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Abstract

We consider a random connection model (RCM) on a general space driven by a Poisson
process whose intensity measure is scaled by a parameter t ≥ 0. We say that the
infinite clusters are deletion stable if the removal of a Poisson point cannot split a
cluster in two or more infinite clusters. We prove that this stability together with a
natural irreducibility assumption implies uniqueness of the infinite cluster. Conversely,
if the infinite cluster is unique then this stability property holds. Several criteria for
irreducibility will be established. We also study the analytic properties of expectations
of functions of clusters as a function of t. In particular we show that the position
dependent cluster density is differentiable. A significant part of this paper is devoted
to the important case of a stationary marked RCM (in Euclidean space), containing
the Boolean model with general compact grains and the so-called weighted RCM as
special cases. In this case we establish differentiability and a convexity property of
the cluster density κ(t). These properties are crucial for our proof of deletion stability
of the infinite clusters but are also of interest in their own right. It then follows that an
irreducible stationary marked RCM can have at most one infinite cluster. This extends
and unifies several results in the literature.
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Uniqueness of the infinite cluster and cluster density in the RCM

1 Introduction

Let X be a complete separable metric space, denote its Borel-σ-field by X , and let
λ be a locally finite and diffuse measure on X. Let t ∈ R+ := [0,∞) be an intensity
parameter and let η be a Poisson process on X with intensity measure tλ, defined over
a probability space (Ω,F ,P). We often write Pt instead of P and Et for the associated
expectation operator.

Let ϕ : X2 → [0, 1] be a measurable and symmetric function satisfying

Dϕ(x) :=

∫
ϕ(x, y)λ(dy) <∞, λ-a.e. x ∈ X. (1.1)

We refer to ϕ as connection function. The random connection model (RCM) is the random
graph ξ whose vertices are the points of η and where a pair of distinct points x, y ∈ η

forms an edge with probability ϕ(x, y), independently for different pairs. In an Euclidean
setting the RCM was introduced in [37]; see [33] for a textbook treatment. It can be
defined on point processes other than Poisson. The general Poisson version was studied
in [26]. The RCM is a fundamental and versatile example of a spatial random graph. Of
particular interest is the stationary marked case. In this case we have X = Rd ×M for
some mark space M and λ is proportional to the product of Lebesgue measure and a
given mark distribution. Then the RCM becomes stationary and ergodic under shifts
in the spatial coordinate. This model contains the Boolean model (see [27, 41]) with
general compact grains and the so-called weighted RCM as special cases and keeps
attracting a lot of attention; see e.g. [6, 11, 13, 19, 21, 29, 38].

Following common terminology of percolation theory we refer to a component of
ξ as cluster. The RCM ξ percolates, if it has an infinite cluster, that is a component
with infinitely many vertices. We say that the infinite clusters of ξ are deletion stable
if the removal of a point cannot split a cluster in two or more infinite clusters. If the
infinite cluster is unique, then it is easy to prove that ξ is deletion stable. In fact, ξ is
then almost surely even 2-indivisible in the sense of [35]; see Corollary 6.4 Our first
main result (Theorem 6.1) says that deletion stability together with irreducibility implies
(almost sure) uniqueness of the infinite cluster. We prove this by a peculiar addition
and removal procedure, which seems to be new. Our method crucially relies on the
properties of the underlying Poisson process. Irreducibility is a very natural assumption
for uniqueness (see Remark 5.9) and will be discussed in Section 5. Theorem 11.1 shows
that the infinite clusters of the stationary marked RCM are deletion stable. This is the
second main result of this paper. Our proof transfers some of the beautiful ideas from the
seminal paper [1] by Aizenman, Kesten and Newman to the continuum. To this end we
significantly extend and complement the arguments in [25], where the methods from [1]
were used to treat the Gilbert graph with deterministic balls. Taken together, Theorems
6.1 and 11.1 yield uniqueness of the infinite cluster of an irreducible stationary marked
RCM; see Theorem 12.1. This extends and unifies several results in the literature. The
stationary (unmarked) RCM was treated in [33] for an isotropic and norm-decreasing
connection function; see also [4]. A special case of the marked RCM was treated in
[23]. The uniqueness of the infinite cluster of the spherical Boolean model was proved in
[32, 33]. As a consequence of we also obtain that an irreducible stationary marked RCM
is 2-indivisible.

We also establish several analytic properties of cluster expectations, first in the gen-
eral and then in the stationary marked case. Since clusters are not locally determined,
the proof of these results requires some efforts. In particular we show that the position
dependent cluster density (given by (8.6)) is, as a function of t, continuously differen-
tiable; see Theorem 8.8. In the stationary marked case this is true for the cluster density
κ(t), defined by (4.6); see Theorem 10.1. Our proofs partially follow [7], where the
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Uniqueness of the infinite cluster and cluster density in the RCM

Boolean model with deterministic balls was considered. We also prove that tκ(t)+ dϕt2/2
is a convex function of t, where dϕ is the expected degree of a typical vertex, given
by (4.2). This remarkable property was established in [1, 14] for discrete percolation
models and in [25] for the Boolean model with deterministic balls. This convexity is
crucial for proving deletion stability of the infinite clusters in the stationary marked case
and its proof heavily depends on the (amenability) properties of Euclidean space; see
Remark 11.9.

With the exception of [25], all previous uniqueness proofs in continuum percolation
seem to use the approach in [10]; see also [16]. It is often argued that this approach is
more elegant than the one in [1]. However, our paper shows that the methods from [1]
can be conveniently extended to the continuum, at least in the case of a Poisson driven
RCM. Moreover, this approach provides a lot of additional information on the clusters,
which are valid for all values of the intensity parameter t. And last but not least our
general uniqueness theorem applies to a general state space X, without any structural
assumptions.

The paper is organized as follows. In Section 2 we give the formal definition of the
RCM ξ, while Section 3 presents the RCM version of the multivariate Mecke equation
and the Margulis–Russo formula. In Section 4 we discuss the stationary marked RCM,
an important special case of the general RCM. In Section 5 we define a RCM to be
irreducible if, roughly speaking, every pair of Poisson points has a positive probability of
being in the same cluster. Without such a property one cannot expect the infinite cluster
(if it exists) to be unique. For a stationary marked RCM Theorem 5.7 characterises
irreducibility in terms of the symmetric function

∫
ϕ((0, p), (x, q)) dx, which is (up to

the factor t) the density of the expected number of neighbours of (0, p) with respect
to the mark distribution. Theorems 5.11 and 5.12 provide sufficient conditions for
irreducibility under more specific assumptions. In Section 6 we prove that deletion
stability of infinite clusters and irreducibility together imply uniqueness of the infinite
cluster; see Theorem 6.1. Section 7 presents a spatial Markov property. In Section 8 we
establish differentiability of certain cluster expectations, while Section 9 rewrites the
derivatives as Margulis–Russo type formulas. In Section 10 we show that the position
dependent cluster density is continuously differentiable. In Section 11 we prove that the
infinite clusters of the stationary marked RCM are deletion stable; see Theorem 11.1.
The final Section 12 provides several examples of irreducible stationary marked RCMs.

For the reader’s convenience, we list below our main results separately for the
general and the stationary marked cases.

Main results for the general RCM:

• Theorem 6.1 shows that an irreducible RCM with deletion stable infinite clusters
can have at most one infinite cluster, while showing that deletion stability is
necessary for uniqueness.

• Theorem 8.8 shows continuous differentiability of certain cluster expectations,
while Theorem 9.4 and Remark 9.5 rewrite the derivative as a Margulis-Russo type
formula.

• Theorem 10.1 shows continuous differentiability of the position dependent cluster
density, while Theorem 10.7 shows that this remains true after some additional
integration.

Main results for the stationary marked RCM:

• Theorem 5.7 characterises irreducibility while Theorems 5.11 and 5.12 provide
sufficient conditions under more specific assumptions.
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Uniqueness of the infinite cluster and cluster density in the RCM

• Theorem 11.1 shows that the infinite clusters of a stationary marked RCM are
deletion stable.

• Theorem 11.6 shows that the cluster density κ(t) is continuously differentiable and
that tκ(t) + dϕt

2/2 is convex.

2 Formal definition of the RCM

It is convenient to model a RCM as a suitable point process. Let N denote the space
of all simple locally finite counting measures on X, equipped with the standard σ-field,
see e.g. [27]. A measure ν ∈ N is identified with its support {x ∈ X : ν({x}) = 1} and
describes the set of vertices of a (deterministic) graph. If ν({x}) = 1 we write x ∈ ν.
Using the Dirac measure δx at point x ∈ X, any ν ∈ N can be written as a finite or
infinite sum ν = δx1 + δx2 + · · · , where the xi are pairwise distinct and do not accumulate
in bounded sets. The space of (undirected) graphs with vertices from X (and no loops) is
described by the setG of all counting measures µ onX×N with the following properties.
First we assume that the measure V (µ) := µ(· ×N) is locally finite and simple, that is,
an element of N. Hence, if x ∈ V (µ) (that is µ({x} × N) = 1), then there is a unique
ψx ∈ N such that (x, ψx) ∈ µ. We assume that x /∈ ψx. Finally, if x ∈ V (µ) and y ∈ ψx
then we assume that (y, ψy) ∈ µ and x ∈ ψy. Also G is equipped with the standard σ-field.
There is an edge between x, y ∈ V (µ) if y ∈ ψx (and hence x ∈ ψy). If ψx = 0, then x is
isolated.

We write |µ| := µ(X×N) for the cardinality of µ ∈ G and similarly for ν ∈ N. Hence
|µ| = |V (µ)|. For x, y ∈ V (µ) we write x ∼ y (in µ) if there is an edge between x and y
and x↔ y (in µ) if there is a path in µ leading from x to y. For A ⊂ X we write x ∼ A (in
µ) if there exists y ∈ A ∩ V (µ) such that x ∼ y.

Let µ, µ′ ∈ G. Then µ is a subgraph of µ′ if V (µ) ≤ V (µ′) (as measures) and if
(x, ψ) ∈ µ and (x, ψ′) ∈ µ′ together imply that ψ ≤ ψ′. Note that this is not the same
as µ ≤ µ′.

Let χ be a simple point process on X, that is a random element of N. The reader
should think of a Poisson process possibly augmented by additional (deterministic) points.
By [27, Proposition 6.2] there exist random elements X1, X2, . . . of X such that

χ =

|χ|∑
n=1

δXn , (2.1)

where Xm 6= Xn whenever m 6= n and m,n ≤ |χ|. Let (Zm,n)m,n∈N be a double sequence
of random elements uniformly distributed on [0, 1] such that Zm,n = Zn,m for all m,n ∈ N
and such that the Zm,n, m < n, are independent. Then the RCM (based on χ) is the point
process

ξ :=

|χ|∑
m=1

δ(Xm,Ψm), (2.2)

where

Ψm :=

|χ|∑
n=1

1{n 6= m,Zm,n ≤ ϕ(Xm, Xn)}δXn
.

In this notation we suppress the dependence on the Zm,n. While the definition of ξ
depends on the ordering of the points of χ, its distribution does not.

Below we will work with a Poisson process η with a diffuse intensity measure λ. Then
η is simple and can be identified with its support. Otherwise it is not obvious how to
treat multiplicities. One way to proceed is described in the following remark.
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Uniqueness of the infinite cluster and cluster density in the RCM

Remark 2.1. Let λ be a possibly non-diffuse locally finite measure on X and let η be a
Poisson process with intensity measure λ; see [27]. Then η is a random element of the
space of all locally finite counting measures on X whose atoms may have multiplicities.
Let U denote the uniform distribution on [0, 1] and let η̂ be a U-marking of η. Then η̂ is a
Poisson process on X̂ := X× [0, 1] with intensity measure λ̂ := λ⊗U; see [27, Theorem
5.6]. Since λ̂ is diffuse, η̂ is simple and can be written as

η̂ =

η̂(X)∑
n=1

δ(Xn,Un), (2.3)

where (Xm, Um) 6= (Xn, Un) whenever m 6= n. Given a connection function ϕ we can
define a connection function ϕ̂ : X̂2 → [0, 1]. We set ϕ̂((x, u), (y, v)) := ϕ(x, y) for u, v ∈
[0, 1] if x 6= y. If x = y we set ϕ̂((x, u), (x, v)) := 1. The resulting random connection
model ξ̂ admits the following interpretation. An atom of η with size k ∈ N is split into
k atoms of size 1. A pair of atoms of size 1 sitting at different locations x and y are
independently connected with probability ϕ(x, y). A pair of atoms of size 1 sitting at the
same location are always connected. By definition of ϕ̂, we have Cx := C(x,u)(ξ1) for
each u ∈ [0, 1] with (x, u) ∈ η̂. Hence ξ̂ induces a random graph ξ∗ on the support supp η
of η with components Cx, x ∈ η. The infinite components of this random graph are in
one-to-one correspondence to those of ξ.

Remark 2.2. Establish the setting of Remark 2.1 There are other ways to define a
random connection model driven by η̂. For instance we might set ϕ̂((x, u), (x, v)) := 0,
while (as before) ϕ̂((x, u), (y, v)) := ϕ(x, y) for x 6= y. Then a pair of atoms sitting at the
same location is never connected. In our opinion the choice in Remark 2.1 is rather
natural.

We now introduce some notation used throughout the paper. For µ, µ′ ∈ G we often
interpret µ+µ′ as the measure inG with the same support as µ+µ′. A similar convention
applies to ν, ν′ ∈ N. Let µ ∈ G. For B ∈ X we write µ(B) := µ(B ×N). More generally,
given a measurable function f : X → R we write

∫
f(x)µ(dx) :=

∫
f(x)µ(dx × N).

Similarly, given x ∈ X, we write x ∈ µ instead of x ∈ V (µ) = µ(· × N). In the same
spirit we write g(µ) := g(V (µ)), whenever g is a mapping on N. These (slightly abusing)
conventions lighten the notation and should not cause any confusion. For B ∈ X we
denote by µ[B] ∈ G the restriction of µ to B, that is the graph with vertex set V (µ) ∩B
which keeps only those edges from µ with both end points from B. In the same way
we use the notation µ[ν] for ν ∈ N. Similarly for a measure ν on X (for instance for
ν ∈ N) we denote by νB := ν(B ∩ ·) the restriction of ν to a set B ∈ X . Assume now that
v ∈ V (µ). For n ∈ N0 let Cvn(µ) ∈ G denote the graph restricted to the set of vertices
x ∈ V (µ) with dµ(v, x) = n, where dµ denotes distance within the graph µ. Note that
Cv0 (µ) is just the isolated vertex v. Slightly abusing our notation we write Cv0 (µ) = δv.
For v /∈ V (µ) we set Cv(µ) := 0, interpreted as an empty graph (a graph with no vertices).
The cluster Cv(µ) of v in µ is the graph µ restricted to

∞∑
n=0

V (Cvn(µ)),

while Cv≤n(µ), n ∈ N0, is the graph µ restricted to V (Cv0 (µ)) + · · ·+ V (Cvn(µ)). For later
purposes it will be convenient to define Cv≤−1(µ) = Cv−1(µ) := 0 as the zero measure. For
µ ∈ G and x ∈ X we denote by µ − δx := µ[V (µ) − δx] the graph resulting from µ by
removing the point x. If x /∈ V (µ) then µ− δx = µ.
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Uniqueness of the infinite cluster and cluster density in the RCM

3 Basic properties of the RCM

Let ξ be a RCM based on a Poisson process η on X with diffuse intensity measure
λ. Our first crucial tool is a version of the Mecke equation (see [27, Chapter 4]) for
ξ. Given n ∈ N and x1, . . . , xn ∈ X we denote ηx1,...,xn := η + δx1 + · · · + δxn (removing
possible multiplicities) and let ξx1,...,xn denote a RCM based on ηx1,...,xn . It is useful
to construct ξx1,...,xn in a specific way as follows. We connect x1 with the points in η
using independent connection decisions which are independent of ξ. We then proceed
inductively finally connecting xn to η + δx1 + · · · + δxn−1 . For n ∈ N and a measurable
function f : Xn ×G → [0,∞] the Mecke equation for ξ states that

E

∫
f(x1, . . . , xn, ξ) η

(n)(d(x1, . . . , xn))

=E

∫
f(x1, . . . , xn, ξ

x1,...,xn)λn(d(x1, . . . , xn)),

(3.1)

where integration with respect to the factorial measure η(n) of η means summation over
all n-tuples of pairwise distinct points from η. A convenient way to prove this and related
formulas is to introduce a probability kernel Γ from N to G, satisfying

P((η, ξ) ∈ ·) = E
∫

1{(η, µ) ∈ ·}Γ(η, dµ). (3.2)

The kernel Γ is just a regular version of the conditional distribution of ξ given η and can
be defined explicitly; see Section 2. A crucial property of this kernel is

EΓ(ηx1,...,xn , ·) = P(ξx1,...,xn ∈ ·), λn-a.e. (x1, . . . , xn) ∈ Xn. (3.3)

It follows from [27, Theorem 4.4] that the left-hand side of (3.1) is given by

E

∫∫
f(x1, . . . , xn, µ) Γ(η

x1,...,xn , dµ)λn(d(x1, . . . , xn)).

