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ABSTRACT: The conception, study, and development of two-
dimensional (2D) materials have expanded the frontiers of next-
generation optoelectronic devices. Representative of this class, the
MoO, monolayer in its 2H phase was investigated here with
respect to its structural, electronic, optical, and excitonic properties,
through the PBE level for structural and electronic properties,
being the electronic band gap correct at the HSE06 level, the
optical and excitonic properties were obtained by solving the
Bethe-Salpeter equation. The structural stability was also
investigated at the dynamical (phonons), thermodynamic
(AIMD), and mechanical (elastic constants) levels, ensuring the
stability of this monolayer at all levels. This 2D transition-metal
dioxide exhibits semiconducting behavior with a HSE06 direct
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band gap of 2.50 eV, where spin—orbit coupling is weak. We also observe spin degeneracy breaking in the valence bands close to the
Fermi level in the vicinity of the K and K’ valleys and along the connecting path between them. Excitonic band-structure analysis
revealed a binding energy of 0.38 eV, which gives rise to significant excitonic effects in the linear optical response. The response is
isotropic across the infrared and visible ranges, extending to the onset of the ultraviolet spectrum.

1. INTRODUCTION

Graphene has emerged as a cornerstone in the development of
2D materials, owing to its unprecedented properties arising
from quantum confinement along the nonperiodic direction.
Since its isolation in the early 2000s, this material has
stimulated the rapid search for novel 2D systems, given their
potential in high-frequency electronics and broadband
optoelectronics. Beyond graphene, other 2D monolayers and
their stackable counterparts, such as van der Waals (vdW)
heterostructures,” have advanced the state-of-the-art in
materials science by demonstrating functionalities suitable for
emerging and promising technologies.”*

Among these, transition-metal dichalcogenides (TMDCs)
have attracted considerable attention, since their graphene-like
honeycomb lattice, often crystallizing in the 2H phase,” is
combined with semiconducting behavior, in contrast to
graphene’s semimetallic nature. TMDCs adopt the stoichiom-
etry MX,, where a transition-metal atom M is intercalated by
two chalcogen atoms X. Several TMDCs, such as MoS,,°
WS,,” MoSe,,* MoTe,,’” WSe,,'”"" and CrS,,'* have been
usually investigated for their uses in biosensors, optoelec-
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tronics, flexible electronics, photonics, energy storage, and
photovoltaics. Thus, advancing within the broader family,
transition-metal dioxides (TMDOs) have also become the
focus of interest, given their structural, electronic, optical, and
excitonic characteristics. Reported studies include NiO,,"
Cr0,,'"* 7r0,,'>'¢ HfO,,">'” MnO,,'* PtO,," 050, and
RuO,,”"** as well as systematic works surveying this
family.”»** However, a satisfactory understanding of the
optical properties of these materials considering excitonic
effects is far from ideal.

In this work, we investigate the 2H—MoO, monolayer,
combining density functional theory (DFT) calculations with
many-body methods. We assess thermodynamic, mechanical,
electronic, and excitonic properties. Phonon dispersion, elastic
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constants calculations, and ab initio molecular dynamics
(AIMD) confirm stability.” Electronic properties are evaluated
with plain semilocal and nonlocal hybrid exchange—correlation
functionals, including spin—orbit coupling (SOC). The linear
optical response is explored through the independent particle
approximation (IPA) and the Bethe—Salpeter Equation (BSE)
formalism, using maximally localized Wannier functions
(MLWF-TB) as input for excitonic calculations.”* ™%’

2. THEORETICAL METHODOLOGY AND
COMPUTATIONAL DETAILS

First-principles simulations were performed within the DFT
framework using the Vienna Ab Initio Simulation Package
(VASP).*>*" Structural and electronic properties were initially
explored within the Perdew—Burke—Ernzerhof (PBE) func-
tional, a widely used member of the generalized gradient
approximation (GGA) family.”>** As is well-known, PBE
underestimates band gaps due to the derivative discontinuity
and self-interaction errors,”**° thereby, we also employed the
screened hybrid HSE06 functional,®®*” which partially
incorporates exact exchange, improving band gap accuracy
with manageable computational cost.

