KIT | KIT-Bibliothek | Impressum | Datenschutz

Embedding-Based Ontology Term Recommendation System for FAIR Data Publishing Workflows

Liu, Nan ORCID iD icon 1; Koubaa, Mohamed-Anis ORCID iD icon 1; Schmidt, Andreas ORCID iD icon 1; Stucky, Karl-Uwe ORCID iD icon 1; Suess, Wolfgang ORCID iD icon 1; Hagenmeyer, Veit ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

FAIR (Findable, Accessible, Interoperable, and Reusable) data publications are important for enabling open energy research across interdisciplinary domains. The realization of the FAIR principle for data still faces many challenges, such as the diversity of data formats, semantic heterogeneity, lack of formalized ontologies, and error-prone manual annotation of data. These challenges impede the effective sharing and integration of energy data. To address these issues, we propose an automated ontology term recommendation system based on ontology embedding and semantic similarity, aiming to facilitate FAIR data publication in energy research. Our recommendation system utilizes contextual embeddings to automate semantic annotation of heterogeneous energy datasets by linking data elements to predefined energy-specific ontologies and referring to the top-K most relevant ontology concepts. The proposed system is designed to significantly streamline the semantic annotation process for energy researchers, thereby accelerating the process of open energy research. For evaluation, we test our system on the SemTab Challenge 2024 dataset provided by the Ontology Alignment Evaluation Initiative (OAEI). ... mehr


Originalveröffentlichung
DOI: 10.1007/978-3-032-15538-2_35
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2026
Sprache Englisch
Identifikator ISBN: 978-3-032-15538-2
ISSN: 0302-9743
KITopen-ID: 1000190353
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Erschienen in Cooperative Information Systems : 31st International Conference, CoopIS 2025, Marbella, Spain, October 20–22, 2025, Proceedings. Ed.: C. Cappiello
Veranstaltung 31st International Conference (CooplS 2025), Marbella, Spanien, 20.10.2025 – 22.10.2025
Verlag Springer Nature Switzerland
Seiten 573–583
Serie Lecture Notes in Computer Science ; 15535
Vorab online veröffentlicht am 08.02.2026
Schlagwörter Energy Data Management · FAIR Principles · Large Language, Model · Ontology Embeddings · Ontology Alignment · Recommendation, System
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page