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On strong sharp phase transition in the random connection model
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Abstract

We consider a random connection model (RCM) £ driven by a Poisson process 7. We derive exponential
moment bounds for an arbitrary cluster, provided that the intensity ¢ of 1 is below a certain critical
intensity ¢7. The associated subcritical regime is characterized by a finite mean cluster size, uniformly
in space. Under an exponential decay assumption on the connection function, we also show that the
cluster diameters are exponentially small as well. In the important stationary marked case and under
a uniform moment bound on the connection function, we show that ¢t7 coincides with t., the largest ¢
for which & does not percolate. In this case, we also derive some percolation mean field bounds. These
findings generalize some of the main results in [4]. Even in the classical unmarked case, our results are
more general than what has been previously known. Our proofs are partially based on some stochastic
monotonicity properties, which might be of interest in their own right.
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lower bound, stochastic monotonicity.
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1 Introduction

Let (X, d) be a complete separable metric space, denote its Borel-o-field by X', and let A be a locally finite
and diffuse measure on X. Let ¢t € R} :=[0,00) be an intensity parameter and let n be a Poisson process
on X with intensity measure ¢\, defined over a probability space (€2, F,P). We often write P; instead of
P and E; for the associated expectation operator.

Let ¢: X2 — [0, 1] be a measurable and symmetric function satisfying

Dy (z) := fgo(x,y) Ady) <o, Aae zeX. (1.1)

We refer to ¢ as connection function. The random connection model (RCM) is the random graph £ whose
vertices are the points of 1 and where a pair of distinct points z,y € n forms an edge with probability
¢(x,y), independently for different pairs. In an Euclidean setting, the RCM was introduced in [37] (see
[30] for a textbook treatment), while the general Poisson version was studied in [25]. The RCM is a
fundamental and versatile example of a spatial random graph. Of particular interest is the stationary
marked case, where ¢ is translation invariant in the spatial coordinate. Special cases are the Boolean model
(see [27, 39]) with general compact grains and the so-called weighted RCM; see [3, 4, 10, 16, 17, 21, 28, 38].

Following common terminology of percolation theory, we refer to a component of £ as cluster. The RCM
& percolates, if it has an infinite cluster, that is a component with infinitely many vertices. Generalizing
many earlier results, it was shown in [6] that the stationary marked RCM can have at most one infinite
cluster, provided a natural irreducibility assumption holds. Take v € X and add independent connections
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between v and the points from 7. Let C" denote the component of v in this augmentation of £&. The
critical intensity t. is defined by

te :=sup{t = 0: P:(|C"| < o0) = 0 for M-a.e. v}, (1.2)
where |C?| stands for the number of vertices of C”. A second critical intensity is defined by

tr := sup {t > 0:esssupEy|CY| < oo}7 (1.3)
veX

where the essential supremum refers to A. It is clear that ¢t < t.. By a sharp phase transition it is
usually understood that for ¢t < t. the clusters are not only finite but have a finite first moment in some
suitable sense. If t < tp, we establish here uniform exponential moment properties for the size and,
under an additional necessary assumption on the connection function, also for the diameter of a cluster.
Therefore, we refer to the identity t. = tp as strong sharp phase transition. If £ is a stationary marked
RCM, then we prove a strong sharp phase transition under an integrability assumption on ¢, which is
only slightly stronger than the one required for t7 > 0. Under this assumption we also show that ¢. is
the smallest intensity where the mean size of a typical cluster is infinite. This identity might serve as a
definition of a sharp phase transition for the stationary marked RCM. We also provide lower bounds for
two critical exponents. Our method of proving the strong sharpness of the phase transition will be based
on transferring some of the beautiful ideas from the seminal paper [2] in a way similar to [4].

In the following we shall present two of our main results in greater detail along with a discussion of
the relevant literature. We will show in Lemma 6.1 that ¢t7 > 0 if and only if

D7 := esssup Dy(v) < o0 (1.4)
veX

and that tp > (Df;)_l. The following result is the content of our Theorem 6.10.

Theorem 1.1. Fort <ty there exists 61 = 6,(t) such that esssup Eqe’1¢"| < o0,
veX

We would like to emphasize that Theorem 1.1 applies as soon as tp > 0, without making any further
assumptions on the state space or the connection function. An important special case of a RCM is the
stationary marked RCM. In that case 7 is a Poisson process on X := R¢ x M with intensity measure
tAq ® Q, where M is a complete separable metric space, Ay denotes Lebesgue measure on R% and Q is
a probability measure on M. The connection function ¢ is assumed to be translation invariant in the
sense of (4.2). In the unmarked case |M| = 1 it was proved in [29] that tp = t., provided that the
(in a sense) minimal integrability assumption {¢(0,2)dz < o is satisfied and assuming that (0, z) is
a non-increasing function of the Euclidean norm of z. It was shown in [24] that the cluster size has
an exponential tail, provided the connection function is supported by the unit ball. Afterwards, this
strong sharp phase transition was derived in [19] for an isotropic (and monotone) connection function
with possibly unbounded support. Even in this very special case of an (unmarked) stationary RCM,
Theorem 1.1 extends all these results without making any assumption other than the integrability of .
In the marked case, the situation is considerably more complicated. To state a second main result of our
paper, we define dy(p, q) := {©((0,p), (x,q)) dx for p,q € M. Our Theorem 8.2 (and Remark 8.11) shows
the following. To avoid trivialities, we assume that §d,(p,q) Q*(d(p,q)) > 0.

Theorem 1.2. Suppose that £ is a stationary marked random connection model and assume that

esssup [ d(p.0)? Qlda) < o, (1.5)
peM

where the essential supremum refers to Q. Then tr = t. € (0,0) and {E, |COP)| Q(dp) = 0.



Note that (1.5) is (slightly) stronger than (1.4), implicitly assumed in Theorem 1.1. Under the uniform
second moment assumption (1.5), Theorems 1.1 and 1.2 imply a strong sharp phase transition at t, = t7.
At first glance it may be surprising that (1.5) yields uniform exponential moment bounds for the cluster
sizes in the subcritical regime ¢ < ¢.. This phenomenon can be understood by observing that assumption
(1.4) guarantees that the degree distribution of the vertices has finite exponential moments of every order,
uniformly in space. Note that, in particular, the classical stationary RCM undergoes a strong sharp phase
transition, without any assumption other than integrability of the connection function. The same holds in
the marked case, provided Q is supported by a finite set. For the Boolean model with (deterministically)
bounded grains (covered by Theorems 1.1 and 1.2) it was proved in [40] that the size of a typical cluster is
exponentially small for ¢t < ¢.. This is a continuum analogue of classical results in [32] and [2]; see also [12]
for a new and elegant proof (that inspired [40] and [24]). Using a continuum version of the OSSS-inequality
the result from [40] was extended in [26] so as to cover the so-called k-percolation. Theorem 1.2 generalizes
[4, Corollary 1.10] by proving a sharp phase transition under a weaker integrability assumption on the
connectivity function and without assuming any kind of irreducibility. It also generalizes a strong sharp
phase transition result from [36], which assumes the connection function to have a bounded support
in space uniformly in the marks. Moreover, our results extend [5, Theorem 1.8] (uploaded after the
first arXiv-version of this paper) for a so-called min-reach RCM, by relaxing the exponential moment
assumption on their reach function to a finite moment of order 2d; see Example 8.12. Both [36] and [5]
are using the discrete OSSS-inequality.

Condition (1.5) fails for a spherical Boolean model with a radius distribution of unbounded support;
see Example 4.3. To get from (1.5) to weaker conditions for a sharp phase transition at ¢., remains a
challenging problem. In the case of the spherical Boolean model, an important step was made in [13],
treating an unbounded radius distribution with a finite d-th moment. In this case ¢, > 0 while t7 = 0 (see
also Example 4.3). Nevertheless, it is proved there in the subcritical regime that under the polynomial
(resp. exponential) decay behavior of the tail of the radius distribution, certain connection probabilities
show a similar behavior. Using an approach from [14, 15] it was shown in [7] that even for Pareto
distributed radii (with minimal moment assumption) the model undergoes such a subcritical sharpness.
Related results for the soft Boolean model with Pareto distributed weights (a special case of Example 4.4)
can be found in [20].

The paper is organized as follows. In Section 2 we give the formal definition of the RCM & and introduce
the notation used throughout the paper. Section 3 presents the RCM version of the multivariate Mecke
equation, while Section 4 introduces some basic notation and concepts of percolation theory. Section 5
presents a spatial Markov property (taken from [6]) and some results on stochastic ordering, which might
be of some independent interest. Section 6 provides a criterion for subcriticality and for exponential
moments of cluster sizes, while Section 7 deals with cluster diameters. In Section 8 we discuss the
stationary marked RCM, with Theorem 8.2 summarizing our main results. Proposition 8.16 presents a
mean field lower bound for mean cluster sizes in the subcritical case, while Theorem 8.22 provides such a
bound for percolation probabilities in the supercritical case.

2 Formal definition of the RCM

To define a RCM we follow [6]. Let N (N.4 ) denote the space of all simple locally finite (finite) counting
measures on X, equipped with the standard o-field, see e.g. [27]. A measure v € N is identified with its
support {z € X : v({z}) = 1} and describes the set of vertices of a (deterministic) graph. If v({z}) = 1 we
write z € v. Any v € N can be written as a finite or infinite sum v = §,, + 4, + --- of Dirac measures,
where the z; are pairwise distinct and do not accumulate in bounded sets. The space of (undirected)
graphs with vertices from X (and no loops) is described by the set G of all counting measures p on X x N
with the following properties. First, we assume that the measure V(u) := u(- x N) is locally finite and
simple, that is, an element of N. We write z € p if x € V(u) (that is u({x} x N) = 1). In this case, there



is a unique v, € N such that (z,1,) € u. We assume that = ¢ 1,. Finally, if z € V(u) and y € ¢, then
we assume that (y,1,) € p and x € ¢,. Also, G is equipped with the standard o-field. There is an edge
between z,y € V(u) if y € ¢, (and hence x € 9y). If ¢, = 0, then x is isolated.

We write |u| := u(X x N) for the cardinality of y € G and similarly for v € N. Hence |u| = |V ()|
For z,y € V() we write x ~ y (in p) if there is an edge between z and y and z < y (in p) if there is a
path in p leading from z to y. For A ¢ X we write z ~ A (in ) if there exists y € A n V(u) such that
x ~y. Let u,p’ € G. Then p is a subgraph of ' if V(u) < V(') (as measures) and for each (x,1)) € p
and (x,v’) € p’ we have ¢ < 1¢)'. Note that this is not the same as p < p'.