Calculations were performed using the projector augmented-
wave (PAW) method.*®* Structural relaxation based on unit
cell as depicted in Figure 1 was achieved with a plane-wave

R 0. 0.0

Figure 1. Top and side views of the 2H—MoO, monolayer crystal
structure with the unit cell lines highlighted, where Mo atoms are
shown in purple and O atoms in red.

cutoff of 1050 eV, an energy convergence criterionoof 107% eV,
and interatomic forces convergence below 0.01 eV/A was used
to minimize atomic forces and optimize the stress tensor. A 16
X 16 X 1 Monkhorst—Pack mesh (corresponding to a k-point
density of 40 A™') ensured Brillouin-zone integration. For
density-of-states (DOS) calculations, a denser 33 X 33 X 1 grid
was used (corresponding to a k-point density of 80 A™').
Phonon dispersion and thermodynamic properties were
computed with Phonopy™ using a 4 X 4 X 1 supercell, 24 x
24 X 1 k-mesh, and a vacuum of 17.5 A along 2. In addition,
thermodynamic properties were assessed with those same
packages by computing the Helmholtz free energy, entropy,
and heat capacity at constant volume. AIMD simulations

employed the FHI-aims code™ (within light tier 1 basis set)
with a Nose—Hoover thermostat at 300 K (thermalization), a
time step of 1 fs, and a total simulation time of S ps for a 4 X 4
X 1 supercell with a 24 X 24 X 1 k-mesh.

Elastic constants were extracted via the stress—strain method
and analyzed through Hooke’s law. For the hexagonal lattice,
only C;; and C,, are independent, leading to isotropic
expressions for the shear modulus G, Young’s modulus Y,
and Poisson’s ratio .*'~** For optical properties, we solved
the BSE with WanTiBEXOS,*® using MLWEF-TB Hamiltonians
constructed from HSE06+SOC band structures via VASP and
Wannier90,% considering d- and p-orbital projections for Mo
and O atomic species, respectively. A 2D truncated Coulomb
potential (V2DT)* was adopted with eight conduction and
two valence bands over a 49 X 49 X 1 k-grid and a Gaussian
smearing value of 0.05 eV (for a more accurate description of
the dielectric constants).

More specifically, through the generalized Hooke’s law, the
elastic constants relate to the stress response 6 to externally
applied strain € can be given by the following expression

6
=2 Cf
1

1
where the coefficients C; constitute the so-called elastic
stiffness tensor C, which can be reduced to a lower order by
exploiting physical symmetries present in the structure. In our
case, given the MoO, hexagonal unit cell, C is further
simplified by presenting a small number of independent

elements and taking the form
Gy Gy O
C=|C, €, 0
0 0 C66 (2)

where two out of its nine elements are independent elastic
constants, namely C,; and C;,. This gives rise to the shear
modulus G(6), calculated as

1
G(0) = Ce=—(C;; - C
( ) 66 2( 11 12) (3)
and two other parameters useful in characterizing mechanical
stability of a structure: (i) the Young’s modulus (Y(6)) and
(ii) the Poisson’s ratio (v(6)), defined by eqs 4 and §,
respectively

2
C11C22 B C12

Y(0) =
© C,sin*0 + Cyycos'0 — & (4)
(6) = C12(51f49 + cos494) -
C,sin"0 + C,ycos70 — & (5)
where
C,,Cyy — Cf
&= [ZC12 - M]sin@coszg
Cos (6)
Gy, — C
Ve (CH + Cy, — M]SinZGCOSZQ
Ces (7)

Both functions of the angle @ with respect to the positive x-
axis are as usual’’ Besides calculating the elastic stiffness
tensor C as in eq 2, VASP also computes the compliance
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tensor (S = C™') as a matrix transformation to directly obtain
the strain € of a material given a specific stress o.*

Finally, about Raman and IR analysis, the vibrational
properties were considered using off-resonance Raman activity
and IR spectrum, determined by the method developed by
Porezag and co-workers,” focusing on the phonon vibration
modes at I'. For these calculations, we implemented the
computational approach proposed by Fonari and Stauffer.* IR
and Raman spectra are obtained using a Gaussian smearing of
1 cm™.

