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There is a story about two friends, who were classmates in
high school, talking about their jobs. One of them became a
statistician and was working on population trends. He showed
a reprint to his former classmate. The reprint started, as usual,
with the Gaussian distribution and the statistician explained
to his former classmate the meaning of the symbols for the
actual population, for the average population, and so on. His
classmate was a bit incredulous and was not quite sure whether
the statistician was pulling his leg. “How can you know that?”
was his query. “And what is this symbol here?” “Oh,” said
the statistician, “this is pi.” “What is that?” “The ratio of the
circumference of the circle to its diameter.” “Well, now you
are pushing your joke too far,” said the classmate, “surely the
population has nothing to do with the circumference of the
circle.”

E. P. Wigner (1960) The unreasonable effectiveness of mathematics in the natural sciences.
Communications on Pure and Applied Mathematics 13, 1-14.
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Abstract

Proteins operate across a broad hierarchy of spatial and temporal scales, and their local chemical
reactivity, long-range noncovalent interactions, and conformational dynamics are coupled. Captur-
ing this complexity on multiple scales requires methods that combine chemical accuracy with the
sampling efficiency. The quantum mechanics/molecular mechanics (QM/MM) framework achieves
this by treating the reactive region quantum mechanically while modeling the surrounding envi-
ronment with molecular mechanics. Its reliability depends on how the system is partitioned, how
reactive events are modeled, and how conformational ensembles are sampled. This thesis addressed
these challenges by integrating three complementary research directions. Together, they show how
QM /MM methods can be refined for specific applications, enabling more accurate descriptions of

reactive processes in dynamic protein environments on multiple scales.

First, in Chapter 6, noncovalent interactions in hydrogen-bonded complexes were evaluated using
the QM /MM framework for pairs of small molecules. The results show that errors in interaction
energies stem mainly from the QM/MM interface, especially when van der Waals parameters
distort short-range behavior. Charge transfer is minor in neutral dimers but becomes substantial
in ionic systems, where reliable energetics require that the QM region fully captures the charge-
transfer. These findings clarify guidelines for constructing more robust QM /MM partitions.

Second, in Chapter 7, the QM/MM framework was applied to elucidate the mechanism of
thiol-disulfide exchange (TDE) catalyzed by Homo sapiens glutaredoxin (Grx). Because sul-
fur chemistry requires an accurate electronic description, two previously developed approaches
were employed: a specific reaction parametrization for semi-empirical density functional tight
binding (DFTB) and a A-machine learning correction trained to reproduce higher level refer-
ence energies. In combination with metadynamics (MTD) sampling, these methods enabled the
construction of free-energy surfaces (FESs) for successive reaction steps and reproduced the ex-
perimentally observed regioselectivity. The computed barriers support the proposed catalytic
pathway and reveal how many-body effects can influence the accuracy of the calculated barriers.

Third, in Chapter 8, a strategy was developed to extend the accessible timescales of QM /MM sim-
ulations by coupling a reactive coordinate to a machine-learned collective variable (CV). Linear
dimensionality-reduction methods were used to extract critical torsional modes from a dynamic
disulfide bridge, as low-dimensional descriptors. When applied in two-dimensional QM /MM MTD,
these variables improved conformational sampling. The simulations revealed that local disulfide
motions are coupled to shifts in global protein geometry and that only a subset of conformations
are preorganized for reaction. This points to a conformational filtering mechanism that governs re-
activity and demonstrates the utility of data-driven variables for probing coupled reactive—dynamic

processes.






Zusammenfassung

Proteine zeigen eine Hierarchie rdumlicher und zeitlicher Skalen, in der lokale chemische Reak-
tivitdt, langreichweitige nichtkovalenten Wechselwirkungen und konformationellen Dynamiken
miteinander gekoppelt sind. Die Erfassung dieser Mehrskaligkeit erfordert Methoden, die chemis-
che Genauigkeit mit effizientem Sampling verbinden. Der QM/MM-Ansatz erreicht dies, indem
die reaktive Region quantenmechanisch beschrieben wird, wéhrend die umgebende Umgebung
mittels Molekiilmechanik modelliert wird. Seine Verlésslichkeit hédngt davon ab, wie das System
partitioniert wird, wie reaktive Ereignisse modelliert werden und wie konformationelle Ensembles
gesampled werden. Diese Dissertation adressiert diese Herausforderungen durch die Integration
dreier komplementérer Forschungsrichtungen. Gemeinsam zeigen sie, wie QM/MM-Methoden fiir
spezifische Anwendungen verfeinert werden konnen und dadurch genauere Beschreibungen reak-
tiver Prozesse in dynamischen Proteinumgebungen iiber mehrere Skalen hinweg ermoglichen.

Kapitel 6 untersucht nichtkovalente Wechselwirkungen in wasserstoftbriickengebundenen Kom-
plexen mittels QM /MM, wobei Paare kleiner Molekiile als Modellsysteme dienen. Die Ergebnisse
zeigen, dass Fehler in den Wechselwirkungsenergien hauptsachlich an der QM /MM-Grenzflache
entstehen, insbesondere durch unoptimierte van-der-Waals-Parameter fiir kurze Bindungsabstan-
den. Ladungstransfer ist in neutralen Dimeren gering, wird jedoch in ionischen Systemen bedeut-

sam. Diese Befunde liefern Leitlinien fiir den Aufbau geeigneter QM /MM-Partitionen.

In Kapitel 7 wird QM/MM angewendet, um den Mechanismus der Thiol-Disulfide Austausch
zu untersuchen, die von Glutaredoxin katalysiert wird. Da Schwefelchemie eine besonders genaue
elektronische Beschreibung erfordert, wurden zwei zuvor entwickelte Ansétze eingesetzt: eine reak-
tionsspezifische Parametrisierung fiir DF'TB sowie eine A-Machine-Learning-Korrektur, trainiert
auf hoherwertige Referenzenergien. In Kombination mit MTD-Sampling ermdglichten diese Meth-
oden die Konstruktion von freie Enerie Flachen fiir aufeinanderfolgende Reaktionsschritte und re-
produzierten die experimentell beobachtete Regioselektivitat. Die berechneten Barrieren stiitzen
den vorgeschlagenen katalytischen Mechanismus und zeigen, wie Vieleffekte die Genauigkeit der

berechneten Barrieren beeinflussen konnen.

In Kapitel 8 wird eine Strategie entwickelt, um die zugénglichen Zeitskalen von QM/MM-
Simulationen zu erweitern, indem eine reaktive Koordinate mit einer maschinell gelernten CV
gekoppelt wird. Lineare dimensionsreduzierende Methoden wurden eingesetzt, um kritische Tor-
sionsmoden einer dynamischen Disulfidbriicke als niederdimensionale Deskriptoren zu extrahieren.
In zweidimensionalen QM/MM-MTD-Simulationen verbesserten diese Variablen das konforma-
tionelle Sampling. Die Simulationen zeigten, dass lokale Bewegungen der Disulfidbriicke mit
globalen Strukturédnderungen des Proteins gekoppelt sind und dass nur ein Teil der Konformatio-
nen fiir die Reaktion vororganisiert ist. Dies weist auf einen konformationellen Filtermechanismus
hin, der die Reaktivitat steuert, und demonstriert den Nutzen datengetriebener Variablen zur
Untersuchung gekoppelter reaktiver und dynamischer Prozesse.
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1. Calculability of Proteins on Multiple Scales

A) Spatial Scales
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Figure 1.1.: Multiscale nature of protein systems and the trade-off between computational cost and accuracy.
A) Spatial scales range from subnanometer-sized molecules to supramolecular assemblies, illustrat-
ing how reactivity, nonbonded interactions, and conformational dynamics manifest across different
structural scales. ATP synthase exemplifies a complex molecular machine whose function relies on
large-scale conformational transitions and coordinated hydrogen-bonding networks that enable pro-
ton translocation and catalytic ATP synthesis. B) Temporal scales span more than twelve orders
of magnitude, from femtosecond bond vibrations to second timescale conformational transitions, re-
flecting the range of molecular motions. C) Computational methods vary in accuracy and cost, from
high-level quantum treatments to classical and coarse-grained models. Hybrid QM/MM approaches
occupy the intermediate computational regime and provide a practical strategy for bridging scales in
complex systems.
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In 1925, Gilbert Adair provided one of the first quantitative thermodynamic models of protein
function through his analysis of hemoglobin’s oxygen binding curves.!? By introducing a bind-
ing polynomial formalism, he was able to calculate successive equilibrium constants and describe
cooperative binding in quantitative terms. This approach represented a critical advance in demon-
strating that proteins could be treated quantitatively as physical systems. After atomic-resolution
structures became available in the 1950s,3 computational predictive methods began shifting to-
ward molecular properties such as secondary structure propensities,* marking the transition from
macroscopic thermodynamics toward sequence- and structure-based developments. In parallel
with these advances, the first molecular dynamics simulation of a condensed-phase system was
performed by Alder and Wainwright in 1957.5 Since then, molecular dynamics has evolved into a
central computational technique for studying the structure, dynamics, and function of biomolec-

ular systems.5

The structural organization of proteins arises from the assembly of the twenty-two proteinogenic
amino acids that serve as their fundamental building blocks.” Their sequence and chemical proper-
ties guide the folding of these polymers into three-dimensional structures and govern their stability
and function.® 1Y Each amino acid contributes distinct chemical characteristics that enable specific
interactions at the residue level, and biological systems leverage this diversity when assembling
peptides and proteins. As residues are incorporated into higher-order architectures, their individ-
ual properties converge into coordinated interaction networks that organize both structure and

dynamic behavior.' 13

Figure 1.1A exemplifies how biomolecular structure and function emerge across multiple spatial
scales. Disulfide bridges formed between pairs of cysteine residues represent a pervasive structural
motif in small peptides and large macromolecular assemblies, such as fibrinogen, where they con-
tribute to mechanical stability and structural integrity.'4 16 Beyond their structural role, cysteine
residues can also undergo chemical reactions. Thiol-disulfide exchange (TDE) may occur and reor-
ganize existing cross-links, reflecting an interplay between local chemical events and broader struc-
tural adaptations that can propagate through distant regions of a protein or protein complex.!”
Noncovalent interactions influence protein function by modulating ligand binding, intermolecular
complex formation, molecular recognition, and enzymatic activity.?0 At the residue level, hydrogen
bonds (H-bonds) stabilize local structure through directional interactions between backbone and
side-chain groups and can accumulate to stabilize higher-order motifs such as o-helices and 3-
sheets. Networks of H-bonds provide essential stability while permitting the plasticity required
for functional conformational changes across spatial scales.?! Protein dynamics span a wide range
of motions, from local ¢, ¢ dihedral rotations that modulate backbone geometry to large-scale

22,23 ATP synthase exemplifies

conformational rearrangements that enable functional transitions.
this principle as a complex molecular machine whose activity depends on extensive conformational
changes and organized hydrogen-bonding networks that couple proton translocation to catalytic

ATP synthesis.?*25



Calculability of Proteins on Multiple Scales

Although proteins can be large and complex, their functions often arise from a set of localized func-
tional sites such as ligand-binding pockets, catalytic residues, allosteric switches, post-translational
modification sites, prosthetic groups, and chromophores.?® The activity of these regions is influ-
enced by molecular motions, which span a wide range of temporal scales.?”?® Figure 1.1B illus-
trates the broad timescales over which biomolecular motions occur. Fast events such as bond
vibrations and picosecond backbone fluctuations enable rapid local adjustments within protein
structures. Nanosecond side-chain rotations and microsecond loop motions support conforma-
tional rearrangements and regulate access to functional sites. Slower millisecond-to-second pro-
cesses, including domain rearrangements, allostery, and protein folding, reshape global structure

and govern higher-level functional transitions.??:30

Confronted with the inherent complexity of biological systems, the choice of computational method
must balance the required level of accuracy with the spatial and temporal scales relevant to the
process under study. Figure 1.1C highlights this trade-off by illustrating how different meth-
ods vary in both computational cost and attainable accuracy. High-level quantum chemical
approaches provide detailed electronic descriptions but exhibit steep scaling with system size.
Density-functional theory typically scales as O(N3)-O(N%), while correlated methods such as
MP2, CCSD, and CCSD(T) scale as O(N%), O(N), and O(N”). This steep scaling limits their
routine use to small systems or short trajectories.?! Semiempirical (SE) quantum-mechanical mod-
els reduce computational cost by several orders of magnitude through approximations, typically
achieving O(N?)-O(N?3) scaling but with reduced accuracy.®?> This trend continues for classical
molecular mechanics,3? which offers near-linear to quadratic scaling, O(N)-O(N?), through the
use of empirical potentials. Coarse-grained models®® further approach linear scaling by mapping
groups of atoms onto single effective particles, enabling simulations of large biomolecular assem-
blies at even lower computational cost.

The use of classical potentials enables efficient simulations of very large biomolecular assemblies
over microsecond to millisecond timescales, though at the expense of chemical accuracy. Such mod-
els cannot capture changes in electron structure, including bond rearrangements, charge transfer,
or proton-transfer that are central to many biological reactions. Hybrid quantum mechanics/-
molecular mechanics (QM/MM)3* approaches address this limitation by treating a localized site
quantum mechanically while modeling the surrounding protein environment classically. This di-
vision reflects the organization of many biological systems, in which functional activity is concen-
trated in spatially confined regions. As shown in Figure 1.1C, QM /MM embeds a small quantum
region (red) within a much larger classical system. This class of models approaches chemical
accuracy while reducing computational cost, thereby expanding the spatial and temporal scales
that can be explored. This capability underpins its prominent role in scale-bridging strategies
for complex biomolecular systems, where access to extended and accurately described scales is
essential. Decades of development have established QM/MM as a powerful and widely adopted

framework that can be tailored to the specific process under investigation.?9 38
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Scope of this Thesis

This thesis explores and applies the QM /MM approach for scale-bridging in the protein domain
along three key directions, drawing on recent methodological advances, as briefly outlined below.

Hydrogen Bonding. Chapter 6, Non-covalent Interactions at the QM-MM Interface in the
Semi-Empirical and Density-Functional Limit, investigates how the QM—-MM interface affects the
accuracy of hydrogen-bond descriptions in neutral and ionic dimers, addressing an often neglected
challenge. This systematic analysis clarifies how the interface can introduce artifacts that reduce
reliability and identifies practical ways to mitigate these issues.

Thiol-Disulfide Reaction. Chapter 7, Reduction Pathway of Glutaredoxin 1 Investigated with
QM /MM Molecular Dynamics Using a Neural Network correction, applies the QM /MM framework
to investigate the reaction mechanism of Homo sapiens glutaredoxin (Grx), a class of enzymes
that catalyze TDE. Sulfur chemistry imposes stringent demands on QM/MM models because
it requires an accurate treatment of electron correlation, long-range electrostatic interactions,
and inclusion of many-body effects. The study evaluates two previously developed strategies:
(1) a specific reaction parameterization (SRP) for semi-empirical density functional tight bind-
ing (DFTB) and (2) an artificial neural network (ANN)-based A-ML correction to refine the un-
derlying quantum chemical description between the DFTB baseline and CCSD(T) target method.
Coupling Reactivity and Dynamics. Chapter 8, Transferring Collective Variables from Molec-
ular Dynamics Simulations to QM /MM Simulations for Reactivity Exploration in Dynamic Sys-
tems, introduces a novel strategy to extend the accessible timescales in QM /MM simulations. The
approach couples a canonical reaction coordinate within the quantum region, such as an asym-
metric distance coordinate, with a machine-learned collective variable (CV) designed to accelerate
the conformational sampling of the surrounding protein environment. This approach captures
the coupling between reactivity and the dynamically evolving protein environment, thereby en-
abling more efficient sampling in systems with many states and dynamic behavior that modulates

reactivity.

1.1. Biomolecular Context

The following section introduces the biomolecular structures and dynamics relevant to the studies

in this work, with a focus on hydrogen bonding and thiol-disulfide exchange in proteins.

1.1.1. Thiol-Disulfide Exchange in Proteins

Post-translational modifications, including the formation of intramolecular disulfide bonds be-
tween cysteine (Cys) residues, are central to physiological and biochemical processes.?? ! Early
studies recognized the high reactivity of Cys and the substantial structural stabilization provided
by disulfide bonds.*>%3 Beyond their structural role, Cys residues undergo reversible chemical
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modifications, can act as nucleophilic catalysts,** or participate directly in substrate recognition
and binding.*® Recent work emphasizes the functional plasticity of disulfide bonds, highlighting
their dynamic roles alongside their classical structural contributions.*® Through reversible redox
reactions, disulfide bonds can be cleaved and reformed, enabling dynamic regulation of protein
structure and function. At the core of this chemistry lies thiol-disulfide exchange (TDE), which
establishes the mechanistic basis for reversible disulfide exchange and enables molecular modeling

of the regulatory and pathological processes driven by dynamic disulfide rearrangements.*"4?

Figure 1.2 depicts two sequential TDE steps that proceed as nucleophilic substitutions, each
yielding a distinct disulfide linkage. In the first step, nucleophilic attack generates a mixed disulfide
intermediate. The subsequent substitution then forms a new disulfide bond between the two
cysteines that were initially unpaired. In each step, the reactive thiolate species initiates an
Sn2 attack on the disulfide bond.?® Thiolate formation through deprotonation and subsequent
reprotonation completes the reaction cycle. The detailed course of the mechanism is determined
by its free-energy surface (FES) and depends on the nature of the attacking thiolate, the leaving
group, the electrophilicity of the sulfur atoms and their substituents, and on the environment
in which the reaction takes place. TDE is a reversible equilibrium reaction in small-molecule
systems. In proteins, however, subsequent irreversible events such as denaturation or proteolysis
can disrupt this reversibility.°! As a result, TDEs introduce non-equilibrium dynamic processes
in cells that depend on the local environment. TDE may occur spontaneously® or be catalyzed
by enzymes.?3 Noncatalyzed reactions proceed with relatively small rate constants on the order of
0.1-10 L mol~ts™!, whereas enzymatic catalysis accelerates the process to 10410 L mol~!s~1.51
Enzymatic control is therefore essential for maintaining TDE within the functional range required

for cellular homeostasis.?
RfSH + H,0 R;S‘ + H30* (1)
RS + s RS HRS (2
ReS + RSN RO RS ()
r° + Hs0* r-oH 4+ H0 (4)

Sio-Re

H
ReSH + -5 5 (5)

R{S\S’R‘ TRy

Figure 1.2.: Reaction scheme for thiol-disulfide exchange. (1) Cysteine is deprotonated to form a reactive thiolate.
(2) The nucleophilic thiolate attacks the sulfur atom of a pre-existing disulfide, forming a new S-S
bond while the second sulfur acts as the leaving group. (3) Repetition of this reaction leads to
sequential disulfide scrambling among different thiolates. (4) The thiolate is subsequently protonated
to regenerate cysteine. (5) Continued exchange among multiple thiol-disulfide pairs yields fully mixed
disulfides.?*
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Several enzymes are known that catalyze TDE. These encompass thioredoxins (Trx), protein
disulfide isomerases, the disulfide bond protein family A-D (DsbA-D), and glutaredoxins.*!->
Their function relies on an active site that features a conserved Cys-X-X-Cys motif, whose vicinal
thiols undergo reversible oxidation to a disulfide. The N-terminal cysteine is solvent-exposed,
has an unusually low pK,,%% and initiates nucleophilic attacks on target disulfides.?>" Structural
features near the active site, such as the cis-proline motif in Grx that facilitates glutathione (GSH)
binding, further tune specificity.’® Trx-like proteins adopt a characteristic fold with a B-sheet core

flanked by a-helices that mediate protein interactions and redox activity.?”

S SH ; ol
o o LAPANES
N e S B it
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Figure 1.3.: General mechanism of the cellular glutaredoxin system. The glutaredoxin system is composed of
NADPH, the flavoprotein glutathione reductase (GR), Glutathione, and Glutaredoxin. In step one,
a protein disulfide is reduced to its dithiol form, and Grx is oxidized to a disulfide. In step two,
the Grx disulfide is reduced by GSH to regenerate its thiol form, and two GSH are oxidized to from
GSSG. In step three, GSH is regenerated by electrons provided from NADPH, catalyzed by GR.

For example, the activity of Grx is coupled to the concentration of the tripeptide GSH, the most
abundant cellular low-molecular-weight thiol.”® As illustrated in Figure 1.3, reduced Grx cleaves
disulfide bonds in substrate proteins, and becomes oxidized during the reaction.%" The efficiency of
this catalytic cycle depends on the redox environment established by the intracellular glutathione
pool. The ratio of GSH to glutathione disulfide (GSSG) is a major contributor to the cellular
redox potential, and it shifts with physiological context, including differences among cell types
and stages of the cell cycle.®! This ratio determines whether oxidized Grx can be reconverted to
its active dithiol form, which in turn controls the rate at which protein substrates are reduced.
Oxidative stress increases GSSG levels when reactive oxygen species convert GSH to its disulfide
form. Conversely, glutathione reductase restores reduced glutathione by reducing GSSG at the
expense of NADPH. These reactions underscore the tight coupling between glutathione buffering
and Grx-catalyzed protein disulfide reduction. Through this central role in redox homeostasis, Grx
contributes to processes such as cell development, metabolism, stress adaptation, redox sensing,

signaling, oxidative protein folding, maintenance of protein thiol function, and apoptosis.62:63

Computational and experimental studies indicate that TDE typically proceeds through an in-
line Sy2 attack, with a near-linear trisulfide-like transition state in which charge is delocalized
between the terminal sulfurs.%4-66 This charge distribution favors nonpolar environments, lowering
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activation barriers.’® Although additionelimination pathways with stable trisulfide intermediates
have been proposed, solvation and steric effects generally shift the mechanism toward classical Sx2
behavior under physiological conditions.5*%5:67 In proteins, local structural features modulate this
chemistry. Hydrophobic pockets can accelerate exchange, conformational strain alters disulfide
lability, and cysteine pK, values and nucleophilicity depend on sequence context, electrostatics,
and solvent accessibility.? 6869 Disulfide shuffling, therefore, represents a multiscale process in
which complex sulfur chemistry couples to protein dynamics.