Therefore (3.1) follows from (3.3).
Given v ∈ X we sometimes use (3.1) in the form

E

∫
f(x1, . . . , xn, ξ

v) η(n)(d(x1, . . . , xn))

=E

∫
f(x1, . . . , xn, ξ

v,x1,...,xn)λn(d(x1, . . . , xn)).

(3.4)

This can be derived from (3.1) as follows. We can write ξv = h(ξ, v, U), where U is
a random element of [0, 1]N with independent and uniformly distributed components,
independent of ξ; see the proof of Lemma 6.2 for more detail. It remains to note that
h(ξx1,...,xn , v, U) has the same distribution as ξv,x1,...,xn , provided that v, x1, . . . , xn are
pairwise distinct.

To state another useful version of (3.1) we recall the notation µ− δx = µ[V (µ)− δx]

for µ ∈ G and x ∈ X. Given n ∈ N and x1, . . . , xn ∈ X we define µ − δx1
− · · · − δxn

inductively. The kernel Γ has the property∫
1{µ− δx1

− · · · − δxn
∈ ·}Γ(ν, dµ) = Γ(ν − δx1

− · · · − δxn
, ·), ν ∈ N.

Therefore we obtain from [27, Theorem 4.5] for each measurable f : Xn ×G → [0,∞]

that

E

∫
f(x1, . . . , xn, ξ − δx1 − · · · − δxn) η

(n)(d(x1, . . . , xn))

=E

∫
f(x1, . . . , xn, ξ)λ

n(d(x1, . . . , xn)).

(3.5)
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Uniqueness of the infinite cluster and cluster density in the RCM

Given v ∈ X we also have

E

∫
f(x, ξv − δx) η(dx) = E

∫
f(x, ξv)λ(dx). (3.6)

This follows similarly as (3.4). Indeed, given η and x ∈ η the random graph h(ξ, v, U)− δx
has the same distribution as h(ξ − δx, v, U), provided that v 6= x.

Another quick consequence of the multivariate Mecke equation is the following
deletion tolerance of ξ. Removing a finite number of points from η results in a random
graph whose distribution is absolutely continuous with respect to the distribution of ξ.
Deletion tolerance of point processes was studied in [22].

Proposition 3.1. Let A ⊂ G be a measurable set such that P(ξ ∈ A) = 0. Let η0 be a
point process such that P(η0(X) <∞) = 1 and P(η0 ≤ η) = 1. Then P(ξ[η − η0] ∈ A) = 0.

Proof. Let n ∈ N. By the Mecke equation (3.5) we have

0 =

∫
P(ξ ∈ A)λn(d(x1, . . . , xn)) = E

∫
1{ξ − δx1 − · · · − δxn ∈ A} η(n)(d(x1, . . . , xn)).

Since P(η0(X) <∞) = 1 it follows that

P(ξ[η − η0] ∈ A)

=
∞∑
n=0

1

n!
E1{η0(X) = n}

∫
1{ξ − δx1

− · · · − δxn
∈ A} η(n)0 (d(x1, . . . , xn)) = 0.

The result follows.

We define ϕ̄ := 1− ϕ and for x ∈ X, ν ∈ N

ϕ̄(ν, x) :=
∏
y∈ν

ϕ̄(x, y), ϕ(ν, x) := 1− ϕ̄(ν, x), ϕλ(ν) :=

∫
ϕ(ν, x)λ(dx). (3.7)

We recall our general convention ϕ(µ, x) := ϕ(V (µ), x) and ϕλ(µ) := ϕλ(V (µ)) for µ ∈ G.
Throughout we often abbreviate Cv := Cv(ξv), Cvn := Cvn(ξ

v) and Cv≤n := Cv≤n(ξ
v).

Moreover we write Cv! := Cv − δv.

We shall need the following consequence of (3.1).

Lemma 3.2. Let v ∈ X and h : G → [0,∞) be measurable. Then

E

∫
h(ξv − δx)C

v!(dx) = Eh(ξv)ϕλ(C
v). (3.8)

Proof. Let I denote the left-hand side of the asserted formula. Then

I = E

∫
h(ξv − δx)1{x ∈ Cv(ξv)} η(dx) =

∫
Eh(ξv,x − δx)1{x ∈ Cv(ξv,x)}λ(dx),

where we have used the Mecke equation (3.4) to obtain the second identity. By definition
we have that ξv,x − δx = ξv for each x ∈ X. Hence we obtain that

I =

∫
Eh(ξv)1{x ∈ Cv(ξv,x)}λ(dx) =

∫
Eh(ξv)P(x ∈ Cv(ξv,x) | ξv)λ(dx).

By definition of ξv,x we have P(x ∈ Cv(ξv,x) | ξv) = ϕ(x,Cv), concluding the proof.
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Next we turn to the Margulis–Russo formula. Let λ1 and λ2 be two measures on
X, where λ1 is locally finite and λ2 is finite. Given t ≥ 0 we consider a RCM driven
by a Poisson process η with intensity measure λ1 + tλ2. The associated expectation
operator is denoted by Et. Let f : G → [−∞,∞] be a measurable function and assume
that Et0 |f(ξ)| < ∞ for some t0 > 0. From [27, Exercise 3.8] and (3.2) we then obtain
that Et|f(ξ)| <∞ for all t ≤ t0. We assert that

d

dt
Etf(ξ) =

∫
Et[f(ξ

x)− f(ξ)]λ2(dx), t ∈ [0, t0). (3.9)

Using the kernel Γ, this can be seen as follows. From [27, Theorem 19.3] we obtain that

d

dt
Etf(ξ) =

∫
Et[f̃(η

x)− f̃(η)]λ2(dx), t ∈ [0, t0),

where f̃(ν) :=
∫
f(µ) Γ(ν, dµ), ν ∈ N. Note that f̃(ξ) is Pt-a.s. well-defined.

Take t ∈ [0, t0). Theorem 19.3 in [27] shows that
∫
Et[|f̃(ηx) − f̃(η)|]λ2(dx) < ∞.

Furthermore we have∫
Et[|f̃(η)|] λ2(dx) = λ2(X)Et[|f̃(η)|] ≤ λ2(X)Et[|f(ξ)|] <∞,

where we have used the triangle inequality and (3.2).
Therefore we also have

∫
Et[|f̃(ηx)|]λ2(dx) <∞. It follows that

d

dt
Etf(ξ) =

∫ (
Etf̃(η

x)− Etf̃(η)
)
λ2(dx) =

∫ (
Etf(ξ

x)− Etf(ξ)
)
λ2(dx),

where we have used (3.3). Since the above right-hand side is finite we have |Etf(ξx)| <∞
and hence also Et|f(ξx)| <∞ for λ2-a.e. x. This implies (3.9).

4 The stationary marked RCM

In this section we introduce an important special case of the general RCM. The
setting is that of [11, 13]. Special cases were studied in [12, 18, 19].

Let M be a complete separable metric space equipped with a probability measure
Q. This is our mark space, while Q is said to be the mark distribution. In this section
we consider the space X = Rd ×M equipped with the product of the Borel σ-field B(Rd)
on Rd and the Borel σ-field on M. We assume that λ = tλd ⊗ Q, where t ∈ R+ and λd
denotes Lebesgue measure on Rd. If (x, p) ∈ X then we call x location of (x, p) and p the
mark of x. Instead of N we consider the (smaller set) N(X) of all counting measures χ
on X such that χ(· ×M) is locally finite (w.r.t. the Euclidean metric) and simple. The
symmetric connection function ϕ : (Rd ×M)2 → [0, 1] is assumed to satisfy

ϕ((x, p), (y, q)) = ϕ((0, p), (y − x, q)). (4.1)

This allows us to write ϕ(x, p, q) := ϕ((0, p), (x, q)), where 0 denotes the origin in Rd. We
also assume that

dϕ :=

∫∫
ϕ(x, p, q) dxQ2(d(p, q)) <∞, (4.2)

referring to Remark 4.2 for some comments. Let t > 0 and let η be a Poisson process
on X with intensity measure tλ. We can and will assume that η is a random element of
N(X). We consider a RCM ξ based on η and connection function ϕ.
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The RCM ξ is stationary in the sense that Txξ
d
= ξ, x ∈ Rd, where for µ ∈ G, the

measure Txµ is (as usual) defined by

Txµ :=

∫
1{(y − x, q, ν) ∈ ·}µ(d(y, q, ν)).

To see this, it is convenient to define ξ in a slightly different way, without changing its
distribution. As at (2.1) we can write

η =

∞∑
m=1

δ(Xm,Qm), (4.3)

where X1, X, . . . are pairwise distinct random elements of Rd and Q1, Q2, . . . are random
elements of M. Let Z ′

m,n, m,n ∈ N, be independent random variables uniformly dis-
tributed on [0, 1] and set Z ′

m := (Z ′
m,n)n∈N, m ∈ N. By the marking theorem (see [27,

Theorem 5.6]),

η∗ :=

∞∑
m=1

δ(Xm,Qm,Z′
m) (4.4)

is again a Poisson process. We then connect (Xm, Qm) with (Xn, Qn) ifXm is lexicograph-
ically smaller than Xn and Z ′

m,τ ≤ ϕ(Xn − Xm, Qm, Qn), where the N-valued random
variable τ is determined by the fact that Xn is the τ -th nearest neighbour of Xm in the
set {Xk : k 6= m}, where we can use the lexicographic order to break ties. Then we
have ξ = F (η∗) for a well-defined measurable mapping F . Since the nearest neighbour
relation is translation invariant it follows from (4.1) that F can be assumed to satisfy

Txξ = F (Txη
∗) for each x ∈ Rd. Since Txη∗

d
= η∗ it follows that ξ is stationary. The

same argument combined with [27, Exercise 10.1] shows that ξ is ergodic, i.e. we have
P(ξ ∈ A) ∈ {0, 1} for each translation invariant measurable A ⊂ G. IfM contains only
one element, we identify X with Rd. In this case ξ is said to be a stationary RCM.

The following consequence of the Mecke equation will be often used to treat cluster
expectations.

Lemma 4.1. Let B ∈ B(Rd) and f : N→ R+. Then

Et

∫
1{x ∈ B}f(|C(x,p)(ξ)|) η(d(x, p)) = tλd(B)Et

∫
f(|C(0,p)|)Q(dp). (4.5)

Proof. By the Mecke equation (3.1) the left-hand side of (4.5) equals

tEt

∫∫
1{x ∈ B}f(|C(x,p)(ξ(x,p))|) dxQ(dp)

= tEt

∫∫
1{x ∈ B}f(|C(0,p)(Txξ

(x,p))|) dxQ(dp),

where we have used that |C(x,p)(µ)| = |C(0,p)(Txµ)| for all µ ∈ G. It follows from

stationarity of ξ and definition of ξ(x,p), that Txξ(x,p)
d
= ξ(0,p) for λd⊗Q-a.e. (x, p) ∈ Rd×M.

Therefore the result follows.

Let Q0 be a random element of M with distribution Q which is independent of η∗

given by (4.4). In accordance with Palm theory we refer to C(0,Q0)(ξ(0,Q0)) as cluster of
the typical vertex (of ξ).

Remark 4.2. Let p ∈ M. Then the degree Dp of (0, p) (the origin marked with p) in
ξ(0,p) has a Poisson distribution with parameter t

∫
ϕ(x, p, q) dxQ(dq). Our integrability

assumption (4.2) means that
∫
EDpQ(dp) <∞. This means that the expected degree of

the typical vertex is finite. Hence (4.2) excludes Pareto type degree distributions but is
still much weaker than the integrability assumption made in [11].
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The function

κ(t) :=

∫
Et|C(0,p)|−1Q(dp) = Et|C(0,Q0)|−1, t ∈ R+, (4.6)

plays a crucial role in Section 11. To interpret it, we introduce a point process ηc ≤
η(· ×M) modeling finite clusters as follows. Let (x, p) ∈ η. Then x ∈ ηc if |C(x,p)(ξ)| <∞
and x is the lexicographically smallest spatial coordinate of the points in C(x,p)(ξ). Since
ξ is stationary, it is easy to see that ηc is a stationary point process. The following result
shows that tκ(t) is the intensity of ηc, that is the density of finite clusters. With a slight
abuse of language we refer to κ(t) as cluster density. In the unmarked case this function
is also called free energy; see [1, 7, 14].

Lemma 4.3. For each t ∈ R+ we have that tκ(t) = Etηc([0, 1]d).

Proof. The result follows from [29, Proposition 3.1] upon taking there η as the projection
of the point process {(x, p) ∈ η : |C(x,p)(ξ)| <∞} onto Rd and ξ := ηc. A direct proof can
start with

tκ(t) = Et

∫
1{x ∈ [0, 1]d}|C(x,p)(ξ)|−1 η(d(x, p)), (4.7)

a consequence of (4.5). The right-hand side can be written as

Et

∫∫
1{x ∈ [0, 1]d}|C(x,p)(ξ)|−11{τ(x, p) = y} η(d(x, p)) ηc(dy),

where τ(x, p) is the lexicographic minimum of the spatial coordinates of C(x,p)(ξ). The
key step is then the application of the refined Campbell theorem for ηc.

The cluster density can also be obtained as an ergodic limit:

Proposition 4.4. Let Bn ∈ B(Rd), n ∈ N, be an increasing sequence of compact convex
sets whose inradius diverges to ∞. Then

lim
n→∞

(λd(Bn))
−1

∫
1{x ∈ Bn}|C(x,p)(ξ)|−1 η(d(x, p)) = tκ(t), Pt-a.s.

Proof. For each µ ∈ G

Mµ :=

∫
1{x ∈ ·}|C(x,p)(µ)|−1 µ(d(x, p))

is a locally finite measure on Rd. For x, y ∈ Rd and µ ∈ G we have C(x,p)(Tyµ) =

TyC
(x+y,p)(µ). Therefore, we obtain for B ∈ B(Rd) and y ∈ Rd

MTyµ(B) :=

∫
1{x ∈ B}|C(x+y,p)(µ)|−1 Tyµ(d(x, p))

=

∫
1{x− y ∈ B}|C(x,p)(µ)|−1 µ(d(x, p)).

This means that MTyµ = TyMµ. Therefore Mξ is a stationary and ergodic random
measure. By (4.7) it has intensity tκ(t). Hence the result follows from [36, Satz 3]; see
also [24, Theorem 30.10].

We continue with a basic fact from percolation theory. Define

θ(t) := Pt
(∣∣C(0,Q0)(ξ(0,Q0))

∣∣ = ∞
)
=

∫
Pt
(
|C(0,p)| = ∞

)
Q(dp), t ≥ 0, (4.8)

as the probability that the cluster of a typical vertex has infinite size. Let C∞ denote the
set of all µ ∈ G such that µ has an infinite cluster.
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Proposition 4.5. Let t > 0. Then θ(t) > 0 if and only if Pt(ξ ∈ C∞) = 1.

Proof. Let B ∈ B(Rd) be a Borel set with λd(B) ∈ (0,∞). By (4.5),

θ(t) = (tλd(B))−1Et

∫
1{x ∈ B}1{|C(x,p)(ξ)| = ∞} η(d(x, p)).

