Interpretable Representation Learning for
Motion Forecasting

Zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

von der KIT-Fakultit fiir Informatik
des Karlsruher Instituts fiir Technologie (KIT)

genehmigte
Dissertation
von
Royden Wagner
Tag der miindlichen Priifung: 11.12.2025
1. Referent: Prof. Dr.-Ing. Christoph Stiller

2. Referent: Prof. Dr. Abhinav Valada

Usage of large language models

To enhance the written presentation of this thesis, I used large language models
(LLMs), including Claude Sonnet 4, perplexity pro, ChatGPT 4o, and DeepL.
I used these models to linguistically and grammatically enhance and restructure
individual sentences and text passages. All LLM-generated text was manually
checked and often revised further. The models were not used to generate new
content. All methods, experiments, and results described in this thesis were
developed independently or by the co-authors indicated in each case (see Preface).

Abstract

We address the challenge of interpretable representation learning for motion fore-
casting in self-driving vehicles. Instead of treating transformer models as opaque
black boxes, we develop methods to interpret and modify learned representa-
tions. Our work builds upon ideas from self-supervised learning, mechanistic
interpretability methods, and mixture density networks.

We introduce two interpretable pre-training methods, which leverage redundancy
reduction and multimodal similarity learning. Specifically, we improve prediction
accuracy and accelerate training by maximizing the similarity of embeddings from
augmented environments and aligning motion with scene context.

Moving beyond pre-training, we probe the latent space of motion forecasting
models and reveal human-interpretable features such as speed or agent type.

We find the learned vector representation of these features, enabling us to modify
model outputs through targeted interventions. This allows us to compensate for
domain shifts like slower driving styles and to interpret model behavior.

We further find retrocausal mechanisms in forecasting models, which connect
later parts of trajectories to earlier parts. We leverage these mechanisms to issue
goal-based and directional instructions. Remarkably, regular training for motion
forecasting without instructions leads to the ability to follow and adapt such
instructions to the scene context.

Our empirical evaluations on state-of-the-art benchmarks, including Waymo Open
Motion and Argoverse 2 Forecasting, confirm that our methods advance both
accuracy and interpretability, bridging the gap between high-performing models
and those whose underlying mechanisms can be interpreted and influenced.

il

Kurzfassung

Diese Arbeit befasst sich mit Methoden des maschinellen Lernens zur Bewe-
gungsvorhersage von Verkehrsteilnehmern. Der Fokus liegt dabei auf der Analyse
und Interpretation der Mechanismen, die Transformer-Modelle lernen.

Zunichst werden zwei interpretierbare Trainingsmethoden beschrieben, die ge-
lernte Vektor-Reprisentationen von verschiedenen Modalitidten aneinander an-
gleichen. Diese verbessern die Vorhersagegenauigkeit und beschleunigen das
Training, indem sie die Reprisentationen fiir dhnliche Stralenszenen angleichen
und Bewegungen mit dem Szenenkontext abstimmen.

Dariiber hinaus werden die gelernten Vektor-Reprisentationen von Vorhersage-
modellen auf interpretierbare Merkmale (d.h., Features) untersucht. Diese
Arbeit zeigt dabei die gelernten Repridsentationen fiir Bewegungs-Features wie
Geschwindigkeit oder Richtung. Dadurch konnen gelernte Mechanismen inter-
pretiert und Vorhersagen an z.B. langsamere Fahrstile in einer neuen Umgebung
angepasst werden.

AuBlerdem deckt diese Arbeit retrokausale Mechanismen in Vorhersagemodellen
auf, die spitere Teile von Trajektorien mit fritheren Teilen verbinden. Diese
Mechanismen konnen genutzt werden, um zielbasierte und richtungsweisende
Instruktionen zu geben. Bemerkenswert ist, dass das Training ohne Instruktionen
dazu fiihrt, dass solche Instruktionen dennoch befolgt und an den Szenenkontext
angepasst werden.

Kurzfassung

Die empirische Evaluation anhand moderner Datensitze, darunter Waymo Open
Motion und Argoverse 2 Forecasting, bestitigt, dass die vorgestellten Methoden
sowohl die Genauigkeit als auch die Interpretierbarkeit verbessern. Damit trigt
diese Arbeit zur Entwicklung von performanten Vorhersagemodellen bei, deren
zugrunde liegende Mechanismen interpretiert und beeinflusst werden konnen.

vi

Preface

First and foremost, I would like to express my gratitude to my main advisor,
Prof. Christoph Stiller. T am grateful for the trust you placed in me, the opportu-
nity to join your research institute, and the guidance that led to several research
papers. I also deeply appreciate the generous resources, which you provided for
experiments, research vehicles, conference travels, and other necessities.

I extend my appreciation to the research group leaders, Dr.-Ing. Omer Sahin Tas,
Dr. Carlos Fernandez, and Dr. Martin Lauer. Many thanks to Sahin for sparking
my interest in mechanistic interpretability in our weekly meetings on representa-
tion learning and countless hours of collaborating on our joint papers (see below).
Many thanks to Carlos and Martin for continuous and valuable feedback in the
meetings of the perception and prediction group.

Many thanks to Prof. Abhinav Valada for joining my doctoral jury. Moreover,
I appreciate the valuable feedback on my thesis topic by Prof. Anne Koziolek,
Jun.-Prof. Maike Schwammberger, and Prof. Hannes Hartenstein.

Furthermore, I am grateful to my other collaborators, in alphabetical order: Felix
Hauser, Christian Kinzig, Marvin Klemp, Fabian Konstantinidis, Dr.-Ing. Hen-
drik Konigshof, Kevin Rosch, Yinzhe Shen, Marlon Steiner, Dominik Strutz,
Dr.-Ing. Jannik Quehl, Jaime Villa, Abhishek Vivekanandan, Kaiwen Wang, and
Dr.-Ing. Florian Wirth. Special thanks to Marvin for co-authoring 7 papers.

Last but not least, many thanks to my family and friends for supporting me on
this doctoral journey, which started out as a bit of an Odyssey, with early research
at SAP and later at Heidelberg University. Especially many thanks to my parents,
Ulyka and Giinter, for having patience with me throughout this time.

vii

Preface

While the research presented here bears my name, it builds upon the excellent
collaboration with my co-authors and advisors. Specifically, this doctoral thesis
is based on four recent papers. In the following list, first-authors and joint first-
authors are highlighted in bold and individual contributions are listed below:

1. Royden Wagner, Omer Sahin Tas, Marvin Klemp, Carlos Fernandez,
and Christoph Stiller. RedMotion: Motion Prediction via Redundancy
Reduction. In Transactions on Machine Learning Research (TMLR), 2024

Project idea: R.W.; codebase: R.W.; experiments: R.W.; paper writing:
R.W.; O.S.T., and M.K.; guidance, funding, and infrastructure: O.S.T.,
C.F, and C.S.

2. Royden Wagner, Omer Sahin Tas, Marvin Klemp, and Carlos Fernan-
dez. JointMotion: Joint Self-Supervision for Joint Motion Prediction. In
Conference on Robot Learning (CoRL), 2024

Project idea: R.W. and O.S.T.; codebase: R.W.; experiments: R.W.; paper
writing: R.W., O.S.T,, and M.K.; guidance, funding, and infrastructure:
O.S.T. and C.F.

3. Omer Sahin Tas and Royden Wagner. Words in Motion: Extracting
Interpretable Control Vectors for Motion Transformers. In International
Conference on Learning Representations (ICLR), 2025

Project idea: O.S.T and R.W.; codebase: R.W. and O.S.T.; experiments:
R.W. and O.S.T.; paper writing: O.S.T and R.W.; guidance, funding, and
infrastructure: O.S.T.

4. Royden Wagner, Omer Sahin Tas, Felix Hauser, Marlon Steiner, Dominik
Strutz, Abhishek Vivekanandan, Carlos Fernandez, and Christoph Stiller.
RetroMotion: Retrocausal Motion Forecasting Models are Instructable. In
arXiv, 2025

Project idea: R.W.; codebase: R.W., F.H., and M.S.; experiments: R.W.,
FH., M.S., A.V,, and D.S.; paper writing: R.W., O.S.T., EH., D.S., and
A.V.; guidance, funding, and infrastructure: O.S.T., C.F., and C.S.

viii

Preface

Most of the content is edited to fit a consistent storyline, yet some content is
reused without changes. Furthermore, this thesis extends the content of the
aforementioned papers in the following ways:

 This thesis connects pre-training with interpretable objectives and methods
for mechanistic interpretability. Specifically, such pre-training is a step
toward mechanistic interpretability as it provides a training setting in which
interpretable representations and mechanisms are more likely to be learned,
see Chapter 3 and Chapter 4.

» This work provides a detailed mathematical description of the PCA-based
pooling for control vectors, see Section 4.2. It further connects neural
collapse and controllability with control vectors, see Section 4.5. Moreover,
Section 4.6 covers fuzz testing of control vector temperatures for our speed
control vectors.

 This thesis extends the description of exponential power distributions, in-
cluding probability density functions and plots that illustrate the effect of
the shape parameter, see Section 5.1.1. Furthermore, it includes ablation
studies on the sensitivity of RetroMotion w.r.t. the number of coefficients
in discrete cosine transforms (see Section 5.2.4) and shows that the model
generalizes from 2 to 8 agents (see Section 5.2.5).

X

Contents

Abstract iii
Kurzfassung v
Preface vii
Acronyms and notation L. XV
1 Introduction L . 1
2 Fundamentalsandrelatedwork 5
2.1 Motion forecasting for self-driving vehicles 5
2.1.1 Marginal motion forecasting 5

2.1.2 Conditional motion forecasting 6

2.1.3 Joint motion forecasting 6

2.1.4 Motion forecasting metrics 7

2.1.5 Motion forecasting datasets 10

2.1.6 Scene context and reference frames 11

2.1.7 Probabilistic trajectory representations 12

2.1.8 Compressed trajectory representations 14

2.2 Representation learning Lo 15
2.2.1 Self-supervised learning 15

2.2.2 Mechanistic interpretability 17

2.2.3 Sparse dictionary learning L. 18

2.2.4 Neuralcollapse, 19

225 Ensemblelearning L. 19

2.2.6 Transformermodels 21

X1

Contents

3

Xii

Self-supervised pre-training with interpretable objectives
3.1 Self-supervised redundancy reduction for motion forecasting
3.1.1 Architecture-induced redundancy reduction
3.1.2 Redundancy reduction as pre-training objective
3.1.3 Comparison with self-supervised pre-training
methods focusing on marginal forecasting
3.1.4 RedMotion as standalone model without pre-training
3.1.5 Qualitativeresults
3.2 Multimodal self-supervised learning for joint motion forecasting . .
3.2.1 Connecting motion and environments
3.2.2 Masked polyline modeling
3.2.3 Comparison with self-supervised pre-training
methods focusing on joint forecasting
3.2.4 Comparing scene-level pre-training methods

Interpretable control vectors for motion forecasting
4.1 Neural collapse toward interpretable features
4.1.1 Experimentalsetup
4.1.2 Experimentalresults
4.2 Fitting interpretable control vectors
4.3 Modifying hidden states at inference
4.3.1 Experimentalsetup
4.3.2 Qualitativeresults L L.
4.4 TImproving control vectors via sparse autoencoding
4.4.1 Experimentalsetup
442 Results L
4.5 Connecting neural collapse and controllability
4.6 Fuzz testing control vector temperatures
4.7 Compensating for domain shifts with control vectors

Instructable retrocausal motion forecasting
5.1 Method L
5.1.1 Decomposing exponential power distributions
5.1.2 Decomposing marginal trajectory distributions
5.1.3 Decomposing joint trajectory distributions

. 25

26
27
28

Contents

5.1.4 Compressing location parameters of probability densities . . 78
5.1.5 Sceneencoder 78
5.1.6 Lossfunction 79
5.2 Experiments 80
5.2.1 Interactive motion forecasting 80
5.2.2 Cross-dataset generalization. 84
5.2.3 Issuing instructions by modifying trajectories 85
5.2.4 Analyzing learned trajectory representations 89
5.2.5 Modeling 8 agents jointly 93
6 Conclusion 95
6.1 Limitations and future work L. 96
6.2 Finalremarks Lo 97
A Appendix 929
A.1 Inference latency of our RedMotion model 99
A.2 Parameters of our categorical motion features 99
A.3 Early, hierarchical and late fusion in motion encoders 100
A.4 Choosing a range of relative changes in future speed to
evaluate control vectors 100
A.5 Evaluating a Koopman autoencoder 101
A.6 Fuzz testing PCA-based speed control vectors 102

A.7 Inference latency when modifying hidden states with control vectors 102
A.8 Distance thresholds NMS and softmax 7 values for RetroMotion . . 103

Listof Figures 105
Listof Tables 111
List of publications 115
Journal articles L 115
Conference contributions and preprints 115
Bibliography 117

xiii

Acronyms and notation

Acronyms

AV2F
CDNV
CLIP
CME
ConvSAE
DCT

FFN

GNN

GPT

GPU
mAP
minADE
minFDE
IDCT
JumpReLU

Argoverse 2 Forecasting

Class-distance normalized variance

Contrastive language-image pre-training

Connecting motion and environments
Convolutional sparse autoencoder
Discrete cosine transform
Feed-forward network

Graph neural network

Generative pre-trained transformer
Graphics processing unit

Mean average precision

Minimum average displacement error
Minimum final displacement error
Inverse discrete cosine transform

Jumping rectified linear units

XV

Acronyms and notation

KoopmanAE Koopman autoencoder

LLM Large language model

MCL Map contrastive learning
MLP Multi-layer perceptron

MPM Masked polyline modeling
MR Miss rate

NLL Negative log-likelihood
NMS Non-maximum suppression
NRC Neural regression collapse
PCA Principal component analysis
R? Coefficient of determination
RelLU Rectified linear units

SAE Sparse autoencoder

S-idx Straightness index

SMoE Sparse mixture of experts
TMCL Trajectory-map contrastive learning
OR Overlap rate

ORP On-road probability

WTA Winner-takes-all

Xvi

Acronyms and notation

Notation

We use the notation of Goodfellow et al. (2016) for vectors, matrices, indexing,
and functions.

v A vector

; Element ¢ of vector v

v_1 Last element of vector v

M A matrix

M7 Transpose of matrix M

M; .. Row 7 of matrix M

M. ; Column j of matrix M

M; ; Element 4, j of matrix M

M® b-th matrix of a batch of matrices
f(x;0) A function of @ parameterized by 0
D(") A probability density function

Xvii

1 Introduction

Motion in traffic scenarios varies in complexity based on the individual behavior of
road users and scene context, such as road markings and traffic light states. Motion
forecasting predicts the future motion of road users, like vehicles, pedestrians, or
cyclists (see Figure 1.1). It serves as a form of world modeling since motion
is a fundamental aspect of the environment surrounding a self-driving vehicle
(Baniodeh et al. 2025). Therefore, realistic motion forecasting is crucial to plan
safe maneuvers according to the forecasted motion of other road users (Tas et al.
2023, Geisslinger et al. 2023, Bouzidi et al. 2024).

Early in a forecast, motion is largely influenced by past motion, due to the laws of
physics. As we move further into the future, this causal influence diminishes and
more variations of motion become likely. Recent methods for motion forecasting
(Ngiam et al. 2022, Shi et al. 2022, Cui et al. 2023) address this with multiple
choice learning (Guzman-Rivera et al. 2012, Lee et al. 2016), where choices are
trajectories of future positions. In complex urban scenarios, the distribution over
future trajectories is typically multimodal, while trajectories on highways tend to
be more unimodal (i.e., uniform).

When modeling the joint trajectory distribution over multiple road users (i.e.,
agents), the output space grows exponentially with the number of agents. Thus,
a common simplification is to model future motion with marginal trajectory
distributions per agent (Nayakanti et al. 2023, Zhou et al. 2023a, Zhang et al.
2023). To improve modeling interactive behavior, some works (Luo et al. 2023,
Seff et al. 2023, Jiang et al. 2023) forecast joint trajectory distributions for pairs
of agents.

1 Introduction

t=-1.1s t=8s

Figure 1.1: Motion forecasting. The forecasts are based on 1.1 s of past motion and cover the next
8 s. Dynamic road users are blue, lanes are black lines, and road markings are white lines.

In this work, we present several methods for interpretable representation learning
for motion forecasting. We evaluate our methods on recent motion forecasting
datasets, like Waymo Open Motion (Ettinger et al. 2021) and Argoverse 2 Fore-
casting (Wilson et al. 2023). However, our work differs from purely benchmark- or
application-driven approaches to motion forecasting (e.g., Varadarajan et al. 2022,
Nayakanti et al. 2023, Zhou et al. 2023a). Such approaches include architectural
ablations of new models, but focus on their impact on benchmark performance,
not on learned mechanisms.

Research on mechanistic interpretability, on the other hand, analyzes and in-
terprets how learned models work. Particularly, learned mechanisms and rep-
resentations are studied. Mechanistic interpretability methods do not enforce
interpretability (e.g., by handcrafting certain rules or mechanisms), but instead

1 Introduction

attempt to reverse-engineer learned mechanisms (Chughtai et al. 2023, Nanda
et al. 2023, Kitouni et al. 2024). This is broadly related to functionalism in the
philosophy of mind (Levin 2023), which models the mind as functions rather than
structures, including memory, perceptual, and executive functions'.

Our work reveals the vector representation of interpretable features (e.g., speed,
direction, or agent type) learned by motion forecasting models and shows their
impact on forecasts. Specifically, we modify learned representations at inference
and analyze the resulting changes in motion forecasts. This enables mechanistic
interpretations and generalization to unseen dataset characteristics, like slower
driving styles.

Moreover, we find retrocausal mechanisms in forecasting models, which are di-
rected from later parts of trajectories to earlier parts. We leverage these mecha-
nisms to issue goal-based and directional instructions. Notably, regular training
for motion forecasting (without instructions) leads to the ability to follow goal-
based instructions and to adapt directional instructions to the scene context.

Mechanistic interpretability research can lead to improved benchmark perfor-
mance as well, yet shifts the perspective from global effects to more fine-grained
mechanisms. For example, Zhu et al. (2025) find that normalization layers in trans-
former models learn tanh-like mappings and improve benchmark performance by
replacing normalization with simpler tanh layers. We show that representing a
trajectory as sum of cosine functions is well adapted to transformer models, which
use cosine-like positional encodings, and improves forecasting precision.

Furthermore, we view self-supervised pre-training with interpretable objectives
as a step from enforcing interpretability toward mechanistic interpretability. Such
pre-training objectives are based on interpretable proxy tasks yet particularly broad
ones with few application-specific details. For example, masked autoencoding is
used as pre-training in language modeling (Devlin et al. 2019), computer vision
(He et al. 2022), and motion forecasting (Cheng et al. 2023). Hence, the goal of

' Similarly, in machine learning, structures are the type, number, and size of layers, while their

functions are the learned mechanisms represented by the corresponding weights and biases.

1 Introduction

self-supervised pre-training is to learn representations and mechanisms that are a
good initialization (i.e., staring point) for a wide range of applications.

We present two pre-training objectives for self-supervised learning in the context
of motion forecasting. The first is to learn representations of the environment in
traffic scenarios, which are invariant to moderate augmentations. This is moti-
vated by the fact that motion in similar environments tends to be similar as well.
Our second objective extends masked autoencoding by learning consistent global
representations from inputs of different modalities. Specifically, the similarity
of embeddings of motion and map data is maximized as pre-training. This is
inspired by the finding that cross-modal pre-training leads to good representations
for downstream applications, as shown by CLIP (Radford et al. 2021).

In summary, the main contributions of this work are:

* We propose two interpretable pre-training objectives for self-supervised
learning in the context of motion forecasting. Both objectives combined
with supervised fine-tuning improve forecasting precision and generalize
across different model architectures.

* We reveal the vector representation of interpretable features learned by mo-
tion forecasting models. This enables (1) modifying learned representations
atinference and (2) to formulate mechanistic interpretations of the influence
of these features. Furthermore, we use such modifications for generalization
to unseen dataset characteristics, such as different driving styles.

* We find retrocausal mechanisms in forecasting models, which connect later
parts of trajectories to earlier parts. We leverage these mechanisms to issue
goal-based and directional instructions. Remarkably, regular training for
motion forecasting without instructions leads to the ability to follow and
adapt such instructions to the scene context.

2 Fundamentals and related work

This chapter includes fundamentals and related work on motion forecasting and
representation learning. Specifically, Section 2.1 covers motion forecasting for
self-driving vehicles, while Section 2.2 includes details on self-supervised learn-
ing, mechanistic interpretability, sparse dictionary learning, neural collapse, en-
semble learning, and transformer models.

2.1 Motion forecasting for self-driving vehicles

This section covers related work on motion forecasting for self-driving vehicles.
We start by describing different ways of modeling trajectory distributions, includ-
ing marginal, conditional, and joint distributions. Afterwards, we discuss details
on metrics, datasets, context representations, and reference frames used for mo-
tion forecasting. Finally, we describe probabilistic and compressed trajectory
representations.

2.1.1 Marginal motion forecasting

A common simplification is to model future motion with marginal trajectory
distributions per agent (Nayakanti et al. 2023, Cui et al. 2023, Zhang et al. 2023).
These methods process the past motion of surrounding agents as context, but
model each agent individually in the output space. The majority of recent marginal
motion forecasting methods are transformer-based (e.g., Nayakanti et al. 2023,
Zhou et al. 2023a, Zhang et al. 2023), with fewer methods using GNNs (e.g., Cui

2 Fundamentals and related work

et al. 2023). Following the evaluation protocol of recent forecasting benchmarks
(Ettinger et al. 2021, Wilson et al. 2023), 6 trajectories per agent are typically
forecasted and non-maximum suppression (NMS) is used to generate 6 trajectories
with larger ensembles (e.g., Varadarajan et al. 2022, Nayakanti et al. 2023, Zhou
et al. 2023a).

2.1.2 Conditional motion forecasting

Related methods (Mangalam et al. 2020, Gilles et al. 2022) extend marginal fore-
casting models with auxiliary goal prediction! and condition trajectory forecasts
on predicted goals of surrounding agents. Another approach to conditional motion
forecasting is to perform marginal forecasting for the first agent and iteratively
condition subsequent forecasts on each other (Tolstaya et al. 2021, Sun et al. 2022,
Wirth 2023).

2.1.3 Joint motion forecasting

When modeling the joint trajectory distribution over all agents in a scenario,
the output space grows exponentially with the number of agents. Therefore,
related methods (Luo et al. 2023, Seff et al. 2023, Jiang et al. 2023) model joint
trajectory distributions for pairs of interacting agents. Jiang et al. (2023) perform
joint motion forecasting as denoising diffusion process and denoise sets of noisy
trajectories conditioned on the scene context. Seff et al. (2023) cast joint motion
forecasting as language modeling and learn a vocabulary of discrete motion vectors
using autoregressive roll-outs for two agents. Another line of work (Casas et al.
2020, Girgis et al. 2022, Ngiam et al. 2022, Zhou et al. 2023b) uses global latent
variables to reduce the modeling burden of a full joint distribution of all per-agent

1" Also referred to as endpoint prediction (Mangalam et al. 2020) and related to dense prediction

(Shi et al. 2022, 2024), where goals are predicted as initial trajectories.

2.1 Motion forecasting for self-driving vehicles

variables. Typically, such global latent variables are represented as query vectors
and processed by transformer modules.

We perform both marginal and joint forecasting with one model, by using marginal
forecasts as initialization for joint forecasts, see Chapter 5. This includes a
retrocausal flow of information and allows us to efficiently forecast motion in
more complex scenarios with more than two modeled agents. Furthermore, this
enables us to issue goal-based and directional instructions by modifying marginal
trajectory distributions.

2.1.4 Motion forecasting metrics

Recent motion forecasting benchmarks (Ettinger et al. 2021, Houston et al. 2021,
Wilson et al. 2023) evaluate trajectory predictions based on displacement errors.
Trajectory predictions include trajectories, associated probabilities, and optionally
positional uncertainties (see Section 2.1.7).

Conceptually, motion trajectories are temporal sequences of z- and y-coordinates.
We represent trajectories as matrices. The matrix rows are the temporal dimension
and the columns are the spatial dimension of the z- and y-coordinates

Yi1,Y12
Y21,Y2,2

RT*2 (2.1)

)

Yri,Yro

with the number of time steps 7.

The most common motion forecasting metrics are the minimum average displace-
ment error (minADE) and the minimum final displacement error (minFDE).

2 Fundamentals and related work

For predicted marginal trajectory distributions, the minADE computes the Lo-

norm between the ground truth trajectory Y and the closest of K predicted
trajectories Y (*)

, 1 .
minADE = T arg min ;

with temporal index ¢ € {1,...,T} and trajectory index k € {1,..., K}.

The minFDE is closely related, but only computed for one time step T’

minFDE = arg min | Y., - ¥;"||,- 2.3)

For joint trajectory distributions of multiple agents, these metrics are averaged
over the agent dimension as well

minADE;gin = % arg mkinz Z ||Yt(“) _ Yt(k“) ||2’ 2.4)
a t

74— v 23)

. 1 .
minFDE;i, = a1 arg mkm za: o9
with agent index a € {1,..., A}

Wilson et al. (2023) additionally use the Brier-minFDE, which accounts for the
predicted probability p per trajectory in marginal forecasts or per trajectory set
over all modeled agents in joint forecasts

Brier-minFDE = minFDE + (1 — p)%. (2.6)

Ettinger et al. (2021) compute three more metrics, the overlap rate (OR), the miss
rate (MR), and the mean average precision (mAP).

The OR metric describes the overlap rate between the predicted trajectories with
the highest corresponding probability and with all other agents, which were visible

2.1 Motion forecasting for self-driving vehicles

at the start of the forecast. They compute box intersection of 3D bounding boxes
for each future time step and count the number of intersections. The final score
is computed as number of intersections Niyr divided by the number of predicted
trajectory distributions

OR = Ninter/ Ndistr- 2.7

Hence, the score is expected to be higher for joint forecasts than for marginal fore-
casts, since joint forecasting predicts fewer distributions that cover more agents.

The MR metric counts misses on the evaluated dataset split. Ettinger et al.
(2021) define a miss as a prediction, where no trajectory is within a lateral and
a longitudinal threshold. They evaluate this at three distinct time steps using the
thresholds in Table 2.1.

Lateral thresh. Longitudinal thresh.

t=3s Im 2m
t=>5s 1.8m 3.6m
t=8s 3m 6m

Table 2.1: Lateral and longitudinal thresholds of the miss rate (MR) metric

Furthermore, they scale these thresholds according to the initial speed s of an

agent with
0.5 ifs<14m/s
Scale(s) = 4 0.5+ 0.5(5=) ifl4m/s<s<1lm/s (2.8)
1 ifs>11m/s.

