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Abstract Organizations collect growing volumes of data to
extract value through analytics. However, this data growth
creates challenges for effective data understanding, which
forms the foundation for reliable decision-making and effec-
tive Al systems. Established analytics frameworks such as
CRISP-DM and KDD acknowledge this importance but
provide limited guidance to achieve this understanding, par-
ticularly for data-centric Al requiring collaboration across
stakeholder groups. To address this gap, the authors con-
ducted a systematic literature review, developing a five-di-
mensional framework for data understanding. They then
performed a systematic mapping study analyzing how exist-
ing methods support these dimensions and accommodate
different target audiences. The analysis reveals critical gaps in
current methods, particularly in systematically supporting the
understanding of data collection and contextualization. While
most methods target data experts, the authors find a
notable lack of methods supporting domain experts and
decision-makers. This research advances both theoretical
understanding by identifying the key dimensions that consti-
tute data understanding and practical implementation by
providing organizations with guidance on building data
understanding.
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1 Introduction

In today’s digital economy, organizations continuously
generate and store unprecedented volumes of data through
their operations, customer interactions, and connected
devices (Fassnacht et al. 2023). This growth coincides with
significant advances in artificial intelligence (AI), with
modern algorithms offering sophisticated ways to analyze
complex data patterns and generate actionable insights
(Lebovitz et al. 2021; Samtani et al. 2023). However,
despite these parallel developments in data availability and
algorithmic capabilities, many organizations struggle to
successfully deploy AI applications and realize their pro-
mised value in practice. For example, IBM’s Watson for
Oncology project encountered significant challenges in
providing consistent recommendations due to insufficient
training data (Lohr 2021), while Amazon’s recruitment
system exhibited bias issues stemming from historical data
(Villegas and Beachy 2021). These failures point to a
fundamental challenge that lies not in the capabilities of Al
models themselves but in the essential task of under-
standing and preparing the data that feeds these systems.
As organizations work with more diverse data sources, they
face increasing difficulties in developing comprehensive
data understanding (Holstein et al. 2023). Yet, the growing
recognition that data understanding forms the foundation
for successful Al implementations has led to the emergence
of data-centric Al (DCAI) — a paradigm that emphasizes
systematic data engineering and understanding over algo-
rithmic sophistication (Jakubik et al. 2024).

Traditional analytics frameworks such as CRISP-DM
(Wirth and Hipp 2000) and KDD (Fayyad et al. 1996)
recognize data understanding as an essential element of the
analytics process. However, these frameworks typically
treat it as an initial phase that precedes data preparation and
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modeling, providing limited guidance on how to achieve
and maintain this understanding throughout the analytics
lifecycle. The DCAI paradigm reimagines this relationship
by positioning data understanding as the foundation for
systematic data engineering (Jakubik et al. 2024). This
shift acknowledges that adequate data understanding
requires the integration of multiple organizational per-
spectives. Data scientists must grasp technical character-
istics for preparation and modeling, domain experts
provide crucial business context and constraints, while
decision-makers evaluate strategic relevance and implica-
tions (Lebovitz et al. 2021). This multi-stakeholder per-
spective suggests that systematic improvements in data
quality, guided by a thorough understanding across orga-
nizational boundaries, are often more crucial for successful
Al implementations than algorithmic refinements alone
(Whang et al. 2023). As organizations increasingly intro-
duce Al applications, this foundational role of integrated
data understanding becomes critical for ensuring that ana-
Iytics initiatives effectively support business objectives.

While DCAT’s emphasis on data understanding repre-
sents a significant advancement in analytics thinking,
translating these principles into practical organizational
capabilities remains challenging (Whang et al. 2023).
Organizations lack structured approaches for implementing
DCAT’s principles, particularly in environments where data
understanding must be built and maintained across diverse
stakeholder groups with varying technical expertise and
domain knowledge (Gerhart et al. 2023; Holstein et al.
2023). Current methods and tools remain largely rooted in
traditional analytics paradigms, offering fragmented sup-
port for different aspects of data understanding without
providing an integrated perspective. This fragmentation
becomes particularly problematic as organizations work
with increasingly diverse and complex datasets, requiring a
structured approach that can guide them in identifying,
analyzing, and documenting relevant data characteristics
(Jakubik et al. 2024). The absence of such a framework
creates significant barriers where organizations struggle to
establish consistent practices, stakeholders lack common
ground for communication, and Al projects often fail due
to poorly understood data sources. This gap between the
theoretical recognition of data understanding’s importance
and the limited practical guidance leads to our first research
question:

RQ1

What are the dimensions of data understanding?

The conceptualization of data understanding dimensions
provides a theoretical foundation for the systematic
investigation of this domain. However, the practical
application of these dimensions requires an examination of
existing methodological support. Prior research has intro-
duced various methods and tools for data understanding,
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yet their coverage remains fragmented and unclear, par-
ticularly regarding which aspects of data understanding
they cover. This leads to our second research question:

RQ2 How do current methods and tools support different
dimensions of data understanding?

While the analysis of methodological support addresses
technical aspects, effective data understanding requires
integrating diverse stakeholder perspectives that each bring
valuable contributions (van Giffen and Ludwig 2023;
Dogan and Birant 2021; Park et al. 2021): Data scientists
provide expertise on statistical properties and quality
metrics, domain experts offer crucial insights by providing
business rules and context, and decision-makers need to
understand data’s strategic implications without necessarily
diving into technical details (Park et al. 2021). However,
bridging these perspectives poses challenges as stake-
holders use varying terminology, have different levels of
technical knowledge, and focus on different aspects of the
data (Gerhart et al. 2023; Lebovitz et al. 2021). This
necessitates the investigation of support mechanisms across
different user groups in our third research question:

RQ3 How do current methods accommodate different
target groups involved in data understanding?

To investigate these research questions, we adopt a
sequential research design centered on a framework-de-
veloping review (Rowe 2014). First, following the estab-
lished methodology of Webster and Watson (2002), Gioia
et al. (2013),and Wolfswinkel et al. (2013), we conduct a
systematic literature review to develop a comprehensive
framework that delineates the dimensions of data under-
standing. This systematic approach ensures that we capture
and synthesize the currently fragmented perspectives on
data understanding across different domains. Our analysis
reveals five core dimensions: Foundations, Collection and
Selection, Contextualization and Integration, Exploration
and Discovery, and Insights. Building upon this synthe-
sized foundation, we then conduct a systematic mapping
study (Petersen et al. 2008) to analyze how existing
methods identified in the literature cover these dimensions
and accommodate different target groups. This analysis
uncovers significant gaps in current methodological sup-
port, particularly in facilitating data Collection and Selec-
tion, Contextualization and Integration, with most methods
focusing primarily on Exploration and Discovery. Fur-
thermore, we find that existing methods predominantly
target technical experts, while support for domain experts
and decision-makers remains scarce, despite their critical
role in analytics projects. Through this dual approach, we
make several contributions: First, we provide a compre-
hensive framework that synthesizes the dimensions of data
understanding, offering organizations structured guidance
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for improving their data analytics capabilities. Second, our
systematic mapping of existing methods reveals gaps in
current approaches, particularly in supporting data collec-
tion, contextualization, and integration. Finally, by identi-
fying disparities in methodological support among
different stakeholder groups, we provide direction for
developing more inclusive tools that support diverse
stakeholder needs, which are crucial for successful Al
implementations. Together, these contributions advance
our theoretical understanding and provide practical path-
ways for organizations to achieve appropriate data under-
standing for their Al initiatives.

2 Background and Related Work

Data understanding has emerged as a fundamental phase of
data analytics projects, recognized as essential for
extracting meaningful insights and driving successful out-
comes. Comparative analyses have highlighted its integral
role (Haertel etal. 2022), with data understanding
appearing as a distinct phase in six of the seven major data
science process models (Kutzias et al. 2023), including
KDD (Fayyad et al. 1996), CRISP-DM (Wirth and Hipp
2000), and TDSP (Microsoft 2020). This widespread
recognition stems from the crucial role of data under-
standing in enabling effective data utilization for analytical
techniques and supporting reliable decision-making pro-
cesses (Wirth and Hipp 2000; Janssen et al. 2017). How-
ever, traditional analytics frameworks have often treated
data understanding superficially or fragmentarily (Haertel
et al. 2022). The KDD process, for instance, disperses data
understanding activities across multiple phases like
“Creating a target dataset” and “Data preprocessing”
(Fayyad et al. 1996), emphasizing technical preprocessing
over comprehensive understanding. Similarly, while
CRISP-DM explicitly includes a data understanding phase,
its guidance remains limited to basic activities of collec-
tion, description, and quality verification (Wirth and Hipp
2000). This treatment overlooks crucial aspects like
domain knowledge integration and real-world contextual-
ization (Gerhart et al. 2023).

These limitations in traditional approaches to data
understanding have become increasingly apparent with the
emergence of DCAI, which represents a fundamental shift
in how organizations approach data analytics and Al
implementation (Jakubik et al. 2024). Unlike traditional
model-centric approaches that focus on algorithmic
refinement, DCAI emphasizes systematic design and

engineering of data as the foundation for effective Al
systems (Jarrahi et al. 2023). This paradigm shift promotes
improving data quality and quantity while maintaining
fixed model architectures, recognizing that appropriate data
often drives performance improvements more effectively
than model tuning (Jakubik et al. 2024). DCAI elevates the
importance of comprehensive data understanding through
its emphasis on domain-specific data augmentation, its
recognition of data quality improvements as primary per-
formance drivers, and its use of model performance metrics
to indicate the effectiveness of data adjustments (Zhang
et al. 2023).

The convergence of traditional analytics challenges and
DCAI principles reveals significant gaps in current
approaches to data understanding. While previous research
has emphasized the need for a deeper understanding of how
data represents real-world phenomena (Aaltonen et al.
2023) and the integration of domain expertise (Gerhart
et al. 2023), existing frameworks provide insufficient
guidance for achieving these goals. Comparative studies of
analytics frameworks (Haertel et al. 2022; Fatima et al.
2020; Mariscal et al. 2010) have focused on overall
framework comparison rather than an analysis of specific
phases, such as data understanding. DCAI’s emphasis on
systematic data engineering amplifies these limitations,
particularly the need for effective integration of domain
knowledge when dealing with high-dimensional datasets
(Jakubik et al. 2024; Jarrahi et al. 2023) and the value of
exploratory analysis (Patel et al. 2023). These gaps in
current research and practice motivate our development of
a comprehensive framework that delineates the core
dimensions of data understanding, considering both tradi-
tional business challenges and the novel requirements
introduced by DCAL

3 Research Design

To address our research questions, we employ a sequential
research design combining a systematic literature review to
develop a framework for data understanding (RQ1) fol-
lowed by a systematic mapping study to analyze existing
methods (RQ2 and RQ3). Given the distinct objectives of
each phase, we employ complementary search strategies:
the first phase requires a broad, exploratory approach to
inductively derive theoretical dimensions, while the second
phase demands a focused, systematic approach to assess
methodological contributions against the established
framework. This dual approach allows us to first establish a
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Fig. 1 Dual research design:
Integrating literature review-
based framework development
and systematic mapping study
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theoretical foundation through rigorous literature analysis
before systematically evaluating how existing methods
align with this foundation (see Fig. 1).

