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COMPLETE CLASSIFICATION OF THE DEHN FUNCTIONS
OF BESTVINA–BRADY GROUPS

Yu-Chan Chang, Jerónimo García-Mejía, and Matteo Migliorini

Abstract. We prove that the Dehn function of every finitely presented Bestvina–
Brady group grows as a linear, quadratic, cubic, or quartic polynomial. In fact, we
provide explicit criteria on the defining graph to determine the degree of this polyno-
mial. As a consequence, we identify an obstruction that prevents certain Bestvina–
Brady groups from admitting a CAT(0) structure.

1 Introduction

Bestvina and Brady introduced a class of subgroups of right-angled Artin groups, now
known as Bestvina–Brady groups, that exhibit exotic finiteness properties [BB97]. For
every finite simplicial graph Γ, they defined a group BBΓ whose finiteness properties
are determined by the homotopy type of the flag complex Δ(Γ) associated to Γ: they
proved that BBΓ is of (finiteness) type ℱn if and only if Δ(Γ) is (n− 1)-connected.
Recall that types ℱ1 and ℱ2 correspond to the more familiar notions of being finitely
generated and finitely presented, respectively.

The family of Bestvina–Brady groups includes the Stallings–Bieri groups SBn,
which were the first known examples of groups of type ℱn−1 but not of type ℱn.
Stallings first constructed SB3 [Sta63], and Bieri later generalised this to SBn for
n > 3 [Bie81]. Each SBn can be realised as BBΓ, where Γ is the join of n copies of
the graph consisting of two non-adjacent vertices.

In this work, we study the Dehn functions of finitely presented Bestvina–Brady
groups. The Dehn function of a finitely presented group is an important quasi-
isometry invariant, which bounds the number of relations that must be applied to
reduce a word representing the identity to the trivial word; see Sect. 2.5 for a precise
definition. In this sense, the Dehn function can be interpreted as a quantitative ver-
sion of finite presentability. Geometrically, the Dehn function of a finitely presented
group G provides an upper bound on the area required to fill a loop in the universal
cover of a finite 2-complex with fundamental group G. Notably, a group is hyper-
bolic if and only if its Dehn function is linear [Gro87], whereas any finitely presented
non-hyperbolic group has at least quadratic Dehn function [Gro87, Bow95].
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Dison proved that the Dehn function of a finitely presented Bestvina–Brady group
is bounded above by a quartic polynomial [Dis08]; see [A+13] for a purely geometric
proof. This naturally raises the question:

Question 1. Is the Dehn function of every finitely presented Bestvina–Brady group
equivalent to a polynomial?

Brady presented examples of quadratic, cubic, and quartic Dehn functions
[BRS07]. Subsequently, Dison, Elder, Riley, and Young showed that Stallings’ group
SB3 has quadratic Dehn function [D+09]. Later, Carter and Forester, using geo-
metric arguments, generalised this result by showing that SBn has quadratic Dehn
function for every n≥ 3 [CF17]. In fact, more generally, they showed that if Γ is a
join of three nonempty graphs, then the Dehn function of BBΓ is quadratic. More
recently, Chang proved that the Dehn functions of certain Bestvina–Brady groups
can be determined directly from the defining graphs [Cha21].

In the present work, we complete the picture giving a positive answer to Ques-
tion 1, by showing that the Dehn function of every finitely presented Bestvina–Brady
group is equivalent to a polynomial of degree d ∈ {1,2,3,4}. Furthermore, we provide
conditions on the defining graph of a finitely presented Bestvina–Brady group that
determine the precise degree d; see Theorem 1. In this sense, we obtain an effec-
tive classification of finitely presented Bestvina–Brady groups in terms of their Dehn
functions.

Besides providing an answer to Question 1, our main result contributes to the
understanding of the Dehn functions of subgroups of right-angled Artin groups; see
[Bri13, BS19] for more examples other than Bestvina–Brady groups.

1.1 Main result. It is known that BBΓ is hyperbolic if and only if Γ is a tree, as
can be seen directly by looking at the presentation given in [DL99]. This characterises
all the graphs Γ such that BBΓ has linear Dehn function. However, providing a
general criterion that distinguishes Bestvina–Brady groups with quadratic, cubic,
and quartic Dehn functions is a much more challenging task.

Recall that a graph Γ is called reducible if it is a join Γ1 ∗ Γ2, where Γ1 and Γ2
are nonempty subgraphs;1 otherwise, it is called irreducible. Our main result gives a
criterion on the defining graph Γ that determines the precise Dehn function of BBΓ
in terms of the maximal reducible subgraphs of Γ, that is, reducible subgraphs that
are maximal with respect to inclusion among all reducible subgraphs of Γ. To state
this full characterisation, we introduce the following definitions.

Definition 1 (Essentially 2-reducible graph). A graph is called essentially 2-
reducible if it is a join of two irreducible subgraphs, each with at least two vertices;
equivalently, if it is neither a cone graph nor a join of three or more subgraphs.

1 All subgraphs we consider are assumed to be induced subgraphs.
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Definition 2. Let Γ be a finite simplicial graph whose associated flag complex
Δ(Γ) is simply connected. If this is the case, we say that Γ has property (𝒟1), and
additionally, it has property
(𝒟2) if Γ is not a tree;
(𝒟3) if Γ contains a maximal reducible subgraph that is essentially 2-reducible;
(𝒟4) if Γ contains a maximal reducible subgraph whose associated flag complex is

not simply connected.

We are now ready to state our main result.

Theorem 1. Let Γ be a finite simplicial graph such that the associated flag complex
Δ(Γ) is simply connected. Let d(Γ) be the maximal α ∈ {1,2,3,4} such that Γ has
property (𝒟α). Then the Dehn function of the Bestvina–Brady group BBΓ satisfies

δBBΓ(n)≍ nd(Γ).

Therefore, property (𝒟α) is the obstruction to BBΓ having Dehn function strictly
less than a polynomial of degree α. This can be seen by combining Theorem 1 with the
fact that property (𝒟β) implies property (𝒟α) for β > α on every graph Γ with Δ(Γ)
simply connected. To see this, note that if Γ contains a reducible subgraph Λ = Λ′∗Λ′′

such that Δ(Λ) is not simply connected, then both Λ and Λ′ are disconnected, and
therefore irreducible with at least two vertices. This implies that Λ is essentially 2-
reducible, so (𝒟4)⇒ (𝒟3). It is also clear that if Γ contains an essentially 2-reducible
subgraph, then it contains a square and cannot be a tree, so (𝒟3)⇒ (𝒟2). Finally,
(𝒟1) is satisfied by definition.

If the defining graph Γ is reducible, then it coincides with its unique maximal
reducible subgraph, meaning that Γ cannot have (𝒟4). Thus, Theorem 1 implies the
following result.

Corollary 1. If Γ is an essentially 2-reducible graph such that Δ(Γ) is simply
connected, then BBΓ has cubic Dehn function.

If Γ is reducible but not essentially 2-reducible, then the Dehn function of BBΓ
is at most quadratic. While this is a simple application of Theorem 1, it also follows
from previously known results. Indeed, a reducible graph Γ that is not essentially 2-
reducible is either a cone graph, namely, Γ = {c}∗Λ for some subgraph Λ, or it splits
as a join of three or more subgraphs. In the first case, the group BBΓ is isomorphic
to the right-angled Artin group AΛ, which is a CAT(0) group2 [Cha07, Theorem 2.6],
and therefore has at most quadratic Dehn function [Bri02, Theorem 6.2.1]. In the
second case, the Dehn function of BBΓ being quadratic is a consequence of [CF17,
Corollary 4.3]. Note that although we draw some inspiration from the work of Carter
and Forester, our argument does not rely on their results.

2 A CAT(0) group is a group admitting a proper and cocompact action on a CAT(0) space by
isometries.
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Theorem 1 is also consistent with [Cha21, Theorem 1.1]. Indeed, let Δ(Γ) be
a 2-dimensional triangulated disc with square boundary. On the one hand, if Γ
is reducible, then it is the suspension of a path. In this case, according to both
Theorem 1 and [Cha21, Theorem 1.1], the Dehn function is cubic if the path has
length greater than or equal to 3 and quadratic otherwise. On the other hand, if Γ is
irreducible, then it has (𝒟4), as every reducible subgraph Λ containing the boundary
of Δ(Γ) must be strictly contained in Γ. Therefore, the boundary of Δ(Γ) is not null-
homotopic in Δ(Λ). Furthermore, the flag complex Δ(Γ) must contain an interior
2-simplex (otherwise, one gets a contradiction by [Cha21, Lemma 4.2]). Thus, both
statements imply that BBΓ has quartic Dehn function. However, note that the lower
bound established in [Cha21, Proposition 1.5] is incorrect.3

1.2 Applications of the main result. Showing that the Dehn function of a group
is strictly greater than quadratic yields geometric constraints on the group. In par-
ticular, since CAT(0) groups are finitely presented and have at most quadratic Dehn
function, condition (𝒟3) provides an obstruction to a Bestvina–Brady group acting
properly and cocompactly on a CAT(0) space.

Corollary 2. If a finite simplicial graph Γ has (𝒟3), then BBΓ is not a CAT(0)
group.

In general, not every finitely presented Bestvina–Brady group with quadratic
Dehn function is a CAT(0) group. Indeed, Stallings–Bieri groups have quadratic
Dehn function, but they are not CAT(0) since they are not of type ℱ∞ [BB97]. This
raises the following question:

Question 2. Does there exist a Bestvina–Brady group of type ℱ∞ with quadratic
Dehn function that is not a CAT(0) group?

To the best of our knowledge, no such examples are known in the literature. One
possible approach to finding such examples would be looking at higher filling func-
tions. Informally, the k-dimensional Dehn function of a group measures the difficulty
of filling k-spheres with (k+1)-balls in some suitable space on which the group acts;
the 1-dimensional Dehn function is the usual Dehn function. We refer the reader to
[A+13] for a precise definition of k-dimensional Dehn functions. For a CAT(0) group,
the k-dimensional Dehn function is at most n(k+1)/k [Gro83, Wen08]. In [A+13], the
authors showed that for a Bestvina–Brady group of type ℱk+1, the k-dimensional
Dehn function is bounded above by n2(k+1)/k.

Finally, combining the result of [Pap96] with Theorem 1 yields the following result
about the asymptotic cones of Bestvina–Brady groups.

3 For example, let Γ = {c} ∗ Λ, where Λ is the suspension of the path of length three. Then the
Dehn function of BBΛ is cubic, whereas the Dehn function of BBΓ is quadratic since Γ is a cone
graph. The gap in the proof of [Cha21, Proposition 1.5] is due to [Cha21, Proposition 5.3], which is
erroneous.
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Figure 1: Brady’s examples with cubic (left) and quartic (centre) Dehn functions. On the right, a
variation of Brady’s example whose Dehn function is quadratic.

Corollary 3. Let Γ be a finite simplicial graph such that Δ(Γ) is simply connected.
If Γ does not have (𝒟3), then the asymptotic cones of BBΓ are simply connected.

It would be interesting to know if there exist finitely presented Bestvina–Brady
groups with non-quadratic Dehn functions that have simply connected asymptotic
cones.

1.3 Examples. We present some examples to illustrate how to concretely apply
Theorem 1 to determine the Dehn function of a Bestvina–Brady group. Consider
the graphs Γ1, Γ2, and Γ3 shown in Fig. 1. The graphs Γ1 and Γ2 were considered
by Brady in [BRS07], where he constructed Bestvina–Brady groups with cubic and
quartic Dehn functions, respectively. Theorem 1 recovers these cases. Although the
graph Γ3 is a slight variation of Γ1, the Dehn function of the corresponding Bestvina–
Brady group was, to the best of our knowledge, not previously known. In particular,
it was not addressed in [CF17] or [Cha21].

The graph Γ1. The graph Γ1 is the suspension of the path of length three induced
by the vertices C, D, E, and F . Therefore, it is essentially 2-reducible, so Corollary 1
implies that BBΓ1 has cubic Dehn function.

The graph Γ2. In this case, the graph Γ2 has (𝒟4). To see this, let Λ be the join
of {C,F} and the subgraph induced by the vertices G, A, B, and H . Then Λ is a
maximal reducible subgraph of Γ2, and Δ(Λ) is not simply connected. Therefore,
the graph Γ2 has (𝒟4), and Theorem 1 implies that the Dehn function of BBΓ2 is
quartic.

The graph Γ3. Clearly, the graph Γ3 has (𝒟2). Nevertheless, it does not have (𝒟3),
since none of the maximal reducible subgraphs is essentially 2-reducible. In fact, all
the maximal reducible subgraphs are cone graphs. The graph Γ3 does contain a
unique essentially 2-reducible subgraph, namely, the square induced by the vertices
A, B, C, and E, but it is not maximal. Therefore, by Theorem 1, the Dehn function
of BBΓ3 is quadratic.

1.4 Strategy of the proof. In Theorem 1, the linear case corresponds to BBΓ
being hyperbolic, while the quadratic lower bound and the quartic upper bound
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follow respectively from BBΓ not being hyperbolic and from [Dis08, Theorem 1.1].
Therefore, to obtain Theorem 1, it suffices to show the following statement, which
involves only (𝒟3) and (𝒟4).

Theorem 2. Let Γ be a finite simplicial graph such that Δ(Γ) is simply connected, and
let α ∈ {3,4}. If Γ has property (𝒟α), then δBBΓ(n)≽ nα. Otherwise, δBBΓ(n)≼ nα−1.

The proof of Theorem 2 is divided into two parts: the quadratic and cubic upper
bounds are given by Theorem 5.1, and the cubic and quartic lower bounds are given
in Theorem 6.1.

From Bestvina and Brady’s construction [BB97], we can naturally view BBΓ
embedded in AΓ as the 0-level set of the height function φΓ : AΓ → ℤ, which sends
every generator to 1. This geometric perspective allows us, via a standard argument,
to compute the Dehn function by considering null-homotopic words and van Kampen
diagrams in the right-angled Artin group that have heights close to 0. We formalise
this by defining alternating words and almost-flat van Kampen diagrams. This is
particularly useful for establishing the lower bound: we show that the height of a
vertex in a van Kampen diagram can be computed by looking at corridors and annuli,
and the restriction on the height yields a lower bound on the number of intersections
between annuli, and hence, on the area of the van Kampen diagram.

The proof of the upper bound employs a refined version of Dison’s pushdown
argument for the general quartic upper bound [Dis08]. Dison’s argument does not
yield an optimal upper bound: it is possible for a null-homotopic word to have support
contained in a cone subgraph, in which case it has at most quadratic area, although
the “pushdown algorithm” may not recognise this and produce an inefficient filling.

We address this issue by introducing the notion of k-coloured words. A k-coloured
word should be thought of as a word w in the right-angled Artin group AΓ with
the usual generating set given by the vertices of Γ, together with a decomposition
w =w1 · · ·wk and a sequence of generators a1, . . . , ak of AΓ, such that every letter of
wi commutes with ai. We think of ai as colouring the subword wi. We are particularly
interested in the case where the coloured word has minimal k among all coloured
words representing a fixed group element in BBΓ.

The colouring information allows us to push coloured words down to the 0-level
set and to exploit the fact that some subwords have support contained in cone
subgraphs. We show that this technique produces the optimal upper bounds for the
Dehn function of BBΓ.

Throughout the proof of the upper bound, the case where Γ is irreducible is the
most challenging. Indeed, if Γ is reducible, then any group element can be represented
by a 2-coloured word. This is a useful property that can be used to produce concrete
triangular diagrams, as demonstrated in [CF17]. However, for a general graph Γ,
there is no uniform bound on the minimal number of colours required to represent
an element. We overcome this by using corridors in a van Kampen diagram over AΓ
to produce a suitable subdivision of triangular diagrams into regions that have a
uniformly bounded number of colours, while keeping a good control over the area.
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1.5 Structure of the paper. Sect. 2 includes basic definitions and properties
used throughout the paper. In Sect. 3, we define alternating words and almost-flat
van Kampen diagrams, and show how they can be used to compute the Dehn func-
tion of Bestvina–Brady groups. In Sect. 4, we introduce coloured words and show
how the colouring allows us to “push down” coloured words to the 0-level set in a
canonical way to obtain alternating words. The entire Sect. 5 is devoted to the proof
of Theorem 5.1, which establishes the upper bounds in Theorem 2. We establish the
lower bounds in Theorem 2 by proving Theorem 6.1 in Sect. 6.

2 Preliminaries

In this section, we introduce basic definitions, present well-known results, and estab-
lish general terminology and notation used throughout.

2.1 Graphs. A simplicial graph is a graph without loops or multiple edges. Given
a finite simplicial graph Γ, its vertex set and edge set are denoted by VΓ and EΓ,
respectively. Two vertices u and v are adjacent if they are connected by an edge,
in which case we write {u, v} ∈ EΓ. An (induced) subgraph Λ ⊆ Γ is a graph with
VΛ ⊆ VΓ and whose edge set EΛ consists of all edges of Γ that connect vertices in
VΛ. Recall that all subgraphs considered in the present work are assumed to be
induced subgraphs.

The flag complex associated to Γ, denoted by Δ(Γ), is the simplicial complex
whose 1-skeleton is Γ, and in which every complete subgraph of Γ spans a simplex.

Let u, v ∈VΓ. A (combinatorial) path between u and v of length k ∈ ℕ is a map
γ : {0, . . . , k} → VΓ such that γ(i− 1) is adjacent to γ(i) for all i ∈ {1, . . . , k}. The
distance between u and v in Γ is the length of a shortest path between them.

The join of two graphs Γ1 and Γ2, denoted by Γ1 ∗Γ2, is the graph whose vertex
set is VΓ1 ∪ VΓ2 and whose edge set is EΓ1 ∪ EΓ2 ∪ {{u, v} | u ∈ VΓ1 , v ∈ VΓ2}. A
graph is said to be reducible if it decomposes as a join of two nonempty subgraphs,
and irreducible otherwise.

The link of a vertex v ∈ VΓ, denoted by Lk(v), is the subgraph induced by the
vertices adjacent to v. The star of v, denoted by St(v), is the subgraph {v} ∗Lk(v).

