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Abstract Organizations collect growing volumes of data to

extract value through analytics. However, this data growth

creates challenges for effective data understanding, which

forms the foundation for reliable decision-making and effec-

tive AI systems. Established analytics frameworks such as

CRISP-DM and KDD acknowledge this importance but

provide limited guidance to achieve this understanding, par-

ticularly for data-centric AI requiring collaboration across

stakeholder groups. To address this gap, the authors con-

ducted a systematic literature review, developing a five-di-

mensional framework for data understanding. They then

performed a systematic mapping study analyzing how exist-

ing methods support these dimensions and accommodate

different target audiences. The analysis reveals critical gaps in

current methods, particularly in systematically supporting the

understanding of data collection and contextualization. While

most methods target data experts, the authors find a

notable lack of methods supporting domain experts and

decision-makers. This research advances both theoretical

understanding by identifying the key dimensions that consti-

tute data understanding and practical implementation by

providing organizations with guidance on building data

understanding.

Keywords Data understanding � Data analytics � Data-
centric AI

1 Introduction

In today’s digital economy, organizations continuously

generate and store unprecedented volumes of data through

their operations, customer interactions, and connected

devices (Fassnacht et al. 2023). This growth coincides with

significant advances in artificial intelligence (AI), with

modern algorithms offering sophisticated ways to analyze

complex data patterns and generate actionable insights

(Lebovitz et al. 2021; Samtani et al. 2023). However,

despite these parallel developments in data availability and

algorithmic capabilities, many organizations struggle to

successfully deploy AI applications and realize their pro-

mised value in practice. For example, IBM’s Watson for

Oncology project encountered significant challenges in

providing consistent recommendations due to insufficient

training data (Lohr 2021), while Amazon’s recruitment

system exhibited bias issues stemming from historical data

(Villegas and Beachy 2021). These failures point to a

fundamental challenge that lies not in the capabilities of AI

models themselves but in the essential task of under-

standing and preparing the data that feeds these systems.

As organizations work with more diverse data sources, they

face increasing difficulties in developing comprehensive

data understanding (Holstein et al. 2023). Yet, the growing

recognition that data understanding forms the foundation

for successful AI implementations has led to the emergence

of data-centric AI (DCAI) – a paradigm that emphasizes

systematic data engineering and understanding over algo-

rithmic sophistication (Jakubik et al. 2024).

Traditional analytics frameworks such as CRISP-DM

(Wirth and Hipp 2000) and KDD (Fayyad et al. 1996)

recognize data understanding as an essential element of the

analytics process. However, these frameworks typically

treat it as an initial phase that precedes data preparation and
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modeling, providing limited guidance on how to achieve

and maintain this understanding throughout the analytics

lifecycle. The DCAI paradigm reimagines this relationship

by positioning data understanding as the foundation for

systematic data engineering (Jakubik et al. 2024). This

shift acknowledges that adequate data understanding

requires the integration of multiple organizational per-

spectives. Data scientists must grasp technical character-

istics for preparation and modeling, domain experts

provide crucial business context and constraints, while

decision-makers evaluate strategic relevance and implica-

tions (Lebovitz et al. 2021). This multi-stakeholder per-

spective suggests that systematic improvements in data

quality, guided by a thorough understanding across orga-

nizational boundaries, are often more crucial for successful

AI implementations than algorithmic refinements alone

(Whang et al. 2023). As organizations increasingly intro-

duce AI applications, this foundational role of integrated

data understanding becomes critical for ensuring that ana-

lytics initiatives effectively support business objectives.

While DCAI’s emphasis on data understanding repre-

sents a significant advancement in analytics thinking,

translating these principles into practical organizational

capabilities remains challenging (Whang et al. 2023).

Organizations lack structured approaches for implementing

DCAI’s principles, particularly in environments where data

understanding must be built and maintained across diverse

stakeholder groups with varying technical expertise and

domain knowledge (Gerhart et al. 2023; Holstein et al.

2023). Current methods and tools remain largely rooted in

traditional analytics paradigms, offering fragmented sup-

port for different aspects of data understanding without

providing an integrated perspective. This fragmentation

becomes particularly problematic as organizations work

with increasingly diverse and complex datasets, requiring a

structured approach that can guide them in identifying,

analyzing, and documenting relevant data characteristics

(Jakubik et al. 2024). The absence of such a framework

creates significant barriers where organizations struggle to

establish consistent practices, stakeholders lack common

ground for communication, and AI projects often fail due

to poorly understood data sources. This gap between the

theoretical recognition of data understanding’s importance

and the limited practical guidance leads to our first research

question:

RQ1 What are the dimensions of data understanding?

The conceptualization of data understanding dimensions

provides a theoretical foundation for the systematic

investigation of this domain. However, the practical

application of these dimensions requires an examination of

existing methodological support. Prior research has intro-

duced various methods and tools for data understanding,

yet their coverage remains fragmented and unclear, par-

ticularly regarding which aspects of data understanding

they cover. This leads to our second research question:

RQ2 How do current methods and tools support different

dimensions of data understanding?

While the analysis of methodological support addresses

technical aspects, effective data understanding requires

integrating diverse stakeholder perspectives that each bring

valuable contributions (van Giffen and Ludwig 2023;

Dogan and Birant 2021; Park et al. 2021): Data scientists

provide expertise on statistical properties and quality

metrics, domain experts offer crucial insights by providing

business rules and context, and decision-makers need to

understand data’s strategic implications without necessarily

diving into technical details (Park et al. 2021). However,

bridging these perspectives poses challenges as stake-

holders use varying terminology, have different levels of

technical knowledge, and focus on different aspects of the

data (Gerhart et al. 2023; Lebovitz et al. 2021). This

necessitates the investigation of support mechanisms across

different user groups in our third research question:

RQ3 How do current methods accommodate different

target groups involved in data understanding?

To investigate these research questions, we adopt a

sequential research design centered on a framework-de-

veloping review (Rowe 2014). First, following the estab-

lished methodology of Webster and Watson (2002), Gioia

et al. (2013),and Wolfswinkel et al. (2013), we conduct a

systematic literature review to develop a comprehensive

framework that delineates the dimensions of data under-

standing. This systematic approach ensures that we capture

and synthesize the currently fragmented perspectives on

data understanding across different domains. Our analysis

reveals five core dimensions: Foundations, Collection and

Selection, Contextualization and Integration, Exploration

and Discovery, and Insights. Building upon this synthe-

sized foundation, we then conduct a systematic mapping

study (Petersen et al. 2008) to analyze how existing

methods identified in the literature cover these dimensions

and accommodate different target groups. This analysis

uncovers significant gaps in current methodological sup-

port, particularly in facilitating data Collection and Selec-

tion, Contextualization and Integration, with most methods

focusing primarily on Exploration and Discovery. Fur-

thermore, we find that existing methods predominantly

target technical experts, while support for domain experts

and decision-makers remains scarce, despite their critical

role in analytics projects. Through this dual approach, we

make several contributions: First, we provide a compre-

hensive framework that synthesizes the dimensions of data

understanding, offering organizations structured guidance
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for improving their data analytics capabilities. Second, our

systematic mapping of existing methods reveals gaps in

current approaches, particularly in supporting data collec-

tion, contextualization, and integration. Finally, by identi-

fying disparities in methodological support among

different stakeholder groups, we provide direction for

developing more inclusive tools that support diverse

stakeholder needs, which are crucial for successful AI

implementations. Together, these contributions advance

our theoretical understanding and provide practical path-

ways for organizations to achieve appropriate data under-

standing for their AI initiatives.

