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Abstract

We consider a random connection model (RCM) on a general space driven by a Poisson
process whose intensity measure is scaled by a parameter t > 0. We say that the
infinite clusters are deletion stable if the removal of a Poisson point cannot split a
cluster in two or more infinite clusters. We prove that this stability together with a
natural irreducibility assumption implies uniqueness of the infinite cluster. Conversely,
if the infinite cluster is unique then this stability property holds. Several criteria for
irreducibility will be established. We also study the analytic properties of expectations
of functions of clusters as a function of ¢. In particular we show that the position
dependent cluster density is differentiable. A significant part of this paper is devoted
to the important case of a stationary marked RCM (in Euclidean space), containing
the Boolean model with general compact grains and the so-called weighted RCM as
special cases. In this case we establish differentiability and a convexity property of
the cluster density x(t). These properties are crucial for our proof of deletion stability
of the infinite clusters but are also of interest in their own right. It then follows that an
irreducible stationary marked RCM can have at most one infinite cluster. This extends
and unifies several results in the literature.
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Uniqueness of the infinite cluster and cluster density in the RCM

1 Introduction

Let X be a complete separable metric space, denote its Borel-o-field by &, and let
A be a locally finite and diffuse measure on X. Let ¢ € R := [0,00) be an intensity
parameter and let 1 be a Poisson process on X with intensity measure ¢\, defined over
a probability space (02, F,P). We often write P; instead of P and [, for the associated
expectation operator.

Let ¢: X2 — [0, 1] be a measurable and symmetric function satisfying

Dy(x) == /<p(a:,y) Ady) < oo, Aae.zeX. (1.1)

We refer to ¢ as connection function. The random connection model (RCM) is the random
graph ¢ whose vertices are the points of n and where a pair of distinct points x,y € 7
forms an edge with probability ¢(z, y), independently for different pairs. In an Euclidean
setting the RCM was introduced in [37]; see [33] for a textbook treatment. It can be
defined on point processes other than Poisson. The general Poisson version was studied
in [26]. The RCM is a fundamental and versatile example of a spatial random graph. Of
particular interest is the stationary marked case. In this case we have X = R? x M for
some mark space IM and A is proportional to the product of Lebesgue measure and a
given mark distribution. Then the RCM becomes stationary and ergodic under shifts
in the spatial coordinate. This model contains the Boolean model (see [27, 41]) with
general compact grains and the so-called weighted RCM as special cases and keeps
attracting a lot of attention; see e.g. [6, 11, 13, 19, 21, 29, 38].

Following common terminology of percolation theory we refer to a component of
¢ as cluster. The RCM € percolates, if it has an infinite cluster, that is a component
with infinitely many vertices. We say that the infinite clusters of £ are deletion stable
if the removal of a point cannot split a cluster in two or more infinite clusters. If the
infinite cluster is unique, then it is easy to prove that £ is deletion stable. In fact, £ is
then almost surely even 2-indivisible in the sense of [35]; see Corollary 6.4 Our first
main result (Theorem 6.1) says that deletion stability together with irreducibility implies
(almost sure) uniqueness of the infinite cluster. We prove this by a peculiar addition
and removal procedure, which seems to be new. Our method crucially relies on the
properties of the underlying Poisson process. Irreducibility is a very natural assumption
for uniqueness (see Remark 5.9) and will be discussed in Section 5. Theorem 11.1 shows
that the infinite clusters of the stationary marked RCM are deletion stable. This is the
second main result of this paper. Our proof transfers some of the beautiful ideas from the
seminal paper [1] by Aizenman, Kesten and Newman to the continuum. To this end we
significantly extend and complement the arguments in [25], where the methods from [1]
were used to treat the Gilbert graph with deterministic balls. Taken together, Theorems
6.1 and 11.1 yield uniqueness of the infinite cluster of an irreducible stationary marked
RCM; see Theorem 12.1. This extends and unifies several results in the literature. The
stationary (unmarked) RCM was treated in [33] for an isotropic and norm-decreasing
connection function; see also [4]. A special case of the marked RCM was treated in
[23]. The uniqueness of the infinite cluster of the spherical Boolean model was proved in
[32, 33]. As a consequence of we also obtain that an irreducible stationary marked RCM
is 2-indivisible.

We also establish several analytic properties of cluster expectations, first in the gen-
eral and then in the stationary marked case. Since clusters are not locally determined,
the proof of these results requires some efforts. In particular we show that the position
dependent cluster density (given by (8.6)) is, as a function of ¢, continuously differen-
tiable; see Theorem 8.8. In the stationary marked case this is true for the cluster density
k(t), defined by (4.6); see Theorem 10.1. Our proofs partially follow [7], where the
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Boolean model with deterministic balls was considered. We also prove that tx(t) + d,t?/2
is a convex function of ¢, where d,, is the expected degree of a typical vertex, given
by (4.2). This remarkable property was established in [1, 14] for discrete percolation
models and in [25] for the Boolean model with deterministic balls. This convexity is
crucial for proving deletion stability of the infinite clusters in the stationary marked case
and its proof heavily depends on the (amenability) properties of Euclidean space; see
Remark 11.9.

With the exception of [25], all previous uniqueness proofs in continuum percolation
seem to use the approach in [10]; see also [16]. It is often argued that this approach is
more elegant than the one in [1]. However, our paper shows that the methods from [1]
can be conveniently extended to the continuum, at least in the case of a Poisson driven
RCM. Moreover, this approach provides a lot of additional information on the clusters,
which are valid for all values of the intensity parameter . And last but not least our
general uniqueness theorem applies to a general state space X, without any structural
assumptions.

The paper is organized as follows. In Section 2 we give the formal definition of the
RCM &, while Section 3 presents the RCM version of the multivariate Mecke equation
and the Margulis—-Russo formula. In Section 4 we discuss the stationary marked RCM,
an important special case of the general RCM. In Section 5 we define a RCM to be
irreducible if, roughly speaking, every pair of Poisson points has a positive probability of
being in the same cluster. Without such a property one cannot expect the infinite cluster
(if it exists) to be unique. For a stationary marked RCM Theorem 5.7 characterises
irreducibility in terms of the symmetric function [ ¢((0,p),(z,q))dz, which is (up to
the factor ¢) the density of the expected number of neighbours of (0,p) with respect
to the mark distribution. Theorems 5.11 and 5.12 provide sufficient conditions for
irreducibility under more specific assumptions. In Section 6 we prove that deletion
stability of infinite clusters and irreducibility together imply uniqueness of the infinite
cluster; see Theorem 6.1. Section 7 presents a spatial Markov property. In Section 8 we
establish differentiability of certain cluster expectations, while Section 9 rewrites the
derivatives as Margulis—Russo type formulas. In Section 10 we show that the position
dependent cluster density is continuously differentiable. In Section 11 we prove that the
infinite clusters of the stationary marked RCM are deletion stable; see Theorem 11.1.
The final Section 12 provides several examples of irreducible stationary marked RCMs.

For the reader’s convenience, we list below our main results separately for the
general and the stationary marked cases.

Main results for the general RCM:

e Theorem 6.1 shows that an irreducible RCM with deletion stable infinite clusters
can have at most one infinite cluster, while showing that deletion stability is
necessary for uniqueness.

» Theorem 8.8 shows continuous differentiability of certain cluster expectations,
while Theorem 9.4 and Remark 9.5 rewrite the derivative as a Margulis-Russo type
formula.

* Theorem 10.1 shows continuous differentiability of the position dependent cluster
density, while Theorem 10.7 shows that this remains true after some additional
integration.

Main results for the stationary marked RCM:

* Theorem 5.7 characterises irreducibility while Theorems 5.11 and 5.12 provide
sufficient conditions under more specific assumptions.

EJP 30 (2025), paper 175. https://www.imstat.org/ejp
Page 3/42


https://doi.org/10.1214/25-EJP1432
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Uniqueness of the infinite cluster and cluster density in the RCM

e Theorem 11.1 shows that the infinite clusters of a stationary marked RCM are
deletion stable.

» Theorem 11.6 shows that the cluster density «(¢) is continuously differentiable and
that tx(t) + dy,t?/2 is convex.

2 Formal definition of the RCM

It is convenient to model a RCM as a suitable point process. Let N denote the space
of all simple locally finite counting measures on X, equipped with the standard o-field,
see e.g. [27]. A measure v € N is identified with its support {z € X : v({z}) = 1} and
describes the set of vertices of a (deterministic) graph. If v({z}) = 1 we write z € v.
Using the Dirac measure §, at point z € X, any v € N can be written as a finite or
infinite sum v = §,, + d,, + - - -, where the z; are pairwise distinct and do not accumulate
in bounded sets. The space of (undirected) graphs with vertices from X (and no loops) is
described by the set G of all counting measures ;. on X x N with the following properties.
First we assume that the measure V' (u) := u(- x N) is locally finite and simple, that is,
an element of N. Hence, if 2 € V(i) (that is u({z} x N) = 1), then there is a unique
¥, € N such that (z,v¢,) € p. We assume that = ¢ ¢,. Finally, if x € V(u) and y € 1,
then we assume that (y, ¢,) € pand « € ¢,. Also G is equipped with the standard o-field.
There is an edge between z,y € V(u) if y € ¥, (and hence z € 7). If ¢, = 0, then z is
isolated.

We write |u| := u(X x N) for the cardinality of x € G and similarly for v € N. Hence
|u| = |V ()]. For x,y € V(1) we write x ~ y (in p) if there is an edge between z and y
and z <> y (in p) if there is a path in x4 leading from x to y. For A C X we write z ~ A (in
) if there exists y € ANV (u) such that « ~ y.

Let pu, 1/ € G. Then p is a subgraph of p/ if V(u) < V(1') (as measures) and if
(z,v) € pand (z,¢') € u' together imply that ¢ < ¢/’. Note that this is not the same
as < p'.

Let x be a simple point process on X, that is a random element of N. The reader
should think of a Poisson process possibly augmented by additional (deterministic) points.
By [27, Proposition 6.2] there exist random elements X, Xs, ... of X such that

Ix|
X=>_0x,, (2.1)

n=1
where X, # X,, whenever m # n and m,n < |x|. Let (Z,n)m.nen be a double sequence
of random elements uniformly distributed on [0, 1] such that Z,, , = Z,, ,, forall m,n € N

and such that the Z,, ,,, m < n, are independent. Then the RCM (based on ) is the point
process

Ix|
£:=> (X 0,): (2.2)
m=1
where
x|
Uy =Y Hn#m, Zmn < @(Xm, Xn)}ox, .
n=1

In this notation we suppress the dependence on the Z,, ,,. While the definition of ¢
depends on the ordering of the points of y, its distribution does not.

Below we will work with a Poisson process i with a diffuse intensity measure A. Then
1 is simple and can be identified with its support. Otherwise it is not obvious how to
treat multiplicities. One way to proceed is described in the following remark.
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Remark 2.1. Let ) be a possibly non-diffuse locally finite measure on X and let n be a
Poisson process with intensity measure A; see [27]. Then 7 is a random element of the
space of all locally finite counting measures on X whose atoms may have multiplicities.
Let U denote the uniform distribution on [0, 1] and let 7 be a U-marking of . Then 7} is a
Poisson process on X=X x [0, 1] with intensity measure A := A ® U; see [27, Theorem
5.6]. Since \ is diffuse, 7) is simple and can be written as

A

(%)

O(Xn,Un)> (2.3)
1

>
I
>

n

where (X,,,U,,) # (X,,U,) whenever m # n. Given a connection function ¢ we can
define a connection function ¢: X2 — [0,1]. We set ¢((z, u), (y,v)) == @(z,y) for u,v €
[0,1] if z # y. If x = y we set ¢((z,u), (z,v)) := 1. The resulting random connection
model 5 admits the following interpretation. An atom of n with size k£ € IN is split into
k atoms of size 1. A pair of atoms of size 1 sitting at different locations x and y are
independently connected with probability ¢(xz,y). A pair of atoms of size 1 sitting at the
same location are always connected. By definition of ¢, we have C* := C'(*%) (&) for
each u € [0,1] with (z,u) € 7. Hence f induces a random graph ¢* on the support suppn
of n with components C”%, z € n. The infinite components of this random graph are in
one-to-one correspondence to those of &.

Remark 2.2. Establish the setting of Remark 2.1 There are other ways to define a
random connection model driven by 7). For instance we might set ¢((x, u), (z,v)) := 0,
while (as before) ¢((z,u), (y,v)) := ¢(x,y) for x # y. Then a pair of atoms sitting at the
same location is never connected. In our opinion the choice in Remark 2.1 is rather
natural.