The final score is the number of misses Ny;ss divided by the number of predicted
trajectory distributions
MR = Nmiss /Ndistr~ (29)

Thus, as for the OR metric, the MR score is expected to be higher for joint
forecasts than for marginal forecasts.

2 Fundamentals and related work

The mAP metric for motion forecasting is inspired by the mAP metric for object
detection (Lin et al. 2014). Ettinger et al. (2021) first assign each ground truth
trajectory to a trajectory bucket?. The buckets are based on high-level maneuvers
and include straight, straight-left, straight-right, left, right, left u-turn, right u-
turn, and stationary. Afterwards, they classify whether a trajectory is a miss
using the same logic as for the MR metric. Each trajectory classified as miss is
treated as a false positive and the others as true positives. Finally, they generate
precision-recall curves per bucket and compute the mean area under the curve
over all buckets. The Soft mAP metric is a variation that does not penalize false
positives. For further details refer to Ettinger et al. (2021).

We additionally compute jerk and tortuosity to quantify how realistic trajectory
forecasts are. The average jerk of a trajectory is computed with

1 A3Y;.
erk —
average jer T Et H 3

’ . (2.10)

The tortuosity of a trajectory is the total length of a trajectory divided by the
Euclidean distance between the first and last trajectory point,

T
Do Y2 = Yio1 |
Y1, = Y1,

tortuosity = (2.11)

2.1.5 Motion forecasting datasets

We evaluate our methods on two large-scale motion forecasting datasets, the
Waymo Open Motion Dataset (Ettinger et al. 2021) (abbrv. Waymo) and the
Argoverse 2 Motion Forecasting Dataset (Wilson et al. 2023) (abbrv. AV2F).

The Waymo dataset contains 103,000 scenarios of urban and suburban driving,
each 20 seconds long and sampled at 10Hz, totaling about 574 hours of driving

2 For joint predictions, the trajectory of the first agent is used to determine a bucket for the others

as well.

10

2.1 Motion forecasting for self-driving vehicles

data. It was recorded in six US cities, San Francisco, Los Angeles, Phoenix,
Detroit, Mountain View, and Seattle. The datset features more than 10.8M
moving objects (vehicles, pedestrians, and cyclists), providing 3D bounding boxes,
tracking IDs, and scenario labels for nuanced interactions like unprotected turns or
merges. The selected scenarios are supported by detailed 3D map data including
lane and road attributes and were specifically mined for interesting behaviors and
interaction-heavy events. The official 486,995 training, 44,097 validation, and
44,920 testing scenarios are sampled in a partially overlapping manner and contain
1.1s of past and 8s of target (i.e., future) data.

The AV2F dataset contains 250,000 scenarios, each 11 seconds long and sampled
at 10Hz, totaling about 763 hours of annotated urban driving data. It was also
recorded in six US cities, Miami, Austin, Washington D.C., Pittsburgh, Palo Alto,
and Detroit. The scenarios feature detailed HD maps, track histories for object
location, heading, velocity, and type. We follow Zhang et al. (2023) and remap
six object types to match the three agent types of the Waymo dataset. Specifically,
we combine agents of type vehicle and bus to a common vehicle type, cyclists,
motorcyclists, and riderless bicycle to the cyclist type, and reuse the pedestrian
type. Following Zhang et al. (2023), we add default bounding box sizes per
agent type (vehicle 4.7m x 2.1m x 1.7m, bus 11m X 3m X 3.5 m, pedestrian
0.85m x 0.85m x 1.75m, and cyclist 2m x 0.8 m x 1.8 m). Besides that, we
use the official 200,000 training, 25,000 validation, and 25,000 testing scenarios,
which are non-overlapping and contain 5 s of past and 6 s of future data.

2.1.6 Scene context and reference frames
In motion forecasting, scene context is modeled using scene-centric or agent-
centric reference frames and the corresponding coordinate systems.

Scene-centric approaches (Ngiam et al. 2022, Girgis et al. 2022) model all agent
states (past and future) and scene elements (road markings, lanes, and traffic
light states) using a shared global reference frame. The corresponding coordinate

11

2 Fundamentals and related work

system is typically centered at the current position of the self-driving vehicle?.
This allows for efficient processing since all inputs are encoded only once per
scene. Furthermore, this enables modeling interactions among agents in a shared
coordinate system.

Agent-centric approaches (Varadarajan et al. 2022, Shi et al. 2022, Nayakanti et al.
2023, Wang et al. 2023b) transform all scene elements and past states of surround-
ing agents into local coordinate systems. Each local coordinate system is centered
at the current position of the modeled agent. This leads to repeated computation
in scenes with many agents close to each other. However, agent-centric modeling
is pose invariant (i.e., motion with the same velocity is always represented the
same), which eliminates the need to learn geometric transformations from global
coordinates. Furthermore, agent-centric modeling is more data-efficient since it
generates multiple training samples per scene (one per modeled agent) compared
to a single sample per scene in scene-centric modeling. Therefore, agent-centric
forecasting models tend to achieve higher accuracy in benchmarks (cf. Su et al.
2022, Wagner et al. 2024b).

In addition, pairwise-relative (Cui et al. 2023, Zhang et al. 2023) and query-
centric approaches (Zhou et al. 2023a,b, Shi et al. 2024) model motion using local
reference frames and scene elements using global reference frames.

We use local agent-centric views for their improved data efficiency and a latent
context module to model interactions in a shared global latent space, see Chapter 5.

2.1.7 Probabilistic trajectory representations

A common method (e.g., Shi et al. 2022, Zhou et al. 2023a, Zhang et al. 2023) for
probabilistically modeling positional uncertainty are mixture density networks
(Bishop 1994). Mixture density networks are trained using maximum likelihood

3 Also referred to as ego-vehicle or ego-agent (Girgis et al. 2022).

12

2.1 Motion forecasting for self-driving vehicles

estimation, which is rooted in frequentist statistics*. Specifically, the learning ob-
jective is to maximize the likelihood of observing the training data given the model
parameters 6. The likelihood formulation for a mixture of assumed probability
densities D is

Loly | 2:0) = Hka 20:0) - D(un | $r1(2036)) (2.12)

with temporal index ¢t € {1,...,T}, targets y, inputs x, sample index n €
{1, ..., N}, mixture weights m, mixture index k € {1, ..., K}, and density pa-
rameters ¢. As output constraints, mixture weights are normalized using a
softmax operation and density scale parameters are clamped to positive values.
Note that the mixture weights are constant for all temporal indices, while the
density parameters change.

To use gradient decent-based optimizers, recent methods minimize the negative
log-likelihood during training

NLL(y | 2;0) = Zln(ljt |sc;9)). (2.13)

This loss formulation is prone to mode collapse, where all mixture components
converge to similar or even the same trajectory. Therefore, related methods (e.g.,
Varadarajan et al. 2022, Nayakanti et al. 2023, Zhou et al. 2023b) optimize this
objective only for the predicted trajectory closest to the ground truth’. In multiple
choice learning, this is referred to as winner-takes-all (WTA) loss (Guzman-Rivera
etal. 2012, Lee et al. 2016). Alternative solutions are top-k (Makansi et al. 2019)
or annealing-based trajectory selection (Xu et al. 2024) during training.

4 Maximum likelihood estimation is equivalent to Bayesian maximum a posteriori estimation with

a uniform prior (i.e., without incorporating prior knowledge).

5 The closeness to the ground truth is typically measured by the mean Lo-distance (Su et al. 2022).

13

2 Fundamentals and related work

Typical choices for probability densities are the densities of normal (Varadarajan
et al. 2022, Shi et al. 2022, Nayakanti et al. 2023) or Laplace distributions (Zhou
et al. 2023a,b).

We propose to model positional uncertainty with variably-shaped exponential
power distributions®, resulting in higher forecasting accuracy than with normal or
Laplace distributions, see Chapter 5.

2.1.8 Compressed trajectory representations

Most motion forecasting methods regress trajectories at a frequency of 10 Hz
(e.g., Zhou et al. 2023a, Zhang et al. 2023, Shi et al. 2024). This allows models to
forecast sudden changes between successive positions that are physically impos-
sible. Such forecasts resemble noisy versions of smooth ground truth trajectories.
Therefore, lossy compression, which smooths trajectories, can improve model-
ing trajectories. Specifically, modeling compressed trajectory representations by
appending the decompression operation to a learned model prevents the model
from forecasting noisy trajectories. Furthermore, compressed representations re-
duce modeling complexity since the output space is reduced to the number of
compressed parameters.

Related methods compress trajectories using principal component analysis (Jiang
et al. 2023), discrete cosine transforms (Mao et al. 2019), eigenvalue decomposi-
tion (Bae et al. 2023), or Bézier curves (Hug et al. 2020).

We use discrete cosine transforms to compress trajectory representations, see
Chapter 5. In contrast to Mao et al. (2019), we compress probabilistic trajectories
representations. Unlike Jiang et al. (2023), Bae et al. (2023), our method is not
data dependent, making it more generalizable.

6 Also referred to as symmetric generalized normal distributions.

14

2.2 Representation learning

2.2 Representation learning

In this section, we describe fundamentals and related work in representation learn-
ing (Bengio et al. 2013). Representation learning is a branch of artificial intelli-
gence research also referred to as deep learning. We first cover self-supervised
learning methods, which learn good representations using self-generated train-
ing targets. Afterwards, we introduce mechanistic interpretability methods that
reverse-engineer learned mechanisms and representations. Then, we describe
sparse dictionary learning with sparse autoencoders. Furthermore, we cover the
phenomenon of neural collapse in representation learning and introduce ensemble
learning. Finally, we describe transformer models.

2.2.1 Self-supervised learning

The goal of self-supervised learning is to learn good representations using self-
generated training targets. Self-supervised learning is typically used as pre-
training before supervised fine-tuning. In this way, it can provide better initial-
ization to improve downstream performance, or to reduce the amount of samples
required to learn the downstream task. In general, research in self-supervised
learning is roughly divided into generative and discriminative methods.

2.2.1.1 Generative self-supervised learning

Common generative self-supervised learning objectives are to sequentially auto-
complete data or to reconstruct randomly masked data. For example, Van
Den Oord et al. (2016), Chen et al. (2020a), Ren et al. (2024) train auto-regressive
models to auto-complete images pixel by pixel. In natural language processing,
such auto-regressive pre-training led to the success of GPT models (Radford et al.
2018, Brown et al. 2020). Similarly, masked autoencoding reconstructs randomly
masked data and is successfully applied in language modeling (Devlin et al. 2019,

15

2 Fundamentals and related work

Warner et al. 2024) and computer vision (He et al. 2022, Feichtenhofer et al.
2022).

In motion forecasting, related methods (Cheng et al. 2023, Chen et al. 2023, Yang
etal. 2023, Lan et al. 2024) use masked autoencoding to learn good representations
by reconstructing masked map and trajectory data. The random masking that
generates reconstruction targets is performed without human intervention, but
the masked modalities like trajectories and map polylines are largely based on
human annotations. Therefore, these methods rely more on human intervention
than masked autoencoding in computer vision, where the reconstruction targets
are randomly selected image (He et al. 2022) or video patches (Feichtenhofer
et al. 2022). However, the level of human intervention in pre-training for motion
forecasting is comparable to the level in language modeling (Radford et al. 2018,
Devlin et al. 2019), where the token targets are based on text written by humans.

2.2.1.2 Discriminative self-supervised learning

The goal of discriminative self-supervised learning is to learn well-separated
representations. Well-separated representations reside in a latent space, where
representations of semantically similar samples are close to each other and far
from representations with different semantics.

Contrastive learning (Chopra et al. 2005, Chen et al. 2020b, He et al. 2020)
maximizes the similarity of representations of positive examples and minimizes
the similarity to negative examples. Positive examples are differently augmented
views of the same sample. Negative examples are views of randomly selected other
samples. Oord et al. (2018) combine contrastive learning with auto-regressive
modeling. Radford et al. (2021) propose contrastive language-image pre-training
(CLIP), which learns from positive and negative examples of matching and mis-
matching language and image representations.

Related methods do not explicitly sample negative examples, but use momentum
encoders (Grill et al. 2020), distillation (Caron et al. 2021), or auxiliary regular-
ization (Zbontar et al. 2021, Bardes et al. 2022) to avoid representation collapse.

16

2.2 Representation learning

Representation collapse refers to the undesirable phenomenon that learned repre-
sentations collapse to trivial” or redundant vectors (Bardes et al. 2022, Barbero
et al. 2024).

For motion forecasting, Xu et al. (2022) use contrastive learning to learn well-
separated representations of trajectory and map data. They maximize the sim-
ilarity of trajectory and map representations from the same traffic scene, while
minimizing the similarity to representations from other scenes.

We propose a marginal motion forecasting model that learns good representations
via two types of redundancy reduction, (1) architecture-induced and (2) self-
supervised redundancy reduction, see Section 3.1. Furthermore, we introduce
a self-supervised pre-training objective specifically designed for joint motion
forecasting of multiple agents, see Section 3.2. In contrast to Xu et al. (2022),
our objectives do not explicitly sample negative examples, which are difficult to
define for map and scene-wide trajectory data.

2.2.2 Mechanistic interpretability

Research on mechanistic interpretability analyzes and interprets how learned
models work. Particularly, learned mechanisms and representations are studied
(Meng et al. 2022, Chughtai et al. 2023, Nanda et al. 2023, Kitouni et al. 2024).
Mechanistic interpretability methods do not enforce interpretability by handcraft-
ing certain rules, but instead attempt to reverse-engineer learned mechanisms. For
example, Meng et al. (2022) find that facts are stored in middle-layer feed-forward
modules of language models and modify learned facts through causal interven-
tions. Chughtai et al. (2023) show that different models learn similar features
and mechanisms for group operations. Nanda et al. (2023) reverse-engineer that
transformer models learn Fourier transforms to solve addition tasks with rotations.
Furthermore, they reveal that grokking (Power et al. 2022) arises from learning

7 Contrastive learning without negative examples leads to identical representations for all samples,

like zero vectors (cf. Bardes et al. 2022).

17

2 Fundamentals and related work

structured mechanisms that replace initial memorization components. Kitouni
et al. (2024) find that neural networks trained on nuclear physics content learn
useful representations that align with human knowledge.

We find the vector representation of interpretable features (e.g., speed, direction,
or agent type) learned by motion forecasting models and shows their impact on
forecasts. Specifically, we modify learned representations at inference and analyze
the resulting changes in motion forecasts, see Chapter 4. Furthermore, we reveal
retrocausal mechanisms in forecasting models, where modifications to later parts
of trajectories affect earlier parts as well, see Chapter 5.

2.2.3 Sparse dictionary learning

Representations learned by deep neural networks typically embed features across
multiple dimensions. This is due to the phenomena of superposition, polyse-
manticity, or distributed representations (cf. Gurnee et al. 2023, A.3). Sparse
dictionary learning® attempts to find a sparse representation of the input data to
separate embedded features.

A recent method are sparse autoencoders (SAEs) (Bricken et al. 2023, Cunning-
ham et al. 2023, Gao et al. 2025), which are used for interpretability research of
language models. SAEs learn to encode and decode learned representations using
sparse intermediate representations. The sparsity of intermediate representations
is enforced with L;-terms (Bricken et al. 2023, Cunningham et al. 2023) or top-k
functions (Gao et al. 2025). In sparse intermediate representations, features are
embedded in fewer or, ideally, one distinct dimension. Thus, sparse intermediate
representations are a form of dictionaries, where each dimension is a dictionary
entry. Templeton et al. (2024) show that learned dictionaries include interpretable
features for concepts like the Golden Gate Bridge, code errors, secrecy, or dis-
creetness.

8 Also known as sparse coding (Olshausen and Field 1997, Lee et al. 2006).

18

2.2 Representation learning

We use SAEs to extract more distinct representations of interpretable features
learned by forecasting models. Notably, this leads to more linear changes in
forecasts when modifying these features at inference, see Chapter 4.

2.2.4 Neural collapse

Papyan et al. (2020) introduce the term neural collapse to refer to a desirable
phenomenon in representation learning for classification. It describes that top-
layer representations form semantic clusters, which collapse to their cluster means
in the later epochs of training. Moreover, during training, the cluster means
become approximately equidistant and equiangular vectors when centered at the

global mean’

. This means that the norm of all mean vectors and the angles
between them become almost identical. Therefore, neural collapse describes
a distinct form of well-separated representations, where all classes are linearly

separable.

Later works show that neural collapse occurs in transfer learning (Galanti et al.
2021), self-supervised learning (Ben-Shaul et al. 2023), language modeling (Wu
and Papyan 2024), and regression (Andriopoulos et al. 2024) as well.

We measure neural collapse to show that interpretable features, like speed or
agent type, are separable in learned representations of forecasting models, see
Chapter 4. Moreover, we use metrics for neural regression collapse to estimate
the true dimensionality of learned trajectory representations, see Chapter 5.

2.2.5 Ensemble learning

Ensemble learning improves predictive performance by combining multiple base
models (Ganaie et al. 2022). Base models are typically trained with different
strategies or on different dataset splits and may have different model architectures.

9 Also known as simplex equiangular tight frame (Zhu et al. 2021, Markou et al. 2024).

19

2 Fundamentals and related work

The most common methods for ensemble learning are bagging, boosting, and
stacking.

Bagging trains base models independently on randomly sampled subsets of the
training data. At inference, the predictions of all base models are aggregated by
averaging for regression tasks or majority voting for classification tasks. This
reduces variance and prevents overfitting since such ensembles are less sensitive
to data noise.

Boosting trains base models sequentially to address the errors made by previous
based models in an iterative manner. Specifically, later base models process the
inputs and the predictions of earlier base models. At inference, the last base
model’s predictions or an aggregated form of multiple predictions are used. This
reduces bias by focusing the training on challenging samples.

Stacking involves training multiple base models, which may have different archi-
tectures, on the same data. Then, a meta-learner, typically a small neural network,
learns to best combine the base models’ predictions. This method harnesses the
strengths of different models to improve accuracy and reduce variance and bias.

Sparse mixture of experts (SMoE) is a form of ensemble learning that is popular in
modern transformer models (Fedus et al. 2022). In case of SMoE methods, base
models or sub-networks are referred to as experts. SMoEs are most closely related
to stacking methods, but introduce input-dependent routing that determines which
expert(s) are used per sample or per token. Early SMoE methods (Jacobs et al.
1991) train entire neural networks as experts, while more recent methods use
layer-wise experts (Eigen et al. 2013, Jiang et al. 2024).

For motion forecasting, an ensembling method similar to bagging and stacking is
typically used to improve benchmark performance (cf. Chai et al. 2020, Shi et al.
2022, Zhou et al. 2023a, Seff et al. 2023). These methods train multiple base
models independently with identical model architectures but different initializa-
tion seeds. At inference, the trajectory predictions are combined by clustering
the trajectory endpoints and afterwards averaging the trajectories within a cluster

20

2.2 Representation learning

(i.e., aggregation) or selecting the trajectory with the highest predicted probability
per cluster (i.e., non-maximum suppression).

We use a form of SMoE to improve benchmark performance and train three expert
models (see Section 5.2.1.3). At inference, we use a rule based router that selects
one expert model based on the agent type. This reduces the number of active
parameters per sample and removes the need for clustering to combine multiple
predictions.

2.2.6 Transformer models

The transformer model (Vaswani et al. 2017) is a deep neural network that uses
attention mechanisms and feed-forward layers to process sequential data. While
it was originally designed for language modeling, the transformer model has
since become the foundation for modern deep learning tasks, including computer
vision (Dosovitskiy et al. 2021), reinforcement learning (Chen et al. 2021b), audio
modeling (Radford et al. 2023), and robotics (Kim et al. 2024).

Information generally flows through a transformer model as follows. Input data
is split into discrete tokens, which are then converted into dense vectors (i.e.,
embeddings) by embedding layers. Afterwards, a positional encoding (e.g., a
sinosoidal (Vaswani et al. 2017) or a rotary encoding (Su et al. 2024)) or a learned
positional embedding (Radford et al. 2018, Devlin et al. 2019) is added. Then,
attention mechanisms enable the model to focus on the most relevant parts of the
embeddings, by dynamically assigning attention weights as needed for the current
prediction. Specifically, the model learns three linear projections of embeddings,
named queries @, keys K, and values V. The scaled dot-product attention
operation computes attention weights between each query and key, and multiplies
them with the values

-
attention(Q, K, V') = softmax (QK) Vv, (2.14)

key

where dj.y is the dimension of key vectors.

21

2 Fundamentals and related work

Finally, feed-forward layers that form a feed-forward network (FFN) update the
embedding vectors with further projections

FEN(z) = ReLU(W, + by)W; + by, (2.15)

with rectified linear units (ReL.U), weights W, and biases b.

Both the attention and feed-forward modules are wrapped with residual connec-
tions and layer normalization, stabilizing training and improving the gradient flow.
These modules are repeated multiple times within transformer models, allowing
each subsequent module to focus on different information.

Furthermore, a standard transformer consists of two main components: an encoder
and adecoder. The transformer encoder processes all input tokens in parallel using
the aforementioned mechanisms. The transformer decoder generates new output
tokens auto-regressively using the embeddings of the input tokens as context.
Thus, the decoder performs two types of attention operations. The first is regular
self-attention between embeddings of previously generated tokens, and the second
is cross-attention between embeddings of new tokens and embeddings of input
tokens. Specifically, the (Q matrices are generated from embeddings of new
tokens, while the K and V matrices are generated from embeddings of input
tokens.

More recent transformer models are encoder-only (e.g., Devlin et al. 2019, Doso-
vitskiy et al. 2021) or decoder-only models (e.g., Radford et al. 2018, Brown et al.
2020, Jiang et al. 2024).

For motion forecasting, the majority of recent methods is transformer-based as
well (e.g., Ngiam et al. 2022, Shi et al. 2022, Nayakanti et al. 2023, Zhou et al.
2023a, Seffet al. 2023, Zhang et al. 2023, Zhou et al. 2023b, Shi et al. 2024). These
forecasting models learn from multimodal data, which includes tokenized input
representations of trajectory, map, and traffic light data. While these methods
achieve state-of-the art performance in terms of forecasting metrics, the authors
only perform ablations on architectural choices.

22

2.2 Representation learning

Thus, it largely remains unknown, how these models learn to perform motion
forecasting or represent interpretable features internally. Therefore, we propose
methods that provide pre-training settings in which interpretable mechanisms are
more likely to be learned (see Chapter 3) and reveal the learned representation of
interpretable features (see Section 4.1) and learned mechanisms (see Section 4.2
and Section 5.2.3).

23

3 Self-supervised pre-training with
interpretable objectives

By design, self-supervised learning excels in applications with large amounts of
unlabeled data and limited labeled data (Chen et al. 2020b, Grill et al. 2020,
Brown et al. 2020). Nevertheless, recent self-supervised methods combined with
supervised fine-tuning can outperform plain supervised learning when using the
same data (Caron et al. 2021, He et al. 2022) and require shorter overall training
times (Feichtenhofer et al. 2022). This makes self-supervised pre-training a
versatile choice for improving existing methods in a wide range of applications.

This chapter covers two methods for self-supervised pre-training for motion fore-
casting. The first, RedMotion, uses the redundancy reduction principle to learn
good representations of the environment in traffic scenarios. RedMotion gen-
erates fixed-size embeddings that are invariant to moderate augmentations of
variable-size inputs, see Section 3.1. The second, JointMotion, extends masked
autoencoding by learning joint global representations from inputs of different
modalities. Specifically, the similarity of embeddings of motion and map data is
maximized as pre-training, see Section 3.2.

With both methods, we specifically pre-train transformer models (see Sec-
tion 2.2.6) for two reasons: Unlike convolutional neural networks, transformer
models have no inductive biases' for learning representations based on spatial
spatial correlations (cf. Raghu et al. 2021). Therefore, such mechanisms must
be learned from data. Furthermore, the pre-training followed by fine-tuning

1" Like translation equivariance, where shifts in input images shift learned representations in the

same manner.

25

3 Self-supervised pre-training with interpretable objectives

paradigm is successfully used to train transformer models in other domains (e.g.,
Radford et al. 2018, He et al. 2022).

3.1 Self-supervised redundancy reduction for
motion forecasting

In similar environments, such as two four-way stops with road users at similar
locations, motion tends to be similar as well. Therefore, we propose to maxi-
mize the similarity of representations for similar environments as pre-training for
motion forecasting.

We generate similar environments in a self-supervised manner by randomly aug-
menting a given environment. As augmentations, we apply moderate shift and ro-
tation operations to map and agent data. Our method then learns to generate fixed-
size embeddings that are invariant to such moderate augmentations. This includes
two types of redundancy reduction mechanisms, (1) implicit architecture-induced
redundancy reduction and (2) explicit redundancy reduction as pre-training ob-
jective. The architecture-induced redundancy reduction mechanism reduces in-
formation from variable-size inputs of agent and map data to a smaller fixed-size
embedding, see Section 3.1.1. The redundancy reduction-based pre-training ob-
jective further reduces the redundancy of embedding components. This ensures
that while maximizing the similarity of embeddings from similar environments,
the embeddings do not collapse to trivial solutions like zero vectors, see Sec-
tion 3.1.2.

To reflect the underlying redundancy reduction mechanisms, we refer to the pro-
posed transformer model as RedMotion. Figure 3.1 shows the model architecture
including the two redundancy reduction mechanisms.

26

3.1 Self-supervised redundancy reduction for motion forecasting

o
i K
Transformer) O Fm -
H H usion via cross-attention
-
-
A A
Past Trajectory
trajectory embeddings

Trajectory encoder Trajectory forecast

[JE R A
- Redundancy reduction @) -1+ (] (J [J[J (] i

‘|
@
im

‘. Local Parallel

M transformer decoder
.
i
A H

Local road graph X’ Localroad graph ~ t._.. Road env Learned

augmented X” Road env i i reduction (b)
K tokens /

Road environment encoder

Figure 3.1: RedMotion. Our model consists of two encoders. The trajectory encoder generates an
embedding for the past trajectory of the current agent. The road environment encoder gen-
erates fixed-size environment embeddings as context. We use two redundancy reduction
mechanisms to learn good representations of road environments, (a) implicit see Sec-
tion 3.1.1 and (b) explicit see Section 3.1.2. All embeddings are fused via cross-attention.
Finally, a decoder generates a distribution of future trajectories per agent. Adapted from
Wagner et al. (2024).

3.1.1 Architecture-induced redundancy reduction

The environment in traffic scenarios, which includes surrounding road users and
map data, varies in complexity. Therefore, transformer models (e.g., Nayakanti
et al. 2023, Zhang et al. 2023) or GNNs (e.g., Gao et al. 2020, Cui et al. 2023)
for motion forecasting process variable-size vector representations of the environ-
ment, where more complex environments are represented with more vectors. For
batch processing on GPUs, a fixed number of vectors is typically used as input
with a Boolean mask that masks invalid placeholders in less complex scenarios.

