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Abstract
Wepresent information in tabular formabout optimal piecewise linear (PWL) approximations
of the sigmoid and tanh activation functions as used in neural networks, aswell as the probabil-
ity density and cumulative distribution functions of the Normal and log-Normal distributions.
The presented approximations minimise the maximum absolute difference between the PWL
function and the continuous function being modelled; we also provide information on opti-
mal over- and underestimators. We provide information on the optimal breakpoint locations
for different numbers of breakpoints in a series of tables, as well as the accuracy provided by
these approximations. This allows practitioners to utilise the PWL approximations whenever
needed; for example, to enable the use of mixed-integer linear programming techniques to
solve problems where these functions may appear, or to approximate integrals. The provided
optimal breakpoint locations lead to an improvement over a uniform breakpoint location
of the maximum absolute difference of up to 95% and an average of 84% among the six
functions. This information is available online at https://doi.org/10.5281/zenodo.16362215
and can be recreated using the R package pwlapprox2d [1].

Keywords Function approximation · Piecewise linear function · Neural networks ·
Probability density function · Cumulative distribution function · Statistics · Mixed-integer
optimisation

1 Introduction

As opposed to approximating continuous functions with polynomial regression functions,
piecewise linear (PWL) approximations can be advantageous due to the removal of the com-
plicating non-linearity aspect. Further, PWL approximations can retain important properties
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of the original function, such as shape-based features and convexity. PWL approximations
of continuous functions also allow the use of mixed-integer linear programming (MILP)
techniques to solve complex mixed-integer non-linear programming (MINLP) problems [2].
Further applications of PWL functions can be found in data envelopment analysis [3] and
energy systems [4, 5].

Optimal PWL functions have recently been found usingMILP techniques [6–8], including
robust decomposition approaches to overcome effects from outliers [9]. However, approaches
from Computer Science have used the inherent nature of the PWL regression problem to
find optimal PWL functions efficiently [10, 11]. Warwicker and Rebennack [12] recently
presented an algorithm to efficiently fit PWL regression functions to continuous functions,
utilising both approaches. Their approach was shown to be over 100,000 times faster than
the state-of-the-art approaches [6, 13].

In this paper, we use the approach presented byWarwicker and Rebennack [12] to present
optimal PWL approximations (alongside over- and underestimators) to common non-linear
functions at different approximation levels. For the given number of breakpoints, we present
the best accuracy possible (up to three significant figures). Note that we present the results as
lower bounds, since there may exist PWL functions with the same number of breakpoints but
with worse accuracy. For some specific functions, optimal breakpoint locations are known
analytically. In particular, the quadratic function x2 yields optimal PWL overestimators with
equidistant breakpoints [14],while optimal approximations to the logarithmic function log(x)
can be analytically calculated.

In many applications, uniformly distributed breakpoint locations are chosen to approxi-
mate non-linear functions. Such a uniform distribution is very natural and easy to implement.
However, this comes at the cost of a (potentially) largermaximumabsolute difference between
the PWL function and the non-linear function for any given number of breakpoints. This
difference can indeed be large - among the six functions tested in this paper, the lowest
improvement gain is 64.70%while the largest is 95.33%. These are very significant improve-
ments in the approximation quality without the need to increase the number of breakpoints
or segments. Unfortunately, it is not straightforward to compute such optimal breakpoint
locations. One would need to use somemethods from the literature, run some foreign code or
even re-implement the algorithms; this is a large obstacle. Therefore, we provide easy access
to these locations in this paper in tabular form. Thus, the improvement gain comes now at no
extra “cost”.

In some cases, it is important to have valid under- or overestimating PWL functions for a
givennon-linear function.This is even cumbersome for non-linear functions, especially if they
are not given in a standard functional form, like the CDF of the standard Normal or standard
log-Normal distributions. In this paper, we also provide valid under- and overestimators.