2 Background and Related Work

Data understanding has emerged as a fundamental phase of

data analytics projects, recognized as essential for

extracting meaningful insights and driving successful out-

comes. Comparative analyses have highlighted its integral

role (Haertel et al. 2022), with data understanding

appearing as a distinct phase in six of the seven major data

science process models (Kutzias et al. 2023), including

KDD (Fayyad et al. 1996), CRISP-DM (Wirth and Hipp

2000), and TDSP (Microsoft 2020). This widespread

recognition stems from the crucial role of data under-

standing in enabling effective data utilization for analytical

techniques and supporting reliable decision-making pro-

cesses (Wirth and Hipp 2000; Janssen et al. 2017). How-

ever, traditional analytics frameworks have often treated

data understanding superficially or fragmentarily (Haertel

et al. 2022). The KDD process, for instance, disperses data

understanding activities across multiple phases like

‘‘Creating a target dataset’’ and ‘‘Data preprocessing’’

(Fayyad et al. 1996), emphasizing technical preprocessing

over comprehensive understanding. Similarly, while

CRISP-DM explicitly includes a data understanding phase,

its guidance remains limited to basic activities of collec-

tion, description, and quality verification (Wirth and Hipp

2000). This treatment overlooks crucial aspects like

domain knowledge integration and real-world contextual-

ization (Gerhart et al. 2023).

These limitations in traditional approaches to data

understanding have become increasingly apparent with the

emergence of DCAI, which represents a fundamental shift

in how organizations approach data analytics and AI

implementation (Jakubik et al. 2024). Unlike traditional

model-centric approaches that focus on algorithmic

refinement, DCAI emphasizes systematic design and

engineering of data as the foundation for effective AI

systems (Jarrahi et al. 2023). This paradigm shift promotes

improving data quality and quantity while maintaining

fixed model architectures, recognizing that appropriate data

often drives performance improvements more effectively

than model tuning (Jakubik et al. 2024). DCAI elevates the

importance of comprehensive data understanding through

its emphasis on domain-specific data augmentation, its

recognition of data quality improvements as primary per-

formance drivers, and its use of model performance metrics

to indicate the effectiveness of data adjustments (Zhang

et al. 2023).

The convergence of traditional analytics challenges and

DCAI principles reveals significant gaps in current

approaches to data understanding. While previous research

has emphasized the need for a deeper understanding of how

data represents real-world phenomena (Aaltonen et al.

2023) and the integration of domain expertise (Gerhart

et al. 2023), existing frameworks provide insufficient

guidance for achieving these goals. Comparative studies of

analytics frameworks (Haertel et al. 2022; Fatima et al.

2020; Mariscal et al. 2010) have focused on overall

framework comparison rather than an analysis of specific

phases, such as data understanding. DCAI’s emphasis on

systematic data engineering amplifies these limitations,

particularly the need for effective integration of domain

knowledge when dealing with high-dimensional datasets

(Jakubik et al. 2024; Jarrahi et al. 2023) and the value of

exploratory analysis (Patel et al. 2023). These gaps in

current research and practice motivate our development of

a comprehensive framework that delineates the core

dimensions of data understanding, considering both tradi-

tional business challenges and the novel requirements

introduced by DCAI.

3 Research Design

To address our research questions, we employ a sequential

research design combining a systematic literature review to

develop a framework for data understanding (RQ1) fol-

lowed by a systematic mapping study to analyze existing

methods (RQ2 and RQ3). Given the distinct objectives of

each phase, we employ complementary search strategies:

the first phase requires a broad, exploratory approach to

inductively derive theoretical dimensions, while the second

phase demands a focused, systematic approach to assess

methodological contributions against the established

framework. This dual approach allows us to first establish a
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theoretical foundation through rigorous literature analysis

before systematically evaluating how existing methods

align with this foundation (see Fig. 1).

3.1 Framework Development Through Systematic

Literature Review

The first phase follows established guidelines for system-

atic literature reviews in information systems (Webster and

Watson 2002), employing an inductive, grounded theory-

inspired approach (Wolfswinkel et al. 2013) to identify the

dimensions of data understanding. This inductive approach

necessitates a broad search strategy to capture diverse

theoretical perspectives, ensuring comprehensive coverage

of the fragmented literature on data understanding. We

adopt the recommendations of Gioia et al. (2013) to

articulate our analysis results. We clarify the review scope

using Cooper (1988)’s taxonomy, aiming to systematize

research theories and methodologies while seeking to

provide a neutral perspective and a literature review rep-

resentative of the broad connections inherent in our topic.

Scope and Search Strategy. We began by reviewing an

initial set of analytics frameworks to develop a shared

understanding of data understanding and its role in ana-

lytics projects. This preliminary review helped us define

our inclusion and exclusion criteria to focus our analysis on

understanding data, which involves helping stakeholders

comprehend data characteristics, provenance, quality, and

real-world context, rather than using data, for example, by

integrating external data sources for predictive modeling.

Therefore, we included articles presenting frameworks for

analytics (both conceptual papers and official documenta-

tion), articles offering interpretations, discussions, expan-

sions, or comparisons of frameworks, and articles

addressing challenges in data understanding within ana-

lytics. Conversely, we excluded articles focusing solely on

automated technical methods rather than methodological

guidance, articles not mentioning concepts related to data

understanding, non-English language publications, and

articles focusing solely on data preparation or cleaning

without addressing understanding.

Our search covered three major databases: Web of

Science, Scopus, and the AIS eLibrary. To ensure high-

quality sources, we focused on premier outlets in infor-

mation systems and related computer science disciplines.

Our scope included all journals from the Senior Scholars’

Basket of Journals, as well as selected A* and A-ranked

journals according to CORE ranking that are specifically

related to IS or data mining. Beyond the Senior Scholars’

Basket, we specifically included IEEE Transactions on

Knowledge and Data Engineering, Data Mining and

Knowledge Discovery, Information Systems, ACM

Transactions on Information Systems, and ACM Transac-

tions on Database Systems. We also included major con-

ference proceedings, including ECIS, ICIS, and HICSS, as

we consider these outlets to be a representative sample for

high-quality research in the discipline of data analytics

frameworks in the fields of IS and computer science. Given

the long history of data analytics and the early establish-

ment of many standards, we included articles published

between January 1995 and September 2023.

Search Process. Through several iterations, we devel-

oped our search string: (‘‘data scien*’’ OR ‘‘data mining’’

OR ‘‘data analytics’’ OR ‘‘big data’’ OR ‘‘knowledge dis-

covery’’ OR ‘‘data analysis’’) AND (‘‘process model’’ OR

‘‘framework’’ OR ‘‘methodology’’) OR (‘‘data under-

standing’’). Our initial database search yielded 1340 arti-

cles. After removing duplicates, our sample decreased to

808 articles. Title and abstract screening following Snyder

(2019) identified 40 articles for full-text review, which

yielded 21 relevant papers. Through forward and backward

searches (Webster and Watson 2002), we identified 17

additional publications, resulting in a final sample of 38

articles.

Fig. 1 Dual research design:

Integrating literature review-

based framework development

and systematic mapping study
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Analysis Process. For analysis, we followed a three-

stage coding process (Wolfswinkel et al. 2013). In the first

stage, three researchers independently conducted open

coding on a representative subset of papers to identify

concepts related to data understanding. In a collaborative

workshop, the authors then synthesized their understanding

of the underlying concepts. During axial coding, we

established relationships between first-order concepts and

developed second-order themes through collaborative

workshops. One author refined the codes based on the

established understanding, followed by a second workshop

to finalize them. Finally, through selective coding, we

aggregated themes into core dimensions, forming our

framework for data understanding.

3.2 Method Analysis Through Systematic Mapping

Building on our framework, we conducted a systematic

mapping study following Petersen et al. (2008) to analyze

how existing methods cover the identified dimensions and

support different target groups. A systematic mapping

study aims to create an overview of a selected topic area by

classifying identified papers into different predefined cri-

teria. In contrast to the exploratory search strategy

employed in the first phase, this phase requires a more

focused and systematic approach, with search terms

specifically designed to align with the conceptual dimen-

sions established in the framework development phase.

Research Scope. The purpose of this mapping study was

to provide an overview of methods that enable users to

understand given datasets more holistically. We mapped

the methods onto the dimensions identified in Phase 1 and

analyzed their target groups to identify gaps in the current

literature landscape.

