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Abstract

We consider a random connection model (RCM) ξ driven by a Poisson process η. We derive exponential
moment bounds for an arbitrary cluster, provided that the intensity t of η is below a certain critical
intensity tT . The associated subcritical regime is characterized by a finite mean cluster size, uniformly
in space. Under an exponential decay assumption on the connection function, we also show that the
cluster diameters are exponentially small as well. In the important stationary marked case and under
a uniform moment bound on the connection function, we show that tT coincides with tc, the largest t
for which ξ does not percolate. In this case, we also derive some percolation mean field bounds. These
findings generalize some of the main results in [4]. Even in the classical unmarked case, our results are
more general than what has been previously known. Our proofs are partially based on some stochastic
monotonicity properties, which might be of interest in their own right.

Keywords: Random connection model, Poisson process, percolation, sharp phase transition, mean field
lower bound, stochastic monotonicity.
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1 Introduction

Let pX, dq be a complete separable metric space, denote its Borel-σ-field by X , and let λ be a locally finite
and diffuse measure on X. Let t P R` :“ r0,8q be an intensity parameter and let η be a Poisson process
on X with intensity measure tλ, defined over a probability space pΩ,F ,Pq. We often write Pt instead of
P and Et for the associated expectation operator.

Let φ : X2 Ñ r0, 1s be a measurable and symmetric function satisfying

Dφpxq :“

ż

φpx, yqλpdyq ă 8, λ-a.e. x P X. (1.1)

We refer to φ as connection function. The random connection model (RCM) is the random graph ξ whose
vertices are the points of η and where a pair of distinct points x, y P η forms an edge with probability
φpx, yq, independently for different pairs. In an Euclidean setting, the RCM was introduced in [37] (see
[30] for a textbook treatment), while the general Poisson version was studied in [25]. The RCM is a
fundamental and versatile example of a spatial random graph. Of particular interest is the stationary
marked case, where φ is translation invariant in the spatial coordinate. Special cases are the Boolean model
(see [27, 39]) with general compact grains and the so-called weighted RCM; see [3, 4, 10, 16, 17, 21, 28, 38].

Following common terminology of percolation theory, we refer to a component of ξ as cluster. The RCM
ξ percolates, if it has an infinite cluster, that is a component with infinitely many vertices. Generalizing
many earlier results, it was shown in [6] that the stationary marked RCM can have at most one infinite
cluster, provided a natural irreducibility assumption holds. Take v P X and add independent connections
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between v and the points from η. Let Cv denote the component of v in this augmentation of ξ. The
critical intensity tc is defined by

tc :“ suptt ě 0 : Ptp|Cv| ă 8q “ 0 for λ-a.e. vu, (1.2)

where |Cv| stands for the number of vertices of Cv. A second critical intensity is defined by

tT :“ sup
␣

t ě 0 : ess sup
vPX

Et|Cv| ă 8
(

, (1.3)

where the essential supremum refers to λ. It is clear that tT ď tc. By a sharp phase transition it is
usually understood that for t ă tc the clusters are not only finite but have a finite first moment in some
suitable sense. If t ă tT , we establish here uniform exponential moment properties for the size and,
under an additional necessary assumption on the connection function, also for the diameter of a cluster.
Therefore, we refer to the identity tc “ tT as strong sharp phase transition. If ξ is a stationary marked
RCM, then we prove a strong sharp phase transition under an integrability assumption on φ, which is
only slightly stronger than the one required for tT ą 0. Under this assumption we also show that tc is
the smallest intensity where the mean size of a typical cluster is infinite. This identity might serve as a
definition of a sharp phase transition for the stationary marked RCM. We also provide lower bounds for
two critical exponents. Our method of proving the strong sharpness of the phase transition will be based
on transferring some of the beautiful ideas from the seminal paper [2] in a way similar to [4].

In the following we shall present two of our main results in greater detail along with a discussion of
the relevant literature. We will show in Lemma 6.1 that tT ą 0 if and only if

D˚
φ :“ ess sup

vPX
Dφpvq ă 8 (1.4)

and that tT ě pD˚
φq´1. The following result is the content of our Theorem 6.10.

Theorem 1.1. For t ă tT there exists δ1 ” δ1ptq such that ess sup
vPX

Eteδ1|Cv | ă 8.

We would like to emphasize that Theorem 1.1 applies as soon as tT ą 0, without making any further
assumptions on the state space or the connection function. An important special case of a RCM is the
stationary marked RCM. In that case η is a Poisson process on X :“ Rd ˆ M with intensity measure
tλd b Q, where M is a complete separable metric space, λd denotes Lebesgue measure on Rd and Q is
a probability measure on M. The connection function φ is assumed to be translation invariant in the
sense of (4.2). In the unmarked case |M| “ 1 it was proved in [29] that tT “ tc, provided that the
(in a sense) minimal integrability assumption

ş

φp0, xq dx ă 8 is satisfied and assuming that φp0, xq is
a non-increasing function of the Euclidean norm of x. It was shown in [24] that the cluster size has
an exponential tail, provided the connection function is supported by the unit ball. Afterwards, this
strong sharp phase transition was derived in [19] for an isotropic (and monotone) connection function
with possibly unbounded support. Even in this very special case of an (unmarked) stationary RCM,
Theorem 1.1 extends all these results without making any assumption other than the integrability of φ.
In the marked case, the situation is considerably more complicated. To state a second main result of our
paper, we define dφpp, qq :“

ş

φpp0, pq, px, qqq dx for p, q P M. Our Theorem 8.2 (and Remark 8.11) shows
the following. To avoid trivialities, we assume that

ş

dφpp, qqQ2pdpp, qqq ą 0.

Theorem 1.2. Suppose that ξ is a stationary marked random connection model and assume that

ess sup
pPM

ż

dφpp, qq2Qpdqq ă 8, (1.5)

where the essential supremum refers to Q. Then tT “ tc P p0,8q and
ş

Etc |Cp0,pq|Qpdpq “ 8.
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Note that (1.5) is (slightly) stronger than (1.4), implicitly assumed in Theorem 1.1. Under the uniform
second moment assumption (1.5), Theorems 1.1 and 1.2 imply a strong sharp phase transition at tc “ tT .
At first glance it may be surprising that (1.5) yields uniform exponential moment bounds for the cluster
sizes in the subcritical regime t ă tc. This phenomenon can be understood by observing that assumption
(1.4) guarantees that the degree distribution of the vertices has finite exponential moments of every order,
uniformly in space. Note that, in particular, the classical stationary RCM undergoes a strong sharp phase
transition, without any assumption other than integrability of the connection function. The same holds in
the marked case, provided Q is supported by a finite set. For the Boolean model with (deterministically)
bounded grains (covered by Theorems 1.1 and 1.2) it was proved in [40] that the size of a typical cluster is
exponentially small for t ă tc. This is a continuum analogue of classical results in [32] and [2]; see also [12]
for a new and elegant proof (that inspired [40] and [24]). Using a continuum version of the OSSS-inequality
the result from [40] was extended in [26] so as to cover the so-called k-percolation. Theorem 1.2 generalizes
[4, Corollary 1.10] by proving a sharp phase transition under a weaker integrability assumption on the
connectivity function and without assuming any kind of irreducibility. It also generalizes a strong sharp
phase transition result from [36], which assumes the connection function to have a bounded support
in space uniformly in the marks. Moreover, our results extend [5, Theorem 1.8] (uploaded after the
first arXiv-version of this paper) for a so-called min-reach RCM, by relaxing the exponential moment
assumption on their reach function to a finite moment of order 2d; see Example 8.12. Both [36] and [5]
are using the discrete OSSS-inequality.

Condition (1.5) fails for a spherical Boolean model with a radius distribution of unbounded support;
see Example 4.3. To get from (1.5) to weaker conditions for a sharp phase transition at tc, remains a
challenging problem. In the case of the spherical Boolean model, an important step was made in [13],
treating an unbounded radius distribution with a finite d-th moment. In this case tc ą 0 while tT “ 0 (see
also Example 4.3). Nevertheless, it is proved there in the subcritical regime that under the polynomial
(resp. exponential) decay behavior of the tail of the radius distribution, certain connection probabilities
show a similar behavior. Using an approach from [14, 15] it was shown in [7] that even for Pareto
distributed radii (with minimal moment assumption) the model undergoes such a subcritical sharpness.
Related results for the soft Boolean model with Pareto distributed weights (a special case of Example 4.4)
can be found in [20].

The paper is organized as follows. In Section 2 we give the formal definition of the RCM ξ and introduce
the notation used throughout the paper. Section 3 presents the RCM version of the multivariate Mecke
equation, while Section 4 introduces some basic notation and concepts of percolation theory. Section 5
presents a spatial Markov property (taken from [6]) and some results on stochastic ordering, which might
be of some independent interest. Section 6 provides a criterion for subcriticality and for exponential
moments of cluster sizes, while Section 7 deals with cluster diameters. In Section 8 we discuss the
stationary marked RCM, with Theorem 8.2 summarizing our main results. Proposition 8.16 presents a
mean field lower bound for mean cluster sizes in the subcritical case, while Theorem 8.22 provides such a
bound for percolation probabilities in the supercritical case.

2 Formal definition of the RCM

To define a RCM we follow [6]. Let N (Nă8) denote the space of all simple locally finite (finite) counting
measures on X, equipped with the standard σ-field, see e.g. [27]. A measure ν P N is identified with its
support tx P X : νptxuq “ 1u and describes the set of vertices of a (deterministic) graph. If νptxuq “ 1 we
write x P ν. Any ν P N can be written as a finite or infinite sum ν “ δx1 ` δx2 ` ¨ ¨ ¨ of Dirac measures,
where the xi are pairwise distinct and do not accumulate in bounded sets. The space of (undirected)
graphs with vertices from X (and no loops) is described by the set G of all counting measures µ on XˆN
with the following properties. First, we assume that the measure V pµq :“ µp¨ ˆ Nq is locally finite and
simple, that is, an element of N. We write x P µ if x P V pµq (that is µptxu ˆ Nq “ 1). In this case, there
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is a unique ψx P N such that px, ψxq P µ. We assume that x R ψx. Finally, if x P V pµq and y P ψx then
we assume that py, ψyq P µ and x P ψy. Also, G is equipped with the standard σ-field. There is an edge
between x, y P V pµq if y P ψx (and hence x P ψy). If ψx “ 0, then x is isolated.

We write |µ| :“ µpX ˆ Nq for the cardinality of µ P G and similarly for ν P N. Hence |µ| “ |V pµq|.
For x, y P V pµq we write x „ y (in µ) if there is an edge between x and y and x Ø y (in µ) if there is a
path in µ leading from x to y. For A Ă X we write x „ A (in µ) if there exists y P A X V pµq such that
x „ y. Let µ, µ1 P G. Then µ is a subgraph of µ1 if V pµq ď V pµ1q (as measures) and for each px, ψq P µ
and px, ψ1q P µ1 we have ψ ď ψ1. Note that this is not the same as µ ď µ1.

Let χ be a simple point process on X, which is a random element of N. The reader should think of a
Poisson process possibly augmented by additional (deterministic) points. By [27, Proposition 6.2] there

exist random elements X1, X2, . . . of X such that χ “
ř|χ|

n“1 δXn , where Xm ‰ Xn whenever m ‰ n and
m,n ď |χ|. Let pZm,nqm,nPN be a double sequence of random elements uniformly distributed on r0, 1s such
that Zm,n “ Zn,m for all m,n P N and such that Zm,n, m ă n, are independent. Then the RCM (based
on χ) is the point process

ξ :“

|χ|
ÿ

m“1

δpXm,Ψmq,

where

Ψm :“

|χ|
ÿ

n“1

1tn ‰ m,Zm,n ď φpXm, XnquδXn .

While the definition of ξ depends on the ordering of the points of χ, its distribution does not.
We now introduce some notation used throughout the paper. For µ, µ1 P G, we often interpret µ` µ1

as the measure in G with the same support as µ ` µ1. A similar convention applies to ν, ν1 P N. Let
µ P G. For B P X we write µpBq :“ µpB ˆ Nq. More generally, given a measurable function f : X Ñ R
we write

ş

fpxqµpdxq :“
ş

fpxqµpdx ˆ Nq. In the same spirit, we write gpµq :“ gpV pµqq, whenever g is
a mapping on N. These (slightly abusing) conventions lighten the notation and should not cause any
confusion. For B P X we denote by µrBs P G the restriction of µ to B, that is the graph with vertex
set V pµq X B which keeps only those edges from µ with both end points from B. In the same way, we
use the notation µrνs for ν P N. Similarly, for a measure ν on X (for instance for ν P N) we denote by
νB :“ νpB X ¨q the restriction of ν to a set B P X . Assume now that µ is a subgraph of µ1. For n P N0

let Cµnpµ1q P G denote the restriction of µ1 to those v P V pµ1q with dµ1pv, µq “ n, where dµ1 denotes the
distance within the graph µ1. Note that Cµ0 pµ1q is just the graph µ. Slightly abusing our notation, we
write Cµ0 pµ1q “ µ and V µ

n pµ1q “ V pCµnpµ1qq. For v R V pµ1q we set Cvpµ1q :“ 0, interpreted as an empty
graph (a graph without vertices). The cluster Cµpµ1q of µ in µ1 is the graph µ1 restricted to

V µpµ1q “

8
ÿ

n“0

V µ
n pµ1q,

while Cµďnpµ1q, n P N0, is the graph µ1 restricted to V µ
0 pµ1q ` ¨ ¨ ¨ ` V µ

n pµ1q. For later purposes, it will be

convenient to define Cµď´1pµ1q “ Cµ´1pµ1q :“ 0 as the zero measure. Throughout we write V
V pµq
n pµ1q :“

V µ
n pµ1q and V µ

n pµ1, ¨q :“ V µ
n pµ1qp¨q, n P N0, and similarly for V µ

ďn and V µ. We also often refer to Cvpµ1q as
the cluster of v in µ1 for v P V pµ1q.