Let x be a simple point process on X, which is a random element of N. The reader should think of a
Poisson process possibly augmented by additional (deterministic) points. By [27, Proposition 6.2] there
exist random elements X7, Xo,... of X such that y = Z'ﬁil 0x,, where X,,, # X,, whenever m # n and
m,n < |x|. Let (Zmn)mnen be a double sequence of random elements uniformly distributed on [0, 1] such
that Z, , = Zpm for all m,n € N and such that Z,,,, m < n, are independent. Then the RCM (based
on ) is the point process

Ix|
5 = Z 5(Xm,‘l'm)’
m=1
where
x|
U, = Z {n # m, Zyn < o(Xm, Xn)}dx,,-
n=1

While the definition of £ depends on the ordering of the points of y, its distribution does not.

We now introduce some notation used throughout the paper. For u, 1/ € G, we often interpret p + p/
as the measure in G with the same support as p + /. A similar convention applies to v,/ € N. Let
ue€ G. For B e X we write u(B) := u(B x N). More generally, given a measurable function f: X - R
we write § f(z) u(dx) := § f(z) u(dz x N). In the same spirit, we write g(u) := g(V(p)), whenever g is
a mapping on IN. These (slightly abusing) conventions lighten the notation and should not cause any
confusion. For B € X we denote by u[B] € G the restriction of p to B, that is the graph with vertex
set V() n B which keeps only those edges from p with both end points from B. In the same way, we
use the notation u[v] for v € N. Similarly, for a measure v on X (for instance for v € N) we denote by
vp = v(B n ) the restriction of v to a set B € X. Assume now that u is a subgraph of p/. For n € Ny
let Cf(1') € G denote the restriction of p’ to those v € V(i) with d, (v, ) = n, where d,; denotes the
distance within the graph x/. Note that C}(y) is just the graph p. Slightly abusing our notation, we
write Cl (1/) = p and Vi'(i') = V(Ch(1')). For v ¢ V(i) we set C?(i') := 0, interpreted as an empty
graph (a graph without vertices). The cluster C*(u') of p in p’ is the graph p' restricted to

VEW) = Y Vi),
n=0

while C£, (1), n € Ny, is the graph ' restricted to V§'(¢/) + -+ + Vii'(i/). For later purposes, it will be

convenient to define C%_, (1) = C*, (1) := 0 as the zero measure. Throughout we write vV (=
Vi (W) and Vi'(i, ) := V' (W')(-), n € No, and similarly for V£, and V#. We also often refer to C* (1) as
the cluster of v in p’ for v e V().

Given an RCM based on a Poisson process 7 on X with diffuse intensity measure A\, we use the following
notation. For v € X and n € Ny we set

C":=C%(E"), VU:=VUE), Chi=Ch(€), Vi=V)(E"), Cgi=Cg(£), Vin:=V(E),

or CY, VY, CY \, Vi7y, CZ, y and V2, if we need to emphasize the dependence on A. Moreover, we write
| . .
Ve, = VE, — 6, and similarly for V*.



3 The Mecke equation

Let £ be a RCM based on a Poisson process 17 on X with diffuse intensity measure A. Our first crucial tool
is a version of the Mecke equation (see [27, Chapter 4]) for {. Given n € N and x,, := (x1,...,2,) € X"
we denote 0, 1= 0z, + -+ + 0y, and n*" := n + J,, (removing possible multiplicities) and let £*» denote
a RCM based on 5. It is useful to construct £*» in a specific way as follows. We connect x; with
the points in 7 using independent connection decisions which are independent of £&. We then proceed
inductively, finally connecting x,, to n + d5, ,. For a measurable function f: X" x G — [0, 0] the Mecke
equation for £ states that

E f F (@, €)™ (da) = Eff@n,swn) X*(dey), (3.1)

where integration with respect to the factorial measure 77(”) of n means summation over all n-tuples of
pairwise distinct points from 7).

For given v € X and x,, € X" we denote (v,x,) := (v,21,...,2,) € X", We sometimes use (3.1) in
the form

E J f(@n, €)™ (d2n) = E f f(@n, &%) X (daey,). (3.2)

The proofs of (3.1) and (3.2) can be found in [6].

4 Percolation and critical intensities

4.1 Notation and terminology in the general case

Let ¢ = 0 be an intensity parameter and let & be a RCM based on a Poisson process 1 on X with an
intensity measure tA, where A is a locally finite and diffuse measure on X. The RCM ¢ percolates if it
has an infinite cluster, a component with infinitely many vertices. We also say that the RCM (or t) is
subcritical if all clusters have only a finite number of points, that is,

P (VY] <o) =1, Xae veX

In accordance with (1.2) we define the critical intensity t. as the supremum of all ¢ € R4 such that above
holds. A standard coupling argument shows that & is subcritical for all ¢ < ¢..
Let ve X, t = 0 and n € Nyg. Mean generations and cluster sizes are denoted by

e (t) =BVl cn(t) = el V], (1) := By V7.

nls

It is clear that c{(t) = tD,(v) and

n—0o0

() = . ey (t) = lim %, (8).
n=0

For a measurable function L: X — R u {£00} we define the co-norm by | L| := esssup,ex |L(v)|, where
the essential supremum refers to A\. We abbreviate

DG = |Dglloo, (1) i=llen(®)on,  c<(t) := llesn(®)lon, () := lle(t)] oo (4.1)

The second critical intensity tp is defined as the supremum of all ¢ € Ry such that ¢*(¢) < co. It is clear
that t7 < t,.



4.2 The stationary marked RCM

In this subsection, we consider the important special case of a stationary RCM; see e.g. [4, 10, 6]. Let
M be a complete separable metric space (the mark space) equipped with a probability measure Q (the
mark distribution). Set X := R% x M be equipped with the product of the Borel o-field B(R?) on R? and
the Borel o-field on M. We assume that A = A\; ® Q, where Ay denotes the Lebesgue measure on R, If
(z,p) € X then we call x location of (x,p) and p the mark of z. Instead of N we consider the (smaller set)
N(X) of all counting measures y on X such that x(- x M) is locally finite (w.r.t. the Euclidean metric)
and simple. We can and will assume that the Poisson process 7 is a random element of N(X).
The symmetric connection function ¢: (R% x M)? — [0, 1] is assumed to satisfy

¢((z,p), (y,9)) = ¢((0,p), (y — =, q)). (4.2)

This allows us to write ¢(z,p,q) := ©((0,p), (x,q)), where 0 denotes the origin in R?. The RCM ¢ is

stationary in the sense that T,.& 4 ¢, x e R, where for € G, the measure T, is (shift of y by z) defined
by Tpp = §1{(y — z,q,v) € -} u(d(y, q,v)). It is also ergodic; see [6].

Remark 4.1. The argument in [6] can be extended to yield that T},&(*P) 4 £0P) for \y ® Q-a.e. (z,p) €

RY x M. Hence, if f: G — R is measurable and shift invariant, then f(£(®*?)) 4 F(EOP) for A\ ® Q-a.e.

(z,p) € R x M. Therefore, the definitions (1.2) and (1.3) of t. and tr can be simplified. For instance, we
have

te = sup{t = 0: P,(|C®P)| < o0) = 0 for Q-a.e. p}. (4.3)

The function D, (defined by (1.1)) takes the form

1%@w»=ﬂ¢mnm@wwx<ammwxm

while D is given by

ess sup Jf tp(?J,P, Q) dy @(dQ);

peM

where the essential supremum now refers to Q. Similar comments apply to other characteristics introduced
in Subsection 4.1. For instance, we have c*(t) = esssup,ey c0P)(t). We often write

amw=j$@@@@m kaw:f&@w@mm wr=f&@@@@» (4.4)

It is convenient to introduce a random element ()¢ of Ml which is independent of £. and has distribution
Q. Then we denote by C?0 the cluster of (0,Qp) in the RCM £90 arising from ¢ by adding independent
connections between (0, Qo) and the points from 7. This is the cluster of a typical vertex and we let V<0
denote its vertex set. Then we can write &(t) = E;|V 90| and similar for other quantities.

Define

07 (t) := Py (|COP)| = 0), t=>0, peM,

as the probability that the cluster of a vertex (0,p) € X has infinite size. In the following, we use the
L™ (Q)-norms to determine the size of functions. For each r € [1,+], we define the critical intensities

t) = inf {t = 0:6(t)|, > 0}, (4.5)
) = inf {t > 0: |le(t)], = o} (4.6)



It is clear that t((;r) is r-independent, since it only matters if 8(t) = 0 for Q-a.e. p € M or not. Therefore,
all the critical intensities tg) coincide with the first critical intensity t., which we defined for a general
RCM. Note that téf ) < t. for all r. Moreover, t(TOO) coincides with the second critical intensity t¢7, which
we have also defined for a general RCM. From Jensen’s inequality, it is clear that tg;: ) is non-increasing in
r. Therefore,

o<ty =t <ti? <t <tV <t 1< << (4.7)

Let
0lt) = 100 = [y Qeap), ¢ >0,

denote the percolation probability, that is, the probability that the cluster of a typical vertex is infinite.
Let Co be the set of all 4 € G such that p has an infinite cluster. It is easy to see that 6(¢) > 0 iff
Pi(§ € Cp) = 1. In fact, if t < t, then Py(§ € Cy) = 0 and if ¢ > ¢, then P4(§ € Cy) = 1. Under a natural
irreducibility assumption,  can have at most one infinite cluster; see [6].

Remark 4.2. In the unmarked case (|M| = 1) the connection function ¢ is just a function on R%. Under
the minimal assumption 0 < § (z) dz < o it was shown in [37] that . € (0, o).

The marked RCM is a very rich and flexible model of a spatial random graph. We refer to [4, 6, 17]
for many examples. For further reference, we provide just two of them here.

Example 4.3. Assume that M = Ry and ¢(z,p,q) = 1{|z| < p + q}, where |z| denotes the Euclidean
norm of 2 € R%. The RCM ¢ is known as the spherical Boolean model or as Gilbert graph with radius
distribution Q; see e.g. [27, Chapter 16] for more detail. We have that

D) = ra [ (r+5) Q). 7 >0, (4.8)

where kg stands for the volume of the unit ball. Therefore our basic assumption (1.1) is equivalent with
§79Q(dr) < co. This is the minimal assumption for having a reasonable model. Under the additional
assumption Q{0} < 1 it was proved in [14, 18] that ¢, € (0,00). On the other hand, if Q has unbounded
support, then D:; = o0 and tp = 0; see Lemma 6.1.