Hence, if θ(t) > 0, then the probability that there is some (x, p) ∈ η with |C(x,p)(ξ)| =
∞ must be positive. Since ξ is ergodic and C∞ is translation invariant, we obtain
Pt(ξ ∈ C∞) = 1. If, on the other hand, θ(t) = 0, then the probability that |C(x,p)(ξ)| = ∞
for some (x, p) ∈ η with x ∈ B is zero. Letting B ↑ Rd we obtain that Pt(ξ ∈ C∞) = 0.

The critical intensity (percolation threshold) is defined by

tc := inf{t > 0 : θ(t) > 0}. (4.9)

If t < tc then Pt(ξ ∈ C∞) = 0 and if t > tc then Pt(ξ ∈ C∞) = 1. Under a natural
irreducibility assumption our Theorem 12.1 will show that ξ can have at most one infinite
cluster.

We finish this section with some examples.

Example 4.6. In the unmarked case the connection function ϕ is just a function on Rd.
Under the minimal assumption dϕ ∈ (0,∞) it was shown in [37] that tc ∈ (0,∞).

Example 4.7. Assume thatM = R+ and ϕ(x, p, q) = 1{‖x‖ ≤ p+ q}, where ‖x‖ denotes
the Euclidean norm of x ∈ Rd. The RCM ξ is then said to be the Gilbert graph with radius
distribution Q; see e.g. [27, Chapter 16] for more detail. The integrability assumption
(4.2) is then equivalent with

∫
rdQ(dr) <∞, which is the minimal assumption for having

a reasonable model. Under the additional assumption Q{0} < 1 it was proved in [17, 20]
that tc ∈ (0,∞).

Example 4.8. Suppose that M equals the space Cd of all non-empty compact subsets
of Rd, equipped with the Hausdorff metric cf. [27, 41]. Let V : Cd ∪ {∅} → [0,∞] be
measurable and translation invariant with V (∅) = 0. For instance, V could be the volume
or, if Q is concentrated on the convex bodies, a linear combination of the intrinsic
volumes; see [41]. Assume that the connection function is given by

ϕ((x,K), (y, L)) = 1− e−V ((K+x)∩(L+y)), (x,K), (y, L) ∈ Rd × Cd.

Then (4.1) follows from translation invariance of V . The case of the Gilbert graph arises
if Q is concentrated on balls centered at the origin. A sufficient condition for (4.2) is∫

D(K)dQ(dK) <∞,

where D(K) is the radius of the smallest ball centered at the origin and containing K.
This easily follows from

ϕ(x,K,L) ≤ 1{K ∩ (L+ x) 6= ∅} ≤ 1{‖x‖ ≤ D(K) +D(L)}.

The random closed set
⋃

(x,K)∈ηK +x is known as the Boolean model and a fundamental
model of stochastic geometry (see [27, 41]) and continuum percolation (see [33]). This
model corresponds to the choice V (K) = ∞ · 1{K 6= ∅}. In that case and under some
additional assumptions on Q it was proved in [20] that tc ∈ (0,∞). The present much
more general model is taken from [6] and is partially motivated by statistical physics.
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Example 4.9. Assume thatM = (0, 1) equipped with Lebesgue measure Q. Assume that

ϕ((x, p), (y, q)) = ρ(g(p, q)‖x− y‖d),

for a decreasing function ρ : [0,∞) → [0, 1] and a function g : (0, 1)× (0, 1) → [0,∞) which
is increasing in both arguments. We assume that mρ :=

∫
ρ(‖x‖d) dx is positive and finite.

This model was studied in [19] under the name weight-dependent random connection
model . A simple calculation shows that

dϕ = mρ

∫∫
g(p, q)−1 dp dq.

To ensure (4.2) we have to assume that g−1 is integrable. This is the case in all examples
studied in [19], where it is also asserted that tc <∞. Sufficient conditions for tc ∈ (0,∞)

can also be found in [11, 12].

5 Irreducibility

In this section, we first consider a general RCM ξ based on a Poisson process η on
X with diffuse intensity measure tλ. We fix the intensity parameter t > 0 and therefore
drop the lower index t in Pt. To simplify the notation, we take t = 1. We say that ξ is
irreducible if

P(x1 ↔ x2 in ξ
x1,x2) > 0, λ2-a.e. (x1, x2) ∈ X2. (5.1)

Given k ∈ N and random elements Y1, . . . , Yk of X we let Ξ[Y1, . . . , Yk] be a RCM
based on the point process δY1

+ · · · + δYk
. Of course we can allow here some of the

Y1, . . . , Yk to be deterministic. Further we define for each n ∈ N a measurable function
ϕ(n) : Xn → [0,∞) recursively by ϕ(1) := ϕ and

ϕ(n+1)(x1, x2) :=

∫
ϕ(n)(x1, z)ϕ(z, x2)λ(dz), x1, x2 ∈ X, n ∈ N.

These functions are symmetric. It follows straight from the Mecke equation (3.1) that

ϕ(n)(x1, x2) = E

∫ n∏
i=1

1{yi−1 ∼ yi in ξ
x1,x2} η(n−1)(d(y1, . . . , yn−1)), (5.2)

where y0 := x1 and yn := x2. This is the expected number of paths of length n from x1 to
x2 in ξx1,x2 .

Proposition 5.1. The following six statements are equivalent:

(i) ξ is irreducible.

(ii) There exist for λ2-a.e. (x1, x2) ∈ X2 a set B ∈ X with λ(B) ∈ (0,∞), an n ∈ N0 and
independent random variables Y1, . . . , Yn with distribution λB/λ(B) such that

P(x1 ↔ x2 in Ξ[x1, x2, Y1, . . . , Yn]) > 0. (5.3)

(iii) There exists for λ2-a.e. (x1, x2) ∈ X2 an n ∈ N0 such that∫
P(x1 ↔ x2 in Ξ[x1, x2, y1, . . . , yn])λ

n(d(y1, . . . , yn)) > 0. (5.4)

(iv) For λ2-a.e. (x1, x2) ∈ X2 it holds that

sup
n≥1

ϕ(n)(x1, x2) > 0. (5.5)
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(v) For λ2-a.e. (x1, x2) ∈ X2 and for all k ∈ N we have

sup
n≥k

ϕ(n)(x1, x2) > 0. (5.6)

(vi) There exist for λ2-a.e. (x1, x2) ∈ X2 a set B ∈ X with λ(B) ∈ (0,∞), an n ∈ N and
independent random variables Y1, . . . , Yn with distribution λB/λ(B) such that

P(x1 ↔ x2 in Ξ′[x1, x2, Y1, . . . , Yn]) > 0, (5.7)

where Ξ′[x1, x2, Y1, . . . , Yn] is the graph obtained from Ξ[x1, x2, Y1, . . . , Yn] by remov-
ing the edge between x1 and x2 (if there is one).

Proof. Assume that (i) holds, and let x1, x2 ∈ X be such that P(x1 ↔ x2 in ξx1,x2) > 0.
Let (Bm) be a sequence of measurable sets of finite λ-measure increasing towards X. By
monotone convergence there exists m ∈ N such that x1, x2 ∈ Bm and

P(x1 ↔ x2 in ξ
x1,x2 [Bm]) > 0. (5.8)

Let B := Bm. Note that ξx1,x2 [B] is a RCM based on δx1
+ δx2

+ ηB and ηB
d
=
∑η(B)
k=0 Yk,

where Y1, Y2, . . . are independent with distribution λB/λ(B), independent of ηB. Splitting
the event {x1 ↔ x2 in ξx1,x2 [B]} according to the value of η(B) yields (ii).

Assume that (ii) holds. Then we have for λ2-a.e. (x1, x2) that

P(x1 ↔ x2 in Ξ[x1, x2, Y1, . . . , Yn])

=λ(B)−n
∫
P(x1 ↔ x2 in Ξ[x1, x2, y1, . . . , yn])λ

n
B(d(y1, . . . , yn)) > 0,

which implies (iii).
Assume that x1, x2 ∈ X satisfy (5.4). If x1 ↔ x2 in Ξ[x1, x2, y1, . . . , yn] then there exist

k ∈ {0, . . . , n} and pairwise distinct i1, . . . , ik ∈ {1, . . . , n} with x1 ∼ yi1 ∼ · · · ∼ yik ∼ x2
in Ξ[x1, x2, y1, . . . , yn]. Therefore and by the symmetry of λn

n∑
k=0

∫ k+1∏
i=1

ϕ(yi−1, yi)λ
k(d(y1, . . . , yk)) > 0,

where y0 := x1 and yk+1 := x2. Hence (iv) follows.
Assume that (iv) holds, then for λ2-a.e. (x1, x2) ∈ X2

0 <

∞∑
m,n=1

ϕ(m+n)(x1, x2) =

∞∑
m,n=1

∫
ϕ(m)(x1, z)ϕ

(n)(z, x2)λ(dz)

=

∫ ( ∞∑
m=1

ϕ(m)(x1, z)

)( ∞∑
n=1

ϕ(n)(z, x2)

)
λ(dz).

Therefore sup
n≥2

ϕ(n)(x1, x2) > 0 for λ2-a.e. (x1, x2) ∈ X2. To obtain (5.6) for general k ∈ N

one has to start with a k-fold summation instead of a double summation.
Assume now that x1, x2 ∈ X satisfy (5.6), then there exists n ≥ 2 such that ϕ(n)(x1, x2)>

0. Therefore there exists B ∈ X of finite λ-measure with∫ n∏
i=1

ϕ(yi−1, yi)λ
n−1
B (d(y1, . . . , yn−1)) > 0,

where y0 := x1 and yn := x2. This implies (vi).
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Finally, note that for any n ∈ N

P(x1 ↔ x2 in Ξ′[x1, x2, Y1, . . . , Yn]) ≤ P(x1 ↔ x2 in Ξ[x1, x2, Y1, . . . , Yn])

= P(x1 ↔ x2 in ξ
x1,x2 [B] | η(B) = n).

Therefore (vi) implies (i).

Remark 5.2. Proposition 5.1 shows that irreducibility does not depend on the intensity
parameter t as long as it is positive.

Remark 5.3. Consider the setting of Remark 2.1, where λ is not assumed to be diffuse.
In the diffuse case, the value of the connection function on the diagonal ofX2 is irrelevant
for the definition of the RCM. But now we assume that ϕ(x, x) = 1 for all x ∈ X. For
each n ∈ N we can define a measurable function ϕ̂(n) : X̂n → [0,∞) as before. Now it
can easily be checked that

ϕ̂(n)((x, u), (y, v)) = ϕ(n)(x, y), (x, u), (y, v) ∈ X̂,

where ϕ(n) is defined as before, non-withstanding the fact that λ might not be diffuse.
By Proposition 5.1 we therefore have that the random connection model ξ̂ is irreducible,
if and only if (5.5) holds.

Example 5.4. Let Y be a locally compact separable Hausdorff space and assume that
X is the class of closed subsets of Y equipped with the Fell topology; see e.g. [41].
Let ν be a locally finite measure on Y, Q be a probability measure on [0,∞), such that∫
ν(B(x, r))Q(dr) <∞ for all x ∈ X and all r ≥ 0, where B(x, r) denotes the closed ball

with centre x and radius r. Assume that λ is given by

λ =

∫∫
1{B(x, r) ∈ ·} ν(dx)Q(dr). (5.9)

It is easy to see, that λ is locally finite. Similarly as in Example 4.8 we take a measurable
function V : X → [0,∞] and assume that ϕ(K,L) = 1 − e−V (K∩L), K,L ∈ X. Assume
also that the function V is increasing w.r.t. set inclusion and that V (K) > 0 if K 6= ∅. If
Q([ε,∞)) > 0 for some ε > 0 and∫

1{B(x1, ε) ∩B(x2, ε) 6= ∅} ν2(d(x1, x2)) > 0,

then ϕ(K,L) > 0 for all K,L ∈ X and the RCM ξ is irreducible.

In the remainder of this section we consider the stationary marked RCM as discussed
in Section 4. Recall that without loss of generality, we can take t = 1. It is easy to see
that for all n ∈ N and all (x, p), (y, q) ∈ X

ϕ(n)((x, p), (y, q)) = ϕ(n)((0, p), (y − x, q)) = ϕ(n)((0, q), (x− y, p)) (5.10)

We write ϕ(n)(x, p, q) := ϕ(n)((0, p), (x, q)) and note that ϕ(n)(x, p, q) = ϕ(n)(−x, q, p). In
the unmarked case we can identify X with Rd. In this case ϕ(n) = ϕ∗n is the n-fold
convolution of ϕ, where ϕ is considered as function on Rd.

Proposition 5.5. The stationary (unmarked) RCM is irreducible.

The proof of Proposition 5.5 is a quick consequence of the first part of the following
lemma.

Lemma 5.6. Assume that f : Rd → [0,∞) is a bounded measurable function with 0 <∫
f(y) dy <∞ and f(y) = f(−y) for all y ∈ Rd. Let R > 0.

(i) There exist n ∈ N and ε > 0 such that f∗n(x) ≥ ε whenever ‖x‖ ≤ R.
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(ii) Let g : Rd → R+ be another bounded measurable function with
∫
g(y) dy > 0 and

let x ∈ Rd. Then there exists n ∈ N such that (f∗n ∗ g)(x) > 0.

Proof. (i) The convolution of an integrable and a bounded function is bounded and
uniformly continuous; see [15, Proposition 8.8]. It follows that f∗2 is bounded and
uniformly continuous. Since

∫
f∗2(x) dx =

( ∫
f(x) dx

)2
> 0 there exist a ball B′ ⊂ Rd

with positive radius and ε′ > 0 such that f∗2 ≥ ε′ on B′. Since f is symmetric, f∗2 is
symmetric as well. Hence we can find a ball B with center 0 and positive radius and some
ε > 0 such that f∗4 ≥ ε on B. Finally we find m ∈ N and ε > 0 such that f∗4m(x) ≥ ε

whenever ‖x‖ ≤ R.
(ii) By assumption

∫
g(x)1{g(x) ≥ ε0} dx > 0 for some ε0 > 0. Set C := {g ≥ ε0}. Then

we have for each n ∈ N that

(f∗n ∗ g)(x) ≥ ε0

∫
f∗n(x− z)1{z ∈ C} dz.

Choose R > 0 so large that ∫
1{‖x− z‖ ≤ R, z ∈ C} dz > 0.

By the first part of the lemma we can find n ∈ N and ε > 0 such that f∗n(y) ≥ ε whenever
‖y‖ ≤ R. It follows that

(f∗n ∗ g)(x) ≥ ε0

∫
f∗n(x− z)1{‖x− z‖ ≤ R, z ∈ C} dz

≥ ε0ε

∫
1{‖x− z‖ ≤ R, z ∈ C} dz.

By the choice of R this is positive.

Proof of Proposition 5.5. We can use Lemma 5.6 (i) and condition (5.5) from Proposition
5.1 to conclude the proof. Indeed, given x1, x2 ∈ X we find an n ∈ N such that
ϕ(n)(x1, x2) = ϕ∗n(x2 − x1) > 0.

It is natural to characterize irreducibility of the stationary marked RCM in terms of
the functions d(n)ϕ : M2 → [0,∞], n ∈ N, defined by

d(n)ϕ (p, q) :=

∫
ϕ(n)(x, p, q) dx, p, q ∈M.

Similarly as at (5.2) we see that
∫
d
(n)
ϕ (p, q)1{q ∈ A}Q(dq) is the expected number of

paths of length n from (0, p) to some location with mark in a measurable set A ⊂ M.

From the symmetry property of ϕ(n) we obtain that d(n)ϕ is symmetric. Furthermore,

d(n)ϕ (p, q) =

∫ n∏
i=1

dϕ(qi−1, qi)Q
n−1(d(q1, . . . , qn−1)),

where dϕ(·, ·) := d
(1)
ϕ (·, ·), q0 := p, qn := q. Therefore

d(m+n)
ϕ (p, q) =

∫
d(m)
ϕ (p, r)d(n)ϕ (r, q)Q(dr), p, q ∈M, m, n ∈ N. (5.11)

We may interpret q 7→
∑∞
n=1 d

(n)(p, q) as a mark occupation density of the RCM.