27

3 Self-supervised pre-training with interpretable objectives

However, our pre-training objective described in Section 3.1.2 requires fixed-size
embeddings without masked elements.” Therefore, we propose an architecture-
induced redundancy reduction mechanism that compresses information from
variable-size inputs into smaller fixed-size representations.

As shown in Figure 3.1, the road environment encoder includes local attention
mechanisms (Beltagy et al. 2020) to exchange information between the input
vectors (i.e., road env tokens). The corresponding local transformer contains
sequential blocks of local multi-head attention, LayerNorm, and MLP layers.
Additionally, the inputs of each block are added to the normalized attention
outputs and to the outputs of the MLP layers via residual connections.

The resulting road environment embeddings are then compressed into a fixed-
size representation using a regular cross-attention mechanism. In this cross-
attention mechanism, the queries are learned as fixed-size set of embedding
vectors and the keys and values are learned as projections of the variable-size
road environment embeddings. Thus, the output of this module (i.e., the road
environment descriptors) shares the size with the learned queries.

3.1.2 Redundancy reduction as pre-training objective

As mentioned in Section 2.2.1.2, discriminative self-supervised learning with
contrastive objectives (Chen et al. 2020b, Radford et al. 2021) can be counterpro-
ductive. Specifically, when randomly selected negative examples are similar to
the positive examples. An example in our application is when the positive exam-
ples are augmented versions of a protected right-turn and the negative examples
include protected right-turns as well. Supervised contrastive learning (Khosla
et al. 2020) mitigates this issue by selecting negative examples that have different
class labels than the positive examples. However, defining class labels in our

While it is technically possible to mask out elements in the cross-correlation matrix as well (cf.
Equation (3.1)), this would lead to less balanced training. In particular, embedding elements at
higher indices would be included less often in the gradient computation, since they would be
masked for the majority of less complex scenarios.

28

3.1 Self-supervised redundancy reduction for motion forecasting

application to select negative examples would require non-trivial heuristics and
ablations to answer questions like: Is a four-way stop a good negative example
for a signalized intersection?

Therefore, we propose a self-supervised learning method that does not require neg-
ative examples. Following Zbontar et al. (2021), we use the redundancy reduction
principle’ to maximized the similarity of positive examples. Let X4, X7 be
batches, where samples at the same batch index are positive examples generated
from the same environment and two random augmentation sets A and B. We use
continuous uniform distributions to randomly sample rotation augmentations in
degrees with ¢/(—10, 10) and shift augmentations in meters with 2/(—1,1).

Afterwards, the road environment encoder generates fixed-size embeddings that
represent the augmented environments (see road environment descriptors in Fig-
ure 3.1). We follow Zbontar et al. (2021) and use an MLP-based projector
to further increase the dimension of the embeddings during pre-training. The
batches of projected embeddings are referred to as Z4 and ZP. As pre-training
objective, we minimize the difference between the cross-correlation matrix C' of
the projected embeddings and the identity matrix of the same size. Formally, we

LC)=Aea » D> Cij>+ > (1=Ciy)?, 3.1

i i i

minimize

where 7, j index the cross-correlation matrix and A4 is a tunable weighting factor.
The first term reduces redundancy by minimizing the correlation between embed-
ding elements at different indices (off-diagonal elements of C'). The second term
maximizes the similarity of the two embeddings by maximizing the correlation
of embedding elements at the same index in both embeddings (on-diagonal el-
ements of C'). Notably, this objective does not require negative examples since
the redundancy reduction term ensures that embeddings do not collapse to trivial
representations like zero-vectors.

3 Barlow (2001) introduced the term in neuroscience.

29

3 Self-supervised pre-training with interpretable objectives

3.1.3 Comparison with self-supervised pre-training
methods focusing on marginal forecasting

We compare our self-supervised pre-training method with related discriminative
and generative pre-training methods. Specifically, we compare our method with
contrastive learning via PreTraM (Xu et al. 2022), self-distillation via GraphDINO
(Weis et al. 2023), and masked autoencoding via Traj-MAE (Chen et al. 2023).

Since self-supervised pre-training for motion forecasting is only recently being
developed, there are no common baseline models. Therefore, we use a modified
version of our proposed model as baseline. The architecture-induced redundancy
reduction mechanism (see Section 3.1.1) is our contribution, hence we remove
the parallel decoder in the road environment encoder for the baseline version
(see Figure 3.1). To give both models a similar capacity, we increase the hidden
dimension for the baseline from 128 to 192, resulting in a RedMotion baseline
with 9.9M trainable parameters and a RedMotion model with 9.2M parameters.

3.1.3.1 Dataset splits

We use the official training and validation splits of the Waymo and the AV2F
dataset (see Section 2.1.5) as training and validation data. Since pre-training is
particularly useful when little annotated data is available, we use 100% of the
training data for pre-training and fine-tune on only 12.5%, following common
practice in self-supervised learning (cf. Balestriero et al. 2023). In addition to
the road environment, we use the trajectories of all traffic agents from the last
1.1 seconds (Waymo) and last 5 seconds (AV2F) as input during fine-tuning for
motion forecasting. The datasets are sampled with 10 Hz, accordingly we use 11
and 50 past time steps as input.

30

3.1 Self-supervised redundancy reduction for motion forecasting

3.1.3.2 Evaluation metrics

We use the L5Kit (Houston et al. 2021) to compute displacement errors as forecast-
ing metrics (see Section 2.1.4). For the Waymo dataset, minADE and minFDE
metrics are computed at different prediction horizons of 3s and 6s, and aver-
aged. For the AV2F dataset, minADE and minFDE metrics are computed for the
prediction horizon of 6s.

3.1.3.3 Experimental setup

For PreTraM, GraphDINO, and our pre-training method, we use the same aug-
mentations described in Section 3.1.2. For Traj-MAE pre-training, we mask 60%
of the road environment tokens and train to reconstruct them. For all methods, we
train the pre-training objectives using our local road environment tokens, so that
the lane network and social context are included. For PreTraM, we evaluate two
configurations, map contrastive learning (MCL) and trajectory-map contrastive
learning (TMCL). For MCL, the similarity of augmented views of road envi-
ronments is maximized. For TMCL, the similarity of embeddings from road
environments and past agent trajectories of the same scene is maximized.

We evaluate our method with four different configurations of redundancy reduc-
tion: with mean feature aggregation (mean-ag), with learned feature aggregation
(learned-ag), with reconstruction (red-mae), and between environment and past
trajectory embeddings (env-traj). Mean-ag refers to using the mean of the road
env descriptor tokens as input to the projector in Figure 3.1. For learned-ag, we
use an additional transformer encoder layer to reduce the dimension of road env
descriptor tokens to 16 and concatenate them as input for the reduction projec-
tor. The red-mae configuration is inspired by masked sequence modeling and
a form of redundancy reduction via reconstruction. In detail, we generate two
views (X Aand XB) of road environments, randomly mask 60% of their tokens,
and reconstruct X4 from the masked version of X Z and vice versa. Since we
reconstruct cross-wise, the similarity between embedding representations of the
augmented views is maximized during pre-training. The env-traj configuration

31

3 Self-supervised pre-training with interpretable objectives

is inspired by TMCL and reduces the redundancy between embeddings of past
agent trajectories and road env descriptor tokens. Therefore, this configuration is
inherently cross-modal but requires annotations of past agent trajectories.

For pre-training and fine-tuning, we use AdamW (Loshchilov and Hutter 2019)
as the optimizer. The initial learning rate is set to 10~* and reduced to 10~6
using a cosine annealing learning rate scheduler (Loshchilov and Hutter 2016).
We pre-train and fine-tune all configurations for 4 hours and 8 hours using data-
parallel training on 4 A100 GPUs. Following Konev et al. (2022), we minimize
the negative multivariate log-likelihood loss for fine-tuning on motion prediction.

3.1.3.4 Results

Table 3.1 shows the results of this experiment. Overall, all pre-training methods
improve the prediction accuracy in terms of minFDE and minADE. For our
baseline model, our explicit redundancy reduction reduction mechanism (see
Section 3.1.2) ranks second for the minFDE metric, marginally behind Traj-
MAE and PreTraM in its TMCL configuration (only 0.3% worse). In terms of
minADE, our mechanism ranks third behind Traj-MAE and PreTraM-TMCL.
However, our mechanism is much less complex and has less data requirements.
Compared to Traj-MAE, no random masking and no complex reconstruction
decoder (transformer model) are required. Compared to PreTraM-TMCL, no past
trajectory data is required.

When comparing to methods with similar requirements, our method outperforms
PreTraM-MCL (-8.8% vs. -15.5% in minFDE) and GraphDINO (-8.3% vs.
-15.5% in minFDE). For PreTraM-MCL, the question arises: What is a good
negative road environment? Road environments of agents close to each other
(e.g., a group of pedestrians) are much more similar than, for example, images
of different classes in ImageNet (e.g., of cars and birds). During self-supervised
contrastive pre-training, all samples in a batch other than the current one are
treated as negative examples. Therefore, the pre-training objective becomes to
learn dissimilar embeddings for rather similar samples.

32

3.1 Self-supervised redundancy reduction for motion forecasting

Dataset Model Pre-training Config minFDE | minADE |
None 1.371 £0.018 0.670 £ 0.009
Traj-MAE* (Chen et al. 2023) 1.154 £0.002 -15.8% 0.542 £ 0.001 -19.1%
Baseline PreTraM (Xu et al. 2022) MCL 1.250 £ 0.012 -8.8% 0.576 £ 0.004 -14.0%
PreTraM (Xu et al. 2022) TMCL* 1.154 4+ 0.001 -15.8% 0.525 +0.001 -21.6%
Waymo GraphDINO (Weis et al. 2023) 1.257 £0.010 -8.3% 0.586 £ 0.003 -12.5%
ours mean-ag 1.159 +0.006 -15.5% 0.557 +0.002 -16.9%
ours mean-ag 1.111 +0.002 -19.0% 0.568 + 0.001 -15.2%
. ours learned-ag 1.098 4 0.001 -19.9% 0.555 +0.001 -17.2%
RedMotion
ours red-mae 1.092 + 0.002 -20.4% 0.557 £ 0.001 -16.9%
ours env-traj* 1.058 + 0.009 -22.8% 0.529 + 0.004 -21.0%
None 2.353 £ 0.024 1.157 + 0.004
AV2F RedMotion ours mean-ag 2285+ 0.010 -2.9% 1.140 £0.003 -1.5%
ours env-traj* 2.265 4+ 0.020 -3.7% 1.106 £ 0.008 -4.4%

Table 3.1: Comparing pre-training methods for motion prediction. Best scores are bold, second
best are underlined. We evaluate on the Waymo Open Motion (Waymo) and the Argoverse
2 Forecasting (AV2F) datasets. We report mean = standard deviation of 3 training runs per
method and configuration. All methods are pre-trained on 100% and fine-tuned on 12.5%
of the training sets. *Denotes methods that require past trajectory annotations. Adapted
from Wagner et al. (2024).

For GraphDINO, we hypothesize that more hyperparameter tuning could further
improve the performance (e.g., loss temperatures or teacher weight update decay).

When we combine our two redundancy reduction mechanisms a and b (lower
group in Table 1), our RedMotion model outperforms all related methods by at
least 4% in minFDE and achieves similar performance in the minADE metric.
We hypothesize that the reason for the comparable worse performance in the
minADE score is our trajectory decoding mechanism. Our MLP-based motion
head regresses all points in a trajectory at once, thus individual points in a predicted
trajectory are less dependent on each other than in recurrent decoding mechanisms.
When fine-tuning, the error for the final trajectory point is likely to be higher than
for earlier points and our model can learn to focus more on minimizing this loss
term. Therefore, if pre-training improves the learning behavior of our model, this
will affect the minFDE score more.

When comparing different configurations of our combined redundancy reduction
objective (middle block in Table 3.1), the env-traj configuration performs best

33

3 Self-supervised pre-training with interpretable objectives

and the mean-ag configuration performs worst. However, similar to PreTraM-
TMCL our env-traj configuration learns to map corresponding environment em-
beddings and past trajectory embeddings close to each other in a shared embedding
space. Therefore, past trajectory data is required, which makes this objective less
self-supervised and rather an improvement in data (utilization) efficiency. The
learned-ag and red-mae configurations perform both better than the mean-ag con-
figuration (1% improvement in minFDE and 2% improvement in minADE) and
rather similar to each other. Since the learned-ag configuration has a lower com-
putational complexity (no transformer-based reconstruction decoder but a simple
MLP projector), we choose this pre-training configuration in the following.

On the AV2F dataset (lower block in Table 3.1), we compare our RedMotion
model without pre-training versus with our mean-ag and env-traj pre-training
configurations. Our mean-ag configurations improves the minFDE score by 2.9%
and our env-traj configurations by 3.7%. This shows that our pre-training methods
improve forecasting metrics on both datasets. Overall, the achieved displacement
errors are higher for the AV2F dataset than for the Waymo dataset, since the
metrics are not averaged over multiple prediction horizons, and likely because the
AV?2F training split is smaller (about 1M vs. 2M agent-centric samples).

3.1.4 RedMotion as standalone model without
pre-training

Our RedMotion model can also be trained without pre-training to allow a direct
comparison with related work on motion forecasting that does not perform pre-
training. In this section, we compare RedMotion with other recent models for
marginal motion forecasting on the Waymo Motion Prediction Challenge. Follow-
ing the evaluation protocol of Zhang et al. (2023), we compare our method against
real-time capable methods* without extensive post-processing (e.g., MTR adv-ens

4 The real-time capability of our model is shown in Appendix A.1.

34

3.1 Self-supervised redundancy reduction for motion forecasting

aggregates 6 trajectories from an ensemble of 7 models with 64 trajectories for
each agent per model, see Section 2.2.5).

As described in the previous section, our model with a basic MLP-based mo-
tion decoder (mlp-dec configuration) tends to focus more on later than on earlier
trajectory points, which worsens minADE and mAP scores. Therefore, we ad-
ditionally train a version of our model with a transformer decoder (tra-dec) as
motion decoder, which is common among recent related methods (e.g., Girgis
et al. 2022, Nayakanti et al. 2023, Zhang et al. 2023).

In detail, we use a decoder with learned query tokens, which are transformed
into trajectory proposals via attending to fused trajectory and road environment
embeddings. For both variants, we use our architecture-induced redundancy
reduction mechanism to learn road environment embeddings. As embedding
aggregation method, we use the learned-ag configuration from Section 3.1.3.3.

We use 100% of the Waymo Open Motion training set for training to compare
the performance of our model with that of other recent models. We perform
evaluation on the validation and test splits.

As post-processing, our method does not require trajectory aggregation (see Sec-
tion 2.2.5). Thus, we follow Konev (2022) and modify only the predicted proba-
bilities of similar trajectories to improve mAP scores.

3.1.4.1 Results

Table 3.2 shows the performance of our model in comparison to other motion
forecasting models. The metrics with suffix "@8s" are computed for the whole
prediction horizon of 8 s, the others are the average for the prediction horizons of
3s, 5, and 8 s (as in the official Waymo benchmark).

On the validation split, our model with a basic MLP-based motion decoder
achieves the second lowest minFDE@8s score. Our model with a transformer
decoder as motion decoder achieves the second best scores for the minFDE,
minADE, and minADE@8s metrics. This shows that a transformer decoder adds

35

3 Self-supervised pre-training with interpretable objectives

modeling capacity and prevents our model from focusing too much on the final
trajectory points during training.

On the test spilt, our model with a transformer decoder ranks second in terms
of minADE and minADE@8s. For the main challenge metric, the Soft mAP
score, our model outperforms all comparable models. For reference, methods
that employ ensembling (see Section 2.2.5) achieve higher mAP scores yet com-
parable minADE and minFDE scores to our method. Therefore, they match our
performance on average and are marginally better in assigning confidence scores,
which likely stems from their extensive post-processing.

Split Method Config minFDE | minADE | minFDEGS8s | minADEQS8s | SoftmAP 1
MotionCNN (Konev et al. 2022) ResNet-18 1.640 0.815 - - -
MotionCNN (Konev et al. 2022) Xeption71 1.496 0.738 - - -
MultiPath++ (Varadarajan et al. 2022) - - 2.305 0.978 -
Scene Transformer (Ngiam et al. 2022) marginal 1.220 0.613 2.070 0.970 -

Val HPTR (Zhang et al. 2023) 1.092 0.538 1.877 0.874 -
RedMotion (ours) mlp-dec 1.271 0.701 1.952 1.110 -
RedMotion (ours) tra-dec 1.137 0.550 1.987 0.901 -
MTR* (Shi et al. 2022) 1.225 0.605 - - -
MTR++* (Shi et al. 2024) 1.199 0.591 - - -
MotionCNN (Konev et al. 2022) Xeption71 1.494 0.740 - - -
Scene Transformer (Ngiam et al. 2022) marginal 1.212 0.612 2.053 0.980 -
HDGT (Jia et al. 2023) 1.107 0.768 1.898 1.284 0.371
MPA (Konev 2022) 1.251 0.591 2.202 0.981 0.393

Test HPTR (Zhang et al. 2023) 1.139 0.557 1.954 0.910 0.397
RedMotion (ours) tra-dec 1.165 0.564 2.024 0.925 0.401
MTR* (Shi et al. 2022) 1.221 0.605 2.067 0.983 0.422
MTR++* (Shi et al. 2024) 1.194 0.591 2.024 0.961 0.433
Wayformer** (Nayakanti et al. 2023) ~ multi-axis 1.128 0.545 1.942 0.892 0.434
MTR** (Shi et al. 2022) adv-ens 1.134 0.564 1.917 0.915 0.459

Table 3.2: Comparing marginal motion forecasting models. The metrics with suffix "@8s" are
computed for the whole prediction horizon of 8s, the others are the average for the
prediction horizons of 3s, 5, and 8s (as in the official Waymo benchmark). Best scores
are bold, second best are underlined. *Denotes methods that require trajectory aggregation
as post-processing. **Denotes methods that employ ensembling. Adapted from Wagner
et al. (2024).

36

3.1 Self-supervised redundancy reduction for motion forecasting

3.1.5 AQualitative results

Figure 3.2 shows marginal motion forecasts for a vehicle. Dynamic vehicles
are marked as blue boxes, pedestrians as orange boxes, cyclists as green boxes,
and static agents as grey boxes. Road markings are shown in white, traffic lane
centerlines are black lines, and bike lane centerlines are red lines. The past
trajectory of the ego agent is a dark blue line. The ground truth trajectory is cyan
blue, the predicted trajectories are color-coded based on the associated probability
score using the colormap on the left (unnormalized).

max

min . . .
Road environment Region of interest

Figure 3.2: Vehicle motion forecasts. Dynamic vehicles are marked as blue boxes, pedestrians as
orange boxes, cyclists as green boxes, and static agents as grey boxes. Road markings are
shown in white, traffic lane centerlines are black lines, and bike lane centerlines are red
lines. The past trajectory of the ego agent is a dark blue line. The ground truth trajectory
is cyan blue, the predicted trajectories are color-coded based on the associated probability
using the viridis colormap on the left. Adapted from Wagner et al. (2024).

Figure 3.3 shows motion forecasts for a cyclist. This plot shows an error case as
the blueish trajectory pointing downwards enters the inbound lane. However, the
predicted probability is fairly low.

Figure 3.4 shows motion forecasts for a pedestrian. Compared to the trajectories
of vehicles and cyclists, the trajectories of pedestrians are more diffuse.

37

3 Self-supervised pre-training with interpretable objectives

min . . .
Road environment Region of interest

Figure 3.3: Cyclist motion forecasts. We use the same color-coding as in Figure 3.2. This plot
shows an error case as the blueish trajectory pointing downwards enters the inbound lane.
Adapted from Wagner et al. (2024).

max

mn Road environment Region of interest

Figure 3.4: Pedestrian motion forecasts. We use the same color-coding as in Figure 3.2. Adapted
from Wagner et al. (2024).

38

3.2 Multimodal self-supervised learning for joint motion forecasting

3.2 Multimodal self-supervised learning for

joint motion forecasting

Marginal motion forecasting is a common and computationally efficient simpli-
fication (see Section 2.1.1). However, because it models agents individually in
the output space, interaction modeling is limited. Therefore, in this section, we
propose JointMotion, a method for pre-training joint forecasting models with
improved interaction modeling.

Joint motion forecasting methods model motion for multiple agents jointly by
predicting joint trajectory distributions (see Section 2.1.3). This requires global
(i.e., scene-level) representations as context. Therefore, we propose learning
scene-level representations by connecting motion and environment representations
(see Figure 3.5 (a)). We complement this with an instance-level objective that
reconstructs masked polylines of multiple modalities (see Figure 3.5 (b)).

(2)

Motion sequences Joint scene represemation Environment context

®) [w bk oa v, Oy ncal b e b3, g et
- ------- [mask].. ® {mask}------- ® O [mask]-----

Figure 3.5: JointMotion. (a) Connecting motion and environments: Our scene-level objective learns
joint scene representations via non-contrastive similarity learning of motion sequences
M and environment context E. (b) Masked polyline modeling: Our instance-level
objective refines learned representations via masked autoencoding of multimodal polyline
embeddings (i.e., motion, lane, and traffic light embeddings). Adapted from Wagner et al.
(2024a).

39

3 Self-supervised pre-training with interpretable objectives

3.2.1 Connecting motion and environments

Motion forecasting models should learn which motion is likely in a given envi-
ronment, including traffic rules and interaction among road users. We propose
pre-training for this task by aligning motion and environment embeddings. This
scene-level objective aims to learn a joint embedding space that connects motion
and environment context. Consequently, models implicitly learn which motion
fits a given environment and vice versa.

In detail, we use the past motion of all modeled agents to generate a scene-level
motion embedding (ZM in Figure 3.5, where Z* is a batch of embeddings)
and combine lane data and traffic light states to a corresponding environment
embedding (ZF in Figure 3.5). These embeddings are generated by modality-
specific encoders (i.e., for motion, lane, and traffic light data) followed by global
average pooling and an MLP-based projector (Proj in Figure 3.5). We perform
average pooling on the intermediate embeddings (H} and HF in Figure 3.5)
to be invariant to variations in the number of agents and the complexity of
environments. Following Fini et al. (2023), we use two separate MLPs with
LayerNorm and ReLU activation functions as projectors, each having a hidden
dimension of 2048 and an output dimension of 256. We use the modality-specific
encoders of recent motion prediction models (e.g., Ngiam et al. (2022), Zhang
et al. (2023)) without modifications and remove the additional projector after
pre-training.

The joint embedding space is learned by similarity learning via redundancy re-
duction. Following Zbontar et al. (2021), we reduce the redundancy of vector
elements per embedding (i.., for ZM and ZF individually) and maximize their
similarity by approximating the cross-correlation matrix C of ZM and ZF to the
identity matrix with the same shape:

Lome(C) = Aea Y Y Cif” + Y (1= Ci)?, (3.2)

i jFi i

40

3.2 Multimodal self-supervised learning for joint motion forecasting

where ¢, j index the cross-correlation matrix. The redundancy reduction term is
scaled by A and ensures that individual embedding elements capture different
features. Therefore, it prevents representation collapse with trivial solutions for
all embeddings across all scenes (e.g., zero vectors, cf. Bardes et al. (2022)).
Non-trivial yet identical solutions are not explicitly prevented, but are unlikely, as
empirically shown by Zbontar et al. (2021).

Similar to the RedMotion pre-training (see Section 3.1.2), this objective is non-
contrastive, which removes the need to define negative examples. Unlike the
RedMotion pre-training, this objective maximizes the similarity of embeddings
from different modalities. Specifically, embeddings of motion and environment
context rather than embeddings of augmented views of the same environment,
removing the requirement to develop suitable augmentations as well.

3.2.2 Masked polyline modeling

Scene-level representations are well suited to provide an overview of traffic scenes,
but lack instance-level details. For example, the exact position of traffic agents
or lane curvatures. Therefore, we combine our scene-level objective with the
instance-level objective of masked polyline modeling (MPM) to refine learned
representations.

Inspired by masked sequence modeling (Devlin et al. 2019, He et al. 2022), we
mask elements of polylines representing past motion sequences, lanes, and past
traffic light states and learn to reconstruct them from non-masked elements and
environment context. As shown in Figure 3.5 (b), we represent traffic agents with
10 features rather than just past positions (as in Chen et al. (2023), Cheng et al.
(2023)). In detail, we reconstruct agent positions (z, y), dimensions (I, w, h),
acceleration a, velocity v, yaw angle fy,,, temporal indices n, and classes ca
(i.e., vehicle, cyclist, or pedestrian). For lanes, we reconstruct positions (x, y) and
lane classes cp.. For traffic light state sequences, we reconstruct positions (z, y),
temporal indices n,, and state classes crr, (i.e., green, yellow, or red). Following
Zhang et al. (2023), we represent positions, dimensions, accelerations, velocities,

41

3 Self-supervised pre-training with interpretable objectives

and yaw angles as float values and temporal order and agent classes as boolean
one-hot encodings®.

For models with late or hierarchical fusion mechanisms (e.g., Ngiam et al. (2022),
Zhang et al. (2023)), we use the modality-specific encoders to generate em-
beddings per modality (see Figure 3.6 (a)). Afterwards, we concatenate these
embeddings and use a shared local decoder to reconstruct masked sequence el-
ements from non-masked elements and context from other modalities. As local
decoder, we use transformer blocks with PreNorm (Nguyen and Salazar 2019),
local attention (Beltagy et al. 2020) with an attention window of 32 tokens, 8
attention heads, rotary positional encodings (Su et al. 2024), and feed-forward
layers with an input dimension of 256 and a hidden dimension of 1024.

For models that employ early fusion mechanisms (e.g., Nayakanti et al. (2023)),
we use learned queries and a shared decoder to reconstruct the input sequences
(see Figure 3.6 (b)). Such models learn a compressed latent representation for
multi-modal input. Therefore, we use learned queries in the same number as input
tokens to decompress these representations and reconstruct the input sequences.
We use a regular cross-attention mechanism between the learned queries and
compressed latent representations and a local self-attention mechanism within the
set of learned queries. The resulting transformer blocks have the same structure
and hyperparameters as in the late fusion setup described above.

(a)

® O ik

(b)
HE W mask) |

Shared
local
decoder

Shared
local
decoder

Shared
encoder

[X] ® O

L encoder

I |
Learned
queries

@ (mask] @——| TL encoder

[X J @ (mask]

Figure 3.6: Adaptive decoding for masked polyline modeling with late and early fusion encoders.
(a) Late fusion with modality-specific encoders for agents (A encoder), lanes (L), and
traffic lights (TL). (b) Early fusion with a shared encoder for all modalities. Compressed
features are decoded using learned query tokens. Adapted from Wagner et al. (2024a).

5 For practical reasons, these are later converted to float arrays to concatenate them to the other

features and efficiently process them on GPUs.