Example 4.4. Assume that M = (0, 1) equipped with Lebesgue measure Q. Assume that

o((z,p), (4, 0) = plg(p, 0|z — y|%),

for a profile function p: [0,00) — [0,1] and a kernel function g: (0,1) x (0,1) — [0,00). We assume that
m, = § p(|z|?) dz is positive and finite. This model was studied in [17] under the name weight-dependent
random connection model, for decreasing profile function and increasing kernel function. Then

(z,p,q) dzdg =m, | g(p,q)~" dg,
JJ J

and (1.1) holds if g(p,-)~! is integrable for each p € (0,1). This is the case in all examples studied in [17],
where it is also asserted that ¢, < oo. Sufficient conditions for . € (0,0) can also be found in [4, §].

5 A spatial Markov property and stochastic ordering

We consider a general RCM & based on a Poisson process 17 on X with diffuse intensity measure A. Given
€ N, we denote the RCM based on 1+ pu by £#. We first recall the spatial Markov property, as formulated
in [6].



Let v be a locally finite and diffuse measure on X. We often write I, for the distribution of a Poisson
process with intensity measure v. We set @ := 1 — ¢ and define for x e X, v e N

pr,z) =] [o(@y), w,2):=1-¢W1), @)= f@(%w) Adz). (5.1)

Yyev

We recall our general convention ¢(u,x) := ¢(V (@), x) and ¢y (1) := pA(V(n)) for p € G. Next we define
two kernels from N to X and from N x N to X (using the same notation K, for simplicity), by

Ky (p,dz) == p(p, x)v(dz), Ky(u, M/7dx) = @(Hvx)SO(M/,fU)V(de)- (5.2)

Proposition 5.1 will provide an interpretation of this kernel. Denoting by 0 the zero measure, we note
that

K,(0,dx) = v(dx), K,(0,4,dx) = oy z)v(dz), K,(u,0,dz)=0. (5.3)

We write K, (1) := Ky (u, ) and K, (u, pt') == Ky (p, 1, ). Note that Kx(0, 1, X) = px(u); see (5.1).
The following spatial Markov property of the random graph ¥ was proved in [6].

Proposition 5.1. The sequence (VZ,_1, V) )nen, is a Markov process with transition kernel

(1, 1) f 1{( + 1, 9) € Y T, ey ().

In the following, we often abbreviate K := K. Given n € N we define a probability kernel H,, from
N x N to N by

Hopn 12 1= [+ [ 100 € Mt @)+ i) (@02 (). (5.0
The Proposition 5.1 implies that
P(Vye:) = Hy(0,0,,-), veX. (5.5)
Corollary 5.2. For A-a.e. v e X and n € Ny under condition (1.1) we have P(|V,Y| < c0) = 1.
The following useful property of the kernel K can be easily proved by induction.

Lemma 5.3. Let ne N and po, ..., n € N. Then

K0, o) + Kx(po, 1) + -+ + Ka(po + -+ + pin—1, ftn) = Kx(0, pio + -+ + pin).-
Using a standard coupling argument, it is easy to establish the following facts.

Proposition 5.4. Let v € X and assume that Ay < Ay. Then

Vi <st Vi, (5.6)

and forn e N
Vi Sst Vi, (5.7)
Proof. Construct &}, and then £ by independent thinning. O

The Proposition 5.4 implies monotonicity in the measure A for VZ,, and VY. We can state similar
property for the first and second generations, but things are getting tricky for higher generations. This is
an open question.



Proposition 5.5. Let v e X, m € {1,2} and assume that \y < \a. Then
VTZ,Al <5t Vﬂl’)b,)\g' (58)

Proof. Construct £}, and then &y, by independent thinning. Then V) < V{’), a.s.. The Proposition
5.1 shows that, given ij/\Q, the conditional distribution of ‘/215/\2 is that of a Poisson process with an
intensity measure K, (dy,V}"y,). The statement follows from the facts that a Poisson process stochas-
tically increases in the intensity measure and that K, is increasing in A and the second coordinate, i.e.
K, (51)7 Vlzj/\g) = K, (61}7 Vlij)\l)' O

Lemma 5.6. Suppose that pu1, 2 € Noo have disjoint support and set p := p1 + po. Assume that &,
and £, are independent RCMs with distributions M and M2, respectively. Then

Vi (€) <st Vi (§u) + Vi (€n), € No, (5.9)
VEL(E") <st VEL (&) + VER(§2), € No. (5.10)
Proof. Define Vi 1(&*) := {x € n : © ~ p1} as the set of points from 7 which are connected to pp in

¢t and Vio(€t) == {z en:x ~ p2, © # m}. Then Vi (*) and Vi 2(€*) are independent Poisson
processes, and V{*(&") = V1 1(&") + Vi 2(§"). For k € N we define V4, 1 (£#) as the set of points from V(&)
which are connected to Vj_11(£*) and Vj2(€#) as the set of points from V}*(£#) which are connected to
Vie—1,2(€") but not to Vi—1,1(§). Then V' (§#) = Vi1 (€#) + Vi 2(§#). Moreover, Vi 1(£#) and Vj 2(H) are
conditionally independent Poisson processes given Ci p1(&"). Let f: N — R, be measurable and n € N.
Then

Ef(VE(€") = EE[f (V") | CL,_1(¢")]
—Eﬂf (Yn +90) TRV (Voo (69),Vior 2(e) (@00 T v e vy 1 e0)) (d¥0m)-
Recursively, we get
Ef(Vi(£"))
= JJf (¥ + 90 Wit ety 2oty ) (W) TG vl vz ) (dn)
Uyl 42) (dy3) W (01 (A7) T (g yuo) (A7) T g 0,1 (A1) (5.11)

On the other hand, we obtain from (5.5) and the independence of §,, and &, that

Ef (VI (€0) + VI (En) f f F 0L+ 2) Ho (0, 1, dibl) Ho (0, o, dis2). (5.12)

Assume now that f increases. We compare (5.11) and (5.12) taking into account two facts. First, Poisson
processes increase stochastically in the intensity measure. Second, K decreases in the first argument and
increases in the second. This implies

Ef(VA(€") S B (Vi (§un) + Vi (€a))

that is (5.9). The proof of (5.10) is the same, up to the fact that the argument of the function f has to
be suitably modified. O

Corollary 5.7. Let e Ny and n e Ng. Then

/\

\st J‘Vnac

Vﬁn 5“ st Vg fx

where &, x € u, are independent and P(§, € -) = P(&¥ € -



Proof. Write pt = 04, +- - -+ 0z, and apply Lemma 5.6 inductively with py = 0z, +---+6,, and g = o, ,
fori=1,...,m— 1. O

In the following, we consider two families {fg(cn) }zevy and {§g[cn] }zevy of random graphs with the following
properties:

1. Given CY,, gﬁ”) and §£n] are RCM’s driven by 7, + d; and n + &,, where 7, and n are Poisson

processes with intensity measures K)(VZ,_;) and A respectively.
2. The members of the families are conditionally independent, given C¢,,.

Proposition 5.8. Let v € X and n,m € Ng. Then

Viom < [ V() Vi (o).
Proof. Let f: N — R, be measurable and increasing. By Proposition 5.1 the conditional distribution of

Vi m given CY, is that of Vo (f( <n-1) Vi) where ¢V<n-1)V4 is a RCM based on 7, + V¥ and 7, is a
Poisson process with intensity measure Ky (VZ, _;). Hence, by Corollary 5.7

Ef(Viim) = EE[f(Vi) | CL,] = EE[ (V3 (€m0 ¥)) | O ]<Ef(fvsi<s§“>>vs<dx>>-

The assertion follows. O
For v € X and n € Ny we define the intensity measures A, of V¥ by A¥(B) := EV,Y(B) for B € X.

Proposition 5.9. Let v e X and n € Ng, m € {1,2}. Then

Viom ot [ Vi) Vida).
Moreover, we get
Ay < JAfn A (dx).
Proof. Let f: N — R, be measurable and increasing. By Propositions 5.8 and 5.5,
B (Vn) = BB (Vi) | C2) < Bf ( [V v an)) < 2 ([ Vi vitan) )
Since Af = d, for the second statement, we can assume that n € N. For each B € X we have
A3 (B) = BE(VY, o (B) | C2,) < B [ A7, (B) V(o) = [ A2 (B) Ap(de),

where we have used Campbell’s formula. O

Proposition 5.10. Let ve X and n,m € N. Then

V2 Sot Vi 1+ f VE (D) V2 (dr) <o V2, + f vE () V2 (da).
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Proof. Let f: N — R, be measurable and increasing. By Proposition 5.1 the conditional distribution
of V2, given CZ, is that of VZ | + ngﬁz(f(vgn—l)’v:), where ¢V<n-1)V% is a RCM based on 5, + V!
and 7, is a Poisson process with intensity measure K(VZ, ;). Hence, we obtain from Corollary 5.7 and
Proposition 5.4

Ef(VEy i) = EE[f(Viaim) | CL] < Ef (v + vz v:<d:c>)

<E (v + [z v;;(dx)) |

Corollary 5.11. Let ve X and n e N. Then
Ve Ve o+ [ V) Vi)

Proof. The claim follows from Proposition 5.10, since with probability one V£, ., 1 V¥ and ng(gg[gn]) 1

Vx(fa[cn]) as m — o0. m

Given v € X and a measurable function h: X — N, we define two spatial (Galton-Watson) branching
processes (W, M) =0 and (W M) =0 along with a sequence of families of random graphs {Fizew) ’h},
k € Ny, recursively as follows. We set

Wt = Wt =6, WP = Vi I = V),

and {€0:x € Wé”h} = {&"}. Given k > 1, Zj := ((Wﬁ’h,WN/ﬁ’h))ngk and ({¢F :x € I/Vf{’h})ngki1 we let

{eh .z e W,: ’h} be a family of random graphs which are conditionally independent given Zj and P-a.s.
P(ke-| Z) =P e:), zeW™
Then we define
Wil = Vi€ Wetde), Wil = [V € Wi (de)
Note that

770,k ! h v,h
Wi = va;l(x)l<§’;) W (dw) + Wi

Hence, for every point z € W, " from the k-th generation we run an independent RCM driven by
1+ 05, where 7 is a Poisson process with intensity measure A and place all points of its h(z)-th generation
in our spatial branching process k + 1-th generation, i.e. W]:jrhl. The process (Ww/s’h)kzo has a similar
interpretation. We define

k o0 k o0
v,h v,h v,h _ v,h vh 17v,h vk 1170,h
W@—EW;,W _Zm, mg_Zm, W _Em.
=0 =0 =0 =0

The special case h = n for some fixed n € N is of particular importance. In that case we use the upper
index n instead of h.

11



Remark 5.12. For each fixed k € N, the point process Wé,f is locally finite. If the extinction probability

of W is equal to one, then this is also true for Woh, Otherwise, one cannot be sure of the locally
bounded property. Corollary 6.6 provides a simple sufficient condition (namely D} < oo and cj(t) < 1
for some n € N) when W"" is finite with probability one. In the stationary case, it suffices to assume
that ¢ (t) < 1, since the total size of W™ coincides with the total size of a Galton-Watson process with
offspring distribution |V,9|.