3.1 Framework Development Through Systematic
Literature Review

The first phase follows established guidelines for system-
atic literature reviews in information systems (Webster and
Watson 2002), employing an inductive, grounded theory-
inspired approach (Wolfswinkel et al. 2013) to identify the
dimensions of data understanding. This inductive approach
necessitates a broad search strategy to capture diverse
theoretical perspectives, ensuring comprehensive coverage
of the fragmented literature on data understanding. We
adopt the recommendations of Gioia et al. (2013) to
articulate our analysis results. We clarify the review scope
using Cooper (1988)’s taxonomy, aiming to systematize
research theories and methodologies while seeking to
provide a neutral perspective and a literature review rep-
resentative of the broad connections inherent in our topic.

Scope and Search Strategy. We began by reviewing an
initial set of analytics frameworks to develop a shared
understanding of data understanding and its role in ana-
lytics projects. This preliminary review helped us define
our inclusion and exclusion criteria to focus our analysis on
understanding data, which involves helping stakeholders
comprehend data characteristics, provenance, quality, and
real-world context, rather than using data, for example, by
integrating external data sources for predictive modeling.
Therefore, we included articles presenting frameworks for
analytics (both conceptual papers and official documenta-
tion), articles offering interpretations, discussions, expan-
sions, or comparisons of frameworks, and articles
addressing challenges in data understanding within ana-
lytics. Conversely, we excluded articles focusing solely on
automated technical methods rather than methodological
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guidance, articles not mentioning concepts related to data
understanding, non-English language publications, and
articles focusing solely on data preparation or cleaning
without addressing understanding.

Our search covered three major databases: Web of
Science, Scopus, and the AIS eLibrary. To ensure high-
quality sources, we focused on premier outlets in infor-
mation systems and related computer science disciplines.
Our scope included all journals from the Senior Scholars’
Basket of Journals, as well as selected A* and A-ranked
journals according to CORE ranking that are specifically
related to IS or data mining. Beyond the Senior Scholars’
Basket, we specifically included IEEE Transactions on
Knowledge and Data Engineering, Data Mining and
Knowledge Discovery, Information Systems, ACM
Transactions on Information Systems, and ACM Transac-
tions on Database Systems. We also included major con-
ference proceedings, including ECIS, ICIS, and HICSS, as
we consider these outlets to be a representative sample for
high-quality research in the discipline of data analytics
frameworks in the fields of IS and computer science. Given
the long history of data analytics and the early establish-
ment of many standards, we included articles published
between January 1995 and September 2023.

Search Process. Through several iterations, we devel-
oped our search string: (“data scien*” OR “data mining”
OR “data analytics” OR “big data” OR “knowledge dis-
covery” OR “data analysis”) AND (“process model” OR
“framework” OR “methodology”) OR (“data under-
standing”). Our initial database search yielded 1340 arti-
cles. After removing duplicates, our sample decreased to
808 articles. Title and abstract screening following Snyder
(2019) identified 40 articles for full-text review, which
yielded 21 relevant papers. Through forward and backward
searches (Webster and Watson 2002), we identified 17
additional publications, resulting in a final sample of 38
articles.
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Analysis Process. For analysis, we followed a three-
stage coding process (Wolfswinkel et al. 2013). In the first
stage, three researchers independently conducted open
coding on a representative subset of papers to identify
concepts related to data understanding. In a collaborative
workshop, the authors then synthesized their understanding
of the underlying concepts. During axial coding, we
established relationships between first-order concepts and
developed second-order themes through collaborative
workshops. One author refined the codes based on the
established understanding, followed by a second workshop
to finalize them. Finally, through selective coding, we
aggregated themes into core dimensions, forming our
framework for data understanding.

3.2 Method Analysis Through Systematic Mapping

Building on our framework, we conducted a systematic
mapping study following Petersen et al. (2008) to analyze
how existing methods cover the identified dimensions and
support different target groups. A systematic mapping
study aims to create an overview of a selected topic area by
classifying identified papers into different predefined cri-
teria. In contrast to the exploratory search strategy
employed in the first phase, this phase requires a more
focused and systematic approach, with search terms
specifically designed to align with the conceptual dimen-
sions established in the framework development phase.

Research Scope. The purpose of this mapping study was
to provide an overview of methods that enable users to
understand given datasets more holistically. We mapped
the methods onto the dimensions identified in Phase 1 and
analyzed their target groups to identify gaps in the current
literature landscape.

Search Strategy. To identify relevant publications, we
conducted a search across Web of Science, Scopus, and the
AIS eLibrary, covering publications from January 2010 to
May 2024. We maintained the same outlet scope as defined
in our framework development phase. Our search term
followed the identified dimensions from Phase 1 and
included relevant synonyms: “data understanding” OR
“data exploration” OR “data integration” OR “data col-
lection” OR “‘data acquisition” OR “data selection” OR
“data infrastructure” OR “data overview” OR ‘“data
quality” OR “supplemental data” OR “‘surrogate data”
OR “data visualization” OR ‘“data summarization” OR
“data provenance” OR “entity resolution” OR “schema
matching” OR “schema mapping” OR (“data” AND
(“human-in-the-loop” OR “domain knowledge” OR “do-
main expert*” OR “knowledge acquisition”)).

Selection Process. During the screening process, we
included publications that propose methods facilitating the
understanding of data in at least one dimension identified in

the first phase of our research. We excluded publications
focused solely on automated methods that do not directly
contribute to user understanding, e.g., methods that auto-
matically remove outliers. Following Snyder (2019), we
identified 1714 articles after removing duplicates. Title and
abstract screening reduced our sample to 167 relevant
articles, of which we selected 48 during full-text screening.
Through forward and backward searches, we identified
nine additional publications, resulting in a final sample of
57 papers.

Classification Scheme. We developed two classification
criteria: research focus and target groups. For research
focus, we mapped methods to the five dimensions of data
understanding identified in the first phase of our research,
with each dimension consisting of three second-order
themes that serve as our classification basis. Methods could
address multiple dimensions simultaneously, as these
dimensions are not mutually exclusive. For target groups,
we employ a provisional coding procedure (Saldana 2021),
which leverages predefined codes from existing research
while allowing for iterative refinement. The initial coding
uses a set of established roles from analytics projects (Saltz
et al. 2018; Zhang et al. 2020), specifically: method
experts, domain experts, and decision-makers. Method
experts, such as data scientists or analysts, possess spe-
cialized knowledge in data analysis techniques and tools.
Domain experts, while lacking formal training in data
analysis, contribute deep knowledge of specific business
domains, such as engineering or healthcare, which is cru-
cial for contextualizing and validating data insights.
Decision-makers, typically managers or executives, rely on
data understanding to inform strategic choices but may not
be directly involved in the technical analysis. Through our
iterative coding procedure, we identified the necessity for
an additional category: General Users. These are individ-
uals who engage with data and visualizations in an infor-
mal manner, operating outside traditional project-based
analytics structures, but may play a supporting role in
identifying preliminary use cases or inspiring new direc-
tions for data applications.

Classification Process. One author initially classified the
papers, and through collaborative workshops among the
authors, we established a shared understanding. Based on
this shared understanding, the author then refined the paper
classifications to ensure consistency and accuracy. The
dimensions were not treated as mutually exclusive; a single
paper could be mapped to multiple dimensions if it
addressed various aspects of data understanding. Through
this systematic process, we were able to identify patterns in
how existing methods support different aspects of data
understanding and various user groups, revealing both the
strengths and gaps in current methodological support.
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4 Results

Following our sequential research design, we first present
the framework for data understanding developed through
our systematic literature review, followed by our analysis
of existing methods based on the systematic mapping
study.

4.1 Framework Development Through Systematic
Literature Review

Our systematic literature review reveals five core dimen-
sions that collectively constitute data understanding, which
represent distinct but interrelated aspects of understanding
data: Foundations, Collection and Selection, Contextual-
ization and Integration, Exploration and Discovery, and
Insights.

4.1.1 Foundations

The first dimension, Foundations, provides the essential
groundwork for understanding data through three key
themes (see Fig. 2): Infrastructure, Provenance, and Char-
acterization and Familiarization.

Infrastructure emphasizes the importance of data
warehousing models and tailored databases for data min-
ing. Data warehousing models provide a structured envi-
ronment for data storage, facilitating efficient data analysis
(Dag et al. 2016). Similarly, databases designed for data
mining, equipped with summary statistics, prepare data for
in-depth analysis (SAS Institute Inc 2017). These infras-
tructure elements are crucial for organizing and setting a
solid foundation for data exploration and understanding.

Provenance represents comprehending the data’s origin,
the applied transformations, and its timeliness. The ability
to trace data provenance and document the transformation
of data is critical to accurately interpreting results and

Tracing data provenance enables verification that the data
is still up-to-date and relevant to the business problem at
hand (Guo 2012). Additionally, it assures a transparent path
for the data, enabling the tracing of potential downstream
errors back to their origins to adjust and mitigate the root
causes of these data errors. Understanding the collection
processes and their respective transformations allows for
formulating hypotheses that aid in later analyses and
potentially creating new features.

Characterization and Familiarization, particularly
through metadata, is crucial for understanding data mean-
ing. Metadata provides detailed descriptions of data and its
linkage to underlying business processes, bridging the gap
between raw data and business application (Li et al. 2016).
To complement metadata, statistical measures or tools can
summarize data, offering insights into distribution patterns
and underlying structures (Jackson 2002; Phillips-Wren
et al. 2015). Examining data features and characteristics
facilitates a detailed understanding of data segments and
their contribution to the broader dataset (Peng et al. 2011).
This involves assessing data granularity, aggregation
levels, and value ranges of each source (Dietrich 2016).

4.1.2 Collection and Selection

The second dimension focuses on gathering and selecting
relevant data through three themes (see Fig. 3): Data
Collection, Selecting Relevant Data, and Supplemental
Data.

Data Collection encompasses the acquisition of data and
decisions regarding its selection and evaluation for further
use. The initial data collection sets the foundation for
subsequent stages of analysis (Haertel et al. 2022; Marban
et al. 2009). A profound knowledge of the data available
both within and outside the organization is emphasized as
crucial for effective data selection (Feelders et al. 2000).
This knowledge aids in identifying gaps in the current data

preventing misinterpretations (Feelders et al. 2000). landscape and in making informed decisions about which
1st Order Concepts 2nd Order Themes Aggregated Dimension
'
« Data warehousing models to achieve an understanding of data (Dag et al., 2011) Infrastructure
* Create a database tailored for data mining (SAS Institute Inc, 2017)
)
* Track downstream errors back to the data origins (Guo, 2012) —
* Knowledge of processes behind the data to determine useful questions for analysis and correctly
interpreting results (Feelders, Daniels and Holsheimer, 2000) Provenance Foundations
« Verify timeliness of data trough provenance (Guo, 2012)
« Data provenance can be informed trough domain knowledge (Fatima et al., 2020)
+ Familiarization with data sources after collecting initial data. (Li et al., 2016; Dietrich, 2016, —
Marbin et al., 2009) ) ) . Characterization and
* Metadata supports the understanding of data ((Li, Thomas, and Osei-Bryson, 2016) Familiarization
* Statistical measures to summarize data (Jackson, 2002; Phillips-Wren et al., 2015; Peng et al.,

2011; Phillips-Wren et al. 2015; Dietrich, 2016)

| —

Fig. 2 Dimensions, themes, and concepts of foundations
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1st Order Concepts

2nd Order Themes Aggregated Dimension

.