Theorem 5.7. Let ξ be a stationary marked RCM. Then ξ is irreducible if and only if

sup
n≥1

d(n)ϕ (p, q) > 0, Q2-a.e. (p, q) ∈M2. (5.12)
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Uniqueness of the infinite cluster and cluster density in the RCM

Proof. Assume that ξ is irreducible and for the sake of contradiction that there exists
some measurable set B ⊂ M2 satisfying Q2(B) > 0, and d(n)ϕ (p, q) = 0 for all (p, q) ∈ B

and for each n ∈ N. But then ϕ(n)((0, p), (x, q)) = 0 for all (p, q) ∈ B, n ∈ N and λd-a.e.
x ∈ Rd. This contradicts Proposition 5.1 (iv).

Now we assume that (5.12) holds. Then dϕ > 0. Indeed, otherwise we would
have ϕ(x, p, q) = 0 and then also ϕ(n)(x, p, q) = 0, n ∈ N, for λ-a.e. (x, p, q) ∈ Rd ×M2.
Therefore there exist measurable sets A ⊂ Rd and E,F ⊂ M such that λd(A) > 0,
Q(E) > 0, Q(F ) > 0, and

ε0 := inf
x∈A,p∈E,q∈F

ϕ(x, p, q) = inf
x∈−A,p∈E,q∈F

ϕ(x, q, p) > 0. (5.13)

Set ε(x) := ε01{x ∈ A}. Then ϕ(x, p, q) ≥ ε(x) for each (x, p, q) ∈ Rd × E × F . For all
x ∈ Rd and all r, s ∈ F we have

ϕ(2)(x, r, s) =

∫∫
ϕ(z, r, q)ϕ(x− z, q, s)Q(dq) dz

=

∫∫
ϕ(−z, q, r)ϕ(x− z, q, s)Q(dq) dz

≥ Q(E)

∫
ε(−z)ε(x− z) dz = Q(E)f(x),

where f is the convolution of ε and ε01−A. Note that f is symmetric and has a positive
and finite integral. We further have

ϕ(4)(x, r, s) ≥
∫∫

1{q ∈ F}ϕ(2)(z, r, q)ϕ(2)(x− z, q, s)Q(dq) dz ≥ Q(E)2Q(F )f∗2(x)

and, inductively,

ϕ(2n)(x, r, s) ≥ Q(E)nQ(F )n−1f∗n(x). (5.14)

Our goal is to use Proposition 5.1 (iv). Let p, q ∈ M. In view of this goal and
assumption (5.12) we can assume that there exist k, l ∈ N such that∫

F

d(k)ϕ (p, r)Q(dr) > 0 and

∫
F

d(l)ϕ (r, q)Q(dr) > 0.

Then we obtain by (5.14) for each x ∈ Rd and each n ∈ N that

ϕ(k+2n+l)(x, p, q) =

∫∫
ϕ(k)(z, p, r)ϕ(2n)(w, r, s)ϕ(l)(x− z − w, s, q)Q2(d(r, s)) d(z, w)

≥ Q(E)nQ(F )n−1

∫∫
F 2

ϕ(k)(z, p, r)f∗n(w)ϕ(l)(x− z − w, s, q)Q2(d(r, s)) d(z, w)

= Q(E)nQ(F )n−1(g ∗ f∗n ∗ h)(x) = Q(E)nQ(F )n−1(f∗n ∗ g ∗ h)(x),

where g(z) :=
∫
F
ϕ(k)(z, p, r)Q(dr) and h(z) :=

∫
F
ϕ(l)(z, r, q)Q(dr). By the choice of k

and l we have ∫
g ∗ h(x) dx =

∫
g(x) dx

∫
h(x) dx > 0.

Therefore, given x ∈ Rd, we obtain from Lemma 5.6 that (f∗n ∗ g ∗ h)(x) is positive for
some sufficiently large n. Taking into the account translation invariance (5.10) we hence
obtain from Proposition 5.1 (iv) that ξ is irreducible.
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Uniqueness of the infinite cluster and cluster density in the RCM

Remark 5.8. Condition (5.12) can be expressed as follows. For each B ∈ X with
Q(B) > 0 we have ∫

B

∞∑
n=1

d(n)ϕ (p, q) > 0, Q-a.e. p. (5.15)

Assume (for the sake of illustration) that d(p) :=
∫
dϕ(p, q)Q(dq) > 0 for each p ∈ M

and let (Xn)n≥0 be a Markov chain with transition kernel p 7→ d(p)−1dϕ(p, q)Q(dq). Then
condition (5.15) means that

E

[ ∞∑
n=1

1{Xn ∈ B}
∣∣∣∣X0 = p

]
> 0, Q-a.e. p, (5.16)

which is slightly weaker than Q-irreducibility of (Xn), as studied in [34]. Without
additional assumptions on ϕ, (5.12) seems to be both a natural and a minimal assumption.
If there exists A ∈ X with 0 < Q(A) < 1 and dϕ(p, q) = 0 for (p, q) ∈ A × Ac, then

d
(n)
ϕ (p, q) = 0 for each n ∈ N and all (p, q) ∈ A×Ac, so that (5.12) fails.

The next remark shows the relevance of irreducibility for the uniqueness of the
infinite cluster.

Remark 5.9. Assume that M is discrete and that Q{p} > 0 for each p ∈ M. Given

p, q ∈ M we write p ' q if either p = q or supn≥1 d
(n)
ϕ (p, q) > 0. It follows from (5.11)

that ' is an equivalence relation. Let [p] := {q ∈M : p ' q} be the equivalence class of
p ∈M. Then η[p] := {(x, q) ∈ η : q ∈ [p]} are for different equivalence classes independent
Poisson processes with intensity measures λd ⊗Q([p] ∩ ·). Assume now that there exist
some marks p, q ∈ M such that [p] ∩ [q] = ∅. We assert that ξ[η[p]] and ξ[η[q]] are vertex
disjoint, that is, there is no edge in ξ between η[p] and η[q]. To see this, we take a bounded
Borel set B ⊂ Rd and let A denote the event that there exist x ∈ B and y ∈ Rd such that
(x, p), (y, q) ∈ η and (x, p) ↔ (y, q) in ξ. Similarly, as in previous calculations, we obtain

P(A) ≤
∞∑
n=1

λd(B)Q{p}Q{q}d(n)ϕ (p, q)

which comes to zero. If ξ[η[p]] and ξ[η[q]] both percolate, then ξ has at least two infinite
clusters. Without the irreducibility condition, the number of infinite clusters might be
any natural number or even infinity.

In the following we will discuss some consequences of Theorem 5.7. We start with
the case, where Q has an atom. This covers discrete (that is finite or countably infinite)
mark spaces and generalizes Proposition 5.5.

Corollary 5.10. Let ξ be a stationary marked RCM and assume that there exists p0 ∈M
with Q{p0} > 0. Then ξ is irreducible if and only if

sup
n≥1

d(n)ϕ (p0, q) > 0, Q-a.e. q ∈M. (5.17)

Proof. Take p, q ∈M and m,n ∈ N. By (5.11),

d(m+n)
ϕ (p, q) ≥ Q{p0}d(m)

ϕ (p, p0)d
(n)
ϕ (p0, q) = Q{p0}d(m)

ϕ (p0, p)d
(n)
ϕ (p0, q).

Hence, if (5.17) holds, then we obtain that supk≥2 d
(k)
ϕ (p, q) > 0 for Q2-a.e. (p, q), so that

irreducibility follows from Theorem 5.7. The converse is obvious.

Under a suitable minorization assumption on the connection function we have the
following version of Corollary 5.10 which does not assume p0 to be an atom of Q.
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Theorem 5.11. Assume that there exist a measurable set A ⊂ M with Q(A) > 0 and
some p0 ∈M satisfying

dϕ(p, q) ≥ dϕ(p, p0), Q2-a.e. (p, q) ∈M×A. (5.18)

Assume also that (5.17) holds. Then the RCM ξ is irreducible.

Proof. Taking n = 1 in (5.11) it follows by induction that

d(m)
ϕ (p, q) ≥ d(m)

ϕ (p, p0), Q2-a.e. (p, q) ∈M×A.

Just as in the proof of Corollary 5.10 we hence obtain for all m,n ∈ N and Q2-a.e. (p, q)
that

d(m+n)
ϕ (p, q) ≥ Q(A)d(m)

ϕ (p, p0)d
(n)
ϕ (p0, q).

Therefore we obtain that supk≥2 d
(k)
ϕ (p, q) > 0 for Q2-a.e. (p, q), so that irreducibility

follows from Theorem 5.7.

A minimal assumption for irreducibility could be∫
dϕ(p, q)Q(dq) > 0, Q-a.e. p ∈M. (5.19)

Under suitable assumptions on Q and ϕ we shall show with Theorem 5.12 that (5.19) is
already sufficient for irreducibility.

In Theorem 5.12 we will consider a partial ordering � on M which is measurable,
that is {(p, q) : p � q} is a measurable subset of M2. Slightly generalizing [30] we say
that M is partially ordered probability (POP) space. A real-valued function f on M is
said to be non-decreasing if x � y implies f(x) ≤ f(y). The probability measure Q is
called (positively) associated if∫

fg dQ ≥
∫
f dQ

∫
g dQ (5.20)

for all non-decreasing measurable f, g : M→ R for which the integrals make sense. Our
next result provides assumptions on ϕ and Q, under which the minimal assumption (5.19)
implies irreducibility. Corollary 5.13 and Example 12.7 will demonstrate the usefulness
of this result.

Theorem 5.12. Assume thatM is a POP space and that Q is associated. Assume also
that dϕ(p, ·) is monotone (non-decreasing or non-increasing) for all p ∈M. Then the RCM
ξ is irreducible if and only if (5.19) holds.

Proof. Assume that (5.12) holds but (5.19) fails. Then there exists a measurable set
B ⊂ M with Q(B) > 0 and dϕ(p, q) = 0 for Q2-a.e. (p, q) ∈ B ×M. This implies for all

n ∈ N, that d(n)ϕ (p, q) = 0 for Q2-a.e. (p, q) ∈ B ×M. The resulting contradiction shows
that (5.12) implies (5.19). Let us assume the latter holds. Since Q is associated we
obtain for all p, q ∈M

d(2)ϕ (p, q) =

∫
dϕ(p, r)dϕ(r, q)Q(dr) ≥

∫
dϕ(p, r)Q(dr)

∫
dϕ(r, q)Q(dr).

This implies (5.12) and hence the result.

Corollary 5.13. Assume thatM ⊂ R is an interval and that dϕ(p, ·) is monotone for all
p ∈M. Then the RCM ξ is irreducible if and only if (5.19) holds.
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Proof. Since any probability measure onM is associated (see e.g. [30]), the result follows
from Theorem 5.12.

Remark 5.14. Let the assumptions of Theorem 5.12 be satisfied and assume moreover
that

∫∫
1{p � q}Q(dp)Q(dq) > 0. Let B be the increasing Borel set of all p ∈ M such

that supn≥1 d
(n)(p, q) > 0 for Q-a.e. q ∈M. Since ξ is irreducible (by Theorem 5.12) we

obtain from Theorem 5.7 that Q(B) = 1. We assert that there is some p0 ∈ B such that
Q(Cp0) > 0, where Cp0 := {p ∈ X : p0 � p}. Indeed, if this were not the case, then

0 =

∫∫
1{p � q, p ∈ B}Q(dp)Q(dq) =

∫∫
1{p � q, p ∈ B, q ∈ B}Q(dp)Q(dq)

=

∫∫
1{p � q}Q(dp)Q(dq),

contradicting our assumption. It follows that (5.17) and (5.18) both hold with A := Cp0 .
Therefore Theorem 5.11 applies. However, given a monotone dϕ and an associated Q,
Theorem 5.12 is much easier to apply. It only remains to check (5.19), which could be
assumed without too much loss of generality; see Remark 5.15.

Remark 5.15. Assume that (5.19) fails and choose a measurable set B ⊂ M with
Q(B) > 0 and dϕ(p, q) = 0 for Q2-a.e. (p, q) ∈ B ×M. This easily implies that

|C(x,p)| = 1, (x, p) ∈ ηRd×B , P-a.s.

Therefore Poisson points with a mark in B are isolated in ξ. In particular they do not
contribute to infinite clusters.

6 Deletion stability and uniqueness

In this section, we consider a general RCM ξ based on a Poisson process η on X with
diffuse intensity measure λ. Given (x, µ) ∈ X×G we let N∞(x, µ) denote the number of
infinite clusters in Cx(µ)− δx. We say that the infinite clusters in ξ are deletion stable if

P(N∞(x, ξx) ≥ 2) = 0, λ-a.e. x ∈ X. (6.1)

Using the Mecke equation it is not difficult to see that the infinite clusters in ξ are
deletion stable if Nds = 0 a.s., where

Nds :=

∫
1{N∞(x, ξ) ≥ 2} η(dx). (6.2)

Theorem 6.1. Assume that ξ is irreducible and that the infinite clusters of ξ are deletion
stable. Then ξ has P-almost surely at most one infinite cluster. If, conversely, the latter
holds then the infinite cluster of ξ is deletion stable.

The converse implication in Theorem 6.1 will be an easy consequence of the Mecke
equation. The proof of the non-trivial implication will be based on two lemmas. Let
Y1, . . . , Yn be random elements of X, which are a.s. pairwise distinct. In accordance with
Section 3 we define a random connection model ξY1,...,Yn based on the point process
η + δY1 + · · · + δYn as follows. We connect Y1 with the points in η using independent
connection decisions which are independent of ξ. We then proceed inductively finally
connecting Yn to η + δY1

+ · · ·+ δYn−1
.

Lemma 6.2. Suppose that B ∈ X with λ(B) ∈ (0,∞) and let Y1, . . . , Yn be independent
random variables with distribution λB/λ(B), independent of ξ. Assume that the infinite
clusters of ξ are deletion stable, then∫

P(N∞(Yn, ξ
x1,x2,Y1,...,Yn) ≥ 2)λ2(d(x1, x2)) = 0. (6.3)
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Proof. It is useful to add a point x ∈ X to a graph µ ∈ G in the following explicit way.
There are measurable mappings πn : N → Rd such that µ(· × N) =

∑|µ|
n=1 δπn(µ), for

each µ ∈ G. Let (µ, x) ∈ G ×X and u = (un)n≥1 ∈ [0, 1]N. Define µxu ∈ G as the graph
with vertex measure V (µ) + δx, edges from µ and further edges between πn(µ) and x
if ϕ(πn(µ), x) ≥ un. Define h(x, µ, u) := 1{N∞(x, µxu) ≥ 2}. Assume that U is a random
element of [0, 1]N with independent and uniformly distributed components, independent
of ξ. Then 1{N∞(x, ξx) ≥ 2} has the same distribution as h(x, ξ, U) and deletion stability
means that ∫∫∫

h(x, µ, u)P(ξ ∈ dµ)λ(dx)P(U ∈ du) = 0. (6.4)

Given x1, x2 ∈ X we also have

1{N∞(Yn, ξ
x1,x2,Y1,...,Yn) ≥ 2} d

= h(Yn, ξ
x1,x2,Y1,...,Yn−1 , Un),

where Un is independent of the pair (Yn, ξx1,x2,Y1,...,Yn−1) and has the same distribution
as U . Therefore∫∫

P(N∞(Yn, ξ
x1,x2,Y1,...,Yn) ≥ 2)λ2(d(x1, x2))

= (λ(B))−1

∫∫∫
Eh(yn, ξ

x1,x2,Y1,...,Yn−1 , u)λB(dyn)P(U ∈ du)λ2(d(x1, x2))

= (λ(B))−n
∫∫∫

Eh(yn, ξ
x1,x2,y1,...,yn−1 , u)P(U ∈ du)λnB(d(y1, . . . , yn))λ

2(d(x1, x2)),

where we have used the definition of ξx1,x2,Y1,...,Yn−1 . From the Mecke equation we obtain
that the above equals

(λ(B))−nE

∫∫∫
h(yn, ξ, u)1{y1, . . . , yn−1 ∈ B}λB(dyn)P(U ∈ du)

η(n+1)(d(x1, x2, y1, . . . , yn−1)).

By (6.4), the integral
∫∫

h(y, ξ, u)λB(dy)P(U ∈ du) does almost surely vanish. This
concludes the proof.