Search Strategy. To identify relevant publications, we

conducted a search across Web of Science, Scopus, and the

AIS eLibrary, covering publications from January 2010 to

May 2024. We maintained the same outlet scope as defined

in our framework development phase. Our search term

followed the identified dimensions from Phase 1 and

included relevant synonyms: ‘‘data understanding’’ OR

‘‘data exploration’’ OR ‘‘data integration’’ OR ‘‘data col-

lection’’ OR ‘‘data acquisition’’ OR ‘‘data selection’’ OR

‘‘data infrastructure’’ OR ‘‘data overview’’ OR ‘‘data

quality’’ OR ‘‘supplemental data’’ OR ‘‘surrogate data’’

OR ‘‘data visualization’’ OR ‘‘data summarization’’ OR

‘‘data provenance’’ OR ‘‘entity resolution’’ OR ‘‘schema

matching’’ OR ‘‘schema mapping’’ OR (‘‘data’’ AND

(‘‘human-in-the-loop’’ OR ‘‘domain knowledge’’ OR ‘‘do-

main expert*’’ OR ‘‘knowledge acquisition’’)).

Selection Process. During the screening process, we

included publications that propose methods facilitating the

understanding of data in at least one dimension identified in

the first phase of our research. We excluded publications

focused solely on automated methods that do not directly

contribute to user understanding, e.g., methods that auto-

matically remove outliers. Following Snyder (2019), we

identified 1714 articles after removing duplicates. Title and

abstract screening reduced our sample to 167 relevant

articles, of which we selected 48 during full-text screening.

Through forward and backward searches, we identified

nine additional publications, resulting in a final sample of

57 papers.

Classification Scheme. We developed two classification

criteria: research focus and target groups. For research

focus, we mapped methods to the five dimensions of data

understanding identified in the first phase of our research,

with each dimension consisting of three second-order

themes that serve as our classification basis. Methods could

address multiple dimensions simultaneously, as these

dimensions are not mutually exclusive. For target groups,

we employ a provisional coding procedure (Saldana 2021),

which leverages predefined codes from existing research

while allowing for iterative refinement. The initial coding

uses a set of established roles from analytics projects (Saltz

et al. 2018; Zhang et al. 2020), specifically: method

experts, domain experts, and decision-makers. Method

experts, such as data scientists or analysts, possess spe-

cialized knowledge in data analysis techniques and tools.

Domain experts, while lacking formal training in data

analysis, contribute deep knowledge of specific business

domains, such as engineering or healthcare, which is cru-

cial for contextualizing and validating data insights.

Decision-makers, typically managers or executives, rely on

data understanding to inform strategic choices but may not

be directly involved in the technical analysis. Through our

iterative coding procedure, we identified the necessity for

an additional category: General Users. These are individ-

uals who engage with data and visualizations in an infor-

mal manner, operating outside traditional project-based

analytics structures, but may play a supporting role in

identifying preliminary use cases or inspiring new direc-

tions for data applications.

Classification Process. One author initially classified the

papers, and through collaborative workshops among the

authors, we established a shared understanding. Based on

this shared understanding, the author then refined the paper

classifications to ensure consistency and accuracy. The

dimensions were not treated as mutually exclusive; a single

paper could be mapped to multiple dimensions if it

addressed various aspects of data understanding. Through

this systematic process, we were able to identify patterns in

how existing methods support different aspects of data

understanding and various user groups, revealing both the

strengths and gaps in current methodological support.
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4 Results

Following our sequential research design, we first present

the framework for data understanding developed through

our systematic literature review, followed by our analysis

of existing methods based on the systematic mapping

study.

4.1 Framework Development Through Systematic

Literature Review

Our systematic literature review reveals five core dimen-

sions that collectively constitute data understanding, which

represent distinct but interrelated aspects of understanding

data: Foundations, Collection and Selection, Contextual-

ization and Integration, Exploration and Discovery, and

Insights.

4.1.1 Foundations

The first dimension, Foundations, provides the essential

groundwork for understanding data through three key

themes (see Fig. 2): Infrastructure, Provenance, and Char-

acterization and Familiarization.

Infrastructure emphasizes the importance of data

warehousing models and tailored databases for data min-

ing. Data warehousing models provide a structured envi-

ronment for data storage, facilitating efficient data analysis

(Dag et al. 2016). Similarly, databases designed for data

mining, equipped with summary statistics, prepare data for

in-depth analysis (SAS Institute Inc 2017). These infras-

tructure elements are crucial for organizing and setting a

solid foundation for data exploration and understanding.

Provenance represents comprehending the data’s origin,

the applied transformations, and its timeliness. The ability

to trace data provenance and document the transformation

of data is critical to accurately interpreting results and

preventing misinterpretations (Feelders et al. 2000).

Tracing data provenance enables verification that the data

is still up-to-date and relevant to the business problem at

hand (Guo 2012). Additionally, it assures a transparent path

for the data, enabling the tracing of potential downstream

errors back to their origins to adjust and mitigate the root

causes of these data errors. Understanding the collection

processes and their respective transformations allows for

formulating hypotheses that aid in later analyses and

potentially creating new features.

Characterization and Familiarization, particularly

through metadata, is crucial for understanding data mean-

ing. Metadata provides detailed descriptions of data and its

linkage to underlying business processes, bridging the gap

between raw data and business application (Li et al. 2016).

To complement metadata, statistical measures or tools can

summarize data, offering insights into distribution patterns

and underlying structures (Jackson 2002; Phillips-Wren

et al. 2015). Examining data features and characteristics

facilitates a detailed understanding of data segments and

their contribution to the broader dataset (Peng et al. 2011).

This involves assessing data granularity, aggregation

levels, and value ranges of each source (Dietrich 2016).

4.1.2 Collection and Selection

The second dimension focuses on gathering and selecting

relevant data through three themes (see Fig. 3): Data

Collection, Selecting Relevant Data, and Supplemental

Data.

Data Collection encompasses the acquisition of data and

decisions regarding its selection and evaluation for further

use. The initial data collection sets the foundation for

subsequent stages of analysis (Haertel et al. 2022; Marbán

et al. 2009). A profound knowledge of the data available

both within and outside the organization is emphasized as

crucial for effective data selection (Feelders et al. 2000).

This knowledge aids in identifying gaps in the current data

landscape and in making informed decisions about which

Fig. 2 Dimensions, themes, and concepts of foundations
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additional data sources might be beneficial for enriching

the analysis.

Selecting Relevant Data becomes necessary when

datasets are large and include instances or variables not

relevant to the business use case. Discriminating between

different subsets and identifying those worthy of more in-

depth analysis is fundamental (Brachman and Anand 1996;

Fayyad et al. 1996). This focused analysis enables the

formulation of hypotheses based on insights obtained from

critical subsets, effectively allocating resources to the most

informative parts of the data. Different methods can be

applied to identify potentially interesting subsets, including

unsupervised learning techniques (SAS Institute Inc 2017).

Data mining methods help discern relevant variables, dif-

ferentiating between critical data for analysis and extra-

neous information. A crucial part involves distinguishing

outliers from edge cases, where outliers may represent

errors, while edge cases, though unusual, remain valid and

relevant to the analysis.

Supplemental Data might need to be collected if not all

required data is available. Often, the initial phase of data

understanding reveals gaps where additional information is

needed to align with project objectives. This might involve

acquiring data not initially considered or delving deeper

into specific areas (Rollins 2015; Dietrich 2016). In some

cases, surrogate data becomes necessary (Yu et al. 2006),

serving as alternative or proxy data when primary data is

unavailable. Another approach involves considering

external data sources and their associated costs, as under-

standing what external data can be leveraged and at what

expense is pivotal for enriching internal datasets.

4.1.3 Contextualization and Integration

The third dimension involves contextualizing data through

three themes: Integration, Domain Knowledge, and Link-

ing Data to the Real World (see Fig. 4).

Integration of data sources allows the investigation of

the interplay between various data sources and types to

provide deeper insights. Incorporating different data sour-

ces, whether structured or unstructured, can provide a more

comprehensive context for analysis. This process facilitates

a holistic view that captures the multifaceted nature of data,

leading to more informed and accurate insights (Delen and

Al-Hawamdeh 2009; Martı́nez-Plumed et al. 2021). The

utilization of preexisting data models enhances under-

standing by functioning as frameworks that classify and

interpret diverse data types, simplifying intricate informa-

tion architectures (Yu et al. 2006).