1.1.2. Hydrogen Bonds in Proteins

H-bonds interactions constitute one of the essential noncovalent forces that govern the structure,
stability, and function of proteins.”® ™ They influence ligand binding affinities, guide molecular
recognition processes, and shape both the energetics and kinetics of enzymatic reactions.”™ Their
interaction energy arises from a combination of electrostatics, polarization, exchange repulsion,
charge transfer (CT), dispersion and coupling between these components.” " In simplified terms,
a hydrogen bond can be viewed as a directional attraction between a hydrogen donor and an

electronegative acceptor, typically oxygen or nitrogen.”®

og antiparallel B-sheet parallel B-sheet
C=0 111 H-N H-N H-N
N-H 11111 0=C 0=C\ ‘0=C
\)
o=c/ N-H N-t > \N—H
& e &
H-N c=0 c=0 €=0
N /T, /S
C=O 1n1nn H- H-N H-

Figure 1.4.: Schematic representations of an ap helix, an antiparallel 5-sheet, and a parallel S-sheet (from left
to right). The blue dashed lines represent the hydrogen bonds. The ap helix is defined by dihedral
angles of approximately ¢ ~ —57° and ¢ ~ —47°, which generate a regular helical pitch stabilized
by characteristic intrachain hydrogen bonds oriented roughly parallel to the helix axis. In contrast,
[B-sheets extend the polypeptide chain, with antiparallel S-strands typically adopting ¢ ~ —139° and
1) =~ 4+135° and parallel S-strands adopting ¢ ~ —119° and 1 &~ +113°, each stabilized by interstrand
hydrogen bonding. Reproduced with permission from Tamar Schlick. Molecular Modeling and Sim-
ulation: An Interdisciplinary Guide. 2nd ed. New York: Springer, 2010.

H-bonds interactions stabilize secondary structures and modulate dynamic properties that are
critical for biochemical function. Furthermore, they contribute to the organization of tertiary
and quaternary structures by mediating interactions among side-chain functional groups, between
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distinct protein domains, and across protein-protein interfaces.””"® Figure 1.4 illustrates the ge-
ometry and stabilizing role of hydrogen bonds in the formation of a-helices and [-sheets as fun-
damental protein secondary-structure elements.

H-bonds interactions contribute through multiple mechanisms to the catalytic power of enzymes.
79,80 Their directional and cooperative nature allows enzymes to pre-organize substrates and cat-
alytic residues within the active site, reducing conformational freedom and enforcing precise prox-
imity and orientation.”® Hydrogen bonds also facilitate general acid-base chemistry by stabilizing
charges during proton transfer,®! tuning the pK, values of catalytic groups,®? and supporting
the prototropic shifts essential to many enzymatic pathways.®3 Within the preorganized electro-
static environment of the active site, these interactions further polarize bonds,3* stabilize high-

energy intermediates, and, in some cases, give rise to unusually strong low-barrier hydrogen bonds

that significantly enhance transition-state stabilization.”™ Figure 1.5 illustrates the contribution
85

of H-bonds interactions to the catalytic triad of serine proteases.

Figure 1.5.: Hydrogen-bond-mediated catalytic assistance in a serine protease active site. Hydrogen bonds are
shown as blue dashed lines. Hydrogen bonds between Asp, His, and Ser align and activate the
nucleophile, while additional hydrogen bonds in the pocket help stabilize the developing oxyanion
during peptide-bond cleavage. Reproduced with permission from Elinor Erez, Deborah Fass, and
Eitan Bibi. “How intramembrane proteases bury hydrolytic reactions in the membrane”. In: Nature
459.7245 (May 2009), pp. 371-378. Copyright 2009 Springer Nature Limited.

H-bond networks can assemble into cooperative architectures that influence biomolecular orga-
nization and dynamics across multiple spatial scales. These networks not only stabilize local
structural motifs but also mediate long-range communication within proteins, enabling dynamic
coupling between distant sites. Such connectivity can underlie forms of allosteric regulation, where
subtle rearrangements in H-bond patterns propagate through the protein matrix to modulate ac-
tivity at remote functional centers.21:8699 Figure 1.6 shows an example of a H-bond network in

human lysozyme.?!

The central importance of hydrogen bonding in proteins underscores the need for computationally
efficient and sufficiently accurate methods. CCSD(T)/CBS calculations are considered the gold
standard reference but remain computationally expensive.?2 More efficient, though less accurate,
approaches such as DFT and SE methods therefore rely on explicit corrections to noncovalent

energy contributions.??

10



1.1. Biomolecular Context

Figure 1.6.: Network of hydrogen bonds in human lysozyme. Colored clusters depict three distinct hydrogen-
bonded regions spanning the upper and lower lobes, with tight-binding water sites (TBS-1 and TBS-2)
and the active-site cleft (ASC) marked to illustrate how structured hydration organizes the protein’s
H-bond network. Reproduced with permission from Masayoshi Nakasako. “Network of Hydrogen
Bonds Around Proteins”. In: Hydration Structures of Proteins. Ed. by Masayoshi Nakasako. Soft
and Biological Matter. Springer, 2021, pp. 163-182.
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2. Potential Energy Functions and Molecular
Models

A central aspect of molecular modeling is to describe how the potential energy (PE) of a system
varies with its molecular configuration and the electronic or chemical state. PEs provide the
foundation for predicting equilibrium structures, conformational changes, reaction pathways, and
spectroscopic properties. Strategies for constructing these functions span classical force fields,
hybrid approaches, and quantum-mechanical formalisms based on first-principles methods. Mul-
tiscale modeling aims to select the appropriate level of theory for a given problem by balancing
accuracy and computational cost. It further requires accounting for system size, environmental
effects, and the sampling needed to capture relevant molecular behavior.

2.1. Molecular Mechanics

Molecular mechanics (MM) is a framework for molecular modeling that uses classical mechanics to
approximate atomic interactions. In this approach, the PE is represented as an explicit analytical
function of the atomic coordinates. It is computationally inexpensive and can be applied to
systems containing millions of atoms, which enables simulations of proteins, membranes, and
materials on microsecond to millisecond timescales. The main limitation of MM is that it cannot
model changes in electron structure, which prevents the description of bond breaking, charge
transfer, and electronic polarization, and can lead to inaccuracies in the description of weak or

highly directional noncovalent interactions.

2.1.1. Force Fields

When MM is used to evaluate the PE of a molecular system, the mathematical form of the
energy, together with the parameters assigned to different atom types and interactions, defines an
atomistic Force field (FF). Constructing such models is nontrivial because numerous parameters
are required to represent the variety of atomic environments and interaction types. A detailed
introduction to FF is provided in Part IV of Ref. [94]. The energy of a FF is expressed as a sum of
bonded and nonbonded contributions, as shown in Equation 2.1. Bonded terms typically account

for bond stretching, angle bending, and torsional rotations. Nonbonded contributions describe

15
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van der Waals and electrostatic interactions. Each term quantifies how the energy varies as the

molecular structure changes.?%6

VForce Field — Vbonded + Vnon—bonded

= Vbonds + ‘/angles + Viors. + VvdW + Veoul. (2. 1)
The PE of a system changes when the bond length r between two atoms is varied. The bond-
stretch contribution V4 onq is modeled by a harmonic potential where the energy increases with the
squared deviation of r from its equilibrium value rg, with the force constant £, determining the
stiffness. The energy thus increases symmetrically upon compression or extension of the bond. To
reproduce the correct asymptotic behavior at large interatomic distances when bond dissociation
must be represented, a Morse potential can be used. The angle term V,pg1e is likewise described
by a harmonic potential, analogous to bond stretching, and its curvature is determined by the
force constant ky when the angle 6 formed by atoms A-B—-C deviates from its equilibrium value
fp. In contrast, the torsional term Viy is modeled as a periodic function of the dihedral angle
w, typically expressed as a Fourier series of cosine terms. The dihedral w is defined by the angle
of planes formed by A—-B—C and B—C-D in the sequence A-B—C-D. In this expression, V,, is the
barrier height for term n, n denotes the periodicity, and v is the phase. The total energy for the

bonded interactions can then be written as follows.??96

1 bonds angles tors. v
Viended — Z KT (ry — 70 + Z k9 0; _90 2, > Z;ﬂ [1+cos nwy, —%)} (2.2)
Lk n

Nonbonded interactions comprise two contributions, each expressed as a function of the inter-
atomic distance r;;. The first contribution is the van der Waals term, typically modeled by the
Lennard—Jones potential, whose repulsive (Pauli) component scales as ri_jlz and whose attractive

dispersion component scales as r.°. The combined potential is strongly positive at short separa-

ij
tions, crosses zero at r;; = 0;;, reaches its minimum value —¢;; at r;; = 21/ 601'3', and approaches
zero as r;; — oo. The second contribution is the electrostatic interaction, represented by the
Coulomb term, which depends on the atomic charges ¢; and ¢; and decays as 1/r;;. The total

energy for the nonbonded interactions can then be written as?%

vdW 12 6 coul.
O O 0iqi
Vnon—bonded = Z 4Eij (<U> - <Zj> ) + Z = (23)

oy Tij Tij vy dmeri;

Electrostatic interactions are intrinsically long ranged, so many pairwise terms must be evaluated,
and the computational cost increases accordingly. The number of evaluations can be reduced by
applying a distance cutoff, which neglects interactions beyond a prescribed threshold. In periodic
systems, the Particle Mesh Ewald method incorporates all electrostatic interactions by performing

the long-range summation in Fourier space.?5%6
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2.2. Quantum Chemistry

After specifying the analytical form of the potential, one determines numerical parameters (e.g.,
ky, kg, V) for specific atom and interaction types. Atom typing classifies atoms by element and
chemical context, including bond order, hybridization, aromaticity, and typical bonding partners.
Parameters are obtained by fitting to reference data generated with high-level quantum chemical
methods. The design of FF relies on a strictly local view of molecular structure, in which each
atom and its directly bonded neighbors define a transferable pattern of parameters. For example,
a C—C single bond exhibits a characteristic length and stiffness associated with that specific bonded
pair. This illustrates the broader principle that comparable atom—partner combinations tend to
display similar structural and energetic properties, enabling systematic parameter transfer across
molecules.?>6 This rationale underlies atom typing and the use of locally defined parameters.
In practice, a force field is the pair consisting of the selected functional form and its associated
parameter set. 95,96

FF can adopt diverse functional forms and weigh physical effects differently. Beyond stan-
dard bonded and nonbonded terms, some include cross terms that couple internal coordinates,
e.g., bond-angle couplings (Urey-Bradley potentials®’) or torsion-torsion couplings (CMAP?8:99).
Representative FF include AMBER!, CHARMM!'Y! and OPLS, which are widely used fixed-
charge models for biomolecular simulations. The molecular-mechanics framework can be ex-
tended to more sophisticated formulations such as AMOEBA!9? for polarizable interactions and
ReaxFF1%3 for chemically reactive systems. Conversely, it can also be simplified for coarse-grained
modeling, as exemplified by MARTINI!4,

Water plays an important role in biomolecular simulations, typically constituting the majority
of particles and strongly influencing electrostatics, conformational dynamics, and protonation
equilibria. Numerous explicit water models exist. The choice of water model should match the

target properties, the electrostatics treatment!%°1%9 and the FF10.

2.2. Quantum Chemistry

2.2.1. Density Functional Theory

In density functional theory (DFT), the many-electron wave function, which depends on 3N
spatial and N spin variables, is reformulated in terms of electron density p(r). Because p(r)
depends only on three spatial variables, the electronic structure problem can be reformulated. Its

UL whose 1964 paper

conceptual foundation rests on the seminal work of Hohenberg and Kohn
introduced the two theorems that established the modern framework of density functional theory.
The following discussion draws on Sections 4 and 5 of Ref. [112], which provide additional details
on the foundations of DFT. The first Hohenberg-Kohn (HK) theorem states that the external

potential Vg(r) is a unique functional of p(r). Since the Hamiltonian H is defined by Vs(r), the

17
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many-particle ground state Vg is also a unique functional of p(r). Therefore, the ground-state

energy and its components can be written as

Elp] = Enelp(r)]+  Eeelp(r)]+Tp(r)]. (2.4)

where T’ is the kinetic energy, F,. the electron—electron interaction energy, and Fy, the nuclear—
electron interaction energy. The electron density p thus determines all ground-state observables.
Equation 2.4 separates the total energy into a system-dependent contribution arising from the
nuclear—electron interaction and universal terms that do not depend on the nuclear configura-
tion. The former is explicitly functional form, whereas the universal contributions define the HK
functional Fyg

Elp) = [ px)Vedr + Fulp(r)]. (2.5)

The second HK theorem establishes that the ground-state density satisfies a variational principle.
However, approximating the kinetic energy directly from the density yields an overly simplistic
relation between the spatial distribution of electrons and their velocities, which is insufficient for
quantitative calculations. In orbital-free DFT, finding a functional of the kinetic energy T'[p(r)]
remains an open challenge. Kohn and Sham introduced a non-interacting reference system con-
structed from orbitals to evaluate the kinetic energy. This non-interacting kinetic term Tg already
accounts for most of the true kinetic energy in an interacting system, so only a small residual
contribution must be approximated. This leads to

Frrlp(r)] = Tslp(r)] + J[p(r)] + Exclp(r)], (2.6)

where J[p(r)] is the classical Coulomb functional describing electron—electron repulsion and
Exclp(r)] captures the exchange-correlation (XC) energy, which includes all non-classical con-
tributions to electron—electron interactions together with the remaining part of the exact kinetic
energy not represented by Ts. The explicit form of Fxc[p(r)] is unknown and must therefore be
approximated.

The kinetic energy of a non-interacting system can be calculated from one electron orbitals ¢

1N

= =52 (0:lV71s). (27)

7

Ts

These orbitals are determined by iteratively solving the Kohn-Sham (KS) eigenvalue equation

FE50; = eit, (2.8)
with the one-electron KS operator defined as

R ] (2.9
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resulting in
Elp(r)] =Tsp] + J[p] + Exclp] + Enelp]

:Ts[p]+;//p(rlr)l'z(rz)drldrg—i—EXC[p]—l—/VNe(r)p(r) dr

N N (r (r
o)r g2y [ e, 00

N M
Excll =X [ A 6P

for the total energy of the system.!!

To solve Eq. 2.10, a crucial step is to construct the effective potential Vg(r) such that the electron
density of the non-interacting system pg(r) corresponds to the density p(r) of the interacting

system
N
ps(r) =D |¢il” = p(r). (2.11)
i=1
The KS potential
p(rs) L Za
Vics = / PX2) ey S ZA Ly 2.12
KS - ro %:TlA +Vxc(ry) ( )

satisfies this condition. Here, Vx ¢ denotes the potential associated with the XC energy Ex¢ and
is defined as

_ 0Exc|p(r)]
Vxe =5,

It can be used to construct the KS operator in Eq. 2.9 to solve the KS eigenvalue equation in

(2.13)

Eq. 2.8, which yields the orbitals. Thus, the ground-state energy and ground-state density can be
calculated. As Vi g depends on the density, the equation must be solved iteratively.

The central goal of modern DFT is to devise reliable approximations for the XC functional, as the
formalism introduced above does not provide an exact expression for Ex¢c. Numerous approxima-
tions of varying complexity have therefore been proposed, and Jacob’s ladder offers a systematic
framework for organizing these approaches. The ladder comprises five rungs that illustrate how
progressively sophisticated concepts can be incorporated to improve predictive performance and

guide the development of methods toward chemical accuracy.!13:114

e« Rung 1: Local Density Approximation (LDA). Relies solely on the local electron

density and models each point in space as a locally homogeneous electron gas.!'3
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« Rung 2: Generalized Gradient Approximation (GGA). Extends local density approx-
imation (LDA) by incorporating the loal density gradient Vp(r), enabling a more realistic
description of inhomogeneous systems.

« Rung 3: Meta-GGA. Introduces additional semi-local ingredients such as the kinetic
energy density 7(r) and the Laplacian of the density V2p(r).

« Rung 4: Hybrid Functional. Mixes semi-local exchange with a fraction of exact Hartree—
Fock exchange. Global hybrids apply a fixed mixing ratio, whereas range-separated hybrids
use a distance-dependent partitioning of short- and long-range exchange contributions.

« Rung 5: Double Hybrid. Enhance hybrid functionals by adding a perturbative corre-
lation term (e.g., MP2-like contributions), achieving higher accuracy at an even increased

computational cost.

2.2.2. Density-Functional Tight-Binding

semi-empirical density functional tight binding (DFTB) is a semiempirical method that employs
several approximations and a number of element-specific parameters, thereby achieving significant
computational efficiency. The approximations include the two-center integral approximation for
Hamiltonian matrix elements, the monopole approximation for charge—charge interactions, and the
use of a confined minimal atomic basis set. These approximations limit the method’s accuracy,
particularly for non-covalent interactions, where the monopole treatment underestimates attractive
forces, and the minimal basis set underestimates Pauli repulsion and polarizability.!'® The method
is 2-3 orders of magnitude faster than DFT, while showing comparable accuracy, ¢ which allows
for efficient sampling of large systems such as biomolecules.

The DFTB methodology originated from adapting the basic concepts of the tight-binding model
in solid-state physics to KS-DFT.!17 Here, the electrons are tightly bound to their atoms, and
they interact only weakly with the potentials of neighboring atoms. The electron density is mainly
localized near the nuclei, and only a minor portion of the valence electrons contributes to changes in
the local electron density. Consequently, the electron density p of a molecule can be approximated
by constructing a reference density pp as a superposition of neutral atomic densities pf,

po(r) = pi(x). (2.14)

To account for the response of the valence electrons to the chemical environment, the density
fluctuation dp refines the approximation,

p(x) = po(r) +3p(r). (2.15)
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The key concept of DFTB is to use the approximate electron density p in the KS scheme. The

expression for the total energy of the system in Eq. 2.10 is then expanded around the reference

density by a Taylor series up to third order,!16:118

1 s UI. Or/ .
Bl +op) = 5 | Wdrdr’— [ Vxel () dr + Exclp) + B

+ (AL
5> Exclp)
*2//(u—ﬂ p() 00|,

3
" 6///5p 5EXO 3007,

where the colors indicate the order of the Taylor terms as assigned in Eq. 2.17. Here V¢ is the

>5p(r)5p(r') dr dr’ (2.16)

dp(r)dp(x’) dp(x") dr dr’ dr”,

XC potential, Fxc the XC energy, and F,, the nuclear repulsion energy. The equation can be

rewritten as
Elp] = EOpo] + EY | po. 50+ E@|pg, (5p)2] + E® [po, (5p)]. (2.17)

One can distinguish between DFTB1,'"Y DFTB2,'?0 and DFTB3'16 according to the highest order
of the Taylor series included in the model. The second-order terms are essential for accounting for
partial charge-transfer processes, and the third-order terms are important for accurately describing
charged molecules.!'® DFTB3 with parameter set 3ob is recommended for standard biomolecular

applications. 16

DFTBI1. The red terms in Eq. 2.17 depend only on the reference density pg. They contain the
interactions involving the core electrons and can be represented as the repulsive potential Fyep,

which is typically expressed as a sum of pairwise repulsive terms Vabp,

Erep = ZVJEP- (2.18)

The values of Varfp are determined from DFT-GGA calculations using the PBE functional. The
orange term in Kq. 2.17 is used to construct the Hamiltonian matrix from the KS Hamiltonian
H [po] for a hypothetical molecule described by the reference density. The KS operator and orbitals
are adapted using the linear combination of atomic orbitals (LCAQO) ansatz with an atom-specific
minimal basis set for the valence shell to account for the tight-binding approximation.!!¥ The KS
orbitals within the LCAO approach are written as

r) = cuidu(r) (2.19)

21



Potential Energy Functions and Molecular Models

where ¢;;, are the molecular orbital coefficients in the atomic orbital basis. The total energy is
minimized with respect to the orbital coefficients, leading to the corresponding KS equation

> cvi(HY), — €Su) =0, (2.20)

14

with the Hamiltonian matrix element
HBV - <¢LL“[:I0|¢V> (2'21)

and the overlap matrix elements

S;w = <¢u|¢u> . (2‘22)

The total energy for DFTB1 is then given by

1
EDFTBL _ 5ZV;SP_f_zziz,'('//,'(',/,‘ﬁjj,, (2.23)
ab

Tz

where n; are the occupation numbers of the KS orbitals. Precalculated values of S, and HSV
are stored in tables and read during runtime. In DFTB1, the KS equations are solved only once.

Therefore, DFTB1 is about 5-10 times faster than DFTB2 and DFTB3 because a self-consistent

solution of the eigenvalue problem is required in the latter methods.!1%:12!