Given an RCM based on a Poisson process η on X with diffuse intensity measure λ, we use the following
notation. For v P X and n P N0 we set

Cv :“ Cvpξvq, V v :“ V vpξvq, Cvn :“ Cvnpξvq, V v
n :“ V v

n pξvq, Cvďn :“ Cvďnpξvq, V v
ďn :“ V v

ďnpξvq,

or Cvλ, V
v
λ , C

v
n,λ, V

v
n,λ, C

v
ďn,λ and V v

ďn,λ, if we need to emphasize the dependence on λ. Moreover, we write

V v!
ďn :“ V v

ďn ´ δv and similarly for V v.
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3 The Mecke equation

Let ξ be a RCM based on a Poisson process η on X with diffuse intensity measure λ. Our first crucial tool
is a version of the Mecke equation (see [27, Chapter 4]) for ξ. Given n P N and xn :“ px1, . . . , xnq P Xn
we denote δxn :“ δx1 ` ¨ ¨ ¨ ` δxn and ηxn :“ η ` δxn (removing possible multiplicities) and let ξxn denote
a RCM based on ηxn . It is useful to construct ξxn in a specific way as follows. We connect x1 with
the points in η using independent connection decisions which are independent of ξ. We then proceed
inductively, finally connecting xn to η` δxn´1 . For a measurable function f : Xn ˆG Ñ r0,8s the Mecke
equation for ξ states that

E
ż

fpxn, ξq ηpnqpdxnq “ E
ż

fpxn, ξ
xnqλnpdxnq, (3.1)

where integration with respect to the factorial measure ηpnq of η means summation over all n-tuples of
pairwise distinct points from η.

For given v P X and xn P Xn we denote pv,xnq :“ pv, x1, . . . , xnq P Xn`1. We sometimes use (3.1) in
the form

E
ż

fpxn, ξ
vq ηpnqpdxnq “ E

ż

fpxn, ξ
v,xnqλnpdxnq. (3.2)

The proofs of (3.1) and (3.2) can be found in [6].

4 Percolation and critical intensities

4.1 Notation and terminology in the general case

Let t ě 0 be an intensity parameter and let ξ be a RCM based on a Poisson process η on X with an
intensity measure tλ, where λ is a locally finite and diffuse measure on X. The RCM ξ percolates if it
has an infinite cluster, a component with infinitely many vertices. We also say that the RCM (or t) is
subcritical if all clusters have only a finite number of points, that is,

Pt
`

|V v| ă 8
˘

“ 1, λ-a.e. v P X.

In accordance with (1.2) we define the critical intensity tc as the supremum of all t P R` such that above
holds. A standard coupling argument shows that ξ is subcritical for all t ă tc.

Let v P X, t ě 0 and n P N0. Mean generations and cluster sizes are denoted by

cvnptq :“ Et|V v
n |, cvďnptq :“ Et|V v

ďn|, cvptq :“ Et|V v|.

It is clear that cv1ptq “ tDφpvq and

cvptq “

8
ÿ

n“0

cvnptq “ lim
nÑ8

cvďnptq.

For a measurable function L : X Ñ R Y t˘8u we define the 8-norm by }L}8 :“ ess supvPX |Lpvq|, where
the essential supremum refers to λ. We abbreviate

D˚
φ :“ }Dφ}8, c˚

nptq :“ }cnptq}8, c˚
ďnptq :“ }cďnptq}8, c˚ptq :“ }cptq}8. (4.1)

The second critical intensity tT is defined as the supremum of all t P R` such that c˚ptq ă 8. It is clear
that tT ď tc.
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4.2 The stationary marked RCM

In this subsection, we consider the important special case of a stationary RCM; see e.g. [4, 10, 6]. Let
M be a complete separable metric space (the mark space) equipped with a probability measure Q (the
mark distribution). Set X :“ Rd ˆ M be equipped with the product of the Borel σ-field BpRdq on Rd and
the Borel σ-field on M. We assume that λ “ λd b Q, where λd denotes the Lebesgue measure on Rd. If
px, pq P X then we call x location of px, pq and p the mark of x. Instead of N we consider the (smaller set)
NpXq of all counting measures χ on X such that χp¨ ˆ Mq is locally finite (w.r.t. the Euclidean metric)
and simple. We can and will assume that the Poisson process η is a random element of NpXq.

The symmetric connection function φ : pRd ˆ Mq2 Ñ r0, 1s is assumed to satisfy

φppx, pq, py, qqq “ φpp0, pq, py ´ x, qqq. (4.2)

This allows us to write φpx, p, qq :“ φpp0, pq, px, qqq, where 0 denotes the origin in Rd. The RCM ξ is

stationary in the sense that Txξ
d
“ ξ, x P Rd, where for µ P G, the measure Txµ is (shift of µ by x) defined

by Txµ :“
ş

1tpy ´ x, q, νq P ¨uµpdpy, q, νqq. It is also ergodic; see [6].

Remark 4.1. The argument in [6] can be extended to yield that Txξ
px,pq d

“ ξp0,pq for λd b Q-a.e. px, pq P

Rd ˆ M. Hence, if f : G Ñ R is measurable and shift invariant, then fpξpx,pqq
d
“ fpξp0,pqq for λd b Q-a.e.

px, pq P Rd ˆM. Therefore, the definitions (1.2) and (1.3) of tc and tT can be simplified. For instance, we
have

tc “ suptt ě 0 : Ptp|Cp0,pq| ă 8q “ 0 for Q-a.e. pu. (4.3)

The function Dφ (defined by (1.1)) takes the form

Dφppx, pqq “

ĳ

φpy, p, qq dyQpdqq, px, pq P Rd ˆ M,

while D˚
φ is given by

ess sup
pPM

ĳ

φpy, p, qq dyQpdqq,

where the essential supremum now refers to Q. Similar comments apply to other characteristics introduced
in Subsection 4.1. For instance, we have c˚ptq “ ess suppPM c

p0,pqptq. We often write

c̄nptq :“

ż

cp0,pq
n ptqQpdpq, c̄ďnptq :“

ż

cp0,pq
n ptqQpdpq, c̄ptq :“

ż

cp0,pqptqQpdpq. (4.4)

It is convenient to introduce a random element Q0 of M which is independent of ξ. and has distribution
Q. Then we denote by CQ0 the cluster of p0, Q0q in the RCM ξQ0 arising from ξ by adding independent
connections between p0, Q0q and the points from η. This is the cluster of a typical vertex and we let V Q0

denote its vertex set. Then we can write c̄ptq “ Et|V Q0 | and similar for other quantities.
Define

θpptq :“ Pt
`
ˇ

ˇCp0,pq
ˇ

ˇ “ 8
˘

, t ě 0, p P M,

as the probability that the cluster of a vertex p0, pq P X has infinite size. In the following, we use the
LrpQq-norms to determine the size of functions. For each r P r1,`8s, we define the critical intensities

tprq
c :“ inf tt ě 0 : }θptq}r ą 0u , (4.5)

t
prq

T :“ inf tt ě 0 : }cptq}r “ 8u . (4.6)
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It is clear that t
prq
c is r-independent, since it only matters if θpptq “ 0 for Q-a.e. p P M or not. Therefore,

all the critical intensities t
prq
c coincide with the first critical intensity tc, which we defined for a general

RCM. Note that t
prq

T ď tc for all r. Moreover, t
p8q

T coincides with the second critical intensity tT , which

we have also defined for a general RCM. From Jensen’s inequality, it is clear that t
prq

T is non-increasing in
r. Therefore,

0 ď tT “ t
p8q

T ď t
pr2q

T ď t
pr1q

T ď t
p1q

T ď tc, 1 ď r1 ď r2 ď 8. (4.7)

Let

θ̄ptq :“ }θptq}1 “

ż

θpptqQpdpq, t ě 0,

denote the percolation probability, that is, the probability that the cluster of a typical vertex is infinite.
Let C8 be the set of all µ P G such that µ has an infinite cluster. It is easy to see that θ̄ptq ą 0 iff
Ptpξ P C8q “ 1. In fact, if t ă tc then Ptpξ P C8q “ 0 and if t ą tc then Ptpξ P C8q “ 1. Under a natural
irreducibility assumption, ξ can have at most one infinite cluster; see [6].

Remark 4.2. In the unmarked case (|M| “ 1) the connection function φ is just a function on Rd. Under
the minimal assumption 0 ă

ş

φpxq dx ă 8 it was shown in [37] that tc P p0,8q.

The marked RCM is a very rich and flexible model of a spatial random graph. We refer to [4, 6, 17]
for many examples. For further reference, we provide just two of them here.

Example 4.3. Assume that M “ R` and φpx, p, qq “ 1t}x} ď p ` qu, where }x} denotes the Euclidean
norm of x P Rd. The RCM ξ is known as the spherical Boolean model or as Gilbert graph with radius
distribution Q; see e.g. [27, Chapter 16] for more detail. We have that

Dφpp0, rqq “ κd

ż

pr ` sqdQpdsq, r ě 0, (4.8)

where κd stands for the volume of the unit ball. Therefore our basic assumption (1.1) is equivalent with
ş

rdQpdrq ă 8. This is the minimal assumption for having a reasonable model. Under the additional
assumption Qt0u ă 1 it was proved in [14, 18] that tc P p0,8q. On the other hand, if Q has unbounded
support, then D˚

φ “ 8 and tT “ 0; see Lemma 6.1.

Example 4.4. Assume that M “ p0, 1q equipped with Lebesgue measure Q. Assume that

φppx, pq, py, qqq “ ρpgpp, qq}x´ y}dq,

for a profile function ρ : r0,8q Ñ r0, 1s and a kernel function g : p0, 1q ˆ p0, 1q Ñ r0,8q. We assume that
mρ :“

ş

ρp}x}dq dx is positive and finite. This model was studied in [17] under the name weight-dependent
random connection model, for decreasing profile function and increasing kernel function. Then

ĳ

φpx, p, qq dx dq “ mρ

ż

gpp, qq´1 dq,

and (1.1) holds if gpp, ¨q´1 is integrable for each p P p0, 1q. This is the case in all examples studied in [17],
where it is also asserted that tc ă 8. Sufficient conditions for tc P p0,8q can also be found in [4, 8].

5 A spatial Markov property and stochastic ordering

We consider a general RCM ξ based on a Poisson process η on X with diffuse intensity measure λ. Given
µ P N, we denote the RCM based on η`µ by ξµ. We first recall the spatial Markov property, as formulated
in [6].

7



Let ν be a locally finite and diffuse measure on X. We often write Πν for the distribution of a Poisson
process with intensity measure ν. We set φ̄ :“ 1 ´ φ and define for x P X, ν P N

φ̄pν, xq :“
ź

yPν

φ̄px, yq, φpν, xq :“ 1 ´ φ̄pν, xq, φλpνq :“

ż

φpν, xqλpdxq. (5.1)

We recall our general convention φpµ, xq :“ φpV pµq, xq and φλpµq :“ φλpV pµqq for µ P G. Next we define
two kernels from N to X and from N ˆ N to X (using the same notation Kν for simplicity), by

Kνpµ, dxq :“ φ̄pµ, xqνpdxq, Kνpµ, µ1, dxq :“ φ̄pµ, xqφpµ1, xqνpdxq. (5.2)

Proposition 5.1 will provide an interpretation of this kernel. Denoting by 0 the zero measure, we note
that

Kνp0, dxq “ νpdxq, Kνp0, µ1, dxq “ φpµ1, xqνpdxq, Kνpµ, 0, dxq “ 0. (5.3)

We write Kνpµq :“ Kνpµ, ¨q and Kνpµ, µ1q :“ Kνpµ, µ1, ¨q. Note that Kλp0, µ,Xq “ φλpµq; see (5.1).
The following spatial Markov property of the random graph ξv was proved in [6].

Proposition 5.1. The sequence pV v
ďn´1, V

v
n qnPN0 is a Markov process with transition kernel

pµ, µ1q ÞÑ

ż

1tpµ` µ1, ψq P ¨uΠKλpµ,µ1qpdψq.

In the following, we often abbreviate K :“ Kλ. Given n P N we define a probability kernel Hn from
N ˆ N to N by

Hnpµ, µ1, ¨q :“

ż

¨ ¨ ¨

ż

1tψn P ¨uΠKpµ`µ1`ψ1`¨¨¨`ψn´2,ψn´1qpdψnq ¨ ¨ ¨ΠKpµ`µ1,ψ1qpdψ2qΠKpµ,µ1qpdψ1q. (5.4)

The Proposition 5.1 implies that

PpV v
n P ¨q “ Hnp0, δv, ¨q, v P X. (5.5)

Corollary 5.2. For λ-a.e. v P X and n P N0 under condition (1.1) we have Pp|V v
n | ă 8q “ 1.

The following useful property of the kernel Kλ can be easily proved by induction.

Lemma 5.3. Let n P N and µ0, . . . , µn P N. Then

Kλp0, µ0q `Kλpµ0, µ1q ` ¨ ¨ ¨ `Kλpµ0 ` ¨ ¨ ¨ ` µn´1, µnq “ Kλp0, µ0 ` ¨ ¨ ¨ ` µnq.

Using a standard coupling argument, it is easy to establish the following facts.

Proposition 5.4. Let v P X and assume that λ1 ď λ2. Then

V v
λ1 ďst V

v
λ2 , (5.6)

and for n P N

V v
ďn,λ1 ďst V

v
ďn,λ2 . (5.7)

Proof. Construct ξvλ2 and then ξvλ1 by independent thinning.

The Proposition 5.4 implies monotonicity in the measure λ for V v
ďn and V v. We can state similar

property for the first and second generations, but things are getting tricky for higher generations. This is
an open question.
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Proposition 5.5. Let v P X, m P t1, 2u and assume that λ1 ď λ2. Then

V v
m,λ1 ďst V

v
m,λ2 . (5.8)

Proof. Construct ξvλ2 and then ξvλ1 by independent thinning. Then V v
1,λ1

ď V v
1,λ2

a.s.. The Proposition
5.1 shows that, given V v

1,λ2
, the conditional distribution of V v

2,λ2
is that of a Poisson process with an

intensity measure Kλ2pδv, V
v
1,λ2

q. The statement follows from the facts that a Poisson process stochas-
tically increases in the intensity measure and that Kλ is increasing in λ and the second coordinate, i.e.
Kλ2pδv, V

v
1,λ2

q ě Kλ1pδv, V
v
1,λ1

q.