We have the following useful property.
Proposition 5.13. Let v € X and k,n € N. Then

W™ < Wo, (5.13)
k
W <o D, Wik, (5.14)
i=1
In particular, if k = 1, then
VY < Wi (5.15)
Proof. Define a kernel K from N to N by
R() = [ Ka0.6) (o). (5.16)
By Bernoulli’s inequality, we have
K)\(:ua ,u/f) < K(#,a')a Na/-/ eN. (517)

Taking an increasing and measurable f: N — R, we therefore obtain from (5.5) and the monotonicity
properties of a Poisson process that

V) < f -Jf(zpn) Wt ) (@0n) Ty (d2) g 5y (dipr) = Ef (W), (5.18)

This is (5.13) for k =1, i.e. (5.15).
By the definition of W™ and (5.5) we have

Ef(Wy") = Jf V)H, (VY dp), (5.19)
where for given m € N and d,,, € Ny
Hon) = [ [ L0004t 0 € ) Ha0,80, 1) o Ha(0,5s, ™).

Using (5.17) and the monotonicity properties of a Poisson process in the definition (5.4) of kernels H,
once again, we see that

| rm ) < [ [0k g ) Mg @)
X Hf((éwl)(d@/’,]i) s,y (dYr").

By the definition (5.16) of the kernel K and the fundamental properties of a Poisson process, the above
m innermost integrals equal

J f(n) HK(’/’L1+"'+¢ZL1) (dipn).

12



Proceeding inductively, we obtain that

[ s e < [ [ P g, o) T @)

The above right-hand side is an increasing function of p. Hence, we can apply (5.13) for k = 1 to obtain
from (5.19)

Ef(qun) S f ’ ff(wn) H[((lpn_l)(dzpn) T Hf((xn)(dwl)ﬂf((xn_l)(dXU e 'Hf(((sv)(Xm) = Ef(W;ﬁl)

Hence, we have (5.13) for k = 2. The case of a general k can be treated analogously. The second assertion
(5.14) can be proved in the same way, modifying the arguments of the function f in an appropriate
way. ]

In the following result, and also later, we consider a Galton-Watson process (Wj)i=o with Poisson
offspring distribution with parameter D7, = [Dy|o starting with Wy = 1. Then Wy is the number of

points in the k-th generation. We set W¢y, := Z?:o W;.
Proposition 5.14. Let v € X and n € N. Then

’Ws’l‘ st an ’ngl st Wgn-

n

Proof. Note that the total size of the offspring distribution |Vi¥(&;)| is a Poisson random variable with
parameter Dy (x). Recall the definition (5.16). Taking an increasing and measurable f: N — R, we obtain
from the monotonicity properties of a Poisson process that

Ef(lWy!

) =J. y Jf(l%)ﬂk(%l)(dwn) T g (A2, (1)
<J. . ff(l%) M,y (dion) - - Mpxy, (d2) pes, (dipr) < Ef(Wy).

The proof of the second inequality is the same, up to the fact that the argument of the function f has
to be suitably modified. O

The following results are crucial for later purposes.

Proposition 5.15. Let v € X and n,k € N. Then
Vi <ot W2
Proof. By Proposition 5.10, from the similar definitions of {&E;n] cx eV} and {2 eV} we get
Vi <st V&1 + fvg(lkl)n (&L) Vi2(dzy). (5.20)
Define a point process Vn[2] on X x X by

v = ”1{(931,902) € JVI(EL, dro) V2 (day).

Let {53[521]@2 D (x1,29) € Vn[Q]} be a family of random graphs which are conditionally independent given V7£2]
and P-a.s.

PRl e | V) =P er),  (z1,22) € VI

n

13



This implies that for each z; € V, the random graphs 59[321],12, x9 € V1 (E% ,), are conditionally independent
given V;*1(£}.) and

PR, e | V(&) =P e-), mae V(&)
Therefore, we can apply Proposition 5.10 in (5.20) to the conditional distribution (w.r.t. Vn[z]) to see that

vy, <stvgn1+fvz; L(EL )V (da) + f f VI (€L ) V(€L daa) VY (day),

It is easy to see that the distribution of the above right-hand side does not change when replacing 5;?1]@2
by 5%2. It follows that

V2 StV + f VEL (€LY V () + ﬂvk (€2 VL (€L, daa) V2 (day).

Proceeding inductively, we obtain
ngn St Vgn—l + JV<I711 l(gxl) dxl f J ffz 21 xk 2 ka 3(55,:_337 dxk*Z) T Vﬁ)(dm)

f J Va2 (€8 dag ) - Vi (day). (5.21)

Here, the last term can be written as

[ [ v e o - Vi)
- fvffi G VIS, do) - V(o)
f f TR (ER YU (RS o) - V2 (day) + W
Inserting this into (5.21), performing the preceding step several times, we end up with
Vi st Vi + W™ o WP = W

This concludes the proof. ]

Corollary 5.16. Let ve X and k € N. Then
V2 <ot W2

Proof. The statement follows from Proposition 5.15 for n = 1 and the observation that Wékl = Wzkl O

Proposition 5.17. Let v e X and h: X — N be a measurable function. Then
VY <y ﬁ/"v,h.

Proof. As in the proof of Proposition 5.15 it follows for each n € N that

V2 <stVihwy1 + f Va1 ) Vi (da1) + UV<" no)—n(en) (Eban) Vi (60, d2) Vi (dan).
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Note that the distribution of the above right-hand side does not change upon replacing 5;][021],902 by 532
follows that

Ve SV + [ Voo € Vil on) + [[ V22 (€ Vit (€, ) Vi (d).
Proceeding inductively, since h(xz) = 1 for any = € X, we obtain for any n € N
VY, <ot WS < Woh,
This concludes the proof, since with probability one V¢, 1 V¥ as n — co. O

Corollary 5.18. Let ve X and n € N. Then

VYV < WO

6 A criterion for subcriticality and exponential moments

We establish the setting of Section 5 with intensity measure A replaced by tA for some ¢ = 0. We use the
so-called generations method to build lower bounds on t7, see e.g. [31, 41, 32, 33, 34]. As is common in
percolation theory, we denote the underlying probability measure by P, to stress the dependence on the
intensity parameter.

Lemma 6.1. We have t17 > (D*) . Moreover, we have tr > 0 if and only if D}, < o,

Proof. If DY = 0, then each Poisson point is isolated and ¢t = oo. If D = oo, then cf(t) = tD} =
for any ¢t > 0 and ¢7 = 0. Let ¢ > 0 and assume that 0 < D < c. The Proposition 5.13 implies that

¢ (t) < E|Wt|. By Proposition 5.14 we have Ei|W,"!| < E,W,, = (¢*(t))" for any n € N. Therefore,
r = 1/Dj > 0. O

In the remainder of the section, we shall assume that DF < oo.

Remark 6.2. One can attempt to improve the lower bound of ¢t7 by obtaining an estimate of the form

B[Vl | Con) <701V

for all n = ng and some [, ng € N. Then as soon as 7(tp) < 1 there is no percolation and tp > to. It is true
that in continuous models, obtaining such estimates for [ > 2 involves appreciable technical difficulties.

By Proposition 5.9 for n € Ny we have
Chya(t) < c3(t)ey (1) (6.1)

This easily implies that if ¢4 (¢) < 1, then ¢ < t7. One of the main goals of this section is to show that if
D < oo and c;(t) < 1 for some n € N, then t < tr.

Lemma 6.3. Let n,k € N and assume that D < 0. Then for any t,6 > 0

swr

esssup E;e k< oo

veX

Proof. By Proposition 5.13 we have W< e Sst W . Then by Proposition 5.14 we obtain

v,
ess sup Ete‘s‘wék | < Ete5w<k“.
veX

Since the offspring distribution of Wy, is Poisson with parameter ¢} (t) < o0, it is well-known that Wy,
has exponential moments of each order; see e.g. [35]. O
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Corollary 6.4. Assume that Dj < o0 and let n € N. Then for any t,6 >0

ess sup Ete(s‘vén‘ < 0.
veX
Proof. By Proposition 5.15 we have V2, <y WZ,. Then the result follows from Lemma 6.3. O

Theorem 6.5. Let h: X — N be a measurable bounded function and t > 0. Assume that Dg < oo and
cp(t) := esssup Cho) (t) < 1. Then

veX

~ (
esssup lE NS ———= )
veX ’ - CZ (t)

where h* := ||h| .

Proof. By Fubini’s theorem, we have

Ee[ WOt =1+ ¢} (¢ Z Etffvh o) (W (dx) = 1+ ¢y, Z Etfch () Wy" (dz)

< 1 + Cz(v)(t) + Ch( )(Et|WU7h| — 1)

Therefore, Ei|Wh| < (1 + CZ(U)(t) —ci(t)/(1 —ci(t) < (1 —ci(t)™! for any v € X. Moreover, by
Corollary 6.4 and Fubini’s theorem, we obtain that for any v € X

BT = ey () + Sy f [V oy € W (dr) = 2y (8) + S Etf iy (8) — 1) W} (d)

k=1 k>1
< * D(EWoh| — 1 s (V)
< Cp) (1) + (cpn () — 1) (e |=1) < T-c() < 0.
This proves the result. O
Corollary 6.6. Letne N andt > 0. If D} < o0 and c;(t) <1, then c*(t) < cZ,(t)/(1 — ¢;(t)) < o0 and
t<tr.
Proof. The assertion follows from Corollary 5.18 and Theorem 6.5 with h = n. 0

In the following, we generalize Corollary 6.6 for the case where it is known at which point of the
underlying space the mean cluster size takes its maximal value.

Proposition 6.7 (A special criterion for subcriticality). Let vo € X, n € N and t > 0. If D}, < oo,
c(t) = c*(t) and c;0(t) < 1, then ¢*(t) < c¢2,_1(t)/(1 = c;°(t)) < 0 and t < tr.

Proof. By Corollary 5.11 and Fubini’s theorem, we have

() = c"(t) < eg (8 + Etf H(0) Vi (de) < egy (1) + e (5™ (1)

Therefore, ¢ (t) < c2,_;(t)/(1 — c;°(t)) < oo. O
Theorem 6.8. Under the conditions of Theorem 6.5 there exists 6 = §(t, h*) > 0 such that

§|Wooh

esssup E.e | < 0.

veX
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Proof. To describe the total population sizes of W¥" and W/”’h, we define an exploration process. Let’s
consider the following spatial Markov process (Xx)r=0 = (Y, Zk)r>0 along with a sequence of families of
random graphs {¢¥ : 2 € Z}, k € Ny, recursively as follows. We set

XO = (51)751))) Xl = ( gh(y)?vhq:}(y)))

and {0 : z € Zo} := {€"}. Given k > 1, (X;)n<k and ({&} : z € Zn})n<k71 we let {¢F : 2 € Z;) be a
family of random graphs which are conditionally independent given Z; and P-a.s.