We now introduce some notation used throughout the paper. For p, i/ € G we often
interpret 1+’ as the measure in G with the same support as p+ . A similar convention
applies to v,/ € N. Let u € G. For B € X we write y(B) := u(B x N). More generally,
given a measurable function f: X — R we write [ f(z) u( = [ f(z) p(dz x N).
Similarly, given = € X, we write z € p instead of x € V(u) = ( x N). In the same
spirit we write g(u) := ¢g(V (1)), whenever g is a mapping on N. These (slightly abusing)
conventions lighten the notation and should not cause any confusion. For B € X we
denote by u[B] € G the restriction of u to B, that is the graph with vertex set V(u) N B
which keeps only those edges from p with both end points from B. In the same way
we use the notation p[v] for v € N. Similarly for a measure v on X (for instance for
v € N) we denote by vp := v(B N -) the restriction of v to a set B € X. Assume now that
v € V(u). For n € Ny let C¥(1) € G denote the graph restricted to the set of vertices
x € V(u) with d,(v,z) = n, where d,, denotes distance within the graph ;. Note that
C§(p) is just the isolated vertex v. Slightly abusing our notation we write C§(u) = J,.
Forv ¢ V(u) we set C¥(u) := 0, interpreted as an empty graph (a graph with no vertices).
The cluster C”(u) of v in p is the graph u restricted to

> VI(Ciw)

while CZ, (1), n € Ny, is the graph y restricted to V(C§(u)) + -+~ + V(Cy,(n)). For later
purposes it will be convenient to define C2_, (1) = C2;(u) := 0 as the zero measure. For

p € G and z € X we denote by y — 6, := p[V () — d,] the graph resulting from p by
removing the point z. If x ¢ V(u) then u— 6, =
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3 Basic properties of the RCM

Let £ be a RCM based on a Poisson process n on X with diffuse intensity measure
A. Our first crucial tool is a version of the Mecke equation (see [27, Chapter 4]) for
¢ Givenn € N and zy,...,z, € X we denote n*'» % := 9+ 0y, + -+ + 0., (removing
possible multiplicities) and let £*-*» denote a RCM based on n*t~®~, It is useful
to construct £71»%~ in a specific way as follows. We connect z; with the points in 7
using independent connection decisions which are independent of £&. We then proceed
inductively finally connecting x,, to n + 65, + -+ 65, ,. For n € IN and a measurable
function f: X" x G — [0, o] the Mecke equation for ¢ states that

]E/f('rlw e 7‘rn7§) W(n)(d(xh . wan))
(3.1)

:]E/f(ml, ey Ty, ET I (2, L)),

where integration with respect to the factorial measure 5™ of ) means summation over
all n-tuples of pairwise distinct points from 7. A convenient way to prove this and related
formulas is to introduce a probability kernel I" from N to G, satisfying

P((n.¢) €)= E / 1{(n, 1) € -} T(n, dps). (3.2)

The kernel T' is just a regular version of the conditional distribution of ¢ given 7 and can
be defined explicitly; see Section 2. A crucial property of this kernel is

ET(nt % ) = P % €+), A'-ae. (z1,...,2,) € X" (3.3)
It follows from [27, Theorem 4.4] that the left-hand side of (3.1) is given by

E//f(xl,...,xn,,u)F(r]ml """ o dp) AP (d(x1, .. Tp).

Therefore (3.1) follows from (3.3).
Given v € X we sometimes use (3.1) in the form

E/f(xl, ey T, EY) 7;(")(d(x1, ceyy))
(3.4)

=E/f(fr1,.-.,xn,é“’”“"“’g””)A”(d(ﬂch.-.,wn))-

This can be derived from (3.1) as follows. We can write £ = h(¢,v,U), where U is
a random element of [0, 1]N with independent and uniformly distributed components,
independent of &; see the proof of Lemma 6.2 for more detail. It remains to note that
h(&*r~*n v, U) has the same distribution as {V'***~, provided that v,z1,...,z, are
pairwise distinct.

To state another useful version of (3.1) we recall the notation p — d§, = p[V (1) — 0]
for p € G and x € X. Givenn € N and z1,...,z, € X we define g — 6,, — -+ — Iz,
inductively. The kernel I' has the property

/1{u—5m b € AT dp) =Ty — by — e — 5y ,), VEN.

Therefore we obtain from [27, Theorem 4.5] for each measurable f: X" x G — [0, 0]
that

E/f(xl;---axnvgfém 7"’76rn)77(n)(d(xla---axn))
(3.5)

:E/f(xl, cens T, ) AN (d(1, .y ).
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Given v € X we also have
E [ f(e.6" = 8 n(dn) = E [ (2.6 M), (3.6)

This follows similarly as (3.4). Indeed, given n and = € n the random graph h(§,v,U) — d,
has the same distribution as h(¢ — é,, v, U), provided that v # «.

Another quick consequence of the multivariate Mecke equation is the following
deletion tolerance of £. Removing a finite number of points from 7 results in a random
graph whose distribution is absolutely continuous with respect to the distribution of £.
Deletion tolerance of point processes was studied in [22].

Proposition 3.1. Let A C G be a measurable set such that P(( € A) = 0. Let g be a
point process such that P(ny(X) < co) =1 and P(ng <n) =1. Then P(&{[n —no] € A) = 0.

Proof. Let n € IN. By the Mecke equation (3.5) we have

0= /]P(§ € AN (d(x1, ... z0)) = E/1{§ Gy 5y € A ™ (d(zrs - 20)).
Since P(n(X) < 00) =1 it follows that
P(¢ln — o] € 4)
= i %El{no(x) = n}/l{s — 0y == 0, € Ay (d(wn, .. 10)) = 0.
n=0
The result follows. O

We define p:=1—¢pandforz e X,ve N

po)i=[[on) elno)=1-pna) @)= [ea)Mdo).  G7)

yev

We recall our general convention p(u, z) := ¢o(V (1), z) and ¢y () := oA (V(u)) for u € G.
Throughout we often abbreviate C? := CY(¢"), Cp = Cr(¢") and C%, = C%, (&Y).
Moreover we write C?' := CV — §,,. B -

We shall need the following consequence of (3.1).

Lemma 3.2. Letv € X and h: G — [0, 00) be measurable. Then
]E/h(g“ —0,) C¥(dx) = Eh(£)pA(CV). (3.8)
Proof. Let I denote the left-hand side of the asserted formula. Then
I=E [ B - 8)1{e € CE)bn(de) = [ BRE — 8.)1{x € C°(E")) Ado),

where we have used the Mecke equation (3.4) to obtain the second identity. By definition
we have that £V'* — §, = €Y for each x € X. Hence we obtain that

1= [BRE) e € CE )P Ado) = [ EREIP( € C7E) | €)M da),
By definition of {”* we have P(z € C?(£"") | £”) = ¢(x,C"), concluding the proof. O
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Next we turn to the Margulis—-Russo formula. Let A\; and A\, be two measures on
X, where )\; is locally finite and ), is finite. Given ¢ > 0 we consider a RCM driven
by a Poisson process n with intensity measure A; + tA,. The associated expectation
operator is denoted by E,. Let f: G — [—00, 00| be a measurable function and assume
that E,|f(£)|] < oo for some t; > 0. From [27, Exercise 3.8] and (3.2) we then obtain
that E;|f(£)] < oo for all ¢ < ty. We assert that

d

GESO = [BASE) - 5@ dalde), € 0,t0) (3.9

Using the kernel T, this can be seen as follows. From [27, Theorem 19.3] we obtain that

L, fe) = / E(F (1) — Fp) Ma(da), t € [0, 0),

dt
where f(v) := [ f(u)T(v,du), v € N. Note that f(¢) is P;-a.s. well-defined.
Take t € [0,tp). Theorem 19.3 in [27] shows that [ E[|f(n”) — f(n)|] A2(dz) < oco.
Furthermore we have

/Et[\f(n)ll Ao (dz) = Qo (X)Ec[If (n)]] < A2(X)E[| f(€)]] < oo,

where we have used the triangle inequality and (3.2).
Therefore we also have [ E[|f(n")[] A2(dz) < oo. It follows that

d - -

GESO = [ (©F0r) ~ Bif) rala) = [ (Eef(€) = Eef(©) had),

where we have used (3.3). Since the above right-hand side is finite we have |E, f(£%)] < oo
and hence also E;|f(£%)| < oo for As-a.e. x. This implies (3.9).

4 The stationary marked RCM

In this section we introduce an important special case of the general RCM. The
setting is that of [11, 13]. Special cases were studied in [12, 18, 19].

Let M be a complete separable metric space equipped with a probability measure
Q. This is our mark space, while @ is said to be the mark distribution. In this section
we consider the space X = R? x IM equipped with the product of the Borel o-field B(R?)
on R? and the Borel o-field on M. We assume that A = t\; ® Q, where t € R, and \y
denotes Lebesgue measure on R?. If (z,p) € X then we call x location of (z,p) and p the
mark of x. Instead of N we consider the (smaller set) N(X) of all counting measures x
on X such that x(- x M) is locally finite (w.r.t. the Euclidean metric) and simple. The
symmetric connection function ¢: (R? x M)? — [0, 1] is assumed to satisfy

o((z,p), (¥,9)) = ¢((0,p), (v — z,9))- (4.1)

This allows us to write ¢(z, p, q) := »((0,p), (z,¢)), where 0 denotes the origin in R?. We
also assume that

dy = / / (@, p.q) dz Q(d(p. ) < oo, 4.2)

referring to Remark 4.2 for some comments. Let ¢ > 0 and let n be a Poisson process
on X with intensity measure t\. We can and will assume that 7 is a random element of
N(X). We consider a RCM ¢ based on 7 and connection function ¢.
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The RCM ¢ is stationary in the sense that T,.¢ 4 ¢, x € RY, where for 4 € G, the
measure T, u is (as usual) defined by

T = / 1{(y - ,0,v) € -} pld(y, 4, ).

To see this, it is convenient to define £ in a slightly different way, without changing its
distribution. As at (2.1) we can write

Z 5 Xm7Q7n (4’3)
m=1
where X, X, ... are pairwise distinct random elements of R? and @1, Qs, ... are random
elements of IM Let Z;, ,, m,n € IN, be independent random variables uniformly dis-
tributed on [0,1] and set Z;, := (Z}, ,,)nen, m € IN. By the marking theorem (see [27,
Theorem 5.6]),
=D X0, Zt) (4.4)
m=1

is again a Poisson process. We then connect (X,,, Q.,) with (X,,, Q) if X,,, is lexicograph-
ically smaller than X,, and Z,, , < ¢(X,, — X, Qm, Qn), where the IN-valued random
variable 7 is determined by the fact that X, is the 7-th nearest neighbour of X, in the
set {X) : k # m}, where we can use the lexicographic order to break ties. Then we
have ¢ = F(n*) for a well-defined measurable mapping F. Since the nearest neighbour
relation is translation invariant it follows from (4.1) that F' can be assumed to satisfy
T,¢ = F(T,n*) for each x € R?. Since T,n* 4 n* it follows that ¢ is stationary. The
same argument combined with [27, Exercise 10.1] shows that ¢ is ergodic, i.e. we have
P(¢ € A) € {0,1} for each translation invariant measurable A C G. If M contains only
one element, we identify X with R?. In this case ¢ is said to be a stationary RCM.

The following consequence of the Mecke equation will be often used to treat cluster
expectations.

Lemma 4.1. Let B € B(R?) and f: N — R. Then

E [ 1{x € BY(CP (@)D n(dop) = 0u(BE [ F(COV) QD). @5)

Proof. By the Mecke equation (3.1) the left-hand side of (4.5) equals
B [ [ e € BYICE (€ )) do Q)
—tE, [[ 1 € BLIICOD @) de QUap)

where we have used that [C(®P)(u)| = |COP) (T, )| for all 4 € G. It follows from

stationarity of ¢ and definition of £(*?), that 7,£@») £ ¢(0p) for \;®Q-a.e. (z,p) € RIxIM.
Therefore the result follows. O

Let Qo be a random element of IM with distribution @ which is independent of n*
given by (4.4). In accordance with Palm theory we refer to C(*:Q0) (¢(0:Q0)) as cluster of
the typical vertex (of £).

Remark 4.2. Let p € M. Then the degree D, of (0,p) (the origin marked with p) in
£(0-») has a Poisson distribution with parameter ¢ [ ¢(z,p,q) dx Q(dg). Our integrability
assumption (4.2) means that f ED, Q(dp) < co. This means that the expected degree of
the typical vertex is finite. Hence (4.2) excludes Pareto type degree distributions but is
still much weaker than the integrability assumption made in [11].
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The function
K(t) == /Et|C(0’p)|_1Q(dp) =E,|COQ)|~1 e Ry, (4.6)

plays a crucial role in Section 11. To interpret it, we introduce a point process 7, <
n(- x IM) modeling finite clusters as follows. Let (z,p) € 1. Then z € 7, if |C®P)(£)| < 0o
and z is the lexicographically smallest spatial coordinate of the points in C(W’)(g ). Since
¢ is stationary, it is easy to see that 7, is a stationary point process. The following result
shows that tx(t) is the intensity of 7., that is the density of finite clusters. With a slight
abuse of language we refer to x(t) as cluster density. In the unmarked case this function
is also called free energy; see [1, 7, 14].

Lemma 4.3. For each t € R, we have that tk(t) = En.([0, 1]9).

Proof. The result follows from [29, Proposition 3.1] upon taking there 7 as the projection
of the point process {(z,p) € n: |C®P)(¢)| < oo} onto R? and ¢ := 7. A direct proof can
start with

t#(t) = B / 1{z € [0, 17} |CEP ()] n(d(z, p)), @.7)

a consequence of (4.5). The right-hand side can be written as
E: [ 1a € 000D 1 w.0) =y n(do, ) (),

where 7(z,p) is the lexicographic minimum of the spatial coordinates of C*:?)(¢). The
key step is then the application of the refined Campbell theorem for 7. O

The cluster density can also be obtained as an ergodic limit:

Proposition 4.4. Let B, € B(R?), n € N, be an increasing sequence of compact convex
sets whose inradius diverges to co. Then

n— oo

lim (Ad(Bn))_l/l{x € B}|[CUP () n(d(x,p)) = tr(t), Pi-as.
Proof. For each u e G

Myi= [ 1z € 1P (] u(de,p)

is a locally finite measure on R?. For z,y € R? and u € G we have C@P)(T,u) =
T,C@+v:P)(1). Therefore, we obtain for B € B(R?) and y € R?

M, ,(B) = / 1{z € BYCE D ()| T,p(d(x, p))

- / 1{z — y € BYC@) (1)~ p(d(z, p)).