42

3.2 Multimodal self-supervised learning for joint motion forecasting

For both variants, we use random attention masks for masking and a masking ratio
60%. As training target, we minimize the Huber loss between the reconstructed
polylines and the input polylines

Lyvpm = AaLa + ALLL + AL (3.3)

If not specified otherwise, we set Ay = A\ = A = 1.

3.2.3 Comparison with self-supervised pre-training
methods focusing on joint forecasting

We compare our JointMotion method with recent self-supervised pre-training
methods for motion forecasting using the Waymo Open Motion dataset (Ettinger
et al. 2021). Specifically, we compare our method with contrastive learning via
PreTraM (Xu et al. 2022) and masked autoencoding with Forecast-MAE (Cheng
et al. 2023) and Traj-MAE (Chen et al. 2023).

3.2.3.1 Motion forecasting model

We pre-train and fine-tune the well-established Scene Transformer (Ngiam et al.
2022) model on the Waymo training split. We use the publicly available im-
plementation by Zhang et al. (2023) with 3 modality-specific encoders (i.e., for
agent, lane, and traffic light data). Adapted to the complexity per modality, we
encode traffic light features with 1, agent features with 3, and lane features with 6
transformer blocks.

3.2.3.2 Pre-training
For all methods, we add a pre-training decoder for late fusion models (see Fig-

ure 3.6) with 3 transformer blocks and the hyperparameters described in Sec-
tion 3.2.2. For our JointMotion method, we additionally add two projectors for

43

3 Self-supervised pre-training with interpretable objectives

scene-level representations as described in Section 3.2.1. For PreTraM, we follow
its trajectory-map contrastive learning configuration and add two linear projection
layers as projectors for trajectory and map embeddings. For Forecast-MAE, we
use a masking ratio of 60% and reconstruct positions of lane polylines and past
trajectories by minimizing the MSE loss. We exclude future trajectories, since
self-supervised learning by design does not use the same labels as the intended
downstream task (cf. Balestriero et al. (2023)). For Traj-MAE, we use a masking
ratio of 60% and reconstruct positions of lane polylines and past trajectories by
minimizing the corresponding Huber loss. For our method, we minimize the joint
loss of our proposed objectives

LiointMotion = AcMELcME + Lnvipu- 3.4

We set A\cmg = 0.01 and following Zbontar et al. (2021) the weight of the
redundancy reduction term Aq = 0.005.

3.2.3.3 Fine-tuning

For all methods, we replace the pre-training decoder with a shared global decoder
and learned anchors for K = 6 future trajectories. We initialize the modality-
specific encoders with the learned weights from pre-training and do not freeze any
weights during fine-tuning. We fine-tune the Scene Transformer model using its
joint configuration and hard loss assignment. Accordingly, the loss is computed
for the best® scene-wide joint prediction mode. As post-processing, we follow
Konev (2022) and adjust the predicted probabilities of redundant forecasts.

3.2.3.4 Training time, hardware, and optimizer

For all methods, we pre-train for 10 hours and fine-tune for 23.5 hours using
a training server with 4 A100 GPUs. For pre-training and fine-tuning, we use

6 Measured as lowest Lo-distance to the ground truth.

44

3.2 Multimodal self-supervised learning for joint motion forecasting

AdamW (Loshchilov and Hutter 2019) as optimizer with an initial learning rate
of 1 x 10~* and a step learning rate scheduler with a reduction rate of 0.5 and a
step size of 25 epochs.

3.2.3.5 Results

Table 3.3 shows the results of this experiments. Explicit scene-level objectives
(i.e., PreTraM (Xu et al. 2022) and our JointMotion) lead to better and more
balanced performance across all agent types, while implicit scene-wide masked
autoencoding with Forecast-MAE or Traj-MAE tends to focus more on the pedes-
trian class than on the others (see mAP scores). Therefore, it is likely that explict
scene-wide objectives enforce learning interactions between varying agent types
more.

Traj-MAE and our method without the objective of connecting motion and en-
vironments (JointMotion w/o CME) achieve better scores than Forecast-MAE.
Consequently, reconstructing individual elements of polylines improves represen-
tations more than reconstructing whole polylines.

The superior performance of JointMotion w/o CME compared to Traj-MAE
indicates that extending the motion feature set and reconstructing traffic light
states as well further improves learned representations.

Our method without masked polyline modeling (JointMotion w/o MPM) performs
on par with PreTraM, indicating that redundancy reduction can replace negative
examples for scene-level similarity learning.

Overall, pre-training with both proposed objectives (i.e., last row in Table 3.3)
leads to the best scores across all agent types. This shows that the combination
of our objectives works best.

Figure 3.7 further highlights the complementary nature of our two objectives
(CME and MPM). Specifically, the reconstruction of past traffic light states is
learned very similar with both configurations. The reconstruction loss for past
agent motion converges more slowly with JointMotion pre-training, but reaches

45

3 Self-supervised pre-training with interpretable objectives

L. mAP 1 minADE | minFDE |
Pre-training
avg cye ped veh cye ped veh cye ped veh

None 0.1596 0.1465 0.1821 0.1504 1.522 0.698 1.486 3.653 1.654 3.476
Forecast-MAE (Cheng et al. 2023) 0.1592 0.1420 0.1873 0.1482 1.529 0.694 1.423 3.664 1.652 3.343
Traj-MAE (Chen et al. 2023) 0.1677 0.1492 0.1917 0.1623 1.421 0.708 1.338 3.320 1.647 3.090
PreTraM (Xu et al. 2022) 0.1689 0.1724 0.1775 0.1569 1.488 0.711 1.461 3.489 1.657 3.374
JointMotion w/o MPM 0.1689 0.1762 0.1777 0.1528 1.478 0.684 1.406 3.507 1.608 3.287
JointMotion w/o CME 0.1784 0.1652 0.1903 0.796 1457 0700 1317 3363 1.630 3.033
JointMotion 0.1940 0.1970 0.1964 0.1886 1.343 0.677 1.288 3.095 1.583 2.941

Table 3.3: Comparison of self-supervised pre-training methods for joint motion forecasting. All
methods are used to pre-train Scene Transformer models (Ngiam et al. 2022) on the Waymo
training split and are evaluated on the validation split. Agent types: cyclist (cyc), pedestrian
(ped), and vehicle (veh). Best scores are bold, second best are underlined. Adapted from
Wagner et al. (2024a).

similar values as well. However, with our scene-level objective (CME), the lane
reconstruction loss likely converges to a higher value (see right plot in Figure 3.7).
We hypothesize that models pre-trained with our scene-level objective tend to
focus more on the overall lane structure than on specific details of individual lane

polylines.
_2 —2 -2
5010 g 10 g 10
6
4 6
5 & 3
4
3 2
Ste 0 Ste; 2 Ste
0 2 4 P 0 2 4 6 P 0o 2 4 P
-10% -10% .10

Figure 3.7: Loss plots of our complementary pre-training objectives. The blue curve represents
JointMotion, while the green curve represents JointMotion w/o CME. L stands for lanes,
TL stands for traffic lights, and A stands for agents. Adapted from Wagner et al. (2024a).

Figure 3.8 shows that Scene Transformer models pre-trained with our JointMotion
method achieve higher mAP scores on the Waymo dataset than models trained
from scratch, even in a shorter wall training time (pre-training + fine-tuning vs.
training from scratch). This aligns with the finding by Feichtenhofer et al. (2022)
that self-supervised pre-training can reduce overall training times.

46

3.2 Multimodal self-supervised learning for joint motion forecasting

mAP
l«— Pre-training Fine-tuni
Iraining from scratch

0.2

0.15 -

|t

0 5 10 15 20 25 30

Time in hours

Figure 3.8: Accelerating and improving training via self-supervised pre-training. Scene Trans-
former models pre-trained with JointMotion achieve higher mAP scores on the Waymo
dataset than models trained from scratch, even in a shorter total wall training time (pre-
training + fine-tuning vs. training from scratch). Adapted from Wagner et al. (2024a).

3.2.4 Comparing scene-level pre-training methods

In this experiment, we further compare the scene-level objectives PreTraM (Xu
et al. 2022) and JointMotion. We train Scene Transformer (Ngiam et al. 2022),
HPTR (Zhang et al. 2023), and a joint configuration of Wayformer (Nayakanti
et al. 2023) to cover all common types of environment representations in motion
prediction (i.e., scene-centric, pairwise relative, and agent-centric).

3.2.4.1 Experimental setup

For Scene Transformer, we use the same configuration as in the previous exper-
iment (see Section 3.2.3). For HPTR, we analogously add 3 modality-specific
encoders and use a shared decoder for K = 6 trajectories per modeled agent.
For the joint configuration of Wayformer, we follow Jiang et al. (2023) and use
a shared encoder for early fusion, which compresses the multi-modal input to
128 embeddings. We concatenate multiple such agent-centric embeddings with
positional and rotation information into a common reference frame and use a
shared decoder to predict joint motion modes. For pre-training the Wayformer
model, we add our decoder for early fusion configurations (see Figure 3.6). The
Wayformer model is not pre-trainable with PreTraM since an instance-level objec-
tive is required to decode the modality-specific tokens from fused representations
(cf. Section 3.2.2). For all models, we employ the same hardware, training time,

47

3 Self-supervised pre-training with interpretable objectives

optimizer, and learning rate scheduling as in the previous experiment (see Sec-
tion 3.2.3). We evaluate all configurations on the interactive validation split of
the Waymo dataset and on the AV2F dataset (see Section 2.1.5).

3.2.4.2 Results

Table 3.4 shows the results of this experiment. Our JointMotion method con-
sistently outperforms PreTraM using different models with varying environment
representations and fusion mechanisms. Our method improves all models, while
the improvement of the scene-centric Scene Transformer model is most significant
(e.g., 12% lower minFDE) and the improvement of the agent-centric Wayformer
model is least significant (e.g., 3% lower minFDE). Hence, the improvements are
inversely proportional to the sample efficiency of the models. In scene-centric
modeling, one sample is generated per scene, whereas in agent-centric modeling,
one sample is generated for each modeled agent within a scene. This aligns with
the finding that fine-tuning with more samples generally reduces the value of
pre-training (Zoph et al. 2020).

Dataset Model (config) Pre-training minFDE | minADE | MR | OR |

None 3.6715 1.5255 0.7372 0.2868
Scene Transformer ~ PreTraM (Xu et al. 2022) 3.6508 -0.57% 1.5415 1.05% 0.7385 0.18% 02915 1.64%
JointMotion 3.2400 -11.75% 1.3830 -9.36% 0.7090 -3.82% 0.2847 -0.73%

Waymo None 2.6003 1.1682 0.6030 0.2331
HPTR PreTraM (Xu et al. 2022) 2.5049 -3.66% 1.0981 -5.99% 0.5863 -2.78% 0.2345 0.60%
JointMotion 2.4006 -7.68% 1.0564 -9.58% 0.5591 -7.28% 0.2297 -1.46%

. None 2.3529 1.0209 0.5461 0.2273

Wayformer (joint)) .

JointMotion 2.2823 -3.00% 0.9939 -2.64% 0.5270 -3.50% 0.2143 -5.72%

AV2F HPTR N(.me) 22550 1.1380 - 0.0988
JointMotion on Waymo 2.1530 -4.53% 1.1370 -0.09% - 0.1025 3.75%

Table 3.4: Comparing scene-level pre-training methods. All metrics are computed using the
Waymo Open Motion interactive (Waymo) and Argoverse 2 Forecasting (AV2F) validation
splits. Best scores are bold. Adapted from Wagner et al. (2024a).

Unlike PreTraM, the proposed adaptive pre-training decoder (Figure 3.6) com-
bined with our instance-level objective (Section 3.2.2) enable our method to
adapt to models with early fusion mechanisms (e.g., Wayformer). Specifically,

48

3.2 Multimodal self-supervised learning for joint motion forecasting

modality-specific masked polyline modeling with learned queries in the same
number as input tokens enables our method to decode modality-specific tokens
(i.e., agent, lane, and traffic light tokens) from compressed latent representa-
tions. This is particular relevant since the current state-of-the-art methods’ on the
Argoverse 1 Forecasting (ProphNet (Wang et al. 2023b) via AiP tokens) and Ar-
goverse 2 Forecasting (QCNeXt (Zhou et al. 2023b) via query-centric modeling)
benchmarks rely on fusion mechanisms with compressed latent representations
as well.

Furthermore, our pre-training leads to comparable improvements on the inter-
active and the regular validation splits (see Table 3.3), while pre-training with
PreTraM leads to smaller improvements on the interactive validation split. We
hypothesise that with our additional instance-level objective, more fine-grained
trajectory details are learned, which is more important for close trajectories of
interacting agents.

The lowest block in Table 3.4 shows that our method leads to transferable repre-
sentations. Specifically, pre-training on the Waymo dataset improves fine-tuning
on the AV2F dataset.

7 Asof Sep 27, 2024.

49

4 Interpretable control vectors for
motion forecasting

Self-supervised pre-training with interpretable objectives is a step toward mech-
anistic interpretability of learned models. However, it does not reverse-engineer
learned mechanisms; rather, it provides a training setting in which interpretable
mechanisms are more likely to be learned.

In this chapter, we introduce Words in Motion, a mechanistic interpretability
method that reveals (1) the learned representations of interpretable features like
speed or agent type and (2) how these features affect motion forecasts of trans-
former models.

Therefore, our method enables mechanistic interpretations and generalization to
unseen dataset characteristics, like slower slower driving styles by modifying
speed features (see Section 4.7).

51

4 Interpretable control vectors for motion forecasting

=
T

Avehicleis

moving right ata Motion T
moderate speed tokens
while decelerating. Probe m.

Generic motion encoder

(a) Interpretable categorical features (b) Analyzing and modifying hidden states

(c) Modifying hidden states leads to sensible changes in motion forecasts

Figure 4.1: Words in Motion. (a) Inspired by words in natural language, we define categorical
features with interpretable states. (b) We measure whether these features are
embedded in the hidden states H of transformer models with linear probes. Furthermore,
we use our categorical features to fit control vectors V4 that allow for modifying hidden
states at inference. (c¢) Such modifications lead to sensible changes in motion forecasts,
indicating that the analyzed features are functionally important.

4.1 Neural collapse toward interpretable
features

Papyan et al. (2020) introduce the term neural collapse to describe that deep
learning models often learn a distinct form of well-separated representations (see
Section 2.2.4).

52

4.1 Neural collapse toward interpretable features

We use neural collapse as metric of interpretability and analyze representations
learned by recent transformer models for motion forecasting. Precisely, we mea-
sure neural collapse toward interpretable features in learned motion representa-
tions (i.e., hidden states H in Figure 4.1 (b)). Following Ben-Shaul et al. (2023)',
we measure neural collapse using linear probes (Alain and Bengio 2017). This fo-
cuses the analysis of neural collapse toward our categorical features on the aspect
whether these features are linearly separable.

Drawing inspiration from words in natural language, we define categorical fea-
tures with interpretable states. We define a direction feature and its states using
the cumulative sum of differences in yaw angles, assigning it to either left,
straight, or right. Additionally, we introduce a stationary state for sta-
tionary objects, where direction lacks semantic significance. We define further
states for speed, dividing the speed values into four intervals: high, moderate,
low, and backwards. Lastly, we analyze the change in acceleration by com-
paring the integral of speed over time to the projected displacement with initial
speed. Accordingly, we classify acceleration profiles as either accelerating,
decelerating, or constant (see Figure 4.1 (a)). All thresholds and further
details are in Appendix A.2.

4.1.1 Experimental setup
4.1.1.1 Motion forecasting models

We analyze three recent transformer models for motion forecasting, Wayformer
(Nayakanti et al. 2023), HPTR (Zhang et al. 2023) and our RedMotion (Sec-
tion 3.1.1) model. Wayformer and our RedMotion models employ attention-
based scene encoders to learn agent-centric embeddings of past motion, map, and
traffic light data. To efficiently process long sequences, Wayformer uses latent
query attention (Jaegle et al. 2021) for subsampling, RedMotion lowers memory

1" Ben-Shaul et al. (2023) show that linear probing accuracy follows similar trends as the accuracy

of nearest class-center classifiers (NCCs), which are typically used to measure neural collapse.

53

4 Interpretable control vectors for motion forecasting

requirements via local-attention (Beltagy et al. 2020) and architecture-induced re-
dundancy reduction. In this experiment, we do not pre-train RedMotion, but train
it fully supervised as the other models. HPTR models learn pairwise-relative en-
vironment representations via KNN-based attention mechanisms. For Wayformer,
we use the implementation by Zhang et al. (2023) and the early fusion configura-
tion. Therefore, we analyze the hidden states generated by an MLP-based input
projector for motion data, which consists of three layers. For RedMotion and
HPTR, we use the publicly available implementations. We configure RedMotion
with a late fusion encoder for motion data, and HPTR using a custom hierarchi-
cal fusion setup with a modality-specific encoder for past motion with a shared
encoder for environment context. Further details on learned fusion mechanisms
are in Appendix A.3.

4.1.1.2 Linear probes

We add linear probes for our categorical motion features (see Section 4.1) to
hidden state of all models (Ht(;") in Figure 4.1, where m € {0, 1, 2} is the module
number and ¢ is the temporal index). These one-layer classifiers are learned during
training using regular cross-entropy loss to classify speed, acceleration, direction,
and the agent classes from hidden states. Note that we detach this objective from
the overall gradient computation and use a separate optimization loop for each
linear probe. Therefore, these probes do not update hidden states, but measure
whether our categorical features are becoming more linearly separable during
regular training for motion forecasting.

4.1.1.3 Training details and hyperparameters

We provide Wayformer and HPTR models with the nearest 512 map polylines,
and RedMotion model with the nearest 128 map polylines. All models process a
maximum of 48 surrounding traffic agents as environment context, have a hidden
dimension of 128, and are configured to forecast X' = 6 trajectories per agent. For
the AV2F dataset, we use past motion trajectories of 50 time steps (representing

54

4.1 Neural collapse toward interpretable features

5s) as input. For the Waymo dataset, we use past motion trajectories with 11
steps (representing 1.1 s) as input. For Wayformer and RedMotion, we use the un-
weighted sum of the negative log-likelihood loss for positions modeled as mixture
of normal distributions and cross-entropy for probabilities as motion forecasting
loss. For HPTR, we additionally use the cosine loss for the heading angle and the
Huber loss for velocities. For all models, we use AdamW (Loshchilov and Hutter
2019) in its default configuration as optimizer and set the initial learning rate to
2 x 107%. As post-processing, we follow Konev (2022) and reduce the predicted
probabilities of similar trajectories.

4.1.2 Experimental results

Figure 4.2 shows the linear probing accuracies for our interpretable motion features
for the AV2F dataset. The scores are computed on the validation split over
the course of training. All models achieve similar accuracy scores, while the
Wayformer model achieves slightly higher scores for classifying acceleration and
lower scores for agent classes. Overall, we measure high linear probing accuracy
for all intepretable features. This shows that all models likely exhibit neural
collapse toward our interpretable features.

Probing acccuracy Probing acccuracy Probing acccuracy Probing acccuracy
1.00
0.76 0.70
0.74 0.65 0.80 0.98
0.72 060 0.75 0-96
0.70 [! 0.55 R " L 0.94 R
0o 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
Step -10% Step -10* Step -10* Step -10*
(a) Speed (b) Acceleration (¢) Direction (d) Agent type

Figure 4.2: Linear probing accuracies for RedMotion, Wayformer, and HPTR on the validation split
of the AV2F dataset, for module 2. Adapted from Tas and Wagner (2025).

55

4 Interpretable control vectors for motion forecasting

. -2
The representation quality metric normalized —std-L2-norm-10 L

standard deviation of embeddings is shown in g 7777777777777
Figure 4.3, as defined by Chen and He (2021). A" T -
Both HPTR and RedMotion learn to generate 3

embeddings with a normalized standard devia-
tion close to the desired value of 1/v/d (cf. Chen
and He 2021), where d is the hidden dimension.

The scores for Wayformer are lower, which re- Figure 4.3: Normalized standard
deviation of represen-
tations for RedMotion,

flects differences between attention-based and

MLP-based motion encoders. Wayformer, and HPTR.
Adapted from Tas and
Figure 4.4 shows the linear probing accuracies Wagner (2025).

for our interpretable features on the Waymo

dataset. Here, we report the scores for each of the three hidden states H (m)
in the RedMotion model (i.e., after each module m in the motion encoder, see
Figure 4.1). Similar accuracy scores are reached for all features at all three hid-
den states. The accuracies for the speed and acceleration classes continuously
improve, while those for direction classes reach 0.80 early on. Compared to the
direction scores on the AV2F dataset, the scores on the Waymo dataset “jump”
earlier. We hypothesize that this is linked to the shorter input motion sequence on
Waymo (1.1s vs. 5s), which limits the amount possible movements. In contrast
to the AV2F dataset, higher accuracies are achieved for classifying speed. Overall,
the highest scores are reached for classifying agent types, as on the AV2F dataset.

Probing acccuracy Probing acccuracy Probing acccuracy Probing acccuracy
0.95 0.80 1.000
0.94 0.80 :
0.93 0.7 0.999
0.92 0.78 0.70 '
0.91 0.76 , . , .
0 1 2 0 1 2 0 1 2 0-998 0 2
Step -10° Step -10° Step -10° Step -10°
(a) Speed (b) Acceleration (c¢) Direction (d) Agent type
Figure 4.4: Linear probing accuracies of RedMotion for hidden states of , module 1 and
module 2 on the validation split of the Waymo dataset. Adapted from Tas and Wagner
(2025).

56

4.2 Fitting interpretable control vectors

4.2 Fitting interpretable control vectors

The previous experiments show that our features are linearly separable. While this
indicates that the feature states have distinct representations, it does not allow us to
modify these features to demonstrate their impact on motion forecasts. Therefore,
this section focuses on fitting control vectors that enable us to modify the state of
our categorical features.

We use our interpretable and categorical features to form pairs of opposing feature
states, i.e. low and high speed. For each pair, we build a dataset and extract the
corresponding hidden states of the last past motion token (temporal index ¢t = —1).
We choose this index as it is closest to the start of the forecast. Next, we compute
the element-wise difference d between the hidden states of samples with opposing
feature states (positive and negative examples)

d=H" — H"} eR’ 4.1
df

= d_; € RVX4, 4.2)
&

where [V is the number of pairs and d is the hidden dimension. Finally, we follow
Zou et al. (2023) and apply principal component analysis (PCA) with a single
component as a pooling method. This reduces the computed differences to a
single scalar per hidden dimension to generate control vectors:

V_,.=PCA(D) = arg . V1 cov(D)V_y, €RL (43)
—1,:]|=

Therefore, V_, . is the eigenvector of the largest eigenvalue of cov(D) and de-
scribes the most salient direction between positive and negative hidden states.

We repeat the previous steps for each analyzed feature to generate control vectors.

57

4 Interpretable control vectors for motion forecasting

4.3 Modifying hidden states at inference

4.3.1 Experimental setup

We build pairs of opposing features for the AV2F and the Waymo dataset. Af-
terwards, we fit sets of control vectors as described in Section 4.2. At inference,
we add the control vectors generated for the last temporal index (t = —1) to all
embeddings (¢t € {0,...,49} for AV2F, ¢t € {0,...,10} for Waymo) with

v=| Y| err (4.4)

where 7' is the number of past time steps and d is the hidden dimension.

Furthermore, we use a temperature parameter 7 to scale our control vectors and
the corresponding control signal

Hmodiﬁed =H+7V. (45)

4.3.2 AQualitative results

Figure 4.5 shows a qualitative example from the AV2F dataset, where we mod-
ify hidden states using our control vector for acceleration scaled with different
temperatures 7. Subfigure 4.5a shows the default (i.e., non-controlled) top-1 (i.e.,
most likely) motion forecast. In subfigures 4.5b and 4.5¢c, we apply our accelera-
tion control vector with 7 = —20 and 7 = 100 to enforce a strong deceleration
and a moderate acceleration, respectively.

Figure 4.6 shows a qualitative example from the Waymo dataset. Subfigure 4.6a
shows the default motion forecast. In subfigures 4.6b and 4.6c, we apply our

58

4.3 Modifying hidden states at inference

(a) Default motion forecast (b) Acceleration control 7 = —20 (¢) Acceleration control 7 = 100

Figure 4.5: Modifying hidden states to control a vehicle at an intersection. We add our acceleration
control to enforce a strong deceleration and a moderate acceleration. The controlled agent
is highlighted in orange, dynamic agents are blue, and static agents are grey. Lanes are
black lines and road markings are white lines. Adapted from Tas and Wagner (2025).

speed control vector to decrease and increase the driven speed of a vehicle. Both
modifications affect the future speed in a similar manner, while increasing the
speed also changes the route to fit the given environment context (i.e., lanes).

(a) Default motion forecast (b) Speed control 7 = —32 (c) Speed control 7 = 100

Figure 4.6: Modifying hidden states to control a vehicle before a predicted right turn. Increasing
the speed also changes the route to fit the given context (i.e., lanes). Adapted from Tas
and Wagner (2025).

Figure 4.7 shows a qualitative example for our direction control vector from the
Argoverse 2 Forecasting dataset. The left control leads to accelerated future
motion, which is consistent with the common driving style of slowing down in
front of a curve and accelerating again when exiting the curve. A strong right
control makes the focal agent stationary. We hypothesize that it cancels out the
actually driven left turn, resulting in a virtually stationary past.

59

4 Interpretable control vectors for motion forecasting

(a) Default motion forecast (b) Left control 7 = 10 (¢) Right control 7 = 100

Figure 4.7: Modifying hidden states to control a left turning vehicle. We apply our left-direction
control vector and right-direction control vector. Adapted from Tas and Wagner (2025).

7 =25

(&7 =50)T =75 (i) ™ = 100
Figure 4.8: Speed control vector applied to multiple agents. Linearly scaling the control temper-

ature parameter 7 leads to rather linear changes in future speeds as well. Adapted from
Tas and Wagner (2025).

60

4.4 Improving control vectors via sparse autoencoding

Figure 4.8 shows an example from the Waymo dataset, where we apply our speed
control vector to multiple agents in a scenario. Linearly scaling the temperature
parameter leads to rather linear changes in future speeds as well. Furthermore, our
control vectors can be applied pedestrians as well, see top middle in Figure 4.8.
For 7 = 100, the forecasted pedestrian trajectory is unrealistic. This is likely
because the model has learned an upper bound for how fast a pedestrian can
move, and this bound is much lower than that for vehicles.

4.4 Improving control vectors via sparse
autoencoding

In this section, we use sparse autoencoders (SAEs) to improve our control vectors.
SAE:s learn to encode and decode representations using sparse intermediate repre-
sentations. Due to the enforced sparsity of intermediate representations, features
are encoded in fewer, more distinct dimensions (see Section 2.2.3). This aligns
with our objective of fitting control vectors to well-separated feature representa-
tions. Therefore, we propose fitting control vectors to the sparse intermediate
representations learned by SAEs (see Figure 4.9).