The complement of Γ is the graph Γc with the same vertex set as Γ, such that
two vertices are adjacent in Γc if and only if they are not adjacent in Γ. Note that Γ
is irreducible if and only if its complement is connected. More generally, the graph Γ
admits a unique decomposition (up to the order) Γ = Γ1∗· · ·∗Γk, where Γ1, . . . ,Γk are
irreducible subgraphs of Γ; these can be characterised as the connected components
of the complement of Γ.

Let Λ be a reducible subgraph of Γ. We say that Λ is maximal if it is maximal with
respect to inclusion among all reducible subgraphs of Γ. We say that Λ is essentially
2-reducible if it is a join Λ1 ∗Λ2 of exactly two irreducible subgraphs, each of which
has at least two vertices. Equivalently, an essentially 2-reducible graph is a graph
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whose complement has exactly two connected components, neither of which is a
single vertex.

2.2 Words and free groups. For a set S, we denote by S−1 the set of formal
inverses of the elements in S. By a word w in S we mean an element of the free
monoid (S ∪ S−1)∗ generated by S ∪ S−1; that is, w can be written as s1 · · ·sk for
some si ∈ S ∪ S−1. In this case, the elements s1, . . . , sk are called the letters of w,
and k is called the length of w, denoted by |w|. A subword of w is a word of the
form sisi+1 · · ·sj for some 1≤ i≤ j ≤ k. A word in S is freely reduced if it does not
contain subwords of the form ss−1 or s−1s.

We denote the free group on a set S by F (S). There is a natural epimorphism of
monoids (S ∪ S−1)∗ ↠ F (S) that sends a word w to its equivalence class under free
insertions and reductions, that is, up to inserting or removing subwords of the form
ss−1 or s−1s in w. Two words w and w′ in S are said to be freely equivalent, written
w =F w′, if their images in F (S) coincide. We write w ≡w′ when words are actually
identical “letter by letter”.

2.3 Groups and presentations. An (abstract) generating set for a group G is a
set S equipped with a map ι : S → G such that the induced map F (S)→ G is an
epimorphism. Note that we do not require the map ι to be injective. Let R be a set
of words in S. We denote by ⟨S | R⟩ the group defined as the quotient of F (S) by
the normal closure of the image of R in F (S). Given the canonical map S→⟨S |R⟩,
the set S is naturally a generating set for ⟨S |R⟩. We say that ⟨S |R⟩ is generated
by S with relations R.

If G is a group together with an isomorphism G∼= ⟨S |R⟩, we say that ⟨S |R⟩ is
a presentation for G. When S and R are finite, we say that the presentation is finite
or that G is finitely presented.

Given a group G with presentation ⟨S | R⟩, we say that two words w and w′

in S represent the same element in G, written w =G w′, if their images under the
canonical surjective map (S ∪ S−1)∗ ↠G coincide.

2.4 Right-angled Artin groups and Bestvina–Brady groups. Let Γ be a finite
simplicial graph, and let SΓ be a set in one-to-one correspondence with the vertex set
VΓ; we denote the latter as {vs : s ∈ SΓ}. The right-angled Artin group AΓ associated
to Γ is the group with finite presentation4

𝒫Γ := ⟨SΓ | [s, t] = 1 for all {vs, vt} ∈ EΓ⟩.

The set SΓ and the presentation 𝒫Γ are called the standard generating set and the
standard presentation of AΓ, respectively.

4 We use the convention [x, y] = xyx−1y−1.
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If Λ is a subgraph of Γ, then AΛ is naturally a subgroup of AΓ. We say that AΓ
is irreducible if there are no nontrivial subgraphs Λ1, Λ2 ⊆ Γ such that AΓ splits as
AΛ1 ×AΛ2 ; this is equivalent to saying that the graph Γ is irreducible.

Recall that associated to a right-angled Artin group AΓ, there is a natural epimor-
phism φΓ : AΓ → ℤ, called the height function, defined by sending every generator
s ∈ SΓ to 1. The Bestvina–Brady group BBΓ associated to Γ is the kernel of the
height function.

Bestvina and Brady [BB97] showed that BBΓ is finitely presented if and only if the
flag complex Δ(Γ) is simply connected. In this case, Dicks and Leary [DL99] provided
an algebraic proof of this result by exhibiting a finite presentation, which was further
simplified by Papadima and Suciu [PS07]. We now describe their presentation.

Fix a total ordering ≪ on the vertex set VΓ, orient the edges of Γ increasingly,
and choose a spanning tree T of Γ. The generating set for BBΓ is the set of edges of
T , denoted by ST .

Let vs and vt be two vertices of Γ. The unique simple path in T from vs to vt
defines a word ws,t := eϵ11 · · ·eϵkk in ST , where ei is the ith edge in the path, and ϵi = 1
if the traversed direction agrees with the orientation of ei, and ϵi =−1 otherwise. If
e = (vs, vt) is an oriented edge, we also write we :=ws,t.

A directed triangle is a triple of oriented edges (e, f, g) in Γ with e = (vs1 , vs2),
f = (vs2 , vs3), and g = (vs1 , vs3) for some vertices vs1 ≪ vs2 ≪ vs3 . The presentation
for BBΓ provided by Papadima and Suciu can be expressed as

𝒬Γ = ⟨ST | [we,wf ] = 1 for all directed triangles (e, f, g)⟩.

2.5 Dehn functions. Let 𝒫 := ⟨S |R⟩ be a finite presentation for a group G. We
say that a word w in S is null-homotopic if it represents the identity in G. The area
with respect to 𝒫 of a null-homotopic word w in S is defined as

Area𝒫(w)

:= min
{︄
ℓ ∈ℕ :w =F

ℓ∏︂
i=1

xir
ϵi
i x

−1
i , where xi ∈ (S ∪ S−1)∗, ri ∈R, and ϵi =±1

}︄
.

The Dehn function of a finite presentation 𝒫 is the function δ𝒫 : ℕ→ℕ defined as

δ𝒫(n) := max{Area𝒫(w) : w null-homotopic word in S such that |w| ≤ n}.

Changing finite presentations of G does not alter the asymptotic behaviour of the
Dehn function of the presentations. More precisely, the Dehn function δG of G is well-
defined up to ≍-equivalence of functions: two functions f, g : ℕ→ℕ are ≍-equivalent,
and we write f ≍ g, if f ≼ g and g ≼ f , where f ≼ g means that there exist constants
A,B > 0 and C,D,E ≥ 0 such that f(n)≤Ag(Bn+C)+Dn+E for all n≥ 0. If 𝒫1
and 𝒫2 are two finite presentations for G, then δ𝒫1 ≍ δ𝒫2 . Thus, the Dehn function of
G is defined to be the ≍-equivalence class δ𝒫 for some (hence any) finite presentation
𝒫 of G.
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2.6 Van Kampen diagrams. The study of van Kampen diagrams over a finite
group presentation provides a powerful geometric tool for computing the areas of
null-homotopic words, and thus for establishing bounds on the Dehn function.

Let 𝒫 = ⟨S |R⟩ be a finite presentation; we may always assume that the relation
set R is closed under taking cyclic conjugates and inverses.

Given a null-homotopic word w in 𝒫 , a van Kampen diagram for w is a connected,
pointed, oriented, and labelled planar graph D such that each edge is labelled by
an element of S, and the boundary word of each bounded region in ℝ

2 \D is freely
equivalent to a word in R. The word is read either clockwise or counter-clockwise,
from an arbitrary starting vertex in the boundary of the region. The label of each
edge traversed this way has a +1 exponent (respectively, −1 exponent) if the reading
direction coincides with (respectively, is opposite to) the orientation of the edge.
Changing the starting point or direction alters the word by cyclic conjugation or
inversion. The boundary word of D, when read from the base point, is labelled by w.
The diagram D can also be given the structure of a 2-complex, where the graph is
viewed as the 1-skeleton, and each bounded region corresponds to a 2-cell attached
via the word labelling its boundary. The area of a van Kampen diagram D, denoted
by Area(D), is the number of bounded regions in ℝ

2 \D, or equivalently, the number
of 2-cells.

By van Kampen’s Lemma [Bri02, Theorem 4.2.2], the area of a null-homotopic
word w in a finite presentation 𝒫 satisfies

Area𝒫(w) = min{Area(D) |D is a van Kampen diagram for w over 𝒫}.

A van Kampen diagram attaining this minimum is said to be a minimal-area van
Kampen diagram.

2.7 Coarse diagrams. In the definition of van Kampen diagrams, we may weaken
the condition on the boundary words of bounded regions by allowing them to be
arbitrary null-homotopic words instead of relations. This yields a broader class of
diagrams that are helpful for our work.

Definition 2.1 (Coarse diagram). Let S a finite generating set for a group G. A
coarse diagram over S for a null-homotopic word w in S is a van Kampen diagram
for w, except that the bounded regions may be labelled by arbitrary null-homotopic
words.

To be more precise, a coarse diagram can be defined as a van Kampen diagram
over an infinite presentation, where the set of relations includes all null-homotopic
words in a set of generators. Although coarse diagrams cannot be used directly to
compute the Dehn functions of finitely presented groups, they can still be used to
construct van Kampen diagrams over finite presentations in a “patchwork” manner,
as follows.

Let 𝒫 = ⟨S | R⟩ be a finite presentation, and let D be a coarse diagram for a
null-homotopic word w in S. By definition, each bounded region Ri of D is labelled
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by a null-homotopic word wi in S. In particular, for each wi, there is a van Kampen
diagram Di over 𝒫 . Replacing each bounded region Ri in D with the corresponding
van Kampen diagram Di yields a van Kampen diagram D′ for w over the finite
presentation 𝒫 . In Sect. 3.3, we explain this “two-step filling” technique in greater
detail for the case of Bestvina–Brady groups, which is the focus of this work.

2.8 Corridors. To estimate the area of van Kampen diagrams, it is often use-
ful to study their geometric structure by means of corridors and annuli. We are
interested in the corridors and annuli in the van Kampen diagrams over the stan-
dard presentation 𝒫Γ for AΓ. For this reason, we give their definition only for this
particular case.

Let D be a van Kampen diagram over 𝒫Γ for a null-homotopic word w in SΓ, and
let a ∈ SΓ. An edge in D is called an a-edge if it is labelled by a. Let D⋆ be the graph
dual to the 1-skeleton of D, together with a vertex v∞ dual to the unbounded region
of D ⊂ℝ

2. Let λ be a loop in D⋆ whose edges are all dual to a-edges. The subdiagram
C of D, consisting of all the closed 1-cells and 2-cells of D dual to λ \ {v∞}, is called
an a-corridor if λ includes v∞, and an a-annulus if it does not. Moreover, if C is
an a-corridor, then the path obtained from λ by removing its intersection with the
interior of the unbounded region is called the core of C. We say that two corridors
cross if they intersect in one or more 2-cells; equivalently, if their cores intersect.

The standard orientation of ℝ2 induces an orientation on the core of a corridor C,
so that a-edges intersect the core transversally from left to right. The paths consisting
of 1-cells in C that are parallel to the core are called the sides of C. The length of
a corridor is the number of its 2-cells, and the label of a corridor is the word read
along either of its sides, following the orientation.

For a, b ∈ SΓ, if an a-corridor and a b-corridor cross each other, then [a, b] =
1 must be a relation in 𝒫Γ. This tells us that the corresponding vertices va, vb ∈
Γ are adjacent. In particular, we have a ̸= b, since, while a commutes with itself,
the commutator [a, a] is not a relation of 𝒫Γ. Thus, a corridor cannot cross itself.
Moreover, we have the following standard result regarding minimal-area van Kampen
diagrams in right-angled Artin groups.

Lemma 2.2. Let w be a null-homotopic word in the standard generating set SΓ of
AΓ. If D is a minimal-area van Kampen diagram for w over 𝒫Γ, then it contains no
annuli, and if two corridors intersect, then they do so at most once.

Proof. If D contained an annulus, then removing it would yield a diagram of smaller
area, a contradiction. Suppose instead that two corridors cross more than once, and
call the region between them a bigon. By performing surgery on an innermost bigon,
we can remove the double intersection and obtain a van Kampen diagram with two
fewer 2-cells, again, a contradiction. □
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3 Alternating words and diagrams in Bestvina–Brady groups

Throughout the rest of the work, we denote by Γ a finite simplicial graph whose
associated flag complex Δ(Γ) is simply connected.

As mentioned before, the group BBΓ is naturally embedded in AΓ as the 0-level
set of the height function φΓ : AΓ → ℤ. This perspective allows us to exploit our
understanding of the ambient group AΓ to study BBΓ.

To this end, instead of working with the abstract presentation of BBΓ, we use the
presentation for AΓ, but consider only words in SΓ that are close to the 0-level set; we
call these alternating words (see Definition 3.1). We also consider the van Kampen
diagrams that are close to the 0-level set, leading to the definition of almost-flat van
Kampen diagrams (see Definition 3.6). Almost-flat van Kampen diagrams are central
in our estimates for the Dehn function of BBΓ.

3.1 Alternating words and diagrams. We start by defining the set of alternating
words in SΓ, which represent elements in BBΓ.

Definition 3.1 (Alternating words). A word w in the standard generating set SΓ
for AΓ is called an alternating word if it has even length and its letters alternate
between elements of SΓ and S−1

Γ , starting with an element in SΓ.

Geometrically, the height function φΓ : AΓ → ℤ extends naturally to a map
φ̃Γ : Cay(AΓ, SΓ)→ ℝ, where Cay(AΓ, SΓ) denotes the Cayley graph of AΓ with re-
spect to the standard generating set SΓ. Thus, a word is alternating if and only if it
represents a path in φ̃−1

Γ ([0,1])⊂Cay(AΓ, SΓ) that starts and ends at φ̃−1
Γ (0).

The following lemma shows that (up to free equivalence) there is a one-to-one
correspondence between alternating words and words in the standard generating set
ST of BBΓ.

Lemma 3.2. Let ≪ be a total order on the vertices of Γ. Let T be a spanning tree for
Γ, where the edges are oriented increasingly. Let ST be the generating set for BBΓ
with respect to T , and let AltΓ be the set of alternating words in SΓ. There exist
canonical maps Ψ: (ST ∪ S−1

T )∗ →AltΓ and Φ: AltΓ → (ST ∪ S−1
T )∗ that satisfy the

following properties.
(1) The composition Φ ◦Ψ is the identity map on (ST ∪ S−1

T )∗.
(2) For every u ∈AltΓ, we have Ψ(Φ(u)) =F u.
(3) For every u ∈AltΓ, the words Φ(u) and u represent the same element in BBΓ.

Similarly, for every v ∈ (ST ∪ S−1
T )∗, the words Ψ(v) and v represent the same

element in BBΓ.
(4) If r is a relation in the Papadima–Suciu presentation corresponding to a directed

triangle with vertices va ≪ vb ≪ vc, then Ψ(r) is freely equivalent to a conjugate
of ac−1ba−1cb−1.

In particular, there exists a canonical isomorphism between F (ST ) and the image of
AltΓ in F (SΓ) via the natural quotient map (SΓ ∪ S−1

Γ )∗ → F (SΓ).
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Proof. The maps Ψ and Φ are defined as follows. If w = eϵ11 · · ·eϵkk is a word in ST ,
where ei = (vsi , vti) is an oriented edge of T for 1≤ i≤ k, we define

Ψ(w) := (s1t
−1
1 )ϵ1 · · · (skt−1

k )ϵk .

Conversely, let u = s1t
−1
1 · · ·snt−1

n be an alternating word, where si, ti ∈ SΓ for 1 ≤
i ≤ n. Recall from the definition of the Papadima–Suciu presentation that wsi,ti is
the word in the generating set ST obtained by taking the product of the edges along
the path in T from vsi to vti . We define

Φ(u) :=ws1,t1 · · ·wsn,tn .

The statements (1), (2), and (3) are clear from the definition of Ψ and Φ, and the
fact that ws,t represents the element st−1. For (4), let (e, f, g) be a directed triangle
with e = (va, vb) and f = (vb, vc). Since Δ(Γ) is simply connected, the words wee

−1

and wff
−1 are null-homotopic. It then follows from the definition of Φ and Ψ that

Φ(we) = Φ(e) = ab−1; similarly Φ(wf ) = bc−1. Thus, for r = [we,wf ], we have

Φ(r) = ab−1bc−1ba−1cb−1 =F ac−1ba−1cb−1. □

Using alternating words, we define the following notion of length for an element
in BBΓ.

Definition 3.3. For g ∈BBΓ, we define the flat norm of g as

∥g∥♭ := min{|w| :w is an alternating word representing g}.

For an element g ∈ BBΓ, the flat norm ∥g∥♭ and the usual word metric with
respect to ST , denoted by ∥g∥ST

, are Lipschitz equivalent, as shown by the following
result.

Lemma 3.4. Let T be a spanning tree for Γ. There exists C > 0 such that for every
g ∈BBΓ, we have

1
C
∥g∥ST

≤ ∥g∥♭ ≤C∥g∥ST
.

Proof. The result follows directly from the isomorphism between F (ST ) and the
image of AltΓ in F (SΓ); see Lemma 3.2. □

Recall that coarse diagrams are van Kampen diagrams in which the bounded
regions are labelled by arbitrary null-homotopic words. We now define a particular
class of coarse diagrams, where the bounded regions are labelled by null-homotopic
alternating words.

Definition 3.5 (Alternating diagram). Let w be a null-homotopic alternating word
in the standard generating set SΓ of AΓ, and let D be a coarse diagram over 𝒫Γ for
w. We say that D is an alternating diagram for w if every loop based at a vertex of
height 0 is labelled by an alternating word.
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Definition 3.5 can also be interpreted geometrically as follows. The 1-skeleton of a
coarse diagram D over 𝒫Γ admits a natural immersion into Cay(AΓ, SΓ). To construct
the immersion, for each vertex v of D, choose a combinatorial path connecting the
base point of D to v, and send v to the group element gv that is represented by the
word labelling the chosen path. Since bounded regions are labelled by null-homotopic
words, the element gv is independent of the choice of path. In particular, every vertex
v has a well-defined height φΓ(gv).