Identifying whether size of dataset is appropriate (Yu, Wang, and K. K. Lai, 2006)

Kurgan, 2005)
* Knowledge of available data within and outside of organization (Feelders, Daniels, and
Holsheimer, 2000)

Data needs to be collected (Haertel et al., 2022; Rollins, 2015; Marban et al., 2009; Cios and

—

Data Collection

* Distinguish anomalies from edge cases (Brachman and Anand, 1996)

trough unsupervised learning techniques (Brachman and Anand, 1996, SAS
Institute Inc, 2017)

1996)
* Filter out duplicates (Dutta and Bose, 2015) and decide what data to keep (Dietrich, 2016)

» Create and identify interesting subsets (SAS Institute Inc, 2017; Fayyad, Piatetsky-Shapiro, and
Smyth, 1996; Samtani et al., 2023, Yu et al., 2006) to form hypotheses (Marban et al., 2009)

 Select interesting variables or subsets (Abbasi and H. Chen, 2008; Brachman and Anand, 1996;
Larson and Chang, 2016; Phillips-Wren et al., 2015) avoiding correlations (Brachman and Anand,

Collection and
Selection

Selecting Relevant
Data

Data gaps need to be filled (Rollins, 2015)

Surrogate data might be necessary (Yu, Wang, and K. K. Lai, 2006)
Consider external datasets and their associated cost (Haertel et al., 2022)
Determine whether additional data is required (Dietrich, 2016)

o« e e e

>|  Supplemental Data

Fig. 3 Dimensions, themes, and concepts of collection and selection

additional data sources might be beneficial for enriching
the analysis.

Selecting Relevant Data becomes necessary when
datasets are large and include instances or variables not
relevant to the business use case. Discriminating between
different subsets and identifying those worthy of more in-
depth analysis is fundamental (Brachman and Anand 1996;
Fayyad et al. 1996). This focused analysis enables the
formulation of hypotheses based on insights obtained from
critical subsets, effectively allocating resources to the most
informative parts of the data. Different methods can be
applied to identify potentially interesting subsets, including
unsupervised learning techniques (SAS Institute Inc 2017).
Data mining methods help discern relevant variables, dif-
ferentiating between critical data for analysis and extra-
neous information. A crucial part involves distinguishing
outliers from edge cases, where outliers may represent
errors, while edge cases, though unusual, remain valid and
relevant to the analysis.

Supplemental Data might need to be collected if not all
required data is available. Often, the initial phase of data
understanding reveals gaps where additional information is
needed to align with project objectives. This might involve
acquiring data not initially considered or delving deeper
into specific areas (Rollins 2015; Dietrich 2016). In some
cases, surrogate data becomes necessary (Yu et al. 2006),
serving as alternative or proxy data when primary data is
unavailable. Another approach involves considering
external data sources and their associated costs, as under-
standing what external data can be leveraged and at what
expense is pivotal for enriching internal datasets.

4.1.3 Contextualization and Integration

The third dimension involves contextualizing data through
three themes: Integration, Domain Knowledge, and Link-
ing Data to the Real World (see Fig. 4).

Integration of data sources allows the investigation of
the interplay between various data sources and types to
provide deeper insights. Incorporating different data sour-
ces, whether structured or unstructured, can provide a more
comprehensive context for analysis. This process facilitates
a holistic view that captures the multifaceted nature of data,
leading to more informed and accurate insights (Delen and
Al-Hawamdeh 2009; Martinez-Plumed et al. 2021). The
utilization of preexisting data models enhances under-
standing by functioning as frameworks that classify and
interpret diverse data types, simplifying intricate informa-
tion architectures (Yu et al. 2006).

Domain Knowledge is critical to contextualize and
ultimately make sense of data. Acquiring domain knowl-
edge is crucial in comprehensively understanding data
(Brachman and Anand 1996). Incorporating this knowl-
edge can aid in analyzing data (Peng et al. 2011) by
identifying uncommon patterns (Yu et al. 2006), ranking
feature importance (Cios and Kurgan 2005), formulating
causal relationships (Martinez-Plumed et al. 2021), and
generating data subgroups (Shaw et al. 2001). Collabora-
tive efforts beyond individual knowledge acquisition are
essential, as domain experts provide different perspectives
leading to a more holistic understanding (Fatima et al.
2020).

Linking Data to Real-World involves interpreting data
and applying domain knowledge to address real-world
complexities and challenges. This involves recognizing

@ Springer
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1st Order Concepts

2nd Order Themes Aggregated Dimension

Integrating different types of data (e.g., structured, unstructured) promotes data
understanding (Delen and Al-Hawamdeh, 2009; Dutta and Bose, 2015; Ghasemaghaei and
Calic, 2019; Martinez-Plumed, Contreras-Ochando, Ferri, Hernandez-Orallo, et al., 2021)
Data models simplify the interpretation of data (Li, Thomas, and Osei-Bryson, 2016)

Integration

Domain knowledge is necessary to contextualize data (Brachman and Anand, 1996)
Integrating domain knowledge can aid in the analysis (Peng et al., 2011)

Domain knowledge supports the identification of unusual patterns (Yu, Wang, and K. K.
Lai, 2006), ranking feature importance (Cios and Kurgan, 2005), formulating causal
relationships (Martinez-Plumed et al., 2021), and generating interesting subgroups (Shaw et
al., 2001).

Collaborating with domain experts provide different perspectives on the data (Fatima et al.,
2020) allowing them to validate results (Petricek et al., 202)

Using tools familiar to domain experts supports them understanding data quickly
(Merkelbach et al., 2022)

Contextualization
and Integration

Domain Knowledge

Data understanding must ensure that derived insights are applicable and relevant for real-
world scenarios (Martinez-Plumed et al., 2017; Shaw et al., 2001; Cao, 2010)

Often it is remains questionable how to unlock insights from data (Cao et al., 2010)

Data understanding can inform the understanding of the underlying domain (Mariscal,
Marban, and Fernandez, 2010; Shaw et al., 2001)

Linking Data to
Real-World

—

Fig. 4 Dimensions, themes, and concepts of contextualization and integration

that the complexity of real-world data necessitates thor-
ough analysis to ensure its applicability and practical rel-
evance (Cao et al. 2010). Through data understanding, one
gains domain insights that inform and refine the analytical
approach. Anticipating the context in which data will be
used is critical, requiring activities to envision how insights
will apply in real-world scenarios (Martinez-Plumed et al.
2017).

1st Order Concepts

4.1.4 Exploration and Discovery

The fourth dimension encapsulates the critical stage of
delving into data to uncover hidden patterns through three
themes: Exploration, Cluster, Patterns and Relationships,
and Visualizations (see Fig. 5).

Exploration of data helps understand and interpret it
through iterative engagement, employing various tech-
niques to uncover patterns, relationships, and insights that

2nd Order Themes Aggregated Dimension

and Chang, 2016)
Data exploration can lead to hypothesis formulation (Moyle and Jorge, 2001)
Assess the data quality (Haertel et al., 2022; Martinez-Plumed et al., 2021)

Iterative process which provides insights into the data (Martinez-Plumed et al., 2021; Haertel et
al., 2022; Brachman and Anand, 1996; Microsoft, 2020) often through visual analytics (Larson

Data exploration shapes the subsequent analysis steps (Martinez-Plumed et al., 2021; Cao, 2010)

Exploration

and domain knowledge (Mariscal, Marban, and Fernandez, 2010) to identify clusters of inst:
and variables to reveal underlying structures and eliminate redundancy (SAS Institute Inc, 2
Addressing challenges in specifying and quantifying dataset complexities (Cao, 2017).

and Smyth, 1996; Feelders, Daniels, and Holsheimer, 2000).

Anand, 1996; Larson and Chang, 2016)

Holsheimer, 2000).
Close interaction with data for causal understanding and determining consequences in data
augmentation (Cao et al., 2010).

Using unsupervised methods ((Zhuang, Wilkin, and Ceglowski, 2013; Phillips-Wren et al., 2015)

Verifying correlations based on causation, not spurious connections((Fayyad, Piatetsky-Shapiro,

Uncovering intrinsic data properties (Peng et al., 2011) and establishing item connections using
various data representations (SAS Institute Inc, 2017) such as visualizations (Brachman and

Recognizing biases and selection effects to ensure pattern generalization (Feelders, Daniels,

ances

017)

Cluster, Patterns and
Relationships

Exploration
and Discovery

and

Identification of relationships between variables through visualizations (Brachman and Ana
1996; Larson and Chang, 2016; Fayyad et al., 1996; Saltz, 2021; Microsoft, 2020)
Interactive and iterative visual methods are used to gain insights (Larson and Chang, 2016;

Delen and Al-Hawamdeh, 2009; Yu et al., 2006; Jackson, 2002; Zhuang et al., 2013)

al., 2016; Abbasi et al., 2008; Dietrich, 2016; SAS Institute Inc, 2017; Dutta and Bose, 2015;

nd,

Liet Visualizations

Fig. 5 Dimensions, themes, and concepts of exploration and discovery
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inform the overall analysis (Larson and Chang 2016;
Brachman and Anand 1996). Analysts examine data to
identify trends and patterns, often suggesting new
hypotheses about underlying relationships and phenomena.
Data exploration also contributes to the development of
data descriptions, quality reports, and understanding of
how the data represents its context (Martinez-Plumed et al.
2017; Haertel et al. 2022). Further, it involves exploring
data structure and encoding to inform how knowledge can
be extracted from it (Cao 2017).

Clusters, Patterns, and Relationships include reducing
data complexity by identifying clusters of instances and
variables (SAS Institute Inc 2017), thereby revealing
underlying structures and eliminating redundancy from
correlated features. Analysts closely interact with the data,
requiring a causal understanding to determine conse-
quences in subsequent data augmentation (Martinez-
Plumed et al. 2021) and to verify correlations, ensuring
they are based on causation rather than spurious connec-
tions (Feelders et al. 2000). The process involves uncov-
ering intrinsic data properties (Peng et al. 2011) and
establishing connections between items using various data
representations. Additionally, recognizing biases and
selection effects is crucial to ensure the generalization of
identified patterns (Feelders et al. 2000).

Visualizations are key to capturing the intricacies of
data. They enable the extraction of insights and recognition
of patterns. By exhibiting data points and their interrela-
tionships, visualizations provide insights that may not be
obtained through tables or summary statistics (Delen and
Al-Hawamdeh 2009; SAS Institute Inc 2017). This is
especially evident while exploring high-dimensional data,
where coordinated visualizations reveal intricate data
structures and distributions (Abbasi and Chen 2008; Diet-
rich 2016). Interactive and iterative visual methods are
essential for exploratory data analysis, as they facilitate
direct engagement with the data, enabling deeper exami-
nation of relationships between variables and identification
of hidden insights (Larson and Chang 2016; Fayyad et al.
1996).