Pe | Zy) =P €:), zeZ.

Then we define

Vit =Yi + jl{dw ) = min d(v, )} V240 (€) Za(do),

yezZ

Zin =2+ | 1d(w.2) = mind(v,)) (Vi (€4) ~ ) Zu(do).

ye

Let 7 := min(k > 1: Z = J). Note that 7 is a stopping time w.r.t. {Zj}ren. Moreover, 7 = |[W%"| and
Y, = Wvh in distribution. Then we can use the well-known test function criteria to prove the existence
of an exponential moment for 7 (see [23, Corollary 2, p. 115]). Let §,e > 0 and 73 := min(7, k) for k > 1
Then for any k£ > 1 with probability one

T —1
I < OThtelZn | _ el Zol 4 Z (65(m+1)+s|Zm+1\ _ 66m+s|Zm|).

m=0

Note that by Corollary 6.4 we have as ¢ — 0

E, (eé(m+1)+a|Zm+1\ _ dmelZml | Zm)
= mtelZmlg, (exp <5 + z—:jl{d(v,x) = min d(v, y)}(|Vyi,) (&) — 1) Zm(d:c)> —1] Zm>
YELm,
el Zml (65 (1 + z—:Jl{d(v,x) — min d(v, y)} (el () — 1) Zm(d:c)> _ 1)

YE€EZm
< edmelZn| <e§ (1+e(ci(t) — 1)) — 1) .

Then there exist €, > 0 such that for any m > 0

E, (eé(m+1)+s\2m+1| _ 65m+e\zm\) — E,E, (66(m+1)+5|Zm+1\ _ oSm+elZn) | Zm> <0.

Therefore, Ee0™ < Eyefl%0l = ¢f for any k > 1. Letting k — o0 we obtain the light tail property for T
uniformly in v € X.
Note that by Propositions 5.15 and 5.14 we have for any k > 1

E,efYel — K, <e5|Yk—1|Et <eXp< Jl{d(v x) = min d(v, y)}|Vf,'l (gk Y Ze_1(d )) | X 1))

YELE 1

=E, <€5|Yk1| fl{d(v,x) = min d(v,y)}E:(e OV Zho (& | Z_1) Zk_l(d:c)>

YE€ZK 1

< ]Et66|Yk71|Et€5(Wgh**1) (E S Weps— 1)>k
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By Theorem 6.5 |W”’h| is a proper random variable. Then, by Fubini’s theorem, Cauchy—Schwarz
inequality, and the previous inequality, we also have

— — o0} 0
E. V" = E, (&WW Z 1{r = k}) = Z Ey(’Yel1{r = k})

Z \/]Et625|yk|Pt i \/ E, e20(Wepx— 1))th(7_ = k).

Since W+ has exponential moments of all orders (see e.g. [35]) and %ir% Eie?®Wensx—=1) — 1 we get the

required result from the uniform light tail property for 7. O

Corollary 6.9. Under the conditions of Corollary 6.6 there exists 6 = 0(t,n) > 0 such that

esssup Ee®lV’l < 0. (6.2)
veX
Proof. The claim follows from Corollary 5.18 and Theorem 6.8 with h = n. O

Theorem 6.10. Suppose that t < tr. Then there exists § = §(t) > 0 such that (6.2) holds.

Proof. Since t <t we have cf(t) = tD} < ¢*(t) < co. Define N := [2¢*(t)] and

1—1
~pexigo<ym((Ja) ien

=1

Then )\( _1 AS) = 0, since otherwise ¢*(t) > N/2 > c¢*(t). Let n be the smallest number such that
(@l Af) = 0. By Proposition 5.17 we have that V? <y W"", where h(v) := i for v € A; and h(v) := 1
otherwise. Therefore, the required result follows from Theorem 6.8. O

Example 6.11. Take X as the d-dimensional hyperbolic space H? for some d > 2 equipped with the
hyperbolic metric dya; ; see e.g. [22] and the references given there. Assume that A is given by the Haar
measure H? on R?. Assume that the connection function is given by o(z,y) = @(dya(z,y)) for some
measurable ¢: R, — [0,1]. Fix a point o € H?. Since the space H? is homogeneous, we can argue as in
Remark 4.1 to see that

te =sup{t = 0: P(|C°| < 0) =0), tp=sup{t=>0:EC’ <0}

It was proved in [11] that t. < oo if and only if {¢(0,z) H%(dx) > 0. In accordance with our Lemma 6.1 it
was also shown there that t7 > 0 if and only if § ¢ (0, 2) H(dx) < 0. Assume now that § (0, ) H%(dx) €
(0,00). It was proved in [11] that t. = tp. Hence our Theorem 6.10 yields a strong sharp phase transition
at t., just as in the stationary (unmarked) Euclidean case.

7 Diameter distribution

We establish the setting of Section 5 with an intensity measure t\ for ¢ = 0. Denote by

dm(A1, A2) :=  sup d(z,y)

CCEAl,yEAz

the maximum distance between the points of Aj, As < X, where we recall that d(-,-) denotes the metric
on X. We use the convention that d,,(A, &) := 0 for any A < X. We will also use the same notations for
w € G identifying A with V(u).
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Lemma 7.1. Let A1, As c X, A=Ay U Ay, andve A. If Ay n Ay # F, then
D(A) < min(D(A1) + D(A2),2dp (v, A)).
Proof. Note that for any x € A; n As by the triangle inequality, we have
dm (A1, Ag) < dp(z, A1) + d(z, A2) < di (A1 N Az, Ay) + dp (A1 0 Ag, As) < D(A;) + D(As).

Therefore, the result follows from the fact that D(A) = max(D(A1), D(A2),dm (A1, A2)), and a simple
consequence of the triangle inequality, i.e. D(A) < 2d,,(v, A). O

Denote for v € X and n € N the maximum length of the edges between generations n — 1 and n by

E? = max d(x,y).
" zeVyY_ | yeVyix~y ( 7y)

We also define by EY,, := max(E}, E3,..., E}) and EY := sup,y £, the maximal length among the
edges between generations in C%, and C" respectively. Note that EY = d,, (v, V"). Forve Xand t,r >0
we denote by

¢f(r):=1—exp (tf » )(p(v,:p) A(dm)) ,

where B, (v) := {x € X : d(v,z) < r} is the closed ball of radius r centered at a point v in X. We also
denote by ¢f (r) := esssup,ex ¢f (7).

Lemma 7.2. Letve X and t,r > 0. Then Py(E} > r) = ¢} (1) < ¢f (r).

Proof. The claim follows from Proposition 5.1 since V}" is a Poisson process with intensity measure
Kt)x(076’u)' [

Proposition 7.3. Letve X, ne N andr = 0. Then
Py(ES, > 1) < cy1 ()97 (r), Pu(EY > 1) < ()¢ (r).
Proof. By subadditivity of a probability measure and Proposition 5.1, we have
n

P(EZ, >1) =P, (HI{EZ > r}) Z P(EL >T) Z U {ye%a;iy d(z,y) >r}

j— v
= zeVyy_

Eo
MSH

E, f ( max d(z,y) > 1| Cl_ 1) Ve (de)

yeVlix~y

f —eXp< JC( )‘P(%?J)@(ng—%y) A(dy)> Vil (dz)

r) Vili(dr) < e, (t )87 ().

E
Il

1

I M: I M:

%

The second inequality follows immediately from the first one, since £, T EY a.s. as n — 0. O
Denote by 7 := min(n € N : VY = ) the depth of C".
Lemma 7.4. Let v € X and n € N. Then with probability one

dm(v,VS,) <nEZ,, dp(v, V') <7'E".
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Proof. Denote for p € G and vy,v2 € p the minimal length of the paths between v; and vy within the
graph p by d*(vi,v2). Note that for any k € N by the triangle inequality, we have

dm (v, V) = max d(v,z) < max d%<r(v,z) < EY +--- + EV.
k k

Therefore
dm (v, VZ,) = max(dm (v, V"), dm (v, V5), ..., dm(v,V,,)) < E{ +--- + E;) < nEZ,.
The second inequality follows from the first one by monotone convergence. O
Proposition 7.5. Letve X, ne N and t,r = 0. Then
Pi(dm(v,VZ,) > 1) < %1 (6)0; (r/n), Pi(dm(v, V") >1) <c,_1(t)o; (r/n) + Py(r? > n).
Proof. By Lemma 7.4 and Proposition 7.3 we have
Poldm(v, V2,) > 1) < Bu(nEL, > 1) < %y ()65 (r/n).
The second inequality follows from the first one and the following inclusion

{dm(v,VY) > 1} c {dn(v,VS,) >r}u{T" >n}.

O
Corollary 7.6. Letve X, ne N and t,r = 0. Then
Py(D(Ve,) > 1) < ¢y 1 (097 (r/2n),  PyD(V®) > 1) < c&p 1 ()07 (r/2n) + Py(7" > n).
Proof. The claims follow immediately from Lemma 7.1 and Proposition 7.5. O

Corollary 7.7. Letne N andt > 0. If D7 < 0 and ¢f (r) decay exponentially fast as v — oo, then there
exists § := 0(t,n) > 0 such that

sD(V2,)

esssup E;e < 0.

veX

Proof. The claim follows from Corollaries 7.6 and 6.4. O

Remark 7.8. Suppose that ¢ (r) and the tail distribution of depth P(7% > r) decay exponentially fast
as r — oo with the exponents §; > 0 and do > 0 respectively. Then using Proposition 7.5 one can easily
show that the tail distribution of d,,(v, V") decrease as exp(—+/d102r) via 7. In other words, using the
previous Proposition, we can’t prove the light tail property for the diameter of a cluster. We will use a
similar construction as in Theorem 6.8 to achieve the desired result; see Theorem 7.9. For example, if
o7 (r) has a heavy-tail (e.g., decay with polynomial speed) and depth 7% has a light-tailed distribution,
then one can build a ”better” upper bound for the tail distribution of d,,(v, V") using Proposition 7.5.

Theorem 7.9. Let h: X — N be a measurable and bounded function and t = 0. Assume that Df‘; <
and cj(t) := esssup Chw) (t) < 1. Assume also that ¢f(r) decays exponentially fast as r — oo, then there
veX

exists § = 0(t,h*) > 0 such that

SD(Wv-h)

esssup E;e < 0.

veX
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Proof. To describe W?" and Wvh we will use the same exploration process (spatial Markov process)
(Xi)k=0 = (Y, Zk)) k=0 as in Theorem 6.8. Recall that Xo = (0,,d,), X1 = (Vgh(v),V;(v)) and

Yirr =Yi + jl{dw,@ — min d(v, )}V (€5) Zi(do),
YEZ,

Zior =Zn + f L{d(v,2) = min d(v, )} (Vi) (€) — &) Ze(da).