Control
/4 \%
Module m
HIA 2Tt

Motion
tokens

Motion encoder

Sparse autoencoder

Figure 4.9: Words in Motion with sparse autoencoding. The training of the sparse autoencoder is
shown with red arrows (—) and the fitting of control vectors with blue arrows (—).

61

4 Interpretable control vectors for motion forecasting

In detail, we train an SAE and use its encoder to generate sparse intermediate
representations of hidden states with opposing feature states (H7? vs. H;¥).
Formally, we compute

SP% = ReLU (W (HP — buee) + bem), (4.6)

where W and b denote weights and biases of the SAE. Similarly, we compute
57 and obtain the intermediate control vectors as

V/. =PCA(S}> — S[F). 4.7
Leveraging the Johnson-Lindenstrauss Lemma?, we use the SAE decoder to
project the intermediate control vectors back to the hidden dimension of the

motion encoder
‘/t,: = Wdec‘/jsi; + bdec~ (48)

This enables using sparse autoencoders of arbitrary sparse intermediate dimen-
sions for generating control vectors of fixed dimension. Consequently, we do
not use the SAE at inference as the resulting control vectors match the hidden
dimension of the analyzed models and can be directly applied (as in our baseline
method in Section 4.2).

441 Experimental setup

‘We measure the quality of a control vector using linearity measures. Specifically,
we measure the linearity of relative speed changes in forecasts when scaling speed
control vectors (see Figure 4.8). This evaluation is motivated by the fact that linear
effects enable an intuitive interface for controlling models during inference. We
use the Pearson correlation coefficient, the coefficient of determination (R?), and
the straightness index (S-idx) (Benhamou 2004) as linearity measures. Given the

2 Johnson and Lindenstrauss (1984) state that a set of points in high-dimensional space can be

projected into a lower-dimensional space while approximately preserving the pairwise distances
between points.

62

4.4 Improving control vectors via sparse autoencoding

large range of scenarios in the Waymo dataset, we focus on relative speed changes
within a range of £50% (see Appendix A.4). All experiments are performed on
the Waymo dataset and using our RedMotion model as motion forecasting model.

4.4.2 Results

We compute linearity measures for control vectors optimized using regular SAEs
(Bricken et al. 2023) with varying sparse intermediate dimensions. We achieve the
highest scores using the SAE with a dimension of 128 (see Table 4.1). Therefore,
we use this dimension in the rest of our evaluations.

In the following, we evaluate autoencoders

with different activation functions and layer

. . Autoencoder Pearson R? S-idx
types. Following Rajamanoharan et al. (2024),
we use JumpReLU with a threshold 6 = 0.001 SAE-312 0.990 - 0.974 0.984
L . SAE-256 0.990 0.974 0.985
and regular ReLU activation functions. More- ¢, | 0.993 0.984 0.988
over, we evaluate regular SAEs with fully- sag-64 0.991 0.976 0.985
connected layers, with MLPMixer (Tolstikhin =~ SAE-32 0.990 0.959 0.985
et al. 2021) layers (Sparse MLPMixer), and SAE-16 0.982 0.770 0.958
with convolutional layers (ConvSAE). For raple 4.1: Scaling sparse autoencoders.
Sparse MLPMixer and ConvSAE, we use large Adapted from Tas and Wag-

. . ner (2025).
patch and kernel sizes to approximate the r(202)

global receptive fields of fully-connected hid-

den units in regular SAEs. Furthermore, we evaluate a consistent Koopman
autoencoder (KoopmanAE) (Azencot et al. 2020) to include a method that models
temporal dynamics between embeddings (see Appendix A.5).

Table 4.2 presents linearity measures for different control vectors derived from
both plain PCA pooling and SAE methods. Overall, the regular SAEs achieve the
highest Pearson and R? scores. JumpReLU activation functions improve the R?
scores marginally compared to ReLU activation functions. The SAE version of
Cunningham et al. (2023) does not improve the linearity scores. We hypothesize

63

4 Interpretable control vectors for motion forecasting

that this is due to reduced decoding flexibility since they transpose the encoder
weights instead of learning the decoder weights (i.e., Wyee = W,1).

The ConvSAE with a kernel size k& = 64 and the KoopmanAE achieve the
highest straightness index, yet the lowest R? scores. As shown in Figure 4.10 and
Figure A.1 in the appendix, the range of temperatures 7 is much higher for this
ConvSAE and significantly lower for the KoopmanAE than for e.g. the regular
SAE. This lowers the R? score but does not affect the straightness index.

For the ConvSAE, we hypothesize that this is due to strong activation shrinkage
(Rajamanoharan et al. 2024). Therefore, the JumpReLU configuration of this
SAE-type leads to a significantly smaller 7 range (see Figure 4.11), which in turn
leads to higher R? scores (see Table 4.2).

For the KoopmanAE, the opposite is likely, since activation shrinkage is caused
by sparsity terms, which are not included in the loss function of Azencot et al.
(2020).

Notably, activation steering with our SAE-based control vector has an almost
1-to-1 ratio between 7 and relative speed changes (i.e., 7 = —50 corresponds to
roughly —50%). This improves R? scores and enables an intuitive interface. Fur-
thermore, improved controllability with SAEs indicates that sparse intermediate
representations capture more distinct features.

50 R - 50 R - 5
— Cgllbl‘allon curve : — qulbratlon curve 50 Calibration curve
Linear reference Linear reference B Linear reference

254

_251 £ 25

relative speed change in %
5}
relative speed change in %
S) i
. | .
lative speed change in %

—50

504 5
T T T T T =50 45— T T T T =50
-0 -20 0 20 40 —40 =20 0 20 40 —200-150-100-50 0 50 100 150
T T T

(a) Plain PCA (b) SAE (c) ConvSAE k = 64

Figure 4.10: Calibration curves of plain PCA-based speed control vectors and control vectors opti-
mized using SAEs for relative speed changes in forecasts of £50%. Adapted from Tas
and Wagner (2025).

64

4.4 Improving control vectors via sparse autoencoding

Autoencoder Activation function Pooling Patch/kernel size Pearson R? S-idx
- - PCA - 0.988 0.969 0.981
SAE (Bricken et al. 2023) ReLU PCA - 0.993 0.984 0.988
SAE (Rajamanoharan et al. 2024) JumpReLU PCA - 0.993 0.986 0.988
SAE (Cunningham et al. 2023) ReLU PCA - 0.987 0.971 0.980
Sparse MLPMixer ReLU PCA 64 0.992 0.980 0.986
Sparse MLPMixer JumpReLU PCA 64 0.992 0.981 0.986
Sparse MLPMixer ReLU PCA 32 0.990 0.978 0.985
Sparse MLPMixer JumpReLU PCA 32 0.991 0.980 0.986
ConvSAE ReLU PCA 64 0.986 0.383 0.991
ConvSAE JumpReLU PCA 64 0.987 0.861 0.978
ConvSAE ReLU PCA 32 0.988 0.622 0.986
ConvSAE JumpReLU PCA 32 0.989 0.623 0.986
KoopmanAE (Azencot et al. 2020) tanh PCA - 0.991 —0.057 1.000

Table 4.2: Comparing control vectors optimized with different autoencoders. Linearity measures
for optimized control vectors: Pearson correlation coefficient, coefficient of determination

(R?), and straightness index (S-idx). Adapted from Tas and Wagner (2025).

50 . N
Calibration curve
Linear reference

relative speed change in %
T

50 o

T T T
=200 —150 =100 =50 0 50
T

(a) ConvSAE k = 64

T T
100 150

relative speed change in %

50+

50 - -
“"T— calibration curve
Linear reference

T T T T
—80 —60 —40 -20 0O
T

T
20

T
106

)

(b) ConvSAE k = 64 JumpReLU

Figure 4.11: JumpReLU compensates activation shrinkage as reflected in a smaller range of 7 values
for the same range of relative speed changes. Adapted from Tas and Wagner (2025).

Furthermore, we perform an ablation study analyzing our method’s sensitivity

to hidden states from different modules (see Table 4.3) and to varying speed

thresholds (see Table 4.4). Our method performs best with a sparse intermediate

dimension of 128 and hidden states from module m = 2; and is more sensitive to

low than to high speed thr

esholds.

65

4 Interpretable control vectors for motion forecasting

Autoencoder Module m Pearson R? S-idx
SAE-128 2 0.993 0.984 0.988
SAE-128 1 0.992 0.980 0.987
SAE-128 0 0.959 0.654 0.933

Table 4.3: Generating control vectors for hidden states of different modules. Control vectors
for speed generated in earlier modules achieve lower linearity scores. Linearity measures
for controlling: Pearson correlation coefficient, coefficient of determination (Rz), and
straightness index. Adapted from Tas and Wagner (2025).

Autoencoder Low speed High speed Pearson R* S-idx
SAE-128 < 25km/h > 50km/h 0.993 0.984 0.988
SAE-128 <25km/h 25t 50km/h 0.994 0.987 0.989

SAE-128 25t050km/h > 50km/h 0.355 —0.734 0.533

Table 4.4: Generating speed control vectors with different thresholds for low and high speed.
Decreasing the threshold for high speed marginally improves linearity scores, while in-
creasing the threshold for low speed significantly worsens the linearity scores. Adapted
from Tas and Wagner (2025).

4.5 Connecting neural collapse and
controllability

We train a RedMotion model on the AV2F dataset using the same trajectory
lengths as in the Waymo dataset (1.1s past and 8s future). Table 4.5 shows
the probing accuracy and linearity measures of a speed control vector for this
model (see Figure 4.12 for the calibration curve). Additionally, we compute the
neural collapse metric class-distance normalized variance (CDNV) (Galanti et al.
2021). CDNV quantifies the degree to which features form class-wise clusters
by measuring the variance within feature clusters of each class c relative to the
distances between class means .. CDNV provides a robust alternative to methods
that compare between- and within-cluster variance (Papyan et al. 2020).
CDNV(c,c') = M Ve ¢ (4.9)
2(lue — pll3

66

4.5 Connecting neural collapse and controllability

Compared with a model trained on the Waymo dataset, the AV2F model achieves
both worse neural collapse metrics (probing accuracy and CDNV) and signifi-
cantly lower linearity measures. These results support our argument that latent
space regularities with separable features, like neural collapse, are necessary to
fit precise control vectors.

Dataset Probing accuracy? CDNV/| Pearsont R?*{ S-idx!

AV2F 0.753 2.46 0.877 0.275 0.891
Waymo 0.945 0.95 0.988 0.969 0.981

Table 4.5: Higher probing accuracy enables higher linearity measures. We train RedMotion
models on the Waymo and AV2F datasets using the same trajectory lengths. We report the
probing accuracies and CDNV for speed feature states and the linearity measures for the
corresponding PCA-based control vectors.

50 " -
? Calibration curve
Linear reference

relative speed change in %

Figure 4.12: Calibration curve for a plain PCA-based speed control vector for the AV2F dataset.
In contrast to the control vectors for the Waymo dataset, this control vector cannot reduce
the speed by more than 3%. Adapted from Tas and Wagner (2025).

Moreover, we used the low and moderate speed states to fit this control vector, as
the low and high speed states did not yield good results. We hypothesize that this
is due to the different distributions of the datasets shown in Figure 4.13.

Both datasets predominantly capture low-speed scenarios, with 62% of Waymo
instances and 53% of AV2F instances falling into this category. Furthermore,
a notable difference lies in the proportion of stationary vehicles, with AV2F
exhibiting a significantly higher percentage (51%) compared to Waymo (28%).
The Waymo dataset predominantly features vehicles with constant acceleration

67

4 Interpretable control vectors for motion forecasting

I '
62.19 stationary -
27.88
moderate - 20.68 decelerati straight
.0 ecelerating I)
11.69 B s o2

high
12.66 tant right .
backwards
I 4.47 accelerating left
I 2299 B2
(a) Speed (b) Acceleration (¢) Direction
Figure 4.13: Distributions of our categorical motion features for the and the Waymo

dataset. All numbers are percentages. Adapted from Tas and Wagner (2025).

(65%) and traveling straight (49%), while the AV2F dataset has a higher proportion
of accelerating instances (52%). Additionally, AV2F has a much larger proportion
of instances involving backward motion (24%) compared to Waymo (4%). This
disparity in motion characteristics highlights that the two datasets capture different
driving environments and scenarios, with Waymo focusing on urban and suburban
driving, while AV2F contains only urban traffic scenarios (see Section 2.1.5).

4.6 Fuzz testing control vector temperatures

In this experiment, we perform fuzz testing of control vector temperatures 7 for our
speed control vectors. Specifically, we test a greater range of 7 values [—200, 200]
to evaluate whether our modifications can lead to unrealistic trajectory forecasts.
Unlike our previous experiments, we perform fuzz testing for each agent type
individually.

We measure how realistic trajectory forecasts are by measuring jerk and tortuosity
(see Section 2.1.4). As reference, we initially measure the average jerk and
tortuosity of ground truth trajectories on the Waymo dataset. Table 4.6 shows the
results. Pedestrians experience the least jerk and the most tortuosity. Therefore,
they change acceleration the least, but direction the most.

68

4.6 Fuzz testing control vector temperatures

Agent type Jerk Tortuosity
Vehicle 1.075m/s? 1.284
Pedestrian 0.808 m/s? 1.869
Cyclist 1.490m/s* 1.217

Table 4.6: Average jerk and tortuosity of ground truth trajectories of the Waymo dataset.

Afterwards, we compute the average metrics for trajectory forecast when modify-
ing the speed feature with different control temperatures 7. We use the SAE-128
optimized control vector for our RedMotion model. The plots for the correspond-
ing plain PCA-based control vector are very similar and shown in Appendix A.6.

The unmodified forecasts for 7 = 0 have lower jerk and tortuosity values than the

ground truth trajectories, indicating that our model forecasts smoother yet more
basic maneuvers.

I Vehicle
B2 Cyclist
E=H Pedestrian

Mean Jerk (m/s3)
e o o 9
N > (=2} <]

o
o

O o0 O O L O NEEENN O O
PSS BN AN > S

Control temperatures

I Vehicle
22 Cyclist
3,2'0 EES Pedestrian
B
215
g
210
0.5
0.0

Q O O O 0O O 0 O © 0O °© O
PN N B v

N \} N\ N Q N Q S N
O OISR OO
Control temperatures

Figure 4.14: Fuzz testing control temperatures 7 for SAE-128 optimized speed control vectors.
All metrics are for motion forecasts of our RedMotion model on the Waymo dataset.

When we increase the control temperature to about 60, jerk and tortuosity reach
similar levels as for the ground truth. When further increasing 7 to up to 200,

69

4 Interpretable control vectors for motion forecasting

both jerk and tortuosity seem to plateau. Decreasing 7 to —200, yields unrealistic
trajectories with high tortuosity values above 2 for pedestrians. For comparison,
a u-turn modeled as a semicircle has the highest tortuosity value of standard
maneuvers, at approx. 1.6. Therefore, trajectories with higher tortuosity values
are very winding and likely unrealistic.

Overall, agents of type pedestrian seem to be most sensitive to our control vector
since both jerk and tortuosity vary the most. At inference, we suggest computing
jerk and tortuosity for all trajectories as safety validation when modifying learned
feature representations.

4.7 Compensating for domain shifts with
control vectors

An application of control vectors that goes beyond mechanistic interpretability
is compensating for domain shifts. Domain shifts between training and test data
significantly degrade the performance of many data-driven methods. Zero-shot
generalization methods compensate for such domain shifts without further training
(e.g., Xian et al. 2017, Mistretta et al. 2024).

In motion forecasting, common domain shifts are more or less aggressive driving
styles that result in higher or lower speeds, respectively. We simulate this domain
shift by reducing the future speed in the Waymo validation split by approximately
50%. Specifically, we take the first half of future waypoints and linearly upsample
this sequence to the original length.

Table 4.7 shows the results of a RedMotion model trained on the regular training
split on this validation split with domain shift. We provide an overview of
the used motion forecasting metrics in Section 2.1.4. Without the use of our
control vectors, high distance-based errors, miss, and overlap rates are obtained.
Using the calibration curve in Figure 4.10b, we compensate for this domain shift
by applying our SAE-128 control vector with a temperature 7 = —50. This
significantly reduces the distance-based errors, the overlap, and the miss rates

70

4.7 Compensating for domain shifts with control vectors

without further training. In addition, we show the results of applying our control
vector with a temperature of 7 = —30 and 7 = —70, which improves all scores
over the baseline (first row) as well.

Control vector Temperature 7 minADE | Brier minADE | minFDE | Brier minFDE | Overlap rate | Miss rate |

None 3.271 6.547 4.617 8.933 0.220 0.580
SAE-128 —30 1.685 4.838 2.870 8.429 0.179 0.224
SAE-128 —50 1.174 2.759 1.798 4.329 0.174 0.236
SAE-128 —70 1.808 3.576 2.035 3.676 0.189 0.302

Table 4.7: Zero-shot generalization to a Waymo dataset version with reduced future speeds. Best
scores are bold, second best are underlined. Adapted from Tas and Wagner (2025).

71

5 Instructable retrocausal motion
forecasting

Control vectors provide control over high-level features, such as speed, accel-
eration, or agent type (see Chapter 4). In this chapter, we propose a motion
forecasting model, which can be controlled using more fine-grained instructions.

Specifically, we propose a multi-task learning method for motion forecasting that
includes a retrocausal flow of information. The corresponding tasks are to forecast
(1) marginal trajectory distributions for all modeled agents and (2) joint trajectory
distributions for pairs of interacting agents. Our model generates the joint trajec-
tory distributions by re-encoding marginal trajectory distributions and subsequent
pairwise modeling. This incorporates a retrocausal flow of information directed
from later points in marginal trajectories to earlier points in joint trajectories.

Notably, we find that this retrocausal information flow can be intercepted and
modified to issue goal-based and directional instructions. This shows that the
learned retrocausal connections are functionally important and enables mecha-
nistic interpretations. Furthermore, the ability to follow instructions emerges
without explicit supervision since we train our model for regular motion forecast-
ing without using instructions.

73

5 Instructable retrocausal motion forecasting

5.1 Method

We probabilistically model positional uncertainty in future trajectories. Specifi-
cally, our model uses mixture distributions to decompose motion forecasts in the
following three ways.

5.1.1 Decomposing exponential power distributions

For each trajectory point (i.e., future position), we model the positional uncertainty
using the probability density function' of an exponential power distribution®. The
exponential power distribution is a parametric family of probability distributions,
which includes all continuous uniform distributions (e.g., normal or Laplace dis-
tributions). In addition to a location y and a scale parameter o, it is characterized
by a shape parameter 5.

We follow common practice (Nayakanti et al. 2023, Zhou et al. 2023a,b) and
model the z and y coordinates of future positions as uncorrelated random vari-
ables. Therefore, the density of the corresponding bivariate exponential power
distribution is

T — g A

Oz

Y — Ky
Oy

)

(5.1

B ’

/ B2
D (%%%0'75) = Wexp (

where I'(+) is the gamma function.

Figure 5.1 shows how g affects the shape of the density of this bivariate distribu-
tion. In all plots, we set yi, = py = 0 and 0, = o, = 1. Starting from a standard
normal distributions with 3 = 2, decreasing /3 narrows the peak and increases
the weight of the tails. Increasing S decreases the weight of distribution tails and
flattens the peak.

Abbreviated as density.

2 Also known as symmetric generalized normal distributions.

74

5.1 Method

© B =025 @p =8

Figure 5.1: Bivariate exponential power distributions with 8 = 2 (normal), 5 = 1 (Laplace),
[= 0.25 (heavy-tailed), and 8 = 8 (platykurtic).

Heavy-tailed and platykurtic densities (characterized by flatter peaks) create sub-
stantial uncertainties near forecasted positions, which is undesirable in subsequent
motion planning (cf. Tag et al. 2023). Therefore, we clamp the shape parameter
B to the range of [1.0,2.0]. We implement this constraint by approximating ex-
ponential power distributions using mixture distributions of bivariate normal and
bivariate Laplace distributions. The corresponding mixture density is

D(x,y; w, p) = w - normal(x, y;) + (1 — w) - Laplace(z,y;), (5.2)

75

5 Instructable retrocausal motion forecasting

with learned weights 0 < w < 1 and density parameters ¢ = (Ux, by, Tz, Oy).
For brevity, we include w in the tuple of density parameters ¢ in the following
formulas.

5.1.2 Decomposing marginal trajectory distributions

We train a distinct decoder to perform marginal motion forecasting (i.e., per-agent).
We follow common practice (Chai et al. 2020, Zhang et al. 2023, Nayakanti et al.
2023) and predict the density of a mixture distribution at each future time step ¢
and fix mixture weights over time. Per-agent mixture components describe future
positions of the same agent and at the same time, but from different trajectories.
Formally, we follow Bishop (1994) and express this as

=

,Pinarginal(y ‘ z;0) = ka(:lt, 0) D(y | ¢t,k($3 0)), (5.3)
k=1

where « is the input (cf. Section 5.1.5), y the target vector (i.e., ground truth
trajectory), 0 are the parameters of our model, ¢ € {1, ..., T'} are future time steps,
K is the number of trajectories, k indexes the corresponding mixture components,
and m are mixture weights. Unlike mixture weights, density parameters ¢ are
variable across mixture components and time steps.

5.1.3 Decomposing joint trajectory distributions

We re-encode marginal distributions (see Section 5.1.2) to perform pairwise
modeling. To exchange information between agents, we transform all trajectories
to the local reference frame of agent 1 and use the scene context embeddings
of agent 1 for agent 2 as well (see Section 5.1.5). Afterwards, we exchange
information via attention mechanisms and decode joint trajectory distributions
using multi-agent mixture components (see Figure 5.2). Per time step ¢, each

76

5.1 Method

! marginal +optional
P PLT instruction

Q1 Q2 Qs Q1 Q. Qs

Inter-query attention
)

Attention to scene context

e e

g joint adaptedtoé
H PL.T the context |

Figure 5.2: From marginal to joint trajectories. We use an MLP to generate query matrices Q

from marginal trajectories and exchange information between queries and scene context
with attention mechanisms. Afterwards, we decode joint trajectories Pllm; from pairs of

queries at the same index. This compresses information from all K2 possible combina-
tions into K query pairs. Adapted from Wagner et al. (2025).

mixture component is a mixture density itself, representing one future position of
each agent

K A
PPy | x;0) = ch ZMk,a(-’B;O) D(y | ¢rralx;0)), (5.4

k=1 a=1

where A is the number of agents and M is a matrix of per-agent mixture weights.
We compute multi-agent mixture weights with ¢ = softmax(22‘:1 M.k o/ 7-)
and a tunable temperature parameter 7. Thus, 7 controls the entropy of the
distribution, with low values skewing the distribution toward its peaks.

As shown in Figure 5.2, this approximates the joint distribution of all combinations
of per-agent mixture components by focusing on the diagonal query pairs in
matrix form. Specifically, we decode joint trajectory distributions using only the
on-diagonal query pairs. Off-diagonal queries can update on-diagonal queries

71

5 Instructable retrocausal motion forecasting

through attention mechanisms (see inter-query attention in Figure 5.2), which
compresses information from all K2 possible combinations into K query pairs.

For both marginal and joint motion forecasts, we follow related methods (Chai
et al. 2020, Shi et al. 2022, Zhou et al. 2023a) and reuse the out-most mixture
weights (my and ¢, in Equation (5.3), Equation (5.4)) as predicted probabilities.

5.1.4 Compressing location parameters of probability
densities

Regressing trajectories at a high frequency of 10Hz (e.g., Zhou et al. 2023a,
Zhang et al. 2023) allows models to predict sudden changes between successive
time steps, which are physically impossible yet close to the ground truth (see
Section 2.1.8). Therefore, distance-based loss functions do not penalize such
errors as much.

To compensate for this issue, we use a compressed probabilistic representation
of trajectories that excludes high-frequency components. Specifically, we append
the inverse discrete cosine transform (IDCT) to our model to internally represent
density location parameters as a sum of cosine functions (see Figure 5.2). We
hypothesize that this is a natural choice for transformer models given the common
use of cosine-like positional encodings (e.g., sinosoidal (Vaswani et al. 2017)
or rotary positional encodings (Su et al. 2024)). To compress, we limit the
frequencies in the IDCT to the lower end. This compression method is data-
independent and thus invariant to dataset or setup-specific noise (e.g., produced
by errors of perception models).

5.1.5 Scene encoder
We follow Gao et al. (2020) and represent multimodal inputs (i.e., past trajectories,

lane data, and traffic light states) as polyline vectors. We sample temporal features
(past positions and traffic light states) with a frequency of 10 Hz and static spatial

78

5.1 Method

features (lane markings and road borders) with a resolution of 0.5 meters. We
generate embeddings for each modality with 3-layer MLPs, add sinusoidal posi-
tional encodings, and process the embeddings with transformer encoder modules
(Vaswani et al. 2017). Following Nayakanti et al. (2023), we initially process local
agent-centric views within scenes (centered around each modeled agent) and com-
press them using cross-attention. We then change the batch dimension from the
agent index to the scene index, and concatenate learned embeddings of Cartesian
transformation matrices from agent-centric views into a global reference frame (cf.
Jiang et al. (2023)). Finally, we add global sinosoidal positional encodings and
generate global scene context representations with further self-attention mech-
anisms. Our two decoders (Section 5.1.2 and Section 5.1.3) decode trajectory
distributions from this scene context.

5.1.6 Loss function

We train our model using maximum likelihood estimation with a multi-task loss
that covers the objectives described in Section 5.1.2 and Section 5.1.3. Specif-
ically, we minimize the negative log-likelihood for forecasting the ground truth
trajectories.

N T
% Z Z w In (io;n; k) — Amarginal Il (’lezfiigal), 5.5)

where NN is number of samples in a batch, wy®

is a vector of configurable loss
weights per agent type®, Amarginal iS @ tunable weighting factor. We optimize this
objective with multiple trajectories per agent by backpropagating only the error for

the trajectories that are closest to the ground truth trajectories*. We measure the

Inspired by the evaluation protocol of Ettinger et al. (2021), we use the weight of the least common
agent type involved in scene. Overall, cyclists are least common, pedestrians are more common,
and vehicles are most common. By default, we set the weight for all agent types to 1.

Also referred to as winner-takes-all (Shi et al. 2022) or loss with hard assignment (Zhang et al.
2023).

79

5 Instructable retrocausal motion forecasting

distance to the ground truth using the Ly-norm. For marginal forecasts P} ™!,
we select the best trajectory index k per agent. For joint forecasts P{O?f we select

the best set of trajectories at the same index k for agent pairs (see Figure 5.2).

5.2 Experiments

In this section, we evaluate the motion forecasting performance of our RetroMo-
tion method using the Waymo and AV2F datasets (see section 2.1.5). Afterwards,
we show that regular training of motion forecasting leads to the ability to fol-
low goal-based instructions and to adapt basic directional instructions to the
scene context. Furthermore, we analyze learned density representations using
forecasting metrics, mixture weights, and metrics for neural regression collapse
(Andriopoulos et al. 2024).