Alternating diagrams are the coarse diagrams whose images in the Cayley graph
under the natural immersion are contained in φ̃−1

Γ ([0,1]). Equivalently, they are
coarse diagrams in which all vertices have height 0 or 1.

3.2 Almost-flat van Kampen diagrams. Note that a van Kampen diagram over
the standard presentation 𝒫Γ of AΓ cannot be an alternating diagram (unless the
boundary word is freely trivial), since none of the defining relations are alternating
words. To address this, we allow the van Kampen diagrams to be slightly farther
away from the 0-level set.

Definition 3.6 (Almost-flat van Kampen diagram). Let w be a null-homotopic
alternating word in the standard generating set SΓ of AΓ. An almost-flat van Kampen
diagram for w is a van Kampen diagram D for w over 𝒫Γ, such that every vertex
p ∈D has height φΓ(p) ∈ {0,1,2}.

The reader should think of alternating diagrams as the coarse version of almost-
flat van Kampen diagrams. All the regions of an alternating diagram D for a null-
homotopic alternating word w are labelled by alternating words (assuming that we
start reading each word from a vertex at height 0). So, by filling each bounded region
of D with an appropriate almost-flat van Kampen diagram, we obtain an almost-flat
van Kampen diagram for w.

We use almost-flat van Kampen diagrams to compute the asymptotic behaviour
of the Dehn function of BBΓ.

Definition 3.7 (Almost-flat area). Let w be a null-homotopic alternating word in
the standard generating set SΓ of AΓ. The almost-flat area of w is the quantity
defined as

Area♭(w) = min{Area(D) :D is an almost-flat van Kampen diagram for w}.

Proposition 3.8. Define δ♭ : ℕ→ℕ by

δ♭(n)

:= max
{︂
Area♭(w) : w is a null-homotopic alternating word in AΓ with |w| ≤ n

}︂
.

Then, we have δ♭ ≍ δBBΓ .

Proposition 3.8 follows from the following technical lemma.
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Lemma 3.9. For every H ∈ℕ, there exists MH ∈ℕ such that the following holds. Let
w be a null-homotopic alternating word in AΓ. Suppose that w admits a van Kampen
diagram D over 𝒫Γ such that the height of every vertex v satisfies |φΓ(v)| ≤H . Then
w admits an alternating diagram with the same number of bounded regions as D,
such that each bounded region is labelled by an alternating word of length at most
MH .

Lemma 3.9 can be proved using a fairly standard “pushing down” argument; see
[Dis08, A+13]. We postpone the proof of Lemma 3.9 until Sect. 4, where we introduce
a variation of this technique to establish the upper bounds in Theorem 1. We now
show how Lemma 3.9 implies Proposition 3.8.

Proof of Proposition 3.8. Fix a spanning tree T for Γ, and let the maps Φ: AltΓ →
(ST ∪ S−1

T )∗ and Ψ: (ST ∪ S−1
T )∗→AltΓ be as in Lemma 3.2.

We start by proving δ♭ ≼ δBBΓ . Let u be a null-homotopic alternating word of
length 2n, and let D be a van Kampen diagram for the word w = Φ(u) over the
Papadima–Suciu presentation 𝒬Γ of BBΓ; its edges are labelled by elements of ST ,
corresponding to oriented edges of T . Replacing each edge of D, labelled with an
oriented edge of T oriented from vs to vt, with two consecutive edges labelled by
st−1 yields an alternating diagram for Ψ(w) =F u, where all bounded regions are
labelled with words of the form Ψ(r) for some relation r of 𝒬Γ. By Lemma 3.2 (4),
the relations of the presentation for BBΓ are mapped to words that are, up to free
equivalence and conjugation, of the form ac−1ba−1cb−1. Such an alternating word
admits an almost-flat van Kampen diagram of area 3, so u admits an almost-flat van
Kampen diagram of area 3 ·Area(D). This shows that δ♭(2n)≤ 3δ𝒬Γ(n · |EΓ|).

We now prove the inequality δ♭ ≽ δBBΓ . Let H = 2 and M2 be the constants in
Lemma 3.9. Let R be the set of null-homotopic words in ST of length at most M2 · |VΓ|
and 𝒫 := ⟨ST |R⟩. Consider a null-homotopic word w of length n in ST , and let D

be an almost-flat van Kampen diagram for u := Ψ(w) with area A≤ δ♭(2n).
Since D in an almost-flat van Kampen diagram, the height of every vertex v ∈D

satisfies |φΓ(v)| ≤ 2. It follows from Lemma 3.9 that there exists a constant M2,
independent of u, such that u admits an alternating diagram with A bounded regions,
all labelled by alternating words of length at most M2. By van Kampen’s Lemma
[Bri02, Theorem 4.2.2], there are alternating words αi and ui for i ∈ {1, . . . ,A}, such
that |ui| ≤M2 and

u =F

A∏︂
i=1

αiuiα
−1
i .

By applying Φ on both sides of the identity we get

w =F

A∏︂
i=1

Φ(αi)Φ(ui)Φ(αi)−1.

A simple estimate on the length of Φ(ui) shows that Φ(ui) ∈R. This implies that 𝒫
is a presentation for BBΓ, and δ𝒫(n)≤ δ♭(2n). □
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3.3 Estimating the almost-flat area. In this section, we develop some technical
tools that are helpful to construct almost-flat van Kampen diagrams with good
estimates on their areas.

As previously mentioned, one approach is to start with an alternating diagram
D for a null-homotopic alternating word w and then fill each bounded region with
an almost-flat van Kampen diagram. The following quantity, which is well-defined
for any coarse diagram, allows us to control the area of the resulting almost-flat van
Kampen diagram.

Definition 3.10 (Density). Let G be a group with a finite generating set S, and let
D be a coarse diagram over S for a null-homotopic word w in G. Denote the labels
of the bounded regions of D by wi, i ∈ I . The density of D is defined as

ρ(D) :=
∑︁

i∈I |wi|
|w| .

Equivalently, the density relates the total number of edges of D with the length
of w.

Lemma 3.11. Let D be a coarse diagram for a null-homotopic word w, and denote
by ED the edge set of D. The density of D satisfies

ρ(D) =
2|ED|
|w| − 1.

Proof. Let wi, i ∈ I , denote the labels of the bounded regions of D. A double-counting
argument on the lengths of w and the wi yields

2|ED|= |w|+
∑︂
i∈I
|wi|.

The result now follows. □

The next result illustrates how density comes into play when estimating the
almost-flat area of the boundary alternating word in terms of the areas of the
bounded regions.

Lemma 3.12. Let α ≥ 1 and C > 0 be real numbers. Suppose that w is a null-
homotopic alternating word in SΓ admitting an alternating diagram D, such that
for every alternating word wi labelling a bounded region of D, we have Area♭(wi)≤
C · |wi|α. Then

Area♭(w)≤C · ρ(D)α · |w|α.

Proof. By assumption, we can fill each bounded region of D, labelled by wi, with an
almost-flat van Kampen diagram whose almost-flat area is at most C · |wi|α. After
filling each bounded region of D, we obtain an almost-flat van Kampen diagram D′
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for w with

Area(D′)≤
∑︂
i

Area♭(wi)≤
∑︂
i

C · |wi|α ≤C ·
(︄∑︂

i

|wi|
)︄α

=C · ρ(D)α · |w|α.

This implies Area♭(w)≤C · ρ(D)α · |w|α. □

Lemma 3.12 tells us that, whenever we can control the density of the alternating
diagram, the almost-flat area of the boundary word has the same asymptotic be-
haviour as the almost-flat area of the labels of the bounded regions. We formalise
this strategy as the following corollary.

Corollary 3.13. Let W and W ′ be two families of null-homotopic alternating
words. Let α≥ 1 and C > 0 be constants such that each w′ ∈W ′ has almost-flat area
bounded above by C · |w′|α. Suppose that for every w ∈W , there exists an alternating
diagram Dw such that
• all its bounded regions are labelled by words in W ′, and
• its density is bounded above uniformly in w.

Then there exists C ′ > 0 such that for all w ∈W , we have Area♭(w)≤C ′ · |w|α.

Proof. Let C ′ :=C · (sup{ρ(Dw) :w ∈W})α, which is finite by hypothesis. The result
is now a direct consequence of Lemma 3.12. □

The two-step filling procedure described above can also be turned into a multistep
procedure, by means of the following observation.

Lemma 3.14. Let D be an alternating diagram for a null-homotopic alternating word
w in SΓ, and denote by wi, i ∈ I , the labels of the bounded regions of D. Let D′ be
the diagram where each bounded region is replaced with an alternating diagram Di

for wi. Then

ρ(D′)≤ ρ(D) ·max{ρ(Di) : i ∈ I}.

Proof. Denote by wi,j , j ∈ Ji, the labels on the bounded regions of Di. Let M :=
max{ρ(Di) : i ∈ I}, we get

∑︂
i∈I

∑︂
j∈Ji

|wi,j|=
∑︂
i∈I

ρ(Di) · |wi| ≤M ·
∑︂
i∈I
|wi|=M · ρ(D) · |w|. □

We conclude this section with a standard technique for obtaining upper bounds
on the area of null-homotopic words. The idea behind this method can be traced back
to Gromov [Gro93, 5.A′′

3 ]. Gersten and Short later formalised this idea and used it
to provide upper bounds on the Dehn functions of certain subgroups of hyperbolic
groups [GS02, Lemma 2.2]. In the next result, we present a generalised version due to
Carter and Forester [CF17], applied to our setting of alternating words and almost-
flat area. Intuitively, it tells us that to obtain an estimate of the Dehn function, it
suffices to consider a certain class of triangular diagrams.
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Lemma 3.15 (Triangle Lemma). Let C > 0 and α ≥ 2 be real numbers. For each
g ∈ BBΓ, choose an alternating word wg representing g such that |wg| ≤ C · ∥g∥♭.
Suppose that for every g1, g2, g3 ∈BBΓ satisfying g1g2g3 = 1, we have

Area♭(wg1wg2wg3)≤C · (∥g1∥♭ + ∥g2∥♭ + ∥g3∥♭)α.

Then, δBBΓ(n)≼ nα.

Proof. Since the proof is fairly standard and analogous to the proof of [CF17, The-
orem 4.2], we give only the main idea and omit the details. Starting with an empty
diagram for an alternating word w, we subdivide it into triangular regions whose
sides are labelled by alternating words of the form wg. By hypothesis, we can fill
each triangular region with an almost-flat van Kampen diagram and estimate the
almost-flat area of the whole diagram.

By exploiting the geometric series, one can see that the area is at most C ′ · |w|α
for some C ′ =C ′(C,α). Combining this with Proposition 3.8 yields the result. □

4 Coloured words and coloured diagrams

Establishing an upper bound for the area of a null-homotopic alternating word w in
BBΓ is generally challenging. As mentioned in the introduction, there are cases where
this is straightforward. For example, if we express w as a word in SΓ and assume
that all its letters commute with some fixed generator a ∈ SΓ, then w represents an
element in BBSt(va), which is isomorphic to ALk(va) via the homomorphism induced
by sa−1 ↦→ s for vs ∈ Lk(va). Thus, the area of w in BBΓ is at most |w|2. Concretely,
to transform w into the empty word, we commute its letters different from a until
they cancel out, using a as a “counterweight” to keep the word alternating at all
times.

To handle the general case, the main idea is to split a null-homotopic alternating
word w into subwords in such a way that each subword has its support contained
in the star of some vertex of Γ. This provides a preferred way to manipulate each
subword, as it belongs to the special case discussed above. We also want to keep track
of the vertex used as a counterweight, as there might be multiple choices available.

This leads to the definition of coloured words, which can be intuitively understood
as follows. In the example above, the counterweight a ∈ SΓ is now thought of as the
colour of the word w. In general, the palette of colours consists of the standard
generating set SΓ that corresponds to the generators used as counterweights. Given
a word w in SΓ, we “paint” its letters so that each letter of w commutes with its
colour.

This process splits w into subwords by grouping together the maximal substrings
of consecutive letters in w that share the same colour. A subword with colour a defines
an element in the right-angled Artin group ASt(va). This gives rise to a canonical way
to “push down” this coloured word to obtain an alternating word in BBSt(va); see
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Definition 4.10. Moreover, we exploit this idea to define a class of diagrams for null-
homotopic coloured words, called coloured diagrams, and a way to “push down” these
diagrams to obtain alternating diagrams.

4.1 Coloured words and pushdowns. We now give the formal definitions of
coloured words and their pushdowns, and present some basic properties.

Definition 4.1. The coloured generating set is the subset Scol
Γ ⊆ SΓ×SΓ consisting

of all pairs (s, a) such that [s, a] = 1. It forms a generating set for AΓ (with repeated
generators) when equipped with the map Scol

Γ →AΓ defined by (s, a) ↦→ s. A coloured
word is a word in Scol

Γ , that is, an element in the free monoid generated by Scol
Γ ∪

(Scol
Γ )−1.

The letter (s, a) ∈ Scol
Γ should be thought of as the letter s coloured with the

colour a. To emphasise this, we introduce the following notation.

Notation 4.2. Let a ∈ SΓ. If s ∈ SΓ commutes with a, then we denote by [s]a the
element (s, a) ∈ Scol

Γ and refer to it as a coloured letter. The formal inverse of [s]a is
denoted by [s]−1

a . Given a word w = s1 · · ·sk in SΓ and a ∈ SΓ that commutes with si
for all i ∈ {1, . . . , k}, we write [w]a to denote the coloured word [s1]a · · · [sk]a; we refer
to a as the colour of w. Moreover, whenever we write [w]a, we implicitly assume that
all the letters of w commute with a.

Definition 4.3. Let w = [s1]a1 · · · [sk]ak be a coloured word. The underlying word
of w is the word w = s1 · · ·sk in SΓ obtained by forgetting all the colours.

By definition, if w is a coloured word and w its underlying word, then |w|= |w|.

Remark 4.4. In the rest of the paper, we use bold letters for coloured words in Scol
Γ

and the same letters in normal font for the corresponding underlying word in SΓ.

A coloured word w and its underlying word w represent the same element in AΓ.
In particular, a coloured word w is null-homotopic if and only if its underlying word
w is null-homotopic.

Definition 4.5 (k-coloured word). A k-coloured word is a coloured word of the
form

[w1]a1 · · · [wk]ak ,

where wi is a nonempty word for all i, and ai differs from ai+1 for all i ∈ {1, . . . , k−1}.
We call 1-coloured words monochromatic.

Remark 4.6. As an example, the word [w1]a[w2]b[w3]a is 3-coloured, even though a
colour is repeated.

Given a word w = sϵ11 · · ·sϵkk in SΓ, where ϵi ∈±1, there is a natural way to “colour
it”, which we refer to as self-colouring, namely, the coloured word [s1]ϵ1s1 · · · [sk]ϵksk .
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Coloured words are useful because the colours provide a preferred way to “push
down” a word so that it becomes an alternating word in SΓ. We formalise this as
follows.

We fix, once and for all, a generator s0 ∈ SΓ.

Definition 4.7 (Transition word). Let a ∈ SΓ and T a spanning tree of Γ. Let
γa : [0, ℓ]→ T be the unique simple path in T from vs0 to va. For i ∈ {0, . . . , ℓ}, let
ti ∈ SΓ be such that vti = γa(i) ∈VΓ; in particular, t0 = s0, tℓ = a, and [ti, ti+1] = 1.
For h ∈ ℤ, we define the transition word τa,h as the alternating word

τa,h := (t0t−1
1 )h · · · (tℓ−1t

−1
ℓ )h.

Observe that τa,h represents the element sh0a
−h ∈ AΓ. For every pair of vertices

vx, vy ∈ T , Dison defined the word ph(vx, vy) in ST ; see [Dis08, Sect. 4]. The image
of ph(vx, vy) under the map Ψ: (ST ∪ S−1

T )∗ → AltΓ from Lemma 3.2 is the word
τ−1
x,hτy,h.

We record the following straightforward observation about the length of the tran-
sition words.

Lemma 4.8. Let a ∈ SΓ and h ∈ ℤ. If a ̸= s0, then 2|h| ≤ |τa,h| ≤ 2|h| · |VΓ|. Otherwise,
τa,h is the trivial word.

Proof. The result follows directly from the definition of τa,h and the observation that
the length of the path γa defining τa,h is at most |VΓ|. □

Notation 4.9. For a word w in SΓ and a ∈ SΓ, we denote by w(Γa−1) the word
obtained from w by replacing each letter s ∈ SΓ (respectively, s−1 ∈ S−1

Γ ) with sa−1

(respectively, as−1).

Definition 4.10 (Pushdown of coloured words). Let h ∈ ℤ and let w =
[w1]a1 · · · [wk]ak be a k-coloured word. Let h0 = h and hi = h +

∑︁i
j=1φΓ(wj) for

i ∈ {1, . . . , k}. The h-pushdown of w is the alternating word

pushh(w) :=
k∏︂

i=1
τai,hi−1wi(Γa−1

i )τ−1
ai,hi

.

We give an example for the definition of the pushdown of a coloured word.

Example 4.11. Let Γ = {va}∗Λ be a cone graph and set a ∈ SΓ to be the generator
corresponding to the vertex va. Fix the spanning tree of Γ consisting of all the
edges that contain va as a vertex. Let w = s2

1s
−1
2 s3 be a word in SΓ. Consider the

monochromatic word w = [w]a = [s1]2a[s2]−1
a [s3]a. For h ∈ ℤ, the h-pushdown of w is

the alternating word

pushh(w) = τa,hw(Γa−1)τ−1
a,h+φΓ(w)

= τa,h(s1a
−1)2(as−1

2 )(s3a
−1)τ−1

a,h+2
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= (s0a
−1)h(s1a

−1)2(as−1
2 )(s3a

−1)(as−1
0 )h+2,

where s0 is the chosen generator in SΓ corresponding to a chosen base point in the
spanning tree.

We now prove a series of lemmas about the pushdown of coloured words.