Domain Knowledge is critical to contextualize and

ultimately make sense of data. Acquiring domain knowl-

edge is crucial in comprehensively understanding data

(Brachman and Anand 1996). Incorporating this knowl-

edge can aid in analyzing data (Peng et al. 2011) by

identifying uncommon patterns (Yu et al. 2006), ranking

feature importance (Cios and Kurgan 2005), formulating

causal relationships (Martı́nez-Plumed et al. 2021), and

generating data subgroups (Shaw et al. 2001). Collabora-

tive efforts beyond individual knowledge acquisition are

essential, as domain experts provide different perspectives

leading to a more holistic understanding (Fatima et al.

2020).

Linking Data to Real-World involves interpreting data

and applying domain knowledge to address real-world

complexities and challenges. This involves recognizing

Fig. 3 Dimensions, themes, and concepts of collection and selection
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that the complexity of real-world data necessitates thor-

ough analysis to ensure its applicability and practical rel-

evance (Cao et al. 2010). Through data understanding, one

gains domain insights that inform and refine the analytical

approach. Anticipating the context in which data will be

used is critical, requiring activities to envision how insights

will apply in real-world scenarios (Martı́nez-Plumed et al.

2017).

4.1.4 Exploration and Discovery

The fourth dimension encapsulates the critical stage of

delving into data to uncover hidden patterns through three

themes: Exploration, Cluster, Patterns and Relationships,

and Visualizations (see Fig. 5).

Exploration of data helps understand and interpret it

through iterative engagement, employing various tech-

niques to uncover patterns, relationships, and insights that

Fig. 4 Dimensions, themes, and concepts of contextualization and integration

Fig. 5 Dimensions, themes, and concepts of exploration and discovery
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inform the overall analysis (Larson and Chang 2016;

Brachman and Anand 1996). Analysts examine data to

identify trends and patterns, often suggesting new

hypotheses about underlying relationships and phenomena.

Data exploration also contributes to the development of

data descriptions, quality reports, and understanding of

how the data represents its context (Martı́nez-Plumed et al.

2017; Haertel et al. 2022). Further, it involves exploring

data structure and encoding to inform how knowledge can

be extracted from it (Cao 2017).

Clusters, Patterns, and Relationships include reducing

data complexity by identifying clusters of instances and

variables (SAS Institute Inc 2017), thereby revealing

underlying structures and eliminating redundancy from

correlated features. Analysts closely interact with the data,

requiring a causal understanding to determine conse-

quences in subsequent data augmentation (Martı́nez-

Plumed et al. 2021) and to verify correlations, ensuring

they are based on causation rather than spurious connec-

tions (Feelders et al. 2000). The process involves uncov-

ering intrinsic data properties (Peng et al. 2011) and

establishing connections between items using various data

representations. Additionally, recognizing biases and

selection effects is crucial to ensure the generalization of

identified patterns (Feelders et al. 2000).

Visualizations are key to capturing the intricacies of

data. They enable the extraction of insights and recognition

of patterns. By exhibiting data points and their interrela-

tionships, visualizations provide insights that may not be

obtained through tables or summary statistics (Delen and

Al-Hawamdeh 2009; SAS Institute Inc 2017). This is

especially evident while exploring high-dimensional data,

where coordinated visualizations reveal intricate data

structures and distributions (Abbasi and Chen 2008; Diet-

rich 2016). Interactive and iterative visual methods are

essential for exploratory data analysis, as they facilitate

direct engagement with the data, enabling deeper exami-

nation of relationships between variables and identification

of hidden insights (Larson and Chang 2016; Fayyad et al.

1996).

4.1.5 Insights

The final dimension focuses on the tangible outcomes

obtained from analyzing the data to evaluate the Data

Quality, note it in Deliverables, and inform Decision-

Making (see Fig. 6).

Deliverables refer to the documentation produced dur-

ing the data understanding phase. This typically includes an

initial data collection report (Moyle and Jorge 2001), which

outlines the specifics of the gathered data and provides a

baseline for subsequent analyses. It is followed by data

description and exploration reports (Haertel et al. 2022;

Saltz 2021), which detail the intrinsic characteristics of the

datasets and the insights captured. The data quality report

(Moyle and Jorge 2001) complements this by assessing the

data’s reliability and appropriateness for analysis.

Data Quality describes the process of evaluating the

integrity and usefulness of data. Essential tasks include

verifying data quality and documenting issues (Saltz 2021),

developing and implementing data quality metrics (Larson

and Chang 2016), often informed by data profiling out-

comes like demographics and descriptive statistics. Par-

ticularly with big data, challenges arise in maintaining

accuracy and relevance due to the vastness of datasets

(Martı́nez-Plumed et al. 2021). Enhancing data quality is

crucial for modeling (Fatima et al. 2020) and involves

evaluating the data’s suitability for specific purposes.

Decision-Making underscores the significance of in-

depth data understanding for informed decision-making

and effective application in later phases such as data

preparation and modeling (Cao et al. 2010; Dietrich 2016).

The phase yields critical outputs, such as metadata and data

quality information (Moyle and Jorge 2001), which are

integral to strategic decisions. This understanding ensures

that insights derived from the data can effectively inform

business decisions and strategy development.

4.1.6 Synthesis of Dimensions of Data Understanding

Data understanding serves as the critical bridge between

the adjacent business understanding and data preparation

phases. The five identified dimensions represent a logical

order of interconnected activities, where each dimension

informs and enhances the others through continuous feed-

back loops (see Fig. 7).

Starting with Foundations, analysts search in data

infrastructures like data warehouses or data lakes for rel-

evant data. While doing so, they check the provenance of

the discovered data to ensure that the transformations

applied are valid and do not hinder effective analysis

concerning the underlying use cases. To get an overview of

the available data sources, they familiarize themselves with

and characterize the data through metadata and simple

statistics.

The foundations then inform an iterative cycle that

includes three central dimensions: Collection and Selec-

tion, Contextualization and Integration, and Exploration

and Discovery. These interrelated elements form the core

of the data understanding phase, each affecting and being

affected by the others in a continuous loop of refinement

and discovery. In Collection and Selection, the aim is to

identify and gather relevant data sources informed by the

initial foundational understanding and business require-

ments.. This helps to ensure that the data is comprehensive,

relevant, and aligned with the analytical objectives.
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Contextualization and Integration then embed these selec-

ted data elements within specific domain contexts. This is

essential for creating meaningful and actionable data, uti-

lizing domain expertise to interpret and effectively inte-

grate the data. Subsequently, Exploration and Discovery

involve thoroughly examining the data and utilizing

advanced analytical techniques to reveal hidden patterns,

relationships, and insights. This cycle is characterized by

continuous interaction and feedback between its compo-

nents. Findings obtained during exploration and discovery

may reveal the need for additional data collection or

indicate relationships that require domain expert interpre-

tation. Similarly, as new data is acquired or the contextual

landscape shifts, analysts must revisit exploration phases

and recontextualize data to uncover additional insights.

This dynamic interplay ensures that data understanding is

not a linear process but rather an iterative cycle of refine-

ment and discovery, where each phase continuously

informs and enhances the others.

Ultimately, these activities result in Insights based on

the acquired data understanding. Analysts must evaluate

the data to determine its potential and decide whether to

proceed with the project or abort it based on the quality of

the data. They document their results in various reports,

including data collection, description, exploration, and

quality reports. If they decide to continue their project, they

can use their understanding of the data to inform subse-

quent activities like data preparation and modeling and,

ultimately, decision-making, thus leveraging the real-world

value of the collected data. This final dimension serves not

only as an endpoint but also as a potential trigger for

revisiting earlier dimensions when new insights reveal gaps

or opportunities in the understanding process.

4.2 Method Analysis Through Systematic Mapping

Our systematic mapping study reveals how existing

methods cover different dimensions of data understanding

and support various target audiences. We first present the

mapping results organized by research focus, showing how

methods address different dimensions, followed by an

analysis of their target groups.