This means that Mr,, = T,M,. Therefore M, is a stationary and ergodic random
measure. By (4.7) it has intensity ¢x(¢). Hence the result follows from [36, Satz 3]; see
also [24, Theorem 30.10]. O

We continue with a basic fact from percolation theory. Define
0(t) == P, (|C*Q0)(£0R0))| = o0) = /]Pt(|c<0m>\ =00)Q(dp), t>0, (4.8)

as the probability that the cluster of a typical vertex has infinite size. Let C',, denote the
set of all € G such that p has an infinite cluster.
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Proposition 4.5. Let t > 0. Then 6(t) > 0 if and only if P;({ € Cx) = 1.

Proof. Let B € B(R?) be a Borel set with \;(B) € (0,). By (4.5),
0(t) = (tAa(B)) ™' E / Lz € BYL{|CP ()] = oo} n(d(x, p))-

Hence, if 0(t) > 0, then the probability that there is some (z,p) € 1 with |C(®P)(¢)| =
oo must be positive. Since ¢ is ergodic and C, is translation invariant, we obtain
P,(¢ € C) = 1. If, on the other hand, #(¢) = 0, then the probability that |C®P)(¢)| = oo
for some (x,p) € n with 2 € B is zero. Letting B 1 R? we obtain that P;(¢ € C,) =0. O

The critical intensity (percolation threshold) is defined by
te :==1inf{t > 0:0(t) > 0}. (4.9)

Ift < t.then P;(¢§ € Cx) = 0 and if ¢t > ¢, then P;({ € C) = 1. Under a natural
irreducibility assumption our Theorem 12.1 will show that £ can have at most one infinite
cluster.

We finish this section with some examples.

Example 4.6. In the unmarked case the connection function ¢ is just a function on R<.
Under the minimal assumption d,, € (0, 00) it was shown in [37] that ¢. € (0, 00).

Example 4.7. Assume that M = R, and ¢(z,p,q) = 1{||z|| < p+ ¢}, where ||z|| denotes
the Euclidean norm of z € R?%. The RCM ¢ is then said to be the Gilbert graph with radius
distribution Q; see e.g. [27, Chapter 16] for more detail. The integrability assumption
(4.2) is then equivalent with f rd Q(dr) < oo, which is the minimal assumption for having
a reasonable model. Under the additional assumption Q{0} < 1 it was proved in [17, 20]
that t. € (0,00).

Example 4.8. Suppose that M equals the space C? of all non-empty compact subsets
of R¢, equipped with the Hausdorff metric cf. [27, 41]. Let V: C% U {#} — [0,00] be
measurable and translation invariant with V() = 0. For instance, V could be the volume
or, if Q is concentrated on the convex bodies, a linear combination of the intrinsic
volumes; see [41]. Assume that the connection function is given by

o((z,K), (y,L)) =1 — e VIE+DINLAY) (2 K) (y,L) € R? x C%.

Then (4.1) follows from translation invariance of V. The case of the Gilbert graph arises
if Q is concentrated on balls centered at the origin. A sufficient condition for (4.2) is

/ D(K)! QK) < oo,

where D(K) is the radius of the smallest ball centered at the origin and containing K.
This easily follows from

o, K, L) < {K N (L +2) # 0} < [lz]| < D(K) + D(L)}.

The random closed set U(z’ K)en I + 2 is known as the Boolean model and a fundamental
model of stochastic geometry (see [27, 41]) and continuum percolation (see [33]). This
model corresponds to the choice V(K) = oo - 1{K # 0}. In that case and under some
additional assumptions on Q it was proved in [20] that ¢. € (0,00). The present much
more general model is taken from [6] and is partially motivated by statistical physics.

EJP 30 (2025), paper 175. https://www.imstat.org/ejp
Page 11/42


https://doi.org/10.1214/25-EJP1432
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Uniqueness of the infinite cluster and cluster density in the RCM

Example 4.9. Assume that IM = (0, 1) equipped with Lebesgue measure ). Assume that

o((z,p), (y,9) = p(g(p. )|z — y||),

for a decreasing function p: [0,00) — [0, 1] and a function g: (0,1) x (0,1) — [0, c0) which
is increasing in both arguments. We assume that m, := [ p(||z||?) dz is positive and finite.
This model was studied in [19] under the name weight-dependent random connection
model. A simple calculation shows that

dy =m, //g(p, q)~dpdg.

To ensure (4.2) we have to assume that ¢! is integrable. This is the case in all examples

studied in [19], where it is also asserted that ¢, < co. Sufficient conditions for ¢. € (0, c0)
can also be found in [11, 12].
5 Irreducibility

In this section, we first consider a general RCM ¢ based on a Poisson process n on
X with diffuse intensity measure t\. We fix the intensity parameter ¢ > 0 and therefore
drop the lower index ¢ in IP;. To simplify the notation, we take ¢t = 1. We say that ¢ is
irreducible if

P(xy <> z9 in £772) > 0, N -a.e. (z1,22) € X2 (5.1)

Given k € IN and random elements Yi,...,Y; of X we let E[Y7,...,Y;] be a RCM
based on the point process dy, + --- + dy,. Of course we can allow here some of the
Y1,...,Y; to be deterministic. Further we define for each n € IN a measurable function
o™ X" = [0, 00) recursively by (1) := ¢ and

(p(n+1) (I’l,IL'Q) = /¢(n)(xlaz)¢(zax2) )\(dZ), T1,%2 € X,nelN

These functions are symmetric. It follows straight from the Mecke equation (3.1) that
go(")(:rl, x9) =FE / H 1{yi—1 ~y; in 511’12}77("71)(51(7;1, ey Yn—1)), (5.2)
i=1

where yo := x1 and y,, := x2. This is the expected number of paths of length n from z; to
To in £¥172,

Proposition 5.1. The following six statements are equivalent:

(i) ¢ is irreducible.
(ii) There exist for \?-a.e. (z1,72) € X? a set B € X with \(B) € (0,), ann € N, and
independent random variables Yy, ...,Y, with distribution A\g/A\(B) such that

IP(xl < x9 In E[:L‘l,xg,Yl, . ,Yn]) > 0. (5.3)

(iii) There exists for A\?-a.e. (v1,72) € X? ann € Ny such that
/IP(a:l T in E[r1, 2, Y1, - Yn)A (d(y1, - - - yn)) > 0. (5.4)

(iv) For \-a.e. (v1,w2) € X? it holds that

sup go(")(:vl,xg) > 0. (5.5)
n>1
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(v) For \*-a.e. (x1,72) € X? and for all k € N we have

sup o™ (z1,22) > 0. (5.6)
n>k

(vi) There exist for \*-a.e. (z1,72) € X? a set B € X with \(B) € (0,00), ann € N and
independent random variables Yy, ...,Y, with distribution A\g/A\(B) such that

IP(xl <> 9 In E’[:chxg,Yh...,Yn]) > 0, (5.7)

where Z'[z1,x2,Y1,...,Y,] is the graph obtained from E[z1, 22, Y1, . ..,Y,] by remov-
ing the edge between x; and x, (if there is one).

Proof. Assume that (i) holds, and let 1,22 € X be such that P(z; <> z2 in £*2%2) > 0.
Let (B,,) be a sequence of measurable sets of finite A-measure increasing towards X. By
monotone convergence there exists m € IN such that 1,22 € B,, and

P(zy <+ 25 in £°072[B,,]) > 0. (5.8)

Let B := B,,. Note that £*>*2[B] is a RCM based on d,, + d,, + np and np 4 Z(:%) Y%,
where Y1,Y5, ... are independent with distribution Ag/A(B), independent of 5. Splitting
the event {z; < x5 in £***2[B]} according to the value of n(B) yields (ii).

Assume that (ii) holds. Then we have for A\?-a.e. (21, 2) that

IP(:ZZl — T2 in E[Il, T, Yl, ey Yn])

:)\(B)_"/IP(ml &z in E[zy, 22, Y1, - -, Yn)) AB(d(Y1, - -, Yn)) > 0,

which implies (iii).

Assume that x1, 22 € X satisfy (5.4). If 21 + x9 in E[x1, 29, ¥1, . . ., yn] then there exist
k € {0,...,n} and pairwise distinct i1,...,ix € {1,...,n} with zy ~y;; ~ - ~y;, ~ 22
in Z[x1, 22,y1,. - ., Yn]- Therefore and by the symmetry of A"

k+1

Z/ H oY1, ) N (d(y1, ..., yr)) >0,
k=07 i=1

where yo := 21 and yx11 := x2. Hence (iv) follows.
Assume that (iv) holds, then for \%-a.e. (71, 12) € X?

0< Z (p(m—&-n)(xth): Z /(p(m)(xl,Z)go(")(Z,l‘Q))\(dZ)

m,n=1 m,n=1
-/ (Z so<m><:c1,z>> (Z w)(z,xz)) Ad2).

Therefore sup o™ (1, 25) > 0 for A\>-a.e. (z1,z2) € X2. To obtain (5.6) for general k € IN
n>2
one has to start with a k-fold summation instead of a double summation.
Assume now that 1, 7, € X satisfy (5.6), then there exists n > 2 such that (™) (21, z5) >

0. Therefore there exists B € X of finite A-measure with
n
/Hw(yi—hyi) A5 Hd(yas -5 yn1)) > 0,
i=1
where 9y := z1 and y,, := x2. This implies (vi).
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Finally, note that for any n € IN

IP(J?l < T in E/[l‘h.’ljg,yl,. .. ;Yn]) < IP(.%‘l < T2 in E[]I17$27Y1,. .. ,Yn])
=P(z1 <> 22 in £*%2[B] | n(B) = n).

Therefore (vi) implies (i). O

Remark 5.2. Proposition 5.1 shows that irreducibility does not depend on the intensity
parameter ¢ as long as it is positive.

Remark 5.3. Consider the setting of Remark 2.1, where ) is not assumed to be diffuse.
In the diffuse case, the value of the connection function on the diagonal of X? is irrelevant
for the definition of the RCM. But now we assume that ¢(z,z) = 1 for all z € X. For
each n € IN we can define a measurable function $(™) : X" — [0,00) as before. Now it
can easily be checked that

P (), (y,0)) = " (2,9), (2,u), (y,v) € X,

where ¢(™ is defined as before, non-withstanding the fact that A might not be diffuse.
By Proposition 5.1 we therefore have that the random connection model ¢ is irreducible,
if and only if (5.5) holds.

Example 5.4. Let Y be a locally compact separable Hausdorff space and assume that
X is the class of closed subsets of Y equipped with the Fell topology; see e.g. [41].
Let v be a locally finite measure on Y, Q be a probability measure on [0, c0), such that
Jv(B(z,7)) Q(dr) < oo for all z € X and all » > 0, where B(z, ) denotes the closed ball
with centre z and radius r. Assume that ) is given by

A= // 1{B(z,r) € -} v(dz) Q(dr). (5.9)

It is easy to see, that A is locally finite. Similarly as in Example 4.8 we take a measurable
function V: X — [0,00] and assume that p(K,L) = 1 — e V(KN K [ € X. Assume
also that the function V is increasing w.r.t. set inclusion and that V(K) > 0 if K # (). If
Q([e,00)) > 0 for some € > 0 and

/1{3(1:1,5) N B(xa,€) # 0} v (d(x1,29)) > 0,

then p(K,L) > 0 for all K, L € X and the RCM ¢ is irreducible.

In the remainder of this section we consider the stationary marked RCM as discussed
in Section 4. Recall that without loss of generality, we can take ¢t = 1. It is easy to see
that for all n € N and all (z,p), (y,q) € X

" ((z,p), (,9) = ™ ((0,p), (y — 2,9)) = ™ ((0,q), (x — y,p)) (5.10)

We write ¢(")(z,p, ) := ¢ ((0,p), (z,¢)) and note that ¢ (z,p,q) = ¢ (~z,¢,p). In
the unmarked case we can identify X with R¢. In this case p(™) = ¢*" is the n-fold
convolution of o, where ¢ is considered as function on R.

Proposition 5.5. The stationary (unmarked) RCM is irreducible.

The proof of Proposition 5.5 is a quick consequence of the first part of the following
lemma.

Lemma 5.6. Assume that f: R? — [0,00) is a bounded measurable function with 0 <
[ f(y)dy < oo and f(y) = f(—y) forally € R%. Let R > 0.

(i) There existn € IN and ¢ > 0 such that f*"(z) > ¢ whenever ||z|| < R.
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(ii) Let g: R? — R, be another bounded measurable function with fg(y) dy > 0 and
let z € RY. Then there exists n € N such that (f*" x g)(z) > 0.

Proof. (i) The convolution of an integrable and a bounded function is bounded and
uniformly continuous; see [15, Proposition 8.8]. It follows that f*2 is bounded and
uniformly continuous. Since [ f**(z)dz = ([ f(z) d:c)2 > 0 there exist a ball B’ ¢ R¢
with positive radius and ¢’ > 0 such that f*?> > ¢/ on B’. Since f is symmetric, f*? is
symmetric as well. Hence we can find a ball B with center 0 and positive radius and some
¢ > 0 such that f** > ¢ on B. Finally we find m € IN and ¢ > 0 such that f*™(z) > ¢
whenever ||z| < R.

(ii) By assumption [ g(z)1{g(z) > €0} dz > 0 for some 7 > 0. Set C' := {g > ¢¢}. Then
we have for each n € IN that

(F" x g)(@) = <0 / a2z € C} d=.
Choose R > 0 so large that
/1{Hx—z|| <R,z€C}dz>0.