DFTB2. In the second-order term (blue in Eq. 2.16), the density fluctuations are constructed as

a superposition of atomic contributions
dp(r) = %:5/)(1(1'). (2.24)
The atomic-like density fluctuations are approximated by
Spa(r) ~ Aqa;—;e%'r*f‘a', (2.25)

in the monopole approximation.'?® The fluctuating charges Ag, are calculated from the partial
charges ¢, and the parameters 7, are chosen such that the function ~,; adequately reproduces
the atomic chemical hardness. This leads to an analytical function v that solves the Coulomb
interaction between spherical atomic density contributions analytically. The partial charges Agq,
are derived by subtracting the Mulliken charges

da = an Z Zcm Cui S;uh (2.26)

7 pea v
AQa :CIa_q27 (2.27)
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from the reference atomic charges. The matrix elements must be calculated in a modified form

. 1 N
HNV = <90u|H0|90V> + §SMV Z ('Vac ‘f"?’bc) Aq. = ng + H,Lll,)l/FTB27 (2-28)
c=1

and the solution is obtained iteratively, which is referred to as self-consistent charge (SCC). The
total energy is written as

1 : 1
FDFTB2 _ 5 Zb Vel + 5> nicuicyi)), + 3 Zb: AqaAgyyab (2:29)
a a

Tz

DFTBS3. The third-order term (green in Eqn. 2.16) incorporates a new parameter that describes
the chemical hardness derivative Ug.lﬂ This results in a new function 'y, as the derivative of
the y-function with respect to charge and is used to refine the charge dependencies of the model.
Again, the matrix elements must be calculated in a modified form

1 1 A

H/U/ - Hgy + Sw/ Z ch <2(7ac + ’ch) + g(AQaFac + Aqubc) + %(Fca + Fcb)) s (230)
C

and solved as SCC. The Hamilton matrix elements depend on the Mulliken charges, which are

dependent on the molecular orbital coefficients ¢,;. The total energy of the DF'TB3 model can be

written as

1 i 1 1
EDFTB3 _ 5 Z V;gfp + Z Z Ni CuiCui H/(,),/ + 5 ZAquqwab + 3 ZAququab. (2.31)
ab ab

14 ab

With the 3ob parameter set, DF'TB3 achieves accuracy suitable for biochemical applications while
remaining approximately two to three orders of magnitude faster than standard DFT 1237126 This
balance of cost and accuracy makes it an effective choice for large-scale simulations of chemically
reactive processes in complex molecular environments. Extensive sampling is essential for char-
acterizing biomolecular dynamics.'?” Semi-empirical QM methods are therefore well suited for
quantum mechanics/molecular mechanics (QM/MM) simulations because they maintain reason-
able accuracy without incurring prohibitive computational cost.3%!2® In this dissertation, DFTB

129

serves as the method of choice for the QM region,"*’ enabling long-timescale QM /MM simulations

that can reach the nanosecond timescales. 39139

2.3. Hybrid QM/MM Approach

QM/MM simulations offer an efficient alternative to treating an entire system at the quantum-
chemical level. The method was first introduced in 1976 by Warshel and Levitt?? in a seminal
study, and its significance was later acknowledged by the 2013 Nobel Prize in Chemistry. These

simulations aim to retain the accuracy of a quantum chemical description in relevant regions while
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leveraging the lower computational demands of classical molecular mechanics. In this approach,
the system is partitioned into a QM region and an MM region, as shown in Figure 2.1. The MM
region contains atoms that are sufficiently represented by classical force fields, whereas the QM
region includes atoms whose behavior requires an explicit electronic description. Phenomena that
involve substantial changes in electronic structure, such as charge transfer, electronic excitation,
or chemical reactivity, cannot be captured accurately within a purely classical framework. For
this reason, the atoms participating directly in these processes are assigned to the QM part of the
system. The QM region is selected to be small enough to ensure manageable computational cost

and large enough to capture the essential chemistry of interest.!36:137

Figure 2.1.: QM /MM partitioning in a protein. The protein is shown with the reactive residues highlighted in
red. The QM subsystem comprises three residues (CYS-23, CYS-28, and Cym-26) that participate
in the thiol-disulfide exchange (TDE) reaction. This QM region interacts with the surrounding MM
environment, with the form of the QM—MM coupling determined by the chosen interface treatment.

In the additive QM /MM framework, the total energy of the system is expressed as the sum of
the QM contribution Eqy, the MM contribution Eypy, and the interactions between the two
subsystems Equ /v,

FEiotal = Equm + Exiv + Equ v (2.32)

The QM /MM interaction term comprises three components

| .
Equiyvn = EQSi i + Egnnam + EGAM- (2.33)
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Here, Egﬁj /MM denotes the electrostatic interactions between QM and MM subsystem, Eé%V\/[MM
represents their van der Waals interactions, and Eg‘f\}[“/jﬁfM describes interactions across covalent
linkages that connect the two subsystems. The Quality of description of these contributions can
significantly affect the overall accuracy of a QM/MM calculation. A careful and appropriate

treatment of the QM-MM boundary is therefore essential, as discussed in the following.36:137

Bonded Interaction. When covalent bonds cross the QM-MM interface, specific complications
arise because the QM region cannot terminate abruptly at a bonded atom.?%138:139 A naive par-
titioning would leave the QM subsystem with an unsatisfied valence and distort the electronic
structure at the boundary. To address this, several strategies have been developed for a consis-
tent treatment of boundary-spanning bonds. The most common approach employs a link atom,
typically hydrogen, together with a redistribution of MM charges.'" Variants such as double-link
and tuned-link atoms seek to refine the description of the cut bond. More advanced alternatives
include local self-consistent field methods, pseudo-bond approaches, frozen-orbital and generalized
hybrid-orbital formulations, and Yin—Yang atom schemes, each designed to preserve a chemically
consistent electronic environment across the QM-MM boundary.?®

Short-Range Interactions. The van der Waals interactions act over short distances, so they
mainly affect regions in which QM and MM atoms are in close proximity. These interactions are
usually treated with classical force-field parameters as in Eq. 2.3. In this approach, Lennard—Jones
parameters are assigned to the QM atoms, and the corresponding interactions are evaluated using
the MM force field.!?? However, this treatment can introduce non-negligible errors. At short inter-
molecular separations, the original force-field parameterization may no longer be reliable, leading
to progressively less accurate interaction energies. A more rigorous approach is to reparameterize
the relevant van der Waals terms specifically for QM /MM applications, ensuring that they remain

valid in the chemical environment surrounding the QM region.!38:141

Long-Range Interactions. There are several schemes that can be used to couple the electro-

static components of the QM /MM model and to calculate E&e\/f pYive

Mechanical Embedding. The simplest coupling scheme is mechanical embedding. In this approach,
the electrostatic interactions between the QM and MM subsystems are evaluated entirely at the
MM level using atom-centered point charges for all atoms. The QM—-MM interactions are therefore
represented as classical Coulomb interactions using the FF, as in Eq. 2.3. A notable limitation of
this scheme is that it neglects any polarization of the QM subsystem by the MM environment. As
a result, mechanical embedding cannot account for the modification of the QM electronic structure

induced by the surrounding classical region.'”

Electrostatic Embedding. In contrast, electrostatic embedding includes the polarization effect of
the MM on the QM subsystem. The QM Hamiltonian incorporates one-electron operators for
these interactions

N M 20).
pyTotal _ 7QM _ % e Qj 7 (2.34)
i=1j=1 dmeo|ri — Ry
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where r; and R; denote the positions of electron ¢ and MM atom j, respectively. H QM repre-
sents the unmodified Hamiltonian operator acting on the QM region. The QM zone contains N
electrons, while M MM atoms carry point charges Qj.139 Thus, MM charges directly affect the
charge distribution in the QM part through polarization. However, MM charges remain fixed point
charges and therefore cannot be polarized by the QM electron density. Improvements to the MM

charge density can be achieved by smearing the point charges into a Gaussian distribution42143

144 which adapt the charge-fitting procedure to

or by employing Gaussian electrostatic models,
parameterize Gaussian charge distributions directly. For DFTB3 as a QM method, electrostatic
embedding with point charges modifies the charge-dependent matrix elements in Eq. 2.30 by

adding the term

1
H;(?VM/MM = Sm/ ’ 5 (q)a + (I)b) . (2.35)
It can be calculated from Q
o, = 4 (2.36)

Acniy Ba —rdl
which is the electrostatic potential generated by all MM charges.!45

Polarizable Embedding. Polarization embedding enables the MM region to become polarized in
response to the QM electron density. This can be achieved by employing polarizable FF's, based
on Drude oscillators, fluctuating charges, or induced point dipoles.'*6 For induced-dipole models,
the electrostatic QM /MM interaction term Egﬁ/ﬁ /MM S extended by two additional contributions,

E(S(l)\l/[/MM = ;Z (O‘z‘_lﬂ? JfZMﬂ;ij) =D hi (E’LN[M JFEZ‘QM) ) (2.37)
i i i

which reflects the self-energy of the induced dipoles and their dipole-dipole interactions. Here,
p; is the induced dipole on atom i, a; is the corresponding polarizability, and 7;; denotes the
effective dipolefield interaction tensor.'#6 This introduces a mutual dependence between the QM
electron density and the induced dipoles of the MM environment. This coupling represents a
major advantage of polarizable embedding, as the classical environment can dynamically respond
to changes in the QM region. At the same time, it introduces a nonlinear QM /MM interaction
that requires the self-consistent field (SCF) and induced—dipole equations to be solved iteratively

to achieve a self-consistent description of the combined system. 46

Adaptive Embedding. The choice of QM region size remains a critical determinant of accuracy
and efficiency in QM/MM simulations. Larger QM regions may be required when the reaction
involves pronounced charge transfer (CT) or environmental polarization effects extend beyond the

172156 aim to address

immediate active site. Recent developments in adaptive QM /MM schemes
this challenge by dynamically adjusting the QM region in response to changes in the chemical

environment.
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Molecular dynamics (MD) simulations sample the phase space defined by a chosen interaction
model and its Hamiltonian. The resulting data points are time-correlated configurations obtained
by numerically integrating the equations of motion. If the space of molecular configurations are
sampled sufficiently well, the underlying partition function Qg (&), where £ is a coordinate in the
reduced phase space (typically called the reaction coordinate), can be estimated from the resulting
distribution. Qr(&) is of interest because (1) it determines key thermodynamic quantities and (2)

its direct calculation via phase-space integration is infeasible for complex systems.”

In statistical mechanics, Qr(&) for a classical continuous system is given by

[(c(a)~€) exp(— BH(@.p)) d*ar-+-day d'py - dny
/exp( — ﬁH(q7p)) d3q1 .. 'dSQN d3p1 ... d3PN

r(§) = : (3.1)

where N is the number of particles, h is Planck’s constant, § is the Dirac delta function, =
1/(kpT), and H(q,p) denotes the Hamiltonian as a function of all particle positions q and mo-
menta p. The phase-space volume elements d®¢; and dp; integrate over the Cartesian components
of position and momentum, respectively. This defines the free energy

F(&) = —kgT I QN"T(¢), (3.2)

and the free enthalpy
G(&) = —kpT mQF™ (), (3.3)

of the reduced space defined by &. Both quantities are referred to as potentials of mean force, to
distinguish them from the free energy expression derived directly from the unrestricted partition

function. 57158

If the trajectory generated by the MD simulations eventually visits all relevant states regardless

of the initial condition, Birkhoff’s ergodic theorem!'®? implies
Qr(&) = lim 1 . ) — 3.4

It expresses the equivalence between the ensemble average over all microstates in Eq. 3.1 and
the time average obtained from a sufficiently long trajectory. As a consequence, Qr(§) can be
estimated from the distribution of £ obtained from the MD data, for example by histogramming or
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by related density-estimation techniques. However, sufficient sampling is a critical and nontrivial
requirement, as further discussed in Section 4 Enhanced Sampling.

Molecular dynamics simulations rely on a collection of algorithms that enable stable and effi-
cient calculations. For an in-depth overview of the underlying principles, the reader is referred
to Refs. [157, 158, 160]. The simulation workflow, which is an essential aspect of practical MD
simulations, is well summarized in Refs. [30, 161]. The following sections focus on central method-
ological components. Specifically, Section 3.1 introduces the numerical integrator used to solve
the equations of motion, and Section 3.1.1 discusses the algorithms used to generate non-standard
ensembles that are essential in many applications.

3.1. Finite Difference Methods

MD simulations sample the phase space of a model system by explicitly integrating its equations
of motion. Once a potential energy function has been defined (Section 2), the forces acting on
each particle follow directly from the gradient of the energy function. For a force field (FF), the

force acting on the i-th particle is given by
F;, = _viVFF(rla"'7rn)7 (35)

where r; denotes the particle coordinates. A system of N particles obeys Newton’s second law of

motion
dzri

Fi = mya; =

a relation that provides 3N linear second-order differential equations that cannot be solved an-
alytically for complex systems. Instead, numerical integration is used to propagate forward in
time and thereby generate trajectories. A variety of algorithms, collectively referred to as inte-
grators, are available to perform this task with differing levels of accuracy, stability, and energy
conservation.'62 A well-behaved integrator is one that yields a set of trajectories that approximates
the exact analytical solution within the limits of the system’s correlation time for the property of
interest. 62163

Integrators propagate the system through discrete time steps. Starting from the positions r;,
velocities v;, and accelerations a; of all atoms at time ¢, the dynamics are obtained by iteratively
jumping to the next time point t+ At using information from the previous step or steps. The

Verlet integrator! 4

r(t+ At) = 2r(t) —r(t — At) + At?a(t) (3.7)
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can be derived by summation of the Taylor expansions of the atom position in the forward and
backward time directions

r(t+At) =r(t) + Atv(t) + L At*a(t)
r(t— At) =r(t) — Atv(t) + 1At a(t).

An adaptation, the velocity Verlet integrator,

riy1 =1;+V; At—i—%ai At? (3.10)
Vitl :Vi+%(ai—|—ai+1)At, (3‘11)

renders the algorithm more stable and conceptually more physically grounded, which in turn fa-
cilitates extensions such as coupling to an external heat bath.'5"163 Acceleration is calculated
from a; = —V;Vgp(ry,...,ry)/m;. Initial velocities v; are drawn from the Maxwell-Boltzmann
distribution at the reference temperature using Box-Muller-generated random numbers.!5” The
native ensemble generated by these integrators is the constant energy isochoric ensemble (NVE),
characterized by constant particle number, volume, and energy. Algorithms that control temper-
ature and pressure to generate the isothermal-isochoric ensemble (NVT) and isothermal-isobaric

ensemble (NPT) ensembles, respectively, are discussed in the next section.

Critical factors for integration efficiency are (1) the computational cost of evaluating the forces
F;, = —VVpp(r1,...,ry) and (2) the size of the time step At. The first factor can be optimized
by avoiding a full force evaluation at every time step. Instead, the integrator can be advanced
for several steps using an approximate a;, after which the forces are recalculated to correct the
trajectory. This class of schemes is known as predictor—corrector methods.'%3 Additional cost
reductions arise from using cutoff functions to limit the evaluation of short-range nonbonded
interactions, Ewald-based mesh methods for efficient treatment of long-range electrostatics, %
and neighbor lists that buffer the set of interacting particle pairs over multiple time steps, thereby

avoiding a full pair search at every step.'6

Optimization of (2), the time step, can be achieved by removing fast vibrational components
through the introduction of constraints. On short timescales, typically around 10 fs, high-
frequency H-bond vibrations behave as approximately harmonic and are irrelevant for many ob-
servables. However, they limit the numerical stability of the integrator and restrict the time
step to about 1 fs. These modes can be eliminated by holonomic constraints introduced through
the Lagrange formalism, for example by fixing H-bond lengths at their equilibrium values. For
three-point water models, the modified equations of motion can be solved analytically using the
SETTLE algorithm.!6” For general molecular systems, however, the constraint equations must be
solved numerically, requiring an additional correction step after each unconstrained integration
update. Common algorithms include SHAKE, 68 RATTLE, and LINCS.'% These constraints al-
low the time step to be increased to approximately 2 fs, and can be extended further to 4 fs by

also constraining hydrogen bond angles.!70
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3.1.1. Constant Temperature and Constant Pressure Ensembles

Additional algorithms have been developed to regulate temperature and pressure, referred to as
thermostats and barostats, respectively. These methods are essential for establishing the NVT
and NPT, which generate thermodynamic ensembles encountered in experimental settings. These
ensembles require algorithms that modify the equations of motion to regulate temperature or
pressure.'%® The following section outlines the basic idea, while Ref. [161] provides an overview of

commonly used algorithms.

Thermostats. A thermostat couples the system to an external heat bath and ensures that the

temperature
2
T = E|Eygin(v)], 3.12
(SN_Nconstr,)kB [ kln( )] ( )

with Neonstr. constraints in the system, fluctuates around a target value Ty. The Berendsen

thermostat!' ™! imposes weak first-order relaxation toward the reference temperature T,

ar  Ty-T
dt N T '

(3.13)

which yields the velocity—rescaling factor

)\:\/1+f::<€?—1>. (3.14)

Applied uniformly to all particle velocities, A drives the system smoothly and asymptotically to-

ward Tp. Its value is determined by the instantaneous deviation of T" from the target temperature
and by the coupling constant 7, which controls the rate of thermal relaxation. This method pro-
vides efficient temperature control but does not generate the canonical ensemble. NoséHoover! ™
dynamics extends the phase space by an additional variable that regulates kinetic energy. This

emulates coupling to an external heat bath and rigorously generates a canonical ensemble.

t171

Barostats. The Berendsen barosta regulates the system pressure P by scaling the simulation

cell volume toward a target pressure F%. The scaling factor is

At
uzf/l—/{(P—Po), (3.15)
T
where k denotes the isothermal compressibility and 7 is the pressure-coupling time constant.
This scheme provides smooth and efficient pressure relaxation, although it does not rigorously
generate the NPT ensemble. In contrast, the Parrinello-Rahman barostat!”™® employs an extended-
Lagrangian description of the simulation cell, and when combined with a Nosé-Hoover thermostat,

it yields samples rigorously drawn from the NPT ensemble.!®7
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4. Enhanced Sampling

The use of sampling methods to estimate average values is very widespread in numerical math-
ematics and computational physics. A historical illustration is Buffon’s needle experiment!"#,
which demonstrates how random sampling can be used to approximate w. Analogously, random
samples (with replacement) can be used to estimate the ratio of the area of an inscribed circle to
that of its enclosing square. Figure 4.1 illustrates how such sampling provides accurate estimates
in low dimensions but loses efficiency as dimensionality increases. Improvements are achieved by

increasing the number of samples, although increasing the number of samples comes at a higher

computational cost. This challenge, often referred to as the sampling problem, motivates the
175

development of more systematic and efficient sampling strategies.

Pexact = 7.854e-01 Poxact = 3.084e-01 Poxact = 1.585e-02 Pexact = 3.260e-04
pggg,gs’ed = 7.919e-01 pgggfg;;ed = 3.047e-01 pgg,%%‘}ed = 1.530e-02 pgg,?,%‘,’ed = 1.000e-04
PLIP0%) = 7.852e-01 PIoN00y = 3.085e-01 PLIPN0%Y = 1.541e-02 Poootoy = 3.270e-04

Figure 4.1.: Estimation of the volume ratio between a d-dimensional hypersphere and its enclosing hypercube by
random sampling. For each dimension, orange points indicate sampled configurations that fall inside
the hypersphere, while blue points lie outside. The exact analytical ratio pexact is shown together
with numerical estimates obtained using 10* and 10° uniformly drawn random samples. In low
dimensions, a substantial fraction of the samples fall inside the sphere, producing accurate estimates.
As the dimension increases, sampled points inside the hypersphere become undersampled. Achieving
an accurate estimate requires more than two orders of magnitude more samples to obtain a sufficient
number of interior points, which greatly increases the computational cost.

When trying to estimate ensemble averages of molecular systems, MD simulations provide an
efficient way to sample. Instead of drawing samples from an independent random distribution, they
systematically generate configurations from the Boltzmann distribution defined by the potential
energy function (Section 2). This focuses the sampling to the most relevant regions of phase
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space, such as local minima and the surrounding low-energy configurations, while energetically

unfavorable, nonphysical structures are avoided.!70

However, important regions can still remain undersampled if high barriers hamper exploration.!”

When the system approaches such a barrier, gradients in the potential energy oppose the motion
toward the barrier and drive the system back. The average kinetic energy per degree of freedom
is kgT'/2, which implies that crossing a barrier becomes increasingly unlikely as its height grows,
especially when it is significantly larger than kg7'.'70 Sufficient sampling of all relevant regions is
therefore not guaranteed. For example, if a protein undergoes a conformational change, it must
first overcome a high free energy barrier, making the event rare. Proteins may spend a very long
time in one metastable state before transitioning to another, due to high free energy barriers or
entropic bottlenecks.!™® Such incomplete sampling exhibits quasi-nonergodic behavior, indicating
that ergodicity (Eq. 3.4) could in principle be achieved only by extending the simulation time
to an unknown and likely impractically long duration. This obstacle is commonly known as the
timescale problem.

179,180 methods address the timescale problem by improving sampling efficiency

Enhanced sampling
without requiring impractically long simulation times. In principle, sampling can be accelerated
by the following strategies. (1) Modifying the dynamics, while keeping the potential energy surface
unchanged, to enhance motion along slow degrees of freedom. (2) Deforming the free energy land-
scape to increase the likelihood of barrier crossing. (3) Extending the dimensionality of the phase
space to bypass such barriers. (4) Perturbing the forces to promote broader configurational explo-
ration. (5) Reducing the number of degrees of freedom through an appropriate coarse-graining. (6)
Employing multi-copy or replica-based strategies.!”® Within this spectrum of approaches, meth-
ods based on collective variables (CVs) and bias potentials are widely used. Examples include

metadynamics (MTD)!"81"184 ymbrella sampling!®> 187 adaptive biasing force!®®, and variation-
ally enhanced sampling!®”. The following sections concentrate on this class of CV-based methods.

The underlying concepts of CVs and bias potentials will be introduced in Sections 4.1 and 4.2.