4.1.5 Insights

The final dimension focuses on the tangible outcomes
obtained from analyzing the data to evaluate the Data
Quality, note it in Deliverables, and inform Decision-
Making (see Fig. 6).

Deliverables refer to the documentation produced dur-
ing the data understanding phase. This typically includes an
initial data collection report (Moyle and Jorge 2001), which
outlines the specifics of the gathered data and provides a
baseline for subsequent analyses. It is followed by data
description and exploration reports (Haertel et al. 2022;

Saltz 2021), which detail the intrinsic characteristics of the
datasets and the insights captured. The data quality report
(Moyle and Jorge 2001) complements this by assessing the
data’s reliability and appropriateness for analysis.

Data Quality describes the process of evaluating the
integrity and usefulness of data. Essential tasks include
verifying data quality and documenting issues (Saltz 2021),
developing and implementing data quality metrics (Larson
and Chang 2016), often informed by data profiling out-
comes like demographics and descriptive statistics. Par-
ticularly with big data, challenges arise in maintaining
accuracy and relevance due to the vastness of datasets
(Martinez-Plumed et al. 2021). Enhancing data quality is
crucial for modeling (Fatima et al. 2020) and involves
evaluating the data’s suitability for specific purposes.

Decision-Making underscores the significance of in-
depth data understanding for informed decision-making
and effective application in later phases such as data
preparation and modeling (Cao et al. 2010; Dietrich 2016).
The phase yields critical outputs, such as metadata and data
quality information (Moyle and Jorge 2001), which are
integral to strategic decisions. This understanding ensures
that insights derived from the data can effectively inform
business decisions and strategy development.

4.1.6 Synthesis of Dimensions of Data Understanding

Data understanding serves as the critical bridge between
the adjacent business understanding and data preparation
phases. The five identified dimensions represent a logical
order of interconnected activities, where each dimension
informs and enhances the others through continuous feed-
back loops (see Fig. 7).

Starting with Foundations, analysts search in data
infrastructures like data warehouses or data lakes for rel-
evant data. While doing so, they check the provenance of
the discovered data to ensure that the transformations
applied are valid and do not hinder effective analysis
concerning the underlying use cases. To get an overview of
the available data sources, they familiarize themselves with
and characterize the data through metadata and simple
statistics.

The foundations then inform an iterative cycle that
includes three central dimensions: Collection and Selec-
tion, Contextualization and Integration, and Exploration
and Discovery. These interrelated elements form the core
of the data understanding phase, each affecting and being
affected by the others in a continuous loop of refinement
and discovery. In Collection and Selection, the aim is to
identify and gather relevant data sources informed by the
initial foundational understanding and business require-
ments.. This helps to ensure that the data is comprehensive,
relevant, and aligned with the analytical objectives.
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1st Order Concepts

2nd Order Themes

Aggregated Dimension

Document results from data understanding (Saltz, 2021)
Reports for data collection, data description, data exploration, and data quality (Haertel et
al., 2022; Saltz, 2021; Moyle and Jorge, 2001)

.

Identify data quality in terms of accuracy, relevancy, efficiency, completeness, missing
values, plausibility (Cios and Kurgan, 2005; Shaw et al., 2001; Ghasemaghaei and Calic,
2019)

Data understanding provides basis to measure data quality (Larson and Chang, 2016; Moyle
and Jorge, 2001)

Improve data quality for modelling (Shaw et al., 2001)

Data quality improves insights in data (Ghasemaghaei and Calic, 201)

Data quality determines potential deliverables and insights (Larson and Chang, 2016)
Identify data quality problems and document any issues (Marban et al., 2009; Saltz, 2021)

>

Informs subsequent stages including data preparation, modeling and deployment (Cao et al.,
2010; Dietrich, 2016; Martinez-Plumed, Contreras-Ochando, Ferri, Flach, et al., 2017) for

Deliverables
Data Quality

Decision-Making

example trough metadata (Moyle and Jorge, 2001)

Fig. 6 Dimensions, themes, and concepts of insights
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Fig. 7 Multiple interrelated dimensions together facilitate data understanding as part of the overall analytics process

Contextualization and Integration then embed these selec-
ted data elements within specific domain contexts. This is
essential for creating meaningful and actionable data, uti-
lizing domain expertise to interpret and effectively inte-
grate the data. Subsequently, Exploration and Discovery
involve thoroughly examining the data and utilizing
advanced analytical techniques to reveal hidden patterns,
relationships, and insights. This cycle is characterized by
continuous interaction and feedback between its compo-
nents. Findings obtained during exploration and discovery
may reveal the need for additional data collection or
indicate relationships that require domain expert interpre-
tation. Similarly, as new data is acquired or the contextual
landscape shifts, analysts must revisit exploration phases
and recontextualize data to uncover additional insights.
This dynamic interplay ensures that data understanding is
not a linear process but rather an iterative cycle of refine-
ment and discovery, where each phase continuously
informs and enhances the others.

Ultimately, these activities result in Insights based on
the acquired data understanding. Analysts must evaluate
the data to determine its potential and decide whether to
proceed with the project or abort it based on the quality of
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the data. They document their results in various reports,
including data collection, description, exploration, and
quality reports. If they decide to continue their project, they
can use their understanding of the data to inform subse-
quent activities like data preparation and modeling and,
ultimately, decision-making, thus leveraging the real-world
value of the collected data. This final dimension serves not
only as an endpoint but also as a potential trigger for
revisiting earlier dimensions when new insights reveal gaps
or opportunities in the understanding process.

4.2 Method Analysis Through Systematic Mapping

Our systematic mapping study reveals how existing
methods cover different dimensions of data understanding
and support various target audiences. We first present the
mapping results organized by research focus, showing how
methods address different dimensions, followed by an
analysis of their target groups.

To illustrate how these methods practically support data
understanding and demonstrate stakeholder collaboration,
we examine an illustrative yet representative industrial
scenario throughout the following analysis. Consider
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GlobalTech Manufacturing, implementing a predictive
quality control system for automotive component produc-
tion that requires integrating IoT sensor data, quality
inspection records, production schedules, maintenance
logs, and supplier databases. This scenario involves data
scientists (method experts), production engineers and
quality inspectors (domain experts), plant managers (de-
cision-makers), and line supervisors (general users), pro-
viding a realistic context for examining both the coverage
patterns revealed in our mapping and the practical appli-
cation of different methodological approaches across
framework dimensions and stakeholder groups.

4.2.1 Coverage of Framework Dimensions

We map 57 research papers proposing methods for data
understanding to the dimensions identified in the first phase of
our research (see Fig. 8). Our analysis reveals that most
methods focus on Exploration and Discovery (40), while
fewer methods address Foundations (14), Collection and
Selection (12), and Contextualization and Integration (12). In
the Insights dimension, we identified 25 methods, though with
varying emphasis across its themes. Table 1 in the Appendix
provides the complete mapping of methods to dimensions and
second-order themes, including specific citations for each
category. Next, we describe how exemplary methods can be
applied to generate an in-depth data understanding that serves
as a basis for subsequent data preparation activities, and
provide the number of mapped methods in brackets.

35

Foundations establishes the essential groundwork for
understanding data by helping stakeholders comprehend
how infrastructure (7), data provenance (3), and basic
characteristics (4) influence data quality and interpretation.
Method and domain experts must understand how existing
systems shape their data, trace how data transformations
affect reliability, and characterize datasets to assess their
suitability for analytical purposes. Decision-makers require
a foundational understanding of data infrastructure and
provenance to assess whether existing data collection
processes can support their strategic Al deployment
objectives and identify potential systemic limitations that
could affect business-critical applications.

These activities work synergistically to build compre-
hensive data understanding. Infrastructure analysis using
platforms like the one of Scott et al. (2014) for heteroge-
neous data reveals how storage and processing architec-
tures influence data availability and relationships.
Provenance tracking through systems like the one of Huynh
et al. (2018) allows to create provenance graphs that map
data lineage to understand how collection methods and
transformations affect reliability, while automated charac-
terization tools like Voyager (Wongsuphasawat et al.
2016) enable stakeholders to explore fundamental data
properties and assess completeness. Together, these
approaches ensure that method and domain experts
understand not just what data they have, but how system
decisions, processing steps, and collection methods

Foundations Collection & Selection
(14) 12)

30
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20 A

Number of Methods
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12)

Exploration & Discovery Insights
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Fig. 8 Distribution of data understanding methods across framework dimensions
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influence the data’s meaning and reliability for their
specific analytical goals.

At GlobalTech Manufacturing, building on business
understanding requirements for predictive quality control
established earlier, production engineers examine how the
existing sensor network architecture influences data col-
lection patterns, discovering that certain production areas
have higher sensor coverage that might bias quality
assessments toward detecting problems in well-monitored
zones while missing those in others. Data scientists trace
how raw sensor readings flow through calibration and
aggregation processes, identifying that older sensors
undergo additional smoothing that could mask important
variation patterns needed for early failure detection.
Quality inspectors use automated visualizations to under-
stand how temperature and vibration measurements reflect
actual equipment conditions, recognizing that sensor
placement and calibration history create systematic gaps in
coverage that could limit predictive system effectiveness in
certain operational scenarios. This integrated under-
standing of infrastructure, provenance, and data charac-
teristics provides the foundation for subsequent data
collection and contextualization activities while establish-
ing the groundwork for strategic decisions about where
predictive Al systems can be reliably deployed.

Collection and Selection involves systematically col-
lecting (3), selecting relevant (10), and identifying sup-
plemental (1) data to ensure analytical efforts target the
most informative and appropriate datasets while building a
comprehensive understanding of data availability, rele-
vance, and gaps. Method and domain experts must estab-
lish systematic data collection processes, identify which
data subsets contain meaningful patterns for their analytical
goals, and recognize where additional data sources are
needed. Decision-makers require an understanding of data
coverage and gaps to assess whether available data ade-
quately represents the operational contexts where Al sys-
tems will be deployed and to make informed decisions
about additional data investments needed to support
strategic objectives.

These activities work synergistically to build compre-
hensive data coverage for analytical objectives. Continuous
data collection platforms (Aydin and Anderson 2017)
combine systematic data gathering with interactive moni-
toring that reveal data availability patterns across different
systems and time periods to method experts. Interactive
selection methods (Dimitriadou et al. 2016) enable domain
experts to identify relevant data subsets by learning from
feedback about which instances contain meaningful pat-
terns, while goal-driven methods like the one of Liu and
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Yoon (2024) allow domain experts and decision-makers to
specify analytical objectives in business language, auto-
matically identifying gaps in available data and recom-
mending supplemental sources. Together, these approaches
ensure that stakeholders not only gather existing data sys-
tematically but also understand which subsets are most
valuable and what additional data would enhance their
analytical capabilities.