By the first part of the lemma we can find n € IN and € > 0 such that f*"(y) > ¢ whenever
llyll < R. It follows that

(s 9)@) 2 20 [ 7~ 1 {lo ~ 2] < Rz € Chas
> e [ 1o -] < Rz € O}

By the choice of R this is positive. O

Proof of Proposition 5.5. We can use Lemma 5.6 (i) and condition (5.5) from Proposition
5.1 to conclude the proof. Indeed, given z;,zo € X we find an n € IN such that
o™ (x1,22) = p*™(x2 — 1) > 0. O

It is natural to characterize irreducibility of the stationary marked RCM in terms of
the functions d(w"): IM? — [0, 0], n € IN, defined by
A (p,q) = /so(”) (z,p,q)dz, p,qg€ M.

Similarly as at (5.2) we see that fdfa") (p,q)1{q € A} Q(dq) is the expected number of
paths of length n from (0, p) to some location with mark in a measurable set A C M.
From the symmetry property of (") we obtain that d&”) is symmetric. Furthermore,

dc(pn) (pa q) = /H dtp(qi—lv Qz) Qn_l(d(qla ey qn—l))a
i=1

where d,(-,-) == d(@l)(~, ), Qo := P, ¢n := q. Therefore

4L+ (p, g) = / 4 (p, YA (r,q) Q(dr), p.geM, mneN.  (5.11)

')
n=1

We may interpret ¢ — >0 d™(p, q) as a mark occupation density of the RCM.

Theorem 5.7. Let £ be a stationary marked RCM. Then € is irreducible if and only if

51;1? d&”)(p, q) >0, Q%*a.e. (p,q)c M. (5.12)
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Proof. Assume that ¢ is irreducible and for the sake of contradiction that there exists
some measurable set B C IM? satisfying Q*(B) > 0, and d&”)(p, q) =0 forall (p,q) € B
and for each n € IN. But then ¢ ((0,p), (z,q)) = 0 for all (p,q) € B, n € N and \s-a.e.
x € RY. This contradicts Proposition 5.1 (iv).

Now we assume that (5.12) holds. Then d, > 0. Indeed, otherwise we would
have ¢(z,p,q) = 0 and then also ¢ (z,p,q) = 0, n € N, for \-a.e. (z,p,q) € R? x IM2.
Therefore there exist measurable sets A C R? and E,F C M such that \4(4) > 0,
Q(E) >0, Q(F) >0, and

inf o(z,p,q) = o(z,q,p) > 0. (5.13)

€g = in inf
r€A,pEE qEF r€—A,pEE qEF

Set e(z) := g91{z € A}. Then p(z,p,q) > () for each (z,p,q) € R? x E x F. For all
z € R% and all r, s € F we have

@(2)(33,7“,5) = // oz, q)p(r — z,q,8) Q(dq) dz
= // o(—z,q,7)p(x — 2,4, 8) Q(dq) dz
> Q(E) [ e(-2)ela - 2)dz = QBN (o),

where f is the convolution of € and €y1_ 4. Note that f is symmetric and has a positive
and finite integral. We further have

oW (z,r,5) > // 1{q € F}¢ @ (z,r,0)0?(z — z,q,5) Q(dq) dz > Q(E)*Q(F) f**(z)
and, inductively,

e (x,1,5) > Q(E)"Q(F)" ! £ (). (5.14)

Our goal is to use Proposition 5.1 (iv). Let p,q € M. In view of this goal and
assumption (5.12) we can assume that there exist k,! € IN such that

k !
/ng, )(p,r)Q(dr) > 0 and /ng,)(r, 4) Q(dr) > 0.
Then we obtain by (5.14) for each x € R¢ and each n € IN that
PR (4 g) = / / oM (2, . 1) (1,7, 8)p O (@ — 2 — w, 5,q) Q(d(r, 5)) d(z, w)

> QP QY™ [[ o) )6 2 = w,.0) QR 3) dlz )
= QUEYQUE)"™ (g+ £« h)(&) = QUEQUE)™ (7" » g = W)(x),

where g(2) = [, ©®) (z,p,7) Q(dr) and h(z) := I ©®(z,r,q)Q(dr). By the choice of k

and [ we have
/g*h(m) do = /g(x) da:/h(x) d >0,

Therefore, given z € R?, we obtain from Lemma 5.6 that (f*" x g * h)(x) is positive for
some sufficiently large n. Taking into the account translation invariance (5.10) we hence
obtain from Proposition 5.1 (iv) that £ is irreducible. O

EJP 30 (2025), paper 175. https://www.imstat.org/ejp
Page 16/42


https://doi.org/10.1214/25-EJP1432
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Uniqueness of the infinite cluster and cluster density in the RCM

Remark 5.8. Condition (5.12) can be expressed as follows. For each B € X with
Q(B) > 0 we have

/ > di(p.g) >0, Qae.p. (5.15)
B n=1

Assume (for the sake of illustration) that d(p) := [d,(p,q) Q(dg) > 0 for each p € M
and let (X,,),>0 be a Markov chain with transition kernel p — d(p) ~'d,(p, ¢)Q(dg). Then
condition (5.15) means that

E[Z 1{X, € B}’XO = p} >0, Q-a.e.p, (5.16)
n=1

which is slightly weaker than Q-irreducibility of (X,), as studied in [34]. Without
additional assumptions on ¢, (5.12) seems to be both a natural and a minimal assumption.
If there exists A € X with 0 < Q(A4) < 1 and d,(p,q) = 0 for (p,q) € A x A°, then
d&") (p,q) = 0 for each n € IN and all (p,q) € A x A¢, so that (5.12) fails.

The next remark shows the relevance of irreducibility for the uniqueness of the
infinite cluster.

Remark 5.9. Assume that IM is discrete and that Q{p} > 0 for each p € M. Given
p,q € M we write p ~ q if either p = ¢ or sup,,~, dfpn) (p,q) > 0. It follows from (5.11)
that ~ is an equivalence relation. Let [p] := {g € M : p ~ ¢} be the equivalence class of
p € M. Then 7y, := {(z,q) € n: q € [p]} are for different equivalence classes independent
Poisson processes with intensity measures Ay ® Q([p] N -). Assume now that there exist
some marks p,q € M such that [p] N [¢] = 0. We assert that £[n,)] and {[n,)] are vertex
disjoint, that is, there is no edge in £ between 7,; and ;. To see this, we take a bounded
Borel set B C R? and let A denote the event that there exist z € B and y € R? such that
(z,p),(y,q) € nand (z,p) + (y,q) in £. Similarly, as in previous calculations, we obtain

P(A) <> 2(B)Q{p}Q{g}d (p,q)

n=1

which comes to zero. If {[r,)] and &[n;,] both percolate, then £ has at least two infinite
clusters. Without the irreducibility condition, the number of infinite clusters might be
any natural number or even infinity.

In the following we will discuss some consequences of Theorem 5.7. We start with
the case, where QQ has an atom. This covers discrete (that is finite or countably infinite)
mark spaces and generalizes Proposition 5.5.

Corollary 5.10. Let £ be a stationary marked RCM and assume that there exists po € M
with Q{po} > 0. Then ¢ is irreducible if and only if

sup dgl) (po,q) >0, Q-a.e.qe M. (5.17)

n>1

Proof. Take p,q € M and m,n € IN. By (5.11),
™™ (p,q) > Q{po}dS™ (p, po)dl (po, 9) = Q{po}dT™ (po, p)dSY (po, @)-

Hence, if (5.17) holds, then we obtain that sup,-, dfak)(p, q) > 0 for Q2-a.e. (p, q), so that
irreducibility follows from Theorem 5.7. The converse is obvious. O

Under a suitable minorization assumption on the connection function we have the
following version of Corollary 5.10 which does not assume py to be an atom of Q.
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Theorem 5.11. Assume that there exist a measurable set A C M with Q(A) > 0 and
some py € M satisfying

dy(p,q) > dy(p,po), Q%-a.e. (p,q) € M x A. (5.18)
Assume also that (5.17) holds. Then the RCM ¢ is irreducible.

Proof. Taking n = 1in (5.11) it follows by induction that

di™ (p,q) > d (p,po), Q’-a.e. (p,q) € M x A.

Just as in the proof of Corollary 5.10 we hence obtain for all m,n € IN and Q?-a.e. (p, q)
that

43 (p,q) > QAL (p, po)dZ (po, q).

Therefore we obtain that supj-, dfﬁ (p,q) > 0 for Q%-a.e. (p,q), so that irreducibility
follows from Theorem 5.7. O

A minimal assumption for irreducibility could be

/d¢(p, q) Q(dg) >0, Q-a.e.pe M. (5.19)

Under suitable assumptions on @ and ¢ we shall show with Theorem 5.12 that (5.19) is
already sufficient for irreducibility.

In Theorem 5.12 we will consider a partial ordering < on IM which is measurable,
that is {(p,q) : p < ¢} is a measurable subset of M?. Slightly generalizing [30] we say
that M is partially ordered probability (POP) space. A real-valued function f on M is
said to be non-decreasing if + < y implies f(z) < f(y). The probability measure Q is
called (positively) associated if

[ 9aa= [ rae [gaq (5.20)

for all non-decreasing measurable f,g: M — R for which the integrals make sense. Our
next result provides assumptions on ¢ and Q, under which the minimal assumption (5.19)
implies irreducibility. Corollary 5.13 and Example 12.7 will demonstrate the usefulness
of this result.

Theorem 5.12. Assume that M is a POP space and that Q) is associated. Assume also
that d,(p, -) is monotone (non-decreasing or non-increasing) for all p € IM. Then the RCM
¢ is irreducible if and only if (5.19) holds.

Proof. Assume that (5.12) holds but (5.19) fails. Then there exists a measurable set
B C M with Q(B) > 0 and d,(p, q) = 0 for Q-a.e. (p,q) € B x M. This implies for all

n € N, that d&") (p,q) = 0 for Q2-a.e. (p,q) € B x M. The resulting contradiction shows
that (5.12) implies (5.19). Let us assume the latter holds. Since () is associated we
obtain for all p,q € M

A2(p.0) = [ dopr)do(r0) Q) > [ dofp.r) Q) [ do(ri) Q).

This implies (5.12) and hence the result. O
Corollary 5.13. Assume that M C R is an interval and that d,(p, -) is monotone for all
p € M. Then the RCM ¢ is irreducible if and only if (5.19) holds.
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Proof. Since any probability measure on M is associated (see e.g. [30]), the result follows
from Theorem 5.12. O

Remark 5.14. Let the assumptions of Theorem 5.12 be satisfied and assume moreover
that [[ 1{p < ¢}Q(dp) Q(dg) > 0. Let B be the increasing Borel set of all p € M such
that sup,,~, d™ (p,q) > 0 for Q-a.e. ¢ € M. Since ¢ is irreducible (by Theorem 5.12) we
obtain from Theorem 5.7 that Q(B) = 1. We assert that there is some py € B such that
Q(Cp,) > 0, where Cp, := {p € X : py < p}. Indeed, if this were not the case, then

0= // H{p = ¢,p € B}Q(dp) Q(dq) = // Hp = q,p € B,q € B}Q(dp) Q(dq)
- / / 1{p < 4}Q(dp) Q(dg).

contradicting our assumption. It follows that (5.17) and (5.18) both hold with A := C,,,.
Therefore Theorem 5.11 applies. However, given a monotone d,, and an associated Q,
Theorem 5.12 is much easier to apply. It only remains to check (5.19), which could be
assumed without too much loss of generality; see Remark 5.15.

Remark 5.15. Assume that (5.19) fails and choose a measurable set B C IM with
Q(B) > 0 and dy(p, q) = 0 for Q*-a.e. (p,q) € B x M. This easily implies that

\C(I’p)\ =1, (z,p) € Nraxp, P-as.

Therefore Poisson points with a mark in B are isolated in £. In particular they do not
contribute to infinite clusters.

6 Deletion stability and uniqueness

In this section, we consider a general RCM ¢ based on a Poisson process 1 on X with
diffuse intensity measure A. Given (z, 1) € X x G we let N°°(z, 1) denote the number of
infinite clusters in C*(u) — 0. We say that the infinite clusters in ¢ are deletion stable if

P(N®(z,£%) >2) =0, Aae. zcX. (6.1)

Using the Mecke equation it is not difficult to see that the infinite clusters in £ are
deletion stable if Vg = 0 a.s., where

Nys := /1{N°°(x,§) > 2} n(dx). (6.2)

Theorem 6.1. Assume that ¢ is irreducible and that the infinite clusters of £ are deletion
stable. Then ¢ has IP-almost surely at most one infinite cluster. If, conversely, the latter
holds then the infinite cluster of € is deletion stable.

The converse implication in Theorem 6.1 will be an easy consequence of the Mecke
equation. The proof of the non-trivial implication will be based on two lemmas. Let
Yi1,...,Y, be random elements of X, which are a.s. pairwise distinct. In accordance with
Section 3 we define a random connection model £¥1+Y» based on the point process
1N+ oy, + --- + Jdy, as follows. We connect Y; with the points in 7 using independent
connection decisions which are independent of £&. We then proceed inductively finally
connecting Y, ton +dy, +--- +dy,_,.