4.1. Collective Variables

If states are undersampled due to high barriers, resulting in imprecise estimates from Eq. 3.1,
enhanced sampling methods can be applied to bias the system along selected collective variables
(CVs) toward the relevant states.!™ ¥ The mechanism by which such a bias is applied, and its
influence on the dynamics and sampling, will be explained in Section 4.2. For now, the definition
of a CV is introduced and its properties are discussed. In principle, a CV is a d-dimensionall”’
function of the 3NV coordinates q of the system

CV(a) = (S1(a),- .-, Sa(a))- (4.1)
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For clarity, the CV used in enhanced sampling does not need to be identical to the coordinate
¢(q) used for evaluation. Strictly speaking, these two roles of biasing and evaluation can differ.
This distinction is often ignored in practice and the terms CV and reaction coordinate are used
interchangeably. For example, studies of protein folding often examine the system on a two-
dimensional free-energy surface (FES) constructed from the radius of gyration and the root-
mean-square deviation (RMSD). However, the CV used for biasing can differ from the coordinates
employed for analysis.

CVs may be defined from geometric constructions such as distances, angles, coordination numbers,
or RMSD. More abstract CVs can involve functional forms that offer little intuitive interpretation.
190 The design of such abstract CVs is an active area of research, often relying on machine-learning
techniques. Section 5.2 Machine Learning for Enhanced Sampling will discuss this option in more
detail.

To be suitable for enhanced sampling, a CV should satisfy the following properties. (1) The
CV must take distinguishable values for the initial, metastable, transition, and final states. Its
predictive power increases when it resolves the correct number of states and captures their con-

191

nectivity accurately. Otherwise, projection errors'”* can severely impair sampling, as illustrated

in Figure 4.2.177 (2) The CV must incorporate the slowest relevant motion involved in the process.
Otherwise, a significant free energy barrier remains unbiased and continues to hinder sampling.'””
(3) A CV is preferable if it provides a low-dimensional reduction of the system, has components
that are approximately orthogonal, and exhibits minimal degeneracy. In this case, the effective
phase space becomes more compact and can be sampled more efficiently.!92 (4) A CV is preferable
when it can be infered from the system’s dynamics, and (5) a CV is preferable if it is maximally

predictive of the system’s future evolution.!%?

4.2. Importance Sampling Based on Bias and Collective Variables

In CV-based sampling, the system dynamics are biased to promote exploration of undersampled

regions. This is achieved by adding a bias potential V}, to the potential energy (PE),
Vet = VPE + Vbias, (4.2)

to form an effective potential Vog for the system. This modification leads to an additional bias

force,
OV OCV

Frooo——
bias BYoats 8q’

acting on the coordinates from which the collective variables (CVs) are constructed. The resulting

(4.3)

dynamics follow a modified, non-Boltzmann distribution that enables the system to cross higher
free energy barriers and access relevant states more efficiently. The bias potential can be applied
in different ways. For example, umbrella sampling uses a stratification of static bias potentials
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Figure 4.2.: Schematic illustration of projection errors arising from an inadequate choice of CVs. Top A 2D setup
using two CVs distinguishes all states with correct connectivity. Bottom A 1D setup using a single
CV reproduces the correct number of minima but fails to resolve the connectivity, thereby projecting
distinct pathways into a single coordinate. For example, states 2 and 4 are not connected in the
underlying 2D landscape, but the 1D projection suggests a pathway between them. Such projection
errors occur when a CV does not capture the correct state topology, and they can severely hamper
sampling. Reproduced with permission from Alexandros Altis et al. “Construction of the free energy
landscape of biomolecules via dihedral angle principal component analysis”. In: The Journal of
Chemical Physics 128.24 (June 2008), p. 245102.

applied in multiple independent replica simulations, whereas metadynamics (MTD) constructs a
time-dependent bias that can be shared across parallel replicas. The following section illustrates

the core principles of the bias potential in MTD.

4.2.1. Metadynamics

To improve sampling efficiency, Parrinello and co-workers introduced MTD.'®! The central idea
is to incorporate a form of local memory into the simulation, such that the system is discouraged
from revisiting regions of phase space it has already explored. It was designed to overcome the
time-scale problem by frequently adding a bias potential during the simulation. As a result, the
bias pushes the system over free energy barriers and promotes exploration of new areas of the
free-energy surface (FES). The bias potential V.5 builds up over the course of the simulation,
and once the bias has converged, the underlying FES can be reconstructed from the accumulated
Vbias-

Standard Metadynamics. The standard MTD method continuously builds up a bias potential
during the course of a simulation. At regular time intervals 7, Gaussian functions are instanta-
neously added to the PE at the most recent point in CV space, defined by the current value of
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the CV. Consequently, the deposited Gaussian functions accumulate to form a time-dependent

bias potential
[t/7c] Nev
Vblas CV t Z WG H exp

(4.4)

CVk — CVk(ti))Q
20,% )

Here, W is the constant Gaussian height, C'Vj(¢;) is the CV value at the deposition time t;, oy, is
the Gaussian width associated with the k-th CV, and ¢ is the current simulation time. The quantity
Ncvy denotes the dimensionality of CVs included, which specifies the dimensionality of the MTD
setup. When running a simulation, the parameters W, o1, and 7 must be specified beforehand.
The amount of bias added per unit time is determined by the deposition rate w = W /7. The
higher the deposition rate, the faster the MTD will progress. However, it is important to allow the
system sufficient time to relax and respond to the added bias. A typical choice for W is on the
order of kgT'/2. The parameter 7 depends on the typical autocorrelation time of the CV.182 The
width o needs to be set for each CV and should be small enough to resolve all relevant features
of the landscape. The operating principle of MTD is often paraphrased as “filling the free energy
wells with computational sand”. Figure 4.3 illustrates the accumulation of bias potential as the

simulation progresses in a one-dimensional MTD simulation.

Interestingly, MTD also generates an estimate of the underlying FES. As shown in Figure 4.3,
as soon as the simulation reaches convergence, the sum of all deposited Gaussians reconstructs a
negative image of the underlying FES.

However, in standard MTD, the leveling of the landscape is difficult to achieve due to the large
height of the continuously added Gaussians. The resulting FES estimate carries larger uncertain-
ties and exhibits fluctuations. This limitation can be addressed by reducing the effective Gaussian
height as the bias builds up. This is achieved in well-tempered MTD, a method that will be
introduced next.

Well-Tempered Metadynamics. Incorporates a modification that improves convergence and
suppresses sampling of nonphysical high free energy states by limiting the maximal accumulable
bias. 70183 In well-tempered MTD, the Gaussian height is scaled down as the bias potential
increases. The constant value Wg in Eq. 4.4 is replaced by a time-dependent height of the
Gaussians,

B VbiaS(CV,t)

G(CV,t) =Wgexp AT

, (4.5)

where W is the initial Gaussian height, AT is a parameter with dimensions of temperature, and
Vhias is the bias potential evaluated at the same point where the Gaussian is centered. Conse-
quently, the Gaussian height is smaller in regions where a high bias potential has already been
deposited. With this rescaling of the Gaussian height, the bias potential smoothly converges in
the long-time limit, and the FES can be estimated more accurately as the sum of the bias added

as Gaussians

AT

7o a7 FCV)+C. (4.6)

tli{go VbiaS(CV> t) = -
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Energy TIMVE t1 2 13 t4

Figure 4.3.: Accumulation of time-dependent bias potential in MTD. This example illustrates the one-dimensional
case. The FES of the unbiased system is indicated by the black line, forming a characteristic land-
scape. At the beginning, the system is trapped in a deep metastable basin, indicated by the red ball
at time ¢t;. The MTD simulation has already started to add a bias potential to the FES, as shown
by the blue wavy lines. As the simulation progresses to time to, the added potential increasingly
compensates for the well of this metastable state. The basin becomes “filled”, discouraging revisits
to previously sampled CV configurations. Consequently, the likelihood of transitions to other states
increases. At time t¢3, the system has reached another basin. As the simulation continues, transitions
between states occur more frequently. Finally, at time ¢4, the bias potential effectively compensates
for the features of the landscape, which becomes nearly flattened. At this stage, the states of the
system are sampled more uniformly, regardless of the initial basin depths. Reproduced with per-
mission from Rafael C. Bernardi, Marcelo C.R. Melo, and Klaus Schulten. “Enhanced Sampling
Techniques in Molecular Dynamics Simulations of Biological Systems”. In: Biochimica et Biophysica
Acta (BBA) - General Subjects 1850.5 (2015-05), pp. 872-877.

The parameter AT controls the magnitude of smoothing and is often expressed in terms of the

bias factor,
T+AT

T

As a consequence of this formulation, the CVs are explored at an effective temperature of T+ AT

V= (4.7)

For v — o0, standard M'TD is recovered. For v = 1, unbiased sampling is recovered.
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5. Machine Learning for Molecular Dynamics
Simulations

Machine learning (ML) is rapidly transforming natural sciences by providing effective solutions
where conventional approaches fail or become computationally prohibitive. In molecular dynam-
ics (MD) simulations, its application has progressed primarily along two directions. One is the
construction of collective variables (CVs) for enhanced sampling.!?> 197 The other is the devel-
opment of machine-learned potentials to represent molecular interactions.'® 201 More broadly,
ML contributes to MD through three complementary functions. It accelerates simulations by re-
placing costly electronic-structure evaluations with learned force fields. It enhances sampling by
providing data-driven collective variables and adaptive biasing strategies. It also extract physi-
cal understanding by means of unsupervised analysis and model reduction. For an overview of

fundamental machine learning concepts, see Goodfellow et al.?9? and Hastie et al.?%

5.1. Machine-Learned Molecular Potentials

Machine-learning potentials (MLPs) learn the mapping between atomic configurations and po-
tential energy surfaces from reference QM data, achieving near-QM accuracy at only a fraction
of the computational cost.!98:200:201.204 They can be formulated using kernel-based approaches
or neural-network architectures, which differ mainly in scalability and data efficiency.'®® Early
MLPs relied on simple descriptors, such as the symmetry functions introduced in the Behler—

Parrinello framework,?05:206 207,208

whereas modern architectures, such as graph neural networks
and equivariant transformers,'¥?299 learn molecular representations directly and encode physical
symmetries, including translational, rotational, and permutational invariance.!8290 MLPs can
serve as stand-alone models, fully replacing physical models with data-driven predictions of en-

ergies and forces, or as correction potentials?!0-211

where they compensate for the deficiencies of
approximate baseline methods. The A-ML approach, which adopts this corrective concept, is

discussed in more detail in Section 5.1.1.

5.1.1. A-ML Potential

Despite recent advances in MLPs, the application of stand-alone models remains limited due

to their complex architectures, demanding training procedures, and costly evaluation.2!2213
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Moreover, MLPs struggle with transferability beyond their training domain and exhibit in-
sufficient treatment of long-range electrostatic interactions, leading to imbalances in predicted
interactions.!?8214 Physics-informed ML has been shown to improve robustness and data efficiency
by embedding physical constraints.?!° 217 The A-ML approach leverages physical principles by
learning the difference between two levels of theory. In principle, this should reduce complexity, as
the model focuses on systematic errors rather than reproducing the entire potential energy surface.

213

This method has been successfully applied to enhance PM6 toward CCSD(T) accuracy,”*® and to

improve the description of long-range interactions between the QM and MM regions in QM /MM

simulations.218219

Zhu et al.??Y introduced a A-ML correction scheme for DFTB, which was subsequently extended
by Goémez et al.??! into a proprietary A-ML model tailored for thiol-disulfide exchange (TDE)
in QM/MM simulations. This model corrects the qualitative deficiencies of the standard semi-
empirical density functional tight binding (DFTB) description of the TDE reaction, which stem
from its limited treatment of electronic correlation.??? As a result, DEFTB overestimates S-S bond
distances and leads to inadequate transition states, introducing errors of up to 5 kcal mol~1.5%:222
Fundamentally, these inaccuracies are intrinsic to the sulfur bonding region and can therefore be
addressed independently of the environment. This makes it reasonable to train the ML correction
on a minimal gas-phase system while ensuring its transferability to more complex environments.??!
It also improves quantitative accuracy by including many-body interactions.??%221:223 This A-ML
model was employed in the study presented in Chapter 7 to investigate TDE in the catalytic cycle
of monothiol Homo sapiens glutaredoxin (Grx). The following section therefore introduces this

model in greater detail to provide the necessary theoretical context.

The model architecture is based on the second-generation Behler—Parrinello artificial neural
network (ANN).205206 This architecture is also known under the term high-dimensional neu-
ral network potential (HDNNP). The DFTB-30B method!?*!'?* was used as the baseline and
CCSD(T) /aug-cc-pVTZ??4225 a5 the target method. The model was constructed to learn the

energy difference
AE = Eccsp(r) — Eprrs- (5.1)

The calculations were performed on the minimal reactive model comprising the geometrical en-
semble of the TDE between methylthiolate and dimethyldisulfide, containing a total of 15 atoms.
This model closely resembles the QM region used in the QM /MM simulations, in which one methyl
hydrogen is substituted to form the covalent bond with the protein backbone. All 15 atoms were
used as inputs to the ANN.?2! Distinct components of the network comprise the atomic coordinate
representation (embedding), neural-layer architecture, optimization strategy, and the treatment
of modified forces, each of which is discussed in the following sections. For implementation de-

tails and the construction of the training dataset, the reader is referred to the original source in

Ref. [221].

Embedding. The atomic coordinates are first transformed into atom-centered symmetry func-

tion (ACSF) that serve as the input descriptors for the neural network. This representation is
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motivated by the need for feature vectors that remain unchanged under rotation, translation,
and permutation of identical atoms, which ensures physically consistent energy predictions. The
functions are designed to depend smoothly on the atomic coordinates, which provides continuous
potential energy surfaces and well-defined forces suitable for molecular dynamics simulations.29%:206
As a result, the predicted atomic contributions to the total energy remain invariant under global
transformations of the molecular system.?'® The symmetry functions are constructed from in-
teratomic distances R;; and angles 0, yielding radial and angular terms that encode the local
environment of each atom. Each term is multiplied by a cutoff function f.(R;;) that restricts its
influence to neighbors within a radius R.. This cutoff length defines the spatial extent of the
interactions that affect the atomic environment and must be large enough to capture all energet-

ically relevant contributions. In practical applications, cutoff values between 6 and 10 A provide

reliable potential energy surfaces.?%6
The radial symmetry functions
Gl = > exp|-n(Rij — Ry)?| fe(Ri) (5.2)
J#i
R;;j<Rc

characterize the coordination shells surrounding each atom by summing over all neighbors within
the cutoff radius. The summation accounts for the cumulative contribution of atoms located
inside this spatial region. Radial ACSFs are defined by two parameters: the width parameter 7,
which controls the spatial extent of the Gaussian, and the shift parameter R, which allows the
Gaussian center to be displaced from the reference atom. The effects of varying these parameters
are illustrated in Figure 5.1a and b. Radial functions describe neighbor distances but cannot
distinguish geometries with identical radial distributions, such as tetrahedral and square-planar

environments. This limitation motivates the introduction of angular symmetry functions.

The angular terms

G228 =210 3 (14 Acosti ) exp|—n (BY + R+ B2)] fR) fo(Ra) fo(By) (5:3)

s
capture the three-body geometric relationships within the local environment. Additional many-
body correlations are incorporated through the nonlinear transformations of the neural network.?%
Angular ACSFs are defined by three parameters that determine their shape, as illustrated in
Figure 5.1c. The exponent ( controls the angular resolution, the parameter n modulates the
width of the Gaussian term, and the parameter A, which takes values of +1 or —1, enforces the

required symmetry conditions.?’¢ A cutoff function is applied to each pair distance.
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Figure 5.1.: Radial and angular ACSFs with parameters. (a) Radial functions with Ry =0 A and 7 values of 0.0,
0.03, 0.08, 0.16, 0.3, and 0.5 A=2 for a cutoff radius of 6 A, resulting in approximately equidistant
turning points between 1 A and R.. (b) Shifted radial functions with 7 # 0 and R, values of 1.5,
2.0, 2.5, 3.0, 3.5, and 4.0 A. (c) Angular terms 21_4(1—|—)\c059ijk)C used in the angular symmetry
functions. Curves with A =41 are shown in blue to black and those with A = —1 in orange to brown,
with exponents ¢ = 1,2,4, and 16 from light to dark tones. Reproduced with permission from Jorg
Behler. “Four Generations of High-Dimensional Neural Network Potentials”. In: Chem. Rev. 121.16
(2021), pp. 10037-10072.

The atomic environment centered on each atom is described by a set of radial and angular sym-
metry functions. The minimal representation includes one radial ACSF for each element pair and
one angular ACSF for each element triple, yielding

Nelem(Nelem + 1)

Nsym = 9

+ Nelem- (5.4)

In practice, a larger number of ACSF's is employed to obtain an adequate and detailed description
of the atomic environment. A crucial step in constructing the embedding is selecting appropriate
parameters for the ACSFs. One approach is to optimize the parameters in a data-driven manner by
fitting them directly to the training data, although this often compromises transferability. 206,226,227
Alternatively, the parameters can be defined in a more systematic and unbiased way. A common
strategy is to construct six radial functions per element pair, positioning their centers evenly
between the minimum expected interatomic distance and the cutoff radius. For the angular func-
tions, all distinct combinations of two neighboring element types around the central atom are
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considered, with ¢ values of 1, 2, 4, and 16 combined with A = +1 and A = —1 serving as suitable

8 or it-

initial choices.?’6 Parameter optimization can also involve the use of genetic algorithms??
erative fitting procedures based on short preliminary ANN training runs.??? Once the parameters
are defined, each atom is represented by a fixed-length vector of ACSF's, ensuring that the dimen-
sionality of the atomic descriptor remains constant regardless of the number of neighbors within

the cutoff in the local environment.
Neural Networks.

Figure 5.2 illustrates the second-generation Behler—Parrinello ANN architecture.??%29 The design
is founded on the locality approximation, which assumes that atomic interactions can be described

as functions of each atom’s local environment encoded through the corresponding ACSFs.

Cartesian  Symmetry Atomic Atomic
Coordinates Functions NNs Energy

Figure 5.2.: Structure of a second-generation high-dimensional neural network potential (HDNNP) as proposed by
Behler and Parrinello.2%5 Each color represents a different chemical element (a, b, ¢) with N, Ny, and
N, atoms, respectively. For each atom i of element pu, the Cartesian coordinates Rf are transformed
into a vector of symmetry functions G¥', describing its local environment within the cutoff radius. This
vector serves as input to an element-specific neural network that predicts the atomic energy E!. The
total short-range energy Fgport is obtained as the sum of all atomic contributions. Reproduced with
permission from Jorg Behler. “Four Generations of High-Dimensional Neural Network Potentials”.
In: Chem. Rev. 121.16 (2021), pp. 10037-10072. Copyright 2021 American Chemical Society.

As a direct consequence of the locality approximation, the total potential energy of the system

J
Nelem Natom

FEtotal = Z Z EZJ (55)

j=1 =1

can be expressed as the sum of local atomic energy contributions. Here, Ngjey, is the number of
elements present in the system and N7, is the number of atoms of element j. This decomposition
is reflected in the ANN architecture, which employs a separate feed-forward neural network for

each element type, applied identically to all atoms of that element. Each subnetwork consists of
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multiple layers, where every node applies a nonlinear activation function h. The output of a node
is given by .
yj = h(bj—l—zwijl’i) , (56)
=1
where w;; are the connection weights, b; is the bias term, and z; are the inputs from the preceding
layer. The individual atomic energy contributions are summed to obtain the total energy of the
system. Adding an atom introduces an additional evaluation of the corresponding element-specific

subnetwork, whereas removing an atom eliminates that evaluation.

Modified Forces.

To enable the A-ML model for thiol-disulfide exchange (TDE) to correct not only total energies
but also provide consistent forces for QM/MM simulations on an augmented potential energy
surface, the force acting on atom 7 in direction « is defined as

Fiprpan = Fhprg + Fider. (5.7)

where Fl%olé?TB denotes the baseline DFTB forces and F' is the ANN-derived force correction.

This correction follows from the derivative of the total ANN energy

an . aEtotal
corr aRia
Nelem atom aE]

-3

= 5 8Rm (5.8)

Nelem Natom sym aE] 8G

=—ZZZ

= i=1 k= aG aR

Here, R;,, denotes the Cartesian coordinates of atom 7 in direction o. The terms 8E§- / (9G§~k are the
derivatives of the atomic neural networks determined by the network architecture, and (9G§ o/ OR 0
are the analytical derivatives of the ACSFs with respect to the Cartesian coordinates.

5.2. Machine Learning for Enhanced Sampling

The concept of collective variables (CVs) was introduced in Section 4.1, together with the basic
methodological considerations underlying their use in enhanced sampling. The definition of suit-
able CVs is often central in a MD study, as they provide a reduced representation of the system’s
essential degrees of freedom — the reaction mechanism. However, identifying them is inherently
challenging due to a “chicken-and-egg” dilemma: one must know the relevant CVs to locate the
transition pathways; however, such pathways cannot be observed without first sampling them.
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This circular dependence naturally suggests an iterative workflow, where preliminary CVs are
refined based on new data points. A typical starting point involves geometric constructions derived
from chemical intuition, such as bond distances, angles, or dihedral combinations. However,
these predefined CVs may not adequately capture the complexity and true dimensionality of the
underlying conformational space. This is where machine learning becomes a powerful tool. ML-
based approaches can infer optimal low-dimensional representations directly from simulation data,

revealing hidden CVs that are difficult to define a priori.?3°

Unsupervised learning techniques are employed with the goal of reducing the dimensionality of
molecular dynamics data. In a typical workflow, MD trajectories are represented in a high-
dimensional space (e.g., interatomic distances or internal coordinates), from which the algo-
rithm seeks a low-dimensional projection (latent space) that defines new CVs.?3! Common ap-
proaches include principal component analysis (PCA)?¥2 234 and time lagged independent com-
ponent analysis (tICA)?3, which identify latent coordinates that maximize variance or autocor-

191 The optimization metric can be chosen with different objectives in mind,

relation, respectively.
thereby setting different emphasis in the construction of the resulting CVs. For instance, in
the Spectral Gap Optimization of Order Parameters (SGOOP) method?3®, the CV is learned to

maximize the path entropy as a linear or nonlinear combination of inputs.