For given x1, x2 ∈ X let A(x1, x2) be the event that the clusters Cx1(ξx1,x2) and
Cx2(ξx1,x2) are infinite and not connected. Further, for n ∈ N0 let Bn(x1, x2) be the event
that x1 and x2 are connected in ξx1,x2,Y1,...,Yn , where Y1, . . . , Yn are defined in Lemma 6.2.

Lemma 6.3. Let the assumptions of Lemma 6.2 be in force. Then for a given n ∈ N0∫
P(A(x1, x2) ∩Bn(x1, x2))λ2(d(x1, x2)) = 0. (6.5)

Proof. We can remove the points Yn, . . . , Y1 from ξx1,x2,Y1,...,Yn one by one. Each time
we can apply Lemma 6.2. Hence removing Yi (for i ≤ n) cannot split the cluster of
Yi in ξx1,x2,Y1,...,Yi into more than one infinite cluster. Take x1, x2 ∈ X and n ∈ N0

such that Bn(x1, x2) holds and assume for the sake of contradiction that A(x1, x2) holds.
In particular Cx1(ξx1,x2) and Cx2(ξx1,x2) are vertex disjoint, so that there must be an
i ∈ {1, . . . , n} such that x1, x2 are connected in ξx1,x2,Y1,...,Yi but not in ξx1,x2,Y1,...,Yi−1 .
Hence, the removal of Yi would split the cluster of Yi in ξx1,x2,Y1,...,Yi into two infinite
clusters. This is a contradiction, showing that almost surely Bn(x1, x2) ⊂ Ac(x1, x2) for
λ2-a.e. (x1, x2) ∈ X2.
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Proof of Theorem 6.1. Let us first assume that P(ξ ∈ A∞) = 0, where A∞ is the set of
all µ ∈ G such that µ has at least two infinite clusters. If x ∈ η satisfies N∞(x, ξ) ≥ 2

then ξ − δx ∈ A∞. Therefore we obtain from the Mecke equation (3.1)

E

∫
1{N∞(x, ξ) ≥ 2} η(dx) ≤ E

∫
1{ξ − δx ∈ A∞} η(dx) = E

∫
1{ξ ∈ A∞}λ(dx)

which comes to zero.
Let us now assume that ξ is irreducible and that the infinite clusters are deletion

stable. We need to show that almost surely two points of η cannot belong to two different
infinite clusters. By the Mecke equation (3.1) for n = 2 the latter is equivalent to∫

P(A(x1, x2))λ
2(d(x1, x2)) = 0. (6.6)

The following arguments apply to λ2-a.e. (x1, x2) ∈ X2. By Proposition 5.1 (vi) there
exist a set B ∈ X with 0 < λ(B) < ∞, an n ∈ N and random variables Y1, . . . , Yn with
distribution λB/λ(B) such that P(B′

n(x1, x2)) > 0, where

B′
n(x1, x2) := {x1 ↔ x2 in Ξ′[x1, x2, Y1, . . . , Yn]}.

We can couple the random graphs ξx1,x2,Y1,...,Yn and Ξ′[x1, x2, Y1, . . . , Yn] in such a way
that ξx1,x2 and Ξ′[x1, x2, Y1, . . . , Yn] are independent and every edge in the latter graph
is also present in the former. Then B′

n(x1, x2) implies Bn(x1, x2) and we obtain from
Lemma 6.3 that

P(A(x1, x2) ∩B′
n(x1, x2)) = 0.

By the above coupling the events A(x1, x2) and B′
n(x1, x2) are independent. Hence

P(A(x1, x2)) = 0, as required.

Motivated by [35] we might call an infinite graph µ ∈ G 2-indivisible if the removal
of a finite number of vertices results in at most one infinite connected component. The
following corollary of Proposition 3.1 shows that ξ is almost surely 2-indivisible.

Corollary 6.4. Assume that ξ has almost surely at most one infinite cluster. Assume
further that η0 is a point process such that P(η0(X) <∞) = 1 and P(η0 ≤ η) = 1. Then
ξ[η − η0] has a.s. at most one infinite cluster.

Remark 6.5. Consider the setting of Remark 2.1. Assume that the infinite clusters of
ξ are deletion stable. This means that reducing the size of an atom x of η by one (and
removing the corresponding edges), cannot split the associate cluster into more than
one infinite clusters. This is not an intrinsic property of the random graph ξ∗, as defined
in Remark 2.1. Assume in addition that ξ̂ is irreducible (characterized in Remark 5.3),
so that Theorem 6.1 applies. By Corollary 6.4 we can then remove any finite number
of points from η̂ without splitting the infinite cluster (if existent) in two or more infinite
clusters. In particular we can remove a finite number of points from the support of η,
without splitting the infinite cluster of ξ∗ in two or more infinite clusters.

Remark 6.6. In accordance with the physics literature (see e.g. [9]) we might call a point
x ∈ η red, if any doubly infinite path in ξ has to use x. If ξ has a unique infinite cluster,
then Corollary 6.4 says in particular that ξ cannot have red points. More generally, we
may call a subset of η red, if any doubly infinite path in ξ contains at least one point from
this set. Corollary 6.4 says that ξ cannot have a finite red set.

Remark 6.7. The authors of [8] studied random connection models on finite point
processes in an asymptotic setting. Under a natural irreducibility assumption (similar to
Proposition 5.1 (iv)) they proved uniqueness of the giant component; see Theorem 3.6
and Example 4.9 in [8].
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Remark 6.8. Consider Example 5.4 in the special case where Y is the hyperbolic plane
and ν = tµ2, where µ2 is the invariant measure on Y and t > 0 is an intensity parameter.
Let Q be concentrated on a single positive radius and let ξ be RCM with connection
function ϕ(K,L) = 1{K ∩ L 6= ∅}. Then ξ describes a hyperbolic Boolean model of
balls. Inspired by the seminal paper [5], it was shown in [42] that there are numbers
0 < tc < tu < ∞ such that there is no percolation for t ∈ (0, tc], infinitely many infinite
clusters for t ∈ (tc, tu) and a unique infinite cluster for t ≥ tu. Corollary 6.4 shows
that the unique infinite cluster cannot be destroyed by the removal of a finite number
of Poisson points. A referee of this paper has asked whether it is possible to check
(resp. to reject) deletion stability for certain values of t which are then (by Theorem 6.1)
upper (resp. lower) bounds for tu. We do not know whether this is possible; see also
Remark 11.9.

7 A spatial Markov property

We again consider a general RCM ξ based on a Poisson process η on X with diffuse
intensity measure λ. Let v ∈ X. In the next section we shall establish and exploit a useful
explicit change of measure for the distribution of Cv = Cv(ξv). This is possible since
for n ∈ N0 the conditional distribution of Cvn+1 given C

v
≤n can be described in terms of

a RCM driven by Poisson process with a thinned intensity measure. In this section we
derive a general version of this spatial Markov property.

Let ν be a locally finite and diffuse measure on X. Then we denote by Πν the
distribution of a Poisson process with this intensity measure. We define two kernels from
N to X and from N×N to X (using the same notation Kν for simplicity), by

Kν(µ, dx) := ϕ̄(µ, x)ν(dx), Kν(µ, µ
′, dx) := ϕ̄(µ, x)ϕ(µ′, x)ν(dx), (7.1)

where we recall the definitions (3.7). Proposition 7.2 will provide an interpretation of
this kernel. Denoting by 0 the zero measure, we note that

Kν(0, dx) = ν(dx), Kν(0, µ
′, dx) = ϕ(µ′, x)ν(dx), Kν(µ, 0, dx) = 0. (7.2)

We write Kν(µ) := Kν(µ, ·) and Kν(µ, µ
′) := Kν(µ, µ

′, ·). Note that Kλ(0, µ,X) = ϕλ(µ);
see (3.7).

For n ∈ N0, µ ∈ G and v ∈ X let Γvn(λ, µ, ·) denote the distribution of a random graph
ξn defined as follows. Let ξ′n be a RCM based on ηn+Cvn(µ), where ηn is a Poisson process
with intensity measure Kλ(C

v
≤n−1(µ)), and where we recall that Cv≤−1 := 0. Remove

in ξ′n all edges between vertices from Cvn(µ) to obtain a random graph ξ′′n. Finally set
ξn := Cv≤n(µ) ⊕ ξ′′n, with an obvious definition of the operation ⊕. We set Cv≤0(µ) := δv,
which is the graph with vertex set {v} and no edges.

Theorem 7.1. Let v ∈ X and n ∈ N0. Then,

P(ξv ∈ · | Cv≤n) = Γvn(λ,C
v
≤n, ·), P-a.s. (7.3)

Proof. This follows from the proof of [21, Lemma 3.3]; see also Proposition 2 in [31].
Essentially the assertion is equivalent to equation (3.6) in this proof. The arguments
given there apply to a RCM on a general state space X and not only to Rd.

A quick consequence of Theorem 7.1 is that {(V (Cv≤n−1), V (Cvn))}n∈N0
is a Markov

process.

Proposition 7.2. The sequence {(V (Cv≤n−1), V (Cvn))}n∈N0 is a Markov process with
transition kernel

(µ, µ′) 7→
∫

1{(µ+ µ′, ψ) ∈ ·}ΠKλ(µ,µ′)(dψ).
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We also note that

Kλ(µ, µ
′,X) ≤

∫
ϕ(µ′, x)λ(dx) ≤

∫∫
ϕ(y, x)µ′(dy)λ(dx),

where we have used the Bernoulli inequality. Hence

Kλ(µ, µ
′,X) ≤

∫
Dϕ(y)µ

′(dy). (7.4)

Corollary 7.3. Let n ∈ N0. Then we have for λ-a.e. v ∈ X that P(|Cvn| <∞) = 1.

Proof. We can proceed by induction. For n = 0 the assertion is trivial. Assume that
P(|Cvn| <∞) = 1 for some n ∈ N0. From Proposition 7.2 we know that the conditional dis-
tribution of V (Cvn+1) given (V (Cv≤n−1), V (Cvn)) is that of a Poisson process with intensity
measure Kλ(V (Cv≤n−1), V (Cvn)). By (7.4) we obtain that

E[|Cvn+1| | (V (Cv≤n−1), V (Cvn))] ≤
∫
Dϕ(y)C

v
n(dy)

which is for λ-a.e. v ∈ X a.s. finite by our general assumption (1.1) and induction
hypothesis.

The following useful property of the kernel Kλ can easily be proved by induction.

Lemma 7.4. Let n ∈ N and µ0, . . . , µn ∈ N. Then

Kλ(0, µ0) +Kλ(µ0, µ1) + · · ·+Kλ(µ0 + · · ·+ µn−1, µn) = Kλ(0, µ0 + · · ·+ µn).

8 Perturbation formulas

In the next sections we vary the intensity measure λ and consider tλ for t ∈ R+. We
fix v ∈ X and let Pt be a probability measure governing a RCM ξ based on η, where η is
a Poisson process with intensity measure tλ. The associated expectation is denoted by
Et. Recall the definition (3.7).

Lemma 8.1. Let ξ̃ be a RCM based on a Poisson process η̃ with finite intensity measure
ν. Let f : G → [0,∞). Then

Etf(ξ̃) = E1f(ξ̃)t
|η̃|e(1−t)ν(X)

Proof. It is well-known that

Πtν =

∫
1{µ ∈ ·}t|µ|e(1−t)ν(X) Πν(dµ), t ≥ 0. (8.1)

This follows, for instance from [27, Exercise 3.7] and an easy calculation. The assertion
then follows by conditioning, using the kernel Γ in (3.2).

Proposition 8.2. Let v ∈ X, t ∈ R+, n ∈ N and t0 > 0. Then

Pt(C
v
≤n ∈ ·) = Et01{Cv≤n ∈ ·}(t/t0)

∣∣Cv
≤n

∣∣−1e(t0−t)ϕλ

(
Cv

≤n−1

)
.

Proof. It is sufficient to consider the special case t0 = 1. The general case can be proved
similarly or can be derived from the special case. We omit the dependence on v in our
notation by writing Cn := Cvn, and C≤n := Cv≤n. Given µ ∈ G we let C+

n (µ) denote the
graph µ[V (Cn−1(µ)) + V (Cn(µ))] with the edges between vertices of Cn−1(µ) removed.
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Let f : G → [0,∞) be measurable. By Theorem 7.1,

Etf(C≤n) = Et

∫
f(C≤n−1 ⊕ C+

n (µ)) Γn−1(tλ, C≤n−1, dµ).

By (7.4) we have

Ktλ(C≤n−2, Cn−1,X) ≤ t

∫
Dϕ(y)Cn−1(dy)

which is almost surely finite by Corollary 7.3. By definition of Γn and the thinning
properties of a Poisson process, the distribution of C+

n (·) under Γn−1(tλ, C≤n−1, ·) is that
of a RCM driven by a Poisson process with intensity measure Ktλ(C≤n−2, Cn−1) with
additional independent connections to V (Cn−1); see also Proposition 7.2. Therefore we
obtain from Lemma 8.1 that

Etf(C≤n) = Et

∫
f(C≤n−1 ⊕ C+

n (µ))e
(1−t)Kλ(C≤n−2,Cn−1,X)t|µ| Γn−1(λ,C≤n−1, dµ).

Iterating this identity yields that the above equals∫
· · ·
∫
f(C+

1 (µ1)⊕ · · · ⊕ C+
n (µn))e

(1−t)Kλ(δv+µ1+···+µn−2,µn−1,X) · · · e(1−t)Kλ(δv,µ1,X)

t|µn| · · · t|µ1|Γn−1(λ,C
+
1 (µ1)⊕ · · · ⊕ C+

n−1(µn−1), dµn) · · ·Γ0(λ, δv, dµ1).

By Lemma 7.4 this equals∫
· · ·
∫
f(C+

1 (µ1)⊕ · · · ⊕ C+
n (µn))e

(1−t)Kλ(0,δv+µ1+···+µn−1,X)t|µ1|+···+|µn|

Γn−1(λ,C
+
1 (µ1)⊕ · · · ⊕ C+

n−1(µn−1), dµn) · · ·Γ0(λ, [δv], dµ1).

By Theorem 7.1 we obtain

Etf(C≤n) = E1f(C≤n)t
|C≤n|−1e(1−t)ϕλ(C≤n−1)

and hence the assertion.

Theorem 8.3. Let v ∈ X, t ∈ R+ and t0 > 0. Then

Pt(C
v ∈ ·, |Cv| <∞) = Et01{Cv ∈ ·, |Cv| <∞}(t/t0)|C

v|−1e(t0−t)ϕλ(C
v). (8.2)

Proof. Again it is sufficient to consider the special case t0 = 1. By Proposition 8.2
the distribution Pt(Cvn ∈ ·) is absolutely continuous w.r.t. P1(C

v
n ∈ ·) with Radon–

Nikodym derivative Mv
n := t|C

v
≤n|−1e(1−t)ϕλ(C

v
≤n−1). In particular {Mv

n}n∈N0
is a (non-

negative) martingale with respect to {σ(Cv≤n)}n∈N0
and therefore converges a.s. towards

Mv
∞ := lim supn→∞Mv

n . By [40, Theorem VII.6.1] we have

Pt(C
v ∈ ·) = E11{Cv ∈ ·}Mv

∞ + Et1{Cv ∈ ·,Mv
∞ = ∞}.

On the event {|Cv| <∞} we clearly have

Mv
∞ = t|C

v|−1e(1−t)ϕλ(C
v)

which is finite. This concludes the assertion.
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Let f : G → R be a measurable mapping. Define for v ∈ X, n ∈ N, and t ∈ R+

Fn(ξ
v) := f(Cv)1{|Cv| = n}, fvn(t) := EtFn(ξv), (8.3)

F≤n(ξ
v) := f(Cv)1{|Cv| ≤ n}, fv≤n(t) := EtF≤n(ξ

v), (8.4)

F (ξv) := f(Cv)1{|Cv| <∞}, fv(t) := EtF (ξv). (8.5)

We also write |f |v(t) := Et|F (ξv)| and define |f |vn(t) and |f |v≤n(t) similarly. We are
interested in the analytic properties of the function fv(t) under the assumption |f |v(t) <
∞. A key example is the position dependent cluster density

κv(t) := Et|Cv|−1, t ∈ R+. (8.6)

Our terminology is motivated by the stationary marked case (see Lemma 4.3) and also
supported by the Mecke equation, implying∫

tκv(t)λB(dv) = Et

∫
|Cv(ξ)|−1 ηB(dv), B ∈ X .