Lemma 6.2. Suppose that B € X with A\(B) € (0,00) and let Y1,...,Y,, be independent
random variables with distribution Ap/\(B), independent of {. Assume that the infinite
clusters of £ are deletion stable, then

/]P(NOO(Yn,§w17f27Y1’-<~vYn) > 2) \2(d(z1, z2)) = 0. (6.3)
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Proof. 1t is useful to add a point = € X to a graph ¢ € G in the following explicit way.
There are measurable mappings 7,: N — R? such that u(- x N) = E'Tﬁ‘:' 10, (u), for
each € G. Let (p,z) € G x X and u = (u,)n>1 € [0,1]N. Define u% € G as the graph
with vertex measure V(i) + d,, edges from p and further edges between 7, (1) and x
if o(mn (1), ) > up. Define h(x, p,u) := 1{N*(x, u¥) > 2}. Assume that U is a random
element of [0, 1]™ with independent and uniformly distributed components, independent
of {&. Then 1{N*°(z,£%) > 2} has the same distribution as h(z, &, U) and deletion stability
means that

/ / / h(z, p,u) P(E € dp) A(dz) P(U € du) = 0. 6.4)
Given z1,x2 € X we also have

1{N°°(Yn, €$1,I27Y17---7Yn) > 2} i h(Yn’gwl,mz,Yh...,Yn,l ’ Un)7

Ylv--anfl)

where U, is independent of the pair (Y,,, £¥1:%2 and has the same distribution

as U. Therefore
//lP(N°°<Yn,5”“*“’“""’“) 2 2) X (d(x1, 2)
= (\B))™! /// Eh(yy, €072 V1Yt ) Ap(dy,) P(U € du) N (d(21, 22))
= (/\(B))_n/// Eh(yn, £ 0001 ) P(U € du) g (d(ys, - - yn)) A2 (d(21, 22)),

where we have used the definition of £#1:%2:Y1::¥n

that the above equals

-1, From the Mecke equation we obtain

(A(B))"E ///h(yn,ﬁ,u)l{yl, e Un1 € BY Ap(dys) P(U € du)
77("+1)(d($1, T2, Y1, - ayn—l))'

By (6.4), the integral [[ h(y,{,u) Ap(dy) P(U € du) does almost surely vanish. This
concludes the proof. O

For given z1,z2 € X let A(x1,22) be the event that the clusters C*'(£71*2) and
C™2(£*1%2) are infinite and not connected. Further, for n € Ny let B, (21, x2) be the event
that x; and x5 are connected in £*1:%2:Y1,-Y» where Y7, ...,Y, are defined in Lemma 6.2.

Lemma 6.3. Let the assumptions of Lemma 6.2 be in force. Then for a given n € Ny
/IP(A(J:l,xQ) A By (2, 22)) \2(d(1, 22)) = 0. (6.5)

Proof. We can remove the points Y},,...,Y; from £*1#2Y1:--Yn one by one. Each time
we can apply Lemma 6.2. Hence removing Y; (for ¢ < n) cannot split the cluster of
Y; in £%1®2:Y1-»Yi into more than one infinite cluster. Take z1,2o € X and n € INg
such that B, (x1,x2) holds and assume for the sake of contradiction that A(x,x2) holds.
In particular C**(¢*1>*2) and C*2(£¥1»*2) are vertex disjoint, so that there must be an
i € {1,...,n} such that z1,z, are connected in ¢*1:%2:Y1+Yi hut not in 812 Y1 Yi1,
Hence, the removal of Y; would split the cluster of Y; in £%1:%2:Y1,-Yi into two infinite
clusters. This is a contradiction, showing that almost surely B, (x1,z2) C A%(z1,x2) for
A-a.e. (1'1,372) € X2 O

EJP 30 (2025), paper 175. https://www.imstat.org/ejp
Page 20/42


https://doi.org/10.1214/25-EJP1432
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Uniqueness of the infinite cluster and cluster density in the RCM

Proof of Theorem 6.1. Let us first assume that P({ € Ao ) = 0, where A is the set of
all u € G such that p has at least two infinite clusters. If x € 7 satisfies N*°(z,£) > 2
then £ — §, € Ao. Therefore we obtain from the Mecke equation (3.1)

E/l{sz(x,g) > 2} n(dz) < E/1{§ 6y € A} n(de) = E/ 10 € A} A(da)

which comes to zero.

Let us now assume that ¢ is irreducible and that the infinite clusters are deletion
stable. We need to show that almost surely two points of 1 cannot belong to two different
infinite clusters. By the Mecke equation (3.1) for n = 2 the latter is equivalent to

/IP(A(LEl,IQ)) )\2(d(z1,x2)) =0. (66)

The following arguments apply to A\%-a.e. (z1,72) € X2. By Proposition 5.1 (vi) there
exist a set B € X with 0 < A\(B) < oo, an n € IN and random variables Y7, ...,Y,, with
distribution Ag/A(B) such that P(B] (x1,z2)) > 0, where

Bl (x1,72) := {m1 < 22 in E'[w1, 22, Y1, ..., Y]}
We can couple the random graphs £*1:%2:Y1Yn and Z'[xy, 29, Y1, . .., Y, in such a way
that £*+*2 and 'z, 29, Y1,...,Y,] are independent and every edge in the latter graph

is also present in the former. Then B/ (x1,x2) implies B, (x1,z2) and we obtain from
Lemma 6.3 that

IP(A(I’l,IQ) N B;L(Il,fﬂg)) =0.

By the above coupling the events A(z1,22) and BJ (z1,x2) are independent. Hence
P(A(z1,22)) =0, as required. O

Motivated by [35] we might call an infinite graph ¢ € G 2-indivisible if the removal
of a finite number of vertices results in at most one infinite connected component. The
following corollary of Proposition 3.1 shows that ¢ is almost surely 2-indivisible.

Corollary 6.4. Assume that £ has almost surely at most one infinite cluster. Assume
further that 7 is a point process such that P(1(X) < co) =1 and P(ny < n) = 1. Then
&[n — no] has a.s. at most one infinite cluster.

Remark 6.5. Consider the setting of Remark 2.1. Assume that the infinite clusters of
¢ are deletion stable. This means that reducing the size of an atom z of by one (and
removing the corresponding edges), cannot split the associate cluster into more than
one infinite clusters. This is not an intrinsic property of the random graph ¢*, as defined
in Remark 2.1. Assume in addition that f is irreducible (characterized in Remark 5.3),
so that Theorem 6.1 applies. By Corollary 6.4 we can then remove any finite number
of points from 7 without splitting the infinite cluster (if existent) in two or more infinite
clusters. In particular we can remove a finite number of points from the support of 7,
without splitting the infinite cluster of £* in two or more infinite clusters.

Remark 6.6. In accordance with the physics literature (see e.g. [9]) we might call a point
x € n red, if any doubly infinite path in £ has to use x. If ¢ has a unique infinite cluster,
then Corollary 6.4 says in particular that £ cannot have red points. More generally, we
may call a subset of ) red, if any doubly infinite path in £ contains at least one point from
this set. Corollary 6.4 says that £ cannot have a finite red set.

Remark 6.7. The authors of [8] studied random connection models on finite point
processes in an asymptotic setting. Under a natural irreducibility assumption (similar to
Proposition 5.1 (iv)) they proved uniqueness of the giant component; see Theorem 3.6
and Example 4.9 in [8].
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Remark 6.8. Consider Example 5.4 in the special case where Y is the hyperbolic plane
and v = tus, where po is the invariant measure on Y and ¢ > 0 is an intensity parameter.
Let Q be concentrated on a single positive radius and let £ be RCM with connection
function ¢(K,L) = 1{K N L # 0}. Then ¢ describes a hyperbolic Boolean model of
balls. Inspired by the seminal paper [5], it was shown in [42] that there are numbers
0 < t. < t, < oo such that there is no percolation for ¢ € (0, ¢.], infinitely many infinite
clusters for ¢ € (¢.,t,) and a unique infinite cluster for ¢ > ¢,. Corollary 6.4 shows
that the unique infinite cluster cannot be destroyed by the removal of a finite number
of Poisson points. A referee of this paper has asked whether it is possible to check
(resp. to reject) deletion stability for certain values of ¢ which are then (by Theorem 6.1)
upper (resp. lower) bounds for ¢,,. We do not know whether this is possible; see also
Remark 11.9.

7 A spatial Markov property

We again consider a general RCM ¢ based on a Poisson process n on X with diffuse
intensity measure \. Let v € X. In the next section we shall establish and exploit a useful
explicit change of measure for the distribution of C¥ = C¥(£”). This is possible since
for n € Ny the conditional distribution of C}, ; given CZ, can be described in terms of
a RCM driven by Poisson process with a thinned intensity measure. In this section we
derive a general version of this spatial Markov property.

Let v be a locally finite and diffuse measure on X. Then we denote by II, the
distribution of a Poisson process with this intensity measure. We define two kernels from
N to X and from N x N to X (using the same notation K, for simplicity), by

Ky (p,dz) = @(p, x)v(dz), Ky (u, ', dz) == @(p,2)o(i, x)v(d), (7.1)

where we recall the definitions (3.7). Proposition 7.2 will provide an interpretation of
this kernel. Denoting by 0 the zero measure, we note that

K,(0,dz) = v(dz), K,(0,u,dx) = (' z)v(dz), K,(u,0,dr)=0. (7.2)

We write K, (u) := K, (u,-) and K, (p, ') := K, (u, 1, ). Note that K (0, u, X) = ox(p);
see (3.7).

Forn € Ny, 4 € G and v € X 1let T2 (A, p, -) denote the distribution of a random graph
&, defined as follows. Let &/, be a RCM based on 7,, + C¥ (1), where 7, is a Poisson process
with intensity measure K, (C%,_;(x)), and where we recall that CZ_, := 0. Remove
in ¢/ all edges between vertices from C¥(y) to obtain a random graph ¢”. Finally set
& = CY, (1) ® &, with an obvious definition of the operation &. We set C%, () := d,,
which is the graph with vertex set {v} and no edges. -

Theorem 7.1. Letv € X and n € Ny. Then,
P& € - | CZ,) = FZ(A,C%W ), P-as. (7.3)

Proof. This follows from the proof of [21, Lemma 3.3]; see also Proposition 2 in [31].
Essentially the assertion is equivalent to equation (3.6) in this proof. The arguments
given there apply to a RCM on a general state space X and not only to R¢. O

A quick consequence of Theorem 7.1 is that {(V(CZ,,_,),V(C}))}nen, is a Markov
process.

Proposition 7.2. The sequence {(V(CZ, _,),V(C}))}nen, is a Markov process with
transition kernel

(1) / V(e ') € Ty oy ().
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We also note that
K (p, 1, X) S/w(u’,w)k(dw) < //so(y,x)u’(dy)k(dfv),

where we have used the Bernoulli inequality. Hence

K (1, X) < /Dw(y) 1 (dy). (7.4)

Corollary 7.3. Let n € INy. Then we have for A-a.e. v € X that P(|C}| < o0) = 1.

Proof. We can proceed by induction. For n = 0 the assertion is trivial. Assume that
P(|CY| < o0) = 1 for some n € INy. From Proposition 7.2 we know that the conditional dis-
tribution of V(Cy,_ ) given (V(C%, _;),V(Cy)) is that of a Poisson process with intensity
measure Ky (V(C%, ,),V(C?)). By (7.4) we obtain that

E[[Crial | (V(C&no1), V()] < /Dgo(y) Cy(dy)

which is for d-a.e. v € X a.s. finite by our general assumption (1.1) and induction
hypothesis. O

The following useful property of the kernel K can easily be proved by induction.
Lemma 7.4. Letn € IN and o, ..., itn, € N. Then

K0, o) + Ka(po, 1) + -+ K (po + -+ + tin—1, ) = Kx(0, pro + - - + ).

8 Perturbation formulas

In the next sections we vary the intensity measure A and consider ¢\ for ¢t € R,. We
fix v € X and let IP; be a probability measure governing a RCM ¢ based on 7, where 7 is
a Poisson process with intensity measure t\. The associated expectation is denoted by
IE;. Recall the definition (3.7).

Lemma 8.1. Let §~ be a RCM based on a Poisson process 1} with finite intensity measure
v. Let f: G — [0,00). Then

]Etf(é) = Elf(g)tlflle(l—t)u(x)
Proof. It is well-known that

I, = /1{u e Y= T (dp), ¢ > 0. (8.1)

This follows, for instance from [27, Exercise 3.7] and an easy calculation. The assertion
then follows by conditioning, using the kernel I in (3.2). O

Proposition 8.2. Letv e X, t € R4, n € N and ¢ty > 0. Then
Pi(CL, € ) = By, 1{CL, € }(t/t0)| Onltelomten (2]

Proof. 1t is sufficient to consider the special case tg = 1. The general case can be proved
similarly or can be derived from the special case. We omit the dependence on v in our
notation by writing C,, := C?, and C<,, := C%,. Given u € G we let C;/ (1) denote the
graph u[V(C,_1(11)) + V(C,(n))] with the edges between vertices of C,,_1 (1) removed.
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Let f: G — [0,00) be measurable. By Theorem 7.1,

Ef(Cen) = B [ H(Cenmt ® CL1) Lacs (00, O i)

By (7.4) we have

Kin(Can_s, Co1,X) < t / Dy(y) Co 1 (dy)

which is almost surely finite by Corollary 7.3. By definition of I',, and the thinning
properties of a Poisson process, the distribution of C (-) under I';,_; (t\, C<,,—1, ) is that
of a RCM driven by a Poisson process with intensity measure Ky (C<;,—2,Cr—1) with
additional independent connections to V(C,,_1); see also Proposition 7.2. Therefore we
obtain from Lemma 8.1 that

Etf(CSn) = I / f(CSn—l @ CTT(ﬂ))e(lit)K/\(ngkz’cnil’x)tw Fn—lo‘a Cﬁn—l’ d,u).
Iterating this identity yields that the above equals

/.../f(Cr(M1>@...@C;l'(Mn>)€(1_t)K>\(51r+H1+"'+Hn—2»lin—1vX)...e(l_t)KA((svalyx)
el D, (A CF (1) @ -+ © Oy (pn1) djan) - To (A, B, dpi ).

By Lemma 7.4 this equals

/, . /f(Cfr(Ml) DD CTJLr(Mn))e(lft)Kx(0,5v+u1+~~+un71,X)tlm|+--~+\un|

Lot (A Cf () @ ® Oy (), i) - To(A, [8,], dpa).