For the purpose of embedding PWL approximations within mixed-integer programming
frameworks,we present (in Section 4) the breakpoint locations for the presented PWLapprox-
imations; this allows different formulations to be used, see e.g., [14] or [15]. Equations for
the segments of the resulting PWL can be easily calculated from the breakpoint locations.
Further, we present the accuracy found using a uniform breakpoint selection approach for
means of comparison.

The rest of the paper is structured as follows. In the remainder of the introduction, we
introduce PWL functions and discuss the approach for approximating them. In Sections 2-3,
we introduce the neural network activation functions and probabilistic functions, presenting
full tables regarding optimal breakpoint placements in Section 4. We finish with conclusions.
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1.1 Piecewise Linear Functions

Throughout this paper we use the following notation: [n] to denote the set {1, . . . , n}.
Definition 1 ([6]) A continuous univariate function

p(x) : [X , X ] → R

with compact interval [X , X ] is called a continuous piecewise linear (PWL) function, if
there exists a finite number B with

X = r1 < · · · < rb < rb+1 < · · · < rB = X ,

such that p(x) is an affine function on [rb, rb+1] for all b ∈ [B − 1]. The values r1, . . . , rB
are called breakpoints, with B the number of breakpoints. For each b ∈ [B−1], the function
p(x) : [rb, rb+1] → R is called a linear segment.

For the problem of PWL function fitting of bivariate data, a set of I ordered tuples
(Xi , Yi ) ∈ R

2, i ∈ [I ], is given where
−∞ < X = X1 < · · · < Xi < Xi+1 < · · · < XI = X < ∞.

The data tuples (Xi , Yi ) are the sorted values of a discrete function mapping [X , X ] toR. We
seek to model these data points by a PWL function p(x) : [X , X ] → R with a given number
of breakpoints B < I . Moreover, we seek an optimal PWL function which minimises some
distance metric d(·, ·) between the data points and the given PWL function.

When fitting a PWL function to a continuous function f , we typically seek a PWL function
p within a given error tolerance ξ > 0 such that the number of breakpoints of p is minimised.
Typically, a discretised set of points from the function f are taken, and approaches for fitting
PWL functions to data points are used. For the construction of an optimal PWL function, the
breakpoints must be free within the given range (i.e., not constrained to lie on the function
itself) and the PWL function should attain the maximum deviation (i.e., the desired error
tolerance ξ ) to the modelled data/function at least once per segment (otherwise it can be
improved) [13]. Further, it is known in both cases that a non-uniform selection of breakpoints
often leads to a better PWLapproximation (compared to breakpoints that are uniformly spaced
along the original function, or those that are placed randomly) [16].

We further consider optimal over- and underestimators of a function f .

Definition 2 For a given constant δ > 0, a function p(x) := [X , X ] → R with compact
interval [X , X ] is called a δ-understimator of f (x) := [X , X ] → R if p(x) ≤ f (x) for all
x ∈ [X , X ] and

max
x∈[X ,X ]

|p(x) − f (x)| ≤ δ

is satisfied. p is a δ-overestimator of f iff −p is a δ-underestimator of − f .

1.2 Methodology for Finding Optimal PWL Approximations

In this section, we describe the methodology presented by Warwicker and Rebennack [12],
which fits an optimal PWL function (say, f ′) to a continuous function f with maximum error
ε > 0. Their approach embeds the linear time algorithm for PWL fitting within an iterative
discretisation framework, first considered in [6].
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After an initial (uniform) discretisation of the continuous function f into discrete data
points (denoted as the set I), the data points I are modelled with an approximating PWL
function f ′ that has a maximum error (i.e., �0 loss) of ξ = ε −α (for some 0 < α < ε) using
the algorithm from [10, 11]; we use α = ε/5 as suggested. Then, themaximum error between
the PWL function f ′ and the continuous function f is calculated to within α/2-optimality
by a global optimisation solver. If this maximum error exceeds ξ by more than α/2, then the
discretisation of the continuous function (i.e., I) is refined (that is, more data points sampled
from the continuous function f are added to the discretisation I); otherwise, an optimal PWL
function f ′ with maximum error ε has been found. This process repeats until the optimality
conditions are met. We refer the reader to [12] for the full details of this method.