Building on the foundational understanding established
previously, continuous collection platforms gather real-
time sensor streams while providing production engineers
with monitoring interfaces that reveal data flow patterns
and coverage gaps across different production areas.
Production engineers apply interactive selection methods
to explore which time periods and equipment conditions
produce the most informative data for quality prediction,
learning from feedback to focus on sensor readings that
correlate with actual defects. Quality engineers then apply
goal-driven methods to specify objectives such as “predict
equipment failures that impact product quality,” which
automatically reveals that successful implementations
require vibration monitoring data, supplier quality metrics,
and maintenance history records that their current dataset
lacks. This systematic approach to collection, selection,
and gap identification ensures comprehensive data cover-
age that aligns with both operational needs and analytical
objectives, preparing the integrated datasets needed for
later data preparation activities.

Contextualization and Integration involves understand-
ing how heterogeneous data sources need to be integrated
(7) within domain-specific contexts (4) to create compre-
hensive analytical datasets that are linked to real-world
meaning and business objectives (1). Method experts and
domain experts need to establish connections between data
and physical processes, apply contextual knowledge to
identify biases and constraints, and integrate heterogeneous
data sources to support comprehensive analysis.

These activities work synergistically to ensure data
reflects real-world complexity and business requirements.
Mixed reality visualization methods (Mahfoud et al. 2018)
enable domain experts to investigate data directly at
physical locations where events occur, overlaying virtual
data visualizations onto real environments to understand
spatial relationships between data patterns and their phys-
ical sources. Bias identification methods (Cabrera et al.
2019) support domain experts in applying contextual
knowledge to identify potential biases in analytical models
and data, enabling targeted corrections that ensure results
represent all operational conditions, while incident man-
agement frameworks (Peng et al. 2011) allow decision-
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makers to integrate heterogeneous data sources from mul-
tiple organizations and formats into unified datasets for
decision support. Together, these approaches ensure that
data understanding incorporates both technical character-
istics and real-world context, bridging the gap between
disparate data sources and actionable insights for critical
decision-making scenarios.

Building on the systematic data collection, quality
inspectors at GlobalTech Manufacturing apply, for exam-
ple, mixed reality visualization to overlay sensor data
directly onto production equipment, immediately identify-
ing which specific machines generate unusual readings and
understanding spatial relationships between temperature
sensors, vibration monitors, and actual component quality
issues. Production engineers then apply bias identification
methods to examine whether their quality prediction
models adequately represent all operational conditions,
using their knowledge of seasonal variations and equip-
ment aging patterns to identify periods where data might
be systematically biased toward certain failure modes.
Data scientists apply incident management integration
methods to combine the selected sensor data with mainte-
nance records and supplier databases into unified datasets
for comprehensive quality analysis, enabling coordinated
understanding when quality issues arise across multiple
production systems. This progression from spatial under-
standing through bias correction to systematic integration
ensures that the resulting datasets capture both technical
measurements and operational realities, establishing con-
textualized data ready for subsequent exploration and
pattern discovery activities.

Exploration and Discovery involves systematically
exploring datasets (25) to reveal clusters, patterns, and
relationships (30) that inform analytical understanding and
hypothesis formation. Method experts and domain experts
must iteratively explore data through visualizations (24),
examine individual data instances to form mental models
about underlying processes, and systematically identify
clusters and relationships that reveal meaningful patterns
for later modeling activities.

These activities work synergistically to enable compre-
hensive pattern discovery across different levels of data
granularity.  Collaborative  visualization = methods
(Ben Lahmar and Herschel 2021) provide method experts
with recommendation systems that suggest relevant queries
and visualizations based on successful exploration patterns
from multiple analysts, enabling efficient visual data dis-
covery through content-based and collaborative filtering
approaches. Instance-based exploration methods (Saghafi
et al. 2022) allow domain experts to examine data as
individual instances with unique properties rather than
being constrained by predefined schemas, enabling them to
form mental models and discover unexpected patterns

without requiring deep technical knowledge of data struc-
tures. Systematic pattern identification methods (Nestorov
et al. 2019) support method experts in conducting iterative
preparation, visualization, and analysis stages to under-
stand data characteristics and reveal underlying relation-
ships between different data groups. Together, these
approaches ensure that exploration progresses from col-
laborative visual discovery through individual investigation
to systematic pattern analysis, enabling stakeholders to
build a comprehensive understanding that bridges technical
analysis with domain expertise.

Building on the contextualized and integrated datasets,
quality inspectors apply collaborative visualization meth-
ods that recommend relevant data views based on suc-
cessful quality investigations by other inspectors, enabling
them to quickly identify promising visualizations for
examining sensor patterns and production metrics without
extensive technical expertise. Production engineers then
apply instance-based exploration methods to investigate
individual sensor readings and production events, allowing
them to form mental models about relationships between
temperature variations, vibration patterns, and equipment
performance across different machine types without being
constrained by predefined database structures. Data sci-
entists utilize systematic pattern identification methods to
explore discovered relationships through iterative prepa-
ration and analysis stages, identifying significant differ-
ences between high-quality and defective production
patterns to reveal underlying timing relationships and
attribute variations that inform predictive maintenance
strategies. This progression from collaborative visual dis-
covery through flexible exploration to systematic pattern
analysis enables each stakeholder to contribute their
domain expertise while building a comprehensive under-
standing that supports both operational insights and pre-
pares detailed data descriptions and quality assessments
that support decision-making.

Insights involves consolidating data understanding
activities into actionable outcomes through data quality
assessments (20), deliverables (0), and support for deci-
sion-making (7) that enable stakeholders to make informed
choices about data usability and analytical strategies.
Method experts must systematically evaluate data quality
and reliability while creating documentation that commu-
nicates data characteristics and limitations. Decision-mak-
ers require summaries of data scope, coverage gaps, and
quality limitations to make decisions about project viabil-
ity, whether to proceed with current data, invest in addi-
tional data collection, or terminate projects where data
limitations cannot be addressed. This enables decision-
makers to assess whether available data represent the
operational contexts where Al systems will be deployed
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and to determine boundaries for automated versus human
decision-making.

These activities help transform data understanding into
organizational value through evaluation and informed
decision-making. Data quality assessment methods (Zhang
et al. 2019) enable method experts to examine data char-
acteristics and reveal inconsistencies, missing values, and
reliability issues that affect trustworthiness. Error identifi-
cation methods (Sluban et al. 2014) support method
experts in ranking data points by their likelihood of being
erroneous while providing evaluation interfaces that help
distinguish between genuine patterns and data artifacts.
Statistical reliability assessment methods (Heinrich et al.
2018) allow decision-makers to calculate the probability
that datasets are free of internal contradictions, enabling
informed decisions about project viability and data
usability based on measures of data consistency. Together,
these approaches ensure that data understanding translates
into assessments of data quality, documentation of findings,
and evidence-based decisions about whether to proceed
with analytics projects, invest in additional data collection,
or pursue alternative approaches.

Data scientists apply systematic quality assessment
methods to examine sensor data and production records,
identifying reliability issues such as sensor drift, calibra-
tion problems, and missing measurements while docu-
menting these findings in data quality reports that inform
strategic decisions. Quality inspectors use error identifi-
cation methods to distinguish between genuine equipment
problems that require maintenance attention and mea-
surement errors that should be filtered from analysis,
ensuring that operational decisions focus on actual
equipment issues rather than data artifacts. Plant man-
agers utilize statistical reliability assessments and quality
documentation to make decisions on project viability,
determining whether the available data foundation is suf-
ficient to proceed, whether additional sensor installations
and data collection efforts are justified, or whether alter-
native quality control approaches should be pursued
instead. This progression from technical quality evaluation
through operational error identification to strategic via-
bility assessment enables each stakeholder group to con-
tribute its expertise while making risk-aware decisions
about project continuation, additional investments, and
deployment boundaries that translate comprehensive data
understanding into measurable organizational value.

4.2.2 Support for Different Stakeholders
Our analysis of target groups reveals that existing methods
predominantly target method experts, while support for

other stakeholders varies significantly. Of the 57 methods
analyzed (see Fig. 9), 41 are designed for method experts,
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while only three target decision-makers, ten support
domain experts, and ten address other stakeholders. Table 2
in the Appendix provides a comprehensive classification of
methods by target audience, including the specific
approaches designed for each stakeholder group.

Method Experts represent the primary target group, with
41 methods identified. These approaches encompass a
broad spectrum of dimensions relevant to data under-
standing, offering capabilities for complex data modeling,
analysis, and visualization. Despite the comprehensive
coverage and advanced functionalities of these methods, as
exemplified by technologies like Luo et al. (2024), Po and
Sorrentino (2011), and Chung et al. (2020), they often
require considerable setup and integration effort. This
presents a notable barrier to immediate deployment (Liu
and Li 2018; Lin et al. 2020; Schifer and Leser 2022).
Addressing these challenges through streamlined configu-
ration processes is crucial for enabling method experts to
efficiently tackle complex domain-specific challenges.

Domain Experts benefit from ten specific methods.
Among these, two methods are particularly designed for
the specialized task of discrimination discovery in data-
bases (Ruggieri et al. 2010; Cabrera et al. 2019). Other
methods emphasize usability and intuitiveness, particularly
designed for domain experts to facilitate domain-specific
applications (Cabrera et al. 2019; Saghafi et al. 2022;
Lafon et al. 2013). As with most target groups, the majority
of these methods significantly contribute to the dimensions
of Exploration, Clusters, Patterns, and Relationships, and
Visualization, enabling Domain Experts to gain deeper
insights into their data (Dimitriadou et al. 2016; Vellido
et al. 2013; Lafon et al. 2013).

Decision-Makers form a particularly underserved group,
with only three methods designed for their needs. The first
integrates data sources for analytics and decision-making
(Liu and Yoon 2024) while the second supports marketing
managers through sentiment analysis for brand-related
decisions (Pournarakis et al. 2017). The third provides an
incident response framework covering data integration,
analytics, and decision-making (Peng et al. 2011).

General Users encompasses methods supporting indi-
viduals who engage with data and visualizations outside
traditional analytics roles. This group is served by ten
methods aimed at democratizing data understanding
through intuitive interfaces, no-code and low-code systems,
as well as automated support. Among these, three methods
facilitate data exploration by suggesting contextually rel-
evant search queries (Sellam and Kersten 2016; Ben Lah-
mar and Herschel 2021; Eirinaki et al. 2014), addressing
the needs of users who may lack proficiency in formal
query languages. Additional methods enhance the data
interaction and exploration experience through automated
visualization recommendations and generation capabilities
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(El et al. 2020; Dibia and Demiralp 2019). These solutions
lower technical barriers to data engagement, enabling
general users to derive meaningful insights despite oper-
ating outside traditional project-based analytics structures.
This democratization of data access and understanding
supports their role in identifying preliminary use cases and
inspiring novel applications of data analytics.