Lemma 4.12. Let h ∈ ℤ. The h-pushdown has the following properties.
(1) Let [s]ϵa be a coloured letter and ϵ =±1, then

pushh([s]ϵa) = τa,h(sa−1)ϵτ−1
a,h+ϵ.

(2) Let w and w′ be coloured words, then

pushh(ww′) =F pushh(w)pushh+φΓ(w)(w′).

(3) If w =F w′, then pushh(w) =F pushh(w′).
(4) If the underlying word w of w is alternating, then push0(w) =F w.

Proof. Statement (1) follows from Definition 4.10. Statement (2) also follows from
Definition 4.10. In fact, if consecutive colours are different we get an identity be-
tween words, whereas if the last colour of w coincides with the first colour of w′,
then a free insertion is required; we illustrate this in the case where w and w′ are
monochromatic. In this case, we have ww′ = [w]a[w′]a = [ww′]a, therefore

pushh([ww′]a) = τa,h · (ww′)(Γa−1) · τ−1
a,h+φΓ(ww′)

=F τa,hw(Γa−1)τ−1
a,h+φΓ(w)τa,h+φΓ(w)w

′(Γa−1)τ−1
a,h+φΓ(ww′)

= pushh([w]a)pushh+φΓ(w)([w′]a).

Combining (1) and (2) shows that pushh([s]a[s]−1
a ) is freely trivial, and (3) follows.

Finally, to show (4), it suffices to check that the identity holds for a coloured word
w = [a]b[c]−1

d of length 2. Here, we have

push0(w) = τb,0ab
−1τ−1

b,1 τd,1dc
−1τ−1

d,0 =F ab−1bs−1
0 s0d

−1dc−1 =F ac−1,

where we use the fact that τa′,0 is the trivial word and τa′,1 =F a′s0
−1 for a′ ∈ SΓ. □

Lemma 4.13. Let w = [w1]a1 · · · [wk]ak be a k-coloured word. Let h0 = h ∈ ℤ and
hi = h+

∑︁i
j=1 φΓ(wj) for i ∈ {1, . . . , k}. Then

|pushh(w)| ≤ 2|w|+ 4
(︄

k∑︂
i=0
|hi|

)︄
· |VΓ|.

Additionally, if w is null-homotopic and a1 ̸= ak, then h0 = hk and

2|w|+ 2
k∑︂

i=1
|hi| ≤ |pushh(w)|.
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Proof. By Definition 4.10, we have

|pushh(w)|=
k∑︂

i=1
|τai,hi−1 |+

k∑︂
i=1
|wi(Γa−1

i )|+
k∑︂

i=1
|τ−1

ai,hi
|

=
k∑︂

i=1
|wi(Γa−1

i )|+
k−1∑︂
i=1

(|τai+1,hi |+ |τai,hi |) + |τa1,h0 |+ |τak,hk
|.

Since |wi(Γa−1
i )|= 2|wi|, we have

k∑︂
i=1
|wi(Γa−1

i )|= 2
k∑︂

i=1
|wi|= 2|w|.

Using Lemma 4.8 to bound the lengths of the transition words gives

k−1∑︂
i=1

(|τai+1,hi |+ |τai,hi |) + |τa1,h0 |+ |τak,hk
| ≤

(︄
4
k−1∑︂
i=1
|hi|+ 2|h0|+ 2|hk|

)︄
· |VΓ|.

Putting all the identities and inequalities together yields the desired upper bound.
For the lower bound, note that w being null-homotopic implies that h0 = hk.

Moreover, for i ∈ {1, . . . , k− 1}, since ai and ai+1 are different, at least one of them
is different from s0; the same holds for a1 and ak. Therefore, Lemma 4.8 yields

k−1∑︂
i=1

(|τai+1,hi |+ |τai,hi |) + |τa1,h0 |+ |τak,hk
| ≥ 2

k−1∑︂
i=1
|hi|+ 2|hk|. □

Lemma 4.14. Let h ∈ ℤ. If w = [w1]a1 · · · [wk]ak represents g ∈ AΓ, then pushh(w)
represents the element sh0gs

−h−φΓ(g)
0 in BBΓ.

Proof. Let h0 = h ∈ ℤ and hi = h +
∑︁i

j=1 φΓ(wj) for i ∈ {1, . . . , k}. Since ai
commutes with wi for i ∈ {1, . . . , k}, the word wi(Γa−1

i ) represents the element
wia

−φΓ(wi)
i = a

hi−1
i wia

−hi
i . Moreover, we have τai,h =AΓ sh0ai

−h. The result follows
from Lemma 4.12. □

4.2 Efficient coloured words. In the previous section, we showed that a coloured
word can always be turned into an alternating word by means of the pushdown. In
this section, we show that for each element of BBΓ, there is a particularly nice
coloured word whose pushdown represents it.

Definition 4.15. Let w = [w1]a1 · · · [wk]ak be a k-coloured word. A proper block of
w is a subword of the form [wi]ai [wi+1]ai+1 · · · [wj ]aj for some 2≤ i≤ j ≤ k− 1.

Definition 4.16. We call a k-coloured word w representing g ∈AΓ:
• geodesic, if it is a minimal-length representative for g;
• chromatically minimal, if there are no k′-coloured words representing g with
k′ < k;

• efficient, if it is geodesic and every proper block is chromatically minimal.
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Remark 4.17. Note that a coloured word w is geodesic if and only if the under-
lying word w is a minimal-length representative for g with respect to the standard
generating set SΓ.

If a coloured word is chromatically minimal and geodesic, then it is also efficient
because the proper blocks of a chromatically minimal word are chromatically mini-
mal. The reason for using proper blocks in the definition of efficient coloured words
is that being chromatically minimal does not pass to subwords. As an example, la-
bel the vertices of a path of length four, from left to right, by a, b, c, and d. Then
[ab]a[cd]c is chromatically minimal, whereas [b]a[cd]c is not, since it represents the
same element bcd as [bcd]c. However, it is not difficult to see that a subword of an
efficient word is also efficient, as the proper blocks of a subword are, in particular,
proper blocks of the original coloured word.

Lemma 4.18. For each element g ∈ BBΓ, there exists an efficient coloured word
representing it.

Proof. Let w be a chromatically minimal representative for g. If it is not geodesic,
then the underlying word w has a subword of the form sw′s−1, where w′ is a word
commuting with s ∈ SΓ∪S−1

Γ . Removing the coloured letters corresponding to s and
s−1 from w yields another chromatically minimal word of shorter length. Repeating
this procedure eventually yields a chromatically minimal and geodesic representative,
and therefore, an efficient one. □

In general, the length of the pushdown of a coloured word w might be considerably
greater than the length of w because transition words contribute to its length. Since
Bestvina–Brady groups can be quadratically distorted in right-angled Artin groups
[Tra17, Theorem 1.1], the increase in the length of the pushdown cannot be avoided.
Nevertheless, when w is efficient, the length of its pushdown is always optimal (up
to a multiplicative constant).

Proposition 4.19. Let w be an efficient k-coloured word representing an element
g ∈BBΓ. Then

∥g∥♭ ≤ |push0(w)| ≤ (24|VΓ|+ 2)∥g∥♭.

To prove Proposition 4.19, we need the following two lemmas.

Lemma 4.20. Let w be a null-homotopic word in SΓ and D a van Kampen diagram
for w. Let p and q be two vertices on the boundary of D, and let g be the element
represented by the word read from p to q along the boundary. Let C and C ′ be
corridors containing p and q, respectively.
(1) If C and C ′ cross, then g can be represented by a 2-coloured word.
(2) If there is a corridor that crosses both C and C ′, then g can be represented by a

3-coloured word.

Proof. To prove (1), let C be an a-corridor and C ′ a b-corridor for some a, b ∈ SΓ. If
C and C ′ cross, then the side of C containing p intersects the side of C ′ containing
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q in a vertex p′. Let w′ be the word labelling the path along the side of C from p

to p′, and let w′′ be the word labelling the path along the side of C ′ from p′ to q. It
follows that [w′]a[w′′]b is a 2-coloured word representing g.

For the proof of (2), let C ′′ be a c-corridor for some c ∈ SΓ that crosses both C

and C ′, and let p′ and q′ be the intersection vertices of one side of C ′′ with the sides
of C and C ′ that contain p and q, respectively. Let w, w′′, and w′ be the words
labelling the paths from p to p′, p′ to q′, and q′ to q, respectively. Then, the element
g is represented by the 3-coloured word [w]a[w′′]c[w′]b. □

Lemma 4.21. Let w = [w1]a1 · · · [wk]ak be an efficient k-coloured word whose under-
lying word is w =w1 · · ·wk. Let w′ be a word in AΓ such that ww′ is null-homotopic,
and let D be a minimal-area van Kampen diagram for ww′. For i ∈ {1, . . . , k−1}, let
pi be the vertex on the boundary of D at the intersection of wi and wi+1, and let Ci

be a corridor containing pi. Then, for i, j ∈ {1, . . . , k − 1}, the following statements
hold.
(1) If |i− j| ≥ 3, then Ci and Cj do not cross.
(2) If |i− j| ≥ 4, no corridor crosses both Ci and Cj .
(3) The total length of the corridors Ci satisfies

∑︂
i

|Ci| ≤ 2|ww′|.

Proof. Let i, j ∈ {1, . . . , k−1} with j ≥ i+3. If Ci and Cj cross, then by Lemma 4.20,
the group element g represented by the proper block [wi+1]ai+1 · · · [wj ]aj can be repre-
sented by a 2-coloured word, contradicting the efficiency of w. Similarly, let j ≥ i+4,
and suppose that Ci and Cj are crossed by the same corridor. Then the element g,
defined as above, would be represented by a 3-coloured word, again a contradiction.
This proves (1) and (2). In particular, the statement in (2) implies that a corridor
C in D can cross at most four of the corridors C1, . . . ,Ck−1.

Since D is a minimal-area diagram, it contains no annuli, and every two corridors
cross at most once. Therefore, the length of a corridor equals the number of corridors
crossing it. There are 1

2 |ww′| corridors in total, and each corridor can cross at most
four of the corridors in the family {C1, . . . ,Ck−1}. That is, each of the 1

2 |ww′| corridors
contributes at most 4 to the overall sum

∑︁
i|Ci|. Statement (3) now follows from a

double-counting argument. □

We now proceed with the proof of Proposition 4.19.

Proof of Proposition 4.19. The first inequality ∥g∥♭ ≤ |push0(w)| follows from the
definition of ∥·∥♭; see Definition 3.3. For the second inequality, let w = [w1]a1 · · · [wk]ak
be an efficient k-coloured word with underlying word w = w1 · · ·wk, and let u be
a shortest alternating word representing g, meaning that |u| = ∥g∥♭. Since w is
geodesic, we have |w| ≤ |u|.

Let D be a minimal-area van Kampen diagram for wu−1, and let p1, . . . , pk−1 be
the points on the boundary path labelled by w as in Lemma 4.21. We also denote
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by p0 and pk the points respectively at the start and end of w. Then the height hi

of pi is φΓ(w1 . . .wi).
Consider corridors Ci containing pi for i ∈ {1, . . . , k− 1}. Since w is geodesic, the

corridor Ci cannot have both ends on w, so it must begin at an edge of w and end
at an edge of u. Since u is alternating, all the vertices of u have height 0 or 1, so pi
has distance at most |Ci|+ 1 from a vertex of height 0. Therefore, we may estimate
the height of pi as |hi| ≤ |Ci|+ 1 for every i ∈ {0, . . . , k− 1}.

Finally, applying Lemmas 4.13 and 4.21 gives

|push0(w)| ≤ 2|w|+ 4
(︄

k∑︂
i=0
|hi|

)︄
|VΓ|

≤ 2|w|+ 4(2|wu−1|+ k− 1 + |hk|)|VΓ| ≤ (24|VΓ|+ 2)|u|,

where we use the fact that max{k, |hk|} ≤ |w| ≤ |u|. □

4.3 Coloured diagrams. To compute the Dehn function of BBΓ, we need to
produce an algorithm that, given an arbitrary null-homotopic alternating word u in
BBΓ, constructs an almost-flat van Kampen diagram with small area. However, if u
is the pushdown of a coloured word w, it is more convenient to work directly with
the coloured word. To this end, we define the notion of coloured diagram, which can
be pushed down to obtain an alternating diagram for u.

Definition 4.22 (Coloured diagram). A coloured diagram for a null-homotopic
coloured word w is a coarse diagram for w over the generating set Scol

Γ .

Each edge of a coloured diagram is labelled with a coloured letter [s]a, and we
sometimes refer to a as the colour of the edge. In this sense, a coloured diagram
is a coarse diagram over the standard generating set SΓ, where every edge carries
additional information given by the colour.

Just as the pushdown of a coloured word produces an alternating word, the push-
down of a coloured diagram produces an alternating diagram.

Definition 4.23 (Pushdown of a coloured diagram). Let D be a coloured diagram
for a null-homotopic coloured word w, and let h ∈ ℤ. The h-pushdown of D is the
alternating diagram pushh(D) obtained as follows.
• For each vertex p in D, there is a vertex p′ in pushh(D).
• For each edge in D, labelled by the coloured letter [s]a and oriented from p to q,

we add a path from the corresponding vertices p′ to q′ in pushh(D). This path
is labelled with

pushh+φΓ(p)([s]a) = τa,h+φΓ(p)sa
−1τ−1

a,h+φΓ(q).

• For every vertex p of D, and for every pair of consecutive edges incident to p

labelled with a letter of the same colour a, the corresponding paths in pushh(D)
have an initial segment labelled by the same word τa,φΓ(p). We fold these initial
segments by identifying them together.
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Figure 2: Example of the pushdown of a coloured diagram. The top left picture shows a coloured
diagram D. To obtain the h-pushdown, we first construct a diagram by replacing each edge of D
with a path labelled by the pushdown of the label on that edge, as shown in the top right picture.
Next, we fold the paths originating from the same vertex that are labelled with the same transition
word, as illustrated in the bottom left picture. Finally, wherever we have collapsed all the paths
arising from a vertex, we can remove the resulting path; see the bottom right picture.

• If all the edges incident to p have the same colour a, the vertex p′ corresponding
to p in pushh(D) has, after collapsing, a single path starting at it, which is
labelled with τa,φΓ(p): we remove p′ and the path altogether.

Example 4.24. Fig. 2 illustrates a coloured diagram for w = [a2]b[b]a[a−1]b[a−1b−1]a
together with its h-pushdown, which is an alternating diagram for pushh(w) which
is the alternating word

τb,hab
−1ab−1τ−1

b,h+2τa,h+2ba
−1τ−1

a,h+3τb,h+3ba
−1τ−1

b,h+2τa,h+2aa
−1ab−1τ−1

a,h.

To ensure that the h-pushdown of a coloured diagram is well-defined, we must
check that the labels of the h-pushdown of the bounded regions are null-homotopic
words in SΓ. This follows directly from the next result.
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Lemma 4.25. Let h ∈ ℤ. Let D be a coloured diagram for a null-homotopic coloured
word. Let w = [w1]a1 · · · [wk]ak be the word read on a (possibly unbounded) region
of D, starting from a point p, and let u be the alternating word read on the cor-
responding region of pushh(D). If ak ̸= a1, then u = pushh+φΓ(p)(w). Otherwise, if
ak = a1 = a, then pushh+φΓ(p)(w) = τa,h+φΓ(p)uτ

−1
a,h+φΓ(p). In either case, the word u

is null-homotopic.

Proof. For i ∈ {0, . . . , k}, let hi = h + φΓ(p) + φΓ(w1 · · ·wi). Since w is the label of
a (possibly unbounded) region in D, it is null-homotopic, so h0 = hk = h + φΓ(p).
From Definition 4.23, we get that, if a1 ̸= ak, then

u =
k∏︂

i=1
τai,hi−1wi(Γa−1

i )τ−1
ai,hi

= pushh+φΓ(p)(w).

The key point is that all the transition words appearing between letters of the same
colour disappear after folding. The first and the last transition words are not folded
because of the assumption a1 ̸= ak. Otherwise, if they are folded, that is, if ak = a1 =
a, we obtain

pushh+φΓ(p)(w) = τa,h+φΓ(p)uτ
−1
a,h+φΓ(p)

In both cases, the fact that u is null-homotopic follows directly from Lemma 4.14,
since w is null-homotopic. □

As highlighted in Lemma 4.25, it is often convenient to assume that the first and
last colour of a null-homotopic coloured word w are different. This is not a critical
assumption, since monochromatic words are simple enough that we do not need to
examine their coloured diagrams. If w is not monochromatic, we can always achieve
this assumption by considering a cyclic conjugate of w. Geometrically, if we imagine
w drawn on a circle, this corresponds to reading the word starting from a vertex
adjacent to edges of different colours. Therefore, we get the following consequence.

Corollary 4.26. Let h ∈ ℤ. If D is a coloured diagram for a null-homotopic k-
coloured word w = [w1]a1 · · · [wk]ak with ak ̸= a1, then pushh(D) is an alternating dia-
gram for pushh(w). If the boundary word w = [w]a is monochromatic, then pushh(D)
is an alternating diagram for w(Γa−1).

We are now able to prove Lemma 3.9, which we recall here for the reader’s con-
venience.

Lemma 3.9. For every H ∈ℕ, there exists MH ∈ℕ such that the following holds. Let
w be a null-homotopic alternating word in AΓ. Suppose that w admits a van Kampen
diagram D over 𝒫Γ such that the height of every vertex v satisfies |φΓ(v)| ≤H . Then
w admits an alternating diagram with the same number of bounded regions as D,
such that each bounded region is labelled by an alternating word of length at most
MH .
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Proof. Let D be the coloured diagram obtained from D by replacing each label s
with [s]s. The pushdown of D is an alternating diagram D′ for a word w′ that is
freely equivalent to w by Lemma 4.12 (4). After performing appropriate foldings in
D′, we obtain an alternating diagram Dw for w. Since the bounded regions of D
are labelled with words of length 4, by Lemmas 4.13 and 4.25, the bounded regions
of Dw are labelled with the words whose lengths are bounded by a constant MH

depending only on H . □

Recall that our strategy for obtaining upper bounds on the Dehn function of BBΓ
is to produce an algorithm that takes an alternating word u as input and outputs an
almost-flat van Kampen diagram whose almost-flat area satisfies the desired upper
bound.

