and end of the elution peak with low concentrations 
(< 3 g/L).

The depicted selection of spectral markers for AEX experiments 
is not exhaustive. However, they showed the best qualitative 
behavior among the studied markers. Notably, previously 
identified amide I‐related markers such as the 1651 and 
1673cm 1 intensities in the second derivative spectra were not 
found to be selective for aggregate content as they were affected 
by the total protein concentration and therefore followed the 
overall elution profile. Hypothetically, the higher‐order struc
ture aggregates generated during the heat treatment may form 
more intermolecular ‐sheets than natively occurring dimers 
and hence show a pronounced effect in the amide I region, 
which upholds variations in protein concentration (Barnett 
et al. 2015; Zhou et al. 2015). Inversely, the amide III ratio, 
which showed no significant effect in forced degradation or 
mixing experiments, served as a valid indicator in AEX ex
periments. This is likely because pH and salt gradients in AEX 
can alter hydrogen bonding and polarity around tyrosine resi
dues, enhancing spectral differences between monomeric and 
aggregated forms (Antosiewicz and Shugar 2016). Despite the 
ineffectiveness of the amide I‐related single‐variable intensities, 
the cumulative measure of the center of mass proved suitable 
across all experimental modes. Across the studied literature, the 
center of mass appears to be the most reliable qualitative 
spectral marker for protein aggregation. However, it is difficult 
to use this marker for direct quantification of aggregate content, 
due to possible nonlinearities or background effects. Especially 
when used in biopharmaceutical processes, such as chroma
tography, changing buffer environments or excipients is com
mon. Even in AEX gradient elutions, the salt concentration is 
constantly changing, which has an effect on the water band 
(Furić et al. 2000) and therefore affects background correction 
steps in Raman spectroscopy. In summary, these results present 
the first direct illustration of how protein aggregation affects 
Raman spectra in chromatographic separation processes and 
shows applicability of Raman spectroscopy to monitoring bio
pharmaceutical downstream operations. Due to concentration 
variations and spectral noise, the use of Raman spectroscopy for 
direct quantification necessitates the calibration of statistical 
models.

3.3.2 | Statistical Model Building 

To enable quantitative prediction of protein size variants from 
Raman spectra, multiple regression models were calibrated 
targeting the concentrations of monomeric and dimeric BSA 
species. Model training incorporated spectra from three repre
sentative bind‐elute AEX experiments, while testing was per
formed on four independent datasets to assess generalizability 
across varying chromatographic conditions (cf. Table 1). Mul
tiple different statistical model variants were compared using 

different performance criteria, namely their prediction error on 
training, cross‐validation, augmentation test, and external test 
sets. For PLS models, every preprocessing variant was tested 
using a single‐output (PLS1) and a multi‐output version (PLS2). 
The studied CNNs were exclusively multi‐output. The per
formance metrics of the different model variants are reported in 
terms of R2 and RMSE in Tables 2A and 2B.

Figure S2 presents RMSE values for monomer and aggregate 
components in absolute terms (A and B), as well as RMSE for 
the aggregate fraction calculated from the predicted monomer 
and aggregate concentrations (C). This systematic comparison 
reveals distinct performance patterns both within and between 
PLS and CNN model families across different evaluation sce
narios. For monomer prediction (A), CNN models demonstrate 
lower RMSE during training, cross‐validation, and augmenta
tion test phases. However, this advantage largely disappears in 
the external test, where PLS and CNN models achieve compa
rable performance. This convergence suggests that the apparent 
superiority of CNN models in earlier phases may reflect over
fitting rather than genuine generalization capability for mono
mer prediction. The aggregate prediction results (B) show a 
more consistent pattern, with CNN models maintaining lower 
RMSE across all evaluation splits. While individual PLS variants 
occasionally match CNN performance for specific datasets, no 
single PLS model achieves comparable accuracy across all sce
narios, indicating more robust performance by the CNN 
approach for this target. Figure S2C confirms this trend for 
aggregate fraction prediction, with selected PLS models 
approaching but not consistently matching CNN‐type model 
performance. Notably, data augmentation consistently increases 
RMSE relative to non‐augmented variants across all model 
types and evaluation scenarios, suggesting that the augmenta
tion strategy employed does not improve generalization and 
may introduce artifacts that degrade prediction quality.

To better visualize the accuracy of the different model variants, 
parity plots of observed versus predicted HMWC (%) for all 
calibrated PLS models are shown in Figures S4–S13, where 
Panels (A)–(D) represent the model performance on the train
ing, cross‐validation, augmentation test, and test datasets, 
respectively.

To resolve the ambiguity regarding data augmentation effec
tiveness, we conducted a comprehensive leave‐4‐groups‐out 
rotation test (Figure S3), evaluating all possible training/test 
splits for each model type. The results demonstrate that the base 
CNN performs slightly better than the augmented CNN variant 
for both monomer and aggregate predictions. Both CNN ap
proaches achieve substantially lower RMSE on average com
pared to the best‐performing PLS model (Crop‐SG‐PLS1), 
particularly for aggregate prediction, where the median RMSE 
is reduced by approximately 50%. The more compact distribu
tions and lower median values for CNN models confirm their 
superior generalization capability when evaluated across 
diverse data splits.