Lemma 5.6. Suppose that µ1, µ2 P Nă8 have disjoint support and set µ :“ µ1 ` µ2. Assume that ξµ1
and ξµ2 are independent RCMs with distributions ξµ1 and ξµ2, respectively. Then

V µ
n pξµq ďst V

µ1
n pξµ1q ` V µ2

n pξµ2q, n P N0, (5.9)

V µ
ďnpξµq ďst V

µ1
ďnpξµ1q ` V µ2

ďnpξµ2q, n P N0. (5.10)

Proof. Define V1,1pξµq :“ tx P η : x „ µ1u as the set of points from η which are connected to µ1 in
ξµ, and V1,2pξµq :“ tx P η : x „ µ2, x ȷ µ1u. Then V1,1pξµq and V1,2pξµq are independent Poisson
processes, and V µ

1 pξµq “ V1,1pξµq `V1,2pξµq. For k P N we define Vk,1pξµq as the set of points from V µ
k pξµq

which are connected to Vk´1,1pξµq and Vk,2pξµq as the set of points from V µ
k pξµq which are connected to

Vk´1,2pξµq but not to Vk´1,1pξµq. Then V µ
k pξµq “ Vk,1pξµq `Vk,2pξµq. Moreover, Vk,1pξµq and Vk,2pξµq are

conditionally independent Poisson processes given Cµ
ďk´1pξµq. Let f : N Ñ R` be measurable and n P N.

Then

EfpV µ
n pξµqq “ EE

“

f pV µ
n pξµqq | Cµďn´1pξµq

‰

“ E
ĳ

f
`

ψ1
n ` ψ2

n

˘

ΠKpV µ
ďn´2pξµq`Vn´1,1pξµq,Vn´1,2pξµqqpdψ

2
nqΠKpV µ

ďn´2pξµq,Vn´1,1pξµqqpdψ
1
nq.

Recursively, we get

EfpV µ
n pξµqq

“

ż

¨ ¨ ¨

ż

f
`

ψ1
n ` ψ2

n

˘

ΠKpµ`ψ1
1`ψ2

1`¨¨¨`ψ1
n´2`ψ2

n´2`ψ1
n´1,ψ

2
n´1qpdψ

2
nqΠKpµ`ψ1

1`ψ2
1`¨¨¨`ψ1

n´2`ψ2
n´2,ψ

1
n´1qpdψ

1
nq

¨ ¨ ¨ΠKpµ`ψ1
1 ,ψ

2
1qpdψ

2
2qΠKpµ,ψ1

1qpdψ
2
1qΠKpµ1,µ2qpdψ

2
1qΠKp0,µ1qpdψ

1
1q. (5.11)

On the other hand, we obtain from (5.5) and the independence of ξµ1 and ξµ2 that

Ef pV µ1
n pξµ1q ` V µ2

n pξµ2qq “

ĳ

f
`

ψ1
n ` ψ2

n

˘

Hnp0, µ1, dψ
1
nqHnp0, µ2, dψ

2
nq. (5.12)

Assume now that f increases. We compare (5.11) and (5.12) taking into account two facts. First, Poisson
processes increase stochastically in the intensity measure. Second, K decreases in the first argument and
increases in the second. This implies

EfpV µ
n pξµqq ď Ef pV µ1

n pξµ1q ` V µ2
n pξµ2qq ,

that is (5.9). The proof of (5.10) is the same, up to the fact that the argument of the function f has to
be suitably modified.

Corollary 5.7. Let µ P Nă8 and n P N0. Then

V µ
n pξµq ďst

ż

V x
n pξxqµpdxq,

V µ
ďnpξµq ďst

ż

V x
ďnpξxqµpdxq.

where ξx, x P µ, are independent and Ppξx P ¨q “ Ppξx P ¨q.
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Proof. Write µ “ δx1 `¨ ¨ ¨`δxm and apply Lemma 5.6 inductively with µ1 “ δx1 `¨ ¨ ¨`δxi and µ2 “ δxi`1

for i “ 1, . . . ,m´ 1.

In the following, we consider two families tξ
pnq
x uxPV v

n
and tξ

rns
x uxPV v

n
of random graphs with the following

properties:

1. Given Cvďn, ξ
pnq
x and ξ

rns
x are RCM’s driven by ηn ` δx and η ` δx, where ηn and η are Poisson

processes with intensity measures KλpV v
ďn´1q and λ respectively.

2. The members of the families are conditionally independent, given Cvďn.

Proposition 5.8. Let v P X and n,m P N0. Then

V v
n`m ďst

ż

V x
mpξpnq

x qV v
n pdxq.

Proof. Let f : N Ñ R` be measurable and increasing. By Proposition 5.1 the conditional distribution of

V v
n`m given Cvďn is that of V

V v
n

m pξpV v
ďn´1q,V v

n q, where ξpV v
ďn´1q,V v

n is a RCM based on ηn ` V v
n and ηn is a

Poisson process with intensity measure KλpV v
ďn´1q. Hence, by Corollary 5.7

EfpV v
n`mq “ EE

“

fpV v
n`mq | Cvďn

‰

“ EE
”

fpV V v
n

m pξpV v
ďn´1q,V v

n qq | Cvďn

ı

ď Ef
ˆ
ż

V x
mpξpnq

x qV v
n pdxq

˙

.

The assertion follows.

For v P X and n P N0 we define the intensity measures Λvn of V v
n by ΛvnpBq :“ EV v

n pBq for B P X .

Proposition 5.9. Let v P X and n P N0, m P t1, 2u. Then

V v
n`m ďst

ż

V x
mpξrns

x qV v
n pdxq.

Moreover, we get

Λvn`m ď

ż

Λxm Λvnpdxq.

Proof. Let f : N Ñ R` be measurable and increasing. By Propositions 5.8 and 5.5,

EfpV v
n`mq “ EEpfpV v

n`mq | Cvďnq ď Ef
ˆ
ż

V x
mpξpnq

x qV v
n pdxq

˙

ď Ef
ˆ
ż

V x
mpξrns

x qV v
n pdxq

˙

.

Since Λv0 “ δv for the second statement, we can assume that n P N. For each B P X we have

Λvn`mpBq “ EEpV v
n`mpBq | Cvďnq ď E

ż

ΛxmpBqV v
n pdxq “

ż

ΛxmpBqΛvnpdxq,

where we have used Campbell’s formula.

Proposition 5.10. Let v P X and n,m P N. Then

V v
ďn`m ďst V

v
ďn´1 `

ż

V x
ďmpξpnq

x qV v
n pdxq ďst V

v
ďn´1 `

ż

V x
ďmpξrns

x qV v
n pdxq.
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Proof. Let f : N Ñ R` be measurable and increasing. By Proposition 5.1 the conditional distribution

of V v
ďn`m given Cvďn is that of V v

ďn´1 ` V
V v
n

ďmpξpV v
ďn´1q,V v

n q, where ξpV v
ďn´1q,V v

n is a RCM based on ηn ` V v
n

and ηn is a Poisson process with intensity measure KλpV v
ďn´1q. Hence, we obtain from Corollary 5.7 and

Proposition 5.4

EfpV v
ďn`mq “ EE

“

fpV v
ďn`mq | Cvďn

‰

ď Ef
ˆ

V v
ďn´1 `

ż

V x
ďmpξpnq

x qV v
n pdxq

˙

ď Ef
ˆ

V v
ďn´1 `

ż

V x
ďmpξrns

x qV v
n pdxq

˙

.

Corollary 5.11. Let v P X and n P N. Then

V v ďst V
v

ďn´1 `

ż

V xpξrns
x qV v

n pdxq.

Proof. The claim follows from Proposition 5.10, since with probability one V v
ďn`m Ò V v and V x

ďmpξ
rns
x q Ò

V xpξ
rns
x q as m Ñ 8.

Given v P X and a measurable function h : X Ñ N, we define two spatial (Galton-Watson) branching

processes pW v,h
k qkě0 and pĂW v,h

k qkě0 along with a sequence of families of random graphs tξkx : x P W v,h
k u,

k P N0, recursively as follows. We set

W v,h
0 “ ĂW v,h

0 “ δv, W v,h
1 “ V v

hpvq,
ĂW v,h

1 “ V v!
ďhpvq,

and tξ0x : x P W v,h
0 u :“ tξvu. Given k ě 1, Zk :“

``

W v,h
n ,ĂW v,h

n

˘˘

nďk
and

`

tξnx : x P W v,h
n u

˘

nďk´1
we let

tξkx : x P W v,h
k u be a family of random graphs which are conditionally independent given Zk and P-a.s.

Ppξkx P ¨ | Zkq “ Ppξx P ¨q, x P W v,h
k .

Then we define

W v,h
k`1 :“

ż

V x
hpxqpξ

k
xqW v,h

k pdxq, ĂW v,h
k`1 :“

ż

V x!
ďhpxqpξ

k
xqW v,h

k pdx.q

Note that

ĂW v,h
k`1 “

ż

V x!
ďhpxq´1pξkxqW v,h

k pdxq `W v,h
k`1.

Hence, for every point x P W v,h
k from the k-th generation we run an independent RCM driven by

η` δx, where η is a Poisson process with intensity measure λ and place all points of its hpxq-th generation

in our spatial branching process k ` 1-th generation, i.e. W v,h
k`1. The process

`

ĂW v,h
k

˘

kě0
has a similar

interpretation. We define

W v,h
ďk “

k
ÿ

i“0

W v,h
i , W v,h “

8
ÿ

i“0

W v,h
i , ĂW v,h

ďk “

k
ÿ

i“0

ĂW v,h
i , ĂW v,h “

8
ÿ

i“0

ĂW v,h
i .

The special case h ” n for some fixed n P N is of particular importance. In that case we use the upper
index n instead of h.
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Remark 5.12. For each fixed k P N, the point process ĂW v,h
ďk is locally finite. If the extinction probability

of W v,h is equal to one, then this is also true for ĂW v,h. Otherwise, one cannot be sure of the locally
bounded property. Corollary 6.6 provides a simple sufficient condition (namely D˚

φ ă 8 and c˚
nptq ă 1

for some n P N) when W v,n is finite with probability one. In the stationary case, it suffices to assume
that c˚

nptq ď 1, since the total size of W v,n coincides with the total size of a Galton–Watson process with
offspring distribution |V 0

n |.

We have the following useful property.

Proposition 5.13. Let v P X and k, n P N. Then

W v,n
k ďst W

v,1
kn , (5.13)

W v,n
ďk ďst

k
ÿ

i“1

W v,1
in . (5.14)

In particular, if k “ 1, then

V v
n ďst W

v,1
n . (5.15)

Proof. Define a kernel K̃ from N to N by

K̃pµ, ¨q :“

ż

Kλp0, δx, ¨qµpdxq. (5.16)

By Bernoulli’s inequality, we have

Kλpµ, µ1, ¨q ď K̃pµ1, ¨q, µ, µ1 P N. (5.17)

Taking an increasing and measurable f : N Ñ R, we therefore obtain from (5.5) and the monotonicity
properties of a Poisson process that

EfpV v
n q ď

ż

¨ ¨ ¨

ż

fpψnqΠK̃pψn´1q
pdψnq ¨ ¨ ¨ΠK̃pψ1q

pdψ2qΠK̃pδvq
pdψ1q “ EfpW v,1

n q. (5.18)

This is (5.13) for k “ 1, i.e. (5.15).
By the definition of W v,n

2 and (5.5) we have

EfpW v,n
2 q “ E

ż

fpψqH 1
npV v

n , dψq, (5.19)

where for given m P N and δxm P Nă8

H 1
npµ, ¨q :“

ż

¨ ¨ ¨

ż

1tψ1 ` ¨ ¨ ¨ ` ψm P ¨uHnp0, δx1 , dψ
1q ¨ ¨ ¨ Hnp0, δxm , dψ

mq.

Using (5.17) and the monotonicity properties of a Poisson process in the definition (5.4) of kernels Hn

once again, we see that
ż

fpψqH 1
npµ, dψq ď

ż

¨ ¨ ¨

ż

fpψ1
n ` ¨ ¨ ¨ ` ψmn qΠK̃pψ1

n´1q
pdψ1

nq ¨ ¨ ¨ΠK̃pψm
n´1q

pdψmn q ˆ ¨ ¨ ¨

ˆ ΠK̃pδx1 q
pdψ1

1q ¨ ¨ ¨ΠK̃pδxm q
pdψm1 q.

By the definition (5.16) of the kernel K̃ and the fundamental properties of a Poisson process, the above
m innermost integrals equal

ż

fpψnqΠK̃pψ1
n´1`¨¨¨`ψm

n´1q
pdψnq.
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Proceeding inductively, we obtain that

ż

fpψqH 1
npµ, dψq ď

ż

¨ ¨ ¨

ż

fpψnqΠK̃pψn´1q
pdψnq ¨ ¨ ¨ΠK̃pµq

pdψ1q.

The above right-hand side is an increasing function of µ. Hence, we can apply (5.13) for k “ 1 to obtain
from (5.19)

EfpW v,n
2 q ď

ż

¨ ¨ ¨

ż

fpψnqΠK̃pψn´1q
pdψnq ¨ ¨ ¨ΠK̃pχnq

pdψ1qΠK̃pχn´1q
pdχnq ¨ ¨ ¨ΠK̃pδvq

pdχ1q “ EfpW v,1
2n q.

Hence, we have (5.13) for k “ 2. The case of a general k can be treated analogously. The second assertion
(5.14) can be proved in the same way, modifying the arguments of the function f in an appropriate
way.