We introduced coloured diagrams to construct this algorithm in the case where
u = pushh(w) for some null-homotopic coloured word w and some h ∈ ℤ. In this
case, if D is a coloured diagram for w, then pushh(D) is an alternating diagram for
u. By Lemma 4.25, the bounded regions of pushh(D) are labelled by the pushdowns
of the labels of the bounded regions of D. Therefore, to estimate Area♭(u), it suffices
to estimate the almost-flat area of the label of each bounded region of pushh(D).

By Lemma 3.12, the estimates are particularly nice if we have a uniform bound on
the density of pushh(D). Note that the coloured diagram D, which is by definition a
coarse diagram over the generating set Scol

Γ , also has a well-defined density. However,
estimating the density of D is not enough to obtain an estimate of the density of its
pushdown, as one needs to take into account for the lengths of the transition words,
which appear at every vertex incident to edges of different colours.

Definition 4.27. Let D be a coloured diagram. A vertex of D is called poly-
chromatic if it is incident to at least two edges of different colours. It is called ∂-
polychromatic if it is on the boundary of D and incident to two consecutive boundary
edges of different colours.

Proposition 4.28. For every M > 0, there exists CM > 0 such that the following
holds. Let D be a coloured diagram, and for every polychromatic vertex p, let γp be
a path in D from p to an arbitrary ∂-polychromatic vertex (if p is ∂-polychromatic,
then we can choose γp to be the constant path). Suppose that
(1) for every polychromatic vertex p in D, we have deg p≤M ,
(2) for every edge e in D, we have |{γp | e ∈ γp}| ≤M , and
(3) ρ(D)≤M .
Then ρ(pushh(D))≤CM for every h ∈ ℤ.

Proof. Recall that by Lemma 3.11, it suffices to estimate the number of edges
|Epushh(D)| for the pushdown diagram. We assume that there is at least one ∂-
polychromatic vertex; otherwise, there would not be any polychromatic vertices,
so the labels of all bounded regions of D would be monochromatic, and it would
follow from Corollary 4.26 that ρ(D) = ρ(pushh(D)).
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Let w = [w1]a1 · · · [wk]ak be the boundary word of D. Since the statement is in-
dependent of the choice of base point of D, we may assume that the base point
is ∂-polychromatic, so ak ̸= a1. In particular, the diagram D has ∂-polychromatic
vertices p1, . . . , pk, where k ≥ 2, and pi is at the end of [wi]ai .

Recall that an edge in D from p to q labelled by [s]a is replaced by a path in
pushh(D) labelled by pushh+φΓ(p)([s]a) = τa,h+φΓ(p)sa

−1τ−1
a,h+φΓ(q). Call the two edges

in the middle labelled with sa−1 central edges, and the ones in the paths labelled
with τa,φΓ(p) and τa,φΓ(q) transition edges. Denote by Z and T the number of central
and transition edges, respectively.

For every edge of D, we get two central edges in pushh(D), so

Z = 2|ED|.

If a vertex p is not polychromatic, then all the transition edges arising from it get
removed. Otherwise, the vertex p gives rise to at most 2M · |VΓ| · |h+φΓ(p)| transition
edges by Lemma 4.8. Therefore, we obtain

T ≤ 2M · |VΓ| ·
∑︂

p polychr.
|h+φΓ(p)|.

For i ∈ {1, . . . , k}, let Pi be the set of polychromatic vertices p connected to pi by γp.
It follows from the assumptions (1) and (2) that

|Pi| ≤M2 + 1,

since there are at most M paths coming through each of the edges incident to pi,
plus the constant path from pi to itself. For p ∈ Pi, we can estimate

|φΓ(p)−φΓ(pi)| ≤ |γp|.

Putting the estimates together yields

|Epushh(D)|= Z + T

≤ 2|ED|+ 2M · |VΓ| ·
∑︂

p polychr.
|h+φΓ(p)|

= 2|ED|+ 2M · |VΓ| ·
k∑︂

i=1

∑︂
p∈Pi

|h+φΓ(p)|

≤ 2|ED|+ 2M · |VΓ| ·
k∑︂

i=1

∑︂
p∈Pi

|γp|+ |h+φΓ(pi)|

≤ 2|ED|+ 2M · |VΓ| ·M |ED|+ 2M · |VΓ|(M2 + 1)
k∑︂

i=1
|h+φΓ(pi)|

= (1 +M2|VΓ|)(|w|ρ(D) + |w|) + 2M · |VΓ|(M2 + 1)
k∑︂

i=1
|h+φΓ(pi)|,
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Figure 3: On the left is a minimal-area van Kampen diagram for ww′−1, cut by a family of non-
crossing corridors. On the right is the resulting coloured diagram for ww′−1.

where the last equality follows from Lemma 3.11, which tells us 2|ED|= |w| · ρ(D)+
|w|.

Finally, by Lemma 4.13, we have |pushh(w)| ≥ 2|w|+ 2
∑︁k

i=1|h+ φΓ(pi)|. There-
fore, we can deduce

ρ(pushh(D)) =
2|Epushh(D)|
|pushh(w)| − 1

≤ (1 +M2|VΓ|) · (ρ(D) + 1) + 2M(M2 + 1)|VΓ| − 1

≤ 3|VΓ| ·M3 + |VΓ| ·M2 + (1 + 2|VΓ|) ·M,

where the last estimate follows from the assumption (3). □

4.4 Cutting along corridors. In this section, we develop a method to “cut” a
coloured word along corridors to produce a coloured diagram.

Let w and w′ be coloured words representing the same element in AΓ, and let
w and w′ denote their underlying words, respectively. Let D be a minimal-area van
Kampen diagram for ww′−1, and let p0 be the starting vertex of w, which we set as
the base point of D. Let k ∈ ℕ, and for i ∈ {1, . . . , k − 1}, let Ci be an ai-corridor
of D connecting an edge of w to an edge of w′. Assume that the corridors Ci are
pairwise disjoint and are ordered by increasing distance from p0; see the left diagram
in Fig. 3.

Let γi be a side of Ci, and let pi and qi be its endpoints on w and w′, respectively.
For consistency of notation, we also denote the base point p0 as q0, and let pk = qk
be the other point where w and w′ meet. Let wi be the word read along the path
from pi−1 to pi, w′

i the word read along the path from qi−1 to qi, and ui the word
read along γi from pi to qi.
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Figure 4: Cutting a van Kampen diagram along corridors determined by an efficient coloured word
on its boundary.

The decompositions w =w1 · · ·wk and w′ =w′
1 · · ·w′

k naturally induce decomposi-
tions w = w1 · · ·wk and w′ = w′

1 · · ·w′
k into coloured subwords, where wi and w′

i are
the underlying words of the coloured words wi and w′

i, respectively. By the definition
of corridor, all letters of ui commute with ai, so ui is the underlying word of the
monochromatic word [ui]ai .

We can now construct a coloured diagram for ww′−1 by cutting along the γi:
this coloured diagram has k bounded regions, R1, . . . ,Rk, where the boundary word
of Ri, when read starting from pi, is wi[ui]aiw′−1

i [u−1
i−1]ai−1 , as shown in the right

diagram in Fig. 3. We apply this construction to prove the following result.

Lemma 4.29. There exists a constant C > 0 such that the following holds. Let w be
an efficient coloured word, and let w′ be another coloured word representing the same
element as w. There exists a coloured diagram D for ww′−1 with ρ(pushh(D))≤C

for every h ∈ ℤ, such that the label on every region of D decomposes as a product
uu′−1, where u is at most 5-coloured, and u′ is a subword of w′.

Proof. Let w and w′ be the underlying words of w and w′, respectively. Assume that
w decomposes as [w1]a1 · · · [wk]ak , and let D be a van Kampen diagram for ww′−1.
Let m = ⌈k3⌉, and for each i ∈ {1, . . . ,m− 1}, let Ci be the corridor starting at the
first edge of w3i+1. Let γi be the side of Ci whose endpoint pi on w separates w3i
and w3i+1, and let qi be the other endpoint of γi, and let ui be the word read along
γi from pi to qi. Since w is efficient, the point qi must belong to w′.

By Lemma 4.21, the corridors Ci do not cross each other, so we can construct a
coloured diagram D by cutting along the γi, where the corridor sides are labelled
with [ui]a3i+1 ; see Fig. 4. For each i ∈ {1, . . . ,m}, the ith region of D is labelled by
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the word

[ui−1]−1
a3i−2

[w3i−2]a3i−2 [w3i−1]a3i−1 [w3i]a3i [ui]a3i+1w′−1
i ,

where we conventionally set u0 = um to be the empty word, and similarly for wi

when k < i≤ 3m. Then this word is of the form uu′−1, where u′ = w′
i, so it satisfies

the desired properties.
It remains to establish the upper bound on the density of pushh(D); we do so

by checking the hypotheses for Proposition 4.28. By Lemma 4.21, part (3), we have∑︁m−1
i=1 |ui| ≤ 2|ww′|, so the density of D is at most 5. The only vertices of D that

may be polychromatic but not ∂-polychromatic are the qi; this occurs when the two
boundary edges incident to qi have the same colour, which is different from the colour
a3i+1 of the interior edge. In this case, we connect qi to the ∂-polychromatic vertex
pi via γi. Since the paths γi are all disjoint and all vertices of D have degree at most
3, we can apply Proposition 4.28 and conclude. □

5 Upper bounds

We now have all the necessary tools to establish upper bounds on the Dehn functions
of Bestvina–Brady groups.

Theorem 5.1. Let Γ be a finite simplicial graph such that the associated flag complex
Δ(Γ) is simply connected, and let α ∈ {3,4}. If Γ does not have (𝒟α), then δBBΓ(n)≼
nα−1.

To prove Theorem 5.1, we need to show that, under the hypothesis above, every
null-homotopic alternating word w in BBΓ has an almost-flat area bounded above
by C · |w|α−1 for some constant C > 0. This is done by constructing an alternating
diagram for w and applying our multi-step strategy to reduce the task to estimating
the almost-flat area of simpler null-homotopic alternating words.

We begin by establishing upper bounds for these relatively simple words. Then,
we explain how these pieces can be viewed as the building blocks of a general coloured
diagram by means of cutting along corridors as discussed in Sect. 4.4.

5.1 Fundamental pieces. In the previous section, we showed that given a
coloured diagram D for a null-homotopic coloured word w, its h-pushdown pushh(D)
is an alternating diagram for pushh(w). This allows us to estimate the almost-flat
area of pushh(w) in terms of the almost-flat area of the bounded regions of pushh(D).

We start with the case where w belongs to one of the following three families of
null-homotopic words, which we call fundamental pieces: these are monochromatic
words, coloured bigons (Definition 5.4), and coloured commutators (Definition 5.5).
These fundamental pieces are combinatorially easier to handle and can be used to
estimate the almost-flat area of the h-pushdown of more complicated null-homotopic
coloured words.
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When dealing with the almost-flat area estimates of the fundamental pieces, we
illustrate the power of working with diagrams: the filling of a coloured diagram, and
thus of its pushdown, can be turned into a purely algebraic algorithm that tells us how
to reduce the pushdown of the corresponding coloured word by applying relations
at each step; see, for instance, Lemma 5.10, where estimating areas is equivalent to
bounding the number of relations involved in proving an identity between words.

Definition 5.2 (Support of a word). Let w be a word in SΓ. The support of w,
denoted by supp(w), is the subgraph of Γ induced by the vertices vs such that s±1

appears in w.

Definition 5.3 (Palette of a word). The palette of w, denoted by Pal(w), is the
subgraph of Γ consisting of the intersection of the stars of all vertices in supp(w).
That is, the vertex set of Pal(w) corresponds to the set of colours a such that [w]a
is a well-defined coloured word.

Definition 5.4 (Coloured bigon). A coloured bigon is a coloured word of the form
[w]a[w]−1

b , where w is a word in SΓ, and va and vb are vertices of Pal(w).

Definition 5.5 (Coloured commutator). A coloured commutator is the commutator
[[w1]a, [w2]b] of two monochromatic words [w1]a and [w2]b such that {va}∪supp(w2)⊂
Pal(w1) and {vb} ∪ supp(w1)⊂ Pal(w2).

By definition, the h-pushdown of coloured bigons and coloured commutators are
null-homotopic alternating words. Observe that the h-pushdown of a coloured com-
mutator is not in general the commutator of the h-pushdowns of the corresponding
monochromatic coloured words.

To establish upper bounds for the areas of null-homotopic monochromatic words,
coloured bigons, and coloured commutators, we first need some preliminary results.
We begin by recalling a result from [Dis08], stated in our notation.

Lemma 5.6 ([Dis08, Lemma 4.7]). There exists a constant K > 0 such that the
following holds. Let h ∈ ℤ and {va, vb} ∈ EΓ. The alternating word τ−1

a,hτb,h(ab−1)−h

is null-homotopic, and its almost-flat area satisfies

Area♭(τ−1
a,hτb,h(ab

−1)−h)≤K|h|2.

Throughout the rest of the section, we use the following notation.

Notation 5.7. Given two alternating words u and v in SΓ that represent the same
element in BBΓ, we define the almost-flat area of the identity u =BBΓ v to be the
almost-flat area of the null-homotopic word uv−1. If A is the almost-flat area of the
identity u =BBΓ v, we say that u can be rewritten as v with almost-flat area A.

Proposition 5.8. Let h ∈ ℤ, a ∈ SΓ, and [w]a be a null-homotopic monochromatic
word. Then

Area♭(pushh([w]a))≤ 3|w|2.
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Proof. Since the monochromatic word [w]a is null-homotopic, we have φΓ(w) = 0. It
follows from the definition of the pushdown (Definition 4.10) that

pushh([w]a) =F τa,hw(Γa−1)τ−1
a,h.

The word w(Γa−1) is null-homotopic in BBSt(va). The latter is isomorphic to the
right-angled Artin group ALk(va) via the homomorphism defined by sa−1 ↦→ s for all
vs ∈ Lk(va), which sends w(Γa−1) to w. Since the area of w in ALk(va) is at most
|w|2, it follows from Proposition 3.8 that the word w(Γa−1) admits an almost-flat
van Kampen diagram of quadratic area.

To get the precise bound on the almost-flat area, note that a relation [b, c] = 1 in
ALk(va) is mapped to the null-homotopic alternating word ba−1cb−1ac−1 in BBSt(va),
which admits an almost-flat diagram of area 3. Therefore, a van Kampen diagram
for w can be transformed into an almost-flat van Kampen diagram for w(Γa−1) of
area at most 3|w|2, as done in the proof of Proposition 3.8. □

5.1.1 Coloured bigons. We now proceed to establish upper bounds for the
almost-flat area of the h-pushdown of coloured bigons.

Lemma 5.9. There exists a constant C > 0 with the following property. Let w =
[w]a[w]−1

b be a coloured bigon. Assume that va and vb lie in the same connected
component of Pal(w). Then, for all h ∈ ℤ, we have

Area♭(pushh(w))≤C · (|w|+ |h|)2.

Proof. For any pair of adjacent vertices vp and vq in Pal(w), we have that the alter-
nating word

τ−1
p,h pushh([w]p[w]−1

q )τp,h =F w(Γp−1)τ−1
p,h+φΓ(w)τq,h+φΓ(w)w(Γq−1)−1τ−1

q,hτp,h

can be rewritten using Lemma 5.6 as

w(Γp−1)(pq−1)h+φΓ(w)w(Γq−1)−1(qp−1)h.

This rewriting has almost-flat area at most 2K(|w|+ |h|)2. This last word is a null-
homotopic alternating word in the generating set of BBSt(vp), which is isomorphic to
the right-angled Artin group ALk(vp). In particular, there is a constant K ′ > 0 such
that it has almost-flat area bounded above by K ′ · (|w|+ |h|)2. Putting everything
together yields

Area♭(pushh([w]p)pushh([w]q)−1)≤ (2K +K) · (|w|+ |h|)2.

Since a shortest path in Pal(w) connecting va to vb has length at most |VΓ|, by
applying the above argument at most |VΓ| times, we obtain

Area♭(pushh(w)) = Area♭(pushh([w]a)pushh([w]b)−1)

≤ |VΓ| · (2K +K ′) · (|w|+ |h|)2. □
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Figure 5: Filling of a coloured diagram for the coloured bigon when Λ decomposes as a join Λ′ ∗Λ′′.

In particular, if Pal(w) is connected, then by Lemma 5.9, the almost-flat area of
the pushdown of the coloured bigon is at most quadratic in its length.

Lemma 5.10. There exists a constant C > 0 with the following property. Let w =
[w]a[w]−1

b be a coloured bigon. Assume that supp(w) is reducible. Then, for all h ∈ ℤ,
we have

Area♭(pushh(w))≤C · (|w|+ |h|)2.

Proof. Let Λ := supp(w), and let Λ = Λ′ ∗ Λ′′ be a join decomposition. Due to the
decomposition AΛ = AΛ′ × AΛ′′ , the element g ∈ AΓ represented by w can also be
represented by a product of two words w′ and w′′, whose supports lie respectively in
Λ′ and Λ′′, such that |w′|+ |w′′| ≤ |w|.

This allows us to build a coloured diagram D for [w]a[w]−1
b with four bounded

regions. Two of these regions are labelled by the null-homotopic monochromatic
words w1 = [w]a[w′′]−1

a [w′]−1
a and w2 = [w′]b[w′′]b[w]−1

b ; the other two are labelled by
the coloured bigons w3 = [w′]a[w′]−1

b and w4 = [w′′]a[w′′]−1
b ; see Fig. 5.

Note that pushh(D) is an alternating diagram for pushh(w). We now proceed
to estimate the almost-flat area of the four bounded regions in pushh(D). These
regions are labelled by the alternating words ui = pushhi

(wi) with i ∈ {1,2,3,4},
where h1 = h2 = h3 = h and h4 = h+φΓ(w′).