We implemented the presented approach within C++, and used the locally biased variant
of the DIRECT algorithm [17] within NLopt [18] as the global optimisation solver.

This method is guaranteed to find a minimal breakpoint PWL approximation f ′ for the
given continuous function f [12]. Therefore, the results presented in this paper are verifiable.

In this work, we provide optimal PWL approximations at different error bounds ε for six
commonly used functions. We note that for the given error bounds, the presented breakpoint
locations are not necessarily unique in that theremay exist others that lead to an approximating
PWL function with the same error bound. Proposition 1 provides the correctness of function
over- and underestimators formed by translating the optimal PWL functions; we refer to [19]
for a proof.

Proposition 1 ([19]) Let p(x) denote an ε-optimal PWL approximation of a continuous
function f (x) on a compact interval [X , X ]. Then, for δ = 2ε, δ-optimal over-and underes-
timators for f (x) are given by p(x) + ε and p(x) − ε respectively.

We further extend the generality of the results we present in Proposition 2.

Proposition 2 ([19]) Let p be an ε-optimal PWL approximation of a function f on a compact
interval [a, b] with a < b, and breakpoints a = r1, . . . , rB = b. Let â < a, and define p̂
where the first breakpoint of p is changed such that it now has r1 = (â, f (â)). Then, p̂ is a
PWL approximation of f with maximum error ε over [â, b] if

max
x∈[â,r2]

| p̂(x) − f (x)| ≤ ε.

Proposition 2 allows the general extension of the presented bounds and holds symmet-
rically (i.e., also for some b̂ > b). In particular, we present breakpoint information on the
updated first (respectively last) breakpoints such that the presented bounds still hold for a
general domain. Since many of the functions we present approximations for have asymptotic
bounds, we are able to use Proposition 2 for general bounds of the form â ≤ a. Where
this occurs, we explicitly point this out. Otherwise, we note that generally extending the
bounds would increase the number of breakpoints of the required PWL function by 1 (on
each side); the new breakpoint would occur with x-value as the new chosen bound and y-
value either coincident with the continuous function or at the asymptotic bound (depending
on the function).

2 Neural Network Activation Functions

This section is motivated by the increase in mathematical programming approaches used in
tandem with neural network architectures (see e.g., [20–24]). For a given solution to a neural
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network (i.e., a collection of trained weights and biases), this solution can be transformed into
aMILPmodel if the activation functions are (piecewise) linear (e.g., ReLU functions) and the
output functions are linear (e.g., max-pooling, convolutions). This allows interesting features
of the architecture to be discovered, such as feature relevance and the generation of adversarial
inputs. Recent work has built the approach within two-stage stochastic programmingmodels,
leading to a singular monolithic MILP model [25, 26].

We therefore present PWL approximations of the two most common non-linear activation
functions (i.e., sigmoid and tanh) to allow the use of these within the aforementioned MILP
models (using PWL formulations as in e.g., [14, 27]). Sildir and Aydin [28] showed how
PWL approximations of these activation functions can lead to efficient formulations. PWL
approximations of the sigmoid function can also be useful in classification tasks, as it forms
the basis of the standard model for logistic regression [29].

2.1 Sigmoid Function

The sigmoid function is defined as

σ(x) = 1

1 + e−x
.