In the following result, and also later, we consider a Galton-Watson process pWkqkě0 with Poisson
offspring distribution with parameter D˚

φ “ }Dφ}8 starting with W0 “ 1. Then Wk is the number of

points in the k-th generation. We set Wďk :“
řk
i“0Wi.

Proposition 5.14. Let v P X and n P N. Then

|W v,1
n | ďst Wn, |W v,1

ďn | ďst Wďn.

Proof. Note that the total size of the offspring distribution |V x
1 pξxq| is a Poisson random variable with

parameter Dφpxq. Recall the definition (5.16). Taking an increasing and measurable f : N Ñ R, we obtain
from the monotonicity properties of a Poisson process that

Efp|W v,1
n |q “

ż

¨ ¨ ¨

ż

fp|ψn|qΠK̃pψn´1q
pdψnq ¨ ¨ ¨ΠK̃pψ1q

pdψ2qΠK̃pδvq
pdψ1q

ď

ż

¨ ¨ ¨

ż

fp|ψn|qΠD˚
φψn´1

pdψnq ¨ ¨ ¨ΠD˚
φψ1

pdψ2qΠD˚
φδv

pdψ1q ď EfpWnq.

The proof of the second inequality is the same, up to the fact that the argument of the function f has
to be suitably modified.

The following results are crucial for later purposes.

Proposition 5.15. Let v P X and n, k P N. Then

V v
ďkn ďst

ĂW v,n
ďk .

Proof. By Proposition 5.10, from the similar definitions of tξ
rns
x : x P V v

n u and tξ1x : x P V v
n u we get

V v
ďkn ďst V

v
ďn´1 `

ż

V x1
ďpk´1qn

`

ξ1x1
˘

V v
n pdx1q. (5.20)

Define a point process V
r2s
n on X ˆ X by

V r2s
n :“

ĳ

1tpx1, x2q P ¨uV x1
n pξ1x1 , dx2qV v

n pdx1q.

Let
␣

ξ
r2s
x1,x2 : px1, x2q P V

r2s
n

(

be a family of random graphs which are conditionally independent given V
r2s
n

and P-a.s.

Ppξr2s
x1,x2 P ¨ | V r2s

n q “ Ppξx2 P ¨q, px1, x2q P V r2s
n .
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This implies that for each x1 P V v
n the random graphs ξ

r2s
x1,x2 , x2 P V x1

n pξ1x1q, are conditionally independent
given V x1

n pξ1x1q and

Ppξr2s
x1,x2 P ¨ | V x1

n pξ1x1qq “ Ppξx2 P ¨q, x2 P V x1
n pξ1x1q.

Therefore, we can apply Proposition 5.10 in (5.20) to the conditional distribution (w.r.t. V
r2s
n ) to see that

V v
ďkn ďstV

v
ďn´1 `

ż

V x1
ďn´1pξ1x1qV v

n pdx1q `

ĳ

V x2
ďpk´2qnpξr2s

x1,x2qV x1
n pξ1x1 , dx2qV v

n pdx1q,

It is easy to see that the distribution of the above right-hand side does not change when replacing ξ
r2s
x1,x2

by ξ2x2 . It follows that

V v
ďkn ďstV

v
ďn´1 `

ż

V x1
ďn´1pξ1x1qV v

n pdx1q `

ĳ

V x2
ďpk´2qnpξ2x2qV x1

n pξ1x1 , dx2qV v
n pdx1q.

Proceeding inductively, we obtain

V v
ďkn ďst V

v
ďn´1 `

ż

V x1
ďn´1pξ1x1qV v

n pdx1q ` ¨ ¨ ¨ `

ż

¨ ¨ ¨

ż

V
xk´2

ďn´1pξk´2
xk´2

qV
xk´3
n pξk´3

xk´3
, dxk´2q ¨ ¨ ¨V v

n pdx1q

`

ż

¨ ¨ ¨

ż

V
xk´1

ďn pξk´1
xk´1

qV
xk´2
n pξk´2

xk´2
, dxk´1q ¨ ¨ ¨V v

n pdx1q. (5.21)

Here, the last term can be written as

ż

¨ ¨ ¨

ż

V
xk´2
n pξk´2

xk´2
qV

xk´3
n pξk´3

xk´3
, dxk´2q ¨ ¨ ¨V v

n pdx1q

`

ż

¨ ¨ ¨

ż

V
xk´1!

ďn pξk´1
xk´1

qV
xk´2
n pξk´2

xk´2
, dxk´1q ¨ ¨ ¨V v

n pdx1q

“

ż

¨ ¨ ¨

ż

V
xk´2
n pξk´2

xk´2
qV

xk´3
n pξk´3

xk´3
, dxk´2q ¨ ¨ ¨V v

n pdx1q ` ĂW v,n
k .

Inserting this into (5.21), performing the preceding step several times, we end up with

V v
ďkn ďst V

v
ďn ` ĂW v,n

1 ` ¨ ¨ ¨ ` ĂW v,n
k “ ĂW v,n

ďk .

This concludes the proof.

Corollary 5.16. Let v P X and k P N. Then

V v
ďk ďst W

v,1
ďk .

Proof. The statement follows from Proposition 5.15 for n “ 1 and the observation that ĂW v,1
ďk ” W v,1

ďk .

Proposition 5.17. Let v P X and h : X Ñ N be a measurable function. Then

V v ďst
ĂW v,h.

Proof. As in the proof of Proposition 5.15 it follows for each n P N that

V v
ďn ďstV

v
ďhpvq´1 `

ż

V x1
ďhpx1q´1pξ1x1qV v

hpvqpdx1q `

ĳ

V x2
ďn´hpvq´hpx1q

pξr2s
x1,x2qV x1

hpx1q
pξ1x1 , dx2qV v

hpvqpdx1q.
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Note that the distribution of the above right-hand side does not change upon replacing ξ
r2s
x1,x2 by ξ2x2 . It

follows that

V v
ďn ďstV

v
ďhpvq´1 `

ż

V x1
ďhpx1q´1pξ1x1qV v

hpvqpdx1q `

ĳ

V x2
ďn´hpvq´hpx1q

pξ2x2qV x1
hpx1q

pξ1x1 , dx2qV v
hpvqpdx1q.

Proceeding inductively, since hpxq ě 1 for any x P X, we obtain for any n P N

V v
ďn ďst

ĂW v,h
ďn ď ĂW v,h.

This concludes the proof, since with probability one V v
ďn Ò V v as n Ñ 8.

Corollary 5.18. Let v P X and n P N. Then

V v ďst
ĂW v,n.

6 A criterion for subcriticality and exponential moments

We establish the setting of Section 5 with intensity measure λ replaced by tλ for some t ě 0. We use the
so-called generations method to build lower bounds on tT , see e.g. [31, 41, 32, 33, 34]. As is common in
percolation theory, we denote the underlying probability measure by Pt, to stress the dependence on the
intensity parameter.

Lemma 6.1. We have tT ě pD˚
φq´1. Moreover, we have tT ą 0 if and only if D˚

φ ă 8,

Proof. If D˚
φ “ 0, then each Poisson point is isolated and tT “ 8. If D˚

φ “ 8, then c˚
1ptq “ tD˚

φ “ 8

for any t ą 0 and tT “ 0. Let t ě 0 and assume that 0 ă D˚
φ ă 8. The Proposition 5.13 implies that

cvnptq ď Et|W v,1
n |. By Proposition 5.14 we have Et|W v,1

n | ď EtWn “ pc˚
1ptqqn for any n P N. Therefore,

tT ě 1{D˚
φ ą 0.

In the remainder of the section, we shall assume that D˚
φ ă 8.

Remark 6.2. One can attempt to improve the lower bound of tT by obtaining an estimate of the form

Etp|V v
n`l| | Cvďnq ď γptq|V v

n |

for all n ě n0 and some l, n0 P N. Then as soon as γpt0q ă 1 there is no percolation and tT ą t0. It is true
that in continuous models, obtaining such estimates for l ě 2 involves appreciable technical difficulties.

By Proposition 5.9 for n P N0 we have

cvn`2ptq ď c˚
2ptqcvnptq. (6.1)

This easily implies that if c˚
2ptq ă 1, then t ă tT . One of the main goals of this section is to show that if

D˚
φ ă 8 and c˚

nptq ă 1 for some n P N, then t ă tT .

Lemma 6.3. Let n, k P N and assume that D˚
φ ă 8. Then for any t, δ ą 0

ess sup
vPX

Eteδ|W v,n
ďk |

ă 8.

Proof. By Proposition 5.13 we have W v,n
ďk ďst W

v,1
ďkn. Then by Proposition 5.14 we obtain

ess sup
vPX

Eteδ|W v,n
ďk |

ď EteδWďkn .

Since the offspring distribution of Wďkn is Poisson with parameter c˚
1ptq ă 8, it is well-known that Wďkn

has exponential moments of each order; see e.g. [35].
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Corollary 6.4. Assume that D˚
φ ă 8 and let n P N. Then for any t, δ ą 0

ess sup
vPX

Eteδ|V v
ďn| ă 8.

Proof. By Proposition 5.15 we have V v
ďn ďst W

v,1
ďn . Then the result follows from Lemma 6.3.

Theorem 6.5. Let h : X Ñ N be a measurable bounded function and t ě 0. Assume that D˚
φ ă 8 and

c˚
hptq :“ ess sup

vPX
cvhpvq

ptq ă 1. Then

ess sup
vPX

Et|ĂW v,h| ď
c˚

ďh˚ptq

1 ´ c˚
hptq

ă 8,

where h˚ :“ }h}8.

Proof. By Fubini’s theorem, we have

Et|W v,h| “ 1 ` cvhpvqptq `
ÿ

kě1

Et
ż

|V x
hpxqpξ

k
xq|W v,h

k pdxq “ 1 ` cvhpvqptq `
ÿ

kě1

Et
ż

cxhpxqptqW
v,h
k pdxq

ď 1 ` cvhpvqptq ` c˚
hptqpEt|W v,h| ´ 1q.

Therefore, Et|W v,h| ď p1 ` cvhpvq
ptq ´ c˚

hptqq{p1 ´ c˚
hptqq ď p1 ´ c˚

hptqq´1 for any v P X. Moreover, by
Corollary 6.4 and Fubini’s theorem, we obtain that for any v P X

Et|ĂW v,h| “ cvďhpvqptq `
ÿ

kě1

Et
ż

|V x!
ďhpxqpξ

k
xq|W v,h

k pdxq “ cvďhpvqptq `
ÿ

kě1

Et
ż

pcxďhpxqptq ´ 1qW v,h
k pdxq

ď cvďhpvqptq ` pc˚
ďh˚ptq ´ 1qpEt|W v,h| ´ 1q ă

c˚
ďh˚ptq

1 ´ c˚
hptq

ă 8.

This proves the result.

Corollary 6.6. Let n P N and t ě 0. If D˚
φ ă 8 and c˚

nptq ă 1, then c˚ptq ď c˚
ďnptq{p1 ´ c˚

nptqq ă 8 and
t ă tT .

Proof. The assertion follows from Corollary 5.18 and Theorem 6.5 with h ” n.

In the following, we generalize Corollary 6.6 for the case where it is known at which point of the
underlying space the mean cluster size takes its maximal value.

Proposition 6.7 (A special criterion for subcriticality). Let v0 P X, n P N and t ě 0. If D˚
φ ă 8,

cv0ptq “ c˚ptq and cv0n ptq ă 1, then c˚ptq ď cv0ďn´1ptq{p1 ´ cv0n ptqq ă 8 and t ă tT .

Proof. By Corollary 5.11 and Fubini’s theorem, we have

c˚ptq “ cv0ptq ď cv0ďn´1ptq ` Et
ż

cxptqV v0
n pdxq ď cv0ďn´1ptq ` cv0n ptqcv0ptq.

Therefore, cv0ptq ď cv0ďn´1ptq{p1 ´ cv0n ptqq ă 8.

Theorem 6.8. Under the conditions of Theorem 6.5 there exists δ “ δpt, h˚q ą 0 such that

ess sup
vPX

Eteδ|ĂW v,h| ă 8.
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Proof. To describe the total population sizes of W v,h and ĂW v,h, we define an exploration process. Let’s
consider the following spatial Markov process pXkqkě0 “ pYk, Zkqkě0 along with a sequence of families of
random graphs tξkx : x P Zku, k P N0, recursively as follows. We set

X0 “ pδv, δvq, X1 “ pV v
ďhpvq, V

v
hpvqq,

and tξ0x : x P Z0u :“ tξvu. Given k ě 1, pXnqnďk and
`

tξnx : x P Znu
˘

nďk´1
we let tξkx : x P Zku be a

family of random graphs which are conditionally independent given Zk and P-a.s.

Ppξkx P ¨ | Zkq “ Ppξx P ¨q, x P Zk.

Then we define

Yk`1 “Yk `

ż

1tdpv, xq “ min
yPZk

dpv, yquV x!
ďhpxqpξ

k
xqZkpdxq,

Zk`1 “Zk `

ż

1tdpv, xq “ min
yPZk

dpv, yqupV x
hpxqpξ

k
xq ´ δxqZkpdxq.

Let τ :“ minpk ě 1 : Zk “ Hq. Note that τ is a stopping time w.r.t. tZkukPN. Moreover, τ “ |W v,h| and

Yτ “ ĂW v,h in distribution. Then we can use the well-known test function criteria to prove the existence
of an exponential moment for τ (see [23, Corollary 2, p. 115]). Let δ, ε ą 0 and τk :“ minpτ, kq for k ě 1.
Then for any k ě 1 with probability one

eδτk ď eδτk`ε|Zτk
| “ eε|Z0| `

τk´1
ÿ

m“0

´

eδpm`1q`ε|Zm`1| ´ eδm`ε|Zm|
¯

.