3. RESULTS AND DISCUSSION

3.1. Structural and Mechanical Stability

The 2H—MoO, monolayer adopts a hexagonal-lattice
structure, with a unit cell containing two O and one Mo
atoms in a honeycomb-like arrangement, similar to graphene
and other Mo-based TMDCs,*”*® as seen in Figure 1 The
optimized lattice constant is a, = 2.823 A, with Mo — — —O
bond length of 2.039 A and O — — O separation of 2.451 A.
The Phonon dispersion, shown in Figure 2a, exhibits no
imaginary frequencies, confirming dynamical stability. Addi-
tionally, the thermodynamic analysis (panel (b) from Figure 2)
shows negative Helmholtz free energy above 580 K, suggesting
promissing synthesis conditions from temperatures. The
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Figure 2. Phonon dispersion and thermodynamic properties of the
2H—MoO, monolayer: (a) phonon band structure and (b)
Helmholtz free energy (red), entropy (blue), and constant-volume
heat capacity (green).

constant-volume heat capacity nears the Dulong—Petit limit
at 800 K, and entropy increases quasi-linearly up to 500 K.
Our investigated MoO, monolayer presents independent
elastic constants of C;; = 238.8 N/m and C;, = 85.4 N/m,
which satisfy Born’s mechanical stability criteria (C;; > 0 and
Cy1 > ICy,l). The derived isotropic moduli include a shear
modulus of G = 76.2 N/m, a Young’s modulus of Y = 207.1 N/
m, and a Poisson’s ratio of v = 0.36. For graphene, the
corresponding values are C;; = 351.4 N/m,* C,, = 61.6 N/
m,” Y = 340 N/m,*’ G = 150 N/m,’" and v = 0.398.”
When comparing both systems, we find that MoO, exhibits
approximately 61% of graphene’s in-plane stiffness (Young’s
modulus) and S1% of its shear rigidity, while maintaining a
similar Poisson’s ratio, indicating comparable transverse
deformation behavior under tensile loading. This lower
stiffness suggests that MoO, is mechanically softer and more
flexible, potentially facilitating strain engineering and mechan-
ical tunability in devices, whereas graphene remains stiffer and
more brittle. Therefore, although MoO, cannot match
graphene’s exceptional strength, its moderate elastic constants
and good mechanical stability make it a promising material for
flexible and deformable electronic or optoelectronic applica-
tions. Polar plots, shown in Figure 3, confirm isotropic
behavior. Furthermore, ensuring the 2H—MoO, thermody-
namic stability, the AIMD thermalization simulation at 300 K
shows structural integrity maintained over S ps, with energy
fluctuations of about 0.07 eV/atom, according to Figure 4a,b.

3.2. Electronic Properties

Figure S shows that the projected DOS near the Fermi level (0
eV) is dominated by Mo-d and O-p orbitals, consistent with
semiconducting character. The main contributions for these
orbitals occur around —1.80 eV, 1.70 eV, 2.10 eV, and 2.30 eV.
In contrast, O-s and Mo-p orbitals contribute minimally and
appear only as minor features at — 2.0 eV to —1.0 and 2.0 eV
to 3.0 eV.

From PBE (blue curves) and PBE + SOC (red curves) band
structures, shown in Figure 6a, we observe the PBE prediction
of an indirect band gap of 0.93 eV, with the VBM at I" and the
CBM at K/K’, while a direct band gap of 1.76 eV is obtained at
I'. According to the PBE + SOC calculation protocol, our
results indicate a negligible SOC effect, with an indirect band
gap of 0.92 eV and a direct band gap of 1.70 eV. Notably, spin
degeneracy breaks midway between I'-K and I'-K/,
contrasting with Mo-based TMDCs where splitting occurs at
the valleys (making the K and K’ valleys energetically
equivalent but with opposite spin configurations).””>*