To illustrate how these methods practically support data

understanding and demonstrate stakeholder collaboration,

we examine an illustrative yet representative industrial

scenario throughout the following analysis. Consider

Fig. 6 Dimensions, themes, and concepts of insights

Fig. 7 Multiple interrelated dimensions together facilitate data understanding as part of the overall analytics process
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GlobalTech Manufacturing, implementing a predictive

quality control system for automotive component produc-

tion that requires integrating IoT sensor data, quality

inspection records, production schedules, maintenance

logs, and supplier databases. This scenario involves data

scientists (method experts), production engineers and

quality inspectors (domain experts), plant managers (de-

cision-makers), and line supervisors (general users), pro-

viding a realistic context for examining both the coverage

patterns revealed in our mapping and the practical appli-

cation of different methodological approaches across

framework dimensions and stakeholder groups.

4.2.1 Coverage of Framework Dimensions

We map 57 research papers proposing methods for data

understanding to the dimensions identified in the first phase of

our research (see Fig. 8). Our analysis reveals that most

methods focus on Exploration and Discovery (40), while

fewer methods address Foundations (14), Collection and

Selection (12), and Contextualization and Integration (12). In

the Insights dimension, we identified 25 methods, though with

varying emphasis across its themes. Table 1 in the Appendix

provides the complete mapping of methods to dimensions and

second-order themes, including specific citations for each

category. Next, we describe how exemplary methods can be

applied to generate an in-depth data understanding that serves

as a basis for subsequent data preparation activities, and

provide the number of mapped methods in brackets.

Foundations establishes the essential groundwork for

understanding data by helping stakeholders comprehend

how infrastructure (7), data provenance (3), and basic

characteristics (4) influence data quality and interpretation.

Method and domain experts must understand how existing

systems shape their data, trace how data transformations

affect reliability, and characterize datasets to assess their

suitability for analytical purposes. Decision-makers require

a foundational understanding of data infrastructure and

provenance to assess whether existing data collection

processes can support their strategic AI deployment

objectives and identify potential systemic limitations that

could affect business-critical applications.

These activities work synergistically to build compre-

hensive data understanding. Infrastructure analysis using

platforms like the one of Scott et al. (2014) for heteroge-

neous data reveals how storage and processing architec-

tures influence data availability and relationships.

Provenance tracking through systems like the one of Huynh

et al. (2018) allows to create provenance graphs that map

data lineage to understand how collection methods and

transformations affect reliability, while automated charac-

terization tools like Voyager (Wongsuphasawat et al.

2016) enable stakeholders to explore fundamental data

properties and assess completeness. Together, these

approaches ensure that method and domain experts

understand not just what data they have, but how system

decisions, processing steps, and collection methods

Fig. 8 Distribution of data understanding methods across framework dimensions
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influence the data’s meaning and reliability for their

specific analytical goals.

At GlobalTech Manufacturing, building on business

understanding requirements for predictive quality control

established earlier, production engineers examine how the

existing sensor network architecture influences data col-

lection patterns, discovering that certain production areas

have higher sensor coverage that might bias quality

assessments toward detecting problems in well-monitored

zones while missing those in others. Data scientists trace

how raw sensor readings flow through calibration and

aggregation processes, identifying that older sensors

undergo additional smoothing that could mask important

variation patterns needed for early failure detection.

Quality inspectors use automated visualizations to under-

stand how temperature and vibration measurements reflect

actual equipment conditions, recognizing that sensor

placement and calibration history create systematic gaps in

coverage that could limit predictive system effectiveness in

certain operational scenarios. This integrated under-

standing of infrastructure, provenance, and data charac-

teristics provides the foundation for subsequent data

collection and contextualization activities while establish-

ing the groundwork for strategic decisions about where

predictive AI systems can be reliably deployed.

Collection and Selection involves systematically col-

lecting (3), selecting relevant (10), and identifying sup-

plemental (1) data to ensure analytical efforts target the

most informative and appropriate datasets while building a

comprehensive understanding of data availability, rele-

vance, and gaps. Method and domain experts must estab-

lish systematic data collection processes, identify which

data subsets contain meaningful patterns for their analytical

goals, and recognize where additional data sources are

needed. Decision-makers require an understanding of data

coverage and gaps to assess whether available data ade-

quately represents the operational contexts where AI sys-

tems will be deployed and to make informed decisions

about additional data investments needed to support

strategic objectives.

These activities work synergistically to build compre-

hensive data coverage for analytical objectives. Continuous

data collection platforms (Aydin and Anderson 2017)

combine systematic data gathering with interactive moni-

toring that reveal data availability patterns across different

systems and time periods to method experts. Interactive

selection methods (Dimitriadou et al. 2016) enable domain

experts to identify relevant data subsets by learning from

feedback about which instances contain meaningful pat-

terns, while goal-driven methods like the one of Liu and

Yoon (2024) allow domain experts and decision-makers to

specify analytical objectives in business language, auto-

matically identifying gaps in available data and recom-

mending supplemental sources. Together, these approaches

ensure that stakeholders not only gather existing data sys-

tematically but also understand which subsets are most

valuable and what additional data would enhance their

analytical capabilities.

Building on the foundational understanding established

previously, continuous collection platforms gather real-

time sensor streams while providing production engineers

with monitoring interfaces that reveal data flow patterns

and coverage gaps across different production areas.

Production engineers apply interactive selection methods

to explore which time periods and equipment conditions

produce the most informative data for quality prediction,

learning from feedback to focus on sensor readings that

correlate with actual defects. Quality engineers then apply

goal-driven methods to specify objectives such as ‘‘predict

equipment failures that impact product quality,’’ which

automatically reveals that successful implementations

require vibration monitoring data, supplier quality metrics,

and maintenance history records that their current dataset

lacks. This systematic approach to collection, selection,

and gap identification ensures comprehensive data cover-

age that aligns with both operational needs and analytical

objectives, preparing the integrated datasets needed for

later data preparation activities.

Contextualization and Integration involves understand-

ing how heterogeneous data sources need to be integrated

(7) within domain-specific contexts (4) to create compre-

hensive analytical datasets that are linked to real-world

meaning and business objectives (1). Method experts and

domain experts need to establish connections between data

and physical processes, apply contextual knowledge to

identify biases and constraints, and integrate heterogeneous

data sources to support comprehensive analysis.

These activities work synergistically to ensure data

reflects real-world complexity and business requirements.

Mixed reality visualization methods (Mahfoud et al. 2018)

enable domain experts to investigate data directly at

physical locations where events occur, overlaying virtual

data visualizations onto real environments to understand

spatial relationships between data patterns and their phys-

ical sources. Bias identification methods (Cabrera et al.

2019) support domain experts in applying contextual

knowledge to identify potential biases in analytical models

and data, enabling targeted corrections that ensure results

represent all operational conditions, while incident man-

agement frameworks (Peng et al. 2011) allow decision-
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makers to integrate heterogeneous data sources from mul-

tiple organizations and formats into unified datasets for

decision support. Together, these approaches ensure that

data understanding incorporates both technical character-

istics and real-world context, bridging the gap between

disparate data sources and actionable insights for critical

decision-making scenarios.

Building on the systematic data collection, quality

inspectors at GlobalTech Manufacturing apply, for exam-

ple, mixed reality visualization to overlay sensor data

directly onto production equipment, immediately identify-

ing which specific machines generate unusual readings and

understanding spatial relationships between temperature

sensors, vibration monitors, and actual component quality

issues. Production engineers then apply bias identification

methods to examine whether their quality prediction

models adequately represent all operational conditions,

using their knowledge of seasonal variations and equip-

ment aging patterns to identify periods where data might

be systematically biased toward certain failure modes.

Data scientists apply incident management integration

methods to combine the selected sensor data with mainte-

nance records and supplier databases into unified datasets

for comprehensive quality analysis, enabling coordinated

understanding when quality issues arise across multiple

production systems. This progression from spatial under-

standing through bias correction to systematic integration

ensures that the resulting datasets capture both technical

measurements and operational realities, establishing con-

textualized data ready for subsequent exploration and

pattern discovery activities.

Exploration and Discovery involves systematically

exploring datasets (25) to reveal clusters, patterns, and

relationships (30) that inform analytical understanding and

hypothesis formation. Method experts and domain experts

must iteratively explore data through visualizations (24),

examine individual data instances to form mental models

about underlying processes, and systematically identify

clusters and relationships that reveal meaningful patterns

for later modeling activities.