Suppose that |f |vn(t0) <∞ for some t0 > 0 and n ∈ N, then by Theorem 8.3

fvn(t) =

(
t

t0

)n−1 ∫ ∞

0

e−tu νf,n,t0(du), (8.7)

where the signed measure νf,n,t0 is defined by

νf,n,t0(·) := Et01{ϕλ(Cv) ∈ ·}et0ϕλ(C
v)Fn(ξ

v). (8.8)

By Corollary 7.3 this is a locally finite signed measure on R+. It follows from Theorem
8.3 that the function |f |vn(t)/tn−1 is monotone decreasing on (0,∞), so that

|f |vn(t) ≤
(
t

t0

)n−1

|f |vn(t0), t ≥ t0.

Lemma 8.4. Let v ∈ X, n ∈ N and t0 > 0. If |f |vn(t0) <∞, then for t ≥ t0

fvn(t) =
tn

tn−1
0

∫ ∞

0

νf,n,t0 [0, u]e
−tu du.

Proof. We obtain from (8.7) that

fvn(t) =
tn

tn−1
0

∫∫
1{u ≤ s}e−ts ds νf,n,t0(du). (8.9)

Since νf,n,t0 is locally finite, we can apply Fubini’s theorem to obtain the assertion.

Lemma 8.5. Let v ∈ X, n ∈ N and t0 > 0. If |f |vn(t0) <∞, then the function fvn is analytic
on (t0,∞) and for t > t0

d

dt
fvn(t) =

ntn−1

tn−1
0

∫ ∞

0

νf,n,t0 [0, u]e
−tu du− tn

tn−1
0

∫ ∞

0

uνf,n,t0 [0, u]e
−tu du. (8.10)

Proof. Let Ωt0 := {z ∈ C : <(z) > t0}, and extend fvn to Ωt0 by setting

fvn(z) :=
zn

tn−1
0

∫ ∞

0

νf,n,t0 [0, u]e
−zu du, z ∈ Ωt0 .
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By (8.8) we have

|νf,n,t0 [0, u]| ≤ et0u|f |vn(t0).

Since |f |vn(t0) < ∞ this implies that fvn is a complex analytic function on Ωt0 . Since
(t0,∞) ⊂ Ωt0 ∩R, the restriction of this function to (t0,∞) is real analytic. The formula
(8.10) follows from Lemma 8.4 the product rule of calculus and the Leibniz rule for
differentiating integrals. The latter can be applied since for each ε > 0 and all u > 0

u|νf,n,t0 [0, u]|e−tu ≤ ue(t0−t)u|f |vn(t0) ≤ ue−εu|f |vn(t0)

uniformly for t ≥ t0 + ε.

To rewrite Lemma 8.5 in a different way, we define

Mv
t := |Cv| − 1− tϕλ(C

v), t ∈ R+, v ∈ X. (8.11)

Lemma 8.6. Let v ∈ X, n ∈ N and t0 > 0. If |f |vn(t0) <∞, then function fvn is analytic on
(t0,∞) and for t > t0

d

dt
fvn(t) = t−1Et

[
Mv
t Fn(ξ

v)
]
. (8.12)

Proof. By Theorem 8.3,

fvn(t) =

(
t

t0

)n−1

Et0
[
Fn(ξ

v)e(t0−t)ϕλ(C
v)
]
.

Hence the result follows from Lemma 8.5 and calculus, where the application of the
Leibniz differentiation rule can be justified as in the proof of Lemma 8.5.

Lemma 8.7. Let v ∈ X, n ∈ N and t0 > 0. If |f |v≤n(t0) <∞, then function fv≤n is analytic
on (t0,∞) and for t > t0

d

dt
fv≤n(t) = t−1Et

[
Mv
t F≤n(ξ

v)
]
. (8.13)

Proof. The result follows from the definition of fv≤n and Lemma 8.6, since |f |v≤n(t0) =∑n
k=1 |f |vk(t0).

Theorem 8.8. Let 0 < t0 < t1 <∞. Assume for each t ∈ [t0, t1] that |f |v(t) <∞. Assume
moreover that for each ε > 0,

lim
n→∞

sup
t∈[t0+ε,t1]

∣∣∣∣∣∑
k>n

d

dt
fvk (t)

∣∣∣∣∣ = 0. (8.14)

Then fv is continuously differentiable on (t0, t1] with derivative given by

d

dt
fv(t) = lim

n→∞
t−1 d

dt
fv≤n(t) = t−1

∞∑
n=1

d

dt
fvn(t). (8.15)

Proof. Let n ∈ N. Since |f |v≤n(t0) ≤ |f |v(t0) <∞, we can apply Lemma 8.7 to obtain that
the function fv≤n is analytic on (t0,∞), with derivative

d

dt
fv≤n(t) = t−1

n∑
k=1

d

dt
fvn(t) = t−1Et

[
Mv
t F≤n(ξ

v)
]
, t > t0.
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By dominated convergence

lim
n→∞

fv≤n(t) = fv(t).

Furthermore we have∣∣∣∣ ddtfv(t)− d

dt
fv≤n(t)

∣∣∣∣ = t−1

∣∣∣∣∣∑
k>n

d

dt
fvk (t)

∣∣∣∣∣ .
By assumption (8.14) this tends to zero uniformly in t ∈ [t0 + ε, t1] for each ε > 0. A
standard result of analysis gives us that fv is continuously differentiable on (t0, t1] with
derivative given by the right-hand side of (8.15).

Theorem 8.9. Let 0 < t0 < t1 <∞. Assume for each t ∈ [t0, t1] that |f |v(t) <∞. Assume
moreover that for each ε > 0,

lim
n→∞

sup
t∈[t0+ε,t1]

∑
k>n

Et
∣∣Mv

t Fk(ξ
v)
∣∣ = 0. (8.16)

Then fv is continuously differentiable on (t0, t1] with derivative given by

d

dt
fv(t) = t−1Et

[
Mv
t F (ξ

v)
]
. (8.17)

Proof. Let n ∈ N. Since |f |vn(t0) ≤ |f |v≤n(t0) ≤ |f |v(t0) < ∞, then by Lemma 8.5 the
function fvn is analytic on (t0,∞), with derivative∣∣∣∣ ddtfvn(t)

∣∣∣∣ = t−1
∣∣Et[Mv

t Fn(ξ
v)
]∣∣ ≤ t−1Et

∣∣Mv
t Fn(ξ

v)
∣∣, t > t0.

Hence ∣∣∣∣∣∑
k>n

d

dt
fvk (t)

∣∣∣∣∣ ≤ t−1
∑
k>n

Et
∣∣Mv

t Fn(ξ
v)
∣∣.

By assumption (8.16) this tends to zero uniformly in t ∈ [t0 + ε, t1] for each ε > 0.
Therefore by Theorem 8.8 the function fv(t) is continuously differentiable on (t0, t1] with
derivative

d

dt
fv(t) = t−1

∞∑
n=1

d

dt
fvn(t) = t−1Et

[
Mv
t F (ξ

v)
]
,

where the last equality we get from Fubini’s theorem, since by assumption (8.16) we
have that for t ∈ (t0, t1]

Et
∣∣Mv

t F (ξ
v)
∣∣ =∑

n≥1

Et
∣∣Mv

t Fn(ξ
v)
∣∣ <∞.

The following theorem provides a large class of functions satisfying the assumptions
of Theorem 8.9, covering the cluster density (8.6). We shall prove it in Section 10.

Theorem 8.10. Let f : G → R be a measurable mapping satisfying |f(µ)| ≤ |f̃(|V (µ)|)|
for each µ ∈ G, where f̃ : N→ R satisfies

lim
n→∞

f̃(n)
√
n log n = 0. (8.18)

Then fv is for each v ∈ X continuously differentiable on (0,∞) with derivative given by
(8.17).
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9 Difference operators

In this section we shall rewrite Theorem 8.8 and Theorem 8.9 in the form of a
Margulis–Russo formula. Recall that µ− δx := µ[V (µ)− δx] is the graph resulting from
µ by removing the point x (if x ∈ V (µ)) along with all edges with vertex x for µ ∈ G

and x ∈ X. Given a measurable function f : G → R and x ∈ X we define ∇xf : G → R

by

∇xf(µ) := f(µ)− f(µ− δx). (9.1)

Theorem 9.1. Let the assumptions of Theorem 8.8 be satisfied. Then the function fv is
continuously differentiable on (t0, t1] with derivative given by

d

dt
fv(t) = lim

n→∞
t−1Et

∫
∇xF≤n(ξ

v)Cv!(dx) =
∑
n≥1

t−1Et

∫
∇xFn(ξ

v)Cv!(dx). (9.2)

We start the proof with the counterpart of Lemma 8.5 and Lemma 8.7.

Lemma 9.2. Let v ∈ X, n ∈ N and t0 > 0. If |f |vn(t0) <∞, then function fvn is analytic on
(t0,∞) and for t > t0

d

dt
fvn(t) = t−1Et

∫
∇xFn(ξ

v)Cv!(dx).

Proof. Let t > t0. We wish to apply Lemma 8.6. By definition we have

Et|Fn(ξv)||Cv| = n|f |vn(t) ≤ n

(
t

t0

)n−1

|f |vn(t0)

which is finite by assumption. Therefore we obtain from Theorem 8.3, (8.8) (with |f |
instead of f ) and Fubini’s theorem

Et|Fn(ξv)|ϕλ(Cv) =
(
t

t0

)n−1 ∫ ∞

0

ue−tu ν|f |,n,t0(du)

=

(
t

t0

)n−1 ∫ ∞

0

∫ ∞

u

(ts− 1)e−ts ds ν|f |,n,t0(du)

=

(
t

t0

)n−1 ∫ ∞

0

ν|f |,n,t0 [0, s](ts− 1)e−ts ds

≤ |f |vn(t0)
tn

tn−1
0

∫ ∞

0

se(t0−t)s ds <∞,

where we have used that ν|f |,n,t0 [0, s] ≤ et0s|f |vn(t0). Hence we obtain from Lemma 3.2
that

tEtFn(ξ
v)ϕλ(C

v) = Et

∫
Fn(ξ

v − δx)C
v!(dx).

Now the assertion follows from Lemma 8.6.

Lemma 9.3. Let v ∈ X, n ∈ N and t0 > 0. If |f |v≤n(t0) <∞, then function fv≤n is analytic
on (t0,∞) and for t > t0

d

dt
fv≤n(t) = t−1Et

∫
∇xF≤n(ξ

v)Cv!(dx).

Proof. The result follows from the definition of fv≤n, Lemma 8.7 and Lemma 9.2.
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Proof of Theorem 9.1. By Theorem 8.8 we have that fv is continuously differentiable on
(t0, t1] with derivative given by (8.15). Hence we can apply Lemma 9.2 and Lemma 9.3
to obtain the assertion.

Theorem 9.4. Let the assumptions of Theorem 8.9 be satisfied. Assume moreover that
for each t ∈ [t0, t1]

Et
[
|F (ξv)| (|Cv|+ ϕλ(C

v))
]
<∞. (9.3)

Then fv is continuously differentiable on (t0, t1] with derivative given by

d

dt
fv(t) = t−1Et

∫
∇xF (ξ

v)Cv!(dx). (9.4)

Proof. Let t > t0. Theorem 8.9 states that fv is continuously differentiable on (t0, t1]

with derivative given by (8.17). The assertion follows from (9.3) and Lemma 3.2, since
splitting f into its negative and positive part we can apply Lemma 3.2 to get

tEtF (ξ
v)ϕλ(C

v) = Et

∫
F (ξv − δx)C

v!(dx).

The result follows.

Remark 9.5. Let the assumptions of Theorem 9.4 be satisfied. By the Mecke equation
(3.6) we have

Et

∫
∇xF (ξ

v)Cv!(dx) = tEt

∫
(F (ξv,x)− F (ξv))1{v ↔ x in ξv,x}λ(dx).

If v and x are not connected in ξv,x, then F (ξv,x) = F (ξv). Therefore we can rewrite
(9.4) as

d

dt
fv(t) = Et

∫
(F (ξv,x)− F (ξv))λ(dx). (9.5)

10 Differentiability of the cluster density

In this section we prove in particular that the position dependent cluster density
(given by (8.6)) is continuously differentiable on (0,∞).

Theorem 10.1. Suppose that f : N→ R is a function satisfying

lim
n→∞

f(n)
√
n log n = 0. (10.1)

Then t 7→ Etf(|Cv|) is for each v ∈ X continuously differentiable on (0,∞) with derivative
given by (8.17).

We prove the theorem via some lemmas, partially following the proof of [7, (LP) (3.6)].
Let v ∈ X. For t > 0 and n ∈ N we define

pvn(t) := Pt(|Cv| = n).

Specializing definition (8.8) in the case f ≡ 1 we set

νvn(·) := E11{ϕλ(Cv) ∈ ·}1{|Cv| = n}eϕλ(C
v). (10.2)

Then we obtain from (8.7) in the case t0 = 1 that

pvn(t) = tn−1

∫ ∞

0

e−tu νvn(du). (10.3)

Since pv1(t) = e−tDϕ(v) we have

νv1 = δDϕ(v), v ∈ X. (10.4)
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Lemma 10.2. Let v ∈ X, n ∈ N and u > 0. Then

νvn[0, u] ≤
(

eu

n− 1

)n−1

, (10.5)

where the right-hand side has to be interpreted as 1 if n = 1.

Proof. In view of (10.4) we can assume that n ≥ 2. Since pvn(t) ≤ 1 for t > 0, we have
that

t−n+1 ≥
∫ u

0

e−tuνvn(du) ≥ e−tuνvn[0, u).

Optimizing over t ∈ (0,∞) yields the assertion.

Lemma 10.3. Let v ∈ X, n ∈ N and t > 0. Then

pvn(t) = tn
∫ ∞

0

νvn[0, u]e
−tu du.

Proof. The assertion follows from Lemma 8.4.

Lemma 10.4. Let v ∈ X, n ∈ N. Then t 7→ pvn(t) is analytic on (0,∞) with derivative
given by

d

dt
pvn(t) = ntn−1

∫ ∞

0

νvn[0, u]e
−tu du− tn

∫ ∞

0

uνvn[0, u]e
−tu du (10.6)

Proof. The assertion follows from Lemma 8.5.

Lemma 10.4 implies∣∣∣ d
dt
pvn(t)

∣∣∣ ≤ n

t

∫ ∞

0

νvn[0, u]

∣∣∣∣1− ut

n

∣∣∣∣ tne−tu du. (10.7)

The next lemma provides a bound for the above right-hand side.

Lemma 10.5. Let v ∈ X, n ≥ 2 and δ ∈ (0, 1). Then we have for all t > 0 that∫ ∞

0

νvn[0, u]

∣∣∣∣1− ut

n

∣∣∣∣ tne−tudu ≤ δpvn(t) + (1− δ)neδn + (1 + δ)ne−δn. (10.8)

Proof. By Lemma 10.3 we have∫ ∞

0

νvn[0, u]

∣∣∣∣1− ut

n

∣∣∣∣ tne−tudu ≤ δpvn(t) +

∫
∣∣1− tu

n

∣∣>δ ν
v
n[0, u]t

ne−tu
∣∣∣∣1− tu

n

∣∣∣∣ du
≤ δpvn(t) +

(
e

n− 1

)n−1 ∫
∣∣1− tu

n

∣∣>δ t
nun−1e−tu

∣∣∣∣1− tu

n

∣∣∣∣ du.
Changing variables yields that the above equals

δpvn(t) +

(
e

n− 1

)n−1 ∫
∣∣1− u

n

∣∣>δ u
n−1e−u

∣∣∣1− u

n

∣∣∣ du.
Splitting the integral on the above right-hand side into two pieces corresponding to
tu < n(1− δ) and tu > n(1 + δ) yields∫ n(1−δ)

0

un−1e−u
(
1− u

n

)
du = nn−1(1− δ)ne−n(1−δ),∫ ∞

n(1+δ)

un−1e−u
(u
n
− 1
)
du = nn−1(1 + δ)ne−n(1−δ).