Let 7 := min{k > 1 : Z, = #}. We know that 7 is a stopping time w.r.t. {Z}ren, 7 = |[W""| and
Y; = W¥" in distribution.
Let 0 be a positive and sufficiently small parameter. By Lemma 7.1 we have for any k > 1

Ee?P0%) < E, (ewmm <exp( f Ld(v.2) = min d(v,y)}D( <h<x)<£z ) Zia )\Xk >)

= E, <65D<Yk1)f1{d(v,x) — min d(v,y)}E (e PV ¢ ’Zk 1) Zi—1(dz)

YE€ZK 1
éD(VY dD(VY g
< Ete‘SD(Y’“—l)eSS sup Ee (Vs < <ess sup Ee ( sh*)>

veX veX

By Theorem 6.5 |W”’hl is a proper random variable. Then, by Fubini’s theorem, Cauchy—Schwarz in-
equality, and the previous inequality, we also have

— — o0
E,SP(W*") — R, (&D(W“’h) Mfr = k}) Z Ey(e?POW1{r = k})
k=1
2 \/EteQ‘SD YOPy(1 = k) \/ ess sup e’ (Vzh*))k]P’t(T =k).
veX

Note that D(VZ,«) and 7 have light tail distributions uniformly in v € X by Corollary 7.7 and Theorem

6.8 respectively. Therefore, we get the required result, since %iH}) €SS SUP et Ete%D( Vane) = 1, O
Corollary 7.10. Suppose that ¢f(r) decays exponentially as v — o0. Then, under the conditions of
Corollary 6.6, there exists § = §(t,n) > 0 such that

esssupEte‘SD(v ) < 0.
veX

Proof. The assertion follows from Corollary 5.18 and Theorem 7.9 with h = n. O

Theorem 7.11. Let t < tp. If ¢5(r) decays exponentially as r — oo, then the diameter of the cluster of
an arbitrary vertex has a light-tailed distribution (as in Corollary 7.10).

Proof. We can build the same upper bound for the cluster of an arbitrary vertex as in Theorem 6.10 and
then derive the required result with Theorem 7.9. ]

8 The stationary marked RCM

In this section, we consider the stationary RCM as introduced in Section 4. Let n € N and define the
measurable functions d&n): M? — [0, 0] and dgb]: M? — [0, o] by

n—1
dfpn) (p,q) == JJ H o((zi, pi), (Tit1,pis1)) den, Q" (dp,_y),
i=0

n—1
o) = [[ [T elwnm. o) ] el@ip o) den @ ). (1)
=0

3<i+2<j<n
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where pg := p and p,, := ¢q. In the special case n = 1, we write

dy(p,q) = dJ (p, q) = J@(ﬂc,p, q) da.

Note that
n—1
dgpn) (p7 q) = j H d@(phpiJrl) Qn_l(dpnfl)'
1=0

It follows from the Mecke equation (3.2) that t"dfan) (p, -) is the Q-density of the expected number of paths
of length n starting in (0,p) and ending in a point with mark in a given set from B(M). Analogously,

t”d!pn] (p,-) is the Q-density of the expected number of self-avoiding walks (paths without loops) of length
n starting in (0,p) and ending in a point with a mark in a set from B(M). From the symmetry property

of ¢ we obtain that d&n) and dc[pn] are symmetric. From stationarity, one can also notice that for given
n =1 and p,q € M we have

A2V p,) < [ . ), 0) Q). (8.2)

For a given measurable L: M? — R U {+00} and 71,79 € [1,0), we define the norms

1

Ll o= ( | ( [iw.ar @(dp>) | @<dq>> " (5.3)

1
T2
IZlo.rs = css5up ( [1w.or @(dq>) , (8.4)
peM
Llpo i= esssup |L(p,q)]. (8.5)
p,qeEM

Note that, by definition, we have D}, = |dyl|ls,1. Take p € M, n € N and ¢ > 0. By the multivariate
Mecke equation, we have that

EVOP (R x ) = f 1{g € Jo89(t) Q(dg), (.6)

where the density v5?(¢) can be written as a linear combination of integrals similar to those occurring in

(8.1). Since we can bound Vn(o’p ) (R? x B) by counting all paths of length n without loops and ending in
a measurable B ¢ M, we have

vPA(t) < t”dgl] (p,q) < t”dfp”) (p,q), Q-a.e.qeM (8.7)
and therefore
(0= 007 0) < ¢ [ d2)p.q) Qo) < 1 [ ) 9. 0) Qo). (59
We define
An(t) := cep1(t) + [on(t)]oo,00, (8.9)
where we recall that the first term is the | - [|-norm of p — c(gohp_)l(t) and the second term is defined as
the |  [|so,c0-norm of the function (p,q) — vh(t).
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Lemma 8.1. Lett > 0 and n € N. If |[dy|o01 < 00 and ||dg[0n]|\oo,oo < o0, then A, (t) < . Moreover, if
Iy oo < o0 and |d27 o2 < 0, then Mg, (t) < oo.

Proof. By the recursive structure of d™ we have deon)Hoo,l < |dy|%, ;- Therefore, we obtain from (8.8)
that

. 2nl 2! Ky (k) (tldg)loo1)*" =1
ona () < 2 [or®le <14+ 2 10 |en < —pfiP=—
k=0 k=1 et

9

where the final upper bound has to be interpreted as 2n if t[|dy[,1 = 1. On the other hand, we obtain
from the inequalities (8.7), (8.2) and the Cauchy—Schwarz inequality,

[v2n () oo, < T |dE Jop,o0 < 17" s Sudeg[f] (p,7)df (r,q) Q(dr) < " |d)Z, 5.

p,qeM
Hence
(tldplloo)*™ =1 o o (tldploo, )™ =1 o 2
Aon(t) < : + 27 ql2n] < el + 272 . 8.10
2”( ) tHdgoHoo,l -1 H @ HOO7OO tHdgaHCO,l —1 H 4 HOO,Q ( )
O

Finally, we are ready to state our main result on the strong sharpness of the phase transition, which
is a significant generalization of the main result from [40] and some of the results from [4]. The main
condition under which we can prove the strong sharpness is that there exists n € N satisfying

ldplloo + Al oo,00 < 0. (8.11)
Theorem 8.2. Assume that |dy|1,1 > 0. We have the following:
(i) tr > ldpln-

(ii) Fort < tp there exists d1 := 01(t) such that esssup E eVl < oo
peM

(i) If
esssup [ gl pia) o Q)
peM |z||>w
decays exponentially fast as u — o0, then for t < tp there exists dg := da(t) such that

8o D(V(0:P))

esssup ;e < 0.

peM

(iv) Suppose n € N satisfies (8.11). Then tp = t. € (0,0) and &, = Ey,_ § [V O)| Q(dp) = 0.
(v) Suppose n € N satisfies (8.11). Then

te

le@)]r = A1)

fort < t. and for all r € [1,0].
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(vi) Suppose that n € N satisfies (8.11) and let 6 > 0. Then

o) > (2 + B2 (oo,

for all t € [tc,t. + 6] and r € [1,0].

Proof. Assertion (i) follows from Lemma 6.1, (ii) follows from Theorem 6.10, (iii) follows from Theorem
7.11. Other claims will be proven later on in this section. More precisely, (iv) follows from Proposition

8.15, Corollary 8.23 and the definition of tg} ) = te, (v) follows from Proposition 8.16 and (vi) follows from
Theorem 8.22. n

Remark 8.3. For n = 1 the condition (8.11) boils down to |dy| w0, < 00. This is the main assumption
made in [4].

Remark 8.4. Let k£ € N. By (8.10) the condition
lde|

w1 + [d o2 < o0 (8.12)
is sufficient for (8.11) with n = 2k.

Remark 8.5. Note that if ¢ (u) has a heavy tail in u (thicker than exponential), then the diameter of
the cluster of an arbitrary vertex has a heavy tail distribution (thicker than ¢;(u)), which can be shown
by Proposition 7.5.

8.1 Sufficient condition for non-triviality of the phase transition

We start with the following simple observation.

Proposition 8.6. We have that t(Tl) > Hddg%

Proof. The claim is trivial for ||dy|22 € {0,00}. Suppose that |dy|l22 € (0,00). Let n € N. From the
Cauchy—Schwarz inequality we have

n—1
gt

F
1,2+

2
402, = f ( j 40 (p, 1)y (g1, 9) Q(d(p, q1>>) Q(dg) < |dy[3,|

Therefore Hdc(pn) |12 < [dyl3 5. On the other hand, we obtain from (8.8) and Jensen’s inequality that
En(t) <t |10 < "0 12, >0
Therefore,
o0 0¢]
&(t) = D enlt) < D) t"[dyl32,
n=0 n=0
which converges if t < Hd(pHQ_% O

Remark 8.7. Consider the Gilbert graph from Example 4.3 and assume that Q{0} < 1. It was proved in
[18] that t(Tl) € (0,00) if and only if g2 := {72¢Q(dr) < 0. Note that go < o0 is equivalent to |/dy|2,2 > 0.
If g» = oo then it was shown in [18] that ¢(%P)(t) = oo for all p = 0 and ¢ > 0, so that t = t(Tl) =0 in
this case. The authors of [15] introduce another critical intensity # < ¢, (called A on p. 3717). If g2 < o0,

then Theorem 2 in this paper shows that E;\g(Zy) < o for all ¢ < ¢, where Zy denotes the union of all
balls B(z,r), (x,r) € n, with 0 € B(z,r). Moreover, we then also have

Em(Zo x [0,)) < 0, <1,

Later it was proved in [13] that t. = ¢ provided that {r°?=3Q(dr) < 0.
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We continue with the following simple fact.

Proposition 8.8. Suppose A € B(M) satisfies Q(A) > 0. Assume that for some symmetric function
wo: R — [0,1], such that §po(x)dz € (0,0), we have

o(z,p,q) = @ol(z), A @ Q%-a.e. (x,p,q) € R% x A x A.
Then t. < 0.

Proof. Let ¢ be a RCM driven by ngay, 4 with a connection function ¢g. It is easy to build a coupling
such that ¢ < £€[R? x A]. By [37] we know that & percolates for large intensity. Therefore, t. < oo for &
as well. O

Proposition 8.9. Assume that |dy|1,1 € (0,0), then t. < .