(a) For the pushdown of the null-homotopic monochromatic words w1 =
[w]a[w′′]−1

a [w′]−1
a and w2 = [w]b[w′′]−1

b [w′]−1
b , we apply Proposition 5.8 to obtain

Area♭(ui)≤ 12 · |w|2 for i ∈ {1,2}.
(b) For the pushdown of the coloured bigon w3 = [w′]a[w′]−1

b , we can apply
Lemma 5.9, since for every vc ∈ Λ′′ ⊆ Pal(w′), we have va, vb ∈ St(vc), and thus
va and vb lie in the same connected component of Pal(w′). The same argument
holds for w4 = [w′′]a[w′′]−1

b . Therefore, we obtain Area♭(ui)≤K · (|w|+ |hi|)2 for
i ∈ {3,4} and a sufficiently large constant K > 0.
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Summing up, we find a constant K ′ > 0 such that Area♭(ui) ≤ K ′ · |ui|2 for
all i ∈ {1, . . . ,4}. For this, we are using the lower bound on |ui| given by
Lemma 4.13.

There are now two different ways to conclude. The first is to apply Proposi-
tion 4.28 with M = 4, obtaining a uniform bound CM on the density of pushh(D),
and then apply Lemma 3.12 to obtain

Area♭(w)≤K ′ ·C2
M · |pushh(w)|2 ≤C · (|w|+ |h|)2

for large enough C > 0.
Alternatively, we can translate the coloured diagram D into an algorithm to re-

duce the h-pushdown of [w]a[w]−1
b . Reducing this alternating word is equivalent to

estimating the almost-flat area of the identity pushh([w]a) =BBΓ pushh([w]b).
From (a), we get that the identity

pushh1([w]a) =BBΓ pushh1([w
′]a[w′′]a) (5.1)

has almost-flat area at most 12 · |w|2. Similarly, the almost-flat area of the iden-
tity

pushh2([w]b) =BBΓ pushh2([w
′]b[w′′]b) (5.2)

is at most 12 · |w|2. On the other hand, it follows from (b) that the iden-
tity

pushh3([w
′]a) =BBΓ pushh3([w

′]b) (5.3)

holds with almost-flat area at most K · (|w|+ |h3|)2. Similarly, the almost-flat area
of the identity

pushh4([w
′′]a) =BBΓ pushh4([w

′′]b) (5.4)

is at most K · (|w|+ |h4|)2.
To assemble these identities together, we use the following property of the push-

down

pushℓ(uu′) =F pushℓ(u)pushh+φΓ(u)(u′), (5.5)

for any coloured words u and u′; see Lemma 4.12, part (2). Recall h1 = h2 = h3 = h

and h4 = h+φΓ(w′). We obtain that the following identities

pushh([w]a) =BBΓ pushh1([w
′]a[w′′]a) by (5.1)

=F pushh1([w
′]a)pushh4([w

′′]a) by (5.5)

=BBΓ pushh2([w
′]b)pushh4([w

′′]b) by (5.3) and (5.4)

=F pushh2([w
′]b[w′′]b) by (5.5)
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Figure 6: Filling of a coloured diagram for the coloured bigon [w]a[w]−1
b with w = sϵ11 · · · sϵkk . The

filling consists of k coloured bigons.

=BBΓ pushh([w]b) by (5.2)

hold with almost-flat area at most

24 · |w|2 +K ·
(︂
(|w|+ |h|)2 + (|w|+ |h+φΓ(w′)|)2

)︂
≤24 · |w|2 +K ·

(︂
(|w|+ |h|)2 + (2|w|+ |h|)2

)︂
≤29 · (K + 1) · (|w|+ |h|)2.

This second procedure yields in general a better constant, since we are estimat-
ing the areas of the regions of push0(D) more precisely without relying on the loose
estimate of the density given by Proposition 4.28. □

We saw that under certain conditions, the pushdown of a coloured bigon has
quadratic area. We now show that in general we get a cubic upper bound.

Lemma 5.11. There exists a constant C > 0 with the following property. Let w =
[w]a[w]−1

b be a coloured bigon. Then, for all h ∈ ℤ, we have

Area♭(pushh(w))≤C · (|w|+ |h|)3 .

Proof. Let k = |w|, and write w = sϵ11 · · ·sϵkk , where si ∈ SΓ and ϵi ∈ {±1}. By defini-
tion, we have

[w]a = [s1]ϵ1a · · · [sk]ϵka .

A coloured diagram for w = [w]a[w]−1
b can be constructed using k coloured bigons of

the form [si]ϵia [si]−ϵi
b ; see Fig. 6.

For every i ∈ {1, . . . , k} and ℓ ∈ ℤ, the alternating word pushℓ([si]ϵia [si]−ϵi
b ) is null-

homotopic. Moreover, since Pal(sϵii ) = St(si) is connected, Lemma 5.9 implies that

Area♭(pushℓ([si]ϵia [si]−ϵi
b ))≤K · (1 + |ℓ|)2 .

Therefore, for h0 = h and hi = h+φΓ(s1 · · ·si), putting these k pieces together using
the properties of the pushdown given in Lemma 4.12, we obtain the identities

pushh([w]a) =F

k∏︂
i=1

pushhi−1([si]
ϵi
a ) =BBΓ

k∏︂
i=1

pushhi−1([si]
ϵi
b ) =F pushh([w]b).
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Thus, the almost-flat area of pushh(w) satisfies

Area♭(pushh(w))≤K ·
k∑︂

i=1
(1 + |hi−1|)2

=K ·
k∑︂

i=1
1 + 2|hi−1|+ |hi−1|2

≤K · |w|
(︂
1 + 2(|w|+ |h|) + (|w|+ |h|)2

)︂
≤ 4K · (|w|+ |h|)3. □

We now have all the tools to prove that coloured bigons satisfy Theorem 5.1.

Proposition 5.12. There exists a constant C > 0 with the following property. As-
sume that α ∈ {3,4} and that Γ does not have (𝒟α). Let w = [w]a[w]−1

b be a coloured
bigon. Then, for all h ∈ ℤ, we have

Area♭(pushh(w))≤C · |pushh(w)|α−1.

Proof. Observe that the case α = 4 follows directly from Lemma 5.11, so we assume
α = 3. Since Γ does not have property (𝒟3), every maximal join is not essentially
2-reducible.

We may assume that va and vb are not adjacent and that Pal(w) is disconnected;
otherwise, we could conclude by Lemma 5.9. In particular, the vertices va and vb
do not belong to supp(w). If supp(w) were reducible, we would also be done by
Lemma 5.10, so we assume that supp(w) is irreducible.

Since the subgraph supp(w) ∗ (Pal(w) \ supp(w)) is reducible, it is contained in a
maximal reducible subgraph Λ⊆ Γ. Consider the decomposition Λ = Λ1 ∗Λ2 ∗· · ·∗Λk,
where k ≥ 2 and Λi is irreducible for all i ∈ {1, . . . , k}.

Since supp(w) ⊆ Λ is irreducible, it is contained in some Λi, say Λ1. Note that
Pal(w) = (Pal(w) ∩ Λ1) ∗ Λ2 ∗ · · · ∗ Λk. Since Pal(w) is disconnected, it follows that
k = 2 and Pal(w) ∩ Λ1 = ∅. Thus, the subgraph Λ2 has at least two vertices va and
vb. Since Λ is not essentially 2-reducible, we have Λ1 = {vc}. In this case, we obtain
vc ∈ Pal(w)∩Λ1, which is a contradiction. □

5.1.2 Coloured commutators. We now give an upper bound on the almost-flat
area of the h-pushdown of a coloured commutator.

Lemma 5.13. There exists a constant C > 0 such that the following holds. Assume
that α ∈ {3,4} and that Γ does not have (𝒟α). Let w = [[w1]a, [w2]b] be a coloured
commutator. If Pal(w1)∩Pal(w2) ̸= ∅, then for all h ∈ Γ, we have

Area♭(pushh(w))≤C · (|w1|+ |w2|+ |h|)α−1.

Proof. Pick vc ∈ Pal(w1) ∩ Pal(w2). A coloured diagram D for w consists of five
bounded regions labeled by w1, w2, w3, w4, and w5. The first four coloured words
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Figure 7: Filling of a coloured diagram for the coloured commutator w = [[w1]a, [w2]b] in the case
where vc ∈ Pal(w1)∩Pal(w2).

are coloured bigons of the form w1 = [w1]a[w1]−1
c , w2 = [w2]b[w2]−1

c , w3 = [w1]−1
a [w1]c,

and w4 = [w2]−1
b [w2]c, respectively, while the last one is a null-homotopic monochro-

matic word w5 = [[w1]c, [w2]c]; see Fig. 7.
We now estimate the almost-flat area of the bounded regions in pushh(D), which

are labeled by the alternating word ui = pushhi
(wi) for i ∈ {1, . . . ,5}, where h1 =

h5 = h, h2 = h+φΓ(w1), h3 = h+φΓ(w1w2), and h4 = h+φΓ(w2).
On the one hand, for all the coloured bigons, it follows from Proposition 5.12 that

there exists C1 > 0 such that Area♭(ui)≤C1 · |ui|α−1 for all i ∈ {1, . . . ,4}. On the other
hand, it follows from Proposition 5.8 that for the null-homotopic monochromatic
word w5, we have Area♭(u5)≤ 12 · (|w1|+ |w2|)2.

All together, we find a constant C3 > 0 such that for all i ∈ {1, . . . ,5}, we have

Area♭(ui)≤C3 · |ui|α−1.

We conclude by first applying Proposition 4.28 with M = 4, obtaining a uniform
bound CM on the density of pushh(D), and then by Lemma 3.12, we obtain

Area♭(pushh(w))≤C3 ·C2
M · |pushh(w)|α−1 ≤C · (|w1|+ |w2|+ |h|)α−1

for sufficiently large C > 0. □

Lemma 5.14. There exists a constant C > 0 such that the following holds. Assume
that α ∈ {3,4} and that Γ does not have (𝒟α). Let w = [[w1]a, [w2]b] be a coloured
commutator. If either supp(w1) or supp(w2) is reducible, then for all h ∈ ℤ, we have

Area♭(pushh(w))≤C · (|w1|+ |w2|+ |h|)α−1 .

Proof. Suppose without loss of generality that supp(w1) decomposes as a join Λ′ ∗
Λ′′. Set Λ = supp(w1). In this case, due to the decomposition AΛ = AΛ′ ×AΛ′′ , the
element g ∈AΓ represented by w can also be represented by a product of two words w′

and w′′ whose supports lie respectively in Λ′ and Λ′′, and such that |w′|+ |w′′| ≤ |w|.
Thus, a coloured diagram D for the alternating word pushh(w) can be constructed
with four bounded regions whose labels are coloured words w1, w2, w3, and w4.
Two of these are null-homotopic monochromatic words w1 = [w1]a[w′′]−1

a [w′]−1
a and
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Figure 8: Filling of a coloured diagram for the coloured commutator [[w1]a, [w2]b] in the case where
supp(w1) is reducible.

w3 = [w′]a[w′′]a[w1]−1
a , and the others are coloured commutators w2 = [[w′′]a, [w2]b]

and w4 = [[w′]a, [w2]b]; see Fig. 8.
For i ∈ {1, . . . ,4}, let ui = pushhi

(wi) be the alternating word that labels the
corresponding bounded region of pushh(D), where h1 = h4 = h, h2 = h+φΓ(w1), and
h3 = h+φΓ(w2). By Proposition 5.8, for i ∈ {1,3}, we have Area♭(ui)≤ 12 · |w1|2.

Since Λ = supp(w1) decomposes as a join Λ′ ∗ Λ′′, the intersection Pal(w′′) ∩
Pal(w2) contains Λ′ so it is non-empty. Therefore, it follows from Lemma 5.13 that

Area♭(u2)≤C2 · (|w′′|+ |w2|+ |h2|)α−1.

for sufficiently large C2 > 0. By symmetry, the same holds for u4, namely, Area♭(u4)≤
C2 · (|w′|+ |w2|+ |h4|)α−1.

All together, we have Area♭(ui) ≤ C3 · |ui|α−1 for sufficiently large C3 > 0. A
straightforward application of Proposition 4.28 with M = 3 gives us a uniform bound
CM on the density of the pushdown of the coloured diagram for w. Thus, it follows
from Lemma 3.12 that

Area♭(pushh(w))≤C3 ·C2
M · |pushh(w)|α−1 ≤C · (|w1|+ |w2|+ |h|)α−1

for sufficiently large C > 0. □

Lemma 5.15. There exists a constant C > 0 such that the following holds. Let w =
[[w1]a, [w2]b] be a coloured commutator. Assume that Λ1 and Λ2 are subgraphs of
Γ spanning a join with supp(w1) ∪ {vb} ⊆ Λ1 and supp(w2) ∪ {va} ⊆ Λ2, such that
either Λ1 or Λ2 is connected. Then for all h ∈ ℤ, we have

Area♭(pushh(w))≤C · (|w1|+ |w2|+ |h|)3 .

Proof. Assume without loss of generality that Λ1 is connected. Let w1 = sϵ11 . . . sϵkk
with ϵi ∈ {±1} for all i ∈ {1, . . . , k}. A coloured diagram for the coloured commutator
w = [[w1]a, [w2]b] can be constructed using a total of 4k + 1 bounded regions; see
Fig. 9:
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Figure 9: Filling of the coloured diagram for the coloured commutator [[w1]a, [w2]b], where
w1 = sϵ11 sϵ22 . . . sϵkk .

• k + 1 bounded regions whose labels are coloured bigons of the form [w2]b[w2]−1
s1

(corresponding to the top region in Fig. 9), of the form [w2]si [w2]−1
si+1

for i ∈
{1, . . . , k− 1}, and of the form [w2]sk [w2]−1

b (corresponding to the bottom region
in Fig. 9);

• 2k bounded regions whose labels are coloured bigons of the form [si]ϵia [si]−ϵi
si and

[si]ϵisi [si]
−ϵi
a (corresponding to the regions on the left and right sides in Fig. 9,

respectively);
• k bounded regions whose labels are null-homotopic monochromatic words of the

form [[si]ϵisi , [w2]si ] for i ∈ {1, . . . , k} (corresponding to the regions with four sides
in Fig. 9).

Let h0 = h and hi = h+φΓ(sϵ11 · · ·sϵii ) for i ∈ {1, . . . , k}. The pushdown of each of
these 4k + 1 pieces can be filled with at most quadratic almost-flat area:

• Since Λ1 is connected, it follows from Lemma 5.9 that there exists C1 > 0 such
that the h-pushdown of the coloured bigon [w2]b[w2]−1

s1 has almost-flat area at
most C1 · (|w2|+ |h|)2, the hi-pushdown of the coloured bigon [w2]si [w2]−1

si+1
has

almost-flat area at most C1 · (|w2| + |hi|)2 for i ∈ {1, . . . , k − 1}, and the hk-
pushdown of the coloured bigon [w2]sk [w2]−1

b has almost-flat area at most C1 ·
(|w2|+ |hk|)2.

• For all i ∈ {1, . . . , k}, it follows from Lemma 5.9 that there exists C2 > 0 such that
the hi-pushdown of the coloured bigon [si]ϵia [si]−ϵi

si has almost-flat area at most
C2 ·(1+ |hi−1|)2. Similarly, we have that the almost-flat area of the (hi+φΓ(w2))-
pushdown of the coloured bigon [si]ϵisi [si]

−ϵi
a is at most C2 · (1+ |hi−1 +φΓ(w2)|)2

for all i ∈ {1, . . . , k}.
• Finally, Proposition 5.8 implies that for all i ∈ {1, . . . , k}, the hi-pushdown of the

null-homotopic monochromatic word [[si]ϵisi , [w2]si ] has almost-flat area at most
12 · (1 + |w2|)2.
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By setting C3 = max{C1,C2,16}, we obtain that Area♭(pushh(w)) is bounded above
by

C3

(︃ k∑︂
i=0

(|w2|+ |hi|)2 +
k∑︂

i=1
(1 + |hi−1|)2 + (1 + |hi−1 +φΓ(w2)|)2 + (1 + |w2|+ |hi|)2

)︃
.

Since for all i ∈ {0, . . . , k}, we have |hi|, |hi +φΓ(w2)| ≤ |w1|+ |w2|+ |h|, and k = |w1|,
we obtain

Area♭(pushh(w))≤C3

(︂
|w1|(|w2|+ |w1|+ |h|)2 + 3|w1|(1 + |w1|+ |w2|+ |h|)2

)︂
≤C (|w1|+ |w2|+ |h|)3

for sufficiently large C > 0. □

We now conclude this section showing that coloured commutators satisfy Theo-
rem 5.1.

Proposition 5.16. There exists a constant C > 0 with the following property. As-
sume that α ∈ {3,4} and that Γ does not have (𝒟α). Let h ∈ ℤ. The almost-flat area
of the h-pushdown of the coloured commutator w = [[w1]a, [w2]b] satisfies

Area♭(pushh(w))≤C · |pushh(w)|α−1.

Proof. Let w = [[w1]a, [w2]b] be a coloured commutator. Since supp(w1) ∪ {vb} ⊆
Pal(w2) and supp(w2)∪ {va} ⊆ Pal(w1), we may assume that

(supp(w1)∪ {vb})∩ (supp(w2)∪ {va}) = ∅,

otherwise, Pal(w1)∩Pal(w2) ̸= ∅, and the statement would follow from Lemma 5.13.
In particular, the subgraph induced by supp(w1)∪supp(w2)∪{va, vb} is reducible,

and is contained in a maximal reducible subgraph Λ⊆ Γ. Let Λ = Λ1 ∗ · · · ∗ Λk for
k ≥ 2, with each Λi irreducible.

Suppose that supp(w1)∪ {vb} is reducible. Then, either supp(w1) is reducible or
vb ∈ Pal(w1), and we conclude by Lemma 5.14 or Lemma 5.13, respectively. So, we can
assume that supp(w1) ∪ {vb} is irreducible and, symmetrically, that the same holds
for supp(w2)∪{va}. This implies that supp(w1)∪{va} ⊆Λi and supp(w2)∪{va} ⊆Λj

for some i, j ∈ {1, . . . , k}. We can also assume that k = 2 and that {i, j}= {1,2}. If
this were not the case, we would have Pal(w1)∩Pal(w2) ̸= ∅, and the statement would
follow from Lemma 5.13. Therefore, we have Λ = Λ1 ∗Λ2 with supp(w1)∪ {vb} ⊆Λ1
and supp(w2)∪ {va} ⊆Λ2.