4.2.3 Synthesis of Method Analysis

Our mapping study of 57 methods reveals clear patterns in
how existing approaches support data understanding. The
majority of methods (40) focus on the Exploration and
Discovery dimension, particularly addressing visualization,
pattern identification, and clustering capabilities. The
remaining dimensions receive less methodological support,
with only 12-14 methods each addressing Foundations,
Collection and Selection, and Contextualization and Inte-
gration. Within the Insights dimension, addressed by 25
methods, there is a strong emphasis on Data Quality
assessment (20 methods), while no methods specifically
focus on creating Deliverables. Regarding target groups,
the methods show a clear focus on method experts, with 41
methods designed for this group. Domain experts and other
stakeholders are each supported by ten methods, primarily
focusing on making data exploration and visualization
more accessible. Decision-makers represent the smallest
target group with only three dedicated methods. Most
methods that support non-method experts concentrate on
making complex analytical tasks more accessible through
intuitive interfaces and automated guidance features. This
summary of our findings provides the foundation for a
deeper discussion of the implications and future directions
in the following section.

T
Decision General
Makers Users
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Experts

Target Groups

5 Discussion

In this study, we develop a framework for data under-
standing through a systematic literature review and analyze
existing methodological support through a systematic
mapping study. This sequential approach enables us to
establish theoretical foundations for data understanding
while evaluating practical support. Our findings reveal
critical insights about the nature of data understanding and
gaps in current approaches, particularly relevant to the
paradigm of DCAI, where systematic data understanding
and engineering form the foundation for successful Al
implementation (Jakubik et al. 2024). Our research reveals
four critical findings about the current state of data
understanding in analytics projects.

Five Interconnected Dimensions for Data Understand-
ing. The first finding centers on the identification and
characterization of five core dimensions that collectively
constitute data understanding: Foundations, Collection and
Selection, Contextualization and Integration, Exploration
and Discovery, and Insights. These dimensions extend
beyond the simplified data understanding phase described
in traditional frameworks (Wirth and Hipp 2000; Fayyad
et al. 1996; Microsoft 2020) by operating not in isolation
but as an interconnected system where each element
informs and enhances the others. This interconnected nat-
ure particularly aligns with DCAI’s emphasis on systematic
data engineering (Jakubik et al. 2024), where comprehen-
sive data understanding forms a foundation for data quality
improvements and systematic data engineering decisions.
The dynamic interplay between dimensions challenges the
linear, sequential approach suggested by traditional ana-
lytics frameworks like CRISP-DM (Wirth and Hipp 2000)
and KDD (Fayyad et al. 1996), instead supporting DCAI’s
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iterative focus on data quality and understanding. The
framework’s iterative approach supports DCAI’s focus on
building a comprehensive understanding of data charac-
teristics and quality to systematically engineer the data
(Jakubik et al. 2024), which ultimately may yield improved
model performance.

Methodological Gaps in Supporting DCAI. Our second
key finding emerges from systematically mapping existing
methods to these dimensions, revealing significant dispar-
ities in methodological support, particularly relevant to
DCALI implementation. While Exploration and Discovery
receives substantial attention with 40 identified methods,
other dimensions crucial for DCAI, like Collection and
Selection (12 methods) as well as Contextualization and
Integration (12 methods), remain underserved. This
imbalance is particularly problematic for DCAI initiatives,
where systematic data engineering requires robust support
across all dimensions (Jakubik et al. 2024; Whang et al.
2023). The limited number of methods supporting domain
knowledge integration (only four methods) and real-world
context linking (one method) poses significant challenges
for DCAI implementation, where understanding the data’s
real-world implications and integrating domain expertise is
essential for developing reliable AI systems. This
methodological gap may explain why many organizations
struggle to implement DCALI principles effectively despite
recognizing their importance (Whang et al. 2023). Orga-
nizations often focus heavily on statistical data properties
and sophisticated modeling techniques, achieving promis-
ing results during development. However, without proper
contextualization and domain knowledge integration, i.e.,
establishing the relationship between the data and its real-
world meaning (Aaltonen et al. 2023), these models may
fail to recognize important real-world patterns or con-
straints. For instance, automated methods might remove
certain data points as statistical outliers during data
preparation when these actually represent valid edge cases
crucial for the application domain. Similarly, without
methods supporting real-world context linking, organiza-
tions might overlook important seasonal patterns, regula-
tory requirements, or business rules that affect model
behavior in production environments. This disconnect
between statistical optimization and real-world applicabil-
ity may lead to models that perform well in controlled
development settings but fail to realize their expected value
when deployed in practice.

Bias Toward Method Experts. Our third key finding
relates to the target groups served by existing methods,
revealing a notable bias toward method experts that par-
ticularly challenges DCAI implementation. Our mapping
shows that most methods (41 of 57) are designed specifi-
cally for method experts, while domain experts (10 meth-
ods) and decision-makers (3 methods) receive substantially
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less support. This limited methodological support creates
systematic barriers to essential collaborations. With only
10 methods supporting domain experts, organizations lack
tools that enable domain experts to contribute their con-
textual knowledge without requiring deep technical
expertise (Holstein et al. 2023). For instance, domain
experts can identify critical data gaps during Collection and
Selection, but without specialized methods enabling them
to investigate data characteristics without requiring tech-
nical expertise, this capability remains largely untapped
(Park et al. 2021). The situation is even more acute for
decision-makers (3 methods), who need a high-level
understanding of data scope, coverage boundaries, and
quality limitations to make strategic deployment decisions
rather than detailed technical insights (Janssen et al. 2017).
This strategic understanding enables them to assess project
viability, determine appropriate investment levels in data
collection, and establish where Al systems can be trusted to
operate autonomously versus where human oversight
remains necessary. Yet current methodological support
predominantly serves only one part of this triad, potentially
explaining why organizations struggle to translate DCAI
principles into practice (Whang et al. 2023). The bias in
current methods may reinforce silos between technical and
business stakeholders, making it difficult to establish the
collaborative understanding necessary for effective data-
driven decision-making.

Multi-Stakeholder Collaboration as Foundation for
Data Understanding. Our fourth key finding reveals that
successful data understanding fundamentally depends on
effective collaboration between stakeholder groups, each
contributing distinct but complementary perspectives
throughout the different data understanding phases (Ger-
hart et al. 2023; Lebovitz et al. 2021; Park et al. 2021).
The dimensions of our framework reveal distinct patterns
of stakeholder interaction. In Foundations, method experts
lead infrastructure analysis and provenance tracking, but
depend on domain experts to validate whether character-
ized data actually represents the business processes they
claim to capture (Gerhart et al. 2023). Decision-makers
require an understanding of data infrastructure and prove-
nance to assess whether existing data collection processes
can support their strategic Al deployment objectives and to
identify potential systemic limitations that could affect
business-critical applications. In Collection and Selection,
all stakeholder groups contribute complementary expertise.
Domain experts identify which data sources contain busi-
ness-relevant information and recognize gaps based on
their operational knowledge, while method experts con-
tribute technical insights about sensor coverage, data
availability in existing systems, and opportunities for cre-
ating derived measurements such as virtual sensors (Martin
et al. 2021). Decision-makers utilize this understanding of
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data coverage and gaps to inform decisions about whether
the data adequately represents the operational contexts
where Al systems will be deployed, and to determine what
additional data investments may be necessary to support
strategic objectives. However, neither perspective alone
suffices for comprehensive data collection. Similarly,
Contextualization and Integration requires close collabo-
ration, where domain experts provide contextual knowl-
edge that links data to real-world processes while method
experts translate this knowledge into technical integration
rules (Gerhart et al. 2023). When this collaboration fails,
organizations risk creating technically sound but practi-
cally ineffective datasets. In Exploration and Discovery,
method experts create visualizations and apply analytical
techniques, but depend on domain experts to interpret
patterns and distinguish genuine business phenomena from
data artifacts (Holstein et al. 2023; Lebovitz et al. 2021).
Finally, Insights brings all stakeholders together, where
method experts assess technical data quality, domain
experts evaluate business representativeness, and decision-
makers determine project viability and establish boundaries
for automated versus human decision-making based on
data limitations. This three-way interaction of method
experts applying technical skills, domain experts providing
context, and decision-makers ensuring business alignment
is crucial for DCALI initiatives.

5.1 Implications for Theory and Practice

Our research advances the theoretical understanding of
data understanding in the context of data-centric Al while
providing practical insights for implementation. From a
theoretical perspective, our framework extends current
knowledge by synthesizing five interconnected dimensions
of data understanding, challenging the traditional view
presented in analytics frameworks like CRISP-DM (Wirth
and Hipp 2000) and KDD (Fayyad et al. 1996). Rather than
treating data understanding as merely an initial phase, our
framework positions it as a dynamic, iterative process
fundamental to successful Al implementation. This theo-
retical reconceptualization aligns with DCAI’s emphasis
on systematic data engineering and provides the structured
guidance that organizations currently lack for improving
their data analytics capabilities. The framework’s emphasis
on integration between technical exploration and domain
contextualization advances our theoretical understanding
of how organizations can build the comprehensive data
understanding that DCAI requires (Whang et al. 2023;
Polyzotis et al. 2018). Furthermore, our identification of
the interconnected nature of these dimensions contributes
to theory by highlighting how data understanding emerges
through continuous interaction between different aspects of
data work, rather than through distinct, sequential phases.

Our systematic mapping of existing methods contributes
to theory by revealing specific challenges in translating
DCALI principles into practice. Prior work by Gerhart et al.
(2023) has highlighted how data scientists and domain
experts often lack a common language for discussing data
characteristics, leading to misunderstandings and ineffi-
cient collaboration in Al development. Our findings extend
this insight by showing how current methodological sup-
port primarily focuses on technical data exploration while
providing limited support for bridging these communica-
tion gaps for the transfer of domain knowledge relevant to
the curation of data (Park et al. 2021). Some recent work
has begun addressing this challenge — for instance, Holstein
et al. (2023) propose methods for creating a shared
understanding of feature meanings between technical and
domain experts. However, our systematic mapping reveals
that such approaches remain rare, with most existing
methods emphasizing technical expertise over domain
knowledge integration. This theoretical insight helps
explain why organizations continue to struggle with
implementing DCAI principles effectively, despite recog-
nizing their importance. The gap between technical and
domain perspectives is particularly problematic for DCAI
initiatives, where systematic data engineering requires deep
integration of domain knowledge into technical processes.
Our framework provides a theoretical foundation for
understanding these challenges and suggests the need for
new approaches that better support knowledge integration
across stakeholder groups.

The research also makes theoretical contributions to the
emerging field of DCAI by providing a foundation for
understanding how organizations can systematically
improve data quality through enhanced understanding. Our
framework suggests that data understanding needs to
account for both the technical aspects of data analysis and
the human factors of knowledge integration and contextu-
alization (Gerhart et al. 2023; Lebovitz et al. 2021). This
theoretical perspective challenges the predominant focus
on algorithmic sophistication and suggests that successful
Al implementation requires equal attention to the organi-
zational processes that enable comprehensive data under-
standing. The framework’s emphasis on continuous
interaction between different dimensions also contributes
to the theoretical understanding of how organizations can
maintain and evolve their data understanding as their Al
capabilities mature.