Proof. Suppose that the mark space contains only two marks M = {p1,p2}, and a mark cannot directly
connect with itself, i.e. § p(z,p;,pi) de = 0 for i € {1,2} (otherwise we may refer to Proposition 8.8). In
this case, we can show ¢, < o0 as in [4, Lemma 2.2], whose proof extends the approach from [37] to the
marked case. Note that non-triviality of |dy[11 implies existence of € > 0, C € B(R?) and A4, B € B(M)
with min{\;(C), Q(A),Q(B)} > 0 such that

90(537]97 q) = w(_xvqap) = SOO(x)? Ad®@2'a'e' (xap7 Q) € Rd x A x B?

where og(z) := e1{x € +C}. We can again show t. < o0 by an appropriate coupling (¢ < £[RYx (AU B)])
with the connection function ¢g(z) as in Proposition 8.8. O

Remark 8.10. By definition, we have D} = |/dy|sx,1. Therefore, we obtain from Lemma 6.1 that
[dy] oo, < o0 is equivalent to ¢t > 0 and hence implies ¢, > 0. On the other hand, |d,|ls,1 < 00 implies
[dy]1,1 < oo. Hence, if 0 < [|dy||c0,1 < 00 then Proposition 8.9 shows that ¢, < 0o and hence also t7 < .
Altogether we see that 0 < [dy|w,1 < 00 is necessary and sufficient for ¢t7 € (0,00), and sufficient for
te € (0,0).

Remark 8.11. Notice that
ldell11 < max([[deloo,1, [dgll2,2) < lldpllooe < ldip]looco-
Therefore, by Remark 8.4 the condition |dy|l«,2 < 00 is sufficient for (8.11) with n = 2.

Example 8.12. Let £ be a stationary marked RCM and suppose that R: M? — R, is a symmetric and
meassurable function such that |R%|, 2 < 00. Assume that

o(z,p,9) < {|z| < R(p,q)}, \a®Q*ae. (z,p,q) € R x M2,

Then dy,(p, q) < kaR¥(p, q) for Q-a.e. (p,q) € M2, where kg is the volume of a unit ball in R?. Therefore,
¢ undergoes a strong sharp phase transition, since |dyl w2 < fa|R%|o02 < 0.

For example, let £ be a min-reach RCM (see [5]) with M = Ry and R(p,q) = Ro(min(p, q)), where
Rp: Ry — R, is a non-decreasing function. Assume that the reach function Ry has a finite moment of
order 2d with respect to the mark distribution Q. Then

IR < | B3'a) Qo) < .
Hence ¢ has a strong sharp phase transition. In the special case p(z,p,q) = 1{|z| < min(p,q)}, all the
randomness comes from the stationary marked Poisson process. The RCM ¢ is then a random version of

the symmetric random disk graph; see [1]. It has a strong sharp phase transition if the radius distribution
Q has a finite moment of order 2d.
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Example 8.13. Let ¢ > 0 and consider Example 4.4 with g(p,q) := (p v q)¢ := max(p,q)®. All that
follows also applies to g(p,q) := (p + q)° as well, while p+ ¢ > p v ¢. It is easy to see that |dy|w,1 < o0 if
and only if € < 1. Assume ¢ < 1 and take n € N. We have

1 1 2
A2 < il | ( jo [m(pwm)---(pn1vpn>]—€dpn1> dpn.

For ¢ < 1/2 we obtain |dy w2 < o from a direct calculation. For € € [1/2,1), it is also not difficult to

show that deon)Hoog <wifee[l - 2(TI—U’ 1 — 5) for some n > 2. Therefore ||d£02)\|oo’2 < o fore =1/2

while for € > 1/2 we have ||dg(0n)Hoo72 < o0, where n = [(2 — 2¢)~!]. Altogether we obtain for each ¢ € (0, 1)
that our condition (8.12) holds. Hence, we have a strong sharp phase transition at t. = t7.

We note in passing that the condition [|dy[22 < 00 is also equivalent with € < 1, while condition
[dy]1,1 < 00 is equivalent with € < 2.

Remark 8.14. In the case € < 1, the functions from Example 8.13 are light-tailed versions of the max-
kernel and the sum kernel studied, e.g. in [17]. There, the authors focus on the case € € (1,2), which
leads to a power law for the degree distribution. For our version, this distribution has finite exponential
moments of all orders for ¢ < 1 and finite exponential moments of some orders for € = 1. Another example
is g(p,q) = (pAq)~°(pvq)° for given d,& > 0. Then ||dy|ew,1 < o0 if and only if ¢ < 1+6. In this case, g is a
light-tailed version of the preferential attachment kernel; see [17]. Note that g(p,q) = (pvq)*~°. Therefore,

just as in Example 8.13, under the condition ¢ < 1 + §, we have Hdg(pn)Hoog < oo forn=[(2-2(-6)".
Another example is g(p,q) = |p — ¢|* for some given € > 0. Then |dy,|w,1 < oo if and only if e < 1. If

e < 1 then we have Hd&n)Hoo’g < o for n = [(2—2¢)7!], just as in Example 8.13. We believe that for most

natural examples, the condition ||dy|«,1 (necessary for strong sharpness) implies Hdg(pn)Hoo’g < o for some
finite n € N. The min kernel and the product kernel from [17] do not satisfy |d,lx,1 < o0.

8.2 Susceptibility mean-field bound
The following Proposition is a refinement of [4, Lemma 2.3] and [10, Proposition 2.1].

Proposition 8.15. Suppose that n € N satisfies (8.11). Then ty = tgf) for all r € [1,00].
Proof. We exclude the trivial case ||dy|w,1 = 0, since then t7 = tg,qf) = 0. Assume that |dylle,1 > 0. We

only need to show that t7 = t(TOO) > t(Tl ), By Corollary 5.11 we have

(1) < s (1) + esssupEy f E[V@0 €] | 09D V0P (d(x, g)).
pe

By the definition of ¢[" and stationarity, the conditional expectation in the above integral equals ¢(®:9) (t).
Therefore, we obtain from the definition (8.6) of density v},Y(t) that

¢*(t) < ¢, 1 (t) + esssup J 0D (£)uP4(t) Q(dg).
peM

It follows that c¢*(t) < c%,,_;(t) + ¢&(t)||vn(t)] 0,00 and since &(t) > 1 we obtain

c*(t) < Ap(t)e(t). (8.13)
By assumption (8.11) and Lemma 8.1 we have A, (t) < o0, so the asserted inequality ¢ > tgpl ) follows.  [J

Proposition 8.16 (Susceptibility mean-field bound). Suppose n € N satisfies (8.11). Then

tp

le()]» = At —1)

(8.14)

fort <tr and for all r € [1,0].
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Proof. To prove this result, we need to recall some of the notation from [4]. Define

Ti(p.q) = JPt((O,p) o (2,q) in €OP @D gy

and let the integral operator T; act as (T¢f)(p) = { T (p, q) f(¢) Q(dg), for every square-integrable function
f on M (with respect to the probability measure Q). Let t, = inf{t > 0 : |T¢[lop = o0}, where, as usual,
| - |op refers to the operator norm for a linear operator on a Banach space.

By [4, Lemma 2.3] (which applies without Assumption D in that paper) and Proposition 8.15 we
have t, = tp. From [10, Lemma 3.2], we know |7¢llop < ||T¢[lso,1 (this is proven by Schur’s test). Since
cOP)(t) = 1 + t§Ti(p,q) Q(dg) we have ¢*(t) = 1 + t|Ty|o1. By [4, Theorem 2.5] (which again does
not require Assumption D) we have |Ti|,, = (to —t)~! for t € (0,ty). Hence |Ti||lsw1 = (tr — )~ and
c*(t) = tp(tr —t)~! for t € (0,t7). For r = 1, the asserted result now follows from the inequality (8.13).
The general case r = 1 follows from Hoélder’s inequality. O

8.3 Strong sharpness of the phase transition

Analogously to [4], we introduce a continuous and mark-dependent analogy of the magnetization originally
introduced by Aizenman and Barsky [2]. Let v € (0,1) be a parameter with which we enrich the marked
RCM by adding to each vertex a uniform (0,1) (Lebesgue) label (independent of everything else), and
let P; o denote the resulting probability measure. A vertex x € 7 is called a ghost vertex if its label is at
most v, and we write x € G. Similarly, we write x < G if x is connected to a ghost vertex. We define
magnetization as follows

M(t,7,p) := Pi»((0,p) < G in £0P)). (8.15)

In accordance with our previous notation, we use the L"(Q)-norms for r € [1, 0] to define

M(t, ) = Mty )1, M) == [M(t, 7, )] (8.16)

Recall the definition of €90 and C? in Subsection 4.2. We assume that Q is also independent of
the labels. Note that M(t,7) = P;~((0,Qo) <> G in £90). We will also need the following functions. For
t € Ry, we define

&p(t) = B CP|1{|C%| < w0} = Y nPy(|C%| = n), (8.17)

neN

and for v € (0,1) we also define the “ghost-free” mean size of the cluster of a typical vertex
(t,7) = EepJC9[L{CP . G = g). (8.18)

It is easy to relate the above function to the mean size of the finite cluster of a typical vertex and the
percolation probability 6(t) = Py, (|C?| = ).

Lemma 8.17. Lette R,. Then
lim M(t,v) = 0(t), lime(t,y) = és(t).
7—0 7—0
Proof. The proof is direct and follows the same lines as in [4]. For v € (0,1) we have

M(t,y) =1=Pi((0,Q0) «» G in £%°) =1 = Y P11 (CY¥ ~ G = F,|CY| = n)

neN

—1- 31— )"BCP] = n) = 1~ Ey(1 - 7). (8.19)

neN
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Letting v — 0, we obtain the first result from monotone convergence. It is also easy to see that the
function  — M (t,~) is analytic on (0,1) for all t € Ry.

For 7 > 0 we obtain from our independence assumption that |[C?°| < oo a.s. on the event {C?° ~ G =
&J}. We then have

&(t,7) = Y, nPey (|09 = n,C% G = &)

neN
= > n( P;(|C?°| = n). (8.20)
neN
As v — 0, we obtain the second result from monotone convergence. O

We will also need the following lemma on differential inequalities for the magnetization.

Lemma 8.18 (Aizenman-Barsky differential inequalities on the magnetization). Let v € (0,1) and t > 0
and assume that |dy| w1 < 0. Then we have

(i) D < (1 )| dpllon, M* (1, 7) 2D,

(i) M(t,7) < 72D 4 |M(1,7)[3 + tM*(t, ) DLED.