Note that by Corollary 6.4 we have as ε Ñ 0

Et
´

eδpm`1q`ε|Zm`1| ´ eδm`ε|Zm| | Zm

¯

“ eδm`ε|Zm|Et
ˆ

exp

ˆ

δ ` ε

ż

1tdpv, xq “ min
yPZm

dpv, yqup|V x
hpxqpξ

m
x q| ´ 1qZmpdxq

˙

´ 1 | Zm

˙

„ eδm`ε|Zm|

ˆ

eδ
ˆ

1 ` ε

ż

1tdpv, xq “ min
yPZm

dpv, yqupcxhpxqptq ´ 1qZmpdxq

˙

´ 1

˙

ď eδm`ε|Zm|
´

eδ p1 ` εpc˚
hptq ´ 1qq ´ 1

¯

.

Then there exist ε, δ ą 0 such that for any m ě 0

Et
´

eδpm`1q`ε|Zm`1| ´ eδm`ε|Zm|
¯

“ Et Et
´

eδpm`1q`ε|Zm`1| ´ eδm`ε|Zm| | Zm

¯

ď 0.

Therefore, Eteδτk ď Eteε|Z0| “ eε for any k ě 1. Letting k Ñ 8 we obtain the light tail property for τ
uniformly in v P X.

Note that by Propositions 5.15 and 5.14 we have for any k ě 1

Eteδ|Yk| “ Et
ˆ

eδ|Yk´1|Et
ˆ

exp

ˆ

δ

ż

1tdpv, xq “ min
yPZk´1

dpv, yqu|V x!
ďhpxqpξ

k´1
x q|Zk´1pdxq

˙

| Xk´1

˙˙

“ Et
ˆ

eδ|Yk´1|

ż

1tdpv, xq “ min
yPZk´1

dpv, yquEtpeδ|V x!
ďhpxq

pξk´1
x q|

| Zk´1qZk´1pdxq

˙

ď Eteδ|Yk´1|EteδpWďh˚ ´1q ď

´

EteδpWďh˚ ´1q
¯k
.
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By Theorem 6.5 |ĂW v,h| is a proper random variable. Then, by Fubini’s theorem, Cauchy–Schwarz
inequality, and the previous inequality, we also have

Eteδ|ĂW v,h| “ Et

˜

eδ|ĂW v,h|

8
ÿ

k“1

1tτ “ ku

¸

“

8
ÿ

k“1

Etpeδ|Yk|1tτ “ kuq

ď

8
ÿ

k“1

b

Ete2δ|Yk|Ptpτ “ kq ď

8
ÿ

k“1

b

`

Ete2δpWďh˚ ´1q
˘kPtpτ “ kq.

Since Wďh˚ has exponential moments of all orders (see e.g. [35]) and lim
δÑ0

Ete2δpWďh˚ ´1q “ 1 we get the

required result from the uniform light tail property for τ .

Corollary 6.9. Under the conditions of Corollary 6.6 there exists δ ” δpt, nq ą 0 such that

ess sup
vPX

Eteδ|V v | ă 8. (6.2)

Proof. The claim follows from Corollary 5.18 and Theorem 6.8 with h ” n.

Theorem 6.10. Suppose that t ă tT . Then there exists δ ” δptq ą 0 such that (6.2) holds.

Proof. Since t ă tT we have c˚
1ptq “ tD˚

φ ď c˚ptq ă 8. Define N :“ r2c˚ptqs and

Ai :“ tv P X : cvi ptq ď 1{2uz

ˆ i´1
ď

j“1

Aj

˙

, i P N.

Then λp
ŞN
i“1A

c
i q “ 0, since otherwise c˚ptq ą N{2 ě c˚ptq. Let n be the smallest number such that

λp
Şn
i“1A

c
i q “ 0. By Proposition 5.17 we have that V v ďst

ĂW v,h, where hpvq :“ i for v P Ai and hpvq :“ 1,
otherwise. Therefore, the required result follows from Theorem 6.8.

Example 6.11. Take X as the d-dimensional hyperbolic space Hd for some d ě 2 equipped with the
hyperbolic metric dHd ; ; see e.g. [22] and the references given there. Assume that λ is given by the Haar
measure Hd on Rd. Assume that the connection function is given by φpx, yq “ φ̃pdHdpx, yqq for some
measurable φ̃ : R` Ñ r0, 1s. Fix a point o P Hd. Since the space Hd is homogeneous, we can argue as in
Remark 4.1 to see that

tc “ suptt ě 0 : Ptp|Co| ă 8q “ 0q, tT “ sup
␣

t ě 0 : Et|Co| ă 8
(

.

It was proved in [11] that tc ă 8 if and only if
ş

φpo, xqHdpdxq ą 0. In accordance with our Lemma 6.1 it
was also shown there that tT ą 0 if and only if

ş

φpo, xqHdpdxq ă 8. Assume now that
ş

φp0, xqHdpdxq P

p0,8q. It was proved in [11] that tc “ tT . Hence our Theorem 6.10 yields a strong sharp phase transition
at tc, just as in the stationary (unmarked) Euclidean case.

7 Diameter distribution

We establish the setting of Section 5 with an intensity measure tλ for t ě 0. Denote by

dmpA1, A2q :“ sup
xPA1,yPA2

dpx, yq

the maximum distance between the points of A1, A2 Ă X, where we recall that dp¨, ¨q denotes the metric
on X. We use the convention that dmpA,Hq :“ 0 for any A Ă X. We will also use the same notations for
µ P G identifying A with V pµq.
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Lemma 7.1. Let A1, A2 Ă X, A “ A1 YA2, and v P A. If A1 XA2 ‰ H, then

DpAq ď minpDpA1q `DpA2q, 2dmpv,Aqq.

Proof. Note that for any x P A1 XA2 by the triangle inequality, we have

dmpA1, A2q ď dmpx,A1q ` dmpx,A2q ď dmpA1 XA2, A1q ` dmpA1 XA2, A2q ď DpA1q `DpA2q.

Therefore, the result follows from the fact that DpAq “ maxpDpA1q, DpA2q, dmpA1, A2qq, and a simple
consequence of the triangle inequality, i.e. DpAq ď 2dmpv,Aq.

Denote for v P X and n P N the maximum length of the edges between generations n´ 1 and n by

Evn :“ max
xPV v

n´1,yPV v
n :x„y

dpx, yq.

We also define by Evďn :“ maxpEv1 , E
v
2 , . . . , E

v
nq and Ev :“ supnPNE

v
ďn the maximal length among the

edges between generations in Cvďn and Cv respectively. Note that Ev1 “ dmpv, V v
1 q. For v P X and t, r ě 0

we denote by

ϕvt prq :“ 1 ´ exp

˜

´t

ż

Bc
rpvq

φpv, xqλpdxq

¸

,

where Brpvq :“ tx P X : dpv, xq ď ru is the closed ball of radius r centered at a point v in X. We also
denote by ϕ˚

t prq :“ ess supvPX ϕ
v
t prq.

Lemma 7.2. Let v P X and t, r ě 0. Then PtpEv1 ą rq “ ϕvt prq ď ϕ˚
t prq.

Proof. The claim follows from Proposition 5.1 since V v
1 is a Poisson process with intensity measure

Ktλp0, δvq.

Proposition 7.3. Let v P X, n P N and r ě 0. Then

PtpEvďn ą rq ď cvďn´1ptqϕ˚
t prq, PtpEv ą rq ď cvptqϕ˚

t prq.

Proof. By subadditivity of a probability measure and Proposition 5.1, we have

PtpEvďn ą rq “ Pt

˜

n
ď

k“1

tEvk ą ru

¸

ď

n
ÿ

k“1

PtpEvk ą rq “

n
ÿ

k“1

Pt

¨

˝

ď

xPV v
k´1

t max
yPV v

k :x„y
dpx, yq ą ru

˛

‚

ď

n
ÿ

k“1

Et
ż

Pt
ˆ

max
yPV v

k :x„y
dpx, yq ą r | Cvďk´1

˙

V v
k´1pdxq

“

n
ÿ

k“1

Et
ż

1 ´ exp

˜

´t

ż

Bc
rpxq

φpx, yqφ̄pV v
ďk´2, yqλpdyq

¸

V v
k´1pdxq

ď

n
ÿ

k“1

Et
ż

ϕxt prqV v
k´1pdxq ď cvďn´1ptqϕ˚

t prq.

The second inequality follows immediately from the first one, since Evďn Ò Ev a.s. as n Ñ 8.

Denote by τv :“ minpn P N : V v
n “ Hq the depth of Cv.

Lemma 7.4. Let v P X and n P N. Then with probability one

dmpv, V v
ďnq ď nEvďn, dmpv, V vq ď τvEv.
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Proof. Denote for µ P G and v1, v2 P µ the minimal length of the paths between v1 and v2 within the
graph µ by dµpv1, v2q. Note that for any k P N by the triangle inequality, we have

dmpv, V v
k q “ max

xPV v
k

dpv, xq ď max
xPV v

k

dC
v
ďkpv, xq ď Ev1 ` ¨ ¨ ¨ ` Evk .

Therefore

dmpv, V v
ďnq “ maxpdmpv, V v

1 q, dmpv, V v
2 q, . . . , dmpv, V v

n qq ď Ev1 ` ¨ ¨ ¨ ` Evn ď nEvďn.

The second inequality follows from the first one by monotone convergence.

Proposition 7.5. Let v P X, n P N and t, r ě 0. Then

Ptpdmpv, V v
ďnq ą rq ď cvďn´1ptqϕ˚

t pr{nq, Ptpdmpv, V vq ą rq ď cvďn´1ptqϕ˚
t pr{nq ` Ptpτv ą nq.

Proof. By Lemma 7.4 and Proposition 7.3 we have

Ptpdmpv, V v
ďnq ą rq ď PtpnEvďn ą rq ď cvďn´1ptqϕ˚

t pr{nq.

The second inequality follows from the first one and the following inclusion

tdmpv, V vq ą ru Ă tdmpv, V v
ďnq ą ru Y tτv ą nu.

Corollary 7.6. Let v P X, n P N and t, r ě 0. Then

PtpDpV v
ďnq ą rq ď cvďn´1ptqϕ˚

t pr{2nq, PtpDpV vq ą rq ď cvďn´1ptqϕ˚
t pr{2nq ` Ptpτv ą nq.

Proof. The claims follow immediately from Lemma 7.1 and Proposition 7.5.

Corollary 7.7. Let n P N and t ě 0. If D˚
φ ă 8 and ϕ˚

t prq decay exponentially fast as r Ñ 8, then there
exists δ :“ δpt, nq ą 0 such that

ess sup
vPX

EteδDpV v
ďnq ă 8.

Proof. The claim follows from Corollaries 7.6 and 6.4.

Remark 7.8. Suppose that ϕ˚
t prq and the tail distribution of depth Ptpτv ą rq decay exponentially fast

as r Ñ 8 with the exponents δ1 ą 0 and δ2 ą 0 respectively. Then using Proposition 7.5 one can easily
show that the tail distribution of dmpv, V vq decrease as expp´

?
δ1δ2rq via r. In other words, using the

previous Proposition, we can’t prove the light tail property for the diameter of a cluster. We will use a
similar construction as in Theorem 6.8 to achieve the desired result; see Theorem 7.9. For example, if
ϕ˚
t prq has a heavy-tail (e.g., decay with polynomial speed) and depth τv has a light-tailed distribution,

then one can build a ”better” upper bound for the tail distribution of dmpv, V vq using Proposition 7.5.

Theorem 7.9. Let h : X Ñ N be a measurable and bounded function and t ě 0. Assume that D˚
φ ă 8

and c˚
hptq :“ ess sup

vPX
cvhpvq

ptq ă 1. Assume also that ϕ˚
t prq decays exponentially fast as r Ñ 8, then there

exists δ ” δpt, h˚q ą 0 such that

ess sup
vPX

EteδDpĂW v,hq ă 8.
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Proof. To describe W v,h and ĂW v,h we will use the same exploration process (spatial Markov process)
pXkqkě0 “ ppYk, Zkqqkě0 as in Theorem 6.8. Recall that X0 “ pδv, δvq, X1 “ pV v

ďhpvq
, V v

hpvq
q and

Yk`1 “Yk `

ż

1tdpv, xq “ min
yPZk

dpv, yquV x!
ďhpxqpξ

k
xqZkpdxq,

Zk`1 “Zk `

ż

1tdpv, xq “ min
yPZk

dpv, yqupV x
hpxqpξ

k
xq ´ δxqZkpdxq.

Let τ :“ mintk ě 1 : Zk “ Hu. We know that τ is a stopping time w.r.t. tZkukPN, τ “ |W v,h| and

Yτ “ ĂW v,h in distribution.
Let δ be a positive and sufficiently small parameter. By Lemma 7.1 we have for any k ě 1

EteδDpYkq ď Et
ˆ

eδDpYk´1qEt
ˆ

exp

ˆ

δ

ż

1tdpv, xq “ min
yPZk´1

dpv, yquDpV x
ďhpxqpξ

k´1
x qqZk´1pdxq

˙

ˇ

ˇ

ˇ
Xk´1

˙˙

“ Et
ˆ

eδDpYk´1q

ż

1tdpv, xq “ min
yPZk´1

dpv, yquEtpeδDpV x
ďhpxq

pξk´1
x qq

ˇ

ˇ

ˇ
Zk´1qZk´1pdxq

˙

ď EteδDpYk´1q ess sup
vPX

EteδDpV v
ďh˚ q

ď

ˆ

ess sup
vPX

EteδDpV v
ďh˚ q

˙k

.

By Theorem 6.5 |ĂW v,h| is a proper random variable. Then, by Fubini’s theorem, Cauchy–Schwarz in-
equality, and the previous inequality, we also have

EteδDpĂW v,hq “ Et

˜

eδDpĂW v,hq
8
ÿ

k“1

1tτ “ ku

¸

“

8
ÿ

k“1

EtpeδDpYkq1tτ “ kuq

ď

8
ÿ

k“1

b

Ete2δDpYkqPtpτ “ kq ď

8
ÿ

k“1

c

`

ess sup
vPX

Ete2δDpV v
ďh˚ q˘kPtpτ “ kq.