These activities work synergistically to enable compre-

hensive pattern discovery across different levels of data

granularity. Collaborative visualization methods

(Ben Lahmar and Herschel 2021) provide method experts

with recommendation systems that suggest relevant queries

and visualizations based on successful exploration patterns

from multiple analysts, enabling efficient visual data dis-

covery through content-based and collaborative filtering

approaches. Instance-based exploration methods (Saghafi

et al. 2022) allow domain experts to examine data as

individual instances with unique properties rather than

being constrained by predefined schemas, enabling them to

form mental models and discover unexpected patterns

without requiring deep technical knowledge of data struc-

tures. Systematic pattern identification methods (Nestorov

et al. 2019) support method experts in conducting iterative

preparation, visualization, and analysis stages to under-

stand data characteristics and reveal underlying relation-

ships between different data groups. Together, these

approaches ensure that exploration progresses from col-

laborative visual discovery through individual investigation

to systematic pattern analysis, enabling stakeholders to

build a comprehensive understanding that bridges technical

analysis with domain expertise.

Building on the contextualized and integrated datasets,

quality inspectors apply collaborative visualization meth-

ods that recommend relevant data views based on suc-

cessful quality investigations by other inspectors, enabling

them to quickly identify promising visualizations for

examining sensor patterns and production metrics without

extensive technical expertise. Production engineers then

apply instance-based exploration methods to investigate

individual sensor readings and production events, allowing

them to form mental models about relationships between

temperature variations, vibration patterns, and equipment

performance across different machine types without being

constrained by predefined database structures. Data sci-

entists utilize systematic pattern identification methods to

explore discovered relationships through iterative prepa-

ration and analysis stages, identifying significant differ-

ences between high-quality and defective production

patterns to reveal underlying timing relationships and

attribute variations that inform predictive maintenance

strategies. This progression from collaborative visual dis-

covery through flexible exploration to systematic pattern

analysis enables each stakeholder to contribute their

domain expertise while building a comprehensive under-

standing that supports both operational insights and pre-

pares detailed data descriptions and quality assessments

that support decision-making.

Insights involves consolidating data understanding

activities into actionable outcomes through data quality

assessments (20), deliverables (0), and support for deci-

sion-making (7) that enable stakeholders to make informed

choices about data usability and analytical strategies.

Method experts must systematically evaluate data quality

and reliability while creating documentation that commu-

nicates data characteristics and limitations. Decision-mak-

ers require summaries of data scope, coverage gaps, and

quality limitations to make decisions about project viabil-

ity, whether to proceed with current data, invest in addi-

tional data collection, or terminate projects where data

limitations cannot be addressed. This enables decision-

makers to assess whether available data represent the

operational contexts where AI systems will be deployed
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and to determine boundaries for automated versus human

decision-making.

These activities help transform data understanding into

organizational value through evaluation and informed

decision-making. Data quality assessment methods (Zhang

et al. 2019) enable method experts to examine data char-

acteristics and reveal inconsistencies, missing values, and

reliability issues that affect trustworthiness. Error identifi-

cation methods (Sluban et al. 2014) support method

experts in ranking data points by their likelihood of being

erroneous while providing evaluation interfaces that help

distinguish between genuine patterns and data artifacts.

Statistical reliability assessment methods (Heinrich et al.

2018) allow decision-makers to calculate the probability

that datasets are free of internal contradictions, enabling

informed decisions about project viability and data

usability based on measures of data consistency. Together,

these approaches ensure that data understanding translates

into assessments of data quality, documentation of findings,

and evidence-based decisions about whether to proceed

with analytics projects, invest in additional data collection,

or pursue alternative approaches.

Data scientists apply systematic quality assessment

methods to examine sensor data and production records,

identifying reliability issues such as sensor drift, calibra-

tion problems, and missing measurements while docu-

menting these findings in data quality reports that inform

strategic decisions. Quality inspectors use error identifi-

cation methods to distinguish between genuine equipment

problems that require maintenance attention and mea-

surement errors that should be filtered from analysis,

ensuring that operational decisions focus on actual

equipment issues rather than data artifacts. Plant man-

agers utilize statistical reliability assessments and quality

documentation to make decisions on project viability,

determining whether the available data foundation is suf-

ficient to proceed, whether additional sensor installations

and data collection efforts are justified, or whether alter-

native quality control approaches should be pursued

instead. This progression from technical quality evaluation

through operational error identification to strategic via-

bility assessment enables each stakeholder group to con-

tribute its expertise while making risk-aware decisions

about project continuation, additional investments, and

deployment boundaries that translate comprehensive data

understanding into measurable organizational value.

4.2.2 Support for Different Stakeholders

Our analysis of target groups reveals that existing methods

predominantly target method experts, while support for

other stakeholders varies significantly. Of the 57 methods

analyzed (see Fig. 9), 41 are designed for method experts,

while only three target decision-makers, ten support

domain experts, and ten address other stakeholders. Table 2

in the Appendix provides a comprehensive classification of

methods by target audience, including the specific

approaches designed for each stakeholder group.

Method Experts represent the primary target group, with

41 methods identified. These approaches encompass a

broad spectrum of dimensions relevant to data under-

standing, offering capabilities for complex data modeling,

analysis, and visualization. Despite the comprehensive

coverage and advanced functionalities of these methods, as

exemplified by technologies like Luo et al. (2024), Po and

Sorrentino (2011), and Chung et al. (2020), they often

require considerable setup and integration effort. This

presents a notable barrier to immediate deployment (Liu

and Li 2018; Lin et al. 2020; Schäfer and Leser 2022).

Addressing these challenges through streamlined configu-

ration processes is crucial for enabling method experts to

efficiently tackle complex domain-specific challenges.

Domain Experts benefit from ten specific methods.

Among these, two methods are particularly designed for

the specialized task of discrimination discovery in data-

bases (Ruggieri et al. 2010; Cabrera et al. 2019). Other

methods emphasize usability and intuitiveness, particularly

designed for domain experts to facilitate domain-specific

applications (Cabrera et al. 2019; Saghafi et al. 2022;

Lafon et al. 2013). As with most target groups, the majority

of these methods significantly contribute to the dimensions

of Exploration, Clusters, Patterns, and Relationships, and

Visualization, enabling Domain Experts to gain deeper

insights into their data (Dimitriadou et al. 2016; Vellido

et al. 2013; Lafon et al. 2013).

Decision-Makers form a particularly underserved group,

with only three methods designed for their needs. The first

integrates data sources for analytics and decision-making

(Liu and Yoon 2024) while the second supports marketing

managers through sentiment analysis for brand-related

decisions (Pournarakis et al. 2017). The third provides an

incident response framework covering data integration,

analytics, and decision-making (Peng et al. 2011).

General Users encompasses methods supporting indi-

viduals who engage with data and visualizations outside

traditional analytics roles. This group is served by ten

methods aimed at democratizing data understanding

through intuitive interfaces, no-code and low-code systems,

as well as automated support. Among these, three methods

facilitate data exploration by suggesting contextually rel-

evant search queries (Sellam and Kersten 2016; Ben Lah-

mar and Herschel 2021; Eirinaki et al. 2014), addressing

the needs of users who may lack proficiency in formal

query languages. Additional methods enhance the data

interaction and exploration experience through automated

visualization recommendations and generation capabilities
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(El et al. 2020; Dibia and Demiralp 2019). These solutions

lower technical barriers to data engagement, enabling

general users to derive meaningful insights despite oper-

ating outside traditional project-based analytics structures.

This democratization of data access and understanding

supports their role in identifying preliminary use cases and

inspiring novel applications of data analytics.