We present approximations over the range of inputs x ∈ [−7, 7] as this suffices for almost
all outputs in the range of [−1, 1] (up to an accuracy of less than one thousandth). For negative
values outside this range, the function can be overapproximated by σ(−7) ≈ 0.000912 or
underapproximated by 0; each giving a maximum error of σ(−7). Likewise, for positive
values outside this range, the function can be overapproximated by 1 or underapproximated
by σ(7); again, the maximum error would be the same as the negative case. Otherwise, taking
the approximated PWL value at the extreme values in the range suffices for the presented
error bounds. In general, we seek approximations with an even number of breakpoints to take
advantage of the symmetry of the function. We present summarised results in Table 1a, with
an example in Figure 1a.

2.2 Tanh Function

The hyperbolic tangent function tanh(x) is defined as:

tanh(x) = ex − e−x

ex + e−x
.

We again present approximations over the range of inputs x ∈ [−4, 4] as this suffices for
almost all outputs in the range of [−1, 1] (up to an accuracy of less than one thousandth).
For negative values outside this range, the function can be overapproximated by tanh(−4) ≈
0.000671− 1 and underapproximated by -1. Likewise, for positive values outside this range,
the function can be overapproximated by 1 or underapproximated by tanh(4) = − tanh(−4).
In each case, the maximum error would be 1− tanh(4). Otherwise, taking the approximated
PWL value at the extreme values in the range suffices for the presented error bounds. We
once more seek approximations with an even number of breakpoints to take advantage of the
symmetry of the function. We present summarised results in Table 1b, with an example in
Figure 1b.
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Table 1 Accuracies of optimal
breakpoint locations vs. uniform
breakpoint locations

#Breakpoints Accuracy Relative
Optimal Uniform improvement

(a) Sigmoid function

4 ≥ 0.0274 0.0568 51.76%

6 ≥ 0.0108 0.0502 78.52%

8 ≥ 0.00575 0.0392 85.33%

10 ≥ 0.00357 0.0273 86.92%

12 ≥ 0.00244 0.0188 87.02%

14 ≥ 0.00177 0.0131 86.49%

16 ≥ 0.00135 0.00938 85.61%

18 ≥ 0.00106 0.00771 86.25%

20 ≥ 0.000850 0.00640 86.72%

(b) Tanh function

4 ≥ 0.0584 0.148 60.54%

6 ≥ 0.0228 0.102 77.65%

8 ≥ 0.0121 0.0896 86.49%

10 ≥ 0.00750 0.0673 88.86%

12 ≥ 0.00510 0.0486 89.51%

14 ≥ 0.00370 0.0351 89.46%

16 ≥ 0.00282 0.0257 89.03%

18 ≥ 0.00222 0.0191 88.38%

20 ≥ 0.00178 0.0159 88.81%

Fig. 1 Optimal PWL approximations for the neural network activation functions: (a) sigmoid with 6 break-
points; (b) tanh(x) with 6 breakpoints. Dashed lines are used to indicate PWL functions with breakpoints at
black dots. Red stars indicate where the PWL function achieves its maximum deviation (at least once per
linear segment)

3 Probabilistic Functions

This section is motivated by the use of approximating probabilistic functions within the con-
text of mathematical programming models. For example, Kaya et al. [30] used the approach
presented byWarwicker and Rebennack [12] to approximate the probability distribution of a
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price bid for different market stages in the context of improving the reliability of renewable
energy producers.

3.1 Probability Density Functions

The probability density function (PDF) gives the relative likelihood that a real-valued variable
X takes a given value in the sample space; it is mostly used to specify the probability that
the value falls within a certain range.

3.1.1 Standard Normal Distribution

The PDF of the standard Normal distribution which has mean μ = 0 and standard deviation
σ = 1 (not to be confused with the sigmoid function discussed in the previous section) is
given as

f (X) = 1√
2π

e−X2/2.

We present approximations over the range X ∈ [−3.5, 3.5] to approximate all values up to
an error of one thousandth. Over- and underestimators outside this range can be found by
f (−3.5) = f (3.5) ≈ 0.000873 and 0 respectively.
We present summarised results in Table 2a, with an example in Figure 2a.