Figure 5 presents the model predictions for the Crop‐SG‐PLS1 
and the CNN models in dashed and solid lines, respectively, for 
training (A), cross‐validation (B), and test (C) sets. For the AEX 
runs in the training set, both models fit the UHP‐SEC data 
accurately with minor deviations. For the Batch‐1‐5CV run, the 
PLS model closely follows the sharp dimer elution profile, while 
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TABLE 2(A) | Coefficient of determination (R2) for the prediction of monomer and aggregate concentrations across all data splits and models.

Model Analyte Train CV Augmentation test External test

PLS1 Monomer (g/L) 0.9761 0.9417 −0.1489 0.8474
Aggregate (g/L) 0.9765 −0.5345 0.6823 0.6210

PLS2 Monomer (g/L) 0.9911 0.8710 −0.1621 0.8389
Aggregate (g/L) 0.9878 −0.7969 0.5123 0.5756

SG‐PLS1 Monomer (g/L) 0.9709 0.9422 0.1993 0.9030
Aggregate (g/L) 0.6014 −0.3389 −0.2459 0.0365

SG‐PLS2 Monomer (g/L) 0.9670 0.9313 0.5027 0.9323
Aggregate (g/L) 0.5195 −0.2045 −0.4069 0.0371

Crop‐SG‐PLS1 Monomer (g/L) 0.9706 0.9529 −0.2536 0.7954
Aggregate (g/L) 0.9642 0.2039 −2.9519 −0.2070

Crop‐SG‐PLS2 Monomer (g/L) 0.9772 0.9555 0.3686 0.9108
Aggregate (g/L) 0.7694 −1.4017 0.8421 0.6350

PLS1‐augmented Monomer (g/L) 0.9632 0.9464 0.9152 0.8779
Aggregate (g/L) −0.0479 −0.1968 0.7373 −1.2896

PLS2‐augmented Monomer (g/L) 0.9625 0.9438 0.8955 0.8841
Aggregate (g/L) −0.0915 −0.2479 0.7803 −1.2446

CNN Monomer (g/L) 0.9850 0.9752 0.9126 0.8274
Aggregate (g/L) 0.9525 0.7804 0.6874 0.6894

CNN‐augmented Monomer (g/L) 0.6775 0.8584 0.7112 0.5756
Aggregate (g/L) 0.4114 0.3097 −0.0137 0.3051

TABLE 2(B) | Root‐mean‐square error (RMSE, g/L) for prediction of monomer and aggregate concentrations across all data splits and models.

Model Analyte Train CV Augmentation test External test

PLS1 Monomer 1.6568 2.5848 6.0818 6.8610
Aggregate 0.1945 1.5711 0.8141 1.4377

PLS2 Monomer 1.0121 3.8464 6.1169 7.0501
Aggregate 0.1399 1.7001 1.0086 1.5213

SG‐PLS1 Monomer 1.8253 2.5742 5.0772 5.4720
Aggregate 0.8007 1.4675 1.6122 2.2922

SG‐PLS2 Monomer 1.9438 2.8073 4.0014 4.5705
Aggregate 0.8792 1.3919 1.7132 2.2914

Crop‐SG‐PLS1 Monomer 1.8360 2.3248 6.3529 7.9450
Aggregate 0.2398 1.1316 2.8712 2.5655

Crop‐SG‐PLS2 Monomer 1.6181 2.2585 4.5088 5.2476
Aggregate 0.6091 1.9655 0.5739 1.4108

PLS1‐augmented Monomer 2.0550 2.4796 1.6523 6.1382
Aggregate 1.2983 1.3875 0.7403 3.5335

PLS2‐augmented Monomer 2.0742 2.5386 1.8343 5.9808
Aggregate 1.3250 1.4168 0.6769 3.4986

CNN Monomer 1.3103 1.6861 1.6777 7.2968
Aggregate 0.2765 0.5944 0.8075 1.3015

CNN‐augmented Monomer 6.0814 4.0293 3.0495 11.4429
Aggregate 0.9731 1.0537 1.4542 1.9467
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the CNN model predicts a more flattened, round profile. For the 
Batch‐1‐15CV, both models exhibit scattered predictions, with 
the CNN being slightly less affected for both species. In the 
Batch 2‐10CV run, both models match the UHP‐SEC data 
accurately, with the concentrations being the highest among the 
training runs. In the cross‐validation, the accuracy and 
robustness of the CNN predictions are superior to the PLS 
predictions. In addition to the higher degree of scattering of the 
PLS model, the initial phases where only the monomer is 
eluting are wrongly predicted by the PLS model, and the 
selectivity for the monomeric species during co‐elution is 
compromised (cf. Batch‐2‐10CV). The predictions for the test 
runs corroborate these findings and suggest a superiority of the 
CNN model. For all gradient elutions (Batch‐2‐5CV, Batch‐ 
1‐10CV, and Batch‐2‐15CV), the CNN correctly predicts the 
onset of co‐elution and the absolute dimer content, while the 
PLS predictions are highly scattered and predict early co‐elution 
onsets. Finally, the step elution confirms that both models are 
able to differentiate between monomeric and dimeric species as 
a negative control under non‐separating conditions. Both 
models accurately predict a simultaneous elution of monomers 
and dimers despite an absolute offset in the monomer con
centration compared to UHP‐SEC data.