By Theorem 7.1 we obtain
E. f(C<p) = ]Elf(c<n)t|C§n‘716(17t)¢>\(0§n71)
and hence the assertion. O
Theorem 8.3. Letv € X, t € Ry and ty > 0. Then
P, (C? € -,|C?| < 00) = By, 1{C"? € -,|C?| < 00} (t/t)!IC 17 Lelto=)ealCT) (8.2)

Proof. Again it is sufficient to consider the special case ¢ty = 1. By Proposition 8.2
the distribution IP,(C; € -) is absolutely continuous w.rt. P1(C; € -) with Radon-
Nikodym derivative MY := ¢/¢=nl=1e(=0¢x(C<n1)  In particular {M?},cn, is a (non-
negative) martingale with respect to {o(CZ,,) }nen, and therefore converges a.s. towards
MY, :=limsup,,_,., M. By [40, Theorem VIL.6.1] we have

P,(C" €:) =E1{C" € -} M2 + E;1{C" € -, M3, = c0}.
On the event {|C"| < oo} we clearly have

MY, = 10" 1=1,(1=02x(C")

which is finite. This concludes the assertion. O
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Let f: G — R be a measurable mapping. Define forv € X, n € N, and t € R,

Fo(€7) := f(COH[CY[ = n}, fi(1) == EFn(E"), (8.3)
Fen(€Y) == FICO)H[CY] < n}, f2,(1) = BEFen(E"), (8.4)
F(€7) = f(C)|CY] < oo}, fUt) := B F(E7). (8.5)

We also write [f[?(t) := E;|F(£”)| and define |f[,(¢) and |f|Z, (¢) similarly. We are
interested in the analytic properties of the function f¥(¢) under the assumption |f|”(¢) <
0. A key example is the position dependent cluster density

KU(1) =T OV, teRy. (8.6)

Our terminology is motivated by the stationary marked case (see Lemma 4.3) and also
supported by the Mecke equation, implying

/ U(t) Ap(dv) = /|C“ s(dv), BeX.

Suppose that |f|%(to) < oo for some ¢y > 0 and n € IN, then by Theorem 8.3

¢ n—1 00
fii(t)=<to> /O e Vg1 (du), (8.7)

where the signed measure vy, ;, is defined by
Vo () i= By {pa(CV) € -} I E, (€). (8.8)

By Corollary 7.3 this is a locally finite signed measure on R.. It follows from Theorem
8.3 that the function |f|2(¢)/t"~! is monotone decreasing on (0, cc), so that

t

n—1
L) < (t) FE (), £ > to.

Lemma 8.4. Letv € X, n € N and ¢y > 0. If | f|¥ (t9) < oo, then fort > 1

" o
110 = =5 [ vrmsolose du
to 0

Proof. We obtain from (8.7) that

fn(t) = t" T //1{u<s}e ts ds v .1, (du). (8.9)
0

Since vy, 1, is locally finite, we can apply Fubini’s theorem to obtain the assertion. O

Lemma 8.5. Letv € X, n € N and ¢ty > 0. If | f|%(tp) < oo, then the function f! is analytic
on (tg,00) and fort >t

nt"— 1 n

%f}l’(t) = / Vi mito |0, ule™ ™ du — / Vs 100, ule ™" du. (8.10)
0 0

n—1 n—1
tO tO

Proof. Let Q, :={z € C: R(2) > to}, and extend f! to €, by setting

z n

n—1
tO

o)
fo(z) = / Vintol0,ule” " du, 2z € Qy,.
0
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By (8.8) we have

V11010, u]| < €[ 171 (t0)-

Since |f|¥(to) < oo this implies that f! is a complex analytic function on €,. Since

(to,0) C 4, NR, the restriction of this function to (tg, c0) is real analytic. The formula
(8.10) follows from Lemma 8.4 the product rule of calculus and the Leibniz rule for
differentiating integrals. The latter can be applied since for each € > 0 and all © > 0

ulvg o [0, ulle ™™ < uel®DU £ (t0) < e[ fI (to)
uniformly for ¢t > ¢y + €. O
To rewrite Lemma 8.5 in a different way, we define
MY :=|C%| —1—tpa(C?), teRi,veX. (8.11)

Lemma 8.6. Let v € X, n € IN and ty > 0. If| f|2(to) < oo, then function f} is analytic on
(to,00) and fort > t

@ u) = 1B M F ()], ©.12)

Proof. By Theorem 8.3,

n—1
THOE (ti) By, [Fo (€)o7 0920,

Hence the result follows from Lemma 8.5 and calculus, where the application of the
Leibniz differentiation rule can be justified as in the proof of Lemma 8.5. O

Lemma 8.7. Letv € X, n € N and to > 0. If | f|Z,,(t0) < oo, then function fZ, is analytic

on (tg,00) and fort > t

d

Zifen(®) = T [MFan (€7)]. (8.13)
Proof. The result follows from the definition of fZ, and Lemma 8.6, since |f|Z, (t0) =
2k | f1E (to)- .
Theorem 8.8. Let 0 < t( < t; < co. Assume for eacht € [to,t1] that |f|¥(t) < co. Assume

moreover that for each ¢ > 0,

lim sup
"0 tefto+e, t]

d in|
3 dtfk(t)’ 0. (8.14)

k>n

Then [ is continuously differentiable on (ty,t,] with derivative given by

n—oo

i v T —1i v — 41 S i v
() = Jim o (1) =t ;dtfn(t). (8.15)

Proof. Letn € IN. Since |f|Z,,(to) < [f[”(fo) < oo, we can apply Lemma 8.7 to obtain that
the function f2, is analytic on (to, o0), with derivative

d ., e d o, _ v v
afgn@):t 1k221£fn(t):t 1Et[Mt FSn(f )L t > to.
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By dominated convergence

lim f2,(t) = f°(0).

n— o0 -
Furthermore we have

> g

d v d v =
af (t)dtfﬁn(t)‘t ! ‘
k>n

By assumption (8.14) this tends to zero uniformly in t € [tg + ¢,¢1] for each e > 0. A
standard result of analysis gives us that f¥ is continuously differentiable on (¢, ¢1] with
derivative given by the right-hand side of (8.15). O

Theorem 8.9. Let 0 < ty < t; < co. Assume for eacht € [to,t1] that |f|"(t) < co. Assume
moreover that for each e > 0,

lim  sup Y Ty |MPFi(¢")| =0. (8.16)

N0 te(tgte,t1] kon

Then fV is continuously differentiable on (ty,t1] with derivative given by
d
%f”(t) =t "B, [MPF(£")]. (8.17)

Proof. Let n € IN. Since |f[(to) < [f[%,(to) < [f]?(to) < oo, then by Lemma 8.5 the
function [ is analytic on (¢, c0), with derivative

d
dtfrlb)(t)‘ = til |Et [Mtan(gv)” < tilEt|Mtan(§v)|a t> t0~
Hence

<t ! ZEt|M:Fn(§“)|.
k>n

0

k>n

By assumption (8.16) this tends to zero uniformly in ¢ € [ty + £,¢1] for each ¢ > 0.
Therefore by Theorem 8.8 the function f¥(¢) is continuously differentiable on (¢, ¢;] with
derivative

d v - = d v - v v
S@ =ty S fit) =t B [MPF(E)],

n=1

where the last equality we get from Fubini’s theorem, since by assumption (8.16) we
have that for ¢ € (g, t1]

By MPF(E)| = Be| My Fo(€9)] < 0. O

n>1
The following theorem provides a large class of functions satisfying the assumptions
of Theorem 8.9, covering the cluster density (8.6). We shall prove it in Section 10.

Theorem 8.10. Let f: G — R be a measurable mapping satistying |f(u1)| < £V ()]
for each p € G, where f : N — R satisfies

lim f(n)y/nlogn = 0. (8.18)

n— oo

Then fV is for each v € X continuously differentiable on (0, c0) with derivative given by
(8.17).
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9 Difference operators

In this section we shall rewrite Theorem 8.8 and Theorem 8.9 in the form of a
Margulis-Russo formula. Recall that p — 6, := pu[V () — d;] is the graph resulting from
u by removing the point z (if x € V(1)) along with all edges with vertex x for p € G
and x € X. Given a measurable function f: G — R and z € X we define V. f: G = R
by

Ve f () = f(p) = i = 0z). (9.1)

Theorem 9.1. Let the assumptions of Theorem 8.8 be satisfied. Then the function f" is
continuously differentiable on (to,t1] with derivative given by

%f”(t) = lim fllEt/vIan(gv)c“(dx) = ZtilEt/Van(fv)C”!(dx)‘ 9.2)

n—o0
n>1

We start the proof with the counterpart of Lemma 8.5 and Lemma 8.7.

Lemma 9.2. Letv € X, n € N and to > 0. If | f|(to) < oo, then function f! is analytic on
(tg,00) and fort > t

d
&f;;(t) = t*lmt/szn(g”) C(dax).
Proof. Lett > ty. We wish to apply Lemma 8.6. By definition we have
¢ n—1
EIFAENIC| =nlfl0 <n () 11150)

which is finite by assumption. Therefore we obtain from Theorem 8.3, (8.8) (with |f|
instead of f) and Fubini’s theorem

n—1 0o
5 F5 (€Y) oA (C7) = ( /0 ue™ " Yy f| 1o (du)

/ (ts — 1)e " ds Vf].n.to (1)

n—1 00
/ V|fl,n,to [07 S](ts — 1)67“ ds
0

tm >
<Iflatto) ey [ sel 0% ds < o,
0

where we have used that v/ ,, 4, [0, 5] < e'*|f|"(t9). Hence we obtain from Lemma 3.2
that

tTF, (£)pa(CY) = Et/Fn(gv —6,) CY(dx).

Now the assertion follows from Lemma 8.6. O

Lemma 9.3. Letv € X, n € N and to > 0. If | f|Z,,(t0) < oo, then function f2, is analytic
on (tg,00) and fort > tg

d |
) = [ Ve (€) 0 o)

Proof. The result follows from the definition of fZ,, Lemma 8.7 and Lemma 9.2. O
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Proof of Theorem 9.1. By Theorem 8.8 we have that f is continuously differentiable on
(to, t1] with derivative given by (8.15). Hence we can apply Lemma 9.2 and Lemma 9.3
to obtain the assertion. O

Theorem 9.4. Let the assumptions of Theorem 8.9 be satisfied. Assume moreover that
for eacht € [to, t1]

E:[IF(€)](1IC°] +9(C"))] < 0. 93)

Then fV is continuously differentiable on (to,t1] with derivative given by
d :
%f“(t) = t‘lEt/VIF(f”)C“I(dx). (9.4)

Proof. Lett > ty. Theorem 8.9 states that f* is continuously differentiable on (tg, t1]
with derivative given by (8.17). The assertion follows from (9.3) and Lemma 3.2, since
splitting f into its negative and positive part we can apply Lemma 3.2 to get

tEF(E)ea(C?) = Et/F(gv —6,) C¥(da).
The result follows. O

Remark 9.5. Let the assumptions of Theorem 9.4 be satisfied. By the Mecke equation
(3.6) we have

B, / VL F(E) O (da) = t Ty / (F(£"7) — P(€")1{v & = in €97} A(da).

If v and = are not connected in {"%, then F(£"*) = F(£"). Therefore we can rewrite
(9.4) as

d v _ v, T\ _ v
G170 =Ex [ (F(E) = P Mdo). (9.5)

10 Differentiability of the cluster density

In this section we prove in particular that the position dependent cluster density
(given by (8.6)) is continuously differentiable on (0, c0).

Theorem 10.1. Suppose that f: N — R is a function satisfying
lim f(n)y/nlogn =0. (10.1)
n—oo

Thent — T, f(|C"]) is for each v € X continuously differentiable on (0, o0) with derivative
given by (8.17).

We prove the theorem via some lemmas, partially following the proof of [7, (LP) (3.6)].
Let v € X. Fort > 0 and n € IN we define

pp(t) == Pi(|C%] = n).
Specializing definition (8.8) in the case f = 1 we set
Vo() == E11{pA(C?) € -}1{|C?| = n}e? (€T, (10.2)
Then we obtain from (8.7) in the case t; = 1 that

(o)
po(t) = t”_l/ e " vl (du). (10.3)
0

Since p}(t) = e tP#(*) we have

Vf = 6D9,(v)7 v e X. (10.4)
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Lemma 10.2. letv € X, n € N and v > 0. Then

n—1
yg[o,u]g( c ) , (10.5)

n—1

where the right-hand side has to be interpreted as 1 ifn = 1.

Proof. In view of (10.4) we can assume that n > 2. Since p%(¢) < 1 for ¢t > 0, we have
that

u
Tt > / e Y (du) > e Mu2[0,u).
0

Optimizing over ¢ € (0, 0o) yields the assertion. O

Lemma 10.3. letve X, ne€ N andt > 0. Then

o0
po(t) = t”/ v2[0, ule " du.
0
Proof. The assertion follows from Lemma 8.4. O

Lemma 10.4. Let v € X, n € IN. Then t — p%(t) is analytic on (0,00) with derivative

given by

d oo o0

—pi(t) = nt" / vl [0, ule ™™ du — " / uv?[0, ule™ "™ du (10.6)
Proof. The assertion follows from Lemma 8.5. O

Lemma 10.4 implies
d n [
N t < - v 0
G| <t [ o

The next lemma provides a bound for the above right-hand side.
Lemma 10.5. Letv € X, n > 2 and § € (0,1). Then we have for allt > 0 that

/000 vy [0, u]

Proof. By Lemma 10.3 we have

¢
1— Y retu gu. (10.7)

n

t
Lt

the du < opy (t) + (1 - 8)"e™ + (1+4)"e ™" (10.8)
n

o t \ t
/ vo[0,u] |1 — Wl gne—tugy < opr (t) +/ v2[0, ult" et |1 — U
0 n [1-t2|>5 n
t
1- 2| du.

n—1
< opp(t) + (e > / thyn et
n—1 [1—t2|>5

Changing variables yields that the above equals

n—1
e
dpy (t) + ( ) / u e
n—1 [1-%|>5

Splitting the integral on the above right-hand side into two pieces corresponding to
tu < n(1—94) and tu > n(1 + ) yields

n(1-4)
/ un e (1 - E) du=n""1(1- 5)"6_"(1_5),
0

1—E‘ du.
n

n
o0
/ un—le—u (E _ 1) du = nn—l(l + 6)”6_n(1_5).
n(149) n
Since (1+1/(n —1))"~! < e for all n > 2, we obtain the assertion (10.8). O
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Let f be as in Theorem 10.1 and v € X. Then f is bounded and

E. f(|C*]) = EF(") = Zf n)py(t

n=1

In order to prove Theorem 10.1 we will check the condition (8.16) on [tg, o) for each
to > 0. This is achieved by the previous and the following lemma.