In contrast, supervised ML aims to identify the features that define metastable states by learn-
ing discriminative functions.!?%197:230 In this case, configurations are labeled according to their
metastable assignment, often derived from clustering or kinetic modeling. Then, a classifier, such

197,203 js trained to distinguish these states in fea-

as a neural network or support vector machine
ture space. The optimized network serves as a CV that not only separates metastable basins but
also provides a smooth interpolation between them. Once established, such data-driven CVs can
be iteratively refined and applied in subsequent simulations to accelerate sampling and improve

convergence.230

Both strategies have been explored using classical ML and deep neural network approaches. Deep
learning architectures offer substantial representational capacity, enabling the automatic extrac-
tion of nonlinear dependencies and hierarchical features from large data sets. However, they require
extensive data, careful hyperparameter optimization, and often lack interpretability.!?%197:230 Ip
contrast, this work employs unsupervised classical ML algorithms, PCA and tICA, which pro-
vide transparent and computationally efficient models that are easier to interpret.t91:230:231 Both
algorithms are complementary in nature. While PCA is biased toward identifying directions of
maximum variance, tICA focuses on capturing the system’s slowest dynamical modes, represent-

198

ing the two principal metrics commonly used in dimensionality reduction.™”® These methods are

described in the following section.
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5.2.1. Principal Component Analysis

PCA is a widely used dimensionality reduction method and a cornerstone of multivariate data anal-
ysis across scientific disciplines.??” It is a linear dimensionality reduction technique that identifies
orthogonal components capturing the maximum variance within a dataset. It serves as an example
of how dimensionality reduction operates. Given a collection of data points {x(l), o ,x(m)} e R",
the goal of PCA is to transform each z(?) from the original n-dimensional space into a lower-
dimensional representation ¢ € R with { < n. To find this transformation, PCA considers the
reverse mapping xg) = g(c(i)), where ng) exhibits information loss relative to z(?) (lossy transfor-

mation). PCA requires minimizing the reconstruction error measured by the Ly norm
error;,, = argmin ||z — g(c) 3. (5.9)

The objective is to minimize the distance between the input point = and its reconstruction g(c)
obtained from a lower-dimensional space. This optimization problem is solved under orthogonality
and unit-norm constraints imposed on the columns of the transformation matrix that defines g(c).
By applying the method of Lagrange multipliers, that optimal transformation matrix is defined
by the first eigenvectors of the covariance matrix of the input data. Thus, the solution is obtained

through the eigendecomposition of the covariance matrix.20?

Starting from an MD trajectory, a d-dimensional discrete time series {x;} represents the evolution
of a molecular system. From this data, the covariance matrix C is constructed, with its elements

defined by the individual coordinates r; as

Cij = <(7“Z — <7ﬁi>)(7’j — <7’j>)>, i,j = 1, e ,d. (5.10)

Diagonalizing the covariance matrix

C=VAV! (5.11)

yields the eigenvector matrix V and the diagonal eigenvalue matrix A. The eigenvectors v;
describe the directions of the principal motions. When sorted in descending order according to
their associated eigenvalues \;, the eigenvectors describe progressively smaller contributions to the

variance of the system.!?1:238:239 The explained variance of the i-th principal component is given

by
Ai

. S— 5.12
Z;l:v\j 512

Di

A low dimensional representation of the original MD data {x;} can be constructed by projecting
it onto a subset of eigenvectors

zi(t) = (xt — (x)) Vi (5.13)

The result of the dimensionality reduction is a smaller set of z; that can be employed for further

0

analyses, such as the construction of free energy landscapes?t? or as collective variables (CV) in
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238

enhanced sampling simulations.*’® Eigenvectors v; that contribute only marginally to the total

variance can be discarded.

5.2.2. Time Lagged Independent Component Analysis

Time lagged independent component analysis (tICA) is linear dimensionality reduction algorithm.
For the data points {x;} in an MD trajectory, the centered coordinates at time ¢ can be denoted
as a vector in bra—ket notation, |x;). The following discussion is based on Ref. [235, 241, 242].

tICA constructs uncorrelated components |a;) that maximize their autocorrelation,

E[{aifx) (@il xt+7)]
E{cilx)(ailx)]

f(lai)) = (5.14)
The parameter 7 defines a fixed lag time, representing the temporal interval between two con-
figurations along the trajectory. By applying standard linear algebra operations, this expression

simplifies to
(i|CT o)
(0| Clov) *

where C” denotes the time-lagged covariance matrix and C represents the instantaneous covariance

f(lai)) = (5.15)

matrix.
The algorithm begins by solving for the first time-lagged component |ag) while constraining its

variance to unity, (ag|Clag) = 1. This simplifies Eq. 5.15 to

ma (|a)) = masx(ao] 7). (5.16)

lovo)

The optimal solution can be obtained using the method of Lagrange multipliers. Subsequently;,

the next component |«;) is determined by solving

max f(|an)) = max{on|CTlen), (5.17)

1)

subject to the unit-variance constraint («;|Clag) =1 and the additional condition (a;|C|ag) =0,
which ensures that |a;) is uncorrelated with |ap). By repeating this procedure, higher-order
components can be systematically constructed.
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The set of components |a;) can be ordered according to their corresponding eigenvalues \;, such
that those associated with the slowest dynamical processes (largest characteristic time scales)
appear first. This relation is given by

f(lai)) = (il CT|a) (5.18)
= (| \iCla) (5.19)
= \i(;|Clay) (5.20)
= \i. (5.21)

Each component |a;) is assigned an implied time scale,

e TEWE (5.22)

Time-lagged components «; associated with smaller eigenvalues can be discarded, since they en-
code only rapidly decorrelating fluctuations. The result of this dimensionality reduction is a
smaller set of slow coordinates, represented by the remaining «;, which correspond to the domi-
nant dynamical modes of the system and can be employed as CVs.
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6. Non-covalent Interactions at the QM-MM
Interface in the Semi-Empirical and
Density-Functional Limit

Chapter 6 is reproduced from publication with permission from ACS Publishing:

e Accepted manuscript: Julian Boser et al. “Non-covalent Interactions at the QM-MM
Interface in the Semi-Empirical and Density-Functional Limit”, Journal of Chemical Theory
and Computation (2025).

6.1. Introduction

In molecular simulations, extensive sampling is essential to capture rare yet functional events such
as substrate binding, conformational rearrangements, photochemical reactions, and enzyme catal-

35,836,243 Apy accurate description of these processes requires

ysis, which span multiple timescales.
consideration of localized electronic rearrangements, bond-making and bond-breaking within the
active site, and conformational motions of the surrounding environment. In principle, one could
model the entire system using a quantum-mechanical (QM) method, but the prohibitive cost
of QM for large systems like biomolecules precludes routine application. Hybrid quantum me-

chanics/molecular mechanics (QM/MM) approaches34139

address this challenge by treating the
reactive core quantum mechanically while embedding it in a computationally efficient classical

environment.

Typically, QM/MM divides a system of interest into two parts: (1) a smaller region in which
changes of electronic structure occur, such as chemical reactions or photoexcitation, and (2) a
larger surrounding environment that retains its initial electronic structure. The smaller region
is described with a QM method, capable of simulating the change of electronic structure, while
the larger region is treated at the MM level to keep the computational cost affordable. Despite
the clarity of the QM /MM conceptual blueprint, its setup requires rigor and scrutiny to balance
interatomic and intermolecular interactions.?®244249 The issue is that QM /MM inherently creates
an interface between the two subsystems, affecting the interactions between them, especially,
preventing any charge transfer (CT) between the subsystems and limiting the mutual polarization.
In additive embedding, an explicit coupling term Eqn-nvv must be added to the classical energy
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of the MM region Eypy and the quantum mechanical energy Eqy of the QM region to reconcile
the integrity of the system, Ergta = EQM + Eyviv + EQM—MM-

For systems lacking covalent bonds between subsystems, the coupling term simplifies to only nonco-
valent interactions (NClIs). Accurate modeling of these interactions is the central aim of the devel-
opment of embedding schemes. Mechanical embedding (ME), electrostatic embedding (EE), and
polarizable embedding (PE) each offer different trade-offs between accuracy and cost.'® While PE
accounts for mutual polarization and is advantageous for spectroscopy or photoexcitation,250 254
its higher computational cost does not universally translate to improved performance, even though

polarization can contribute 10-20% of total interaction energy.??> 257

Despite significant advances in the development and optimization of embedding methods, the size
of the QM region remains critical for mitigating said deficiencies. An appropriately designed QM
region can help avoid interface artifacts where the embedding scheme may poorly capture key

electronic effects.!?!

Minimal QM regions suffice in systems like chorismate mutase, where charge
transfer is negligible,?*® but defining them in more complex systems is less straightforward. In
catechol-O-methyltransferase (COMT), where substrates span a large, solvent-exposed active site,
charge shift analysis showed that residues often selected by proximity or intuition were unnecessary,
while typically overlooked nonpolar residues were essential, favoring data-driven over intuition-
based selection.?>® Thus, the construction of the QM region and the selection of the method must

balance the accuracy against the computational cost for each specific system.

Unlike QM /MM studies on complex systems, which are computationally intensive and often dif-
ficult to generalize, the benchmarking of smaller, prototypical systems plays a central role in
the development and validation of accurate QM/MM models. Benchmarking quantum chemical
methods against high-level reference interaction energies is a well-established practice for assess-
ing and improving computational accuracy. Focusing on NClIs is important, as such interactions
are fundamental to the structure and function of molecules. NCIs are generally weaker than
covalent bonds, with binding energies ranging from —0.5 to —50 kcal mol~?0, allowing for the
flexibility and dynamic behavior of molecular structures, but are highly dependent on geometric
parameters.?*2%0 In spite of the importance of NCI and the usefulness of QM /MM, systematic
studies of NCIs using QM /MM setups have been strikingly scarce. To the best of the authors’
knowledge, existing comparisons of non-covalent interaction (NCI) components have been limited
to specific systems and small datasets. However, a systematic evaluation of NCIs within QM /MM

frameworks has not yet been reported in the literature,141:246,261-272,

In this work, we aim to fill this gap in the field by investigating NCIs at the QM-MM inter-
face. The analysis was carried out within the frameworks of density functional theory (DFT)
and semiempirical quantum chemistry (SQM), using wB97X-V and DFTB as the respective rep-
resentative methods. To evaluate how QM/MM captures non-bonded interaction energies rela-
tive to higher-level references, two contrasting structural models were employed: small-molecule
dimers in vacuum (“pair models”) and protein-ligand clusters embedded in their native-like en-
vironments (“microenvironment models”). Interaction energy profiles are computed for neutral
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(HB375x10) and ionic (IHB100x10) hydrogen-bonded complexes from the Noncovalent Interac-
tions Atlas (NCIA)2™. The focus on H-bonds is motivated by their role in relevant phenomena
& 7 and catalysis?®277. The

dominant contributors to hydrogen bonding are electrostatics, polarization and charge trans-

such as stabilizing molecular structures®’*, molecular recognition?
fer interactions.?6Y However, depending on the balance of all underlying energy components’,
H-bonding spans a spectrum’® of interactions broadly categorized as conventional and unconven-
tional, making it sensitive to the intricate interplay between these components. This is particularly
relevant in the context of QM /MM calculations, as the QM-MM interface inevitably perturbs the
balance between electrostatics, polarization, exchange repulsion, and charge transfer, as well as
their coupling. For example, omitting polarization in the modeling of hydrogen bonds, by using
unperturbed MM charges, can lead to incorrect intramolecular hydrogen bonding?”® and under-

219 Additionally employed was a set of larger models

estimated cooperative effects in proteins
from the “Protein-Ligand Refined EXperiment” benchmark (PL-REX),?®Y comprising ten pro-
tein—ligand complexes (with 10-30 ligands per protein) derived from well-characterized protein
targets with interaction energies computed using DFT as reference. Considering such different
datasets makes it possible to evaluate how environmental context and model type influence the
accuracy of QM/MM calculations. This may provide a foundation for understanding and im-
proving the treatment of hydrogen bonding at the QM—-MM interface in applications to realistic

biomolecular systems.

6.2. Methodology

6.2.1. Benchmark Data

Pair Models. The benchmark for the small-molecule dimer systems is based on the HB375x10
and [HB100x10 datasets. The noncovalent complexes in these datasets are designed to test the
performance of computational methods across a broad range of interaction types. Each complex
includes a 10-point dissociation curve sampled from the equilibrium geometry, with interaction
energies extrapolated to the CCSD(T)/CBS limit using large basis sets. The intracomplex dis-
tance along the dissociation curve is characterized by the distance scaling factor fascaling: TO
test neutral hydrogen-bonded and ionic hydrogen-bonded structures, we used the HB375x10 and
IHB100x10 datasets, respectively.?” The interaction strength and the number of components per
class are summarized in Table A.1. Notably, the IHB100x10 dataset is less dense; some bond types
encompass as few as one to six complexes. Structural details can be explored in the database,

which is conveniently accessible at www.nciatlas.org.

Microenvironment Models. The benchmark for the protein—ligand cluster models is based
on the PL-REX dataset?®?, which comprises ten receptor-ligand systems derived from well-
characterized protein targets, with interaction energies computed using the wB97X-D3(BJ) func-
tional as reference. This dataset was curated to assess protein—ligand binding affinity. Each system
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includes a receptor structure trimmed from the entire protein and paired with a representative set
of ligands, resulting in models containing between 753 and 1,096 atoms. These trimmed models
are characterized by variations in the number of retained water molecules, presence of zinc cations
and halogens, and differences in ligand topology, pK,, and similarity. Of the ten systems available
in PL-REX, eight were selected for this study: Systems 1, 2, 3, 5, 6, 7, 9, and 10, see Table A.7
for system names and number of ligands. A note on systems 1 and 10, which involve interactions
between a zinc cation and coordinating ligands: pilot force-field calculations revealed that the use
of standard General Amber Force Field (GAFF) parameters and AMBER parameters results in
substantial overestimation of interaction energies in all models. Apparently, more specialized pa-
rameter sets, such as ZAFF,2™ would be more appropriate in these cases. Consequently, Systems
1 and 10 are excluded from the calculations.

6.2.2. QM/MM Model

We employed electrostatic embedding (EE) in our QM /MM setup. In EE, the QM region is
explicitly polarized by the surrounding MM environment, allowing the electronic structure of
the QM subsystem to dynamically respond to changes in the environmental charge distribution.
This can be achieved by incorporating MM point charges directly into the QM Hamiltonian as
one-electron terms® as introduced in Eq. 2.34. The QM zone contains N electrons, while M MM
atoms carry point charges );. Additionally, our implementation introduces a charge scaling factor,
A, which modulates the magnitude of the QM-MM electrostatic interactions. To evaluate the
sensitivity of the benchmark results to variations in the MM charge distribution, we systematically
varied A over the range 0.80 to 2.00 and assessed its impact on accuracy. Since the systems studied
here consist of isolated noncovalent complexes, there was no need to account for covalent bonds
crossing the QM /MM interface. Although earlier studies emphasized the potential importance of

parameterizing QM /MM van der Waals terms specifically for quantum atoms?8!:252

, in practice,
most contemporary QM /MM implementations employ Lennard-Jones parameters directly from
widely used force fields. Following this convention, we adopted the AMBER/GAFF parameters
for the QM atoms, ensuring consistency across both the QM /MM models and the GAFF reference

models.

MM Parameters and Charge Model. To parameterize the components of the MM region,
we used the general AMBER force field (GAFF) following the Antechamber workflow to assign
bonded and nonbonded parameters.?83-285 Atomic charges were generated through restrained elec-
trostatic potential (RESP) fitting. The following operations were performed in GAUSSIAN 0926,
Initially, the structures were optimized using the B3LYP functional and the 6-31G* basis set. Sub-
sequently, a population analysis was carried out at the Hartree-Fock level (HF /6-31G*, Pop=MK,
10p(6/33=2)) to obtain electrostatic potential-derived charges based on the Merz—Singh—Kollman
scheme.!% The final RESP fitting was completed in the Antechamber using single conformers and
without constraints for the charge symmetry between symmetric atom groups. The GAFF1 pa-
rameters were used for all systems in HB375x10 and THB100x10. For PL-REX, the systems were
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built using standard parameters from the AMBER99SB-ILDN force field (FF) for the receptor
and the GAFF1 FF for the ligand.

Binding Energy Calculations and Analyses. The interaction energy was calculated as the
difference between the QM /MM energy for the whole complex and the sum of the QM and MM
energies for the isolated subsystems A and B, defined as

AEint = Equmm(A,B) — Equ(A) — Envu(B). (6.1)

Our calculations included ©wB97X-V/ma-def2-TZVPP?87  DFTB!20:122.288 = GAFF, and both
QM/MM partitionings. For PL-REX, ©»B97X-V/ma-def2-TZVPP calculations were excluded
due to convergence difficulties in the self-consistent field (SCF) calculations. The partitioning
into the QM and MM regions always kept all molecules whole, therefore avoiding the need for
the QM-MM boundary to cross any covalent bonds. In HB375x10 and IHB100x10, the first com-
pound (left) interacts as an H-donor and the second compound (right) interacts as an H-acceptor.
Accordingly, the system “QM/MM?” incorporates the H-donor in its QM region, while the system
“MM/QM” incorporates the H-acceptor in its QM region. In PL-REX, the receptor or ligand
was included as a QM region. The third-order DFTB calculations used the 30B'?3126 parameter
set and a Fermi temperature of 300 K. To improve the description of noncovalent interactions,
y-damping hydrogen bond correction (exponent ¢ = 4.0)'23 and D3 dispersion correction with
Becke-Johnson (BJ) damping (sg = 3.209, a; = 0.746, and as = 4.191)126 were applied. The cal-
culations on the pairwise models did not include the three-body term in D3(BJ) as its effects had
been shown to be negligible in small complexes, although they become increasingly important
in larger ones.?®” For that reason, we included the three-body contribution in the large PL-REX
complexes, and also compared the results to those obtained without the three-body contribution.
The electrostatic interactions were calculated without a cutoff. All calculations were performed
as single-point evaluations using our local implementation of QM/MM in GROMACS 2020.22%°
and DFTB+,?! which is available from a public repository.?92:29 We additionally tested DFTB-
CPE/GAFF models using a local implementation of the chemical-potential equalization model
(DFTB-CPE).?* 297 These calculations used the parameterization by Vuong et al.''® Calculations
employing ©B97X-V /ma-def2-TZVPP were performed using our local QM /MM implementation
in GROMACS 2020.2 interfaced with ORCA 5.0.3.2%

Reference calculations for CT were performed at the PBE-D3(BJ)/def2-SVP, PBE-D3(BJ)/ma-
def2-TZVPP, and wB97X-V /ma-def2-TZVPP levels of theory. The extent of CT was determined
by calculating the net change in total monomer charge upon complex formation. Specifically,
the atomic charges of each monomer were summed once in the isolated (vacuum) state and once
from the QM calculation of the complex; the difference between these two totals defines the
amount of CT. Mulliken charges were used for DFTB calculations, while natural bond orbital
(NBO) charges were used for all other methods. The latter calculations were carried out using
GROMACS 2020.2, interfaced with ORCA 5.0.3, which was patched with NBO62%?. To generate

reference values for monomer polarization, we employed the same levels of theory used for CT
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analysis. For DFTB calculations, dipole moments were computed from Mulliken charges after
centering each monomer at its center of mass (COM). For all other methods, dipole moments
were derived directly from the electron density, also centered at the COM. Dipole moments were
calculated for both isolated monomers in vacuum and monomers embedded within their MM
environment at fgscaling = 1.0. All analyses used the following reference data: CCSD(T)/CBS
values from the HB375x10 and IHB100x10 datasets and »B97X-D3(BJ)/DZVP results from the
PL-REX dataset. The metrics used to evaluate model performance are detailed in Section A. We
evaluated the accuracy using the root mean squared error (RMSE) and assessed systematic error
using the mean signed error (MSE). To make possible an unbiased comparison between strong
and weak hydrogen bond (H-bond) interaction types, we also compared the error normalized by
the mean interaction strength.