Comparing the PBE + SOC (red curves) and HSE06+SOC
(green curves) band structures in Figure 6 b, we observe that
the underestimation of the band gap by PBE becomes evident.
While PBE predicts a fundamental gap of 0.92 eV and a direct
gap of 1.70 eV, HSE06 corrects these values to 1.55 and 2.50
eV, respectively. This correction not only improves agreement
with expected band gap magnitudes but also enhances the
SOC-induced spin-degeneracy splitting, in line with the
behavior reported for other Mo-based TMDC monolayers.®
3.3. Raman and IR Spectrum

In the 2H phase, MoO, belongs to the hexagonal crystal
system (space group P6m2) and to the Dy, point group, the
same as for monolayer MoS,.*> The 2H—MoO, primitive cell
contains three atoms (two O and one Mo; see Figure 1),
yielding nine phonon modes (3N = 9 vibrational modes, where
N is the number of atoms inside the cell): three acoustic and
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Figure 3. Polar plots of (a) shear modulus G(6), (b) Young’s modulus Y(6), and (c) Poisson’s ratio v(6) for the 2H—MoO, monolayer.
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Figure 4. AIMD simulation (thermalization) of the 2H—MoO,

monolayer (48-atom supercell): (a) temperature versus time and
(b) total energy variation versus time at 300 K.

six optical modes, as shown in Figure 7. Among them, the
three acoustic modes, located at the I point, are not active in
IR or Raman because they do not produce significant changes
in dipole moment or polarizability (see Figure 2a). The
remaining six modes are optical and account for the observed
IR and Raman peaks.

Figure 8 presents the IR spectrum (a), with a magnification
of the 690—705 cm™ region in panel (b), and the Raman
spectrum (c), with the same magnified region shown in panel
(d), for the 2H—MoO, monolayer. In the IR spectrum (panel
(a)), peaks appear at 505 cm™' and 715 cm™, associated with
the doubly degenerate E, mode and the antisymmetric in-plane
A, mode, respectively. In the Raman spectrum (panel (c)),
peaks are found at 505 em™ (E,) and 696 cm™' (A, out-of-
plane stretching). Panels (b) and (d) show magnified views of
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Figure §. Total and orbital-projected density of states (DOS) of the
2H—MoO, monolayer at the PBE level. The Fermi level is set on 0
eV.

these A, and A, modes, marked with red asterisks; their
intensities were scaled for clarity due to their intrinsically weak
signals. These assignments agree with symmetry predictions
and earlier studies.”

A silent mode is predicted at 457 cm™!, which, although
symmetry-allowed, is inactive in both IR and Raman spectra
because its intensity is below the detection threshold. These
vibrational features are also consistent with the phonon
dispersion (Figure 2a), where six optical branches emerge
from the I' point. Overall, the calculated vibrational modes of
2H—MoO, reproduce the Raman peak positions reported by
Ersan et al,> providing a solid basis for future experimental
studies, as this system has not yet been extensively explored.

3.4. Excitonic and Optical Properties

We investigated the excitonic properties of the 2H—MoO,
monolayer by calculating the excitonic band structure shown in
Figure 9. Four local minima are observed in the vicinity of the
K and K’ valleys, with an indirect exciton ground state of 1.19
eV located at the K valley, and a direct exciton state at 2.11 eV.
The resulting exciton binding energy, defined as the difference
between the HSE06 + SOC fundamental band gap and the
indirect exciton ground state, is 0.38 eV. This value is
consistent with those typically reported for 2D materials.>*°~*

The linear optical response—obtained at both the IPA and
BSE levels—is shown in Figure 10 for the absorption coefficient
(a), refractive index (b), and reflectivity (c). Our calculations
were performed for linear light polarization along the X and y
directions. The spectra present only small variations with
polarization, regardless of the level of theory, establishing the
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Figure 6. Electronic band structure of the 2H—MoO, monolayer
along the '—K—K'—T path at different theory levels: (a) PBE (blue)
and PBE + SOC (red) and (b) PBE + SOC (red) compared with
HSE06 + SOC (green).
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Figure 7. Optical vibrational modes of the 2H—MoO, monolayer at
the I" point.