Since (1 + 1/(n− 1))n−1 < e for all n ≥ 2, we obtain the assertion (10.8).
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Let f be as in Theorem 10.1 and v ∈ X. Then f is bounded and

Etf(|Cv|) = EtF (ξv) =
∞∑
n=1

f(n)pvn(t).

In order to prove Theorem 10.1 we will check the condition (8.16) on [t0,∞) for each
t0 > 0. This is achieved by the previous and the following lemma.

Lemma 10.6. Suppose that f : N→ R. Then

Et|Mv
t Fn(ξ

v)| ≤ |f(n)|
∫ ∞

0

νvn[0, u] |n− ut| tne−tudu. (10.9)

Proof. It is easy to see the following identities which follow from integration by parts∫ (n−1)/t

u

(n− ts)e−tsds = −t−1(n− ts)e−ts
∣∣∣(n−1)/t

u
−
∫ (n−1)/t

u

e−tsds

= t−1
(
(n− tu)e−tu ± e−(n−1) − e−tu

)
= t−1(n− 1− tu)e−tu,∫ ∞

u

(n− ts)e−tsds = t−1(n− tu)e−tu −
∫ ∞

u

e−tsds = t−1(n− 1− tu)e−tu.

Since νvn is locally finite, we can apply Fubini’s theorem to obtain that

Et|Mv
t Fn(ξ

v)|

= |f(n)|Et
[
|n− 1− tϕλ(C

v)|1{|Cv| = n}
]
= |f(n)|tn−1

∫ ∞

0

|n− 1− tu|e−tuνvn(du)

= |f(n)|tn−1

(∫ (n−1)/t

0

(n− 1− tu)e−tuνvn(du)−
∫ ∞

(n−1)/t

(n− 1− tu)e−tuνvn(du)

)

= |f(n)|tn
(∫ (n−1)/t

0

∫ (n−1)/t

u

(n− ts)e−tsds νvn(du)−
∫ ∞

(n−1)/t

∫ ∞

u

(n− ts)e−tsds νvn(du)

)

= |f(n)|tn
(∫ (n−1)/t

0

νvn[0, s](n− ts)e−tsds−
∫ ∞

(n−1)/t

νvn[0, s](n− ts)e−tsds

)

= |f(n)|
∫ ∞

0

νvn[0, s] |n− st| tne−ts ds− 2|f(n)|
∫ n/t

(n−1)/t

νvn[0, s](n− ts)tne−tsds.

Proof of Theorem 10.1. Let v ∈ X, t0 > 0 and n ≥ 2. We need to check the condition
(8.16). To do so, we start with inequality (10.9). In (10.8) we choose δ ≡ δn by δn :=√

9 log n/n. We use the inequalities (1 − r)er ≤ e−r
2/2 which holds for all r ≥ 0 and

(1 + r)e−r ≤ e−r
2/3 which holds for all r ∈ [0, 1/3). Then we obtain for all sufficiently

large n ∈ N that (1 − δn)
ne−nδn ≤ n−9/2 and (1 − δn)

ne−nδn ≤ n−3. Hence there exist
n0 ∈ N such that for each t ≥ t0

∞∑
n=n0

t−1|f(n)|
∫ ∞

0

νvn[0, u] |n− ut| tne−tudu ≤
√
9

t0

∞∑
n=n0

|f(n)|
√
n log npvn(t) +

2

t0

∞∑
n=n0

n−2.

(10.10)

Let ε > 0 and choose n1 ≥ n0 such that |f(n)|
√
n log n ≤ ε for each n ≥ n1. Then

∞∑
n=n1

|f(n)|
√
n log npvn(t) ≤ ε,

finishing the proof.
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Proof of Theorem 8.10. We check condition (8.16). By assumption (8.18) it suffices to
show that

lim
n→∞

sup
t≥t0

∑
k>n

|f̃(k)|Et
∣∣Mv

t

∣∣1{|Cv| = k}) = 0,

for any t0 > 0. This follows from (10.9) and the proof of Theorem 10.1.

Later we shall need the following integrated version of Theorem 10.1

Theorem 10.7. Assume that X = Y ×M is the product of two complete separable
metric spaces and let Q be a finite measure Q on M. Suppose that f : N → R is a
function satisfying (10.1). Then t 7→

∫
Etf(|C(y,q)|)Q(dq) is for each y ∈ Y continuously

differentiable on (0,∞).

Proof. Let y ∈ Y and t0 > 0. We know from Theorem 10.1 that t 7→ Etf(|C(y,q)|) is for
each (y, q) ∈ Y ×M continuously differentiable. The assertion follows from the Leibniz
differentiation rule once we can show that

∞∑
n=1

|f(n)|
∫ ∞

0

ν(y,q)n [0, u] |n− ut| tne−tudu ≤ c, t ≥ t0, q ∈M, (10.11)

for some c > 0. Since f(n)
√
n log n is bounded, we see from (10.10) that the above

series, starting from n = n0 is bounded in q ∈M and t ≥ t0. The remaining terms in the
series can be bounded by (10.8). Similarly as in the proof of Lemma 8.5 one can show
that

∫
f
(y,q)
n (t)Q(dq) is an analytic function on (0,∞). Therefore the continuity of the

derivative follows from (10.10), since
∑
n≥n0

|f(n)|
√
n log n

∫
p
(y,q)
n (t)Q(dq) → 0 as n0 → ∞

uniformly in t ∈ R+.

Strengthening the assumption on the function f in Theorem 10.7, we can write the
derivative as a Margulis–Russo type formula.

Theorem 10.8. Suppose that f : N→ R is a function satisfying

sup
n≥1

|f(n)|n <∞. (10.12)

Then t 7→ Etf(|Cv|) is for each v ∈ X continuously differentiable on (0,∞) with derivative
given by (9.4).

Proof. It is enough to check condition (9.3) on [t0,∞) for each t0 > 0. Condition (10.12)
implies that

Et|f(|Cv|)||Cv| <∞.

It follows from Fubini’s theorem and Lemma 10.2 that for n ≥ 2

Et|Fn(ξv)|ϕλ(Cv) = |f(n)|tn−1

∫ ∞

0

ue−tuνvn(du) = |f(n)|tn−1

∫ ∞

0

∫ ∞

u

(ts− 1)e−ts ds νvn(du)

= |f(n)|tn−1

∫ ∞

0

νvn[0, s](ts− 1)e−ts ds < |f(n)|tn
∫ ∞

0

νvn[0, s]se
−ts ds

≤ |f(n)|
(
2npvn(t) + tn

∫ ∞

2n

νvn[0, s]se
−ts ds

)
≤ |f(n)|

(
2npvn(t) + t−1

(
e

n− 1

)n−1 ∫ ∞

2n

une−u du

)

= |f(n)|2npvn(t) + t−1|f(n)|
(

e

n− 1

)n−1

n! P(Xn ≤ n),
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where Xn has a Poisson distribution with parameter 2n. By assumption (10.12) the sum
over the first terms is converging. By a rather elementary concentration inequality (using
a Chernoff bound argument) we have P(Xn ≤ n) ≤ (2/e)n for each n ∈ N. Therefore the
sum over the second terms is converging too.

Remark 10.9. The position dependent cluster density satisfies the condition (10.12) and
its derivative can be represented by (9.4), i.e.

d

dt
κv(t) = t−1

(
Pt(|Cv| <∞)− κv(t)− Et

∫
|Cv − δx|−1 Cv!(dx)

)
= Et

∫
(|Cv(ξv,x)|−1 − |Cv|−1)1{x ∈ Cv(ξv,x)}λ(dx).

11 Deletion stability of the stationary marked RCM

In this section we consider the stationary marked RCM as introduced in Section 4.
Hence we take a Poisson process η on Rd ×M with intensity measure tλ = tλd ⊗Q and
consider the random connection model ξ based on η and a fixed connection function
ϕ : (Rd ×M)2 → [0, 1] satisfying (4.1) and (4.2).

Theorem 11.1. The infinite clusters of a stationary marked random connection model
are deletion stable.

Our proof of the theorem partially follows the seminal paper [1]. It requires a
significant extension of some of the arguments in [25] treating the Gilbert graph with
deterministic radii; see Example 4.8.

We need to introduce some further notation. For µ ∈ G and (x, p) ∈ V (µ) we denote
by N0(x, p, µ) the number of clusters in C(x,p)(µ)−δ(x,p). Hence N0(x, p, µ) is the number
of clusters in µ− δ(x,p) which are connected in µ with (x, p). We then define N+(x, p, µ)

similarly to N0(x, p, µ), except that at most one infinite cluster is counted, i.e.

N+(x, p, µ) := N0(x, p, µ)− 1{N∞(x, p, µ) ≥ 1}(N∞(x, p, µ)− 1).

Given B ∈ B(Rd) and a measure ν on Rd ×M it will be convenient to write νB := νB×M
for the restriction of ν to B ×M.

We fix some arbitrary t0 > 0. It is then no restriction of generality to assume that
t ∈ (0, t0]. Let (Bn)n∈N be an increasing sequence of convex and compact sets with union
Rd. Our proofs require a specific coupling of the RCM ξ with two random graphs ξn,0
and ξn,+, n ∈ N, according two different boundary conditions: free and wired. To this
end we let ξ̃ be a RCM based on a Poisson process η̃ with intensity measure t0λ. We
can assume without loss of generality that η is t/t0-thinning of η̃ (see [27, Corollary 5.9])
and that ξ is given as the restriction ξ̃[η] of ξ̃ to the vertices from η. Let us first set
ξn := ξ̃[ηBn

+ η̃Bc
n
]. This is a RCM driven by the Poisson process ηBn

+ η̃Bc
n
which has

intensity measure tλBn
+ t0λBc

n
. We define ξn,0 as the restriction ξ[ηBn

] = ξn[ηBn
] of ξ to

Bn×M. This is a RCM driven by ηBn
. We let ξn,+ be the random graph resulting from ξn

by connecting all points from η̃Bc
n
to each other. Then ξn,+ is a RCM driven by ηBn

+ η̃Bc
n

with a connection function which is equal to one for any pair of points from (Bcn ×M)2

and ϕ otherwise. The reader should keep in mind that ξn,+ is a very simple function of
the RCM ξn. An important property of this coupling is that ξn,0 is a subgraph of ξ, while
ξ is a subgraph of ξn,+ (in fact of ξn).

For (x, p) ∈ ηBn
we define C(x,p)

n,0 := C(x,p)(ξn,0) and C
(x,p)
n,+ := C(x,p)(ξn,+) noting that

V (C
(x,p)
n,+ ) = V (C

(x,p)
n,0 ) + 1{(x, p) ↔ η̃Bc

n
in ξn}η̃Bc

n
.
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Note also that if (x, p) /∈ ηBn
, then C(x,p)

n,0 = C
(x,p)
n,+ = 0. Note also that C(x,p)

n,+ is infinite if
and only if (x, p) is connected (in ξn) to η̃Bc

n
. Otherwise it is finite and coincides (by the

coupling construction) with C(x,p)
n,0 = C(x,p)(ξ).

Lemma 11.2. Let (x, p) ∈ Rd ×M. Then, almost surely, V (C
(x,p)
n,0 ) ↑ V (C(x,p)(ξ)) and

V (C
(x,p)
n,+ ) ↓ V (C(x,p)(ξ)) as n→ ∞.

Proof. Let (x, p) ∈ η otherwise the statement is trivial. There exists m ∈ N such that
x ∈ Bm. We shall always take n ≥ m. The second assertion has to be interpreted this
way. Clearly C(x,p)

n,0 is a subgraph of C(x,p)(ξ). Assume that (y, q) ∈ C(x,p)(ξ). Then there
exists n such that (x, p) is connected to (y, q) within ξn,0. This proves the first assertion.

Next we note that C(x,p)(ξ) is a subgraph of C(x,p)
n+1,+ while C(x,p)

n+1,+ is a subgraph of C(x,p)
n,+ .

Assume that (y, q) ∈ C
(x,p)
n,+ for each n ≥ m. For large enough n we then have y ∈ Bn and

hence (y, q) ∈ C(x,p)(ξ).

For each n ∈ N we define

Mn,? :=

∫
|C(x,p)
n,? |−1 ηBn

(d(x, p)),

where we use a star to denote either 0 or +. A simple counting argument shows that
Mn,0 is the number of clusters (finite) in ξn,0 whileMn,+ is the number of finite clusters
in ξn,+. Moreover, we have that

Mn,+ ≤Mn ≤Mn,0, (11.1)

where (see also Proposition 4.4)

Mn :=

∫
|C(x,p)(ξ)|−1 ηBn

(d(x, p)). (11.2)

Recalling the definition (4.6) of the cluster density κ(t), we have the following lemma.

Lemma 11.3. Let t ∈ [0, t0]. Then (λd(Bn))
−1EtMn,? → tκ(t) as n→ ∞.

Proof. By Lemma 4.1,

EtMn = t

∫∫
1{x ∈ Bn}Et|C(x,p)|−1 dxQ(dp) = λd(Bn)tκ(t).

Almost surelyMn,0 −Mn is less than the number of clusters with points from ηBn which
are connected in ξ with ηBc

n
, and therefore less than the number of points from ηBn

which are directly connected in ξ with ηBc
n
. Analogously,Mn −Mn,+ is less than number

of clusters with points from ηBn
which are connected in ξn with η̃Bc

n
, and therefore less

than the number of points from ηBn
which are directly connected in ξn with η̃Bc

n
. Then

with probability one, we have

Mn,0 −
∫

1{(x, p) ∼ η̃Bc
n
in ξn}ηBn

(d(x, p)) ≤Mn,0 −
∫

1{(x, p) ∼ ηBc
n
in ξ}ηBn

(d(x, p))

≤Mn ≤Mn,+ +

∫
1{(x, p) ∼ η̃Bc

n
in ξn}ηBn

(d(x, p)).

By the Mecke equation, we have

Et

∫
1{(x, p) ∼ η̃Bc

n
in ξn}ηBn

(d(x, p))

= t

∫∫
1{x ∈ Bn}

(
1− e−t0

∫
1{y∈Bc

n}ϕ(y−x,p,q) dyQ(dq)
)
dxQ(dp)

≤ t0t

∫∫∫
1{x ∈ Bn, y ∈ Bcn}ϕ(y − x, p, q) dx dyQ2(d(p, q))

= t0t

∫∫
1{x ∈ Bn, y ∈ Bcn}ψ(y − x) dx dy,
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where

ψ(x) :=

∫
ϕ(x, p, q) Q2(d(p, q)), x ∈ Rd. (11.3)

By assumption (4.2), ψ is integrable.

Let ε > 0 and choose r > 0 so large that
∫
1{|z| > r}ψ(z) dz ≤ ε. Then∫

1{x ∈ Bn, y ∈ Bcn, |y − x| > r}ψ(y − x) dx dy ≤ ελd(Bn).

Further

1

λd(Bn)

∫
1{x ∈ Bn, y ∈ Bcn, |y − x| ≤ r}ψ(y − x) dx dy ≤ dϕ

λd((Bn)	r)

λd(Bn)

n→∞−→ 0, (11.4)

where, for a bounded set B ⊂ Rd, B	r := {x ∈ B : d(x, ∂B) ≤ r} and ∂B denotes the
boundary of B. Therefore

lim sup
n→∞

EtMn,0

λd(Bn)
− εt0t ≤ tκ(t) ≤ lim inf

n→∞

EtMn,+

λd(Bn)
+ εt0t

Taking into account (11.1), this yields the assertion.

Let n ∈ N. We will now explore the derivatives of t 7→ EtMn,?. For (x, p) ∈ Bn×M we

define N?
n(x, p) := N0(x, p, ξ

(x,p)
n,? ), the finite volume counterparts of N0(x, p, ξ(x,p)) and

N+(x, p, ξ(x,p)). By this definition N0
n(x, p) is the number of (finite) clusters in ξn,0 which

are connected to (x, p) in ξ(x,p)n,0 , and N+
n (x, p) is the number of clusters (with at most one

infinite) in ξn,+ which are connected to (x, p) in ξ(x,p)n,+ .

Lemma 11.4. For any n ∈ N and either choice of boundary conditions the function
t 7→ EtMn,? is differentiable on [0, t0) and the derivative is given by

d

dt
EtMn,? = λd(Bn)− Et

∫∫
1{x ∈ Bn}N?

n(x, p) dxQ(dp).