The empirical findings also yield practical contributions
for organizational DCAI implementation by demonstrating
the criticality of holistic data understanding approaches.
The results emphasize that successful implementations
require systematic engagement across all five dimensions,
going beyond the prevalent focus on technical exploration
alone. This might involve combining multiple tools or
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developing custom approaches to ensure comprehensive
coverage of data understanding activities. Given the lim-
ited availability of tools supporting domain experts and
decision-makers, organizations may need to develop cus-
tom interfaces or collaboration mechanisms that enable
effective knowledge sharing between technical and non-
technical stakeholders. Furthermore, organizations should
establish systematic processes for data contextualization
and integration, addressing the gaps in current method-
ological support. This could involve creating structured
workflows for documenting data provenance, capturing
domain knowledge, and linking data to real-world contexts.

5.2 Limitations and Future Research

Our development of a theoretical framework for data
understanding and systematic mapping of existing meth-
ods, while comprehensive, reveals limitations that point to
promising directions for future research.

First, our analysis draws primarily from published lit-
erature, which may not capture all practical approaches and
informal workarounds currently used in industry. Simul-
taneously, our focus on literature that explicitly addresses
frameworks for data understanding may overlook valuable
practices embedded within domain-specific use cases,
where data is applied for analytical purposes, and data
understanding activities occur as secondary rather than
primary research elements. Similarly, our approach may
not have captured domain-specific extensions of founda-
tional frameworks like CRISP-DM and KDD developed for
scientific or other specialized contexts. This limitation
opens valuable opportunities to validate and extend our
findings through empirical studies of DCAI implementa-
tions across different organizational contexts. Such
research could reveal how organizations overcome the
methodological gaps we identified and develop effective
practices for integrating diverse stakeholder perspectives,
particularly focusing on how they facilitate knowledge
exchange between method experts and domain specialists.

Second, a limitation stems from our treatment of Al in
DCALI as relatively uniform, not fully accounting for how
different Al paradigms might require distinct approaches to
data understanding. For instance, generative Al models
may need different types of data understanding compared
to traditional supervised learning approaches, while few-
shot or self-supervised learning techniques might introduce
entirely new requirements for understanding training data.
For example, in few-shot learning, understanding the rep-
resentativeness of the few examples becomes crucial, as
these samples must effectively capture the key variations
within a class. This limitation suggests valuable opportu-
nities for research examining how data understanding
needs vary across different Al paradigms and data types.
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Future studies could investigate how organizations adapt
their data understanding practices for different types of Al
models, potentially leading to more nuanced frameworks
that account for these variations.

Third, it is important to acknowledge that data under-
standing in contemporary practice also extends to broader
societal and ethical dimensions. Understanding data not
only requires technical and analytical clarity but also sen-
sitivity to potential biases, fairness concerns, ethical
implications, and legal compliance issues. Data may reflect
or even reinforce existing social inequalities, and over-
looking such risks can lead to unintended harm when
insights are operationalized. Similarly, regulatory require-
ments such as data protection laws (European Commission
2023), impose constraints that must be considered when
handling and interpreting data. Moreover, Al ethics
research emphasizes the importance of addressing issues of
fairness, accountability, and transparency when working
with data (Chandrabose et al. 2021). While our approach
does not assess these aspects, we emphasize that future
research should address these aspects to incorporate them
into a holistic view, ensuring responsible and trustworthy
data-driven decision-making.

Finally, a limitation arises from our framework’s tem-
poral focus, which captures data understanding at a specific
point in time, while the relevance of different dimensions
may evolve throughout an Al project’s lifecycle. For
instance, the Collection and Selection dimension might be
most critical during initial project phases, while Contex-
tualization and Integration becomes increasingly important
during feature engineering and model development. Simi-
larly, the Exploration and Discovery dimension might be
particularly crucial during data preparation and model
debugging. Even within the Foundations dimension, the
emphasis might shift from infrastructure setup to prove-
nance tracking as projects mature. This temporal and
phase-dependent variation of our dimensions suggests
valuable opportunities for longitudinal research examining
how data understanding practices evolve both across pro-
ject lifecycles and alongside advancing Al capabilities.
Future studies could investigate how organizations priori-
tize and balance different dimensions of data understanding
across project stages, how they maintain and update their
understanding as systems evolve in production, and how
insights from one dimension inform and influence others
throughout the project lifecycle.

6 Conclusion
As organizations increasingly adopt Al systems, our

investigation of data understanding reveals both theoretical
insights and practical implementation challenges. Through
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our sequential approach, we have established a theoretical
framework delineating five core dimensions of data
understanding and analyzed the current state of method-
ological support for these dimensions. Our analysis shows
that current methods fall short in two key areas: supporting
non-technical users and connecting data to real-world
business contexts. These limitations are particularly sig-
nificant in data-centric Al projects, which rely on a deep
understanding of data for effective refinement for Al per-
formance improvements. While existing methods provide
sophisticated support for data exploration and discovery,
they often fail to address the full spectrum of activities and
stakeholders involved in modern analytics and Al devel-
opment. The framework we present offers a foundation for
future research in this area as organizations increasingly
rely on data-driven decision-making and data-centric Al
Addressing the identified gaps in methodological support
will be crucial for ensuring that data understanding can
effectively support organizational objectives, ultimately
leading to more effective data analytics practices across
diverse stakeholder groups.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Supplementary  InformationThe online version contains
supplementary material available at https://doi.org/10.1007/512599-
026-00987-1.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Aaltonen A, Alaimo C, Parmiggiani E, Stelmaszak M, Jarvenpaa S,
Kallinikos J, Monteiro E (2023) What is missing from research
on data in information systems? Insights from the inaugural
workshop on data research, Commun AIS, p 53

Abbasi A, Chen H (2008) CyberGate: a design framework and system
for text analysis of computer-mediated communication. MIS Q
32:811-837

Aydin A, Anderson K (2017) Batch to real-time: Incremental data
collection & analytics platform. In: Proceedings of the 50th

Hawaii international conference on
pp 5911-5920

Ben Lahmar H, Herschel M (2021) Collaborative filtering over
evolution provenance data for interactive visual data exploration.
Inf Syst 95:101620

Brachman RJ, Anand T (1996) The process of knowledge discovery
in databases, p 37-57

Cabrera AA, Epperson W, Hohman F, Kahng M, Morgenstern J, Chau
DH (2019) FAIRVIS: visual analytics for discovering intersec-
tional bias in machine learning. In: IEEE conference on visual
analytics science and technology (VAST), IEEE, pp 46-56

Cao L (2017) Data science: a comprehensive overview. ACM
Comput Surv 50(3):1-42

Cao L, Zhao Y, Zhang H, Luo D, Zhang C, Park E (2010) Flexible
frameworks for actionable knowledge discovery. IEEE Trans
Knowl Data Eng 22(9):1299-1312

Chandrabose A, Chakravarthi BR, et al. (2021) An overview of
fairness in data—illuminating the bias in data pipeline. In:
Proceedings of the first workshop on language technology for
equality, diversity and inclusion, pp 34-45

Chung Y, Kraska T, Polyzotis N, Tae KH, Whang SE (2020)
Automated data slicing for model validation: a big data - Al
integration approach. IEEE Trans Knowl Data Eng
32(12):2284-2296

Cios KJ, Kurgan LA (2005) Trends in data mining and knowledge
discovery. In: Advanced techniques in knowledge discovery and
data mining, Springer, pp 1-26

European Commission (2023) A European approach to artificial
intelligence — Shaping Europe’s digital future. https://digital-
strategy.ec.europa.eu/en/policies/european-approach-artificial-
intelligence

Cooper H (1988) Organizing knowledge syntheses: a taxonomy of
literature reviews. Knowl Soc 1:104-126

Dag A, Topuz K, Oztekin A, Bulur S, Megahed FM (2016) A
probabilistic data-driven framework for scoring the preoperative
recipient-donor heart transplant survival. Decis Support Syst
86:1-12

Delen D, Al-Hawamdeh S (2009) A holistic framework for knowl-
edge discovery and management. Commun ACM 52(6):141-145

Dibia V, Demiralp C (2019) Data2Vis: automatic generation of data
visualizations using sequence-to-sequence recurrent neural net-
works. IEEE Comput Graph Appl 39(5):33-46

Dietrich D (2016) Data analytics lifecycle processes. EMC Corp. US
patent, No. US9262493B1

Dimitriadou K, Papaemmanouil O, Diao Y (2016) AIDE: an active
learning-based approach for interactive data exploration. IEEE
Trans Knowl Data Eng 28(11):2842-2856

Dogan A, Birant D (2021) Machine learning and data mining in
manufacturing. Expert Syst Appl 166(114):060

Eirinaki M, Abraham S, Polyzotis N, Shaikh N (2014) QueRIE:
collaborative database exploration. IEEE Trans Knowl Data Eng
26(7):1778-1790

El OB, Milo T, Somech A (2020) Towards autonomous, hands-free
data exploration. In: Conference on innovative data systems
research

Fassnacht MK, Benz C, Leimstoll J, Satzger G (2023) Is your
organization ready to share? A framework of beneficial condi-
tions for data sharing. In: ICIS 2023 Proceedings

Fatima F, Talib R, Hanif MK, Awais M (2020) A paradigm-shifting
from domain-driven data mining frameworks to process-based
domain-driven data mining-actionable knowledge discovery
framework. IEEE Access 8:210763-210774

Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) The KDD process for
extracting useful knowledge from volumes of data. Commun
ACM 39(11):27-34

system  sciences,

@ Springer


https://doi.org/10.1007/s12599-026-00987-1
https://doi.org/10.1007/s12599-026-00987-1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence

J. Holstein et al. : Data Understanding for Data-Centric Al, Bus Inf Syst Eng

Feelders A, Daniels H, Holsheimer M (2000) Methodological and
practical aspects of data mining. Inf Manag 37(5):271-281
Gerhart N, Torres R, Giddens L (2023) Challenges in the model
development process: discussions with data scientists. Commun
AIS 53(1):591-611

Gioia D, Corley K, Hamilton A (2013) Seeking qualitative rigor in
inductive research. Org Res Meth 16:15-31

Guo PJ (2012) Software tools to facilitate research programming.
Stanford University

Haertel C, Pohl M, Nahhas A, Staegemann D, Turowski K (2022)
Toward a lifecycle for data science: a literature review of data
science process models. In: PACIS 2022 Proceedings

Heinrich B, Klier M, Schiller A, Wagner G (2018) Assessing data
quality — A probability-based metric for semantic consistency.
Decis Support Syst 110:95-106

Holstein J, Schemmer M, Jakubik J, Vissing M, Satzger G (2023)
Sanitizing data for analysis: designing systems for data under-
standing. Electron Markets 33(1):52

Huynh TD, Ebden M, Fischer J, Roberts S, Moreau L (2018)
Provenance network analytics. Data Mining Knowl Discov
32(3):708-735

Jackson J (2002) Data mining; a conceptual overview. Commun AIS
8(1):19

Jakubik J, Vossing M, Kiihl N, Walk J, Satzger G (2024) Data-centric
artificial intelligence. Bus Inf Syst Eng

Janssen M, Van Der Voort H, Wahyudi A (2017) Factors influencing
big data decision-making quality. J Bus Res 70:338-345