If Γ does not have (𝒟4), then Δ(Λ) is simply connected and either Λ1 or Λ2
is connected. In this case, it follows from Lemma 5.15 that Area♭(pushh(w)) ≤ C ·
|pushh(w)|3 for some C > 0. If Γ does not have (𝒟3), then Λ is not essentially 2-
reducible, so either Λ1 or Λ2 is a single vertex. In this case, the desired almost-flat
area estimate now follows from Lemma 5.13. □
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5.2 Putting the pieces together. Now that we have proven the upper bounds for
the pushdown of the fundamental pieces, we combine them to obtain upper bounds
for progressively more complicated words. We begin with the pushdown of null-
homotopic k-coloured words whose underlying words admit van Kampen diagrams
with well-behaved corridors. For now, we also allow constants to depend on the
number of colours.

Lemma 5.17. For every k ≥ 2, there exists a constant Ck > 0 such that the following
holds. Let α ∈ {3,4} and assume that Γ does not have (𝒟α). Let w = [w1]a1 · · · [wk]ak
be a null-homotopic k-coloured word with ak ̸= a1, and h ∈ ℤ. Assume that the
underlying word w = w1 · · ·wk admits a minimal-area van Kampen diagram D such
that, for all i ∈ {1, . . . , k}, each corridor starting from an edge of wi ends in an edge
of either wi−2, wi−1, wi, wi+1, or wi+2 (indices intended mod k). Then

Area♭(pushh(w))≤Ck · |pushh(w)|α−1.

Proof. We aim to construct a coloured diagram for w whose bounded regions are
fundamental pieces, and whose density can be bounded in terms of the number of
colours.

For every i ∈ {1, . . . , k}, we choose a freely reduced coloured word [w′
i]ai such that

wi =AΓ w′
i, and we choose a van Kampen diagram D′ for w′

1 · · ·w′
k such that corridors

starting from an edge in w′
i end in an edge of w′

i−2, w′
i−1, w′

i, w′
i+1 or w′

i+2. We make
these choices so that the area of D′ is the smallest possible. Note that it is always
possible to make such choices, as one can always take w′

i =wi and D′ =D.
Two corridors in D′ that originate from the same w′

i cannot intersect. Otherwise,
consider an innermost pair of intersecting corridors starting from w′

i; these corridors
must begin at adjacent letters. Exchanging those letters would yield a word w′′

i such
that w′

1 · · ·w′′
i · · ·w′

k admits a diagram with smaller area, a contradiction. Similarly,
a corridor cannot connect two edges of the same w′

i. Since corridors starting from
the same w′

i do not intersect, we can decompose each w′
i as

w′
i = u<

i u
<<
i u>>

i u>
i

in such a way that the corridors of D′ starting in u>
i end in u<

i+1, and those starting
in u>>

i end in u<<
i+2. In particular, u>

i = (u<
i+1)−1 and u>>

i = (u<<
i+2)−1, and all letters

of u>>
i commute with all letters of u<<

i+1.
A coloured diagram D for w can be constructed, as shown in Fig. 10, using the

following fundamental pieces:

• k monochromatic regions labelled by

[wi]ai [w′
i]−1
ai = [wi]ai [u>

i ]−1
ai [u>>

i ]−1
ai [u<<

i ]−1
ai [u<

i ]−1
ai ;

• k bigons labelled by [u<
i ]ai [u>

i−1]−1
ai−1

;
• k bigons labelled by [u<<

i+1]ai+1 [u>>
i−1]ai−1 ;

• k coloured commutators [[u>>
i ]ai , [u<<

i+1]ai+1 ].
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Figure 10: Filling of a coloured k-gon with coloured bigons and coloured commutators.

In this way, we obtain a coloured diagram D which has 3k + 1 polychromatic
vertices, including the k ∂-polychromatic vertices that are the vertices of the k-gon.
By applying Proposition 4.28 with M = 3k + 1, the density of pushh(D) is bounded
above by some constant C ′

k > 0.
Since every word w labelling the bounded regions of pushh(D) has almost-flat

area bounded above by C · |w|α−1 by Propositions 5.12 and 5.16, for some constant
C > 0, we conclude by applying Lemma 3.12. □

By an induction argument, we can remove the hypothesis on the corridors in
Lemma 5.17.

Proposition 5.18. Let α ∈ {3,4} and assume that Γ does not have (𝒟α). For every
k ≥ 1, there exists a constant Ck such that for every null-homotopic k-coloured word
w and every h ∈ ℤ, we have

Area♭(pushh(w))≤Ck · |pushh(w)|α−1.

Proof. We proceed by induction on k. The case k = 1 was handled in Proposition 5.8.
Suppose that the statement holds for ℓ < k.
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By a cyclic conjugation, we may assume w = [w1]a1 · · · [wk]ak with ak ̸= a1. Let D
be a van Kampen diagram for the underlying word w =w1 · · ·wk. Assume that there
is a corridor in D connecting a letter of wi with a letter of wj , with 3≤ |i−j| ≤ |n−3|;
otherwise, we are under the hypotheses of Lemma 5.17 and can conclude directly.

By cutting along the boundary of the corridor, we obtain a coloured diagram D
with only two regions, labelled by a (|i− j|+2)-coloured word and a (n−|i− j|+2)-
coloured word respectively; both have fewer than k colours. We have ρ(D)≤ 2, and by
Proposition 4.28, there is a constant C > 0 independent of k such that ρ(pushh(D))≤
C.

By combining the inductive hypothesis with Lemma 3.12, we obtain that the
statement holds with Ck := max{Cℓ : ℓ < k} ·Cα−1. □

Finally, we remove the dependence of the multiplicative constant Ck on the num-
ber of colours. The key to this is the following lemma.

Lemma 5.19. There exists a constant C > 0 such that the following holds. Let w1,
w2, and w3 be efficient coloured words such that w = w1w2w3 is null-homotopic.
Then there exists a coloured diagram D for w whose bounded regions are at most
15-coloured, and such that ρ(pushh(D))≤C.

Proof. We argue using Lemma 4.29 to construct a coloured diagram for the null-
homotopic coloured word w1w′−1, where w′−1 = w2w3. This yields a coloured dia-
gram D′ such that ρ(pushh(D′))≤C ′ for some constant C ′ > 0, and whose bounded
regions are labelled by words of the form u′

1w′
2w′

3, where u′
1 is at most 5-coloured,

and w′
2 and w′

3 are (possibly empty) subwords of w2 and w3, respectively; they are,
in particular, efficient.

By Lemma 3.14, it suffices to show that we can find a coloured diagram for the
labels of the bounded regions of D′, whose regions are at most 15-coloured and such
that the density of the h-pushdown of D′ is at most C for some constant C > 0
independent of h.

To do so, we perform two more iterations of Lemma 4.29. First, we apply it to each
bounded region of D′ to obtain coloured diagrams D′′ for the words w′

2 · (w′
3u′

1), such
that ρ(pushh′(D′′))≤ C ′ for every h′ ∈ ℤ, and whose regions are labelled by words
of the form u′′

2w′′
3u′′

1 , where u′′
2 is at most 5-coloured, w′′

3 is a subword of w′
3, and

u′′
1 is a subword of u′

1 and therefore is at most 5-coloured. We replace each bounded
region of D′ with the corresponding coloured diagram D′′.

Second, we apply Lemma 4.29 once more to each bounded region of the coloured
diagram constructed above, obtaining coloured diagrams D′′′ for the words w′′

3 ·
(u′′

1u2
′′) such that ρ(pushh′′(D′′′)) ≤ C ′′ for every h′′ ∈ ℤ, and whose regions are

labelled by words of the form u′′′
3 u′′′

1 u′′′
2 , where u′′′

3 is at most 5-coloured, u′′′
1 is a

subword of u′′
1 , and u′′′

2 is a subword of u′′
2 . We again replace each bounded region

with the corresponding coloured diagram D′′′.
In this way, we obtain a coloured diagram for w whose regions are labelled by

words that are at most 15-coloured and whose pushdown has density at most C ′3

by Lemma 3.14. □
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We conclude the section by establishing the upper bound for the Dehn function
of BBΓ.

Proof of Theorem 5.1. For every g ∈ BBΓ, choose a word ug representing g that is
the 0-pushdown of an efficient coloured word wg. By Proposition 4.19, the length
of ug is bounded linearly in terms of ∥g∥♭, so we may apply Lemma 3.15. Now, it
suffices to estimate the area of the word u = ug1ug2ug3 , where g1, g2, g3 ∈ BBΓ such
that g1g2g3 = 1.

To do so, consider the coloured diagram D produced by Lemma 5.19 for the null-
homotopic word w = wg1wg2wg3 . Its 0-pushdown is an alternating diagram for the
null-homotopic word

push0(w) = push0(wg1)push0(wg2)push0(wg3) = u;

here, we use the fact φΓ(wgi) = 0 and apply Lemma 4.12. The density ρ(push0(D))
is bounded above by a constant C, and the regions of D are labelled by alternating
words ui, which are the hi-pushdown of coloured words that are at most 15-coloured.
By Proposition 5.18, each ui admits an almost-flat diagram of area at most C15 ·
|ui|α−1. We conclude by applying Lemma 3.12. □

6 Lower bounds

We now turn our attention to the lower bounds. The aim of this section is to prove
the following.

Theorem 6.1. Let Γ be a finite simplicial graph such that the associated flag complex
Δ(Γ) is simply connected, and let α ∈ {3,4}. If Γ has property (𝒟α), then δBBΓ(n)≽
nα.

To establish cubic and quartic lower bounds for the Dehn functions in Theo-
rem 6.1, we need to produce a family of null-homotopic alternating words wn such
that we can find a cubic, respectively quartic, lower bound for the area of almost-
flat van Kampen diagrams for wn. To obtain these lower bounds, we analyse the
behaviour of corridors and annuli inside such diagrams.

Recall that both corridors and annuli inherit a natural orientation: our convention
is that the positive orientation of an a-corridor or a-annulus is the one such that the
a-edges transverse to it are oriented from left to right.

Let D be an almost-flat van Kampen diagram over the standard presentation
𝒫Γ of AΓ. Removing the interior of a corridor or annulus subdivides D into two
connected components. We say that a corridor C separates two vertices p and q if
they belong to different connected components after removing the interior of C, and
that an annulus A encloses a vertex p if p is contained in the connected component
that does not contain the boundary of D.
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Let p0 denote the base point of D. For every vertex p ∈D, we define

κ+(p) := |{C :C is a corridor separating p0 and p, with p on the right of C}|

κ−(p) := |{C :C is a corridor separating p0 and p, with p on the left of C}|

α+(p) := |{A :A is an annulus oriented clockwise enclosing p}|

α−(p) := |{A :A is an annulus oriented counterclockwise enclosing p}|

and set

α(p) := α+(p)− α−(p) and κ(p) = κ+(p)− κ−(p).

Lemma 6.2. For every vertex p ∈D, we have φΓ(p) = α(p) + κ(p).

Proof. Consider an arbitrary combinatorial path connecting p0 and p. Every edge in
the path crosses exactly one corridor or annulus. The height increases by one when
crossing a corridor from left to right, when entering an annulus oriented clockwise, or
when exiting an annulus oriented counterclockwise. Conversely, the height decreases
by one when crossing a corridor from right to left, when exiting an annulus oriented
clockwise, or when entering an annulus oriented counterclockwise. From this, we get
the statement. □

Corollary 6.3. For every vertex p ∈D, we have |α(p)| ≥ |κ(p)| − 2.

Proof. The result follows from Lemma 6.2 and the fact that every vertex p in an
almost-flat van Kampen diagram satisfies φΓ(p) ∈ {0,1,2}. □

Thus, Corollary 6.3 tells us that in an almost-flat van Kampen diagram, a vertex
p with large |κ(p)| must be enclosed by many annuli. We show that, under certain
assumptions, these annuli produce a lot of crossings, which in turn yield a large lower
bound for the area of D.

Definition 6.4. Let p be a vertex in D. We denote by x(p) the set of pairs (A,A′),
where A is an annulus enclosing p, A′ is an annulus not enclosing p, and A crosses
A′.

Lemma 6.5. Let p and q be vertices of D, and let γ be a (combinatorial) path
connecting them. Assume that no annulus encloses both p and q, and that every
vertex in γ is enclosed by at least k annuli of D. Then

|x(p)| ≥ k(k + 1)
2

.

Proof. Assume that γ : [0, ℓ]→D is parametrised by length, with γ(0) = p and γ(ℓ) =
q. For a vertex p′ of D, denote by Θ(p′) the set of annuli enclosing p′, and by Ω(p′)
the set of annuli not enclosing p′.

For A ∈Θ(p), we call the exit time of A the number

ϵ(A) := min{t ∈ℕ∩ [0, ℓ] : A ∈Ω(γ(s)) for s ∈ℕ∩ [t, ℓ]}.
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That is, the number ϵ(A) is the time after which γ last crosses A. Note that this
number is well-defined since A ∈ Ω(q). Moreover, an annulus A ∈ Θ(p) crosses, by
definition, the edge between γ(ϵ(A)−1) and γ(ϵ(A)), so different annuli have distinct
exit times.

Choose the ordering Θ(p) = {A1, . . . ,An} according to the exit times so that
ϵ(Ai)< ϵ(Aj) whenever i < j. For example, if the annuli are pairwise disjoint, then A1
is the innermost annulus, and An the outermost. For i ∈ {1, . . . , n}, let pi := γ(ϵ(Ai))
denote the exit point of Ai.

By the chosen ordering, we have Aj ∈ Ω(pi) for i ≥ j. In particular, |Ω(pi) ∩
Θ(p)| ≥ i− 1, and therefore |Θ(pi)∩Θ(p)| ≤ n− (i−1). By the assumption |Θ(pi)| ≥
k, it follows that |Θ(pi)∩Ω(p)| ≥ k−n+ i−1. Every annulus A′ ∈Θ(pi)∩Ω(p) must
cross Ai, since p is enclosed by Ai but not by A′, pi is enclosed by A′ but not by Ai,
and the vertex after pi (moving towards p) is enclosed by both A′ and Ai. Therefore,
(Ai,A

′) ∈ x(p).
Since n≥ k, we conclude that x(p) contains at least k + (k− 1) + · · ·+ 1 = k(k+1)

2
pairs of crossing annuli. □

We have the following consequence.

Corollary 6.6. Assume that there exists a family P = {p1, . . . , pm} of vertices in
D such that no annulus encloses two or more vertices of P . Furthermore, suppose
that for every i ∈ {1, . . . ,m}, there is some integer ki ≥ 0 and a vertex qi in D such
that:
• no annulus encloses both pi and qi;
• there exists a path connecting pi and qi such that every vertex of the path is

enclosed by at least ki annuli.
Then

Area(D)≥ 1
2

m∑︂
i=1

k2
i .

Proof. The area of D coincides with the total number of crossings between annuli
and/or corridors. In particular, it is bounded below by the cardinality of

X := {(A,A′) :A ̸=A′ are annuli and A crosses A′}.

Note that we do not divide by two to take the symmetry into account, since if two
annuli cross, they must do so at least twice.

Denote by L1, . . . ,Lm the families of annuli enclosing p1, . . . , pm, respectively. By
assumption, the sets Li are pairwise disjoint, so x(p1), . . . , x(pm)⊆X are also pair-
wise disjoint. By Lemma 6.5, we have |x(pi)| ≥ k2

i

2 for every i ∈ {1, . . . ,m}. Therefore,
we obtain |X| ≥ 1

2
∑︁m

i=1 k
2
i , as desired. □

6.1 Cubic lower bound. Throughout this subsection, we assume that Γ has
property (𝒟3); that is, it admits a maximal reducible subgraph Λ that is essentially
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2-reducible. In particular, the subgraph Λ decomposes as a join Λ′ ∗ Λ′′, where Λ′

and Λ′′ are irreducible and each has at least two vertices. We aim to show that, in
this case, the Dehn function of BBΓ is bounded below by a cubic polynomial.

Remark 6.7. The results in this subsection also apply when Γ has (𝒟4), since (𝒟4)
implies (𝒟3). In fact, the proof of the quartic lower bound in Sect. 6.2 builds on the
work done for the cubic lower bound in Sect. 6.1, using the additional hypothesis
given by property (𝒟4) to promote the cubic lower bound into a quartic one.

Denote by 𝒜 and ℬ the sets of generators corresponding to the vertices of Λ′

and Λ′′, respectively, and by 𝒞 := SΓ \ (𝒜∪ ℬ) the generators corresponding to the
vertices outside the join.

We begin by noting the following fact.

Lemma 6.8. Let s ∈ SΓ be a generator. If s commutes with all a ∈ 𝒜, then s ∈ ℬ.
Similarly, if s commutes with all b ∈ ℬ, then s ∈𝒜.

Proof. We prove the first assertion; the other follows by symmetry. Suppose that
s ∈ SΓ commutes with all a ∈ 𝒜, so the vertex vs belongs to ∩a∈𝒜 St(va). If vs = va
for some a ∈ 𝒜, then Λ′ would be a cone graph, contradicting the fact that Λ′ is
irreducible. If vs ̸= va for all a ∈𝒜, then vs must belong to Λ′′; otherwise, the graph
Λ′ ∗ (vs∪Λ′′) would be a reducible graph containing Λ, contradicting the maximality
of Λ. Thus, we have vs ∈Λ′′, and therefore s ∈ ℬ. □

Lemma 6.8 has an immediate corollary.

Corollary 6.9. There is no generator that commutes with all s ∈𝒜∪ℬ.