Lemma 10.6. Suppose that f: N — R. Then
| MPF, ()] < |f(n |/ V10, u] [n — ut|t"e " du. (10.9)

Proof. It is easy to see the following identities which follow from integration by parts

(n—1)/t (n=1)/t
ts _ / e—tsds

u

(n—1)/t
/ (n—ts)e ¥ds = —t~(n — ts)e”

=t ((n —tu)e M £ e (P e_t“) =t (n—1—tu)e ™,

/ (n—ts)e ¥ds =t~ (n — tu)e ™ — / e ¥ds =t (n—1—tu)e ™.
Since v}, is locally finite, we can apply Fubini’s theorem to obtain that
I [ M} Fo (€°)]

= [f(n)[Be[In — 1 = toa(C)[{|C7| = n}] = [f(n)|t" " /OOO [ — 1 — tule™ "} (du)

(n—1)/t 0
= |f(n)|t" ! (/ (n —1—tu)e” v (du) — /( (n—1—tu)e ™ ”(du))

n—1)/t

(n=1)/t p(n-1)/t
n)|t" / / (n —ts)e *ds v’ (du) / / n —ts)e” “ds v (du)
(n—1)/t

(n—1)/t
= |f(n)[t" (/ v2[0,s](n —ts)e " ds — /(1)/t vy [0, s](n —ts)e tsds)

n/t
|/ o0, 8] | — st| e~ ds — 2| f(n)| V2 [0, s](n — ts)tme=tds. 0
(n—1)/t

Proof of Theorem 10.1. Let v € X, tg > 0 and n > 2. We need to check the condition
(8.16). To do so, we start with inequality (10.9). In (10.8) we choose ¢ = §, by §,, :=
/9logn/n. We use the inequalities (1 — r)e” < e~"*/2 which holds for all » > 0 and
(1+7)e" < e"/3 which holds for all r € [0,1/3). Then we obtain for all sufficiently
large n € IN that (1 — §,)"e " < n~%? and (1 — §,)"e """ < n~3. Hence there exist
ng € IN such that for each ¢t > ¢,

Zt‘l\f I/ "0u|n—ut|t"_t“du<—2|f )\/nlog npt () +*Z”

n=ngo n=ng n=ngo

(10.10)

Let ¢ > 0 and choose n; > ng such that |f(n)|v/nlogn < ¢ for each n > n;. Then

> |f(n)|v/nlognph(t) <,

n=niy

finishing the proof. O
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Proof of Theorem 8.10. We check condition (8.16). By assumption (8.18) it suffices to
show that

lim sup Y | f(k)[Ee| M [1{|C"| = k}) =0,
’I’L‘)OOtZtO om

for any tg > 0. This follows from (10.9) and the proof of Theorem 10.1. O

Later we shall need the following integrated version of Theorem 10.1

Theorem 10.7. Assume that X = Y x M is the product of two complete separable
metric spaces and let Q be a finite measure Q) on M. Suppose that f: N — R is a
function satisfying (10.1). Thent — [ E,f(|C%9)|) Q(dg) is for each y € Y continuously
differentiable on (0, c0).

Proof. Let y € Y and t; > 0. We know from Theorem 10.1 that ¢ — I, f(|C¥%)]) is for
each (y,q) € Y x M continuously differentiable. The assertion follows from the Leibniz
differentiation rule once we can show that

oo [e%s}
Z \f(n)|/ vWD[0,u] |n — ut| t"e ™Mdu < ¢, t>to, g€ M, (10.11)
0

n=1

for some ¢ > 0. Since f(n)y/nlogn is bounded, we see from (10.10) that the above
series, starting from n = ng is bounded in ¢ € M and ¢ > ¢3. The remaining terms in the
series can be bounded by (10.8). Similarly as in the proof of Lemma 8.5 one can show
that [ Flva) (t) Q(dq) is an analytic function on (0,00). Therefore the continuity of the

derivative follows from (10.10), since . |f(n)|\/nlognfp$§”q) (t) Q(dg) — 0 as ng — oo
n>ngo

uniformly in ¢t € R. O

Strengthening the assumption on the function f in Theorem 10.7, we can write the
derivative as a Margulis-Russo type formula.

Theorem 10.8. Suppose that f: N — R is a function satisfying
sup | f(n)|n < oo. (10.12)
n>1
Thent — T, f(|C"]) is for each v € X continuously differentiable on (0, oo) with derivative
given by (9.4).

Proof. It is enough to check condition (9.3) on [tg, c0) for each ¢y > 0. Condition (10.12)
implies that

E| f([C*D]CY] < oc.
It follows from Fubini’s theorem and Lemma 10.2 that for n > 2
EF(€)ea () = [Flen ™ [ ue v = et [ [ s = e dsvi(an
0 0 u
_ |f(n)|t"‘1/ V210, ](ts — 1)e~t* ds < |f(n)|t"/ V2 [0, s]se="* ds
0 0

oo

<17l (200 [

<|f(n)l <2np2(t) +t7! (ni1>n1/: u"e du)

e

v2[0, s]se” " ds)

— o)+ 0] (5 ) nPOK < )

n —
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where X, has a Poisson distribution with parameter 2n. By assumption (10.12) the sum
over the first terms is converging. By a rather elementary concentration inequality (using
a Chernoff bound argument) we have P(X,, < n) < (2/e)" for each n € IN. Therefore the
sum over the second terms is converging too. O

Remark 10.9. The position dependent cluster density satisfies the condition (10.12) and
its derivative can be represented by (9.4), i.e.

%Fa”(t) =1 (]Pt(C”| < 00) — KU(t) — B / OV — 6,7 cv!(dx)>

=B [ (07| - 07 € CE)) Mda),

11 Deletion stability of the stationary marked RCM

In this section we consider the stationary marked RCM as introduced in Section 4.
Hence we take a Poisson process 1 on R x IM with intensity measure tA = t\; ® Q and
consider the random connection model ¢ based on n and a fixed connection function
¢: (R4 x M)% — [0, 1] satisfying (4.1) and (4.2).

Theorem 11.1. The infinite clusters of a stationary marked random connection model
are deletion stable.

Our proof of the theorem partially follows the seminal paper [1]. It requires a
significant extension of some of the arguments in [25] treating the Gilbert graph with
deterministic radii; see Example 4.8.

We need to introduce some further notation. For y € G and (z,p) € V(1) we denote
by N°(z, p, 1) the number of clusters in C®P) (u) —§(, ). Hence N°(z,p, 1) is the number
of clusters in i — 4, ,) which are connected in p with (z,p). We then define N (z,p, 1)
similarly to N°(z, p, 1), except that at most one infinite cluster is counted, i.e.

N*(z,p,p) := N°(z,p, ) — L{N(z,p, ) > 1}(N>*(z,p, p) — 1).

Given B € B(R?) and a measure v on R? x IM it will be convenient to write vp := vy
for the restriction of v to B x M.

We fix some arbitrary ¢, > 0. It is then no restriction of generality to assume that
t € (0,tp]. Let (B,)nen be an increasing sequence of convex and compact sets with union
R¢. Our proofs require a specific coupling of the RCM ¢ with two random graphs &n,0
and &, 4+, n € IN, according two different boundary conditions: free and wired. To this
end we let §~ be a RCM based on a Poisson process 1 with intensity measure {yA. We
can assume without loss of generality that 7 is ¢/to-thinning of 7} (see [27, Corollary 5.9])
and that ¢ is given as the restriction 5 [n] of f to the vertices from 7. Let us first set
n =&, + fip:]. This is a RCM driven by the Poisson process 7p, + fjp: which has
intensity measure tAp, + toAp:. We define &, o as the restriction {[np, | = £.[nB,] of § to
B,, x M. This is a RCM driven by 7g,. We let &, | be the random graph resulting from &,
by connecting all points from 7jp: to each other. Then &, ; is a RCM driven by 7, + 75
with a connection function which is equal to one for any pair of points from (B¢ x IM)?
and ¢ otherwise. The reader should keep in mind that &,  is a very simple function of
the RCM &,,. An important property of this coupling is that &, o is a subgraph of £, while
¢ is a subgraph of &, 1 (in fact of &,).

For (z,p) € np, we define C’fﬁép) = C@P)(¢, o) and C,(ff) := C@P)(&, ;) noting that

V(CIP) = V(CEF)) + 1{(2,p) < fipein &, }iipe .
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Note also that if (z,p) ¢ np,, then Cgﬁ’)p ) = Cﬁff) = 0. Note also that C,(L'ff) is infinite if
and only if (x, p) is connected (in &,) to 7 B - Otherwise it is finite and coincides (by the

coupling construction) with C’T(,f(’)p ) = cl@p)(g).

Lemma 11.2. Let (x,p) € RY x M. Then, almost surely, V(Cflﬁ’)p)) T+ V(C@®P)(¢)) and
V(CEP) L V(CER)(€)) as n — oo

Proof. Let (x,p) € n otherwise the statement is trivial. There exists m € IN such that
x € B,,. We shall always take n > m. The second assertion has to be interpreted this
way. Clearly C,(ﬁép ) is a subgraph of C(®?)(¢). Assume that (y, ¢) € C@»)(¢). Then there
exists n such that (z, p) is connected to (y, ¢) within &, . This proves the first assertion.

Next we note that C*P)(¢) is a subgraph of ijfl’? . while C’,ﬁﬁ’) . is a subgraph of C,(ff).

Assume that (y,q) € C,(ff) for each n > m. For large enough n we then have y € B,, and
hence (y,q) € C@P)(¢). O

For each n € IN we define
M, = / CEP 1 s, (d(. ),

where we use a star to denote either 0 or +. A simple counting argument shows that
M, o is the number of clusters (finite) in ,, o while M,  is the number of finite clusters
in &, +. Moreover, we have that

My 4 < My < My, (11.1)
where (see also Proposition 4.4)

Myi= [1C#P O] s, dw.). (11.2)

Recalling the definition (4.6) of the cluster density x(¢), we have the following lemma.
Lemma 11.3. Let t € [0,t0]. Then (A\y(By)) 'E;M,, » — tr(t) as n — oo.

Proof. By Lemma 4.1,
E, M, — ¢ / / 1z € By YEJCTP | de Q(dp) = (B )ts(t).

Almost surely M,, o — M,, is less than the number of clusters with points from npg, which
are connected in § with 7., and therefore less than the number of points from 7p,
which are directly connected in { with ng<. Analogously, M,, — M,,  is less than number
of clusters with points from 7, which are connected in §,, with 7jp., and therefore less
than the number of points from 7, which are directly connected in &, with 7jp.. Then
with probability one, we have

M0 — /1{(%10) ~ g i &n g, (d(z,p)) < Mno - / {(z,p) ~npg in &g, (d(z, p))

< M, < My, + / 1{(2.p) ~ g in &}, (d(x,p))-

By the Mecke equation, we have
E: [ 1{(e.0) ~ i in &, b, (dlzp)
= t// 1{z € B,} (1 _ e~ to S H{yeB Yo (y—z,p.q) dyQ(dQ)) dz Q(dp)
< tot/// 1 € Bn,y € B }o(y — =,p,q) dzdy Q*(d(p, q))
—tot [[ 1o € Buy e Byuly - o) do
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where

() = / o(@.p.q) Q(d(p.q), =R (11.3)

By assumption (4.2), ¢ is integrable.
Let ¢ > 0 and choose r > 0 so large that [ 1{|z| > r}1(z) dz < e. Then

/ (e € Boy € By — 2| > )iy — ) dedy < eXa(By).

Further
1 )\d((Bn)er) n—oo
——— [ {zeB,,ye B, ly—z| <r —x)dedy <d,—————= — 0, (11.4)
g [ e € B € By —al < ruly — o) dedy < 4, 2T

where, for a bounded set B C R, Bg, := {z € B : d(x,0B) < r} and OB denotes the
boundary of B. Therefore

Mo .. EM,
lim su 2 etot < tr(t) < liminf ——2 4 gtot
n—)oop )\d(B ) o= ( ) T n—oo Ad(Bn) 0
Taking into account (11.1), this yields the assertion. O

Let n € IN. We will now explore the derivatives of t — E,M,, .. For (z,p) € B, x M we

define N} (z,p) := N°(z,p, £57)), the finite volume counterparts of N°(z, p,£@?)) and
Nt (z,p, £=P). By this deﬁmtlon N9(z,p) is the number of (finite) clusters in &, o which
are connected to (z,p) in §ff(’)p ), and N, (x,p) is the number of clusters (with at most one

infinite) in &, + which are connected to (z,p) in &, (I P),

Lemma 11.4. For any n € IN and either choice of boundary conditions the function
t — E,M, , is differentiable on [0,t,) and the derivative is given by

d

%EtM" » = \i(B) — E; // 1{x € B,} N} (z,p) dz Q(dp).