4.2.3 Synthesis of Method Analysis

Our mapping study of 57 methods reveals clear patterns in

how existing approaches support data understanding. The

majority of methods (40) focus on the Exploration and

Discovery dimension, particularly addressing visualization,

pattern identification, and clustering capabilities. The

remaining dimensions receive less methodological support,

with only 12–14 methods each addressing Foundations,

Collection and Selection, and Contextualization and Inte-

gration. Within the Insights dimension, addressed by 25

methods, there is a strong emphasis on Data Quality

assessment (20 methods), while no methods specifically

focus on creating Deliverables. Regarding target groups,

the methods show a clear focus on method experts, with 41

methods designed for this group. Domain experts and other

stakeholders are each supported by ten methods, primarily

focusing on making data exploration and visualization

more accessible. Decision-makers represent the smallest

target group with only three dedicated methods. Most

methods that support non-method experts concentrate on

making complex analytical tasks more accessible through

intuitive interfaces and automated guidance features. This

summary of our findings provides the foundation for a

deeper discussion of the implications and future directions

in the following section.

5 Discussion

In this study, we develop a framework for data under-

standing through a systematic literature review and analyze

existing methodological support through a systematic

mapping study. This sequential approach enables us to

establish theoretical foundations for data understanding

while evaluating practical support. Our findings reveal

critical insights about the nature of data understanding and

gaps in current approaches, particularly relevant to the

paradigm of DCAI, where systematic data understanding

and engineering form the foundation for successful AI

implementation (Jakubik et al. 2024). Our research reveals

four critical findings about the current state of data

understanding in analytics projects.

Five Interconnected Dimensions for Data Understand-

ing. The first finding centers on the identification and

characterization of five core dimensions that collectively

constitute data understanding: Foundations, Collection and

Selection, Contextualization and Integration, Exploration

and Discovery, and Insights. These dimensions extend

beyond the simplified data understanding phase described

in traditional frameworks (Wirth and Hipp 2000; Fayyad

et al. 1996; Microsoft 2020) by operating not in isolation

but as an interconnected system where each element

informs and enhances the others. This interconnected nat-

ure particularly aligns with DCAI’s emphasis on systematic

data engineering (Jakubik et al. 2024), where comprehen-

sive data understanding forms a foundation for data quality

improvements and systematic data engineering decisions.

The dynamic interplay between dimensions challenges the

linear, sequential approach suggested by traditional ana-

lytics frameworks like CRISP-DM (Wirth and Hipp 2000)

and KDD (Fayyad et al. 1996), instead supporting DCAI’s

Fig. 9 Distribution of data

understanding methods across

target audiences
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iterative focus on data quality and understanding. The

framework’s iterative approach supports DCAI’s focus on

building a comprehensive understanding of data charac-

teristics and quality to systematically engineer the data

(Jakubik et al. 2024), which ultimately may yield improved

model performance.

Methodological Gaps in Supporting DCAI. Our second

key finding emerges from systematically mapping existing

methods to these dimensions, revealing significant dispar-

ities in methodological support, particularly relevant to

DCAI implementation. While Exploration and Discovery

receives substantial attention with 40 identified methods,

other dimensions crucial for DCAI, like Collection and

Selection (12 methods) as well as Contextualization and

Integration (12 methods), remain underserved. This

imbalance is particularly problematic for DCAI initiatives,

where systematic data engineering requires robust support

across all dimensions (Jakubik et al. 2024; Whang et al.

2023). The limited number of methods supporting domain

knowledge integration (only four methods) and real-world

context linking (one method) poses significant challenges

for DCAI implementation, where understanding the data’s

real-world implications and integrating domain expertise is

essential for developing reliable AI systems. This

methodological gap may explain why many organizations

struggle to implement DCAI principles effectively despite

recognizing their importance (Whang et al. 2023). Orga-

nizations often focus heavily on statistical data properties

and sophisticated modeling techniques, achieving promis-

ing results during development. However, without proper

contextualization and domain knowledge integration, i.e.,

establishing the relationship between the data and its real-

world meaning (Aaltonen et al. 2023), these models may

fail to recognize important real-world patterns or con-

straints. For instance, automated methods might remove

certain data points as statistical outliers during data

preparation when these actually represent valid edge cases

crucial for the application domain. Similarly, without

methods supporting real-world context linking, organiza-

tions might overlook important seasonal patterns, regula-

tory requirements, or business rules that affect model

behavior in production environments. This disconnect

between statistical optimization and real-world applicabil-

ity may lead to models that perform well in controlled

development settings but fail to realize their expected value

when deployed in practice.

Bias Toward Method Experts. Our third key finding

relates to the target groups served by existing methods,

revealing a notable bias toward method experts that par-

ticularly challenges DCAI implementation. Our mapping

shows that most methods (41 of 57) are designed specifi-

cally for method experts, while domain experts (10 meth-

ods) and decision-makers (3 methods) receive substantially

less support. This limited methodological support creates

systematic barriers to essential collaborations. With only

10 methods supporting domain experts, organizations lack

tools that enable domain experts to contribute their con-

textual knowledge without requiring deep technical

expertise (Holstein et al. 2023). For instance, domain

experts can identify critical data gaps during Collection and

Selection, but without specialized methods enabling them

to investigate data characteristics without requiring tech-

nical expertise, this capability remains largely untapped

(Park et al. 2021). The situation is even more acute for

decision-makers (3 methods), who need a high-level

understanding of data scope, coverage boundaries, and

quality limitations to make strategic deployment decisions

rather than detailed technical insights (Janssen et al. 2017).

This strategic understanding enables them to assess project

viability, determine appropriate investment levels in data

collection, and establish where AI systems can be trusted to

operate autonomously versus where human oversight

remains necessary. Yet current methodological support

predominantly serves only one part of this triad, potentially

explaining why organizations struggle to translate DCAI

principles into practice (Whang et al. 2023). The bias in

current methods may reinforce silos between technical and

business stakeholders, making it difficult to establish the

collaborative understanding necessary for effective data-

driven decision-making.

Multi-Stakeholder Collaboration as Foundation for

Data Understanding. Our fourth key finding reveals that

successful data understanding fundamentally depends on

effective collaboration between stakeholder groups, each

contributing distinct but complementary perspectives

throughout the different data understanding phases (Ger-

hart et al. 2023; Lebovitz et al. 2021; Park et al. 2021).

The dimensions of our framework reveal distinct patterns

of stakeholder interaction. In Foundations, method experts

lead infrastructure analysis and provenance tracking, but

depend on domain experts to validate whether character-

ized data actually represents the business processes they

claim to capture (Gerhart et al. 2023). Decision-makers

require an understanding of data infrastructure and prove-

nance to assess whether existing data collection processes

can support their strategic AI deployment objectives and to

identify potential systemic limitations that could affect

business-critical applications. In Collection and Selection,

all stakeholder groups contribute complementary expertise.

Domain experts identify which data sources contain busi-

ness-relevant information and recognize gaps based on

their operational knowledge, while method experts con-

tribute technical insights about sensor coverage, data

availability in existing systems, and opportunities for cre-

ating derived measurements such as virtual sensors (Martin

et al. 2021). Decision-makers utilize this understanding of
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data coverage and gaps to inform decisions about whether

the data adequately represents the operational contexts

where AI systems will be deployed, and to determine what

additional data investments may be necessary to support

strategic objectives. However, neither perspective alone

suffices for comprehensive data collection. Similarly,

Contextualization and Integration requires close collabo-

ration, where domain experts provide contextual knowl-

edge that links data to real-world processes while method

experts translate this knowledge into technical integration

rules (Gerhart et al. 2023). When this collaboration fails,

organizations risk creating technically sound but practi-

cally ineffective datasets. In Exploration and Discovery,

method experts create visualizations and apply analytical

techniques, but depend on domain experts to interpret

patterns and distinguish genuine business phenomena from

data artifacts (Holstein et al. 2023; Lebovitz et al. 2021).

Finally, Insights brings all stakeholders together, where

method experts assess technical data quality, domain

experts evaluate business representativeness, and decision-

makers determine project viability and establish boundaries

for automated versus human decision-making based on

data limitations. This three-way interaction of method

experts applying technical skills, domain experts providing

context, and decision-makers ensuring business alignment

is crucial for DCAI initiatives.