3.1.2 Standard Log-Normal Distribution

The standard log-Normal distribution satisfies

f (X) = 1

X
√
2π

e−(ln X)2/2.

We present approximations over the range X ∈ (0, 13.5] to approximate all values up to
an error of one thousandth. At X = 0, the log-Normal distribution is undefined but we
note limx→0+ f (X) = 0. The extreme values can be overestimated and underestimated by
f (13.5) ≈ 0.000999 and 0 respectively. In the results in the appendix, we consider the lower
bound as 10−6 since the PWL approximation method requires the function to be evaluated
at the endpoints. We present summarised results in Table 2b, with an example in Figure 2b.

3.2 Cumulative Distribution Functions

Alongside thePDFs,wepresent PWLapproximations of the cumulative distribution functions
(CDFs) of the standard Normal and log-Normal distribution. The CDF of a real-valued
variable X , evaluated as x , provides the probability that X will take a value less than or equal
to x . Formally, we denote a CDF of X evaluated at x by FX (x) : R → [0, 1], where

FX (x) = IP(X ≤ x).

For every distribution X over R, FX is unique. Further,

lim
x→−∞ FX (x) = 0 and lim

x→+∞ FX (x) = 1

hold.
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Table 2 Accuracies of optimal
breakpoint locations vs. uniform
breakpoint locations of PDFs

#Breakpoints Accuracy Relative
Optimal Uniform improvement

(a) Standard Normal distribution

5 ≥ 0.0216 0.0425 49.18%

6 ≥ 0.0108 0.0867 87.55%

8 ≥ 0.00807 0.0469 82.80%

9 ≥ 0.00432 0.0273 84.18%

11 ≥ 0.00420 0.0197 78.68%

12 ≥ 0.00258 0.0197 86.91%

13 ≥ 0.00237 0.0146 83.77%

14 ≥ 0.00233 0.0142 83.59%

15 ≥ 0.00179 0.0111 83.88%

(b) Standard log-Normal distribution

4 ≥ 0.0471 0.655 92.81%

5 ≥ 0.0442 0.651 93.21%

6 ≥ 0.0311 0.646 95.18%

7 ≥ 0.0180 0.637 97.17%

8 ≥ 0.0179 0.627 97.15%

9 ≥ 0.0097 0.614 98.42%

10 ≥ 0.00970 0.600 98.38%

11 ≥ 0.00675 0.585 98.85%

12 ≥ 0.00608 0.568 98.93%

13 ≥ 0.00535 0.551 99.03%

14 ≥ 0.00464 0.536 99.13%

Fig. 2 Optimal PWL approximations for PDFs: (a) Normal distribution with 6 breakpoints; (b) log-Normal
distribution with 6 breakpoints. Dashed lines are used to indicate PWL functions with breakpoints at black
dots. Red stars indicate where the PWL function achieves its maximum deviation (at least once per linear
segment)
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Table 3 Accuracies of optimal
breakpoint locations vs. uniform
breakpoint locations of CDFs

#Breakpoints Accuracy Relative
Optimal Uniform improvement

(a) Standard Normal distribution

4 ≥ 0.0244 0.0557 56.17%

6 ≥ 0.00954 0.0494 80.69%

8 ≥ 0.00508 0.0290 82.48%

10 ≥ 0.00315 0.0168 81.25%

12 ≥ 0.00215 0.0113 80.97%

14 ≥ 0.00156 0.00862 81.90%

16 ≥ 0.00118 0.00649 81.82%

18 ≥ 0.000928 0.00492 81.14%

20 ≥ 0.000748 0.00404 81.48%

(b) Standard log-Normal distribution

4 ≥ 0.0304 0.492 93.82%

5 ≥ 0.0249 0.409 93.91%

6 ≥ 0.0164 0.343 95.22%

7 ≥ 0.0103 0.288 96.42%

8 ≥ 0.00698 0.243 97.13%

9 ≥ 0.00508 0.205 97.52%

10 ≥ 0.00469 0.173 97.29%

11 ≥ 0.00435 0.146 97.02%

12 ≥ 0.00390 0.123 96.83%

13 ≥ 0.00311 0.103 96.98%

14 ≥ 0.00257 0.0863 97.02%

3.2.1 Standard Normal Distribution

We firstly analyse the CDF of the standard Normal distribution, which is given as:

	(x) := 1

σ
√
2π

∫ x

−∞
exp

(
−1

2

(
x − μ

σ

)2
)

= 1

2

(
1 + erf

(
x − μ

σ
√
2

))

= 1

2

(
1 + erf

(
x√
2

))
,

where erf(x) = 2√
π

∫ x
0 e−t2dt is the error function.

We present approximations over the range of x ∈ [−3.5, 3.5] to approximate all values up
to an error of one thousandth. Over- and underestimators can be found as before (i.e., with 0
on the negative side, 1 on the positive side, and 	(−3.5) ≈ 0.000233; respectively 	(3.5)).
We present summarised results in Table 3a with an example in Figure 3a.

3.2.2 Standard Log-Normal Distribution

The standard log-Normal distribution assumes the logarithm of the random variable follows
the standard Normal distribution. The CDF of the log-Normal distribution satisfies:
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Fig. 3 Optimal PWL approximations for CDFs: (a) Normal distribution with 6 breakpoints; (b) log-Normal
distribution with 6 breakpoints. Dashed lines are used to indicate PWL functions with breakpoints at black
dots. Red stars indicate where the PWL function achieves its maximum deviation (at least once per linear
segment)

FX (x) = 	(ln(x)) = 1

2

(
1 + erf

(
ln(x)√

2

))
.

In order to ensure accuracy within one thousandth for values outside the considered range,
we model for x ∈ (0, 22] (since x = 0 is undefined, but can be approximated by 0). For
x > 22, the function can be overapproximated by 1, or underapproximated by FX (22) with
maximum error 1 − FX (22) ≈ 0.000997 in both cases. In the results in the appendix, we
consider the lower bound as 10−6 since the PWL approximationmethod requires the function
to be evaluated at the endpoints. There is no apparent symmetry in this function. We present
summarised results in Table 3b with an example in Figure 3b.

4 Full Results

The full information about the optimal PWL approximations p(x) to the six functions in
tabular form is available online [31]. Specifically, we present optimal breakpoint locations
(of the form (xb, p(xb)), for b ∈ [B]) for PWL approximations across 5 different numbers of
breakpoints B, alongside optimal breakpoint locations for PWL over- and underestimators.
For each setting, we present the accuracy achieved by the given approximation as a lower
bound; note that PWL approximations exist with the same number of presented breakpoints,
but with a worse (i.e., higher) accuracy.

The breakpoint locations can also be found using the R package pwlapprox2d [1]. As an
example, the code below produces breakpoint coordinates of the sigmoid function with an
accuracy of 0.0274 (i.e., four sets of coordinates) - note that different parameter choices may
lead to different (optimal) solutions.

library(pwlapprox2d)

# Run optimization (example: Sigmoid)
res <- optimize_main(

choice = 1,
accuracy = 0.0274,
init_points = 200,
max_iter = 20,
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verbose = FALSE
)

# Number of breakpoints
bp <- res$breakpoints_coords

#Print breakpoint coordinates
cat("x,y\n")
for(i in 1:nrow(bp)) {

cat(paste(bp[i, "x"], bp[i, "y"], sep = ","), "\n")
}

In order to utilise the information presented in these tables within MILP formulations, the
breakpoint locations are used. Different formulations (see e.g., [14, Section 4] or [15]) will
utilise different constraints to calculate the argument and function approximations from the
breakpoint locations. Therefore, practitioners must decide on their desired accuracy before
implementing the PWL approximation within their program.