Proof. Since M,, . < n(B,) we have E;M,, , < oo forall¢ > 0. We now apply the Margulis-
Russo formula (3.9), where A = (A\q)p, ® Q and A\; = 0 for the free boundary condition
(x =0) and \; = to(Ag) Be ® Q for the wired boundary condition (x = +). Hence IE; M, ,
is a differentiable function of £ and

M= //1{35 € Bu} (Mo (&571) = Mo (6n.0)) d Qdp).

Let (z,p) € B, x M. If N}(z,p) = 0, then with probablhty one M, ,(&, (2 ’p))
M, (&) = 1. Otherwise the removal of (z,p) from §n *P) results in M, « (w’p))

My, «(§n«) =1 — N} (z,p) a.s., proving the result. a

Lemma 11.5. For any n € IN and either choice of boundary conditions I;M,, , +
Na(Bp)d,t?/2 is a convex function of t on [0, ).

Proof. For (z,p) € R? x M we let ¥(z,p) denote the point process of the Poisson neigh-
bours of (z,p) in £@?), that is the points in 7 which are directly connected to (z,p) in
¢@P)_ For a Borel set B C R? we let Uz(z,p) denote the restriction of ¥(z,p) to B x M.
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We further denote d(p) := [ d(p,q) Q(dg) so that d, = [ d,(p) Q(dp). By Lemma 11.4,

g0 +A(B)dﬁ
dt tiVin x d 9

= \i(B //l{x € B, } N (z,p) dz Q(dp) + tha(Bp)d,
+ / / 1{z € By} (tdy(p) — BeN2(,p) do Q(dp)
= Aa(By) + / / 1{z € By} (Be|¥(x, p)| — BN (z,p)) dir Q(dp)
/ / 1{z € By} (iU (2.p)] + Er (105, (2. p)] — Ni(z.p))) de Q(dp),

Clearly E;|¥ g (z,p)| is increasing in t. We shall now argue that E; [V 3, (z,p) — N (z,p)]
is increasing in t. Applying the Margulis-Russo formula (3.9) similarly as in the proof of
Lemma 11.4, we see that it is sufficient to check that Up, (z,p) — N} (x,p) cannot strictly
decrease when adding a point (y,q) € B, x M to 7. Assume first that (y, ¢) is not directly
connected to (z,p). Then Uy (x,p) does not change while N} (z,p) can only decrease
(namely by connecting some of the clusters in &, . which are connected to (z,p) in §n u ) .
Assume now that (y, ¢) is directly connected to (z,p), so that ¥ _(z,p) increases by one.
In that case N (x,p) can increase by at most 1, namely if some of the clusters in &, .
which are not connected to (z,p) in 5 get connected to the new point (y, ¢) while

none of the clusters in ¢, , which are connected to (x,p) in gn ) are connected by (y,q).
This proves the asserted monotonicity and hence the convexity assertion. O

Now we are in the position to prove the first main result in this section.
Theorem 11.6. The function t — tx(t) 4+ d,t*/2 is continuously differentiable on (0, ),

convex on R and right differentiable at zero.

Proof. The first assertion follows from Theorem 10.7 while the second follows from
Lemmas 11.3 and 11.5 and the (elementary) fact that the limit of a sequence of convex
functions is convex. The function is right differentiable at zero since k is a monotone
function. O

In the final step of the proof of Theorem 11.1 we need to identify the limits of the
derivatives in Lemma 11.4.

Lemma 11.7. Let t € [0,to]. Then

n— oo

liminf (\g(B,)) ' E; // 1{x € B,}N?(z,p) dz Q(dp) > /EtNO(O,p,f(O’p))Q(dp),
limsup (Ag(B,)) ', // 1{z € B, }N, (z,p) dz Q(dp) < /EtN+(O,p,§(0’p))Q(dp).

n— oo

Proof. Similarly as in the proof of Proposition 4.5 by stationarity, we have
BN 0.p.67) QUdp) = ulB)) B [[ 1o € BN (00,657 dr@dp). neN.

Hence our task is to show that N*(z, p, £(*P)) is well approximated by N (z,p). For a
given Borel set B C R? and (z,p) € R? x M we denote by N%(x,p) the number of clusters
in £ to which the Poisson neighbors of (z,p) in B x M belong. Note that a.s.

N§(@,p) + Npe(2,p) = N(a,p, ),
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It is, moreover, easy to see that N))(z,p) > N} (z,p) a.s. for each n € IN. It follows that
a.s.

N (x,p) > NO(z,p, ") = Np. (x,p). (11.5)

Obviously N, (z,p) is dominated by the number of points from 7. which are directly
connected to (z,p) in £(*P), Therefore

BV (op) < ¢ [ [ 1y € Bty ~ .p.0) dy Qo)

It now follows from (11.5) and exactly as in the proof of Lemma 11.3 that for each e > 0

fiminf (\a(B)) B [ [ 1o € BINGwp) doQp) = [ EN0,p.60) QUdp)
n o0

This implies the first asserted inequality. The second follows from N, (z,p) <
Nt(z,p, *P) as.. O

Proof of Theorem 11.1. The convex function in Theorem 11.6 is differentiable and ap-
proximated by the differentiable convex functions (A\¢(By)) *E;M, . + d,t*/2; see Lem-
mas 11.3 and 11.4. A classical result from convex analysis (see [39, Theorem 25.7])
implies that

d

d
. -1 _
Jim (Ag(Ba)) ™ M, = (D).

Therefore we obtain from Lemma 11.4 that the limit inferior in Lemma 11.7 coincides
with the limit superior. Hence Lemma 11.7 yields

/EWQRWWMMS/EWW%wWQW%

or
[ EAN0.5.607) — N (0.9.£07)) Qdp) < 0.
Since
NO(0,p, £©P)) — N*(0,p,£OP)) = 1{N>(0,p, 7)) > 1}(N>(0,p, 7)) — 1),
we obtain

/Pt(NW(Omf(O”))) > 2) Q(dp) = 0. (11.6)

Using stationarity as in the proof of Lemma 4.1 we see, that this is equivalent to the
assertion. 0

The preceding proof yields the following corollary.

Corollary 11.8. The cluster density is continuously differentiable function and

sl = 1= [EN0.5.€07) Q).

Remark 11.9. The convergence on the right-hand side of (11.4) is crucial for the proof
of Lemma 11.3. This amenability property of Euclidean space is also important for
Lemma 11.7. It might be possible to extend the methods of this section to establish
deletion stability for other amenable homogeneous spaces. But we do not know, how
to prove or disprove deletion stability in a non-amenable situation, like the hyperbolic
space.
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Remark 11.10. Assume that o(z,p, q) = ¢(||z||,p, ¢) and t = 1, for a measurable function
@: [0,00) x MxIM — [0, 1] which is decreasing and right-continuous in the first coordinate.
Using the notation at (2.2) and (4.3) we define

”Xm — Xn”
Q_l(Zm,na Qm7 Qn) 7

Wi n i= m,n € N, (11.7)

where ¢~ 1(s,p,q) := inf{r > 0: o(r,p,q) < s}, (s,p,q) € [0,1] x M x M. Given r > 0 we
define a RCM ¢, with vertex set n by connecting X,,, with X,, if W,,, , < r. Note that
Win < rif and only if

Zmn < B X — Xall, Qm, Qn)-

. o0 - - . - . d
Since ) .~ 0(,-1x,,0,) is under P; a Poisson process with intensity measure 7“\; ® Q,
we hence have

Pl(fr S ) = Prd(f S -), r >0, (11.8)

i.e. a joint coupling of the RCMs with different intensity parameters. In the unmarked
case this construction can be found in [4, Example 1.3].

Remark 11.11. Consider the setting of Remark 11.10 and the complete graph with
vertex set 7. We can interpret the random variable (11.7) as weight of the edge between
(Xom, Qm) and (X,,, Q). As in [3] we define the associated minimal spanning forest T
as the forest (a graph without cycles) with vertex set n and an edge between (X,,,, @)
and (X,,Q,) if there is no path between these points with weights strictly less than
W n. In special cases it was observed in [2, 3, 4, 7] that there is a close relationship
between the RCM ¢&,. and T'. For instance it was proved in [3] that the trees (clusters)
of T" are all infinite and can only have one or two ends. Two-ended trees T can only
occur if r equals the percolation threshold in which case T contains all points of the
infinite clusters (should they exist). It would be interesting to explore the consequences
of deletion stability of &, for T'.

12 The stationary marked RCM: Irreducibility and uniqueness

In this section we consider a stationary marked RCM ¢ as introduced in Section 4.
When combined with Theorem 11.1, Theorem 6.1 immediately yields the following result.

Theorem 12.1. An irreducible stationary marked random connection model can almost
surely have at most one infinite cluster.

Remark 12.2. Theorem 12.1 and Corollary 6.4 show that an irreducible stationary
marked RCM is 2-indivisible. In particular this holds at the critical intensity ¢.. This
provides some evidence for the absence of doubly-infinite paths at criticality. In fact, it is
a common belief that in Euclidean space there is no infinite cluster in the critical phase.

We now present several examples, starting with the classical stationary RCM; see
Example 4.6.

Example 12.3. By Theorem 12.1 and Proposition 5.5 the (unmarked) stationary RCM
can have at most one infinite component. This generalizes [33, Theorem 6.3], where it
is assumed that p(z) = $(||z||), = € R, for a decreasing function @: [0,) — [0, 1]. The
proof there is based on an extension of the approach from [10] to the continuum and is
very different from ours.

Next we treat the simple case, where the connection factorizes; see also [11, Section
1.2].
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Example 12.4. Let ¢: R? — [0, 1] be a symmetric function with 0 < my, := [¢(z)dz <
o and let K: M? — [0,1] be measurable and symmetric. Assume that ¢(z,p,q) =
Y(2)K(p,q), (z,p,q) € RY x M2. Then dy(p,q) = myK(p,q), (p,q) € M2. By Theorem 5.7
¢ is irreducible if and only if

sup K"(p,q) >0, Q*-a.e.(p,q) € M.

We continue with the examples from Section 4.

Example 12.5. Let us consider Example 4.8. Assume that there exists 2o € R (for
instance zy = 0) such that Q({L : B(zo,&0) C K}) > 0, where B(x¢,¢) denotes the ball
with center zy and radius . Assume also that the function V is increasing w.r.t. set
inclusion and that V(K) > 0 if K # (). We show now how irreducibility of £ follows from
Corollary 5.10. As point py in (5.17) we can take the ball B(xg, &), while the set A is
chosen as {L € C?: B(zg,50) C L}. Then Q(A) > 0 and (5.18) holds. To check (5.17) we
take K € C?. Then

dy(B(z0,€0), K) = / (1 — eiV(Km(B(xyso))) d.
By assumption on V this is positive, since

/l{K N B(z,g0) # 0} dz = /1{y € B(z,e0)} dz > 0,

where y is some point from K. We can now apply Theorem 12.1 to conclude that the
infinite cluster is unique. For the spherical Boolean model this result can be found as
Theorem 3.6 in [33]. For general Boolean models (i.e. o(x, K,L) =1{K N (L +z) # 0})
the result seems to be new.

Example 12.6. The weighted RCM from Example 4.9 is irreducible by Corollary 5.13.
Indeed we have d,(p,q) = m,g(p,q)~"', which is positive and monotone. By Theorem
12.1 the infinite cluster is unique. This was asserted in [19] without providing details
of a proof. A more detailed proof in a special case (based on the approach in [10]) was
given in [23].

Example 12.7. Consider a stationary marked RCM with IM as the space of all locally
finite simple counting measures on R?. Let Q be a distribution of a simple stationary
point process x satisfying Q{0} = 0. For z € R? and p € M let d(z,p) be the distance
between z and p. Similarly as in Example 12.6 we consider a connection function of the
form

p(x,p,q) = p(d(~z,p)~*d(z,q)*||z[|)

for a decreasing function p: [0,00) — [0, 1] such that m, := [ p(||z||?) dz is positive and
finite and where « > 0 is a fixed parameter. By stationarity,

/ / (. p,0) Q(d(p, q)) d = / / p(d(0, p)~d(0, g)~[l2]|%) dr Q2 (d(p, @)
—m, / 1{d(0. p) < 00,d(0, 4) < 50}d(0, p)*d(0, 4)* Q(d(p,q)

= mp</d(0,p)“ Q(dp))2~

To ensure (4.2) we assume that [ d(0,p)* Q(dp) < oo, which is a rather weak assumption.
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Next we check that [ d,(p,q) Q(dg) > 0 for Q-a.e. p, so that (5.19) holds. Fix p €
M\ {0} such that 0 ¢ p. As above we have

[ etepa@nds = [[ ptate.p) .0l s Qo).

Moreover, since 0 ¢ p there exist €, ¢ > 0 such that d(z,p) > ¢ for ||z|| < e. It follows that

/ / (@, p.q) dz Q(dg) > / / 1{]lz]l < }p(ed(0, q)~*I|]|*) dx Q(dg).

Assume for the sake of contradiction that the above outer integral vanishes and take
g € M\ {0} such that [ 1{||z|| < e}p(c;*d(0,q)~%||z||¢) dz = 0. However, since m, > 0
and p is decreasing, p(r) is positive for sufficiently small > 0. The resulting contra-
diction shows that [ d,(p,q) Q(dg) > 0. The function ¢(z,p, -) is for all (z,p) € R x M
non-decreasing with respect to the natural partial ordering on IM. Therefore, if Q is
associated, then Theorem 5.12 implies that £ is irreducible. For instance we might take
Q as the distribution of a Poisson process; see e.g. [28]. Hence Theorem 12.1 applies.
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