isotropic optical behavior of the 2H—MoO, monolayer.
Specifically, panel (a) reveals that excitonic effects strongly
influence the absorption onset, red-shifting the optical gap
from 2.50 eV (IPA) to 2.11 eV (BSE). At the BSE level,
absorption starts at 2.11 eV and exhibits repeated peaks from
2.49 to 4.00 eV, reaching a maximum of 4.61 X 10° cm™" at
2.64 eV. Excitonic effects, therefore, enhance the absorption
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Figure 8. (a) Infrared spectrum and (c) Raman spectrum of the 2H—
MoO, monolayer. Panels (b) and (d) show magnified views of the
690—705 cm ™' region in the IR and Raman spectra, respectively.
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Figure 9. MoO, monolayer exciton band structure along the k-path
I'-K-KX'-T.

intensity across the visible and ultraviolet ranges, with a
marginal preference for the X polarization in the visible.

The refractive index and reflectivity, as depicted in Figure
10b,c, display similar trends. The refractive index increases
steadily in the IR region, reaching 2.87 at 2.44 eV, before
sharply decreasing to 1.34 at 2.75 eV. Reflectivity exhibits
peaks of 0.29 and 0.33 at 2.47 and 2.64 eV, respectively, and a
minimum of 0.11 at 2.86 eV. Excitonic effects dominate the
refractive index up to 2.63 eV, beyond which IPA values
become slightly larger. For reflectivity, excitonic contributions
prevail over most of the energy range, except for a narrow
visible interval between 2.80 and 2.91 eV, where IPA values
exceed those from BSE.

4. CONCLUSION

In this work, we carried out a comprehensive characterization
of the 2H—MoO, monolayer, focusing on its structural,
electronic, optical, and excitonic properties using first-
principles calculations based on DFT. This TMDO adopts a
hexagonal lattice with an equilibrium lattice constant of 2.823
A and exhibits structural stability, indicating a favorable
synthesis above 580 K. Such stability was confirmed by
phonon dispersion, which displayed no imaginary frequencies.
AIMD simulations at 300 K (thermalization) revealed energy
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Figure 10. Optical properties of the MoO, monolayer: (a) absorption
coefficient, (b) refractive index, and (c) reflectivity at BSE (solid
lines) and IPA (dashed lines) levels for linear light polarization along
the x-(red) and y-(blue) directions.

fluctuations of approximately 0.07 eV/atom over the
simulation period, further supporting the structural robustness
of the system. Mechanical stability was verified by elastic
constants C;; and C;,, which satisfy the Born criteria.
Additionally, the isotropic character of the structure was
highlighted by symmetric plots of Poisson’s ratio, shear
modulus, and Young’s modulus. Electronic analysis revealed
that O-p and Mo-d orbitals dominate the DOS near the Fermi
level, confirming semiconducting behavior. The material

exhibits a direct band gap of 2.50 eV at the HSE06+SOC
level, with SOC-induced splitting evident along most of the
high-symmetry k-path, except near the I' point for the top
valence band. Vibrational analysis identified strong IR and
Raman activity at 505 cm™ (E; mode), with additional features
at 715 cm™ (A,, IR) and 696 cm™' (A, Raman). Excitonic
calculations yielded a direct exciton ground state at 2.12 eV
and a binding energy of 0.38 eV, values consistent with those
of similar 2D monolayers. Optical spectra computed at both
the IPA and BSE levels showed significant excitonic effects,
notably a redshift of the absorption edge. Nonetheless, the
absorption coefficient, refractive index, and reflectivity curves
displayed minimal polarization dependence, confirming the
optical isotropy of the system. Thus, the 2H-—MoO,
monolayer emerges as a structurally stable and optically
isotropic semiconductor with strong excitonic effects and
broadband absorption across the visible and ultraviolet regions.
Together, these properties make it a promising candidate for
applications in optoelectronic and photovoltaic devices
requiring consistent light absorption, as well as in optical
components designed to operate across a wide frequency
range.
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