5.2.1 Interactive motion forecasting
5.2.1.1 Model configuration

We configure our marginal decoder to forecast marginal trajectory distributions
of 8 agents and our joint decoder to forecast joint trajectory distributions for 2
agents. Our scene encoder processes the 128 closest map polylines and up to
48 trajectories of surrounding agents per modeled agent. We append an IDCT
transform to our model that reconstructs 80 location parameters (for z- and y-
coordinates) from 16 predicted DCT coefficients.

We build a sparse mixture of experts model (SMoE) (see Section 2.2.5) of 3
variations of our model (see Section 5.2.1.3). All expert models are trained
independently (see Section 5.2.1.2). At inference, we use a rule-based router that
selects one expert model based on the agent type and perform non-maximum
suppression on joint trajectory forecasts (see Section 5.2.1.4).

80

5.2 Experiments

5.2.1.2 Training details

We sample 32 scenes from the Waymo dataset in a batch, with 8 focal (i.e., pre-
dicted) agents per scene. Specifically, we predict marginal trajectory distributions
for all 8 agents and joint distributions for two interactive agents. We use Adam
with weight decay (Loshchilov and Hutter 2019) as the optimizer and a step learn-
ing rate scheduler to halve the initial learning rate of 2 x 10~* every 10 epochs.
We train for 50 epochs using data distributed parallel (DDP) training on 4 Ada
A6000 GPUs.

5.2.1.3 Expert model configuration

Our SMoE model contains 3 expert models adapted to the 3 evaluated agent types
(vehicle, pedestrian, and cyclist). Inspired by the evaluation protocol of Ettinger
et al. (2021), we use one expert for joint trajectory forecasts of only vehicles, one
for forecasts that involve pedestrians and vehicles, and one for forecasts of cyclists
and vehicles. The expert model for vehicles is trained to forecast distributions of
18 trajectories per agent. The pedestrian and cyclist expert models are trained to
forecast 6 trajectories per agent. For the cyclist expert, we increase the loss weight
of cyclist trajectories 10x (see w™P® in Equation (5.5)).

5.2.1.4 Post-processing

We follow Konev (2022) and reduce the predicted probability of redundant (i.e.,
similar) trajectories. We adapt this mechanism to joint trajectory distributions by
suppressing probabilities only if a nearby trajectory belongs to a joint trajectory
set with a higher accumulated probability (see ¢ in Section 5.1.3). For the vehicle
expert, we additionally perform topk-selection to first reduce the 18 predicted
trajectories to 6 trajectories.

81

5 Instructable retrocausal motion forecasting

Then, we use beam search on the training split to determine the suppression
thresholds per expert and agent class. Specifically, we expand® the most promising
threshold of 10 initial thresholds per agent type. This includes tuning the softmax
temperature 7 used to compute the accumulated probabilities (see Section 5.1.3).
For the BeTopNet-based cyclist expert, we use the default non-maximum sup-
pression (NMS) of Shi et al. (2022). All distance thresholds and 7 values for the
results in Table 5.1 are in Appendix A.8.

5.2.1.5 Results

Table 5.1 presents motion forecasting metrics (see Section 2.1.4) for interactive
forecasting on the Waymo Open Motion dataset. The QCNeXt model (Zhou
et al. 2023b) performs strongly on the distance-based minADE and minFDE
metrics. Averaged over all agent types, our RetroMotion model outperforms all
other methods on the main metric mAP, indicating that our model predicts higher
confidence scores for trajectories close to the ground truth.

Furthermore, we follow Ngiam et al. (2022) and evaluate the marginal predictions
of our marginal decoder as joint predictions on the validation split (see marginal
as joint configuration in Table 5.1). All forecasting metrics are significantly
worse than for the joint predictions. This highlights the ability of our model
to perform joint modeling by re-encoding and adapting the marginal predictions
to the predictions of surrounding agents. Figure 5.3 shows qualitative results of
our method on the validation split. We show joint and combined (marginal and
joint, see bottom right) forecasts to highlight that our method is suitable for more
complex scenarios with many agents.

Since the top-4 methods over all agent types in Table 5.1 are within one mAP,
we further compare them in Table 5.2. Fully data-driven methods with learned
anchor® initialization (QCNeXt and RetroMotion) tend to perform better on more

5 Here expanding means that we fix this threshold and further optimize the threshold for other agent

types and 7 values.

6 We refer to the initial vector representation of queries used to decode trajectories as anchors.

82

5.2 Experiments

Split Method (config) Venue mAP? minADE| minFDE| MR OR|
Scene Transformer (joint) (Ngiam et al. 2022) ICLR’22 0.1192 0.9774 2.1892 0.4942 0.2067
GameFormer (joint) (Huang et al. 2023) ICCv’23 0.1376 0.9161 1.9373 0.4531 0.2112
JointMotion (HPTR) (Wagner et al. 2024a) CoRL'24 0.1869 0.9129 2.0507 0.4763 0.2037
MotionDiffuser (Jiang et al. 2023) CVPR’23 0.1952 0.8642 1.9482 0.4300 0.2004

Test JEP (Luo et al. 2023) CoRL'23 0.2050 0.8817 1.9905 0.4233 0.1835
MotionLM (Seff et al. 2023) iccv23 0.2178 0.8911 2.0067 04115 0.1823
MTR++ (Shi et al. 2024) TPAMI 24 0.2326 0.8795 1.9509 0.4143 0.1665
QCNeXt (Zhou et al. 2023b) 0.2352 0.7750 1.6772 0.3838 0.1946
BeTopNet (Liu et al. 2024) NeurIPS 24 0.2412 0.9744 2.2744 0.4355 0.1695
RetroMotion (SMoE) (ours) 0.2422 0.9029 2.0245 0.4433 0.2007
RetroMotion (SMoE hybrid) (ours) 0.2519 0.9256 2.0890 0.4347 0.1927
MotionLM (single replica) 1ccve23 0.1687 1.0345 2.3886 0.4943 -

Val MTR++ TPAMI 24 0.2398 0.8859 19712 0.4106 -
RetroMotion (SMoE) (ours) 0.2515 0.8718 1.9383 04216 0.1994
RetroMotion (marginal as joint) (ours) 0.1797 0.8864 2.0118 0.4545 0.2200

Table 5.1: Interactive motion forecasting results of RetroMotion. All methods are evaluated on
the interactive splits of the Waymo dataset (Ettinger et al. 2021). The main challenge
metric is the mAP. Best scores are bold, second best are underlined. Adapted from Wagner
et al. (2025).

Figure 5.3: Joint and combined motion forecasts of our model. Dynamic agents are shown in blue,
static agents in grey (determined at £ = 0s). Lanes are black lines and road markings
are white lines. Top left: forecasts for two cars, top right: a car yielding to a pedestrian
on a crosswalk, bottom left: forecasts for a car and a cyclist, and bottom right: combined
forecasts of two cars and six pedestrians. Adapted from Wagner et al. (2025).

common agent types, while using larger models and more anchors with fixed
initialization seems to improve the results for cyclists. The comparably worse
results for cyclists indicate that our method would significantly improve with

83

5 Instructable retrocausal motion forecasting

more training samples, as in the 1000 larger internal dataset mentioned in (Luo
et al. 2023). On average, our method outperforms related methods that require
more active parameters.

Method Params Anchor Anchors Vehicle Pedestrian Cyclist
(active) init. mAP % of scenes mAP % of scenes mAP % of scenes

MTR++ 87M Fixed 64 0.3303 0.2088 0.1587

QCNeXt L.eamsd 6 0.3341 100% 0.2346 $7% 0.1369 16%

BeTopNet 45M Fixed 64 0.3308 0.2212 0.1717

RetroMotion 24M Learned 30 0.3348 0.2636 0.1284

Table 5.2: Per agent type comparison of the top-4 methods. All metrics are for the interactive test
split of the Waymo Open Motion dataset. Params (active) gives the number of parameters
that are active per agent (cf. Jiang et al. (2024)). % of scenes gives the percentage of scenes
that contain at least one instance of the corresponding agent type. Best scores are bold,
second best are underlined. Adapted from Wagner et al. (2025).

Our RetroMotion (SMoE hybrid) configuration in Table 5.1 is motivated by the
fact that models with more anchors and static anchor initialization perform better
for cyclists. Specifically, we build a SMoE model that uses RetroMotion-based
experts for vehicles and pedestrians, along with a reproduced BeTopNet model
for cyclists.

5.2.2 Cross-dataset generalization

We follow the cross-dataset evaluation protocol of UniTraj (Feng et al. 2024) to
measure the generalization capabilities of our method. Specifically, we configure
our model to forecasts trajectories of up to 6 seconds and otherwise train the
model with the same settings as in Section 5.2.1 and Section 5.2.1.2. Afterwards,
we evaluate this model, trained on the Waymo dataset, on the Argoverse 2 dataset.

Table 5.3 shows the results of this experiment. For vehicle trajectories, our method
outperforms MTR (Shi et al. 2022) and Wayformer (Nayakanti et al. 2023) and
competes with AutoBot (Girgis et al. 2022) (lower miss rate, but higher minFDE
scores). For pedestrian trajectories, our method achieves lower minFDE scores,

84

5.2 Experiments

but a higher miss rate than AutoBot. Overall, these results show that RetroMotion
generalizes well and reinforce the results in Table 5.1.

Agent type Method Brier-minFDE | minFDE | MR |
MTR (Shi et al. 2022) 3.63 3.14 0.44
Vehicl Wayformer (Nayakanti et al. 2023) 3.60 3.14 0.45
ehicle
AutoBot (Girgis et al. 2022) 3.23 2.41 0.40
RetroMotion (ours) 3.51 2.84 0.31
X AutoBot (Girgis et al. 2022) 222 1.51 0.16
Pedestrian X £ll 101
RetroMotion (ours) 1.97 1.26 0.19

Table 5.3: Cross-dataset generalization from Waymo Open Motion to Argoverse 2 Forecasting.
All methods are trained on Waymo Open Motion and evaluated on the validation split of
the Argoverse 2 Forecasting dataset (Wilson et al. 2023). Best scores are bold, second best
are underlined. Adapted from Wagner et al. (2025).

5.2.3 lIssuing instructions by modifying trajectories

In the following, we test our model’s ability to follow goal-based instructions and
to adapt basic directional instructions to the scene context. Specifically, we issue
instructions by modifying predicted marginal trajectories prior to re-encoding and
joint modeling (see Figure 5.2).

5.2.3.1 Goal-based instructions

In this experiment, we use the last second of the ground truth trajectories as
goal-based instructions. Specifically, we replace the last second of predicted
marginal trajectories with the last second of ground truth trajectories and evaluate
the changes in joint trajectories (ijfiTm in Figure 5.2). For evaluation, we use the
validation split of the Argoverse 2 Forecasting dataset and the metrics described in
Section 2.1.4. This evaluation is similar to the joint-as-marginal configuration of
Ngiam et al. (2022), but with trajectory modifications as goal-based instructions.

At inference, we modify either the marginal trajectory with the highest confidence

85

5 Instructable retrocausal motion forecasting

score or with the lowest minFDE w.r.t. the desired goal positions, or all 6
trajectories per agent.

We evaluate all instruction configurations on the validation split of the AV2F
dataset. Table 5.4 presents the results. All instruction configurations improve
the distance-based metrics, while modifying all trajectories leads to the most
significant improvement (12% lower final displacement error). This shows that
modifications to marginal trajectories affect subsequently decoded joint trajecto-
ries and can be used to issue goal-based instructions.

Instruction config. minFDE | minADE | MR |
None 2.45 1.25 0.31
Highest confidence 241 -1.6% 1.24 0.31
Lowest minFDE 2.28 -6.9% 1.19 0.29
All trajectories 2.16 -11.8% 1.15 0.27

Table 5.4: Goal-based instruction following. As instructions, we modify marginal trajectories and
evaluate the changes in joint trajectories. We modify either the trajectory with the highest
confidence score or with the lowest minFDE w.r.t. the desired goal positions, or all 6
trajectories. All instruction configurations are evaluated on the validation split of the
AV2F dataset. Best scores are bold, second best are underlined. Adapted from Wagner
et al. (2025).

5.2.3.2 Basic directional instructions

Building on the insight that our model can follow goal-based instructions, we
further evaluate basic directional instructions. We define basic directional in-
structions for turning left and right.

We describe both directional instructions with trajectories based on quarter circles.
Specifically, we scale the radius r of the circle to maintain an agent’s current
speed. Then we use the upper right quadrant, shifted to the origin, as a furn left
instruction, with x(t) = r - cos(t) — r and y(¢) = r - sin(¢). Similarly, we use the
upper left quadrant shifted to the origin as the furn right instruction.

86

5.2 Experiments

At inference, we issue the instructions by replacing the last 4 seconds in all

marginal trajectories with the corresponding quarter circle, as shown qualitatively
in Figure 5.4 (b).

(a) Predicted marginal trajectories (b) turn left instruction (¢) Adapted joint trajectories

Figure 5.4: Our model adapts directional instructions to the scene context. (a) shows the default
marginal trajectory forecast of our model. (b) shows our basic turn left instructions, which
violate traffic rules by turning into the oncoming lanes. (c) shows that our model resolves
this by adapting the trajectory of the right vehicle to its lane (shown as black line) and
reversing the instruction for the left vehicle, since turning left is not possible. Adapted
from Wagner et al. (2025).

However, such instructions are intentionally not adapted to the scene context (map
and other agents). In this experiment, we evaluate the ability of RetroMotion to
adapt our directional instructions to the given scene context. Specifically, we
measure the overlap rate with other agents (see Section 2.1.4) of the modified
trajectories used as instructions versus the subsequently decoded joint trajecto-
ries. Furthermore, we compute average on-road probability (ORP) scores, which
describe the probability of trajectories staying on the road versus going off-road’.

To compute on-road probability maps, we use a rasterized representation of driv-
able areas and a distance transform function. The distance transform calculates,
for each pixel representing a non-drivable area, the distance to the closest pixel
that represents a drivable area. Essentially, it quantifies how far away each non-
drivable pixel is from the nearest drivable region. Therefore, this metric also
measures how far trajectories leave the drivable area. Figure 5.5 shows an on-road
probability map of a scenario in the AV2F dataset. We first compute the on-road

7 Qur metric is related to the drivable area compliance (DAC) metric (Chang et al. 2019).

87

5 Instructable retrocausal motion forecasting

probability score of each trajectory point. Then, we set a trajectory to off-road if
the probability of any trajectory point is < 0.99, and to on-road otherwise. Fi-
nally, we compute the average on-road probability (ORP) score as the percentage
of on-road trajectories over all trajectories.

oo M

On-road probability

Figure 5.5: On-road probability map of a scenario in the AV2F dataset. The map quantifies how
far away each non-drivable pixel is from the nearest drivable area. Adapted from Wagner
et al. (2025).

Table 5.5 presents the results of this experiment. Overall, higher ORP scores and
lower OR scores are obtained for the turn right than for the turn left instructions.

Instruction Eval. trajectory OR | ORP 71

basic instruction 0.23 0.64

turn left . K
adapted joint traj. 0.18 -22% 0.85 +33%

basic instruction 0.21 0.76

1 ight
urn g adapted joint traj. ~ 0.18 -14% 091 +20%

Table 5.5: Adapting basic directional instructions to the scene context. As instructions, we modify
marginal trajectories and evaluate the changes in joint trajectories. In this experiment, we
modify all 6 marginal trajectories per agent using our basic directional instructions (cf.
Section 5.2.3.2). We report overlap rates (OR) with other agents and on-road probability
(ORP) scores. All configurations are evaluated on the validation split of the AV2F dataset.
Adapted from Wagner et al. (2025).

We hypothesize that this is due to the fact that the dataset mainly contains right-
hand traffic scenarios, where right turns are commonly allowed and more frequent.

88

5.2 Experiments

Notably, the adjusted joint trajectories have significantly lower OR scores (22%
and 14% lower) and much higher ORP scores (33% and 20% higher). This
highlights the ability of our model to adapt basic directional instructions to the
given scene context.

5.2.4 Analyzing learned trajectory representations

In order to analyze the learned representations and to perform an ablation study on
our design choices, we train different configurations of our model. Specifically,
we ablate modeling positional uncertainty with different probability distributions,
including normal, Laplace, and exponential power distributions. We also train our
model with and without compressing the location parameters of the distributions
using DCT transforms. We train each model configuration for 14 epochs on
the Waymo Open Motion dataset and keep the remaining configurations as in
Section 5.2.1 and Section 5.2.1.2.

Table 5.6 presents the results of this experiment. Using Laplace distributions
to model positional uncertainty improves motion prediction metrics over using
normal distributions. Compressing the location parameters of densities further
improves the results significantly. Overall, using exponential power distributions
with DCT compression leads to the best results across all metrics.

Distribution DCT mAP 1 minFDE | minADE |
Normal False 0.172 2.177 0.954
Laplace False 0.176 2.149 0.940
Laplace True 0.194 2.102 0.917
Exponential power True 0.195 2.060 0.910

Table 5.6: Comparing distribution types with and without DCT compression. All configurations
are evaluated on the interactive validation split of the Waymo Open Motion dataset. Best
scores are bold, second best are underlined. Adapted from Wagner et al. (2025).

&9

5 Instructable retrocausal motion forecasting

Using DCT compression to compress the location parameters of mixture densities
generalizes to Laplace distributions and significantly improves all metrics. There-
fore, we evaluate how sensitive our method is to the number of DCT coefficients
and train RetroMotion with varying numbers of DCT coefficients.

Table 5.7 shows the results of this experiment. RetroMotion is not too sensitive
to the number of DCT coefficients, with our default configuration Npcr = 16
achieving average performance.

Npcr mAP 1

12 0.198
16 0.195
20 0.193
24 0.192
28 0.199

Table 5.7: RetroMotion is not too sensitive to Npcr.

5.2.4.1 Weights in exponential power distributions

During training, we track the value of the mixture weights of normal components
in exponential power distributions (see Figure 5.6). Initially, the weight is close
to 0, because the negative log-likelihood (NLL) of a normal distribution is closely
related to the mean squared error, while the NLL of a Laplace distribution is
related to the mean absolute error.

N
1
NLLnormal(M7 U) ~ ﬁ n;(xn - ,u)2> (5.6)
1 N
NLLLaplace(,ua U) ~ g ; |xn - /L|7 (57)

90

5.2 Experiments

with predicted mean i, predicted scale o, number of samples NV, and observed data
points z,,. For brevity, we give examples for univariate distributions and without
the conditional probabilities described in Equation (5.3) and Equation (5.4).

—— joint
—— marginal

01 W‘WM\NW\MAW’A\A/\/W\NJ%*V\

I I I I I L Epoch
:] 50 P

Figure 5.6: Mixture weight of normal components in exponential power distributions. During
training the weight w progressively increases, while reaching higher values for joint
trajectory distributions than for marginal distributions. Adapted from Wagner et al.
(2025).

Therefore, the NLL of a normal distribution is much higher for outliers (i.e., un-
reasonable predictions during the earlier training epochs), which is compensated
by a low w value. During training, w progressively increases, while reaching
higher values for predicted joint trajectory distributions than for marginal distri-
butions. However, on average, the learned exponential power distributions tend to
be Laplace-like with normal components with relatively low weights of 0.1 (joint)
and 0.04 (marginal).

5.2.4.2 Feature vector collapse

We measure the feature vectors collapse metric (NRC1) (Andriopoulos et al.
2024) for feature vectors of marginal and joint trajectory distributions. The
feature vectors are the last hidden states of trajectories generated by the MLP
heads in our model. The NRC1 metric measures whether d-dimensional feature
vectors v collapse to a smaller dpca-dimensional subspace, where dpca is equal
to the number of principal components.

2
. (5.8)

1 _ o~
NRCI = 37 2 [[%n = proi@n, Mocn)

91

5 Instructable retrocausal motion forecasting

where v is a normalized feature vector, Mpca is a d X dpca matrix with columns
representing principal components of v, and proj(v, M) denotes the projection
of v onto the subspace spanned by the columns of M.

We compute this metric assuming either 272 or 32 principal components since
there are 272 density parameters per trajectory including location parameters com-
pressed as 32 DCT coefficients. Results in Figure 5.7 show an immediate collapse
when a 272-dimensional subspace is assumed (upper plot) and no collapse when
only considering the first 32 principal components. This observation strongly
suggest that the true dimensionality of features vectors lies between 32 and 272,
even when considering correlation between output variables, and reinforces the
results Table 5.6 and Figure 5.6. These findings support that, in addition to the
32 DCT coefficients for location parameters, other density parameters (i.e., shape
and scale) are important when regressing trajectories.

1074
1 —— joint
g 21 —— marginal
£
k=l
o1
8 \
Z
0 M. L L L L ‘\ ‘\ '\ L L Epoch
0 5 10 15 20 25 30 35 40 45 50
102
T e
AW WA VAN A A pmrn
&
22| s
=l
g —
z 1 —— joint
—— marginal
L L L L L L L T

- — Epoch
0 5 10 15 20 25 30 35 40 45 50
Figure 5.7: Feature vectors collapse (NRC1) for feature vectors of trajectories. The upper plot
shows that feature vectors collapses to a subspace spanned by less than 272 principal
components. NRC1 does not decrease in the lower plot, indicating that the feature vectors
span more than 32 dimensions. Thus, in addition to the 32 DCT coefficients for location

parameters, other density parameters are likely important as well. Adapted from Wagner
etal. (2025).

92

5.2 Experiments

5.2.5 Modeling 8 agents jointly

In general, we focus on joint motion forecasting on the interactive splits of the
Waymo dataset, which is evaluated in a pairwise joint setting (cf. Ettinger et al.
2021). However, our method is flexible and can be configured to perform joint
forecasting for 8 agents. In this section, we extend our experiment in Section 5.2.4
and train RetroMotion to model 8 agents jointly.

Table 5.8 shows the results of this experiment. In comparison to the pairwise
joint configuration (Njoine = 2) the mAP score is even slightly better, while
minFDE and minADE scores are worse. We hypothesize that the version with
Njoine = 8 focuses more on predicting high probabilities for the joint mode closest
to the ground truth, but learns more basic trajectory shapes that are not as precise
(worse minFDE and minADE) as there are exponentially more combinations of
trajectory shapes when modeling more agents.

Njgint Distribution DCT mAP 1 minFDE | minADE |
2 Exponential power True 0.195 2.060 0.910
8 Exponential power True 0.196 2.178 0.954

Table 5.8: RetroMotion generalizes to modeling 8 agents jointly. Njqin; gives the number of jointly
modeled agents. Both configurations are evaluated on the interactive validation split of the
Waymo dataset.

93

6 Conclusion

We have explored interpretable representation learning for motion forecasting,
including ideas from self-supervised learning, mechanistic interpretability, and
mixture density networks. Beyond benchmark-driven model design, we have
reverse-engineered ow forecasting models represent motion, how these represen-
tations can be modified, and how to issue goal-based and directional instructions.

Across the three main contributions, we have shown that:

1. Self-supervised pre-training with interpretable objectives (RedMotion and
JointMotion) can improve forecasting accuracy and shorten overall training
times. Specifically, RedMotion introduces redundancy reduction objectives
for learning environment embeddings from augmented traffic scenes. Joint-
Motion extends this idea to joint motion forecasting with complementary
scene-level and instance-level objectives. Both methods improve data ef-
ficiency, generalization to new datasets, and balance performance across
agent types.

2. Mechanistic interpretability via control vectors (Words in Motion) reveals
and modifies the learned representations of human-interpretable motion
features such as speed, acceleration, direction, and agent type. Neural
collapse analyses show that these features are linearly separable and em-
bedded in a structured latent space. Moreover, control vectors, especially
when optimized using sparse autoencoders, enable fine-grained and linear
control over motion forecasts at inference. This supports interpetability and
enables compensating for domain shifts like different driving styles in new
environments.

95

6 Conclusion

3. Retrocausal motion forecasting (RetroMotion) leverages a retrocausal infor-
mation flow from marginal to joint trajectory distributions, supporting accu-
rate interaction modeling and instruction-following. Our model re-encodes
marginal forecasts to generate joint distributions for multiple interacting
agents, using compressed probabilistic trajectory representations. Notably,
without explicit training, our model can follow goal-based instructions and
adapt directional instructions to the scene context.

Furthermore, we have performed empirical evaluations on state-of-the-art bench-
marks (Waymo Open Motion and Argoverse 2 Forecasting) to validate our meth-
ods. RedMotion and JointMotion achieve consistent improvements over strong
self-supervised pre-training baselines. Our modifications using control vectors
demonstrate interpretability and practical utility, with negligible computational
overhead. RetroMotion is instructable and attains competitive or state-of-the-art
accuracy on interaction prediction (i.e., pairwise joint motion forecasting).

6.1 Limitations and future work

Our proposed pre-training methods rely more on annotated data than self-
supervised pre-training methods used in computer vision (e.g., Chen et al. 2020b,
Caron et al. 2021, Bardes et al. 2022). These methods generate training targets
from raw images and do not require any annotated data. While our methods do
not require labels for motion forecasting, they still rely on map and past trajectory
data. Therefore, the data requirements of our methods are more similar to those of
self-supervised pre-training of language models (e.g., Radford et al. 2018), which
relies on text written by humans.

Moreover, we explored control vectors for categorical features of past motion;
extending it to richer, multimodal concepts (e.g., intent or compliance with traffic
rules) is a promising direction.

Finally, retrocausal mechanisms, while powerful for controllability, can also en-
able unrealistic influences between agents. Seff et al. (2023) describe this as

96

6.2 Final remarks

acausal predictions, where, for example, a following vehicle that breaks influ-
ences a leading vehicle to break as well. Further investigating and mitigating such
artefacts remains important (i.e., analyzing correlation vs. causation).

6.2 Final remarks

We demonstrate that interpretable representation learning is not at odds with
state-of-the-art motion forecasting performance. In fact, when approached sys-
tematically using control vectors or retrocausal mechanisms, it can enhance model
accuracy, robustness, and utility. By integrating pre-training strategies, inter-
pretability analysis, and instructable architectures, our work contributes toward
data-driven self-driving systems whose learned representations and mechanisms
can be interpreted and controlled.

97

A Appendix

A.1 Inference latency of our RedMotion model

Model (config) #agents Inference latency

RedMotion (mlp-dec) 1 23.2 ms £ 339 ps
8 25.2 ms &+ 642 ps
64 87.9 ms £ 185 ps

RedMotion (tra-dec) 1 18.2 ms £ 35.9 uis
8 29.7 ms + 14.9 ps
64 146.0ms +41.3 ps

Table A.1: Inference latency of our RedMotion model. Both configurations achieve a low inference
latency of less than 30 ms for the challenge setting of forecasting the motion of 8 agents.
All times are measured on one A100 GPU using plain PyTorch eager execution and
torch.inference_mode (). We show mean =+ std. dev. of 7 runs with 10 loops each.
#agents gives the number of modeled agents. Adapted from Wagner et al. (2024).