Note that DpV v
ďh˚q and τ have light tail distributions uniformly in v P X by Corollary 7.7 and Theorem

6.8 respectively. Therefore, we get the required result, since lim
δÑ0

ess supvPX Ete2δDpV v
ďh˚ q

“ 1.

Corollary 7.10. Suppose that ϕ˚
t prq decays exponentially as r Ñ 8. Then, under the conditions of

Corollary 6.6, there exists δ “ δpt, nq ą 0 such that

ess sup
vPX

EteδDpV vq ă 8.

Proof. The assertion follows from Corollary 5.18 and Theorem 7.9 with h ” n.

Theorem 7.11. Let t ă tT . If ϕ˚
t prq decays exponentially as r Ñ 8, then the diameter of the cluster of

an arbitrary vertex has a light-tailed distribution (as in Corollary 7.10).

Proof. We can build the same upper bound for the cluster of an arbitrary vertex as in Theorem 6.10 and
then derive the required result with Theorem 7.9.

8 The stationary marked RCM

In this section, we consider the stationary RCM as introduced in Section 4. Let n P N and define the

measurable functions d
pnq
φ : M2 Ñ r0,8s and d

rns
φ : M2 Ñ r0,8s by

dpnq
φ pp, qq :“

ĳ n´1
ź

i“0

φppxi, piq, pxi`1, pi`1qq dxnQn´1pdpn´1q,

drns
φ pp, qq :“

ĳ n´1
ź

i“0

φppxi, piq, pxi`1, pi`1qq
ź

3ďi`2ďjďn

φ̄ppxi, piq, pxj , pjqq dxnQn´1pdpn´1q. (8.1)
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where p0 :“ p and pn :“ q. In the special case n “ 1, we write

dφpp, qq :“ dp1q
φ pp, qq “

ż

φpx, p, qq dx.

Note that

dpnq
φ pp, qq :“

ż n´1
ź

i“0

dφppi, pi`1qQn´1pdpn´1q.

It follows from the Mecke equation (3.2) that tnd
pnq
φ pp, ¨q is the Q-density of the expected number of paths

of length n starting in p0, pq and ending in a point with mark in a given set from BpMq. Analogously,

tnd
rns
φ pp, ¨q is the Q-density of the expected number of self-avoiding walks (paths without loops) of length

n starting in p0, pq and ending in a point with a mark in a set from BpMq. From the symmetry property

of φ we obtain that d
pnq
φ and d

rns
φ are symmetric. From stationarity, one can also notice that for given

n ě 1 and p, q P M we have

dr2ns
φ pp, qq ď

ż

drns
φ pp, rqdrns

φ pr, qqQpdrq. (8.2)

For a given measurable L : M2 Ñ R Y t˘8u and r1, r2 P r1,8q, we define the norms

}L}r1,r2 :“

˜

ż
ˆ
ż

|Lpp, qq|r1 Qpdpq

˙

r2
r1

Qpdqq

¸

1
r2

, (8.3)

}L}8,r2 :“ ess sup
pPM

ˆ
ż

|Lpp, qq|r2 Qpdqq

˙
1
r2

, (8.4)

}L}8,8 :“ ess sup
p,qPM

|Lpp, qq|. (8.5)

Note that, by definition, we have D˚
φ “ }dφ}8,1. Take p P M, n P N and t ě 0. By the multivariate

Mecke equation, we have that

EtV p0,pq
n pRd ˆ ¨q “

ż

1tq P ¨uvp,qn ptqQpdqq, (8.6)

where the density vp,qn ptq can be written as a linear combination of integrals similar to those occurring in

(8.1). Since we can bound V
p0,pq
n pRd ˆ Bq by counting all paths of length n without loops and ending in

a measurable B Ă M, we have

vp,qn ptq ď tndrns
φ pp, qq ď tndpnq

φ pp, qq, Q-a.e. q P M (8.7)

and therefore

vpnptq :“ vp0,pq
n ptq ď tn

ż

drns
φ pp, qqQpdqq ď tn

ż

dpnq
φ pp, qqQpdqq. (8.8)

We define

∆nptq :“ c˚
ďn´1ptq ` }vnptq}8,8, (8.9)

where we recall that the first term is the } ¨ }8-norm of p ÞÑ c
p0,pq

ďn´1ptq and the second term is defined as
the } ¨ }8,8-norm of the function pp, qq ÞÑ vp,qn ptq.
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Lemma 8.1. Let t ě 0 and n P N. If }dφ}8,1 ă 8 and }d
rns
φ }8,8 ă 8, then ∆nptq ă 8. Moreover, if

}dφ}8,1 ă 8 and }d
rns
φ }8,2 ă 8, then ∆2nptq ă 8.

Proof. By the recursive structure of dpnq we have }d
pnq
φ }8,1 ď }dφ}n8,1. Therefore, we obtain from (8.8)

that

c˚
ď2n´1ptq ď

2n´1
ÿ

k“0

}vkptq}8 ď 1 `

2n´1
ÿ

k“1

tk}dpkq
φ }8,1 ď

pt}dφ}8,1q2n ´ 1

t}dφ}8,1 ´ 1
,

where the final upper bound has to be interpreted as 2n if t}dφ}8,1 “ 1. On the other hand, we obtain
from the inequalities (8.7), (8.2) and the Cauchy–Schwarz inequality,

}v2nptq}8,8 ď t2n}dr2ns
φ }8,8 ď t2n ess sup

p,qPM

ż

drns
φ pp, rqdrns

φ pr, qqQpdrq ď t2n}drns
φ }28,2.

Hence

∆2nptq ď
pt}dφ}8,1q2n ´ 1

t}dφ}8,1 ´ 1
` t2n}dr2ns

φ }8,8 ď
pt}dφ}8,1q2n ´ 1

t}dφ}8,1 ´ 1
` t2n}drns

φ }28,2. (8.10)

Finally, we are ready to state our main result on the strong sharpness of the phase transition, which
is a significant generalization of the main result from [40] and some of the results from [4]. The main
condition under which we can prove the strong sharpness is that there exists n P N satisfying

}dφ}8,1 ` }drns
φ }8,8 ă 8. (8.11)

Theorem 8.2. Assume that }dφ}1,1 ą 0. We have the following:

(i) tT ě }dφ}
´1
8,1.

(ii) For t ă tT there exists δ1 :“ δ1ptq such that ess sup
pPM

Eteδ1|V p0,pq| ă 8.

(iii) If

ess sup
pPM

ż

}x}ąu
φpx, p, qq dxQpdqq

decays exponentially fast as u Ñ 8, then for t ă tT there exists δ2 :“ δ2ptq such that

ess sup
pPM

Eteδ2DpV p0,pqq ă 8.

(iv) Suppose n P N satisfies (8.11). Then tT “ tc P p0,8q and c̄tc “ Etc
ş

|V p0,pq|Qpdpq “ 8.

(v) Suppose n P N satisfies (8.11). Then

}cptq}r ě
tc

∆nptqptc ´ tq
,

for t ă tc and for all r P r1,8s.
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(vi) Suppose that n P N satisfies (8.11) and let δ ą 0. Then

}θptq}r ě

ˆ

θ̄ptcq

δ
`

1tθ̄ptcq “ 0u

2t∆nptq

˙

pt´ tcq,

for all t P rtc, tc ` δs and r P r1,8s.

Proof. Assertion (i) follows from Lemma 6.1, (ii) follows from Theorem 6.10, (iii) follows from Theorem
7.11. Other claims will be proven later on in this section. More precisely, (iv) follows from Proposition

8.15, Corollary 8.23 and the definition of t
p1q

T “ tc, (v) follows from Proposition 8.16 and (vi) follows from
Theorem 8.22.

Remark 8.3. For n “ 1 the condition (8.11) boils down to }dφ}8,8 ă 8. This is the main assumption
made in [4].

Remark 8.4. Let k P N. By (8.10) the condition

}dφ}8,1 ` }drks
φ }8,2 ă 8 (8.12)

is sufficient for (8.11) with n “ 2k.

Remark 8.5. Note that if ϕ˚
t puq has a heavy tail in u (thicker than exponential), then the diameter of

the cluster of an arbitrary vertex has a heavy tail distribution (thicker than ϕ˚
t puq), which can be shown

by Proposition 7.5.

8.1 Sufficient condition for non-triviality of the phase transition

We start with the following simple observation.

Proposition 8.6. We have that t
p1q

T ě }dφ}
´1
2,2.

Proof. The claim is trivial for }dφ}2,2 P t0,8u. Suppose that }dφ}2,2 P p0,8q. Let n P N. From the
Cauchy–Schwarz inequality we have

}dpnq
φ }21,2 “

ż
ˆ
ż

dpn´1q
φ pp, q1qdφpq1, qqQ2pdpp, q1qq

˙2

Qpdqq ď }dφ}22,2}dpn´1q
φ }21,2.

Therefore }d
pnq
φ }1,2 ď }dφ}n2,2. On the other hand, we obtain from (8.8) and Jensen’s inequality that

c̄nptq ď tn}dpnq
φ }1,1 ď tn}dpnq

φ }1,2, t ą 0.

Therefore,

c̄ptq “

8
ÿ

n“0

c̄nptq ď

8
ÿ

n“0

tn}dφ}n2,2,

which converges if t ă }dφ}
´1
2,2.

Remark 8.7. Consider the Gilbert graph from Example 4.3 and assume that Qt0u ă 1. It was proved in

[18] that t
p1q

T P p0,8q if and only if q2 :“
ş

r2dQpdrq ă 8. Note that q2 ă 8 is equivalent to }dφ}2,2 ą 0.

If q2 “ 8 then it was shown in [18] that cp0,pqptq “ 8 for all p ě 0 and t ą 0, so that tT “ t
p1q

T “ 0 in

this case. The authors of [15] introduce another critical intensity t̂ ď tc (called λ̂c on p. 3717). If q2 ă 8,
then Theorem 2 in this paper shows that EtλdpZ0q ă 8 for all t ă t̂, where Z0 denotes the union of all
balls Bpx, rq, px, rq P η, with 0 P Bpx, rq. Moreover, we then also have

EtηpZ0 ˆ r0,8qq ă 8, t ă t̂,

Later it was proved in [13] that tc “ t̂ provided that
ş

r5d´3Qpdrq ă 8.
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We continue with the following simple fact.

Proposition 8.8. Suppose A P BpMq satisfies QpAq ą 0. Assume that for some symmetric function
φ0 : Rd Ñ r0, 1s, such that

ş

φ0pxq dx P p0,8q, we have

φpx, p, qq ě φ0pxq, λd b Q2-a.e. px, p, qq P Rd ˆAˆA.

Then tc ă 8.

Proof. Let ξ1 be a RCM driven by ηRdˆA with a connection function φ0. It is easy to build a coupling
such that ξ1 Ă ξrRd ˆ As. By [37] we know that ξ1 percolates for large intensity. Therefore, tc ă 8 for ξ
as well.

Proposition 8.9. Assume that }dφ}1,1 P p0,8q, then tc ă 8.

Proof. Suppose that the mark space contains only two marks M “ tp1, p2u, and a mark cannot directly
connect with itself, i.e.

ş

φpx, pi, piq dx “ 0 for i P t1, 2u (otherwise we may refer to Proposition 8.8). In
this case, we can show tc ă 8 as in [4, Lemma 2.2], whose proof extends the approach from [37] to the
marked case. Note that non-triviality of }dφ}1,1 implies existence of ε ą 0, C P BpRdq and A,B P BpMq

with mintλdpCq,QpAq,QpBqu ą 0 such that

φpx, p, qq “ φp´x, q, pq ě φ0pxq, λd b Q2-a.e. px, p, qq P Rd ˆAˆB,

where φ0pxq :“ ε1tx P ˘Cu. We can again show tc ă 8 by an appropriate coupling (ξ1 Ă ξrRdˆpAYBqs)
with the connection function φ0pxq as in Proposition 8.8.

Remark 8.10. By definition, we have D˚
φ “ }dφ}8,1. Therefore, we obtain from Lemma 6.1 that

}dφ}8,1 ă 8 is equivalent to tT ą 0 and hence implies tc ą 0. On the other hand, }dφ}8,1 ă 8 implies
}dφ}1,1 ă 8. Hence, if 0 ă }dφ}8,1 ă 8 then Proposition 8.9 shows that tc ă 8 and hence also tT ă 8.
Altogether we see that 0 ă }dφ}8,1 ă 8 is necessary and sufficient for tT P p0,8q, and sufficient for
tc P p0,8q.

Remark 8.11. Notice that

}dφ}1,1 ď maxp}dφ}8,1, }dφ}2,2q ď }dφ}8,2 ď }dφ}8,8.

Therefore, by Remark 8.4 the condition }dφ}8,2 ă 8 is sufficient for (8.11) with n “ 2.

Example 8.12. Let ξ be a stationary marked RCM and suppose that R : M2 Ñ R` is a symmetric and
meassurable function such that }Rd}8,2 ă 8. Assume that

φpx, p, qq ď 1t|x| ď Rpp, qqu, λd b Q2-a.e. px, p, qq P Rd ˆ M2.

Then dφpp, qq ď κdR
dpp, qq for Q2-a.e. pp, qq P M2, where κd is the volume of a unit ball in Rd. Therefore,

ξ undergoes a strong sharp phase transition, since }dφ}8,2 ď κd}Rd}8,2 ă 8.
For example, let ξ be a min-reach RCM (see [5]) with M “ R` and Rpp, qq “ R0pminpp, qqq, where

R0 : R` Ñ R` is a non-decreasing function. Assume that the reach function R0 has a finite moment of
order 2d with respect to the mark distribution Q. Then

}Rd0}28,2 ď

ż

R2d
0 pqqQpdqq ă 8.