Jarrahi MH, Memariani A, Guha S (2023) The principles of data-
centric Al. Commun ACM 66(8):84-92

Kutzias D, Dukino C, Kétter F, Kett H (2023) Comparative analysis
of process models for data science projects. In: Proceedings of
the 15th international conference on agents and artificial
intelligence, Scitepress, pp 1052-1062

Lafon S, Bouali F, Guinot C, Venturini G (2013) On studying a 3D
user interface for OLAP. Data Mining Knowl Discov 27(1):4-21

Larson D, Chang V (2016) A review and future direction of agile,
business intelligence, analytics and data science. Int J Inf Manag
36(5):700-710

Lebovitz S, Levina N, Lifshitz-Assaf H (2021) Is Al ground truth
really true? the dangers of training and evaluating Al tools based
on experts’ know-what. MIS Q 45:1501-1526

Li Y, Thomas MA, Osei-Bryson KM (2016) A snail shell process
model for knowledge discovery via data analytics. Decis Support
Syst 91:1-12

Lin Y, Wang H, Li J, Gao H (2020) Efficient entity resolution on
heterogeneous records. IEEE Trans Knowl Data Eng
32(5):912-926

Liu X, Li XB (2018) Customer data acquisition with predictive
analytics. In: ICIS 2018 proceedings

Liu D, Yoon VY (2024) Developing a goal-driven data integration
framework for effective data analytics. Decis Support Syst
180:114197

Lohr S (2021) What ever happened to IBM’s Watson? (published
2021) — nytimes.com. https://www.nytimes.com/2021/07/16/
technology/what-happened-ibm-watson.html. Accessed 12 Nov
2024

Luo B, Li X, Liu X, Guo J, Ren Y, Ma S, Ma J (2024) D2MTS:
enabling dependable data collection with multiple crowdsourcers
trust sharing in mobile crowdsensing. IEEE Trans Knowl Data
Eng 36(3):927-942

Mahfoud E, Wegba K, Li Y, Han H, Lu A (2018) Immersive
visualization for abnormal detection in heterogeneous data for
on-site decision making. In: Proceedings of the S51st Hawaii
international conference on system sciences, pp 1300-1309

@ Springer

Marban O, Segovia J, Menasalvas E, Fernandez-Baizan C (2009)
Toward data mining engineering: a software engineering
approach. Inf Syst 34:87-107

Mariscal G, Marban O, Fernandez C (2010) A survey of data mining
and knowledge discovery process models and methodologies.
Knowl Eng Rev 25:137-166

Martin D, Kiihl N, Satzger G (2021) Virtual sensors. Bus Inf Syst Eng
63(3):315-323

Martinez-Plumed F, Contreras-Ochando L, Ferri C, Flach P,
Hernandez-Orallo J, Kull M, Lachiche N, Ramirez-Quintana
MJ (2017) CASP-DM: context aware standard process for data
mining. arXiv

Martinez-Plumed F, Contreras-Ochando L, Ferri C, Hernandez-Orallo
J, Kull M, Lachiche N, Ramirez-Quintana MJ, Flach P (2021)
CRISP-DM twenty years later: from data mining processes to
data science trajectories. IEEE Trans Knowl Data Eng
33(8):3048-3061

Microsoft (2020) Data acquisition and understanding of team data
science process. https://learn.microsoft.com/azure/architecture/
data-science-process/lifecycle

Moyle S, Jorge A (2001) Ramsys — a methodology for supporting
rapid remote collaborative data mining projects. In: ECML/
PKDDO1 workshop: integrating aspects of data mining, decision
support and meta-learning (IDDM), vol 64

Nestorov S, Juki¢ B, Juki¢ N, Sharma A, Rossi S (2019) Generating
insights through data preparation, visualization, and analysis:
framework for combining clustering and data visualization
techniques for low-cardinality sequential data. Decis Support
Syst 125:113119

Park S, Wang AY, Kawas B, Liao QV, Piorkowski D, Danilevsky M
(2021) Facilitating knowledge sharing from domain experts to
data scientists for building nlp models. In: Proceedings of the
26th international conference on intelligent user interfaces,
Association for Computing Machinery, New York, NY, USA,
IUI °21, p 585-596

Patel H, Guttula S, Gupta N, Hans S, Mittal RS, Lokesh N (2023) A
data centric Al framework for automating exploratory data
analysis and data quality tasks. J Data Inf Qual 15(4):1-26

Peng Y, Zhang Y, Tang Y, Li S (2011) An incident information
management framework based on data integration, data mining,
and multi-criteria decision making. Decis Support Syst
51(2):316-327

Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic
mapping studies in software engineering. In: International
conference on evaluation and assessment in software engineering
(EASE)

Phillips-Wren G, Iyer LS, Kulkarni U, Ariyachandra T (2015)
Business analytics in the context of big data: a roadmap for
research. Commun AIS p 23

Po L, Sorrentino S (2011) Automatic generation of probabilistic
relationships for improving schema matching. Inf Syst
36(2):192-208

Polyzotis N, Roy S, Whang SE, Zinkevich M (2018) Data lifecycle
challenges in production machine learning: a survey. ACM
SIGMOD Rec 47(2):17-28

Pournarakis DE, Sotiropoulos DN, Giaglis GM (2017) A computa-
tional model for mining consumer perceptions in social media.
Decis Support Syst 93:98-110

Rollins JB (2015) Foundational methodology for data science.
Technical report, IBM

Rowe F (2014) What literature review is not: diversity, boundaries
and recommendations. Europ J Inf Syst 23(3):241-255

Ruggieri S, Pedreschi D, Turini F (2010) Data mining for discrim-
ination discovery. ACM Trans Knowl Discov Data 4(2):1-40


https://www.nytimes.com/2021/07/16/technology/what-happened-ibm-watson.html
https://www.nytimes.com/2021/07/16/technology/what-happened-ibm-watson.html
https://learn.microsoft.com/azure/architecture/data-science-process/lifecycle
https://learn.microsoft.com/azure/architecture/data-science-process/lifecycle

J. Holstein et al. : Data Understanding for Data-Centric Al, Bus Inf Syst Eng

Saghafi A, Wand Y, Parsons J (2022) Skipping class: improving
human-driven data exploration and querying through instances.
Europ J Inf Syst 31(4):463-491

Saldana J (2021) The coding manual for qualitative researchers.
SAGE

Saltz JS (2021) CRISP-DM for data science: Strengths, weaknesses
and potential next steps. In: IEEE international conference on
big data, pp 2337-2344

Saltz J, Armour F, Sharda R (2018) Data science roles and the types
of data science programs. Commun Assoc Inf Syst 43(1):33

Samtani S, Zhu H, Padmanabhan B, Chai Y, Chen H, Nunamaker JF
(2023) Deep learning for information systems research. J Manag
Inf Syst 40(1):271-301

SAS Institute Inc (2017) https://documentation.sas.com/doc/en/emref/
14.3/n061bzurme;j4j3n1jnj8bbjjm1a2.htm

Schifer P, Leser U (2022) Motiflets. Proceedings of the VLDB
Endowment 16(4):725-737

Scott M, Boardman RP, Reed PA, Cox SJ (2014) Managing
heterogeneous datasets. Inf Syst 44:34-53

Sellam T, Kersten M (2016) Cluster-driven navigation of the query
space. IEEE Trans Knowl Data Eng 28(5):1118-1131

Shaw MIJ, Subramaniam C, Tan GW, Welge ME (2001) Knowledge
management and data mining for marketing. Decis Support Syst
31(1):127-137

Sluban B, Gamberger D, Lavrac N (2014) Ensemble-based noise
detection: noise ranking and visual performance evaluation. Data
Mining Knowl Discov 28(2):265-303

Snyder H (2019) Literature review as a research methodology: an
overview and guidelines. J Bus Res 104:333-339

van Giffen B, Ludwig H (2023) How siemens democratized artificial
intelligence. MIS Q Exec 22(1):3

Vellido A, Garcia DL, Nebot A (2013) Cartogram visualization for
nonlinear manifold learning models. Data Mining Knowl Discov
27(1):22-54

Villegas A, Beachy S (2021) The Amazon that customers don’t see
(published 2021) — nytimes.com. https://www.nytimes.com/
interactive/2021/06/15/us/amazon-workers.html. Accessed 12
Npv 2024

Webster J, Watson RT (2002) Analyzing the past to prepare for the
future: writing a literature review. MIS Q 26(2):xiii—xxiii

Whang SE, Roh Y, Song H, Lee JG (2023) Data collection and
quality challenges in deep learning: a data-centric Al perspec-
tive. VLDB J 32(4):791-813

Wirth R, Hipp J (2000) CRISP-DM: towards a standard process
model for data mining. In: Proceedings of the 4th international
conference on the practical applications of knowledge discovery
and data mining

Wolfswinkel J, Furtmueller E, Wilderom C (2013) Using grounded
theory as a method for rigorously reviewing literature. Europ J
Inf Syst 22(1):45-55

Wongsuphasawat K, Moritz D, Anand A, Mackinlay J, Howe B, Heer
J (2016) Voyager: exploratory analysis via faceted browsing of
visualization recommendations. IEEE Trans Visual Comput
Graph 22(1):649-658

Yu L, Wang S, Lai KK (2006) An integrated data preparation
scheme for neural network data analysis. IEEE Trans Knowl
Data Eng 18(2):217-230

Zhang AX, Muller M, Wang D (2020) How do data science workers
collaborate? Roles, workflows, and tools. Proc ACM on Human
Comput Interact 4(CSCW1):1-23

Zhang R, Indulska M, Sadiq S (2019) Discovering data quality
problems: the case of repurposed data. Bus Inf Syst Eng
61(5):575-593

Zhang T, Feng H, Chen W, Chen Z, Zheng W, Luo X, Huang W,
Tung A (2023) ChartNavigator: an interactive pattern identifi-
cation and annotation framework for charts. IEEE Trans Knowl
Data Eng 35(2):1258-1269

@ Springer


https://documentation.sas.com/doc/en/emref/14.3/n061bzurmej4j3n1jnj8bbjjm1a2.htm
https://documentation.sas.com/doc/en/emref/14.3/n061bzurmej4j3n1jnj8bbjjm1a2.htm
https://www.nytimes.com/interactive/2021/06/15/us/amazon-workers.html
https://www.nytimes.com/interactive/2021/06/15/us/amazon-workers.html

	Data Understanding for Data-Centric AI
	Framework Development and Review of Current Methods
	Abstract
	Introduction
	Background and Related Work
	Research Design
	Framework Development Through Systematic Literature Review
	Method Analysis Through Systematic Mapping

	Results
	Framework Development Through Systematic Literature Review
	Foundations
	Collection and Selection
	Contextualization and Integration
	Exploration and Discovery
	Insights
	Synthesis of Dimensions of Data Understanding

	Method Analysis Through Systematic Mapping
	Coverage of Framework Dimensions
	Support for Different Stakeholders
	Synthesis of Method Analysis


	Discussion
	Implications for Theory and Practice
	Limitations and Future Research

	Conclusion
	Open Access
	References