As discussed in Sections 2-3, the interval bounds are chosen such that all outputs in
the desired range can be approximated, up to an error of less than one thousandth. Should
practitioners require alternative interval bounds within a given accuracy, the end-breakpoints
can be calculated based on interpolation of the presented segments or function values.

We next discuss the cases where the desired intervals do not match with the ones provided
in the table. The discussion is for approximations only but also holds for over- and under-
estimators. In these cases, the function value needs to be carefully rounded up or down to
obtain a valid over- or underestimator, respectively.

4.1 Internal Intervals

Assume that you want to construct a PWL function in the interval [a, b]. By selecting the
desired accuracy, one can find the number of breakpoints required from Tables 1-3 or Tables
4-9. Now assume that the approximation in the table is for interval [ã, b̃] with ã < a. Then,
the PWL function can be constructed as follows.

Assume b1 is the smallest breakpoint with b1 ≥ ã. If b1 = ã, then you can directly select
this breakpoint with the associated function value. If not, then you can use interpolation.
Therefore, let f1 be the PWL function value associated with b1. Further, let b−1 be the
largest breakpoint with b−1 < ã and associated PWL function value f−1. Then, the PWL
function value at the new breakpoint location ã is given by

f1 − f1 − f−1

b1 − b−1
· (b1 − ã). (1)

If b < b̃, then one can use the same construction as above.
Note that the maximal absolute difference between the PWL function and the non-linear

function does not worsen. However, the newly obtained breakpoint location might no longer
be optimal in the sense that there might now exist an alternative breakpoint distribution
leading to a better accuracy.

Example 1 (Internal Intervals) A practitioner would like to approximate the sigmoid activa-
tion function to an accuracy of 0.02 over the interval [−3, 7]. The results in [31] suggest a
PWL function with 6 breakpoints. The four internal breakpoints can be taken directly from
the table. The external breakpoints can be interpolated from the existing endpoint segments.
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Using the formula (1), we first identify b−1 = −7, f−1 = −0.00988895, b1 = −2.88703,
f1 = 0.0419985, and obtain

−0.00988895 − 0.0419985 + 0.00988895

−2.88703 + 7
· (−2.88703 + 3) ≈ 0.040573319

as the function value for breakpoint -3. We obtain for the breakpoints and PWL function
values:

(−3, 0.040573319) (−2.88703, 0.0419985) (−1.36777, 0.192332)

(1.37017, 0.808208) (2.89103, 0.958052) (7, 1.00989)

with a maximal absolute difference of ≥ 0.0108.

4.2 External Intervals

We now consider the case where the goal is to approximate over the interval [a, b] and the
approximation in the table is for [ã, b̃]with a < ã. Otherwise, a new breakpoint can be added
at the desired breakpoint a.

Example 2 (External Intervals)A practitioner would like to approximate the sigmoid activa-
tion function to an accuracy of 0.02 over the interval [−10, 10]. The results in [31] suggest
a PWL function with 6 breakpoints can be calculated over the interval [−7, 7]. Therefore,
to extend the function to the desired interval, one extra breakpoint can be included on each
side. These can be calculated by simply taking the function value at these new endpoints;
i.e., (−10, σ (−10)) = (−10, 0.00004539786871) and (10, σ (10)) = (10, 0.9999546021).

5 Conclusions

In this paper, we have presented information regarding optimal breakpoint locations for
piecewise linear approximations of common non-linear continuous functions that are used
within neural networks and probabilistic analyses. This information allows practitioners to
easily approximate the given functions to their desired accuracy where necessary. The PWL
functions were found using the approach presented byWarwicker and Rebennack [12]; other
continuous functions can be approximated using the same strategy. Future work would allow
the incorporation of the presented breakpoint locations within packages for commonly used
optimisation software, as well as providing analytical solutions to the optimal breakpoint
placement problem for a wide variety of functions.
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