A.2 Parameters of our categorical motion
features

We classify motion trajectories with a sum less than 15° as straight. When the
cumulative angle exceeds this threshold, a positive value indicates right direction,
while a negative value — exceeding the threshold in absolute terms — indicates a
left direction. We classify speeds between 25 km /h and 50 km /h as moderate,
speeds above this range as high, those below as low, and negative speeds as
backwards. For acceleration, we classify trajectories as decelerating, if

99

A Appendix

the integral of speed over time to projected displacement with initial speed is
less than 0.9 times. If this ratio is greater than 1.1 times, we classify them
as accelerating. For all other values, we classify the trajectories as having
constant speed. We determine all threshold values by analyzing the distribution
of the dataset.

A.3 Early, hierarchical and late fusion in
motion encoders

We define fusion types for motion transformers based on the information they
process in the first attention layers. In early fusion, the first attention layers
process motion data of the modeled agent, other agents, and environment context.
In hierarchical fusion, they process motion data of the modeled agent, and other
agents. In late fusion, they exclusively process motion data of the modeled agent.

A.4 Choosing a range of relative changes in
future speed to evaluate control vectors

Given the large range of scenarios in the Waymo dataset, we focus on relative speed
changes within a range of +-50% to capture the most relevant speed variations (see
Figure 3 in Ettinger et al. (2021)). Considering the approximated mean and
standard deviation for each agent type (vehicles: p ~ 12m/s, 0 ~ 5m/s,
pedestrians: p &~ 1.5m/s, o ~ 0.7m/s, and cyclists: p = 7m/s, o ~ 3m/s)
the +50% range corresponds to speeds within approximately +10 of the mean
for each agent type.

100

A.5 Evaluating a Koopman autoencoder

A.5 Evaluating a Koopman autoencoder

A consistent Koopman autoencoder (KoopmanAE) (Azencot et al. 2020) is a
bidirectional method that models temporal dynamics between embeddings. The
learned latent space approximates a Koopman-invariant space where dynamics
evolve linearly. Adapted to the SAE configurations, we train an encoder and a
decoder with one layer each and a hidden dimension of 128. Following Azencot
et al. (2020), we use learned linear projections to decode Koopman operator
approximations C, D € R'28*128 from intermediate representations. For the first
10 time steps, we encode the embedding and predict the next embedding using C,
while for the last 10 time steps, we encode the embedding and predict the previous
embedding using D.

Afterwards, we use the KoopmanAE instead of an SAE to fit control vectors
(see Section 4.2). Figure A.1 shows the calibration curve for the resulting speed
control vector. The range of 7 values is approximately 100x smaller than for the
SAE-based control vector shown in Figure 4.10b.

50 P
Calibration curve
Linear reference

954

relative speed change in %
o
|

504

Figure A.1: Calibration curve for a speed control vector optimized using the KoopmanAE. The
range of 7 values is significantly lower than for plain PCA and SAE-based control vectors
(cf. Figure 4.10), yielding lower R? scores as shown in Table 4.2. Adapted from Tas and
Wagner (2025).

101

A Appendix

A.6 Fuzz testing PCA-based speed control
vectors

Figure A.2 shows the mean jerk and tortuosity values of trajectories when modi-
fying the speed feature with our PCA-based control vector.

I Vehicle
0.81 mzm Cyclist
E=H Pedestrian

Mean Jerk (m/s3)
s o
> o

o
¥

o
o

N}

B S

Control temperatures

I Vehicle
EZZ4 Cyclist
EEE Pedestrian

Tortuosity

N Q N O O Q Q S Q N\ N Q \} N S
o :»‘b ,\b ~ 0 ,\Q P o) ‘ Vv ¥ o \Q N"l» N \b ’\Cb ,\)Q
Control temperatures

Figure A.2: Fuzz testing control temperatures 7 for PCA-based speed control vectors. All metrics
are for motion forecasts of our RedMotion model on the Waymo dataset.

A.7 Inference latency when modifying hidden
states with control vectors

Table A.2 shows inference latency measurements of a RedMotion model on the
Waymo dataset with and without modifying hidden states. Such modifications add
only about 1 ms to the total inference latency. Since most datasets are recorded at
10 Hz (e.g., Wilson et al. (2023), Ettinger et al. (2021)), it is common to define the

102

A.8 Distance thresholds NMS and softmax 7 values for RetroMotion

threshold for real-time processing as <100 ms. Considering the inference latency
of recent 3D detection models (e.g., approx. 40 ms for DSVT (Wang et al. 2023a)),
which must be called before motion forecasting, our modifications should not add
significantly to the forecasting latency.

Modifying H Focal agents Inference latency

False 8 50.21 ms
True 8 51.08 ms

Table A.2: Inference latency without and with modifying hidden states with our control vectors.
We measure the inference latency on one A6000 GPU using the PyTorch Lightning profiler
and plain eager execution. We report the mean of 1000 iterations per configuration for
the predict_step, including pre- and post-processing. Adapted from Tas and Wagner
(2025).

A.8 Distance thresholds NMS and softmax ~
values for RetroMotion

Expert model Veh. thresh. Ped. thresh. Cyc. thresh. T
Vehicle 1.3m - - 0.5
Pedestrian 1.4m 1.6m - 1.1
Cyclist (RetroMotion-based) 1.9m - 1.0m 1.0
Cyclist (BeTopNet-based) 2.5m - 2.5m -

Table A.3: Distance thresholds NMS and softmax 7 values for RetroMotion

103

List of Figures

1.1

3.1

32

33

34

Motion forecasting. The forecasts are based on 1.1s of past
motion and cover the next 8s. Dynamic road users are blue,

lanes are black lines, and road markings are white lines.

RedMotion. Our model consists of two encoders. The tra-
jectory encoder generates an embedding for the past trajectory
of the current agent. The road environment encoder generates
fixed-size environment embeddings as context. We use two re-
dundancy reduction mechanisms to learn good representations of
road environments, (a) implicit see Section 3.1.1 and (b) explicit
see Section 3.1.2. All embeddings are fused via cross-attention.
Finally, a decoder generates a distribution of future trajectories

per agent. Adapted from Wagner et al. (2024).

Vehicle motion forecasts. Dynamic vehicles are marked as blue
boxes, pedestrians as orange boxes, cyclists as green boxes, and
static agents as grey boxes. Road markings are shown in white,
traffic lane centerlines are black lines, and bike lane centerlines
are red lines. The past trajectory of the ego agent is a dark blue
line. The ground truth trajectory is cyan blue, the predicted
trajectories are color-coded based on the associated probability
using the viridis colormap on the left. Adapted from Wagner

etal. (2024).

Cyclist motion forecasts. We use the same color-coding as
in Figure 3.2. This plot shows an error case as the blueish
trajectory pointing downwards enters the inbound lane. Adapted

from Wagner etal. (2024). oL

Pedestrian motion forecasts. We use the same color-coding as

in Figure 3.2. Adapted from Wagner et al. (2024).

.37

List of Figures

35

3.6

3.7

3.8

4.1

106

JointMotion. (a) Connecting motion and environments: Our
scene-level objective learns joint scene representations via non-
contrastive similarity learning of motion sequences M and en-
vironment context F. (b) Masked polyline modeling: Our
instance-level objective refines learned representations via masked
autoencoding of multimodal polyline embeddings (i.e., motion,
lane, and traffic light embeddings). Adapted from Wagner et al.

(0242). .+

Adaptive decoding for masked polyline modeling with late
and early fusion encoders. (a) Late fusion with modality-
specific encoders for agents (A encoder), lanes (L), and traffic
lights (TL). (b) Early fusion with a shared encoder for all modal-
ities. Compressed features are decoded using learned query

tokens. Adapted from Wagner et al. (2024a).

Loss plots of our complementary pre-training objectives. The
blue curve represents JointMotion, while the green curve repre-
sents JointMotion w/o CME. L stands for lanes, TL stands for
traffic lights, and A stands for agents. Adapted from Wagner

etal. (2024a).

Accelerating and improving training via self-supervised pre-
training. Scene Transformer models pre-trained with Joint-
Motion achieve higher mAP scores on the Waymo dataset than
models trained from scratch, even in a shorter total wall train-
ing time (pre-training + fine-tuning vs. training from scratch).

Adapted from Wagner et al. (2024a).

Words in Motion. (a) Inspired by words in natural language,
we define categorical features with interpretable states.
(b) We measure whether these features are embedded in the
hidden states H of transformer models with linear probes. Fur-
thermore, we use our categorical features to fit control vectors
V; that allow for modifying hidden states at inference. (c¢) Such
modifications lead to sensible changes in motion forecasts, in-
dicating that the analyzed features are functionally important.

.42

List of Figures

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

Linear probing accuracies for RedMotion, Wayformer, and
HPTR on the validation split of the AV2F dataset, for mod-
ule 2. Adapted from Tas and Wagner (2025). 55
Normalized standard deviation of representations for RedMo-
tion, Wayformer, and HPTR. Adapted from Tas and Wagner
(2025). . 56
Linear probing accuracies of RedMotion for hidden states of

, module | and module 2 on the validation split of the
Waymo dataset. Adapted from Tas and Wagner (2025). 56
Modifying hidden states to control a vehicle at an intersec-
tion. We add our acceleration control to enforce a strong de-
celeration and a moderate acceleration. The controlled agent is
highlighted in orange, dynamic agents are blue, and static agents
are grey. Lanes are black lines and road markings are white lines.
Adapted from Tas and Wagner (2025). 59
Modifying hidden states to control a vehicle before a pre-
dicted right turn. Increasing the speed also changes the route
to fit the given context (i.e., lanes). Adapted from Tas and Wag-
ner (2025). e 59
Modifying hidden states to control a left turning vehicle. We
apply our left-direction control vector and right-direction control
vector. Adapted from Tas and Wagner (2025). 60
Speed control vector applied to multiple agents. Linearly
scaling the control temperature parameter 7 leads to rather linear
changes in future speeds as well. Adapted from Tas and Wagner (2025).60
Words in Motion with sparse autoencoding. The training of
the sparse autoencoder is shown with red arrows (—) and the
fitting of control vectors with blue arrows (—). 61
Calibration curves of plain PCA-based speed control vectors and
control vectors optimized using SAEs for relative speed changes
in forecasts of £50%. Adapted from Tas and Wagner (2025). 64
JumpReLU compensates activation shrinkage as reflected in a
smaller range of 7 values for the same range of relative speed
changes. Adapted from Tas and Wagner (2025). 65

107

List of Figures

4.12

4.13

4.14

5.1

52

53

54

108

Calibration curve for a plain PCA-based speed control vector

for the AV2F dataset. In contrast to the control vectors for the

Waymo dataset, this control vector cannot reduce the speed by

more than 3%. Adapted from Tas and Wagner (2025). 67
Distributions of our categorical motion features for the

and the Waymo dataset. All numbers are percentages. Adapted

from Tas and Wagner (2025). 68
Fuzz testing control temperatures 7 for SAE-128 optimized

speed control vectors. All metrics are for motion forecasts of

our RedMotion model on the Waymo dataset. 69
Bivariate exponential power distributions with 5 = 2 (normal),

B = 1 (Laplace), § = 0.25 (heavy-tailed), and g = 8 (platykurtic). . 75
From marginal to joint trajectories. We use an MLP to gen-

erate query matrices () from marginal trajectories and exchange
information between queries and scene context with attention
mechanisms. Afterwards, we decode joint trajectories 73]1017'?

from pairs of queries at the same index. This compresses infor-

mation from all K? possible combinations into K query pairs.

Adapted from Wagner et al. (2025). 77
Joint and combined motion forecasts of our model. Dynamic

agents are shown in blue, static agents in grey (determined at

t = 0s). Lanes are black lines and road markings are white

lines. Top left: forecasts for two cars, top right: a car yielding to

a pedestrian on a crosswalk, bottom left: forecasts for a car and

a cyclist, and bottom right: combined forecasts of two cars and

six pedestrians. Adapted from Wagner et al. (2025). 83
Our model adapts directional instructions to the scene con-

text. (a) shows the default marginal trajectory forecast of our

model. (b) shows our basic furn left instructions, which violate

traffic rules by turning into the oncoming lanes. (c¢) shows that

our model resolves this by adapting the trajectory of the right

vehicle to its lane (shown as black line) and reversing the in-

struction for the left vehicle, since turning left is not possible.

Adapted from Wagner et al. (2025). 87

List of Figures

5.5

5.6

5.7

Al

A2

On-road probability map of a scenario in the AV2F dataset.
The map quantifies how far away each non-drivable pixel is from
the nearest drivable area. Adapted from Wagner et al. (2025).

Mixture weight of normal components in exponential power
distributions. During training the weight w progressively in-
creases, while reaching higher values for joint trajectory distri-
butions than for marginal distributions. Adapted from Wagner

etal. (2025).

Feature vectors collapse (NRC1) for feature vectors of tra-
jectories. The upper plot shows that feature vectors collapses
to a subspace spanned by less than 272 principal components.
NRCI1 does not decrease in the lower plot, indicating that the
feature vectors span more than 32 dimensions. Thus, in addition
to the 32 DCT coefficients for location parameters, other density
parameters are likely important as well. Adapted from Wagner

etal. (2025). .« . s

Calibration curve for a speed control vector optimized us-
ing the KoopmanAE. The range of 7 values is significantly
lower than for plain PCA and SAE-based control vectors (cf.
Figure 4.10), yielding lower R? scores as shown in Table 4.2.

Adapted from Tas and Wagner (2025).

Fuzz testing control temperatures 7 for PCA-based speed
control vectors. All metrics are for motion forecasts of our

RedMotion model on the Waymo dataset.

. 88

.. 91

.92

109

List of Tables

2.1
3.1

3.2

33

34

Lateral and longitudinal thresholds of the miss rate (MR) metric . . .

Comparing pre-training methods for motion prediction. Best
scores are bold, second best are underlined. We evaluate on the
Waymo Open Motion (Waymo) and the Argoverse 2 Forecasting
(AV2F) datasets. We report mean =+ standard deviation of 3
training runs per method and configuration. All methods are
pre-trained on 100% and fine-tuned on 12.5% of the training
sets. *Denotes methods that require past trajectory annotations.

Adapted from Wagner etal. (2024).

Comparing marginal motion forecasting models. The metrics
with suffix "@8s" are computed for the whole prediction horizon
of 8 s, the others are the average for the prediction horizons of 3 s,
5, and 8s (as in the official Waymo benchmark). Best scores are
bold, second best are underlined. *Denotes methods that require
trajectory aggregation as post-processing. **Denotes methods

that employ ensembling. Adapted from Wagner et al. (2024). . . .

Comparison of self-supervised pre-training methods for joint
motion forecasting. All methods are used to pre-train Scene
Transformer models (Ngiam et al. 2022) on the Waymo training
split and are evaluated on the validation split. Agent types: cyclist
(cyc), pedestrian (ped), and vehicle (veh). Best scores are bold,

second best are underlined. Adapted from Wagner et al. (2024a). . . .

Comparing scene-level pre-training methods. All metrics are
computed using the Waymo Open Motion interactive (Waymo)
and Argoverse 2 Forecasting (AV2F) validation splits. Best scores

are bold. Adapted from Wagner et al. (2024a).

33

36

46

48

111

List of Tables

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

112

Scaling sparse autoencoders. Adapted from Tas and Wagner
(2025). . . 63
Comparing control vectors optimized with different autoen-
coders. Linearity measures for optimized control vectors: Pear-
son correlation coefficient, coefficient of determination (R?), and
straightness index (S-idx). Adapted from Tas and Wagner (2025). . . 65
Generating control vectors for hidden states of different mod-
ules. Control vectors for speed generated in earlier modules
achieve lower linearity scores. Linearity measures for control-
ling: Pearson correlation coefficient, coefficient of determination
(R?), and straightness index. Adapted from Tas and Wagner (2025). . 66
Generating speed control vectors with different thresholds
for low and high speed. Decreasing the threshold for high
speed marginally improves linearity scores, while increasing the
threshold for low speed significantly worsens the linearity scores.
Adapted from Tas and Wagner (2025). 66
Higher probing accuracy enables higher linearity measures.
We train RedMotion models on the Waymo and AV2F datasets
using the same trajectory lengths. We report the probing accura-
cies and CDNYV for speed feature states and the linearity measures

for the corresponding PCA-based control vectors. 67
Average jerk and tortuosity of ground truth trajectories of the
Waymodataset. 69

Zero-shot generalization to a Waymo dataset version with reduced
future speeds. Best scores are bold, second best are underlined.
Adapted from Tas and Wagner (2025). 71
Interactive motion forecasting results of RetroMotion. All
methods are evaluated on the interactive splits of the Waymo
dataset (Ettinger et al. 2021). The main challenge metric is the
mAP. Best scores are bold, second best are underlined. Adapted
from Wagner et al. (2025)., 83

List of Tables

5.2

53

54

5.5

5.6

5.7

Per agent type comparison of the top-4 methods. All met-
rics are for the interactive test split of the Waymo Open Motion
dataset. Params (active) gives the number of parameters that are
active per agent (cf. Jiang et al. (2024)). % of scenes gives
the percentage of scenes that contain at least one instance of the
corresponding agent type. Best scores are bold, second best are

underlined. Adapted from Wagner et al. (2025).

Cross-dataset generalization from Waymo Open Motion to
Argoverse 2 Forecasting. All methods are trained on Waymo
Open Motion and evaluated on the validation split of the Argo-
verse 2 Forecasting dataset (Wilson et al. 2023). Best scores are
bold, second best are underlined. Adapted from Wagner et al.

(2025). . .

Goal-based instruction following. As instructions, we modify
marginal trajectories and evaluate the changes in joint trajectories.
We modify either the trajectory with the highest confidence score
or with the lowest minFDE w.r.t. the desired goal positions, or
all 6 trajectories. All instruction configurations are evaluated on
the validation split of the AV2F dataset. Best scores are bold,
second best are underlined. Adapted from Wagner et al. (2025).
Adapting basic directional instructions to the scene context.
As instructions, we modify marginal trajectories and evaluate
the changes in joint trajectories. In this experiment, we modify
all 6 marginal trajectories per agent using our basic directional
instructions (cf. Section 5.2.3.2). We report overlap rates (OR)
with other agents and on-road probability (ORP) scores. All
configurations are evaluated on the validation split of the AV2F

dataset. Adapted from Wagner et al. (2025).

Comparing distribution types with and without DCT com-
pression. All configurations are evaluated on the interactive
validation split of the Waymo Open Motion dataset. Best scores
are bold, second best are underlined. Adapted from Wagner et al.

(2025). . e e e
RetroMotion is not too sensitive to Npep. -+« v v v v o o .

. 86

113

List of Tables

5.8

A.l

A2

A3

114

RetroMotion generalizes to modeling 8 agents jointly. Niin
gives the number of jointly modeled agents. Both configurations

are evaluated on the interactive validation split of the Waymo dataset.

Inference latency of our RedMotion model. Both configura-
tions achieve a low inference latency of less than 30 ms for the
challenge setting of forecasting the motion of 8 agents. All times
are measured on one A100 GPU using plain PyTorch eager exe-
cution and torch.inference_mode(). We show mean =+ std.
dev. of 7 runs with 10 loops each. #agents gives the number of

modeled agents. Adapted from Wagner et al. (2024).

Inference latency without and with modifying hidden states
with our control vectors. We measure the inference latency
on one A6000 GPU using the PyTorch Lightning profiler and
plain eager execution. We report the mean of 1000 iterations per
configuration for the predict_step, including pre- and post-

processing. Adapted from Tas and Wagner (2025).
Distance thresholds NMS and softmax 7 values for RetroMotion . . .

93

List of publications

Journal articles

Royden Wagner, Omer Sahin Tas, Marvin Klemp, Carlos Fernandez, and
Christoph Stiller. RedMotion: Motion Prediction via Redundancy Reduction.
Transactions on Machine Learning Research (TMLR), 2024. ISSN 2835-8856.

Conference contributions and preprints

Omer Sahin Tas and Royden Wagner. Words in Motion: Extracting Interpretable
Control Vectors for Motion Transformers. In Y. Yue, A. Garg, N. Peng,
F. Sha, and R. Yu, editors, International Conference on Representation Learn-
ing (ICLR), volume 2025, pages 87191-87214, 2025.

Royden Wagner, Omer Sahin Tas, Marvin Klemp, and Carlos Fernandez. Joint-
Motion: Joint Self-Supervision for Joint Motion Prediction. In Conference on
Robot Learning (CoRL), pages 3395-3406. PMLR, 2024a.

Royden Wagner, Omer Sahin Tag, Marlon Steiner, Fabian Konstantinidis, Hendrik
Konigshof, Marvin Klemp, Carlos Fernandez, and Christoph Stiller. SceneMo-
tion: From Agent-Centric Embeddings to Scene-Wide Forecasts. In 2024 IEEE
27th International Conference on Intelligent Transportation Systems (ITSC),
pages 812-818. IEEE, 2024b.

Marvin Klemp, Royden Wagner, Kevin Rosch, Martin Lauer, and Christoph
Stiller. Vehicle Intention Classification using Visual Clues. In 2024 IEEE

115

Conference contributions and preprints

International Conference on Robotics and Automation (ICRA), pages 16395—
16401. IEEE, 2024.

Marvin Klemp, Shengyi Chen, Royden Wagner, and Martin Lauer. End-to-
End Trainable Deep Neural Network for Radar Interference Detection and
Mitigation. In 2023 IEEE International Radar Conference (RADAR), pages
1-6. IEEE, 2023a.

Marvin Klemp, Kevin Résch, Royden Wagner, Jannik Quehl, and Martin Lauer.
LDFA: Latent Diffusion Face Anonymization for Self-Driving Applications.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 3199-3205, 2023b.

Royden Wagner, Marvin Klemp, Carlos Fernandez Lopez, and Omer Sahin
Tas. Road Barlow Twins: Redundancy Reduction for Motion Prediction. In
ICRA2023 Workshop on Pretraining for Robotics (PT4R), 2023a.

Royden Wagner, Marvin Klemp, and Carlos Fernandez Lopez. MaskedFusion360:
Reconstruct LIDAR Data by Querying Camera Features. In The First Tiny
Papers Track at ICLR 2023, Tiny Papers @ ICLR 2023, Kigali, Rwanda, May
5, 2023. Ed.: K. Maughan Hrsg.: Maughan, Krystal; Liu, Rosanne; Burns,
Thomas F., 2023b.

Royden Wagner, Omer Sahin Tas, Felix Hauser, Marlon Steiner, Dominik Strutz,
Abhishek Vivekanandan, Carlos Fernandez, and Christoph Stiller. RetroMo-
tion: Retrocausal Motion Forecasting Models are Instructable. arXiv preprint
arXiv:2505.20414, 2025.

116

Bibliography

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using lin-
ear classifier probes. In International Conference on Learning Representations
(ICLR), 2017.

George Andriopoulos, Zixuan Dong, Li Guo, Zifan Zhao, and Keith Ross. The
prevalence of neural collapse in neural multivariate regression. Advances in
Neural Information Processing Systems (NeurIPS), 37, 2024.

Omri Azencot, N Benjamin Erichson, Vanessa Lin, and Michael Mahoney. Fore-
casting sequential data using consistent koopman autoencoders. In Interna-
tional Conference on Learning Representations (ICLR). PMLR, 2020.

Inhwan Bae, Jean Oh, and Hae-Gon Jeon. Eigentrajectory: Low-rank descriptors
for multi-modal trajectory forecasting. In IEEE/CVF International Conference
on Computer Vision (ICCV), 2023.

Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar,
Tom Goldstein, Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuan-

dong Tian, et al. A cookbook of self-supervised learning. arXiv preprint
arXiv:2304.12210, 2023.

Mustafa Baniodeh, Kratarth Goel, Scott Ettinger, Carlos Fuertes, Ari Seff, Tim
Shen, Cole Gulino, Chenjie Yang, Ghassen Jerfel, Dokook Choe, et al. Scaling
laws of motion forecasting and planning—a technical report. arXiv preprint
arXiv:2506.08228, 2025.

Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, Jodo
Madeira Aradjo, Oleksandr Vitvitskyi, Razvan Pascanu, and Petar Velickovic.

117

Bibliography

Transformers need glasses! information over-squashing in language tasks.
Advances in Neural Information Processing Systems (NeurIPS), 37:98111-
98142, 2024.

Adrien Bardes, Jean Ponce, and Yann Lecun. Vicreg: Variance-invariance-
covariance regularization for self-supervised learning. In International Con-
ference on Learning Representations (ICLR), 2022.

Horace Barlow. Redundancy reductionrevisited. Network: computation in neural
systems, 12(3):241, 2001.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-
document transformer. arXiv preprint arXiv:2004.05150, 2020.

Ido Ben-Shaul, Ravid Shwartz-Ziv, Tomer Galanti, Shai Dekel, and Yann LeCun.
Reverse engineering self-supervised learning. Advances in Neural Information
Processing Systems (NeurIPS), 36:58324-58345, 2023.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning:
A review and new perspectives. IEEE Transactions on Pattern Recognition and
Machine Intelligence (PAMI), 35(8):1798-1828, 2013.

Simon Benhamou. How to reliably estimate the tortuosity of an animal’s path:
straightness, sinuosity, or fractal dimension? Journal of Theoretical Biology,
2004.

Christopher M Bishop. Mixture density networks. Preprint (Aston University),
1994.

Mohamed-Khalil Bouzidi, Bojan Derajic, Daniel Goehring, and Joerg Re-
ichardt. Motion planning under uncertainty: Integrating learning-based
multi-modal predictors into branch model predictive control. arXiv preprint
arXiv:2405.03470, 2024.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn,
Tom Conerly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert
Lasenby, Yifan Wu, Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas

118

Bibliography

Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina Nguyen, Brayden McLean,
Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and Christo-
pher Olah. Towards monosemanticity: Decomposing language models with
dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. Advances in Neural
Information Processing Systems (NeurIPS), 33:1877-1901, 2020.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong,
Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom.
nuscenes: A multimodal dataset for autonomous driving. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision
transformers. In IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9650-9660, 2021.

Sergio Casas, Cole Gulino, Simon Suo, Katie Luo, Renjie Liao, and Raquel Urta-
sun. Implicit latent variable model for scene-consistent motion forecasting. In
European Conference on Computer Vision (ECCV), pages 624-641. Springer,
2020.

Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir Anguelov. Multi-
path: Multiple probabilistic anchor trajectory hypotheses for behavior predic-
tion. In Conference on Robot Learning (CoRL). PMLR, 2020.

Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Slawomir
Bak, Andrew Hartnett, De Wang, Peter Carr, Simon Lucey, Deva Ramanan,
et al. Argoverse: 3d tracking and forecasting with rich maps. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 8748—
8757, 2019.

119

Bibliography

Dian Chen, Vladlen Koltun, and Philipp Krdhenbiihl. Learning To Drive From a
World on Rails. In IEEE/CVF International Conference on Computer Vision
(ICCV), 2021a.