Proof. SinceMn,? ≤ η(Bn) we have EtMn,? <∞ for all t > 0. We now apply the Margulis-
Russo formula (3.9), where λ2 = (λd)Bn

⊗Q and λ1 = 0 for the free boundary condition
(? = 0) and λ1 = t0(λd)Bc

n
⊗Q for the wired boundary condition (? = +). Hence EtMn,?

is a differentiable function of t and

d

dt
EtMn,? = Et

∫∫
1{x ∈ Bn}

(
Mn,?(ξ

(x,p)
n,? )−Mn,?(ξn,?)

)
dxQ(dp).

Let (x, p) ∈ Bn × M. If N?
n(x, p) = 0, then with probability one Mn,?(ξ

(x,p)
n,? ) −

Mn,?(ξn,?) = 1. Otherwise the removal of (x, p) from ξ
(x,p)
n,? results in Mn,?(ξ

(x,p)
n,? ) −

Mn,?(ξn,?) = 1−N?
n(x, p) a.s., proving the result.

Lemma 11.5. For any n ∈ N and either choice of boundary conditions EtMn,? +

λd(Bn)dϕt
2/2 is a convex function of t on [0, t0).

Proof. For (x, p) ∈ Rd ×M we let Ψ(x, p) denote the point process of the Poisson neigh-
bours of (x, p) in ξ(x,p), that is the points in η which are directly connected to (x, p) in
ξ(x,p). For a Borel set B ⊂ Rd we let ΨB(x, p) denote the restriction of Ψ(x, p) to B ×M.
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We further denote dϕ(p) :=
∫
d(p, q)Q(dq) so that dϕ =

∫
dϕ(p)Q(dp). By Lemma 11.4,

d

dt

[
EtMn,? + λd(Bn)dϕ

t2

2

]
= λd(Bn)− Et

∫∫
1{x ∈ Bn}N?

n(x, p) dxQ(dp) + tλd(Bn)dϕ

= λd(Bn) +

∫∫
1{x ∈ Bn}

(
tdϕ(p)− EtN?

n(x, p)
)
dxQ(dp)

= λd(Bn) +

∫∫
1{x ∈ Bn}

(
Et|Ψ(x, p)| − EtN?

n(x, p)
)
dxQ(dp)

= λd(Bn) +

∫∫
1{x ∈ Bn}

(
Et|ΨBc

n
(x, p)|+ Et

(
|ΨBn

(x, p)| −N?
n(x, p)

))
dxQ(dp),

Clearly Et|ΨBc
n
(x, p)| is increasing in t. We shall now argue that Et

[
ΨBn(x, p)−N?

n(x, p)
]

is increasing in t. Applying the Margulis-Russo formula (3.9) similarly as in the proof of
Lemma 11.4, we see that it is sufficient to check that ΨBn(x, p)−N?

n(x, p) cannot strictly
decrease when adding a point (y, q) ∈ Bn ×M to η. Assume first that (y, q) is not directly
connected to (x, p). Then ΨBn

(x, p) does not change while N?
n(x, p) can only decrease

(namely by connecting some of the clusters in ξn,? which are connected to (x, p) in ξ(x,p)n,? ).
Assume now that (y, q) is directly connected to (x, p), so that ΨBn(x, p) increases by one.
In that case N?

n(x, p) can increase by at most 1, namely if some of the clusters in ξn,?
which are not connected to (x, p) in ξ(x,p)n,? get connected to the new point (y, q) while

none of the clusters in ξn,? which are connected to (x, p) in ξ(x,p)n,? are connected by (y, q).
This proves the asserted monotonicity and hence the convexity assertion.

Now we are in the position to prove the first main result in this section.

Theorem 11.6. The function t 7→ tκ(t) + dϕt
2/2 is continuously differentiable on (0,∞),

convex on R+ and right differentiable at zero.

Proof. The first assertion follows from Theorem 10.7 while the second follows from
Lemmas 11.3 and 11.5 and the (elementary) fact that the limit of a sequence of convex
functions is convex. The function is right differentiable at zero since κ is a monotone
function.

In the final step of the proof of Theorem 11.1 we need to identify the limits of the
derivatives in Lemma 11.4.

Lemma 11.7. Let t ∈ [0, t0]. Then

lim inf
n→∞

(λd(Bn))
−1Et

∫∫
1{x ∈ Bn}N0

n(x, p) dxQ(dp) ≥
∫
EtN

0(0, p, ξ(0,p))Q(dp),

lim sup
n→∞

(λd(Bn))
−1Et

∫∫
1{x ∈ Bn}N+

n (x, p) dxQ(dp) ≤
∫
EtN

+(0, p, ξ(0,p))Q(dp).

Proof. Similarly as in the proof of Proposition 4.5 by stationarity, we have∫
EtN

?(0, p, ξ(0,p))Q(dp) = (λd(Bn))
−1Et

∫∫
1{x ∈ Bn}N?(x, p, ξ(x,p)) dxQ(dp), n ∈ N.

Hence our task is to show that N?(x, p, ξ(x,p)) is well approximated by N?
n(x, p). For a

given Borel set B ⊂ Rd and (x, p) ∈ Rd×M we denote by N0
B(x, p) the number of clusters

in ξ to which the Poisson neighbors of (x, p) in B ×M belong. Note that a.s.

N0
B(x, p) +N0

Bc(x, p) ≥ N0(x, p, ξ(x,p)).
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It is, moreover, easy to see that N0
n(x, p) ≥ N0

Bn
(x, p) a.s. for each n ∈ N. It follows that

a.s.

N0
n(x, p) ≥ N0(x, p, ξ(x,p))−N0

Bc
n
(x, p). (11.5)

Obviously N0
Bc

n
(x, p) is dominated by the number of points from ηBc

n
which are directly

connected to (x, p) in ξ(x,p). Therefore

EtN
0
Bc

n
(x, p) ≤ t

∫∫
1{y ∈ Bcn}ϕ(y − x, p, q) dyQ(dq).

It now follows from (11.5) and exactly as in the proof of Lemma 11.3 that for each ε > 0

lim inf
n→∞

(λd(Bn))
−1Et

∫∫
1{x ∈ Bn}N0

n(x, p) dxQ(dp) ≥
∫
EtN

0(0, p, ξ(0,p))Q(dp)− εt.

This implies the first asserted inequality. The second follows from N+
n (x, p) ≤

N+(x, p, ξ(x,p)) a.s..

Proof of Theorem 11.1. The convex function in Theorem 11.6 is differentiable and ap-
proximated by the differentiable convex functions (λd(Bn))−1EtMn,? + dϕt

2/2; see Lem-
mas 11.3 and 11.4. A classical result from convex analysis (see [39, Theorem 25.7])
implies that

lim
n→∞

(λd(Bn))
−1 d

dt
EtMn,? =

d

dt
tκ(t).

Therefore we obtain from Lemma 11.4 that the limit inferior in Lemma 11.7 coincides
with the limit superior. Hence Lemma 11.7 yields∫

EtN
0(0, p, ξ(0,p))Q(dp) ≤

∫
EtN

+(0, p, ξ(0,p))Q(dp),

or ∫
Et(N

0(0, p, ξ(0,p))−N+(0, p, ξ(0,p)))Q(dp) ≤ 0.

Since

N0(0, p, ξ(0,p))−N+(0, p, ξ(0,p)) = 1{N∞(0, p, ξ(0,p)) ≥ 1}(N∞(0, p, ξ(0,p))− 1),

we obtain ∫
Pt(N

∞(0, p, ξ(0,p)) ≥ 2)Q(dp) = 0. (11.6)

Using stationarity as in the proof of Lemma 4.1 we see, that this is equivalent to the
assertion.

The preceding proof yields the following corollary.

Corollary 11.8. The cluster density is continuously differentiable function and

d

dt
(tκ(t)) = 1−

∫
EtN

0(0, p, ξ(0,p))Q(dp).

Remark 11.9. The convergence on the right-hand side of (11.4) is crucial for the proof
of Lemma 11.3. This amenability property of Euclidean space is also important for
Lemma 11.7. It might be possible to extend the methods of this section to establish
deletion stability for other amenable homogeneous spaces. But we do not know, how
to prove or disprove deletion stability in a non-amenable situation, like the hyperbolic
space.
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Remark 11.10. Assume that ϕ(x, p, q) = ϕ̃(‖x‖, p, q) and t = 1, for a measurable function
ϕ̃ : [0,∞)×M×M→ [0, 1] which is decreasing and right-continuous in the first coordinate.
Using the notation at (2.2) and (4.3) we define

Wm,n :=
‖Xm −Xn‖

ϕ̃−1(Zm,n, Qm, Qn)
, m, n ∈ N, (11.7)

where ϕ̃−1(s, p, q) := inf{r ≥ 0 : ϕ(r, p, q) ≤ s}, (s, p, q) ∈ [0, 1]×M×M. Given r > 0 we
define a RCM ξr with vertex set η by connecting Xm with Xn if Wm,n ≤ r. Note that
Wm,n ≤ r if and only if

Zm,n ≤ ϕ̃(r−1‖Xm −Xn‖, Qm, Qn).

Since
∑∞
n=1 δ(r−1Xn,Qn) is under P1 a Poisson process with intensity measure rdλd ⊗Q,

we hence have

P1(ξr ∈ ·) = Prd(ξ ∈ ·), r > 0, (11.8)

i.e. a joint coupling of the RCMs with different intensity parameters. In the unmarked
case this construction can be found in [4, Example 1.3].

Remark 11.11. Consider the setting of Remark 11.10 and the complete graph with
vertex set η. We can interpret the random variable (11.7) as weight of the edge between
(Xm, Qm) and (Xn, Qn). As in [3] we define the associated minimal spanning forest T
as the forest (a graph without cycles) with vertex set η and an edge between (Xm, Qm)

and (Xn, Qn) if there is no path between these points with weights strictly less than
Wm,n. In special cases it was observed in [2, 3, 4, 7] that there is a close relationship
between the RCM ξr and T . For instance it was proved in [3] that the trees (clusters)
of T are all infinite and can only have one or two ends. Two-ended trees T can only
occur if r equals the percolation threshold in which case T contains all points of the
infinite clusters (should they exist). It would be interesting to explore the consequences
of deletion stability of ξr for T .

12 The stationary marked RCM: Irreducibility and uniqueness

In this section we consider a stationary marked RCM ξ as introduced in Section 4.
When combined with Theorem 11.1, Theorem 6.1 immediately yields the following result.

Theorem 12.1. An irreducible stationary marked random connection model can almost
surely have at most one infinite cluster.

Remark 12.2. Theorem 12.1 and Corollary 6.4 show that an irreducible stationary
marked RCM is 2-indivisible. In particular this holds at the critical intensity tc. This
provides some evidence for the absence of doubly-infinite paths at criticality. In fact, it is
a common belief that in Euclidean space there is no infinite cluster in the critical phase.

We now present several examples, starting with the classical stationary RCM; see
Example 4.6.

Example 12.3. By Theorem 12.1 and Proposition 5.5 the (unmarked) stationary RCM
can have at most one infinite component. This generalizes [33, Theorem 6.3], where it
is assumed that ϕ(x) = ϕ̃(‖x‖), x ∈ Rd, for a decreasing function ϕ̃ : [0,∞) → [0, 1]. The
proof there is based on an extension of the approach from [10] to the continuum and is
very different from ours.

Next we treat the simple case, where the connection factorizes; see also [11, Section
1.2].
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Example 12.4. Let ψ : Rd → [0, 1] be a symmetric function with 0 < mψ :=
∫
ψ(x) dx <

∞ and let K : M2 → [0, 1] be measurable and symmetric. Assume that ϕ(x, p, q) =

ψ(x)K(p, q), (x, p, q) ∈ Rd ×M2. Then dϕ(p, q) = mψK(p, q), (p, q) ∈M2. By Theorem 5.7
ξ is irreducible if and only if

sup
n≥1

Kn(p, q) > 0, Q2-a.e. (p, q) ∈M2.

We continue with the examples from Section 4.

Example 12.5. Let us consider Example 4.8. Assume that there exists x0 ∈ Rd (for
instance x0 = 0) such that Q({L : B(x0, ε0) ⊂ K}) > 0, where B(x0, ε) denotes the ball
with center x0 and radius ε. Assume also that the function V is increasing w.r.t. set
inclusion and that V (K) > 0 if K 6= ∅. We show now how irreducibility of ξ follows from
Corollary 5.10. As point p0 in (5.17) we can take the ball B(x0, ε0), while the set A is
chosen as {L ∈ Cd : B(x0, ε0) ⊂ L}. Then Q(A) > 0 and (5.18) holds. To check (5.17) we
take K ∈ Cd. Then

dϕ(B(x0, ε0),K) =

∫ (
1− e−V (K∩(B(x,ε0))

)
dx.

By assumption on V this is positive, since∫
1{K ∩B(x, ε0) 6= ∅} dx =

∫
1{y ∈ B(x, ε0)} dx > 0,

where y is some point from K. We can now apply Theorem 12.1 to conclude that the
infinite cluster is unique. For the spherical Boolean model this result can be found as
Theorem 3.6 in [33]. For general Boolean models (i.e. ϕ(x,K,L) = 1{K ∩ (L+ x) 6= ∅})
the result seems to be new.

Example 12.6. The weighted RCM from Example 4.9 is irreducible by Corollary 5.13.
Indeed we have dϕ(p, q) = mρg(p, q)

−1, which is positive and monotone. By Theorem
12.1 the infinite cluster is unique. This was asserted in [19] without providing details
of a proof. A more detailed proof in a special case (based on the approach in [10]) was
given in [23].

Example 12.7. Consider a stationary marked RCM with M as the space of all locally
finite simple counting measures on Rd. Let Q be a distribution of a simple stationary
point process χ satisfying Q{0} = 0. For x ∈ Rd and p ∈ M let d(x, p) be the distance
between x and p. Similarly as in Example 12.6 we consider a connection function of the
form

ϕ(x, p, q) = ρ(d(−x, p)−αd(x, q)−α‖x‖d)

for a decreasing function ρ : [0,∞) → [0, 1] such that mρ :=
∫
ρ(‖x‖d) dx is positive and

finite and where α > 0 is a fixed parameter. By stationarity,∫∫
ϕ(x, p, q)Q2(d(p, q)) dx =

∫∫
ρ(d(0, p)−αd(0, q)−α‖x‖d) dxQ2(d(p, q))

= mρ

∫
1{d(0, p) <∞, d(0, q) <∞}d(0, p)αd(0, q)αQ2(d(p, q))

= mρ

(∫
d(0, p)αQ(dp)

)2

.

To ensure (4.2) we assume that
∫
d(0, p)αQ(dp) <∞, which is a rather weak assumption.
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Next we check that
∫
dϕ(p, q)Q(dq) > 0 for Q-a.e. p, so that (5.19) holds. Fix p ∈

M \ {0} such that 0 /∈ p. As above we have∫∫
ϕ(x, p, q)Q(dq) dx =

∫∫
ρ(d(x, p)−αd(0, q)−α‖x‖d) dxQ(dq).

Moreover, since 0 /∈ p there exist ε, c > 0 such that d(x, p) ≥ c for ‖x‖ ≤ ε. It follows that∫∫
ϕ(x, p, q) dxQ(dq) ≥

∫∫
1{‖x‖ ≤ ε}ρ(c−αd(0, q)−α‖x‖d) dxQ(dq).

Assume for the sake of contradiction that the above outer integral vanishes and take
q ∈ M \ {0} such that

∫
1{‖x‖ ≤ ε}ρ(c−α1 d(0, q)−α‖x‖d) dx = 0. However, since mρ > 0

and ρ is decreasing, ρ(r) is positive for sufficiently small r > 0. The resulting contra-
diction shows that

∫
dϕ(p, q)Q(dq) > 0. The function ϕ(x, p, ·) is for all (x, p) ∈ Rd ×M

non-decreasing with respect to the natural partial ordering on M. Therefore, if Q is
associated, then Theorem 5.12 implies that ξ is irreducible. For instance we might take
Q as the distribution of a Poisson process; see e.g. [28]. Hence Theorem 12.1 applies.
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