6.3. Results and Discussion

Our assessment of interaction energies in hydrogen-bonded complexes is based on pairwise mod-
els of noncovalent dimer complexes provided in the HB375x10 and THB100x10 datasets, as well
as microenvironment models obtained from the PL-REX dataset. For each complex, we report
interaction energies for the QM /MM and MM/QM models, corresponding to swapped QM and
MM regions, in addition to the interaction energies for the MM and QM models. Our calculations
used either the GAFF (small compound/ligand) or the AMBER99SB-ILDN (receptor) FF for the
MM region. The QM region was treated using either DFTB or ®B97X-V. The calculated interac-
tion energies were compared to the CCSD(T)/CBS reference from the HB375x10 and IHB100x10
datasets and the wB97X-D3(BJ)/DZVP reference from the PL-REX dataset. Additionally, we
also quantified charge transfer and monomer polarity within each complex to assess the models.
Computational protocols and modeling details are provided in the Methods section. The discus-
sion is organized in three parts. Section 6.3.1 examines trends across neutral and ionic hydrogen
bonds in the pairwise models and discusses implications for practical applications. Section 6.3.2
extends this analysis to microenvironment models, evaluating how environmental context influ-
ences QM/MM accuracy. Finally, Section 6.3.3 investigates the effect of scaling QM-MM elec-
trostatic interactions across all datasets. To clarify terminology, we define a “QM/MM model”
or “MM/QM model” as a specific partitioning of QM and MM regions (e.g., DFTB/GAFF or
GAFF/DFTB). In contrast, “QM /MM models” refers collectively to both partitionings of a given
pairing (e.g., ®BI7X-V/GAFF and GAFF/wB97X-V). It should be emphasized that, in the nota-
tion “QM/MM?” and “MM/QM” notation, the method (region) on the left is always associated
with the hydrogen-bond donor and the one on the right with the hydrogen-bond acceptor. Ac-
cordingly, “QM/MM?” has the H-donor in its QM region, while “MM/QM” has the H-acceptor
in its QM region. This notation is used consistently throughout the text, with the exception of

group 7 in HB375, which does not involve hydrogen bonding.
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6.3.1. Pairwise Models

Interaction energies were computed along the dissociation curves for the complexes included in the
HB375x10 and IHB100x10. For the analysis, we proceeded in two stages: (1) examining interaction
energies for structures at which each corresponding method exhibits a minimum of energy, and
the energies from the reference. These results are discussed below under “Equilibrium”. The
distributions of deviations from the reference equilibrium distances are shown in the App. Section
A. (2) Extending the analysis to the full dissociation curves for the combined dataset. The details
are given below under “Dissociation Energy Curves”.

6.3.1.1. Neutral Hydrogen Bonds

Equilibrium. For HB375x10, DFTB and GAFF exhibit comparable accuracy. As shown in
Figure 6.1, GAFF gives a slightly lower RMSE of 1.5 kcal /mol compared to 1.7 kcal /mol of DETB.
Although the RMSE is quite low, the accuracy in terms of relative error remains significant, at
approximately 30%. These errors stem from systematic underbinding, which is evident from
positive MSE values shown in Figure A.1. DFTB/GAFF models perform comparably to the

DFTB and GAFF references, with only moderate increases in error overall.

The introduction of the QM/MM interface contributes an additional error of up to 0.5 kcal/mol.
Transitioning from DFTB to the DFTB/GAFF and GAFF/DFTB models increases the RMSE
by ca. 0.1 kcal/mol and 0.5 kcal/mol, respectively. The accuracy of QM/MM models is remark-
able considering that the other SQM methods, such as PM6, exhibit significantly higher RMSE
of 2.99 kcal/mol, while GFN2-xTB shows a RMSE of 1.22 kcal/mol.2™ For ab initio methods
like SCS-MP2/CBS, the RMSE is 0.81 kcal/mol, and the RMSE of PBE-D3(BJ)/def2-QZVP is
0.49 kcal/mol. The increased error observed in the DFTB/GAFF models, relative to DFTB and
GAFF, can be rationalized by the fundamental differences in how polarity, CT, and dispersion
interactions are treated. First, while the DF'TB model accounts for CT across the entire system,
the QM /MM framework imposes a strict boundary at the QM-MM interface, excluding charge de-
localization between subsystems. Second, DFTB handles the dispersion interactions via the D3JB
correction, which is well established for accurately modeling nonbonded interactions, whereas the
QM/MM approach used here relies on Lennard-Jones parameters from the FF. In contrast to
DFTB, the GAFF model resembles QM /MM in that it similarly precludes CT and uses the same
Lennard-Jones implementation for dispersion. Finally, the key distinction between DFTB and
the DFTB/GAFF partitionings lies in the capabilities to treat the polarization of the individual
molecules and the CT between them.
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Figure 6.1.: RMSE (left) and RMSE/p (right) for AE;y; per method and H-bond type in HB375x10. DFTB and
»wB9I7X-V as QM, and GAFF as MM. CCSD(T)/CBS as reference

The lower errors reported for DFTB in some of the previous benchmarks originate from a
smaller emphasis on polar hydrogen bonds in those datasets and possibly also from the spe-
cific parametrization of the dispersion correction. For instance, DFTB-D3 yielded RMSE/MSE
values of 1.5/0.7 kcal/mol on the S22 dataset, and 1.1/0.4 kcal/mol on S66. The DFTB-D3H4
variant performed 0.1-0.3 kcal/mol better at the cost of reduced transferability.3? Unlike S66,
which includes systems with stronger dispersion contributions, HB375x10 focuses on directional
hydrogen bonds involving nitrogen and oxygen. Notably, DFTB has well-documented limitations
in describing noncovalent interactions due to its monopole approximation.3?11%:2% Tt does not
allow for out-of-plane polarization, and fails to capture the directionality and polarizability of
lone pairs perpendicular to the molecular plane. These deficiencies are particularly severe for
nitrogen-containing species and introduce a negative bias in benchmarks that include such sys-
tems in larger numbers. This difference, along with the fact that D3 is parametrized on S66x8,
likely explains the slightly higher errors observed for HB375.273 Passing to a better description of
electrostatics and polarization, multipole-extended DFTB was shown to reduce the RMSE to 1.07
kcal /mol for HB375.3%°. On the other hand, neither the choice of the dispersion correction nor
of the hydrogen correction influences the results for QM /MM interaction energies, as they only

apply to the QM zone.

To understand the connection between CT and electrostatic interactions with the errors, we an-
alyzed charge transfer as well as the magnitude of the DFTB point charges and compared them
to the GAFF point charges. The DFTB charge redistribution was validated by comparing the
intermolecular DFTB CT to the results obtained via natural bond orbital (NBO) analysis using
»BI7X-V /ma-def2-TZVPP. As shown in the left panel of Figure 6.2, the amount of intermolecular
CT is small, and there is no discernible correlation between the degree of CT and the error between
both DFTB/GAFF models and the DFTB reference in the HB375 dataset. The results, provided
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in Figure A.6, confirm that DFTB closely reproduces the amount of CT compared to the ®B97X-V
reference. The comparable performance between DFTB and the DETB/GAFF models, as well as
GAFF, can be attributed to the subordinate role of CT in the interaction. Considering the polar-
ity or the magnitude of the point charges, Figure 6.2 (right) shows an observed strong correlation
between the DF'TB charges and the GAFF charges, but generally smaller DFTB charges compared
to the magnitude of the GAFF charges. This difference in charge distribution can be attributed to
the different charge models employed: DFTB utilizes Mulliken charges derived from minimal basis
sets, which leads to a systematic underestimation of electrostatic interactions in hydrogen bonds.
In contrast, GAFF uses RESP charges obtained from the HF method, which, by design, have
greater polarity.!%0 The stronger polarity of GAFF’s charges enhances electrostatic interactions
and binding energies in GAFF for HB375. Employing a more advanced charge model, such as
CM3,%01 could improve the description of electrostatic interactions. This advancement would be
beneficial to explore in the future development of DFTB/MM.
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Figure 6.2.: Correlation between the amount of CT and the error of QM/MM to DFTB in HB375 (left). Cor-
relation between the atom charges of GAFF (RESP) and the atom charges of DFTB (Mulliken) in
HB375 (right).

Hydrogen bonding is sensitive to the charge model, as observed by replacing GAFF’s more polar
charges with less polar DFTB charges, which weakens the binding and increases RMSE values.
This highlights the need to investigate how DFTB accounts for the polarity of the compounds. In
principle, the accuracy of the QM /MM energies depends on both monomer polarity and their po-
larization response. To evaluate both aspects, we compared vacuum dipole moments from DFTB
with ©wB97X-V references and assessed the polarization response by subtracting the vacuum dipole
from the dipole of the monomer in the complex in both DFTB/GAFF models. For the results, each
group of four candlesticks in Figure 6.3 displays vacuum dipoles (first two) and polarization re-
sponses (last two) for each bond type. Vacuum dipoles exhibit slightly positive median deviations
across many H-bond types, with a noticeable spread extending into negative values. Underesti-
mated polarity was found for nitrogen acceptors and dispersion-dominated (noHB) systems, both
of which show negative median deviations. In contrast, polarization responses are consistently
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underestimated, as indicated by candlesticks falling below the zero line. Due to its semiempirical
nature, DFTB is prone to underestimating both monomer polarity and polarization effects. How-
ever, our analysis indicates that the underestimation is particularly pronounced for polarization
effects, especially in systems involving nitrogen H-bond acceptors, which had already drawn atten-
tion in Figure 6.1 due to elevated errors in the GAFF/DFTB model. This is further supported by
additional calculations using PBE-D3(BJ)/def2-SVP and PBE-D3(BJ)/ma-def2-TZVPP, which
show a gradual improvement in agreement with the wB97X-V reference, particularly in capturing
polarization effects, see SI Figures A.2, A.3 and A.4.

Au H-donor Au dipole H-acceptor mmm AAu H-donor AAu H-acceptor

O O > > O

H-bond types

Figure 6.3.: The box plot displays the dipole differences, denoted as Ay, between monomers in vacuum calculated
using DFTB and «wB97X-V. Additionally, it shows AApu, which represents the differences in polar-
ization response of the monomers in the QM regions of the DFTB/GAFF models relative to their
polarization response in the ®B97X-V/GAFF models. Dipoles (first two) and polarization responses
(last two) of each group of four candlesticks per bond type in HB375. Negative values indicate un-
derestimation in DFTB. The polarization response was calculated as difference between the dipole

of the monomer in vacuum and in the complex pedponse = Peomplex. — Hvacuum -

We further assessed the performance of the ®@B97X-V/GAFF models as a hybrid electron density /-
point charge model to determine the extent to which the QM—-MM interface may limit accuracy,
even when a high-level QM method is employed. Applied to ®B97X-V/GAFF and GAFF/»B97X-
V, it reduces the MSE to 0.2 and 0.0 kcal/mol, respectively, as shown in Figure A.1, and lowers
the RMSE to 1.2 and 0.7 kcal/mol, respectively, as shown in Figure 6.1. Slightly negative MSEs
are now observed in bond types OH- - - O, NH- - - O, and NH - - - N. Overall, ®B97X-V still
gives very accurate results when combined with GAFF. The elevated errors for nitrogen acceptors
in GAFF/DFTB are not observed in the GAFF/wB97X-V model, indicating improved polariza-
tion in this model. Smaller improvements in ®B97X-V/GAFF highlight error contributions from
the GAFF. Exploring the use of a polarizable FF may offer a potential solution to address these
limitations, especially for the nitrogen H-bond acceptors in GAFF.
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Dissociation Energy Curves. We extended the analysis beyond equilibrium points using the
HB375x10 dataset. The resulting RMSEs and MSEs are shown in the upper panels of Figure 6.4
and Figure A.12. In the region around the scaling factor of 1.0, both methods show comparable
accuracy; however, DF'TB performs increasingly better at shorter distances, whereas GAFF shows
a slight advantage at larger distances. This behavior is consistent with the inherent capacity of
DFTB to adapt its charges in response to the local environment through polarization, thereby
offering a more accurate description of short-range interactions. A similar plot for the MSE values
is provided in the App. SectionA.

Similarly, the differences in polarizability and polarity govern the performance gap between DFT-
B/GAFF and GAFF/DFTB, with polarizability playing a dominant role at short distances and
polarity becoming more relevant at longer separations. This can be rationalized by the properties
of the monomers involved in complexes with nitrogen H-bond acceptors shown in Figure 6.3. In
these cases, H-donors have higher polarity and higher polarizability than the H-acceptors, show-
ing that the QM region in GAFF/DFTB is less polar and less polarizable than in DEFTB/GAFF.
(Recall the notation: the monomer on the left is the H-bond donor, and the one on the right is the
H-bond acceptor). As shown in Figure 6.4 (panels A and B), DFTB/GAFF, with greater dipoles
in the QM zone, yields lower RMSE than GAFF/DFTB at larger distances, falling between DFTB
and GAFF. The DFTB/GAFF model shows the highest RMSE among all models for distances
smaller than 1.1, whereas GAFF/DFTB already for distances below 1.25, indicated by the shaded
regions in panels A and B. For GAFF/DFTB, this region is broader, reflecting the influence of a
less polarizable QM zone, most notably nitrogen H-acceptors (yellow candlesticks). This limitation
is further evident when comparing the QM /MM models constructed with ©B97X-V and DFTB.
As shown by the blue curves in panels C and D, the RMSE difference of these models displays
a distinct maximum between fgscaling 1.1 and 1.2, highlighting the benefit of improved polariza-
tion in the QM region provided by ©wB97X-V. This effect is less pronounced for DFTB/GAFF,
where the more polarizable QM zone reduces the error compared to the DFTB and the GAFF
calculation. Gray shading in panels A and B highlights areas in which the DFTB/GAFF models
introduce an additional error compared to the DFTB and GAFF calculations, and apparently this
additional error is smaller for DFTB/GAFF than for GAFF/DFTB.
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Figure 6.4.: RMSE along the entire dissociation curves in HB375x10. Results are shown for both partitioning
schemes: QM/GAFF (left) and GAFF/QM (right), using CCSD(T)/CBS as the reference. QM/MM
treats the H-bond donor (monomer 1 in blue) at the QM level and the H-bond acceptor (monomer

2 in orange) at the MM level. MM/QM reverses this agsignment,
The upper row shows RMSEs between the respective QM or QM /MM methods and the

reference. Gray-shaded regions indicate areas where the DFTB/GAFF models introduce
additional error compared to the DFTB and GAFF calculations. The panels in the lower row
display RMSEs for the differences between the curves shown in the upper row. For visual clarity,
the y-axis is limited to 3.5 kcal/mol; the full range for the RMSE and the MSE is shown in
Figures A.15 and A.16.

Comparing the QM /MM results obtained with ©wB97X-V and DFTB helps to understand the lim-
itations of QM /MM models. The accuracies of ®@B97X-V/GAFF and DFTB/GAFF are compara-
ble, whereas the performance gap between GAFF/wB97X-V and GAFF/DFTB is more evident,
as illustrated by the red and black curves in panels A and B. Consistently, the RMSE difference
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between ®B97X-V and ©B97X-V/GAFF, shown by the black curve in Figure 6.4C, increases im-
mediately with decreasing distance. In contrast, the corresponding error for GAFF/wB97X-V in
panel D remains small until fyscaling = 1.1. These results indicate that the treatment of the H-bond
acceptor requires particular attention in QM /MM models. The difference between DFTB/GAFF
and wB97X-V/GAFF, shown by the blue curve in panel C, arises from two factors; (1) a better
performance of DFTB/GAFF due to a better description of the H-bond donor in DFTB than
for the H-bond acceptor, and (2) a poorer performance of ®BI7X-V/GAFF caused by the GAFF
description of the H-bond acceptor (Recall the notation: the monomer on the left is the H-bond
donor, and the one on the right is the H-bond acceptor). Conversely, the performance gap is larger
between the GAFF/QM models, as shown by the blue curve in panel D, which reflects the insuf-
ficient description of H-bond acceptors in DFTB. At shorter distances, however, all QM /GAFF
models display comparable performance, as evidenced by the similarly rising black and red curves
and the gently sloping blue curves in panels C and D of Figure 6.4. This trend underscores the
limitations imposed by the QM-MM interface, which persist even when higher-level QM methods
are employed.

6.3.1.2. lonic Hydrogen Bonds

Equilibrium. For biological systems, one central question is how the presence of net charges leads
to qualitative differences in the performance of methods compared to neutral complexes. This
is of high practical relevance, as biomolecules such as DNA, RNA, and proteins carry significant
charges essential to their function. For that reason, we included the structures from the IHB100x10
dataset, composed of various ionic hydrogen bonds; the resulting RMSEs and MSEs are shown
in Figure 6.5 and Figure A.7. Overall, DF'TB describes ionic H-bonds quite well with an RMSE
of 3.96 kcal/mol, corresponding to an RMSE/u of 20%. While the RMSE is significantly larger
compared to its RMSE for the neutral hydrogen bonds, the relative error is smaller than that
of the neutral hydrogen bonds, which is ca. 30%. The method outperforms PM6, which showed
5.21 kcal /mol, and is comparable to GFN2-xTB with 3.34 kcal /mol.2"® Higher-level methods were
reported to show significantly lower RMSEs, with MP2/CBS at 0.45 kcal/mol and DSD-BLYP-
D3 at around 1.3 kcal/mol. Our calculations show ©wB97X-V further improved accuracy with an
RMSE of 0.38 kcal/mol. Unlike the case of HB375x10, IHB100x10 reveals a clearer performance
gap between the QM and QM /MM results. Transitioning from DFTB to DFTB/GAFF increases
the RMSE by 2.75 kcal/mol, while transitioning from wB97X-V to ®B97X-V/GAFF increases by
5.62 kcal/mol. The RMSEs for the wB97X-V/GAFF models lie between 5.0 and 6.0 kcal/mol,
higher than those of DFTB and close to the DFTB/GAFF models with around 6.7 kcal/mol.
This contrasts with the case of HB375x10, where ©B97X-V/GAFF models outperform DFTB,
DFTB/GAFF, GAFF/DFTB, and GAFF. The calculation showed that GAFF is comparable to
that of all QM/GAFF models tested, with the RMSE of 7.35 kcal/mol. We found that DFTB
systematically overestimates anionic interactions involving CH H-bond donors or OH - - - O™ H-

bonds. (Recall the notation: the monomer on the left is the H-bond donor, and the one on the right
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is the H-bond acceptor). This tendency is even more pronounced for «B97X-V/GAFF, as shown
in Figure A.7. As shown below in Section 6.3.2 (PL-REX dataset), in protein environments, this
overestimation becomes notable in regions rich in anions, such as the carboxylate group, forming
multiple anionic H-bonds.

Our calculations showed that the capability to describe CT significantly enhances the accuracy of
DFTB relative to GAFF and the DFTB/GAFF models. This is evidenced by the notably lower
RMSE of ca. 4.0 kcal/mol for DFTB compared to values near 7.0 kcal/mol for the alternative
DFTB/GAFF models, as shown in Figure 6.5. A similar trend is reflected in the MSE, where
DFTB achieves 1.7 kcal /mol, while the other methods exhibit MSEs ranging from 5 to 6 kcal /mol,
see Figure A.7. The better performance of DFTB is further supported by a stronger correlation
between the magnitude of CT and model error in both DFTB and GAFF, as illustrated in Figure
6.6 (right). Again, reference calculations for CT within each complex via natural bond orbital
(NBO) analysis using «B97X-V /ma-def2-TZVPP validated the results obtained with DF'TB. The
results, provided in the Figure A.8, confirm that DFTB closely reproduces the amount of CT
compared to the wB97X-V reference.
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Figure 6.5.: RMSE (left) and RMSE/u (right) for AE;y,; per method and H-bond type in IHB100x10. DFTB
and wBI7X-V as QM, and GAFF as MM. CCSD(T)/CBS as reference

Comparison between the methods that do not include CT moves the focus to the charge model.
In HB375x10, slightly higher RMSE and MSE values are observed for the DEFTB/GAFF models,
which potentially relate to less polar DFTB charges compared to the GAFF charges (Figure
6.2, left). In IHB100x10, the trend subtly shifts, with the QM /MM models showing marginally
smaller error than GAFF (Figure 6.5). This shift is consistent with a reduced polarity difference
for charged species: linear fits of DF'TB versus GAFF charges yield slopes of 1.21 in HB375x10
and 1.09 in IHB100x10 (Figure 6.6, left), and even decrease to 1.03 for charged systems only.
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Figure 6.6.: Correlation between the amount of CT and the error of QM/MM to DFTB in THB100 (left). Cor-
relation between the atom charges of GAFF (RESP) and the atom charges of DFTB (Mulliken) in

IHB100 (right).

Similar to our analysis for HB375, we examined vacuum dipoles and polarization responses for
each bond type in IHB100, using ®B97X-V as the reference. (Recall the notation: the monomer on
the left is the H-bond donor, and the one on the right is the H-bond acceptor). Each group of four
candlesticks in Figure 6.7 displays the vacuum dipoles (first two) and polarization responses (last
two) for the respective monomers. In contrast to HB375, IHB100 shows overestimated vacuum
dipoles for anionic H-bond acceptors. Moreover, the strongest underestimations in polarization
response are observed for H-bond acceptors interacting with cationic H-bond donors, most notably
in the NHT - - - O and NH" - - - N interactions. The polarizability of cations is described fairly
well. Vacuum dipoles and polarization responses can be improved by using PBE-D3(BJ)/def2-SVP
and PBE-D3(BJ)/ma-def2-TZVPP, which show gradually improved agreement with the ®B97X-V
reference (Figures A.9-A.11). Note that the bond types involving nitrogen and carbon anions, in
fact, contain a single H-acceptor, the cyanide ion interacting with several different H-donors. The
cyanide species is a notoriously difficult case for DF'TB as well as SQM in general, for instance,
systematically overestimating the vacuum dipole. Therefore, the apparent poor performance for
these bond types merely reflects this specific problem, and shall not be generalized to more diverse

chemical environments.
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Figure 6.7.: The box plot displays the dipole differences, denoted as Ay, between monomers in vacuum calculated
using DFTB and «wB97X-V. Additionally, it shows AApu, which represents the differences in polar-
ization response of the monomers in the QM regions of the DFTB/GAFF models relative to their
polarization response in the ®B97X-V/GAFF models. Dipoles (first two) and polarization responses
(last two) of each group of four candlesticks per bond type in IHB100. Negative values indicate
underestimation in DFTB. The polarization response was calculated as difference between the dipole

of the monomer in vacuum and in the complex firedponse’ = Heomplex — Mvacuum -

The ©B97X-V/GAFF models provide only modest improvements over GAFF in the IHB100x10
set, in contrast to the more substantial improvements observed for HB375x10. While the enhance-
ment in accuracy arises from improved electrostatic interactions, the model does not account for
missing CT, which limits its performance in IHB100x10. The RMSE for all tested QM /MM models
falls between the two wB97X-V/GAFF models at ca. 5.5 kcal/mol and the highest at 7.4 kcal/mol
for GAFF. A more notable reduction is observed in MSE (Figure A.7), which decreases from 6.0
kcal/mol in GAFF to 1.7 and 3.2 kcal/mol in the wB97X-V/GAFF models. ©B97X-V/GAFF
shows overestimated interactions in the OH- - - O™ and NH - - - O™ bond types, with MSE of
—3.2 and —3.7 kcal/mol, respectively (Figure A.7). (Recall the notation: the monomer on the left
is the H-bond donor, and the one on the right is the H-bond acceptor). In these systems, the QM
region includes the H-donor surrounded by the MM charges of the O~ H-bond acceptor. Notably,
this overestimation is absent in calculations using GAFF and ©B97X-V (see App., Figure A.7).
»wBI7X-V exhibits stronger electrostatics than DFTB (Figures A.9-A.11), which may increase its
susceptibility to being influenced by adjacent point charges in the MM region.
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Figure 6.8.: RMSE along the entire dissociation curves in ITHB100x10. Results are shown for both partitioning
schemes: QM/GAFF (left) and GAFF/QM (right), using CCSD(T)/CBS as the reference. QM/MM
treats the H-bond donor (monomer 1 in blue) at the QM level and the H-bond acceptor (monomer 2 in
orange) at the MM level. MM/QM reverses this assignment. The upper row shows RMSEs between
the respective QM (QM/MM) methods and the reference. The lower row shows the differences
between the curve in the upper row. For visual clarity, the vertical axis is limited to 15 kcal/mol;
the full range for the RMSE and the MSE is shown in Figures A.21 and A.22.