Hence ξ has a strong sharp phase transition. In the special case φpx, p, qq “ 1t|x| ď minpp, qqu, all the
randomness comes from the stationary marked Poisson process. The RCM ξ is then a random version of
the symmetric random disk graph; see [1]. It has a strong sharp phase transition if the radius distribution
Q has a finite moment of order 2d.
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Example 8.13. Let ε ą 0 and consider Example 4.4 with gpp, qq :“ pp _ qqε :“ maxpp, qqε. All that
follows also applies to gpp, qq :“ pp` qqε as well, while p` q ě p_ q. It is easy to see that }dφ}8,1 ă 8 if
and only if ε ă 1. Assume ε ă 1 and take n P N. We have

|dpnq
φ }28,2 ď m2n

ρ

ż 1

0

ˆ
ż 1

0
rp1pp1 _ p2q ¨ ¨ ¨ ppn´1 _ pnqs´ε dpn´1

˙2

dpn.

For ε ă 1{2 we obtain }dφ}8,2 ă 8 from a direct calculation. For ε P r1{2, 1q, it is also not difficult to

show that }d
pnq
φ }8,2 ă 8 if ε P r1 ´ 1

2pn´1q
, 1 ´ 1

2nq for some n ě 2. Therefore }d
p2q
φ }8,2 ă 8 for ε “ 1{2

while for ε ą 1{2 we have }d
pnq
φ }8,2 ă 8, where n “ rp2 ´ 2εq´1s. Altogether we obtain for each ε P p0, 1q

that our condition (8.12) holds. Hence, we have a strong sharp phase transition at tc “ tT .
We note in passing that the condition }dφ}2,2 ă 8 is also equivalent with ε ă 1, while condition

}dφ}1,1 ă 8 is equivalent with ε ă 2.

Remark 8.14. In the case ε ă 1, the functions from Example 8.13 are light-tailed versions of the max-
kernel and the sum kernel studied, e.g. in [17]. There, the authors focus on the case ε P p1, 2q, which
leads to a power law for the degree distribution. For our version, this distribution has finite exponential
moments of all orders for ε ă 1 and finite exponential moments of some orders for ε “ 1. Another example
is gpp, qq “ pp^qq´δpp_qqε for given δ, ε ą 0. Then }dφ}8,1 ă 8 if and only if ε ă 1`δ. In this case, g is a
light-tailed version of the preferential attachment kernel; see [17]. Note that gpp, qq ě pp_qqε´δ. Therefore,

just as in Example 8.13, under the condition ε ă 1 ` δ, we have }d
pnq
φ }8,2 ă 8 for n “ rp2 ´ 2pε´ δqq´1s.

Another example is gpp, qq “ |p ´ q|ε for some given ε ą 0. Then }dφ}8,1 ă 8 if and only if ε ă 1. If

ε ă 1 then we have }d
pnq
φ }8,2 ă 8 for n “ rp2´ 2εq´1s, just as in Example 8.13. We believe that for most

natural examples, the condition }dφ}8,1 (necessary for strong sharpness) implies }d
pnq
φ }8,2 ă 8 for some

finite n P N. The min kernel and the product kernel from [17] do not satisfy }dφ}8,1 ă 8.

8.2 Susceptibility mean-field bound

The following Proposition is a refinement of [4, Lemma 2.3] and [10, Proposition 2.1].

Proposition 8.15. Suppose that n P N satisfies (8.11). Then tT “ t
prq

T for all r P r1,8s.

Proof. We exclude the trivial case }dφ}8,1 “ 0, since then tT “ t
prq

T “ 8. Assume that }dφ}8,1 ą 0. We

only need to show that tT “ t
p8q

T ě t
p1q

T . By Corollary 5.11 we have

c˚ptq ď c˚
ďn´1ptq ` ess sup

pPM
Et

ż

Et
“

|V px,qqpξrnsq|
ˇ

ˇ C
p0,pq

ďn

‰

V p0,pq
n pdpx, qqq.

By the definition of ξrns and stationarity, the conditional expectation in the above integral equals cp0,qqptq.
Therefore, we obtain from the definition (8.6) of density vp,qn ptq that

c˚ptq ď c˚
ďn´1ptq ` ess sup

pPM

ż

cp0,qqptqvp,qn ptqQpdqq.

It follows that c˚ptq ď c˚
ďn´1ptq ` c̄ptq}vnptq}8,8 and since c̄ptq ě 1 we obtain

c˚ptq ď ∆nptqc̄ptq. (8.13)

By assumption (8.11) and Lemma 8.1 we have ∆nptq ă 8, so the asserted inequality tT ě t
p1q

T follows.

Proposition 8.16 (Susceptibility mean-field bound). Suppose n P N satisfies (8.11). Then

}cptq}r ě
tT

∆nptqptT ´ tq
(8.14)

for t ă tT and for all r P r1,8s.
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Proof. To prove this result, we need to recall some of the notation from [4]. Define

Ttpp, qq “

ż

Pt
`

p0, pq Ø px, qq in ξp0,pq,px,qq
˘

dx

and let the integral operator Tt act as pTtfqppq “
ş

Ttpp, qqfpqqQpdqq, for every square-integrable function
f on M (with respect to the probability measure Q). Let to “ inftt ą 0 : }Tt}op “ 8u, where, as usual,
} ¨ }op refers to the operator norm for a linear operator on a Banach space.

By [4, Lemma 2.3] (which applies without Assumption D in that paper) and Proposition 8.15 we
have to “ tT . From [10, Lemma 3.2], we know }Tt}op ď }Tt}8,1 (this is proven by Schur’s test). Since
cp0,pqptq “ 1 ` t

ş

Ttpp, qqQpdqq we have c˚ptq “ 1 ` t}Tt}8,1. By [4, Theorem 2.5] (which again does
not require Assumption D) we have }Tt}op ě pt0 ´ tq´1 for t P p0, t0q. Hence }Tt}8,1 ě ptT ´ tq´1 and
c˚ptq ě tT ptT ´ tq´1 for t P p0, tT q. For r “ 1, the asserted result now follows from the inequality (8.13).
The general case r ě 1 follows from Hölder’s inequality.

8.3 Strong sharpness of the phase transition

Analogously to [4], we introduce a continuous and mark-dependent analogy of the magnetization originally
introduced by Aizenman and Barsky [2]. Let γ P p0, 1q be a parameter with which we enrich the marked
RCM by adding to each vertex a uniform p0, 1q (Lebesgue) label (independent of everything else), and
let Pt,γ denote the resulting probability measure. A vertex x P η is called a ghost vertex if its label is at
most γ, and we write x P G. Similarly, we write x Ø G if x is connected to a ghost vertex. We define
magnetization as follows

Mpt, γ, pq :“ Pt,γpp0, pq Ø G in ξp0,pqq. (8.15)

In accordance with our previous notation, we use the LrpQq-norms for r P r1,8s to define

ĎMpt, γq :“ }Mpt, γ, ¨q}1, M˚pt, γq :“ }Mpt, γ, ¨q}8. (8.16)

Recall the definition of ξQ0 and CQ0 in Subsection 4.2. We assume that Q0 is also independent of
the labels. Note that ĎMpt, γq “ Pt,γpp0, Q0q Ø G in ξQ0q. We will also need the following functions. For
t P R`, we define

c̄f ptq :“ Et|CQ0 |1t|CQ0 | ă 8u “
ÿ

nPN
nPtp|CQ0 | “ nq, (8.17)

and for γ P p0, 1q we also define the “ghost-free” mean size of the cluster of a typical vertex

c̄pt, γq “ Et,γ |CQ0 |1tCQ0 X G “ Hu. (8.18)

It is easy to relate the above function to the mean size of the finite cluster of a typical vertex and the
percolation probability θ̄ptq “ Pt,γ

`ˇ

ˇCQ0
ˇ

ˇ “ 8
˘

.

Lemma 8.17. Let t P R`. Then

lim
γÑ0

ĎMpt, γq “ θ̄ptq, lim
γÑ0

c̄pt, γq “ c̄f ptq.

Proof. The proof is direct and follows the same lines as in [4]. For γ P p0, 1q we have

ĎMpt, γq “ 1 ´ Pt,γpp0, Q0q Ü G in ξQ0q “ 1 ´
ÿ

nPN
Pt,γpCQ0 X G “ H, |CQ0 | “ nq

“ 1 ´
ÿ

nPN
p1 ´ γqnPtp|CQ0 | “ nq “ 1 ´ Etp1 ´ γq|CQ0 |. (8.19)

27



Letting γ Ñ 0, we obtain the first result from monotone convergence. It is also easy to see that the
function γ ÞÑ ĎMpt, γq is analytic on p0, 1q for all t P R`.

For γ ą 0 we obtain from our independence assumption that |CQ0 | ă 8 a.s. on the event tCQ0 X G “

Hu. We then have

c̄pt, γq “
ÿ

nPN
nPt,γp|CQ0 | “ n,CQ0 X G “ Hq

“
ÿ

nPN
np1 ´ γqnPtp|CQ0 | “ nq. (8.20)

As γ Ñ 0, we obtain the second result from monotone convergence.

We will also need the following lemma on differential inequalities for the magnetization.

Lemma 8.18 (Aizenman-Barsky differential inequalities on the magnetization). Let γ P p0, 1q and t ą 0
and assume that }dφ}8,1 ă 8. Then we have

(i) BĎMpt,γq

Bt ď p1 ´ γq}dφ}8,1M
˚pt, γq

BĎMpt,γq

Bγ .

(ii) ĎMpt, γq ď γ BĎMpt,γq

Bγ ` }Mpt, γq}22 ` tM˚pt, γq
BĎMpt,γq

Bt .

Proof. The second inequality follows from the Leibniz differentiation rule and [4, Lemma 3.8]. The first
inequality (with 1{t instead of }dφ}8,1) is asserted in the same lemma. However, one of the inequalities in
the proof does not seem to be correct. Therefore, we present here an alternative argument. We combine
the Margulis–Russo formula in infinite volume from [6, Theorem 10.8] with the Leibniz differentiation
rule to obtain from (8.19) that

BĎMpt, γq

Bt
“ Et

ż

pp1 ´ γq|CQ0 | ´ p1 ´ γq|CQ0 pξp0,Q0q,px,pqq|q1tpx, pq P CQ0pξp0,Q0q,px,pqquλpdpx, pqq

“ Et
ż

p1 ´ γq|CQ0 |p1 ´ p1 ´ γq|Cpx,pqpξp0,Q0q,px,pq´CQ0 q|q1tpx, pq P CQ0pξp0,Q0q,px,pqquλpdpx, pqq,

where ξp0,Q0q,px,pq ´ CQ0 is the random graph arising from ξp0,Q0q,px,pq by removing all vertices from CQ0

along with emanating edges. Fix px, pq P RdˆM for the moment. The conditional distribution of ξQ0,px,pq

given CQ0 is that of a random graph, which can be constructed in two steps as follows. Take first a
RCM (with connection function φ) based on V p0,Q0qpξp0,Q0qq ` δpx,pq ` η0, where η0 is a Poisson process

with intensity measure KtλpCQ0q. Then remove all edges between points of V p0,Q0qpξp0,Q0qq and add
instead the original edges of CQ0 . This distributional identity can be proved similarly to [21, Lemma
3.3]. In particular, the event tpx, pq P CQ0pξp0,Q0q,px,pqqu (which means that there is a direct connection
between px, pq and a vertex from CQ0 in ξp0,Q0q,px,pq) and the random variable |Cpx,pqpξp0,Q0q,px,pq ´CQ0q|

are conditionally independent. Therefore,

BĎMpt, γq

Bt
“ Et

ż

p1 ´ γq|CQ0 |φppx, pq, CQ0qEt
“

1 ´ p1 ´ γq|Cpx,pqpξp0,Q0q,px,pq´CQ0 q| | CQ0
‰

λpdpx, pqq.

Furthermore, a stochastic monotonicity argument (see Proposition 5.4) shows that, given CQ0 , the random
variable |CQ0pξp0,Q0q,px,pq ´ CQ0q| is stochastically dominated by an independent random variable with
the distribution of |Cpx,pq|. Therefore, the above can be bounded by

Et
ż

p1 ´ γq|CQ0 |φppx, pq, CQ0qMpt, γ, pqλpdpx, pqq ď M˚pt, γqEtp1 ´ γq|CQ0 |φλpCQ0q

ď M˚pt, γq}dφ}8,1Et|CQ0 |p1 ´ γq|CQ0 |,

where we have used the Bernoulli inequality to bound φλpCQ0q. This completes the proof.
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Lemma 8.19. Let t P R`, n P N and γ P p0, 1q. Then

M˚pt, γq ď ∆nptqĎMpt, γq. (8.21)

Proof. If ∆nptq “ 8 or }dφ}8,1 “ 0, then inequality (8.21) is trivial. Therefore, we can assume that
∆nptq ă 8 and }dφ}8,1 ą 0. Fix p P M. We have

Mpt, γ, pq “ Pt,γpp0, pq Ø G in ξp0,pqq “ Pt,γ
ˆ

ď

kě0

tC
p0,pq

k X G ‰ Hu

˙

ď Pt,γ
´

C
p0,pq

ďn´1 X G ‰ H

¯

` Pt,γ
´

C
p0,pq

ěn X G ‰ H

¯

“ 1 ´ Etp1 ´ γq
|C

p0,pq

ďn´1|
` Pt,γ

´

C
p0,pq

ěn X G ‰ H

¯

ď γc
p0,pq

ďn´1ptq ` Et,γ
ż

1
␣

px, qq Ø G in C
p0,pq

ěn

(

Cp0,pq
n pdpx, qqq,

where we have used the Bernoulli inequality for the last line. To treat the above second term I2, say, we

let D
p0,pq

ďn denote the graph C
p0,pq

ďn , where all points (vertices) are marked by their labels, except those of

C
p0,pq
n . Then

I2 “ Et,γ
ż

P
`

px, qq Ø G in C
p0,pq

ěn

ˇ

ˇ D
p0,pq

ďn

˘

Cp0,pq
n pdpx, qqq.