Proof. The second 1nequahty follows from the Leibniz differentiation rule and [4, Lemma 3.8]. The first
inequality (with 1/t instead of |dy|«0,1) is asserted in the same lemma. However, one of the inequalities in
the proof does not seem to be correct. Therefore, we present here an alternative argument. We combine
the Margulis-Russo formula in infinite volume from [6, Theorem 10.8] with the Leibniz differentiation
rule to obtain from (8.19) that

B 5 (=)0 = (=) OO () € QOO Nz, )

—E, f (1 =IO = (1 = )P EOCHED=CDN) 1 (g p) e CR0(£OR)@PNYY \(d(a, p)),

where £(0:Q0):(z.p) _ %o ig the random graph arising from £(0:Q0):(*») by removing all vertices from C%0
along with emanating edges. Fix (z,p) € R? x M for the moment. The conditional distribution of £Qo:(w:p)
given C?0 is that of a random graph, which can be constructed in two steps as follows. Take first a
RCM (with connection function ¢) based on V(%:Q0) (£(0.Qo)y 4 O(zp) n°, where n° is a Poisson process
with intensity measure K;y(C%). Then remove all edges between points of V(%:@0)(¢(0.Q0)) and add
instead the original edges of C?0. This distributional identity can be proved similarly to [21, Lemma,
3.3]. In particular, the event {(x,p) € C?0(¢(%Q0)(#:P))} (which means that there is a direct connection
between (z,p) and a vertex from C?0 in £(0:Q0).(#2)) and the random variable |C#P)(£(0:Q)(z:p) _ OQo)]
are conditionally independent. Therefore,

oM(t, 2,p) (£(0,Q0)(@.p) _
(gtw=Etf<1—v)c%'go((x,p),c@o)m[l—(1—7)” A Nel ) PYCIENO)

Furthermore, a stochastic monotonicity argument (see Proposition 5.4) shows that, given C%?, the random
variable |C'@0(£(0:Qo).(=p) _ CQ0)| is stochastically dominated by an independent random variable with
the distribution of |C'(*P)|. Therefore, the above can be bounded by

E, J(l — IOl (2, p), CU)M (t, 7, p) A(d(w, p)) < M*(t,7)Es(1 — 7)oy (C)
< M*(t,7)|dglloo 1 Be|CP0| (1 — )€1,

where we have used the Bernoulli inequality to bound ¢y (C’QO). This completes the proof. ]
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Lemma 8.19. Lette R, ne N and v € (0,1). Then
M*(t,7) < An(t)M(t, 7). (8.21)

Proof. If A,(t) = o0 or |dy|w,1 = 0, then inequality (8.21) is trivial. Therefore, we can assume that
Ay (t) < oo and ||dy|ew,1 > 0. Fix p e M. We have

M(t,75,p) = Py, ((0,p) < G in £OP)) = Pm< Jie” g # @}>

k=0

<Py (COD G # @) + P, (COF 1 G # )
= 1 - Et(]_ — f}/)'cé;z—l' _|_ IP)t;‘y (CZO,;ZP A g 7& ®>
<021 (1) + By, f 1{(z,9) < G in C2P} 0P (d(x, q)),

where we have used the Bernoulli inequality for the last line. To treat the above second term I, say, we
let D( P) denote the graph C(<;Lp ), where all points (vertices) are marked by their labels, except those of
CT(LO P ). Then

IQ:IEMJ}P’(( g) = G in P | DOP)Y 009 (d(x, q)).

By the spatial Markov property (in fact, we need the more refined [6, Theorem 7.1]) and stochastic mono-
tonicity (as in Corollary 5.11) the conditional probability occurring above can be bounded by M (t,~,p).
Therefore,

I < EtJM(t>77Q) P (d(z,q)) = JM(t,%q) 9(t) Q(dg) < M(t,7)[vn(t)] 0,00,

where the equality comes directly from the definition of the densities vh?(t). Since v < M(t,~) we obtain
the assertion. 0

Lemma 8.20. Lette Ry, ne N, ye (0,1) and assume that ¢¢(t) = co. Then

_ ~ oY 1
M(t,~) = > . 8.22
(&) \/ A0 + gl A2 (0) \/ 5 1y loen B0 (8.22)

Proof. We proceed similarly to the proof of [4, Corollary 3.11]. If A,(t) = oo, then the inequality
(8.22) is trivial. Assume that A, (t) < o and ||dy|w,1 > 0. Then we can use the preceding lemmas.
Inserting the first inequality of Lemma 8.18 into the second, and using the simple observation | M (t,7)|3 <
M*(t,y)M(t,7) we obtain

W(1,7) < 3 2D N (1)1, 9) + il (1= ) (0,72 )
Y v
Define A, (t) := t|dp]o0,1 A (). Then by Lemma 8.19 we get
8t 7) < 720D AL T (172 + (1= ) A FE (1,72 L), (8.23)

oy ot
In the remainder of the proof, we fix ¢ and drop this argument from our notation. By (8.19) the function

M (given by v+ M(v) := M(t,)) is strictly increasing and therefore has a differentiable inverse M.
Then we can rewrite (8.23) for all z in the range of M as

A, z2

+ Ap2® + (1 — Mﬁl(m’))m

(8.24)
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We have 4 (271 M~Y(2)) = 2~ Y (M 1) (z)—2~2M~}(z). Multiplying (8.24) by 2~2(M 1)/ (z) we therefore
obtain

d _ _ _ _ ~ _ ~

%(x Ly 1(90)) <A (MY (2)+ (1 —-M 1 2)A, <A, (MY (z) + A,.
We wish to integrate this inequality on [0,y] for some y in the range of M. To do so, we note that
M~1(0) = 0 and
1 1

. M_l(x) —1y/
lig = = O) = 3565 = 5@ =

where the penultimate identity follows from (8.19) and the final one from our assumption c¢(t) = co.
Therefore, we obtain

yilMil(y) < AnMil(y) + Anf%

that is /M (t,7) < An(t)y + A, M(t,) for each 4 > 0. Since v < M(t,7), the first inequality in (8.22)
follows. The second is then a consequence of A, (t) = 1, which is true by definition. O]

Proposition 8.21. Let t > tgpl) and n € N. If é(tgpl)) =0, then

1)
e
0 2 @

(8.25)

Proof. Note that if A, (t) = oo, then the inequality (8.25) is trivial. Suppose that A, (t) < oo and
ldsloo,1 > 0. Then we have by Proposition 8.15 that ¢t = tg}) = té?o). Let ¢/ > tp and t € (t7,t']. Multi-
plying the second inequality of Lemma 8.18 by 4y~ *M(t,~)~! and using simple observation | M (t,7)|3 <

M*(t,v)M(t,v) gives

11 oM(ty)  M*(ty)  tM*(ty) 0M(t)
v M(t,y) Oy 2! YM(t,y) ot

By Lemma 8.19 we get

L_ 1 oM(ty) . An(M(t,7) L tAn(t) oM (t,7)

v M(t,y) Oy v v ot
1 5M(t, 7) An (t/) AT aM(ta ’Y)
SVt oy + <M(t,'y) i >
_ Olog(M(t,7)) | An() @,
= > + L (tM(t,7))

We now integrate the above inequality over (¢,7) € [t7,t'] X [y1,72], where 0 < 71 < 2 < 1. Since all the
integrands are non-negative, we can use Fubini’s theorem to exchange the order of the integrals, and we
will also use the properties of the function M (t,~), i.e. non-negativity and increasing in ¢ and . Therefore

t/ Y2

(¢~ tr)log(oa/m) < [ 1og(3(t22)/3T(t ) e+ An(¢) [ 2 ({BE(,) = 3 ez, )

< (¢ —tp) log(M(t',72)/M(tr,71)) + An(t")t' M (t', 72) log(y2/71)-

Dividing by log(v2/v1) we get

log(M(t',72))  log(M(tr,m))
log(v2) —log(v1)  log(2) — log(71)

t—tr < (t' —tr) < > + A (Y M, ). (8.26)

30



Since O(tr) = 0, the cluster of a typical vertex is finite almost surely. Therefore ¢f(tr) = Eqp.|C90|.
Moreover, letting ¢ 1 t7 in (8.14), we obtain ¢(t7) = co. By Lemma 8.20 we have for 0 < 1 < 72 that

_ log(M(tr,m)) _ log(V/1 + tr|dyflon1 An(tr)) — 3 log(m1)
log(72) — log(y1) log(2) — log(71) '

As 1 — 0, the above right-hand side tends to 3. Hence it follows from (8.26) that

— t —tr
Mt =z .
( 7’72) 2t1An(t/)

Letting v — 0 and using Lemma 8.17 concludes the proof. ]

Theorem 8.22 (Percolation mean-field bound). Let § > 0. Suppose that n € N satisfies (8.11). Then

o, > (257 + MO S - o),

for all t € [tp,tr + ] and r € [1,0].

(8.27)

Proof. By Hoélder’s inequality, we get [0(t)[, = [0(t)|1 = 0(¢) for all r € [1,00]. If §(¢t7) > 0, then the
result follows from the monotonicity of 6(¢). Otherwise, the result follows from Proposition 8.21. t

Corollary 8.23 (Sharpness of phase transition). Under the assumptions of Proposition 8.15, we have
te = tr.

Proof. As already noticed in Section 4 we always have t7 < t.. Let t > t7. By Theorem 8.22 there exists
A e B(M) with Q(A) > 0 and 6P(¢) > 0 for all p e A. Therefore ¢t > t. and hence tp > .. O

Remark 8.24. Let us consider here the hyperbolic counterpart of the stationary marked RCM; see
[9]. In this case X := H? x M, where H? is the d-dimensional hyperbolic space (with d > 2) as in
Example 6.11 and M is as before. Assume that A = H? ® Q, where H¢ denotes the Haar measure on R¢
and Q is a probability measure on M, also as before. Assume that the connection function is given by
o((x,p), (y,q)) = @(dya(z,y),p, q) for some measurable @: R, x M? — [0, 1] such that @(z, -) is symmetric
for all z € H. Fix a point o € H?. Since the space H? is homogeneous, we can argue as in Remark 4.1 to
see that

te = sup{t = 0: P,(|C®P)| < ) = 0 for Q-a.e. p}, tr = sup {t=0: ess sup By |CP)| < 0}
peM

Define di(p, q) = § @(dya(z, ), p, ) H4(dx) for (p,q) € M2. Most of the results of this section remain true
in this setting, provided our assumptions are suitably modified (replacement of d, by dz). Indeed, the
geometry of the ambient space R? does not enter most of our arguments. One exception is Proposition
8.9. However, we believe that, under the assumption |dg|1,1 < o0, the proof of [11, Proposition 1.1] can
be extended to the marked case, just as in the Fuclidean marked case. We would then obtain that our
condition (8.11) (with hyperbolic dz) implies the strong sharp phase transition at t7 = t. € (0,00), just as
in the marked stationary Euclidean case. Thanks to [11, Proposition 1.1] the condition from Proposition
8.8 is sufficient for ¢, < co.

Acknowledgements: This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) through the SPP 2265, under grant number LA 965/11-1.
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