Dissociation Energy Curves. We extended the analysis beyond the equilibrium structures by
using the IHB100x10 dataset. The resulting RMSEs and MSEs are shown in the panels A-B of
Figure 6.8 and Figure A.18. Additionally, we monitored the differences in these measures between
pairs of models, which are shown in panels C-D. At fyscaling = 1.0, both QM models exhibit RMSE
values comparable to those reported at equilibrium points (Figure 6.5). All QM/GAFF models
show RMSEs in the range of 22-24 kcal/mol at fgscaling = 1.0. As shown by the red and black
lines in the lower panels, both DFTB/GAFF and ©B97X-V/GAFF models exhibit a comparable
increase in RMSE relative to the corresponding QM models. In contrast, the RMSE difference
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between the DFTB/GAFF and wB97X-V models, shown as the blue line in the lower panel,
remains below 2 kcal/mol over the entire range of distances, which is especially remarkable at
short distances where both RMSE are in the order of 100s kcal/mol. Interestingly, this difference
closely follows the RMSE difference between vB97X-V and DFTB, shown as the orange line in
panels C-D. (Note that the blue curve is a small difference of two large values, which thus carries
a considerable statistical uncertainty, and so merely a qualitative agreement with the orange curve
is sought.) This suggests that the QM /MM models featuring both QM methods carry an error
due the presence of the QM—MM boundary, which is of a very similar magnitude. Further, they
appear to especially underperform at shorter distances. Any inaccuracy caused by the QM method
of choice, such as when passing from ©B97X-V/GAFF to DFTB/GAFF, is very minor compared
to the error due to the QM-MM interface.

The extremely large average error of the QM /MM methods observed at short distances can be
attributed to the lack of CT and limited polarization, or using inappropriate Lennard-Jones (LJ)
potential parameters for (typically short) ionic hydrogen bonds. To identify the source of the error,
we decomposed the interaction energies yielded by the QM/MM models into the contributions
from the LJ potential and all other interactions, and analyzed their respective contributions to the
RMSE. The results shown in Figure A.19 reveal that at short distances, the LJ potential dominates
the RMSE of all QM /MM models entirely. An extended analysis in the App. Section A provides
more details including the identification of the complexes in which this failure occurs to the largest
extent. This illustrates how the employed LJ parameters, developed typically for interactions of
electro-neutral molecules, are inappropriate for short ionic hydrogen bonds. It appears that it
might be beneficial to reoptimize the LJ parameters for the description of ionic H-bonds here.

The similarity between the DFTB/GAFF models and ©wB97X-V/GAFF models in IHB100x10
highlights the reduced role of polarization and the increased relevance of the missing CT. In
HB375x10, weak polarizability of individual monomers leads to increased error for the DFTB/-
GAFF calculations relative to DFTB and GAFF starting at distances fqscaling < 1.1 and 1.25,
respectively, see Figure 6.4 A-B. This feature is absent in IHB100x10; instead, both QM/MM
models display elevated RMSEs at short distances relative to their QM counterparts starting at
dscaling = 1.25, suggesting a dominant error contribution from missing charge transfer. Supporting
this, the RMSE difference between the DFTB/MM models and »B97X-V/MM models remains
nearly constant at 2.0 kcal/mol in ITHB100x10 (Figure 6.8 C-D, blue curves), whereas a gradual

increase in error was observed at shorter distances in HB375x10 (Figure 6.4).
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6.3.2. Microenvironment Models

Some features of NCI cannot be captured in datasets consisting of isolated dimers, such as
those discussed above. In particular, such pairwise models cannot cover any solvent, cooper-

302 Ty explore this in

ative, and many-body effects that are prevalent in the condensed phase.
the context of our study, we considered a subset of six receptor-ligand complexes from the PL-
REX dataset, which comprises truncated active sites from several different proteins with ligand
molecules bound.?®0 Our computations include FF calculations with AMBER and GAFF, QM
calculations with DFTB, as well as both possible DETB/MM partitionings (“AMBER/DFTB” -
receptor is MM region, ligand is QM region; “DFTB/GAFF” — receptor is QM region, ligand is
MM region).For DFTB, the D3(BJ) dispersion correction was considered either with or without
the three-body term to assess the significance of many-body dispersion interactions in the con-
densed phase. This section does not include any new wB97X-V or ®B97X-V/MM data, because
of SCF convergence failures observed in pilot calculations. Instead, the interaction energies taken
from the PL-REX paper, which were obtained on the level ®B97X-D3(BJ)/DZVP, are considered
as reference. Interaction energies are reported for individual ligands per system, and the results
are exemplified in Figure 6.9 for system 5. In addition, Table 6.1 summarizes the RMSE and MSE
values for the interaction energies across all systems.

The overall RMSE values of all models range from 4 to 7 kcal/mol, corresponding to a maximum
relative error of 7.4%. DFTB exhibits an RMSE of 7.3 kcal/mol, which is larger than those of all
other models: 5.7, 3.8, and 5.8 kcal/mol for AMBER/GAFF, DFTB/GAFF, and AMBER/DFTB,
respectively. Particularly for systems 2 and 5, DFTB yields RMSEs ca. 4 kcal/mol higher than
those of AMBER/GAFF. For comparison, DFTB exhibited RMSE of 1.7 kcal /mol with a relative
error of 30% on the HB375x10 dataset and 4.0 kcal/mol with a 20% error on THB100x10. This
indicates that certain interactions in these systems may not be accurately described by DFTB.
Additionally, DF'TB is the only method that systematically predicts stronger interactions than
the reference, with an overall MSE of —4.5 kcal/mol. This behavior contrasts with the results
obtained from pairwise models, which predominantly underestimate interaction energies. Many-
body dispersion interactions become more relevant in the condensed phase. Consistent with
this trend, including the three-body term of the D3(BJ) correction in DFTB reduces systematic
overbinding across all systems, lowering the MSE from —4.5 to —1.8 kcal/mol and the RMSE
from 7.3 to 5.9 kcal/mol.
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Figure 6.9.: Interaction energies for individual ligands in system 05-Cath-D (human cathepsin D) from the PL-
REX dataset. The receptor charge is —2 and the charge for all ligands is 0. AAFj,; values were
computed as the difference between the binding energy AFEj,: obtained from each method and the
corresponding wB97X-D3(BJ) reference from PL-REX. The reference interaction energies vary from
—150 to —113 kcal/mol. The DFTB calculations involve the three-body contribution to the D3(BJ)
correction.

A word of caution is warranted regarding the use of the PL-REX in our study. The structures in
PL-REX are derived from protein environments; the data exhibit greater heterogeneity and less
systematic variation compared to the data from NCIA. For example, ligands bound to the same
receptor can carry different net charges, including both neutral and charged species within a single
set. Even among neutral ligands, differences in binding pose can lead to substantial variations in
electrostatic contributions, and the QM /MM partitioning may cross multiple hydrogen bridges.
These factors limit the generalization of trends due to the non-systematic selection of systems.

Nonetheless, the results enable evaluation of model performance.

As it turns out, the individual complexes in the PL-REX dataset do in fact differ in the amount of
hydrogen bonding, as reflected by the mean numbers of hydrogen bonding contacts that are shown
in Table A.8. There are two distinct groups of systems in the PL-REX dataset: The first group
(consisting of systems 2, 5, and 6) is characterized by, on average, eight hydrogen bond donors and
acceptors. Notably, these complexes consistently exhibit a systematic overestimation of interaction
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Table 6.1.: Summary of interaction energies compared to @B97X-D3(BJ)/DZVP for all microenvironment models.

System 2 3 5 6 7 9 All
RMSE (kcal/mol) DFTB“ 9.54 8.31 7.15 10.09 2.97 3.29 7.29
DFTB® 6.52 7.00 5.00 7.18 4.72 4.65 5.90
AMBER/GAFF 5.63 6.77 3.25 7.79 3.51 5.00 5.65
DFTB/GAFF  3.40 537 231 3.52 3.87 3.44 3.76
AMBER/DFTB 3.92 641 2.11 7.23 4.34 6.85 5.76
MSE (kcal/mol) DFTB“ -8.87 -6.96 -6.86 -9.32 1.69 0.88 -4.46
DFTB® -5.58 -5.20 -4.54 -6.15 4.03 3.47 -1.83
AMBER/GAFF 4.23 4.58 2.95 4.32 -1.90 0.96 2.54
DFTB/GAFF  0.79 3.90 -1.54 -1.47 -1.34 -0.82 -0.01
AMBER/DFTB -1.26 4.47 0.30 -4.08 2.02 5.38 1.61
RMSE/u (%) DFTB* 6.2 16.0 5.3 154 3.1 3.7 7.4
DFTB? 42 135 3.7 11.0 49 5.2 6.0
AMBER/GAFF 3.6 13.1 24 11.9 3.6 5.6 5.7
DFTB/GAFF 22 104 1.7 54 40 3.9 3.8
AMBER/DFTB 25 124 1.5 11.0 45 7.7 5.9

@ Using D3(BJ) without three-body contribution. * Using D3(BJ) with three-body contribution.

(negative MSEs) by DETB, resulting in the highest RMSE. By contrast, the second group (systems
3, 7, and 9) only has a mean number of hydrogen bond donors and acceptors of three. Within
this group, systems 7 and 9 exhibit the lowest RMSE for DFTB among all interaction models and
positive MSEs. The fact that System 3 deviates from this trend — by DFTB showing the highest
RMSE within the group — is likely due to the presence of several halogen bonds, which constitute
a known limitation in DFTB and other SQM.32 This observation prompted a closer analysis of
ionic hydrogen bonds relevant to protein systems. Two types proved most informative, as shown
in the previous analysis, see Figure A.7: (1) CH or OH donors binding to Asp/Glu carboxylates,
which tend to cause overestimation, and (2) NH donors binding to Asp/Glu carboxylates or O/N
acceptors binding to Lys/Arg ammonium groups, which lead to underestimation. Our analysis
reveals that the overestimation of DF'TB is correlated with the occurrence of the first bond type,
see Table A.8. While the second type of H-bond contributes to the underestimation of DFTB.
These trends explain the opposing signs of DFTB MSEs for systems 2, 5, and 6 compared to
systems 7 and 9. The DFTB/MM, on the other hand, mitigates the overestimation resulting from
error cancellation caused by adding an underestimation introduced by the QM /MM interface as
discussed above.

For the DFTB/MM models, a crucial feature is that both partitionings employ identical van der
Waals parameters. Consequently, any observed differences in Ej,; between the two partitionings
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for a given system arise exclusively from differences in electrostatic interactions, which are governed
by the charge distributions in the MM region and the polarity as well as the polarizability of the
QM region. Differences in charge distribution can emerge from differences in GAFF, AMBER, and
DFTB-derived charges, as well as the net charge assigned to the compounds. For example, System
6, which has the largest charges in the dataset, has charges of 45 for the receptor and +1 for the
ligand. Here, the two DFTB/GAFF partitionings exhibit the largest RMSE difference, amounting
to 3.7 kcal/mol. The decomposition of interaction energy reveals that electrostatic interactions
are weakly attractive, contributing ca. 3 to 6 kcal/mol, while van der Waals interaction dominates
the interaction profile, see Table A.8. Given the extreme charge conditions, it is plausible that this

system is more prone to generating variations in charge distributions between the partitionings.

The lower RMSE observed for the DFTB/GAFF models compared to the MM and DFTB calcu-
lations may result from error compensation between subsystems. DF'TB calculations overestimate
the interaction energy while AMBER/GAFF underestimates it on average, as indicated by the
opposite signs of the corresponding MSE values. DFTB/MM calculations with both partitionings
yield results that are closer to the target on average, and this is accompanied by a smaller RMSE.
We evaluated CT on the level of DFTB, which turned out to not deviate from the higher-level
reference (Section 6.3.1). For PL-REX, no significant correlation was found between the extent of
charge transfer.

6.3.3. Scaling of the QM-MM Electronic Interaction

Our analysis highlighted the importance of accurate electrostatic components, indicated by errors
introduced by CT and polarization. The “quick and dirty” way to influence the magnitude of the
electrostatic interactions is to scale the entire interaction by means of a factor A introduced in
Equation 2.34. The effect of this scaling is proportional to electrostatic interactions in the system,
as shown in Figure A.35. In fact, approaches based on scaling electrostatics were previously
introduced to mitigate various problems in both purely classical and QM /MM simulations. (i)
One is the missing electronic polarizability of the MM surroundings of charged particles, which
can be compensated for by scaling the charges of the ions by the inverse square root of the optical

dielectric constant of the medium.3%33% (ii)

Another is the over-polarization or artificial charge
transfer near the QM /MM boundary, especially for charged QM regions, brought about by the
nearby MM charges. Some previous solutions relied on special treatments in the QM region,
such as a method developed to describe phosphate chemistry with DFTB.14! Still, the general

underlying idea is to reduce the strength of the QM—-MM interactions.

We applied scaling factors A ranging from 0.80 to 1.80. The effects of scaling on the dissoci-
ation curve in HB375x10 and THB100x10 are shown in the Section A of the App. Applying a
charge scaling factor of 1.30 can improve the RMSE by ca. 0.5 and 2.0 kcal/mol for HB375x10
and THB100x10, respectively. The subset of best performing scaling factors lies in the range of
A =1.25—-1.40. The order may vary slightly along the full curves, as shown in Section A of
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the App. Table 6.2 summarizes the effects of scaling on equilibrium energies, while the effects
on individual H-bond types in HB375x10 and THB100x10 are shown in Figures A.33 and A.34,
respectively. Overbinding appears in certain bond types of both DFTB/GAFF models, despite
being completely absent in the unscaled cases. At equilibrium energies, scaling up the QM-MM
electronic interaction can reduce the RMSE of DFTB/GAFF or GAFF/DFTB by 0.36-0.5 kcal/-
mol and 0.78-1.39 kcal/mol for the HB375x10 and IHB100x10 datasets, respectively. Nevertheless,
scaling the interaction applied to the ®B97X-V/GAFF models did not improve RMSE or MSE
for HB375x10 and THB100x10 (Table A.9-A.12). This suggests that scaling is only effective for
models with systematic underestimation or overestimation, particularly in terms of polarity and
polarization. The lack of improvement indicates a potential limit to the benefits of scaling when
applied to an already well-polarized model. As the QM/MM interface does not allow CT, these
models clearly require correction for CT effects for further improvements.

Table 6.2.: Subset of MM charge scaling factors A that optimize RMSE and MSE in HB375x10 and THB100x10.

A RMSE, kcal/mol RMSE, relative (%) MSE, kcal/mol MSE, relative (%)

HB375x10
DFTB
1.70 24.83 1.16 18.85
DFTB/GAFF
1.00 1.78 29.27 1.40 25.54
1.25 1.28 21.85 0.42 10.63
1.30 1.33 21.73 0.22 7.48
GAFF/DFTB
1.00 2.14 30.84 1.41 24.19
1.25 1.78 26.49 0.46 9.33
1.30 1.81 26.91 0.26 6.15
THB100x10
DFTB
3.98 24.96 1.71 6.32
DFTB/GAFF
1.00 6.72 33.98 5.35 30.11
1.20 5.81 23.66 1.54 10.18
1.25 5.94 22.36 0.36 413
GAFF/DFTB
1.00 6.70 39.93 5.18 31.28
1.20 5.31 34.69 1.78 14.89
1.25 5.41 34.78 0.85 10.48
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Finally, it turned out impossible to identify an optimal range of A values for the scaling of QM-
MM interactions in the PL-REX subset. As shown in Table 6.3, the optimal scaling factors for
the individual systems were generally lower, and there were even several systems for which the
unscaled calculations (A = 1) performed the best. This is consistent with our findings for the
»wBI97X-V/GAFF models for the pairwise models. Here, we demonstrated no benefit from charge
scaling, which we attributed to the model’s more accurate electrostatics. A similar explanation
may apply here; the improved polarization in the cluster models has probably diminished the need
for scaling. These results caution against transferring A values optimized for pairwise models to

condensed-phase systems.

Table 6.3.: QM-MM electronic interaction scaling applied to PL-REX subset. RMSE for standard QM/MM
calculation, optimal A, and achieved improvements A in kcal/mol.

System 2 3 5 6 7 9
RMSE (kcal/mol) DFTB/GAFF  3.40 4.8 231 1.76 3.87 3.44
A 1.0 1.1 10 09 10 1.0
A 0.0 —0.57 0.0 —1.76 0.0 0.0
AMBER/DFTB 3.92 4.29 2.11 3.50 4.25 4.10
A 1.0 1.2 10 085 1.05 1.1
A 0.0 —2.12 0.0 —3.73 0.09 —2.75

6.4. Summary and Conclusion

We investigated non-covalent interactions in neutral and ionic hydrogen-bonded complexes to
assess the limitations imposed by the QM-MM interface on model accuracy. ®B97X-V and DFTB
are chosen as representative methods for DF'T and SQM, respectively. On the side of the MM
force field, GAFF is employed for small molecules, while AMBER is used for proteins.

For neutral complexes in the HB375x10 dataset, interaction energies computed using GAFF,
DFTB, and DFTB/GAFF models yield comparable RMSEs, and relative errors around 30%,
ranging from 1.5 kcal/mol for GAFF to 2.1 kcal/mol for DFTB/GAFF. Among all tested ap-
proaches, the GAFF/wB97X-V model achieves the lowest RMSE of 0.7 kcal/mol, establishing
a practical upper bound for the accuracy of QM /MM models employing GAFF. The observed
small magnitude of charge-transfer (CT) and its weak correlation with the errors suggest that the
discrepancies are more likely attributable to differences in model polarity and polarizability.

In contrast to the neutral complexes, the ionic complexes in IHB100x10 show more significant
amounts of CT and a clear correlation between QM /MM error and the extent of CT in the system.
Accurate treatment of these systems requires that CT be included within the QM region, and that
the QM—MM boundary does not cross the hydrogen bond. This necessity is evident from the sharp

72



6.4. Summary and Conclusion

increase in RMSE when transitioning from QM to QM/MM models. For example, at equilibrium
geometry, the ®B97X-V model yields an RMSE of 0.4 kcal/mol, while the GAFF/wB97X-V
model rises to 5.3 kcal/mol. DFTB/GAFF models perform comparably, with RMSEs around
7.0 kcal/mol. At fqscaling = 1.0, RMSESs reach up to 20 kcal /mol, underscoring the importance of

charge redistribution in capturing equilibrium interactions.

Consistently across both datasets, the choice of the QM method has a limited impact on the
performance of the QM /MM models for shorter distances, which tend to yield comparable Fipg.
The poor performance of QM /MM methods at shorter interatomic distances originates primarily
from unoptimized LJ parameters, as the analysis of results revealed that the LJ term dominates
the overall error. These findings challenge the common practice of directly adopting unmodified
FF LJ parameters in QM /MM calculations and highlight the need to refine them to better describe
short-range interactions. The patterns in RMSE values suggest that including the H-bond acceptor
in the QM region is more critical than including the donor. Generally, the absence of charge
transfer and the underestimation of polarization emerged as the dominant sources of error in
the evaluated QM /MM models. To assess the sensitivity of electrostatic embedding, we applied
QM-MM electronic interaction scaling, resulting in RMSE reductions of up to 0.5 kcal/mol for
HB375x10 and 2.0 kcal/mol for THB100x10 in DFTB-based models. Optimal scaling factors
(A =1.25—1.35) were consistent across distances, although overbinding was observed in specific
H-bond types. In contrast, scaling had no benefit for ®B97X-V/GAFF models, indicating its

limited usefulness when electrostatic interactions are already well-represented.

To further assess the performance of QM /MM models, we extended our analysis to a small subset
of cluster-type microenvironment systems from the PL-REX dataset, which represent realistic
ligand-receptor interactions. In contrast to pairwise models, these systems feature a QM region
embedded within a densely populated molecular environment, often involving multiple H-bond
donors and acceptors. The increased system size results in a more extensive QM-MM interface,
where atoms from both regions are positioned in close proximity to each other. Despite this
added complexity, studied models yielded reasonable RMSESs ranging from 4 to 7 kcal /mol, with a
maximum relative error of only 7.4%. This is notably lower than the >30% relative errors observed
for the HB375x10 and IHB100x10 datasets. However, the structural heterogeneity within the PL-
REX set complicates the identification of systematic trends, as discussed in detail in Section 6.3.2.