Considering all emphasized points, the CNN model is better 
than the studied PLS‐based models, as it combines high accu
racy with robustness across cross‐validation, test, and aug
mentation test for both target species. These findings confirm 
the work presented in (Schiemer et al. 2024), where the CNN 
models have been established for quantification of different 
proteins and monoclonal antibody size variants from 
ultraviolet‐visible absorption spectra. In contrast to Schiemer 
et al. (2024), the augmented CNN model used within this study 
achieved lower performance than the non‐augmented variants 
across all datasets and test scenarios. In direct comparison with 
the PLS model, the augmented CNN was still found to be 
superior. Although data augmentation was not found to be 
beneficial for this particular case, it is notable that the transfer 
of the LSA algorithm to Raman spectra was successful. Another 
recent example of data augmentation for Raman spectra 
showed a beneficial effect for chemometric modeling (Lange 
et al. 2024).

Compared to established spectroscopy‐based PAT applications 
in biopharma, such as glucose monitoring in fermentation 
processes (Cavinato et al. 1990; Müller et al. 2024; Pontius 
et al. 2020) or UFDF monitoring (Rolinger et al. 2020b, 2023; 
Milewska et al. 2022), spectroscopic methods for aggregate 

FIGURE 5 | Predictions of Crop‐SG‐PLS1 (dashed lines) and CNN (solid lines) regression models for training (A), cross‐validation (B), and test 
(C). Blue and red bars represent monomer and dimer concentrations as determined by UHP‐SEC. 
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quantification remain limited (Wei et al. 2022; Brestrich 
et al. 2018). Brestrich et al. Brestrich et al. (2018) relied on only 
four experimental runs, with just one reserved for validation, 
whereas Wei et al. Wei et al. (2022) utilized aggregates derived 
from forced degradation experiments, while the cross‐ 
correlation structure in the provided data is unclear. Further
more, reported results were predominantly acquired offline, 
allowing longer spectral acquisition times and eliminating the 
challenges associated with real‐time process variations.

Although BSA serves as a practical and well‐characterized 
surrogate for method development, we acknowledge that its 
structural simplicity and spectral characteristics do not fully 
capture the complexity of industrially relevant biotherapeutics, 
like monoclonal antibodies. Extending the approach to mAbs 
requires consideration of their distinct secondary‐structure 
compositions, particularly their substantially higher ‐sheet 
content relative to the predominantly ‐helical structure of 
BSA. This is expected to dampen the spectral difference and 
hence make the distinction of monomeric from dimeric species 
more difficult. Additional factors include the higher concen
tration ranges typically encountered for therapeutic antibodies 
in downstream processing (20–60 g/L), the aggregate levels 
relevant to industrial polishing steps (reduction from roughly 
3% to 0.5%), and detection‐limit requirements of drug product 
formulations (0.1%–1% aggregates). Ongoing follow‐up studies 
with therapeutic antibodies aim to evaluate these aspects and 
assess the transferability and robustness of the method across 
biopharmaceutical modalities.

In summary, the use of CNN models demonstrated suitability 
by generating selective regression models capable of accurately 
quantifying monomer and dimer contents in real‐time chro
matographic processes. However, the development of robust 
chemometric models requires extensive evaluation of their 
selectivity and predictive performance through larger experi
mental datasets and systematic algorithmic validation.

4 | Conclusions 

This study demonstrates the feasibility of real‐time aggregate 
quantification in biopharmaceutical downstream processing 
using Raman spectroscopy and structural spectral markers. By 
applying controlled aggregation stress and an LHS design, dis
tinct Raman features—particularly in the amide I region—were 
identified as reliable indicators of protein aggregation across 
varying concentrations and conditions.

These spectral markers were validated in inline measurements 
during bind‐elute AEX, where they successfully tracked 
monomer‐aggregate separation dynamics. The combination of 
Raman spectroscopy with multivariate modeling approaches, 
including PLS and a CNN enhanced through synthetic data 
augmentation, enabled robust and accurate quantification of 
size variants under process‐relevant conditions. While the CNN 
model outperformed traditional approaches in terms of pre
dictive performance and selectivity, limitations arose from low 
signal intensities at low protein concentrations and environ
mental influences on background correction.

Despite these limitations, this work highlights the potential of 
Raman‐based structural markers and machine learning models for 

real‐time monitoring of protein aggregation in downstream unit 
operations.

Future work should also aim to expand the experimental space 
and enhance spectral preprocessing to improve model robust
ness and transferability across different process steps and en
vironmental conditions.
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