5.1 Implications for Theory and Practice

Our research advances the theoretical understanding of

data understanding in the context of data-centric AI while

providing practical insights for implementation. From a

theoretical perspective, our framework extends current

knowledge by synthesizing five interconnected dimensions

of data understanding, challenging the traditional view

presented in analytics frameworks like CRISP-DM (Wirth

and Hipp 2000) and KDD (Fayyad et al. 1996). Rather than

treating data understanding as merely an initial phase, our

framework positions it as a dynamic, iterative process

fundamental to successful AI implementation. This theo-

retical reconceptualization aligns with DCAI’s emphasis

on systematic data engineering and provides the structured

guidance that organizations currently lack for improving

their data analytics capabilities. The framework’s emphasis

on integration between technical exploration and domain

contextualization advances our theoretical understanding

of how organizations can build the comprehensive data

understanding that DCAI requires (Whang et al. 2023;

Polyzotis et al. 2018). Furthermore, our identification of

the interconnected nature of these dimensions contributes

to theory by highlighting how data understanding emerges

through continuous interaction between different aspects of

data work, rather than through distinct, sequential phases.

Our systematic mapping of existing methods contributes

to theory by revealing specific challenges in translating

DCAI principles into practice. Prior work by Gerhart et al.

(2023) has highlighted how data scientists and domain

experts often lack a common language for discussing data

characteristics, leading to misunderstandings and ineffi-

cient collaboration in AI development. Our findings extend

this insight by showing how current methodological sup-

port primarily focuses on technical data exploration while

providing limited support for bridging these communica-

tion gaps for the transfer of domain knowledge relevant to

the curation of data (Park et al. 2021). Some recent work

has begun addressing this challenge – for instance, Holstein

et al. (2023) propose methods for creating a shared

understanding of feature meanings between technical and

domain experts. However, our systematic mapping reveals

that such approaches remain rare, with most existing

methods emphasizing technical expertise over domain

knowledge integration. This theoretical insight helps

explain why organizations continue to struggle with

implementing DCAI principles effectively, despite recog-

nizing their importance. The gap between technical and

domain perspectives is particularly problematic for DCAI

initiatives, where systematic data engineering requires deep

integration of domain knowledge into technical processes.

Our framework provides a theoretical foundation for

understanding these challenges and suggests the need for

new approaches that better support knowledge integration

across stakeholder groups.

The research also makes theoretical contributions to the

emerging field of DCAI by providing a foundation for

understanding how organizations can systematically

improve data quality through enhanced understanding. Our

framework suggests that data understanding needs to

account for both the technical aspects of data analysis and

the human factors of knowledge integration and contextu-

alization (Gerhart et al. 2023; Lebovitz et al. 2021). This

theoretical perspective challenges the predominant focus

on algorithmic sophistication and suggests that successful

AI implementation requires equal attention to the organi-

zational processes that enable comprehensive data under-

standing. The framework’s emphasis on continuous

interaction between different dimensions also contributes

to the theoretical understanding of how organizations can

maintain and evolve their data understanding as their AI

capabilities mature.

The empirical findings also yield practical contributions

for organizational DCAI implementation by demonstrating

the criticality of holistic data understanding approaches.

The results emphasize that successful implementations

require systematic engagement across all five dimensions,

going beyond the prevalent focus on technical exploration

alone. This might involve combining multiple tools or
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developing custom approaches to ensure comprehensive

coverage of data understanding activities. Given the lim-

ited availability of tools supporting domain experts and

decision-makers, organizations may need to develop cus-

tom interfaces or collaboration mechanisms that enable

effective knowledge sharing between technical and non-

technical stakeholders. Furthermore, organizations should

establish systematic processes for data contextualization

and integration, addressing the gaps in current method-

ological support. This could involve creating structured

workflows for documenting data provenance, capturing

domain knowledge, and linking data to real-world contexts.

5.2 Limitations and Future Research

Our development of a theoretical framework for data

understanding and systematic mapping of existing meth-

ods, while comprehensive, reveals limitations that point to

promising directions for future research.

First, our analysis draws primarily from published lit-

erature, which may not capture all practical approaches and

informal workarounds currently used in industry. Simul-

taneously, our focus on literature that explicitly addresses

frameworks for data understanding may overlook valuable

practices embedded within domain-specific use cases,

where data is applied for analytical purposes, and data

understanding activities occur as secondary rather than

primary research elements. Similarly, our approach may

not have captured domain-specific extensions of founda-

tional frameworks like CRISP-DM and KDD developed for

scientific or other specialized contexts. This limitation

opens valuable opportunities to validate and extend our

findings through empirical studies of DCAI implementa-

tions across different organizational contexts. Such

research could reveal how organizations overcome the

methodological gaps we identified and develop effective

practices for integrating diverse stakeholder perspectives,

particularly focusing on how they facilitate knowledge

exchange between method experts and domain specialists.

Second, a limitation stems from our treatment of AI in

DCAI as relatively uniform, not fully accounting for how

different AI paradigms might require distinct approaches to

data understanding. For instance, generative AI models

may need different types of data understanding compared

to traditional supervised learning approaches, while few-

shot or self-supervised learning techniques might introduce

entirely new requirements for understanding training data.

For example, in few-shot learning, understanding the rep-

resentativeness of the few examples becomes crucial, as

these samples must effectively capture the key variations

within a class. This limitation suggests valuable opportu-

nities for research examining how data understanding

needs vary across different AI paradigms and data types.

Future studies could investigate how organizations adapt

their data understanding practices for different types of AI

models, potentially leading to more nuanced frameworks

that account for these variations.

Third, it is important to acknowledge that data under-

standing in contemporary practice also extends to broader

societal and ethical dimensions. Understanding data not

only requires technical and analytical clarity but also sen-

sitivity to potential biases, fairness concerns, ethical

implications, and legal compliance issues. Data may reflect

or even reinforce existing social inequalities, and over-

looking such risks can lead to unintended harm when

insights are operationalized. Similarly, regulatory require-

ments such as data protection laws (European Commission

2023), impose constraints that must be considered when

handling and interpreting data. Moreover, AI ethics

research emphasizes the importance of addressing issues of

fairness, accountability, and transparency when working

with data (Chandrabose et al. 2021). While our approach

does not assess these aspects, we emphasize that future

research should address these aspects to incorporate them

into a holistic view, ensuring responsible and trustworthy

data-driven decision-making.

Finally, a limitation arises from our framework’s tem-

poral focus, which captures data understanding at a specific

point in time, while the relevance of different dimensions

may evolve throughout an AI project’s lifecycle. For

instance, the Collection and Selection dimension might be

most critical during initial project phases, while Contex-

tualization and Integration becomes increasingly important

during feature engineering and model development. Simi-

larly, the Exploration and Discovery dimension might be

particularly crucial during data preparation and model

debugging. Even within the Foundations dimension, the

emphasis might shift from infrastructure setup to prove-

nance tracking as projects mature. This temporal and

phase-dependent variation of our dimensions suggests

valuable opportunities for longitudinal research examining

how data understanding practices evolve both across pro-

ject lifecycles and alongside advancing AI capabilities.

Future studies could investigate how organizations priori-

tize and balance different dimensions of data understanding

across project stages, how they maintain and update their

understanding as systems evolve in production, and how

insights from one dimension inform and influence others

throughout the project lifecycle.

6 Conclusion

As organizations increasingly adopt AI systems, our

investigation of data understanding reveals both theoretical

insights and practical implementation challenges. Through
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our sequential approach, we have established a theoretical

framework delineating five core dimensions of data

understanding and analyzed the current state of method-

ological support for these dimensions. Our analysis shows

that current methods fall short in two key areas: supporting

non-technical users and connecting data to real-world

business contexts. These limitations are particularly sig-

nificant in data-centric AI projects, which rely on a deep

understanding of data for effective refinement for AI per-

formance improvements. While existing methods provide

sophisticated support for data exploration and discovery,

they often fail to address the full spectrum of activities and

stakeholders involved in modern analytics and AI devel-

opment. The framework we present offers a foundation for

future research in this area as organizations increasingly

rely on data-driven decision-making and data-centric AI.

Addressing the identified gaps in methodological support

will be crucial for ensuring that data understanding can

effectively support organizational objectives, ultimately

leading to more effective data analytics practices across

diverse stakeholder groups.
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