Proof. Such a generator should belong to both 𝒜 and ℬ, but 𝒜∩ℬ = ∅. □

Lemma 6.10. There exist k ∈ℕ and a sequence a0, a1, . . . , ak = a0 of non-necessarily
distinct elements of 𝒜 such that {a1, . . . , ak} = 𝒜, and [ai−1, ai] ̸= 1 for all i ∈
{1, . . . , k}. Similarly, there exist ℓ ∈ ℕ and a sequence b0, b1, . . . , bℓ = b0 of non-
necessarily distinct elements of ℬ such that {b1, . . . , bℓ}= ℬ, and [bj−1, bj ] ̸= 1 for all
j ∈ {1, . . . , ℓ}.

Proof. We prove the first statement; the other follows from a similar argument. Since
Λ′ is irreducible, its complement (Λ′)c is connected. Thus, the graph (Λ′)c admits
a combinatorial closed path γ : [0, k] → (Λ′)c (that is, γ(k) = γ(0)) that visits all
the vertices at least once. Notice that we do not require the path γ to be injective,
for instance, it may backtrack. Let a0, a1, . . . , ak ∈ 𝒜 be the sequence of generators
corresponding to the vertices of γ, so that γ(i) = vai . Since consecutive vertices on
γ are not adjacent in Λ′, the corresponding generators do not commute. □

Let a1, . . . , ak = a0 ∈ 𝒜 and b1, . . . , bℓ = b0 ∈ ℬ be any choice of elements sat-
isfying the assumptions of Lemma 6.10. For n ∈ ℕ, consider the alternating
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Figure 11: A schematic depiction of a van Kampen diagram for wn, where k = ℓ = 3 and n = 2. The
coloured lines represent corridor cores. We call bridges the corridors that connect opposite sides
of the square, and half-annuli the corridors that start and end on the same side of the square.
The regions between an ak-bridge and an a1-bridge are called 𝒜-gaps, and the regions between a
bℓ-bridge and a b1-bridge are called ℬ-gaps.

words

w′
n := (a1b

−1
1 · · ·akb−1

1 )n(b1a−1
1 · · · b1a−1

k )n,

w′′
n := (b1a−1

1 · · · bℓa−1
1 )n(a1b

−1
1 · · ·a1b

−1
ℓ )n.

Notice that w′
n and w′′

n represent elements in BBΛ′ and BBΛ′′ , respectively. There-
fore, these two words commute; that is, the commutator [w′

n,w
′′
n] is a null-homotopic

alternating word.
Let Dn be an almost-flat van Kampen diagram for the null-homotopic alternating

word

wn := [w′
n,w

′′
n].

The diagram Dn is pictured as a square, where the top and bottom sides are labelled
by w′

n, and the left and right sides are labelled by w′′
n; see Fig. 11. In this subsection,

we prove that the area of Dn is bounded below by a cubic polynomial.
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Remark 6.11. Following the notation in Sect. 4, we have

w′
n = push0([(a1 · · ·ak)n(a−1

1 · · ·a−1
k )]b1)

w′′
n = push0([(b1 · · · bℓ)n(b−1

1 · · · b−1
ℓ )]a1).

So, the word wn = [w′
n,w

′′
n] is the pushdown of the coloured commutator [[w′

n]b1 ,
[w′′

n]a1 ] (recall Definition 5.5). While this fact is not used in the following arguments,
it is still worthy of note: we have seen in Sect. 5 that upper bounds on the almost-
flat area of the pushdowns of fundamental pieces (monochromatic words, coloured
bigons, and coloured commutators) yield an upper bound on the Dehn function of
BBΓ. This suggests that the Dehn functions of BBΓ should be witnessed by a family
of such words.

Definition 6.12. We call a corridor of Dn an 𝒜-corridor, ℬ-corridor or 𝒞-corridor,
if it is an s-corridor for some s ∈ 𝒜,ℬ,𝒞 respectively. Define 𝒜-annulus, ℬ-annulus
and 𝒞-annulus similarly.

Remark 6.13. Since wn is a word in 𝒜∪ℬ, there are no 𝒞-corridors in Dn; however,
𝒞-annuli may be present.

The properties described in Lemma 6.10 place strong restrictions on how wn can
be transformed into the trivial word by applying relations. This allows us to describe
precisely the behaviour of corridors inside Dn.

Definition 6.14. A corridor in Dn is called a bridge if it connects two ith letters
on the opposite sides of the square (counting from left to right and from bottom to
top). It is called a half-annulus if it connects the ith letter with the (4n− i)th letter
on the same side of the square.

Lemma 6.15. Every 𝒜-corridor in Dn is either a half-annulus that starts and ends
on the left or right side of the square, or a bridge connecting the top and bottom
sides. Analogously, every ℬ-corridor in Dn is either a half-annulus that starts and
ends on the top or bottom side of the square, or a bridge connecting the left and
right sides; see Fig. 11.

Proof. We prove the first statement; the second statement follows from a similar
argument. Consider the jth leftmost ai-edge e on the bottom side of Dn, with 2≤ i≤
n. The𝒜-corridor starting at e must end at another ai-edge with opposite orientation.
This corridor divides the other edges of Dn into two sets, one on each side of the
corridor. Since two ai-corridors cannot cross, the total number of boundary ai-edges
on each side of the corridor, counted with sign, must be zero. To satisfy this condition,
there are only two possibilities: the corridor must end either at the jth leftmost ai-
edge e′ on the top side, or at the jth rightmost ai-edge e′′ on the bottom side.

Suppose, by contradiction, that there is a corridor C connecting e to e′′. Then
there are (n− j) many ai−1-edges below C oriented to the right and (n− j+1) many
ai−1-edges below C oriented to the left. Since ai−1 and ai do not commute, every
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corridor that starts at a letter ai−1 below C cannot intersect C. Thus, there is no
way to pair all the ai−1 edges below C. Therefore, a corridor that starts at e must
end at e′, that is, the corridor C is a bridge.

For a1-edges, the reasoning is similar: let e be an a1-edge on the bottom side
that is not the leftmost one. There is only one other edge with the same label that
can be reached by a corridor C without intersecting any a2-corridors or ak-corridors,
namely the a1-edge directly above on the top side. Thus, the corridor C is a bridge.

The leftmost a1-edges on the top and bottom sides, together with all the a1-
edges on the left and right sides, are oriented in such a way that the only possible
a1-corridors that do not pairwise intersect and do not intersect any a2-corridors or
ak-corridors are bridges and half-annuli, respectively, as shown in Fig. 11. □

Lemma 6.15 shows that bridges in Dn look almost like a grid pattern, in the sense
that 𝒜-bridges are parallel and do not intersect, and the same holds for ℬ-bridges.
Every 𝒜-bridge crosses every ℬ-bridge at least once, and possibly multiple times, as
shown in Fig. 11. Moreover, the half-annuli must stay “close” to the boundary, as
they cannot cross a bridge: for example, the bottom half-annuli labelled by b1 would
need to cross a b1-bridge, and the top ones would have to cross a bk-bridge, and both
are not allowed. This gives a complete description of the corridors inside Dn.

We now proceed to investigate the behaviour of the annuli. To this end, we in-
troduce the following definition.

Definition 6.16. For −(n− 1)≤ i≤ n− 1, define the 𝒜-gap, denoted by Σ(𝒜, i),
to be the region between the (n + i)th ak-bridge and the (n + i + 1)th a1-bridge,
counted from left to right. Similarly, define the ℬ-gap, denoted by Σ(ℬ, j), to be the
region between the (j +n)th bℓ-bridge and the (j +n+1)th b1-bridge, counted from
bottom to top.

Lemma 6.17. Let A be an annulus that intersects two distinct 𝒜-gaps. Then A is a
ℬ-annulus. Similarly, if it intersects two distinct ℬ-gaps, then it is an 𝒜-annulus.

Proof. Let s ∈ SΓ. If A is an s-annulus intersecting two distinct 𝒜-gaps, it must also
cross every 𝒜-bridge in between. Then s commutes with all the generators of 𝒜, so it
belongs to ℬ by Lemma 6.8. The argument for the second statement is similar. □

For i, j ∈ ℤ with |i|, |j| ≤ n− 1, denote by Ri,j the intersection Σ(𝒜, i)∩Σ(ℬ, j),
which is non-empty as it contains at least intersections of the sides of the bridges.
However, it may be disconnected. For example, in Fig. 11, the region R0,0 has three
connected components.

Lemma 6.18. For every vertex p ∈Ri,j , we have κ(p) = k(n− |i|) + ℓ(n− |j|)

Proof. The bottom and top half-annuli, which are the b1-corridors, do not intersect
ℬ-gaps, as to do so they would need to intersect a bi-bridge for every i ∈ {1, . . . , ℓ}.
Similarly, the left and right half-annuli do not intersect 𝒜-gaps. In particular, they
cannot separate p from the base point, so only the bridges contribute to κ(p). The
statement now follows from the definition of κ. □
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For |i| ≤ n−1, choose a point pi inside Ri,i. We verify in the following two lemmas
that the family P = {pi : |i| ≤ n− 1} satisfies the two conditions in the hypotheses of
Corollary 6.6.

Lemma 6.19. No annulus can enclose both pi and pj for i ̸= j.

Proof. If such an annulus exists, then it would intersect two distinct 𝒜-gaps and two
distinct ℬ-gaps. By Lemma 6.17, it would be both an 𝒜-annulus and a ℬ-annulus,
which is a contradiction. □

Lemma 6.20. Let p ∈ Ri,j be a vertex, with |i|, |j| ≤ n − 2. There exists q ∈ Ri′,j′ ,
for some i′, j′ satisfying |i− i′|= |j − j′|= 1, and a (combinatorial) path connecting
p and q that intersects only the four gaps Σ(𝒜, i), Σ(𝒜, i′), Σ(ℬ, j), and Σ(ℬ, j′).
In particular, for every point x on the path between p and q, we have |κ(x)| ≥
k(n− |i| − 1) + ℓ(n− |j| − 1).

Proof. Consider a path, starting from p and ending on the boundary of Dn, that is
entirely contained in Σ(𝒜, i). This path must intersect a ℬ-gap different from Σ(ℬ, j).
Let p′ be the first vertex inside such a gap Σ(ℬ, j′). Clearly, |j − j′|= 1.

Now, repeat the same argument by taking a path inside Σ(ℬ, j′) starting at p′

and ending on the boundary of Dn; let q be the first vertex on this path that lies
in a different gap Σ(𝒜, i′). Then, |i− i′|= 1. The union of the two paths, from p to
p′ and from p′ to q, intersects only the four gaps in the statement. Since this path
lies entirely within these four gaps, the estimate for κ(x) follows analogously to the
proof of Lemma 6.18. □

Now, we can apply Corollary 6.6 to obtain the cubic lower bound.

Proposition 6.21. If Γ has property (𝒟3), then δBBΓ(n)≽ n3.

Proof. We prove that there exists a constant C > 0, independent of the choice of the
almost-flat diagram Dn for wn, such that the area satisfies

Area(Dn)≥
1
C
n3 −C.

Consider the family P = {pi ∈Ri,i : |i| ≤ n− 1}. Lemma 6.19 says that there are
no annuli enclose pi and pj for i ̸= j. By Lemma 6.20, for each i, we get a point
qi ∈Ri±1,i±1 and a path from pi to qi, and every point x on this path is enclosed by
at least

α+(x) + α−(x)≥ |α(x)| ≥ |κ(x)| − 2≥ (k + ℓ)(n− |i| − 1)− 2
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many annuli. Thus, the family P satisfies the hypotheses of Corollary 6.6, and ap-
plying the conclusion yields

Area(Dn)≥
1
2

n−1∑︂
i=−(n−1)

((k + ℓ)(n− |i| − 1)− 2)2

≥ 1
C
n3 −C

for some constant C > 0 sufficiently large and independent of n. □

6.2 Quartic lower bound. In this section, we assume that Γ has property (𝒟4);
that is, it has a maximal reducible subgraph Λ ⊆ Γ such that Δ(Λ) is not simply
connected. Thus, the subgraph Λ decomposes as a join Λ′ ∗Λ′′, where Λ′ and Λ′′ are
both disconnected. In particular, the subgraph Λ is essentially 2-reducible.

In this case, we may choose the generators a1, . . . , ak and b1, . . . , bℓ that satisfy
the hypotheses of Lemma 6.10, and with the additional constraint that the vertices
va1 and vak in Λ′, corresponding to a1 and ak, lie in different connected components
of Λ′, and the same holds for vb1 and vbℓ in Λ′′.

With this additional assumption, we show that the area of an almost-flat van
Kampen diagram Dn for the word wn, defined in Sect. 6.1, has a quartic lower
bound. We begin with the following standard topological result.

Lemma 6.22. Let C be a 2-dimensional contractible cell complex, and let A ⊔B be
a partition of its vertices. Assume that for every 2-dimensional cell σ of C, the full
subcomplexes of σ whose vertices belong to A and to B are connected or empty.
Let γ : S1 → C be a combinatorial loop (not necessarily simple) in C, obtained by
concatenating four combinatorial paths γ1, γ2, γ3, and γ4. Then, either there exists
a combinatorial path connecting the images of γ1 and γ3, with all vertices in A, or
there exists a combinatorial path connecting the images of γ2 and γ4, with all vertices
in B.

Remark 6.23. Note that Lemma 6.22 does not assume that the vertices of γ1, γ3
belong to A, nor that the vertices of γ2, γ4 belong to B. However, a counterexample
cannot be constructed by requiring γ1, γ3 to be proper subsets of B and γ2, γ4 to be
proper subsets of A, since (γ1 ∪ γ3)∩ (γ2 ∪ γ4) ̸= ∅ (it contains the four points where
the paths are concatenated).

Proof. Suppose that this is not the case. We claim that there exists f : C→ S1 such
that f ◦ γ is homotopic to a homeomorphism. This leads to a contradiction, as C

being contractible implies that the composition f ◦ γ must be null-homotopic. For
the following, we view S1 as the unit circle in ℂ.

To define f , we first note that a vertex v ∈ A cannot be connected inside A to
both γ1 and γ3. For v ∈A, define f(v) = 1 if it is connected to γ1, and f(v) =−1 if it
is connected to γ3 or to neither. Similarly, for v ∈B, define f(v) = i if v is connected
to γ2, and f(v) =−i otherwise.
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If two vertices v and v′ share an edge, then f(v) ̸=−f(v′). So there is a canonical
way to extend f to the 1-skeleton by choosing the shortest path in S1 connecting
the images. Then, if σ is a 2-cell, by hypothesis the vertices ∂σ ∩ A are all in the
same connected component, so f |∂σ is not surjective. Therefore, the map f can be
extended to σ continuously.

It remains to show that f ◦ γ is homotopic to a homeomorphism. This follows
since f never assumes the value −1 on γ1, −i on γ2, 1 on γ3, or i on γ4, so f is a
degree-one map. □

We now use Lemma 6.22 to obtain information about the structure of the 𝒜-gaps
and ℬ-gaps.

Lemma 6.24. In every 𝒜-gap (respectively, ℬ-gap) of Dn, there is a combinatorial
path connecting the two opposite boundary components that does not cross any 𝒜-
annuli (respectively, ℬ-annuli).

Proof. Let p be a vertex in Dn that is enclosed in an 𝒜-annulus. Consider the set
of outermost 𝒜-annuli that enclose p, that is, those not enclosed by any larger 𝒜-
annulus. Since they pairwise cross, all the corresponding generators must commute,
so their associated vertices all belong to the same connected component of Λ′. Denote
this connected component by Comp(p). If p and p′ are adjacent vertices in Dn and
each is enclosed by at least one 𝒜-annulus, then there is an 𝒜-annulus that encloses
both, and therefore Comp(p) = Comp(p′).

We now apply Lemma 6.22 to the 𝒜-gap, where the partition of the vertices
is given by those enclosed by some 𝒜-annulus and those that are not. Suppose by
contradiction that there is no path that connects the boundary components of an
𝒜-gap and lies outside every 𝒜-annulus. Then, there is a path L connecting the ak-
corridor to the a1-corridor such that every vertex of L lies in at least one 𝒜-annulus.
Therefore, repeating the argument in the previous paragraph on the vertices of L

gives Comp(p) = Comp(q), where p and q are the endpoints of L.
However, all 𝒜-annuli enclosing p must cross the ak-corridor, so Comp(p) is the

connected component containing vak . Similarly, the connected component Comp(q)
contains va1 . Since we assumed that va1 and vak belong to different connected com-
ponents of Λ′, we obtain a contradiction. □

We apply Lemma 6.24 to the gaps Σ(𝒜, i) and Σ(ℬ, j) and deduce the existence
of two paths γ ⊆ Σ(𝒜, i) and γ′ ⊆ Σ(ℬ, j), whose vertices are not enclosed by any
𝒜-annuli and any ℬ-annuli, respectively. By intersecting γ and γ′, we obtain a vertex
pi,j ∈Ri,j = Σ(𝒜, i)∩Σ(ℬ, j) that is not enclosed by any 𝒜-annulus or any ℬ-annulus.

We are now ready to apply Corollary 6.6 to establish the quartic lower bound.

Proposition 6.25. If Γ has property (𝒟4), then δBBΓ(n)≽ n4.

Proof. We claim that the area of the almost-flat van Kampen diagram Dn for wn is
bounded below by a quartic polynomial. First, note that there is no annulus enclosing
two distinct points pi,j and pi′,j′ . Suppose, for instance, that i ̸= i′ (the case j ̸= j′
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is similar). Then an annulus enclosing both pi,j and pi′,j′ would have to intersect
different 𝒜-gaps. By Lemma 6.17, it must be a ℬ-annulus, but this is ruled out by
the definition of pi,j .

By Lemma 6.20, we obtain a path connecting pi,j to some other point qi,j ∈
Ri±1,j±1, with every point along the path contained in at least k(n− |i| − 1) + ℓ(n−
|j| − 1)− 2 many annuli. By the argument above, no annulus can enclose both pi,j
and qi,j . Therefore, we can apply Corollary 6.6 to the family pi,j and obtain

Area(Dn)≥
1
2

n−1∑︂
i=−(n−1)

n−1∑︂
j=−(n−1)

(k(n− |i| − 1) + ℓ(n− |j| − 1)− 2)2

≥ 1
C
n4 −C

for some constant C > 0 sufficiently large and independent of n. □
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