By the spatial Markov property (in fact, we need the more refined [6, Theorem 7.1]) and stochastic mono-
tonicity (as in Corollary 5.11) the conditional probability occurring above can be bounded by Mpt, γ, pq.
Therefore,

I2 ď Et
ż

Mpt, γ, qqCp0,pq
n pdpx, qqq “

ż

Mpt, γ, qqvp,qn ptqQpdqq ď ĎMpt, γq}vnptq}8,8,

where the equality comes directly from the definition of the densities vp,qn ptq. Since γ ď ĎMpt, γq we obtain
the assertion.

Lemma 8.20. Let t P R`, n P N, γ P p0, 1q and assume that c̄f ptq “ 8. Then

ĎMpt, γq ě

c

γ

∆nptq ` t}dφ}8,1∆2
nptq

ě

c

γ

1 ` t}dφ}8,1

1

∆nptq
. (8.22)

Proof. We proceed similarly to the proof of [4, Corollary 3.11]. If ∆nptq “ 8, then the inequality
(8.22) is trivial. Assume that ∆nptq ă 8 and }dφ}8,1 ą 0. Then we can use the preceding lemmas.
Inserting the first inequality of Lemma 8.18 into the second, and using the simple observation }Mpt, γq}22 ď

M˚pt, γqĎMpt, γq we obtain

ĎMpt, γq ď γ
BĎMpt, γq

Bγ
`M˚pt, γqĎMpt, γq ` t}dφ}8,1p1 ´ γqpM˚pt, γqq2

BĎMpt, γq

Bγ
.

Define r∆nptq :“ t}dφ}8,1∆
2
nptq. Then by Lemma 8.19 we get

ĎMpt, γq ď γ
BĎMpt, γq

Bγ
` ∆nptqĎMpt, γq2 ` p1 ´ γqr∆nptqĎMpt, γq2

BĎMpt, γq

Bγ
. (8.23)

In the remainder of the proof, we fix t and drop this argument from our notation. By (8.19) the function
M (given by γ ÞÑ Mpγq :“ ĎMpt, γq) is strictly increasing and therefore has a differentiable inverse M´1.
Then we can rewrite (8.23) for all x in the range of M as

x ď
M´1pxq

pM´1q1pxq
` ∆nx

2 ` p1 ´M´1pxqq
r∆nx

2

pM´1q1pxq
. (8.24)
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We have d
dxpx´1M´1pxqq “ x´1pM´1q1pxq´x´2M´1pxq. Multiplying (8.24) by x´2pM´1q1pxq we therefore

obtain

d

dx

`

x´1M´1pxq
˘

ď ∆npM´1q1pxq ` p1 ´M´1pxqqr∆n ď ∆npM´1q1pxq ` r∆n.

We wish to integrate this inequality on r0, ys for some y in the range of M . To do so, we note that
M´1p0q “ 0 and

lim
xÑ0

M´1pxq

x
“ pM´1q1p0q “

1

M 1p0q
“

1

c̄f ptq
“ 0,

where the penultimate identity follows from (8.19) and the final one from our assumption cf ptq “ 8.
Therefore, we obtain

y´1M´1pyq ď ∆nM
´1pyq ` r∆ny,

that is γ{ĎMpt, γq ď ∆nptqγ ` r∆n
ĎMpt, γq for each γ ą 0. Since γ ď ĎMpt, γq, the first inequality in (8.22)

follows. The second is then a consequence of ∆nptq ě 1, which is true by definition.

Proposition 8.21. Let t ą t
p1q

T and n P N. If θ̄pt
p1q

T q “ 0, then

θ̄ptq ě
t´ t

p1q

T

2t∆nptq
. (8.25)

Proof. Note that if ∆nptq “ 8, then the inequality (8.25) is trivial. Suppose that ∆nptq ă 8 and

}dφ}8,1 ą 0. Then we have by Proposition 8.15 that tT “ t
p1q

T “ t
p8q

T . Let t1 ą tT and t P ptT , t
1s. Multi-

plying the second inequality of Lemma 8.18 by γ´1
ĎMpt, γq´1 and using simple observation }Mpt, γq}22 ď

M˚pt, γqĎMpt, γq gives

1

γ
ď

1
ĎMpt, γq

BĎMpt, γq

Bγ
`
M˚pt, γq

γ
`
tM˚pt, γq

γĎMpt, γq

BĎMpt, γq

Bt
.

By Lemma 8.19 we get

1

γ
ď

1
ĎMpt, γq

BĎMpt, γq

Bγ
`

∆nptqĎMpt, γq

γ
`
t∆nptq

γ

BĎMpt, γq

Bt

ď
1

ĎMpt, γq

BĎMpt, γq

Bγ
`

∆npt1q

γ

ˆ

ĎMpt, γq ` t
BĎMpt, γq

Bt

˙

“
B logpĎMpt, γqq

Bγ
`

∆npt1q

γ

B

Bt

`

tĎMpt, γq
˘

.

We now integrate the above inequality over pt, γq P rtT , t
1s ˆ rγ1, γ2s, where 0 ă γ1 ď γ2 ă 1. Since all the

integrands are non-negative, we can use Fubini’s theorem to exchange the order of the integrals, and we
will also use the properties of the function ĎMpt, γq, i.e. non-negativity and increasing in t and γ. Therefore

pt1 ´ tT q logpγ2{γ1q ď

ż t1

tT

logpĎMpt, γ2q{ĎMpt, γ1qq dt` ∆npt1q

ż γ2

γ1

1

γ

`

t1ĎMpt1, γq ´ tT ĎMptT , γq
˘

dγ

ď pt1 ´ tT q logpĎMpt1, γ2q{ĎMptT , γ1qq ` ∆npt1qt1ĎMpt1, γ2q logpγ2{γ1q.

Dividing by logpγ2{γ1q we get

t1 ´ tT ď pt1 ´ tT q

ˆ

logpĎMpt1, γ2qq

logpγ2q ´ logpγ1q
´

logpĎMptT , γ1qq

logpγ2q ´ logpγ1q

˙

` ∆npt1qt1ĎMpt1, γ2q. (8.26)
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Since θ̄ptT q “ 0, the cluster of a typical vertex is finite almost surely. Therefore c̄f ptT q “ EtT |CQ0 |.
Moreover, letting t Ò tT in (8.14), we obtain c̄ptT q “ 8. By Lemma 8.20 we have for 0 ă γ1 ă γ2 that

´
logpĎMptT , γ1qq

logpγ2q ´ logpγ1q
ď

logp
a

1 ` tT }dφ}8,1∆nptT qq ´ 1
2 logpγ1q

logpγ2q ´ logpγ1q
.

As γ1 Ñ 0, the above right-hand side tends to 1
2 . Hence it follows from (8.26) that

ĎMpt1, γ2q ě
t1 ´ tT

2t1∆npt1q
.

Letting γ2 Ñ 0 and using Lemma 8.17 concludes the proof.

Theorem 8.22 (Percolation mean-field bound). Let δ ą 0. Suppose that n P N satisfies (8.11). Then

}θptq}r ě

ˆ

θ̄ptT q

δ
`

1tθ̄ptT q “ 0u

2t∆nptq

˙

pt´ tT q, (8.27)

for all t P rtT , tT ` δs and r P r1,8s.

Proof. By Hölder’s inequality, we get }θptq}r ě }θptq}1 ” θ̄ptq for all r P r1,8s. If θ̄ptT q ą 0, then the
result follows from the monotonicity of θ̄ptq. Otherwise, the result follows from Proposition 8.21.

Corollary 8.23 (Sharpness of phase transition). Under the assumptions of Proposition 8.15, we have
tc “ tT .

Proof. As already noticed in Section 4 we always have tT ď tc. Let t ą tT . By Theorem 8.22 there exists
A P BpMq with QpAq ą 0 and θpptq ą 0 for all p P A. Therefore t ě tc and hence tT ě tc.

Remark 8.24. Let us consider here the hyperbolic counterpart of the stationary marked RCM; see
[9]. In this case X :“ Hd ˆ M, where Hd is the d-dimensional hyperbolic space (with d ě 2) as in
Example 6.11 and M is as before. Assume that λ “ Hd b Q, where Hd denotes the Haar measure on Rd
and Q is a probability measure on M, also as before. Assume that the connection function is given by
φppx, pq, py, qqq “ φ̃pdHdpx, yq, p, qq for some measurable φ̃ : R`ˆM2 Ñ r0, 1s such that φ̃px, ¨q is symmetric
for all x P Hd. Fix a point o P Hd. Since the space Hd is homogeneous, we can argue as in Remark 4.1 to
see that

tc “ suptt ě 0 : Ptp|Cpo,pq| ă 8q “ 0 for Q-a.e. pu, tT “ sup
␣

t ě 0 : ess sup
pPM

Et|Cpo,pq| ă 8
(

.

Define dφ̃pp, qq “
ş

φ̃pdHdpx, yq, p, qqHdpdxq for pp, qq P M2. Most of the results of this section remain true
in this setting, provided our assumptions are suitably modified (replacement of dφ by dφ̃). Indeed, the
geometry of the ambient space Rd does not enter most of our arguments. One exception is Proposition
8.9. However, we believe that, under the assumption }dφ̃}1,1 ă 8, the proof of [11, Proposition 1.1] can
be extended to the marked case, just as in the Euclidean marked case. We would then obtain that our
condition (8.11) (with hyperbolic dφ̃) implies the strong sharp phase transition at tT “ tc P p0,8q, just as
in the marked stationary Euclidean case. Thanks to [11, Proposition 1.1] the condition from Proposition
8.8 is sufficient for tc ă 8.
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[8] Deprez, P. and Wüthrich, M.V. (2015). Poisson heterogeneous random-connection model.
arXiv:1312.1948 7

[9] Dickson, M. (2025). Non-uniqueness phase in hyperbolic marked random connection models using
the spherical transform. Adv. Appl. Probab., 1–48. doi:10.1017/apr.2025.10033 31

[10] Dickson, M. and Heydenreich, M. (2022). The triangle condition for the marked random connection
model. arXiv:2210.07727. 1, 6, 26, 27

[11] Dickson, M. and Heydenreich, M. (2025). Mean-field behaviour of the random connection model on
hyperbolic space. arXiv:2505.09025 18, 31

[12] Duminil-Copin, H. and Tassion., V. (2016). A new proof of the sharpness of the phase transition for
Bernoulli percolation on Zd . Enseign. Math. 62, 199–206. 3

[13] Duminil–Copin, H., Raoufi, A. and Tassion, V. (2020). Subcritical phase of d-dimensional Poisson-
Boolean percolation and its vacant set. Annales Henri Lebesgue 3, 677–700. 3, 24
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[24] Küpper, N. and Mathew D. Penrose, M.D. Largest component and sharpness in subcritical continuum
percolation. arXiv:2407.10715 2, 3

[25] Last, G., Nestmann, F. and Schulte, M. (2021). The random connection model and functions of edge-
marked Poisson processes: Second order properties and normal approximation. Ann. Appl. Probab.
31, 128–168. 1

[26] Last; G., Peccati, G. and Yogeshwaran, D. (2023). Phase transitions and noise sensitivity on the
Poisson space via stopping sets and decision trees. Random Structures & Algorithms 63, 457–511 3

[27] Last, G. and Penrose, M. (2018). Lectures on the Poisson Process. Cambridge University Press,
Cambridge. 1, 3, 4, 5, 7

[28] Last, G. and Ziesche S. (2017). On the Ornstein–Zernike equation for stationary cluster processes
and the random connection model. Adv. Appl. Probab. 49 (4), 1260-1287. 1

[29] Meester, R. (1995). Equality of critical densities in continuum percolation. J. Appl. Probab. 32 (1),
90–104. 2

[30] Meester, R. and Roy, R. (1996). Continuum Percolation. Cambridge University Press, Cambridge. 1

[31] Men’shikov, M.V. (1985). Estimates of percolation thresholds for lattices in Rn. Soviet Math. Dokl.
32 (2). 15

[32] Men’shikov. M.V. (1986). Coincidence of critical-points in the percolation problems. Dokl. Akad.
Nauk SSSR 288 (6), 1308–1311. 3, 15

[33] Men’shikov, M.V. and Zuev S.A. (1987). Estimation Algorithms of Infinite Graph Percolation
Threshold. Lect. Notes in Computer Sci. 278, 310–313. 15

[34] Men’shikov, M.V., Molchanov, S.A. and Sidorenko, A.F. (1988). Percolation theory and some appli-
cations. J. Math. Sci. 42, 1766–1810. 15

[35] Nakayama, M.K., Shahabuddin, P., and Sigman, K. (2004). On Finite Exponential Moments for
Branching Processes and Busy Periods for Queues. J. of App. Prob. 41, 273–280. 15, 18

[36] Pabst, D. (2025). Percolation in the marked stationary Random Connection Model for higher-
dimensional simplicial complexes. arXiv:2506.15038 3

[37] Penrose, M.D. (1991). On a continuum percolation model. Adv. Appl. Probab. 23 (3), 536–556. 1, 7,
25

33



[38] Penrose, M.D. (2016). Connectivity of soft random geometric graphs. Ann. Appl. Probab. 26 (2),
986–1028. 1

[39] Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Probability and Its Applica-
tions. Springer, Berlin. 1

[40] Ziesche, S. (2018). Sharpness of the phase transition and lower bounds for the critical intensity in
continuum percolation on Rd. Ann. Inst. H. Poincaré Probab. Statist. 54 (2), 866–878. 3, 23

[41] Zuev, S.A. and Sidorenko, A.F. (1985). Continuous Models of Percolation Theory.II, Theoretical and
Mathematical Physics 62, 171–177. 15

34


	Introduction
	Formal definition of the RCM
	The Mecke equation
	Percolation and critical intensities
	Notation and terminology in the general case
	The stationary marked RCM

	A spatial Markov property and stochastic ordering
	A criterion for subcriticality and exponential moments
	Diameter distribution
	The stationary marked RCM
	Sufficient condition for non-triviality of the phase transition
	Susceptibility mean-field bound
	Strong sharpness of the phase transition