Hao Chen, Jiaze Wang, Kun Shao, Furui Liu, Jianye Hao, Chenyong Guan,
Guangyong Chen, and Pheng-Ann Heng. Traj-mae: Masked autoencoders for
trajectory prediction. In IEEE/CVF International Conference on Computer
Vision (ICCV), pages 8351-8362, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha
Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision trans-
former: Reinforcement learning via sequence modeling. Advances in Neural
Information Processing Systems (NeurIPS), 34:15084—15097, 2021b.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan,
and Ilya Sutskever. Generative pretraining from pixels. In International Con-
ference on Machine Learning (ICML), pages 1691-1703. PMLR, 2020a.

Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and Ivan Laptev. History
aware multimodal transformer for vision-and-language navigation. Advances
in Neural Information Processing Systems (NeurIPS), 2021c.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A
simple framework for contrastive learning of visual representations. In Inter-
national Conference on Machine Learning (ICML), pages 1597-1607. PmLR,
2020b.

Xinlei Chen and Kaiming He. Exploring Simple Siamese Representation Learn-
ing. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

Jie Cheng, Xiaodong Mei, and Ming Liu. Forecast-mae: Self-supervised pre-
training for motion forecasting with masked autoencoders. In IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), 2023.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric
discriminatively, with application to face verification. In IEEE/CVF Conference

120

Bibliography

on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 539—
546. IEEE, 2005.

Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality:
Reverse engineering how networks learn group operations. In International
Conference on Machine Learning (ICML), pages 6243-6267. PMLR, 2023.

Alexander Cui, Sergio Casas, Kelvin Wong, Simon Suo, and Raquel Urtasun.
Gorela: Go relative for viewpoint-invariant motion forecasting. In IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2023.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey.
Sparse autoencoders find highly interpretable features in language models.
arXiv preprint arXiv:2309.08600, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Annual Conference of the Nations of the Americas Chapter of the Association
for Computational Linguistics (NAACL), pages 4171-4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
G Heigold, S Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference on Learning Represen-
tations (ICLR), 2021.

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored rep-
resentations in a deep mixture of experts. arXiv preprint arXiv:1312.4314,
2013.

Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek
Pradhan, Yuning Chai, Ben Sapp, Charles R Qi, Yin Zhou, et al. Large
scale interactive motion forecasting for autonomous driving: The waymo open
motion dataset. In IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9710-9719, 2021.

121

Bibliography

William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in
deep learning. arXiv preprint arXiv:2209.01667, 2022.

Christoph Feichtenhofer, Yanghao Li, Kaiming He, et al. Masked autoencoders as
spatiotemporal learners. Advances in Neural Information Processing Systems
(NeurIPS), 35:35946-35958, 2022.

Lan Feng, Mohammadhossein Bahari, Kaouther Messaoud Ben Amor, Eloi
Zablocki, Matthieu Cord, and Alexandre Alahi. Unitraj: A unified frame-
work for scalable vehicle trajectory prediction. In European Conference on
Computer Vision (ECCV), pages 106—123. Springer, 2024.

Lan Feng, Mohammadhossein Bahari, Kaouther Messaoud Ben Amor, Eloi
Zablocki, Matthieu Cord, and Alexandre Alahi. Unitraj: A unified frame-
work for scalable vehicle trajectory prediction. In European Conference on
Computer Vision (ECCV), 2025.

Enrico Fini, Pietro Astolfi, Adriana Romero-Soriano, Jakob Verbeek, and Michal
Drozdzal. Improved baselines for vision-language pre-training. Transactions
on Machine Learning Research (TMLR), 2023.

Tomer Galanti, Andras Gyorgy, and Marcus Hutter. On the role of neural collapse
in transfer learning. arXiv preprint arXiv:2112.15121, 2021.

Mudasir A Ganaie, Minghui Hu, Ashwani Kumar Malik, Muhammad Tanveer,
and Ponnuthurai N Suganthan. Ensemble deep learning: A review. Engineering
Applications of Artificial Intelligence, 115:105151, 2022.

Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong Li,
and Cordelia Schmid. Vectornet: Encoding hd maps and agent dynamics from
vectorized representation. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec
Radford, Ilya Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating

sparse autoencoders. In International Conference on Learning Representations
(ICLR), 2025.

122

Bibliography

Maximilian Geisslinger, Franziska Poszler, and Markus Lienkamp. An ethical
trajectory planning algorithm for autonomous vehicles. Nature Machine Intel-
ligence, 2023.

Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and
Fabien Moutarde. Thomas: Trajectory heatmap output with learned multi-agent
sampling. In International Conference on Learning Representations (ICLR),
2022.

Roger Girgis, Florian Golemo, Felipe Codevilla, Martin Weiss, Jim Aldon
D’Souza, Samira E Kahou, Felix Heide, and Christopher Pal. Latent vari-
able sequential set transformers for joint multi-agent motion prediction. In
International Conference on Learning Representations (ICLR), 2022.

Tan Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning, volume 1. MIT press Cambridge, 2016.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-
han Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent-a
new approach to self-supervised learning. Advances in Neural Information
Processing Systems (NeurIPS), 33:21271-21284, 2020.

Pierre-Louis Guhur, Shizhe Chen, Ricardo Garcia Pinel, Makarand Tapaswi,
Ivan Laptev, and Cordelia Schmid. Instruction-driven history-aware policies
for robotic manipulations. In Conference on Robot Learning (CoRL), pages
175-187. PMLR, 2023.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii,
and Dimitris Bertsimas. Finding neurons in a haystack: Case studies with
sparse probing. Transactions on Machine Learning Research (TMLR), 2023.
ISSN 2835-8856.

Abner Guzman-Rivera, Dhruv Batra, and Pushmeet Kohli. Multiple choice learn-
ing: Learning to produce multiple structured outputs. Advances in Neural
Information Processing Systems (NeurIPS), 2012.

123

Bibliography

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum
contrast for unsupervised visual representation learning. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 9729-9738,
2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Gir-
shick. Masked autoencoders are scalable vision learners. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 16000—
16009, 2022.

John Houston, Guido Zuidhof, Luca Bergamini, Yawei Ye, Long Chen, Ashesh
Jain, Sammy Omari, Vladimir Iglovikov, and Peter Ondruska. One thousand
and one hours: Self-driving motion prediction dataset. In Conference on Robot
Learning (CoRL), 2021.

Zhiyu Huang, Haochen Liu, and Chen Lv. Gameformer: Game-theoretic mod-
eling and learning of transformer-based interactive prediction and planning for
autonomous driving. In IEEE/CVF International Conference on Computer
Vision (ICCV), pages 3903-3913, 2023.

Ronny Hug, Wolfgang Hiibner, and Michael Arens. Introducing probabilistic
bézier curves for n-step sequence prediction. In AAAI Conference on Artificial
Intelligence (AAAI), 2020.

Masha Itkina and Mykel Kochenderfer. Interpretable self-aware neural networks
for robust trajectory prediction. In Conference on Robot Learning (CoRL).
PMLR, 2023.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton.
Adaptive mixtures of local experts. Neural computation, 3(1):79-87, 1991.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman,
and Joao Carreira. Perceiver: General perception with iterative attention. In
International Conference on Machine Learning (ICML), 2021.

Xiaosong Jia, Penghao Wu, Li Chen, Yu Liu, Hongyang Li, and Junchi Yan.
HDGT: Heterogeneous Driving Graph Transformer for Multi-Agent Trajectory

124

Bibliography

Prediction via Scene Encoding. IEEE Transactions on Pattern Recognition and
Machine Intelligence (PAMI), 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche
Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. Mixtral of experts. arXiv preprint
arXiv:2401.04088, 2024.

Chiyu Jiang, Andre Cornman, Cheolho Park, Benjamin Sapp, Yin Zhou, Dragomir
Anguelov, et al. Motiondiffuser: Controllable multi-agent motion prediction
using diffusion. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

William Johnson and Joram Lindenstrauss. Extensions of Lipschitz maps into
a Hilbert space. Contemporary Mathematics, 26:189-206, 01 1984. doi:
10.1090/conm/026/737400.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling
laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive
learning. Advances in Neural Information Processing Systems (NeurIPS), 33:
18661-18673, 2020.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakr-
ishna, Suraj Nair, Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan
Vuong, et al. Openvla: An open-source vision-language-action model. In
Conference on Robot Learning (CoRL), 2024.

Ouail Kitouni, Niklas Nolte, Victor Samuel Pérez-Diaz, Sokratis Trifinopoulos,
and Mike Williams. From neurons to neutrons: A case study in interpretabil-
ity. In International Conference on Machine Learning (ICML), pages 24726~
24748. PMLR, 2024.

125

Bibliography

Elyor Kodirov, Tao Xiang, Zhenyong Fu, and Shaogang Gong. Unsupervised do-
main adaptation for zero-shot learning. In IEEE/CVF International Conference
on Computer Vision (ICCV), 2015.

Stepan Konev. Mpa: Multipath++ based architecture for motion prediction. arXiv
preprint arXiv:2206.10041, 2022.

Stepan Konev, Kirill Brodt, and Artsiom Sanakoyeu. Motioncnn: A strong
baseline for motion prediction in autonomous driving. arXiv preprint
arXiv:2206.02163, 2022.

Sébastien Lachapelle, Divyat Mahajan, Ioannis Mitliagkas, and Simon Lacoste-
Julien. Additive decoders for latent variables identification and cartesian-
product extrapolation. Advances in Neural Information Processing Systems
(NeurIPS), 36, 2024.

Zhiqgian Lan, Yuxuan Jiang, Yao Mu, Chen Chen, and Shengbo Eben Li. SEPT:
Towards efficient scene representation learning for motion prediction. In Infer-
national Conference on Learning Representations (ICLR), 2024.

Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Ng. Efficient sparse coding
algorithms. Advances in Neural Information Processing Systems (NeurIPS),
19, 2006.

Stefan Lee, Senthil Purushwalkam Shiva Prakash, Michael Cogswell, Viresh Ran-
jan, David Crandall, and Dhruv Batra. Stochastic multiple choice learning for

training diverse deep ensembles. Advances in Neural Information Processing
Systems (NeurlPS), 2016.

Janet Levin. Functionalism. In Edward N. Zalta and Uri Nodelman, editors, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, Summer 2023 edition, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C Lawrence Zitnick. Microsoft coco: Common
objects in context. In European Conference on Computer Vision (ECCV), pages
740-755. Springer, 2014.

126

Bibliography

Haochen Liu, Li Chen, Yu Qiao, Chen Lv, and Hongyang Li. Reasoning multi-
agent behavioral topology for interactive autonomous driving. In Advances in
Neural Information Processing Systems (NeurIPS), 2024.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In
International Conference on Learning Representations (ICLR), 2019.

Wenjie Luo, Cheol Park, Andre Cornman, Benjamin Sapp, and Dragomir
Anguelov. Jfp: Joint future prediction with interactive multi-agent modeling
for autonomous driving. In Conference on Robot Learning (CoRL), 2023.

Osama Makansi, Eddy Ilg, Ozgun Cicek, and Thomas Brox. Overcoming lim-
itations of mixture density networks: A sampling and fitting framework for
multimodal future prediction. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 7144-7153, 2019.

Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal, Kuan-Hui Lee, Ehsan
Adeli, Jitendra Malik, and Adrien Gaidon. It is not the journey but the destina-
tion: Endpoint conditioned trajectory prediction. In European Conference on
Computer Vision (ECCV), pages 759-776. Springer, 2020.

Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong Li. Learning trajec-
tory dependencies for human motion prediction. In IEEE/CVF International
Conference on Computer Vision (ICCV), pages 9489-9497, 2019.

Evan Markou, Thalaiyasingam Ajanthan, and Stephen Gould. Guiding neural
collapse: Optimising towards the nearest simplex equiangular tight frame.
Advances in Neural Information Processing Systems (NeurIPS), 37:35544—
35573, 2024.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and
editing factual associations in gpt. Advances in Neural Information Processing
Systems (NeurIPS), 35:17359-17372, 2022.

127

Bibliography

Marco Mistretta, Alberto Baldrati, Marco Bertini, and Andrew D Bagdanov. Im-
proving zero-shot generalization of learned prompts via unsupervised knowl-
edge distillation. In European Conference on Computer Vision (ECCV), 2024.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt.
Progress measures for grokking via mechanistic interpretability. In Interna-
tional Conference on Learning Representations (ICLR), 2023.

Nigamaa Nayakanti, Rami Al-Rfou, Aurick Zhou, Kratarth Goel, Khaled S Re-
faat, and Benjamin Sapp. Wayformer: Motion forecasting via simple & effi-
cient attention networks. In IEEE International Conference on Robotics and
Automation (ICRA), pages 2980-2987. IEEE, 2023.

Jiquan Ngiam, Vijay Vasudevan, Benjamin Caine, Zhengdong Zhang, Hao-
Tien Lewis Chiang, Jeffrey Ling, Rebecca Roelofs, Alex Bewley, Chenxi Liu,
Ashish Venugopal, et al. Scene transformer: A unified architecture for pre-
dicting future trajectories of multiple agents. In International Conference on
Learning Representations (ICLR), 2022.

Toan Q Nguyen and Julian Salazar. Transformers without tears: Improving
the normalization of self-attention. In International Conference on Spoken
Language Translation, 2019.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis
set: A strategy employed by v1? Vision research, 37(23):3311-3325, 1997.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec,
Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin
El-Nouby, et al. Dinov2: Learning robust visual features without supervision.
Transactions on Machine Learning Research (TMLR), 2024.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse
during the terminal phase of deep learning training. Proceedings of the National
Academy of Sciences, 117(40):24652-24663, 2020.

128

Bibliography

Alexander Pashevich, Cordelia Schmid, and Chen Sun. Episodic transformer for
vision-and-language navigation. In IEEE/CVF International Conference on
Computer Vision (ICCV), 2021.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra.
Grokking: Generalization beyond overfitting on small algorithmic datasets.
arXiv preprint arXiv:2201.02177, 2022.

Maria Abi Raad, Arun Ahuja, Catarina Barros, Frederic Besse, Andrew Bolt,
Adrian Bolton, Bethanie Brownfield, Gavin Buttimore, Max Cant, Sarah Chak-
era, et al. Scaling instructable agents across many simulated worlds. arXiv
preprint arXiv:2404.10179, 2024.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-training. OpenAl Blog, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. Learning transferable visual models from natural language supervision.
In International Conference on Machine Learning (ICML), pages 8748-8763.
PMLR, 2021.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey,
and Ilya Sutskever. Robust speech recognition via large-scale weak supervi-
sion. In International Conference on Machine Learning (ICML), pages 28492—
28518. PMLR, 2023.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and
Alexey Dosovitskiy. Do vision transformers see like convolutional neural
networks? Advances in Neural Information Processing Systems (NeurIPS), 34:
12116-12128, 2021.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy,
Vikrant Varma, Janos Kramar, and Neel Nanda. Jumping Ahead: Im-
proving Reconstruction Fidelity with JumpReLU Sparse Autoencoders.
arXiv:2407.14435, 2024.

129

Bibliography

Sucheng Ren, Zeyu Wang, Hongru Zhu, Junfei Xiao, Alan Yuille, and Cihang
Xie. Rejuvenating image-gpt as strong visual representation learners. In In-
ternational Conference on Machine Learning (ICML), pages 4244942461,
2024.

Gabriel Sarch, Sahil Somani, Raghav Kapoor, Michael J Tarr, and Katerina Fragki-
adaki. Helper-x: A unified instructable embodied agent to tackle four interac-
tive vision-language domains with memory-augmented language models. arXiv
preprint arXiv:2404.19065, 2024.

Steffen Schneider, Jin Hwa Lee, and Mackenzie Weygandt Mathis. Learnable
latent embeddings for joint behavioural and neural analysis. Nature, 617(7960):
360-368, 2023.

Ari Seff, Brian Cera, Dian Chen, Mason Ng, Aurick Zhou, Nigamaa Nayakanti,
Khaled S Refaat, Rami Al-Rfou, and Benjamin Sapp. Motionlm: Multi-
agent motion forecasting as language modeling. In IEEE/CVF International
Conference on Computer Vision (ICCV), 2023.

Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Motion transformer
with global intention localization and local movement refinement. Advances in
Neural Information Processing Systems (NeurIPS), 35:6531-6543, 2022.

Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Mtr++: Multi-agent mo-
tion prediction with symmetric scene modeling and guided intention querying.
IEEE Transactions on Pattern Recognition and Machine Intelligence (PAMI),
2024.

DiJia Andy Su, Bertrand Douillard, Rami Al-Rfou, Cheol Park, and Benjamin
Sapp. Narrowing the coordinate-frame gap in behavior prediction models:
Distillation for efficient and accurate scene-centric motion forecasting. In IEEE
International Conference on Robotics and Automation (ICRA), pages 653—659.
IEEE, 2022.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. RoFormer: En-
hanced transformer with Rotary Position Embedding. Neurocomputing, 568,
2024.

130

Bibliography

Jiawei Sun, Jiahui Li, Tingchen Liu, Chengran Yuan, Shuo Sun, Zefan Huang,
Anthony Wong, Keng Peng Tee, and Marcelo H Ang Jr. Rmp-yolo: A robust
motion predictor for partially observable scenarios even if you only look once.
arXiv preprint arXiv:2409.11696, 2024a.

Qiao Sun, Xin Huang, Junru Gu, Brian C Williams, and Hang Zhao. M2i: From
factored marginal trajectory prediction to interactive prediction. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

Zhiqing Sun, Yikang Shen, Hongxin Zhang, Qinhong Zhou, Zhenfang Chen,
David Daniel Cox, Yiming Yang, and Chuang Gan. Salmon: Self-alignment
with instructable reward models. In International Conference on Learning
Representations (ICLR), 2024b.

Omer Sahin Tas, Philipp Heinrich Brusius, and Christoph Stiller. Decision-
theoretic mpc: Motion planning with weighted maneuver preferences under
uncertainty. arXiv preprint arXiv:2310.17963, 2023.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken,
Brian Chen, Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones,
Hoagy Cunningham, Nicholas L Turner, Callum McDougall, Monte MacDi-
armid, C. Daniel Freeman, Theodore R. Sumers, Edward Rees, Joshua Batson,
Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scaling monose-
manticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer-circuits.pu
b/2024/scaling-monosemanticity/index.html.

Ekaterina Tolstaya, Reza Mahjourian, Carlton Downey, Balakrishnan Vadarajan,
Benjamin Sapp, and Dragomir Anguelov. Identifying driver interactions via
conditional behavior prediction. In /IEEE International Conference on Robotics
and Automation (ICRA), pages 3473-3479. IEEE, 2021.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua
Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers,
Jakob Uszkoreit, et al. MLP-Mixer: An all-MLP Architecture for Vision. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

131

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

Bibliography

Adron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent
neural networks. In International Conference on Machine Learning (ICML),
pages 1747-1756. PMLR, 2016.

Balakrishnan Varadarajan, Ahmed Hefny, Avikalp Srivastava, Khaled S Refaat,
Nigamaa Nayakanti, Andre Cornman, Kan Chen, Bertrand Douillard, Chi Pang
Lam, Dragomir Anguelov, et al. Multipath++: Efficient information fusion and
trajectory aggregation for behavior prediction. In IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 7814-7821. IEEE, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in Neural Information Processing Systems (NeurlPS), 30,
2017.

Haiyang Wang, Chen Shi, Shaoshuai Shi, Meng Lei, Sen Wang, Di He, Bernt
Schiele, and Liwei Wang. DSVT: Dynamic Sparse Voxel Transformer With
Rotated Sets. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023a.

Xishun Wang, Tong Su, Fang Da, and Xiaodong Yang. Prophnet: Efficient agent-
centric motion forecasting with anchor-informed proposals. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 21995—
22003, 2023b.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hall-
strom, Said Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom
Aarsen, et al. Smarter, better, faster, longer: A modern bidirectional encoder
for fast, memory efficient, and long context finetuning and inference. arXiv
preprint arXiv:2412.13663, 2024.

Marissa A Weis, Laura Pede, Timo Liiddecke, and Alexander S Ecker. Self-
supervised graph representation learning for neuronal morphologies. Transac-
tions on Machine Learning Research (TMLR), 2023.

132

Bibliography

Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet
Singh, Siddhesh Khandelwal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett,
Jhony Kaesemodel Pontes, et al. Argoverse 2: Next generation datasets for self-
driving perception and forecasting. arXiv preprint arXiv:2301.00493, 2023.

Florian Wirth. Conditional Behavior Prediction of Interacting Agents on Map
Graphs with Neural Networks. PhD thesis, Karlsruhe Institute of Technology
(KIT), 2023.

Robert Wu and Vardan Papyan. Linguistic collapse: Neural collapse in (large) lan-
guage models. Advances in Neural Information Processing Systems (NeurIPS),
37:137432-137473, 2024.

Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-Shot Learning - the Good,
the Bad and the Ugly. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

Chenfeng Xu, Tian Li, Chen Tang, Lingfeng Sun, Kurt Keutzer, Masayoshi
Tomizuka, Alireza Fathi, and Wei Zhan. Pretram: Self-supervised pre-training
via connecting trajectory and map. In European Conference on Computer
Vision (ECCV), pages 34-50. Springer, 2022.

Yihong Xu, Victor Letzelter, Mickaél Chen, Eloi Zablocki, and Matthieu
Cord. Annealed winner-takes-all for motion forecasting. arXiv preprint
arXiv:2409.11172, 2024.

Yi Yang, Qingwen Zhang, Thomas Gilles, Nazre Batool, and John Folkesson.
Rmp: A random mask pretrain framework for motion prediction. In IEEE
International Conference on Intelligent Transportation Systems (ITSC), pages
3717-3723. IEEE, 2023.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow
twins: Self-supervised learning via redundancy reduction. In Infernational
Conference on Machine Learning (ICML), pages 12310-12320. PMLR, 2021.

133

Bibliography

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling
vision transformers. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 12104-12113, 2022.

Zhejun Zhang, Alexander Liniger, Christos Sakaridis, Fisher Yu, and Luc V
Gool. Real-time motion prediction via heterogeneous polyline transformer with
relative pose encoding. Advances in Neural Information Processing Systems
(NeurIPS), 2023.

Zikang Zhou, Jianping Wang, Yung-Hui Li, and Yu-Kai Huang. Query-centric tra-
jectory prediction. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 17863-17873, 2023a.

Zikang Zhou, Zihao Wen, Jianping Wang, Yung-Hui Li, and Yu-Kai Huang. Qc-
next: A next-generation framework for joint multi-agent trajectory prediction.
arXiv preprint arXiv:2306.10508, 2023b.

Jiachen Zhu, Xinlei Chen, Kaiming He, Yann LeCun, and Zhuang Liu. Trans-
formers without normalization. arXiv preprint arXiv:2503.10622, 2025.

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam,
and Qing Qu. A geometric analysis of neural collapse with unconstrained
features. Advances in Neural Information Processing Systems (NeurlPS), 34:
29820-29834, 2021.

Hans-Georg Zimmermann, Christoph Tietz, and Ralph Grothmann. Forecasting
with recurrent neural networks: 12 tricks. Neural Networks: Tricks of the
Trade: Second Edition, pages 687-707, 2012.

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin Dogus
Cubuk, and Quoc Le. Rethinking pre-training and self-training. Advances in
Neural Information Processing Systems (NeurIPS), 2020.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren,
Alexander Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski,
et al. Representation Engineering: A Top-Down Approach to Al Transparency.
arXiv:2310.01405, 2023.

134

	Abstract
	Kurzfassung
	Preface
	Contents
	Acronyms and notation
	1 Introduction
	2 Fundamentals and related work
	2.1 Motion forecasting for self-driving vehicles
	2.1.1 Marginal motion forecasting
	2.1.2 Conditional motion forecasting
	2.1.3 Joint motion forecasting
	2.1.4 Motion forecasting metrics
	2.1.5 Motion forecasting datasets
	2.1.6 Scene context and reference frames
	2.1.7 Probabilistic trajectory representations
	2.1.8 Compressed trajectory representations

	2.2 Representation learning
	2.2.1 Self-supervised learning
	2.2.2 Mechanistic interpretability
	2.2.3 Sparse dictionary learning
	2.2.4 Neural collapse
	2.2.5 Ensemble learning
	2.2.6 Transformer models

	3 Self-supervised pre-training with interpretable objectives
	3.1 Self-supervised redundancy reduction for motion forecasting
	3.1.1 Architecture-induced redundancy reduction
	3.1.2 Redundancy reduction as pre-training objective
	3.1.3 Comparison with self-supervised pre-training methods focusing on marginal forecasting
	3.1.4 RedMotion as standalone model without pre-training
	3.1.5 Qualitative results

	3.2 Multimodal self-supervised learning for joint motion forecasting
	3.2.1 Connecting motion and environments
	3.2.2 Masked polyline modeling
	3.2.3 Comparison with self-supervised pre-training methods focusing on joint forecasting
	3.2.4 Comparing scene-level pre-training methods

	4 Interpretable control vectors for motion forecasting
	4.1 Neural collapse toward interpretable features
	4.1.1 Experimental setup
	4.1.2 Experimental results

	4.2 Fitting interpretable control vectors
	4.3 Modifying hidden states at inference
	4.3.1 Experimental setup
	4.3.2 Qualitative results

	4.4 Improving control vectors via sparse autoencoding
	4.4.1 Experimental setup
	4.4.2 Results

	4.5 Connecting neural collapse and controllability
	4.6 Fuzz testing control vector temperatures
	4.7 Compensating for domain shifts with control vectors

	5 Instructable retrocausal motion forecasting
	5.1 Method
	5.1.1 Decomposing exponential power distributions
	5.1.2 Decomposing marginal trajectory distributions
	5.1.3 Decomposing joint trajectory distributions
	5.1.4 Compressing location parameters of probability densities
	5.1.5 Scene encoder
	5.1.6 Loss function

	5.2 Experiments
	5.2.1 Interactive motion forecasting
	5.2.2 Cross-dataset generalization
	5.2.3 Issuing instructions by modifying trajectories
	5.2.4 Analyzing learned trajectory representations
	5.2.5 Modeling 8 agents jointly

	6 Conclusion
	6.1 Limitations and future work
	6.2 Final remarks

	A Appendix
	A.1 Inference latency of our RedMotion model
	A.2 Parameters of our categorical motion features
	A.3 Early, hierarchical and late fusion in motion encoders
	A.4 Choosing a range of relative changes in future speed to evaluate control vectors
	A.5 Evaluating a Koopman autoencoder
	A.6 Fuzz testing PCA-based speed control vectors
	A.7 Inference latency when modifying hidden states with control vectors
	A.8 Distance thresholds NMS and softmax values for RetroMotion

	List of Figures
	List of Tables
	List of publications
	Journal articles
	Conference contributions and preprints

	Bibliography