Previous studies by others highlighted the limitations of methods parametrized for pairwise models
when applied to condensed-phase systems, primarily due to the exclusion of cooperative effects
such as non-classical many-body responses.?? For many-body force fields derived from gas-phase
data, the neglect of polarization—exchange coupling has been shown to result in overpolarization

305 " while the omission of CT effects leads to underpolarization3%6.

in condensed environments
The extent to which these two phenomena interact and counterbalance each other appears to
depend strongly on the system’s structural conformation.3’® Importantly, it was demonstrated
that while SQM methods generally underestimate binding energies in the gas phase, they tend to

overestimate those in solution.?® Our current results show a significant difference between pairwise

73



Non-covalent Interactions at the QM-MM Interface in the Semi-Empirical and Density-Functional Limit

and microenvironment-based models. For instance, DFTB tends to underestimate H-bonds for the
pairwise systems but occasionally overestimates interaction energies in PL-REX systems, similar
to Ref. [93]. Attempts to improve accuracy by applying QM-MM scaling factors optimized for
pairwise systems did not yield any improvements for the PL-REX structures. In light of this
observation, it can be said that greater attention should be paid to the question of transferability

when models developed under vacuum conditions are applied to condensed-phase environments.

It is worth noting that our analysis focuses on the binding energy, while in practical applications,
the most relevant quantity is the binding free energy. The accuracy in predicting binding free

307 which could reduce some

energy values can benefit from enthalpy—entropy compensation effects
of the systematic errors observed in the binding energy. This raises the possibility that errors in
QM /MM binding free energies may be smaller than what is suggested by errors in binding energies.
To this end, the use of free energy perturbation or reweighting schemes to explore perturbations

between MM and QM levels represents an interesting direction for future work.37135

Apart from model selection and evaluation criteria, further progress in the development of
QM /MM stems from improved, physics grounded frameworks, which can help mitigate boundary
artifacts and better capture polarization effects.?® These are especially the polarizable embedding
146,254,308,309 411 d adaptive QM /MM schemes.149:150:156 Ty any new development, greater standard-
ization of QM /MM protocols may facilitate methodological progress by mitigating inconsistencies
among different implementations.?4"24® Furthermore, systematic evaluation strategies, such as

310 can guide the adjustment of the QM region size according to the extent

charge-shift analysis,
of charge transfer between regions. An additional promising avenue for future development lies
in using machine learning models to refine the QM /MM coupling rather than merely correcting
internal QM energies. Here, several strategies have been developed to incorporate electrostatic
embedding into ML-based QM /MM frameworks for short- and mid-range interactions. Recent
advances include range-corrected deep learning potentials, which refine short-range QM and QM-
MM interactions to achieve higher accuracy,'%219311 as well as (QM)ML/MM schemes that
integrate electrostatic embedding and polarization corrections.?!1:218:312-314 Thege models exhibit
transferability, delivering near-ab initio accuracy for condensed-phase and biomolecular systems

and reducing computational cost.

A question to ask is to what extent the charge distribution and polarizability in DFTB can be
improved to achieve a better description of hydrogen bridging. There have been at least two
recent attempts for this. Firstly, the DFTB-CPE approach utilizes an augmented representation
of electron density, which is beneficial for describing intermolecular interactions. Previously, in the
context of DF'T'B, it showed that an appropriately parametrized CPE calculation slightly improves
the description of hydrogen bridging: Comparing to standard DFTB/30B calculations, the RMSE
of interaction energies reduced from 1.65 to 1.34 kcal/mol on the HB375 set, and from 4.04 to
3.41 kcal/mol on THB100.'*® The present work, however, shows that employing DFTB-CPE as
the QM component in QM /MM approaches yields no improvement, as evidenced by Tables A.2 &
A.3. This is because the current DFTB-CPE/MM implementation lacks the coupling between the
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MM charges and the CPE’s augmented charges. As a result, the indirect effect of MM charges via
the traditional MM-DFTB electrostatic interaction on the QM-only CPE appears to be negligible.
To conduct a more thorough evaluation, a fully supported DFTB-CPE/MM that incorporates the
coupling is needed. We anticipate that the full DFTB-CPE/MM would also require additional
parameters to screen the MM-CPE charge interactions at short range. Despite this complexity,
it offers a promising approach for more accurately capturing the polarization of QM atoms by the
MM environment. A more elaborate approach that also offers potential improvements in several
different application areas is to extend the representation of atomic electron density in DF'TB by
including atom-centered dipoles and quadrupoles. The model called mDFTB performs remarkably
better than the usual DFTB for hydrogen bridging, reducing the RMSE of interaction energies
from 1.69 to 0.69 kcal/mol on the HB375 set, and from 3.98 to 2.08 kcal/mol on THB100.3%°
Incorporating mDFTB within the QM /MM framework could be a promising direction for future
development.

As hinted in the results with wB97X-V, the mere existence of a QM-MM interface constitutes
another source of error that cannot be mitigated by an improvement of the QM method (or,
of the MM force field). A particularly illustrative example showing the need for a balanced
description of intermolecular interactions is the sensitive structural patterns in the active center
of bacteriorhodopsin as discussed in Ref. [315]. These patterns collapsed in force field simulations,
arguably because of the lack of polarizability in the model. The description improved when
applying QM /MM models with increasing QM region size; however, the imbalance between the
hydrogen bridges in the QM and MM regions, as well as those crossing the boundary, can lead
to instabilities, especially during dynamics simulations. It was discussed that the (already large)
QM region might need to be made even larger. Clearly, there will always be cases in which such a
solution is untractable, be it due to the unacceptable computational cost of the corresponding QM
calculation, or for more fundamental reasons, such as the possibly overestimated delocalization of

electrons that may occur in large QM regions with methods based on DFT.

The errors stemming from an unbalanced description of NCI at the QM-MM interface can signif-
icantly worsen the overall performance of QM /MM models, in addition to any inaccuracy of the
QM and MM methods. Other studies demonstrated that increasing QM regions may not always
lead to a single-sided improvement.>'® Employing a larger QM region inevitably brings about a
larger QM-MM interface, which can accumulate errors. This was highlighted, on the one hand,
in cases where extended QM-MM interfaces cross multiple covalent bonds, with each of the bonds
contributing to the error.?4” On the other hand, when considering NCI, errors might similarly
accumulate due to a large number of hydrogen-bonding contacts crossing the QM-MM interface.

Based on our analysis, we can identify situations stemming from a particular construction of
the QM region that bring on the most significant errors, and thus should be avoided. The QM
region should be extended so that (1) the interface does not cross ionic hydrogen bonds, (2)
any NCI contacts exhibiting sizable CT are included in the QM region, and (3) including the
H-bond acceptor within the QM region is more critical than including the donor, in general. (4)
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Also, the LJ potentials for short QM-MM interatomic contacts, particularly any ionic hydrogen
bonds, should be carefully evaluated and, if necessary, reparameterized. The selection of the
QM region in practical applications should be guided by an understanding of the strengths and
limitations inherent to each method. Informed use of SQM methods, acknowledging their inherent
limitations, can be leveraged to enhance the reliability of computed interaction energies. This

generally reinforces efforts toward improved embedding schemes and selection algorithms.38
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7. Reduction Pathway of Glutaredoxin 1
Investigated with QM/MM Molecular Dynamics
Using a Neural Network correction

Chapter 7 is reproduced in modified form from publication Ref. [223] with permission from AIP
Publishing:

o Julian Boser et al. “Reduction pathway of glutaredoxin 1 investigated with QM /MM molec-
ular dynamics using a neural network correction”. In: The Journal of Chemical Physics
(2022), p. 154104.

Author Contributions:

Julian Béser performed all classical and QM /MM simulations using both the DFTB/SRP and
DFTB/A-ML setups. The QM /MM metadynamics simulations performed with DFTB/SRP were
initialized using preliminary data generated during Julian Bésers’s master’s thesis [317]. These
data have been extensively expanded in the present work through additional simulations, refined
analysis and extended by the DFTB/A-ML approach. Julian Boser also conducted the analysis
of the free energy surfaces and the regioselectivity. Denis Maag performed the model evaluation,
which is only summarized in the following.

7.1. Introduction

Homo sapiens glutaredoxins (Grxs) are thiol-disulfide oxidoreductases that play a central role
in maintaining cellular redox homeostasis and regulating signaling processes under oxidative
stress.’"03 Their catalytic function relies on the reversible thiol-disulfide exchange (TDE) of
disulfide bonds within protein substrates, a reaction tightly coupled to the intracellular redox
balance of glutathione (GSH) and glutathione disulfide (GSSG). The relative abundance of these
co-substrates governs the efficiency of protein glutathionylation and deglutathionylation, thereby
modulating both enzyme activity and substrate reactivity.?* Structurally, Grxs are classified ac-
cording to the number of active-site cysteines: dithiol Grxs possess a Cys—X-X-Cys motif, whereas
monothiol Grxs contain a single catalytic cysteine (Cys—X—X-Ser) as shown in Figure 7.1A. Ex-
perimental mutagenesis of the second cysteine to serine in dithiol Grxs has revealed that the
monothiol mechanism can achieve higher catalytic efficiency than the dithiol route.62:3187320 De-
tailed kinetic analyses of Homo sapiens HsGrx1 illustrate this divergence. In a study employing
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the metal-binding domain HMA4n (Hma) as a substrate and GSH/GSSG as co-substrates (see
Figure 7.1B and C), electrospray ionization mass spectrometry identified intermediates consis-
tent with parallel catalytic cycles. The wild-type enzyme (Cys—Pro—Tyr—Cys) was capable of
operating through both monothiol and dithiol routes, whereas the Cys—Pro-Tyr-Ser mutant was
restricted to the monothiol pathway as proposed in Figure 7.1D. Both mechanisms proceed via
sequential TDE, yet the dithiol route incurs an additional intramolecular rearrangement between
the two cysteines, reducing overall catalytic efficiency.%? Although these findings support a nu-
cleophilic attack by the Grx thiolate on the substrate disulfide as the initiating step, alternative
models propose that glutathione initiates the reaction, first forming a glutathionylated substrate
intermediate.?*321:322 The persistence of such competing hypotheses underscores that the precise

sequence of events governing Grx catalysis remains an active topic of mechanistic investigation.

A) HsGrx1 B) Glutathione .
dithiol monothiol D) Monothiol Route
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Figure 7.1.: (A) Active-site configurations of the dithiol (Cys23-Pro-Tyr-Cys26) and monothiol
(Cys23-Pro-Tyr-Ser26) variants of HsGrxl (PDB ID: 1JHB*23). (B) Molecular structure of
the co-substrate GSH. (C) Metal-binding domain Hma, used as a model substrate containing
a Cys27-Cys28 disulfide bridge.??* (D) Proposed monothiol catalytic mechanism showing the
sequence of TDE reactions: (1) nucleophilic attack of the HsGrx1 thiolate on the reduced Hma to
generate a mixed disulfide intermediate, (2) subsequent attack of GSH on the disulfide bridge to
release the reduced form of Hma and form a glutathionylated Grx intermediate, and (3) reduction
of the glutathionylated Grx by a second GSH molecule, thereby regenerating the active Grx and
completing the catalytic cycle.5?

Computational approaches offer a compelling route to disentangle mechanistic hypotheses in en-
zyme chemistry. In the context of HsGrx1 reactivity, one might first employ classical molecular
dynamics (MD) to explore whether the enzyme’s conformation and solvent accessibility permit
nucleophilic attack by the sulfur atom onto a disulfide sulfur. Such simulations provide spatial and
statistical assessment of reactive-site accessibility, enabling identification of viable attack pathways
for subsequent energetic evaluation. To further infer whether such reactions are thermodynam-
ically and kinetically favorable, reaction barriers and energies can be computed from sampling
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thermodynamic ensembles that represent all relevant molecular microstates. It becomes possible
to compute free energy differences and thereby identify the most favorable reaction pathways con-
necting reactants and products. In hybrid quantum mechanics/molecular mechanics (QM/MM)
simulations, in which the reactive center is treated quantum mechanically while the surrounding
environment is modeled using classical force fields, higher accuracy can be achieved.?* However,
high activation barriers make transitions between states too infrequent to observe with adequate
computational effort. In addition, the complex energy landscape of biomolecules, with many sta-
ble and intermediate conformations, restricts sampling efficiency and often causes the system to

remain trapped in one state.

Efficient exploration of the conformational space can be achieved by employing semiempirical
quantum methods that balance computational cost and accuracy, thereby enabling extensive sam-
pling of complex free energy landscapes. Among these approaches, the semi-empirical density
functional tight binding (DFTB) method. Derived from density functional theory (DFT) through
systematic approximations, DFTB preserves the essential electronic structure description while
achieving speedups of two to three orders of magnitude compared with conventional DFT cal-
culations using medium-sized basis sets.'20:122123 The accuracy of DFTB critically depends on
the underlying parameterization. Parameters can be optimized for broad chemical applicability
or tailored for a specific system. With a well-calibrated parameter set, DFTB typically outper-
forms other semiempirical quantum mechanical methods. For a wide range of organic molecules,
it has demonstrated reliable performance for equilibrium geometries, vibrational frequencies, and

reaction energies. 23325

Qualitative errors in DFTB arise mainly from its inherent approximations, including the use of a
confined minimal basis set, two-center integral and monopole approximations.??11%300 Known
deficiencies include inaccurate proton affinities of nitrogen-containing'?® compounds and er-

rors in the description of P-O bonds,!2*

as well as the general underestimation of non-covalent
interactions.?? 119390 Furthermore, the accuracy achievable with standard DFTB parameteriza-
tions is inherently limited because the repulsive energy term (Erep) accounts only for two-body
interactions. As a consequence, equilibrium bond lengths can be described with reasonable pre-
cision, while angular and torsional angles, which depend on three- and four-body interactions,
remain largely unaffected by Erep. Depending on the nature of the interactions present in a
molecular system, the approximations inherent in DFTB can lead to qualitative errors that fun-
damentally alter the underlying energetics. Standard DFTB relies on precomputed integrals
obtained from DFT using the PBE functional and therefore inherits the same limitations as this
reference functional, most notably the delocalization error. A case in point for such qualitative
errors is the TDE.?? A benchmark study by Neves et al. showed that proper inclusion of electron
correlation is required to obtain the correct energetics and transition state geometry, where the
three sulfur atoms are linearly aligned with S-S bonds of about 2.4 A. However, with DFTB the
S-S bonds are too long (2.7 A), and the activation energy has an error exceeding 6 kcal mol™! due
to deficiencies inherited from the PBE functional. The trisulfide intermediate is not linear (160°),
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exhibits an excessively deep minimum in the gas phase (~8 kcal mol~!), and the water/protein

trisulfide state displays an inadequate local minimum.>?

The aforementioned deficiency of DFTB in describing TDE has been addressed using two dis-
tinct strategies. (1) One approach employs an ad hoc solution within the DFTB framework by
reparametrizing the repulsive potential for the specific application scenario, called specific reaction
parameterization (SRP). When performed carefully, the fitted repulsive interaction can partially
compensate for errors introduced by the approximations inherent in the DF'TB energy expression.
The quality of the resulting repulsive potential can be optimized for a selected choice of systems
and by selecting the physical properties considered during parameterization.'?43% To overcome
this limitation in TDE, a SRP of the repulsive S—S pair potentials was carried out, ensuring that
the resulting energetics were consistent with higher-level quantum mechanical reference data from
B3LYP and G3B3 calculations. This ad hoc adjustment provided an accurate description of the
TDE, successfully reproducing the correct transition-state geometry and energy.?2! (2) Machine
learning (ML) methods can improve the accuracy of calculations without altering the underlying
DFTB framework, thereby offering greater flexibility in the type of corrections that can be ap-
plied. For instance, they can incorporate multi-body interactions that are not explicitly accounted
for in SRP.2?Y In the so-called A-ML approach, originally introduced by Ramakrishnan et al.?19,
the key idea is to correct systematic errors of low-level quantum methods by learning the differ-
ence to high-level reference data, thus combining the computational efficiency of the former with
the accuracy of the latter. This strategy has been successfully applied to improve quantum me-
chanics/molecular mechanics (QM/MM) calculations by compensating for discrepancies between

218 219 corrections of interaction ener-

different QM levels,?'! as well as for long-2'® and short-range
gies between the QM and MM regions. In previous work, Gémez-Flores et al.??! introduced the
A-ML approach for describing the TDE. The model is based on the Behler—Parrinello artificial
neural network (ANN),205:206 which was trained to learn the energy difference between DFTB and
higher-level quantum mechanical methods (B3LYP and CCSD(T)) for the TDE in the gas phase.
The A-ML scheme reproduced the energetics and geometries of the TDE with ab initio accuracy
at a computational cost comparable to standard DFTB calculations. Moreover, the ANN trained
on gas-phase data could be directly applied to TDE in aqueous solution and in proteins without a
significant loss of accuracy. Further information on the Behler-Parrinello ANN20%:206 i provided

in Section 5.1 of the Theory section.

Building on the achievements of the previously developed ANN, this work employs the A-ML
model??! in enhanced sampling simulations to investigate the proposed catalytic reduction cycle
of Hma by the monothiol Grx, with GSH serving as a co-substrate. Classical MD simulations
of the different systems are carried out to analyze sulfur—sulfur distances and inter-sulfur angles,
providing estimates of the regioselectivity and accessibility of the various thiol-disulfide exchange
reactions. In addition, the corresponding multidimensional free-energy surfaces (FESs) are subse-
quently obtained from extensive QM /MM metadynamics (MTD) simulations using SRP and the
A-ML approach to characterize the underlying reaction mechanism in detail.
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7.2. Methods

7.2.1. Model

The structural model of Grx is based on a NMR solution structure of dithiol Grx in the fully
reduced form (PDB ID: 1JHB).323 To generate the monothiol model, the C-terminal cysteine
(Cys26) in the active site was mutated to a serine. The sulfur atom of the enzymatically active
Cys23 was prepared as an anion to enable the reaction with disulfide bonded sulfurs. For the
protein substrate Hma, the NMR solution structure from Ref. [324] was used (PDB ID: 2KKH).
The additional water molecules and the zinc ion in the structure were removed and a disulfide
bond between Cys27 and Cys28 was formed by manually reducing the distances between the sulfur
atoms. The sulfur atom in glutathione was prepared as an anion (GS™) to enable reactions with
disulfide bonded sulfurs. GS™ contains a y-glutamyl residue that is not included in the standard
parameterization of the AMBER99SB-ILDN force field®?” used in this work and was therefore
explicitly parametrized. For the parameterization, the zwitterionic molecule of y-glutamyl-(N-
methyl)amide zwitterion was geometry optimized at the level B3LYP /6-31G* using the polarizable
continuum model (PCM) at 300 K. The application of PCM was necessary to prevent an undesired
proton transfer from the amino- to the carboxyl group, which had occurred in pilot optimizations
of the molecule in the gas phase. Then, the electrostatic potential induced in the surroundings of
the molecule was obtained at the level HF /6-31G*, and was determined on four layers of points
surrounding the molecule, starting at a distance of 1.4 times the Merz—Kollman radius of the
respective nearest atom and spaced by 0.2 times the radius, with the density of 1 point per A2
(The Merz—Kollman radii are 1.2, 1.5, 1.5 and 1.4 A for H, C, N and O, respectively.) The
quantum chemical calculations were performed with GAUSSIAN 09 A.02.2%6 The atomic charges
were obtained with the two-stage restrained electrostatic potential fit,?® as implemented in the
Antechamber tool in the AmberTools suite.??? The charges of the peptide backbone atoms were
constrained to their respective values occurring in the standard AMBER force field. Finally, the
capping group NH-CHj3 was removed to yield the topology and parameter file for an N-terminal
~-glutamyl residue, termed GGL. The obtained parameters can be found in Ref. [223] as Gromacs
topology.

7.2.2. Classical Simulations

All classical simulations were performed with GROMACS 2020.22% patched with PLUMED
2.6.1.339331 The AMBER99SB-ILDN?27 force field was used, periodic boundary conditions were
set and electrostatics and Lennard-Jones (LJ) interactions were calculated using a cutoff of 1 nm.
Long-range electrostatic interactions were calculated by particle-mesh Ewald summation,'® the
neighbour list was updated every 10 MD steps. The leap-frog integrator”® was used with a time
step of 2 fs. Initial velocities of the atoms were assigned from the Maxwell-Boltzmann distribution

t332

at 300 K. The temperature was maintained at 300 K by the Bussi thermosta with 77 = 0.1 ps,
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in the NVT- and NPT-ensemble. In NPT simulations, the pressure was kept constant with the
Parrinello- Rahman barostat!”™ at p = 1 bar and Tp = 2.0 ps.

For the fist catalytic step 1 shown in Figure 7.1D, monothiol HsGrx1 and Hma were placed
together in a cubic simulation box. The distance between the molecules and the box was about
2 nm, which corresponds to a box size of ca. 11 x 11 x 11 nm?®. The box was solvated with 36436
TIP3P water molecules and electro-neutralized by adding four chloride atoms. The system was
shortly equilibrated for 10 ns in a NVT ensemble and subsequently for 10 ns in a NPT ensemble,
during which harmonic position restraints were applied to the heavy atoms with a force constant
of 10000kJmol 'nm~2. A 500 ns NPT simulation followed, from which two structures were
selected that showed a large difference in their RMSD and radius of gyration. Each structure
was then simulated for 500 ns after assigning new initial velocities from the Maxwell-Boltzmann
distribution at 300 K. During the simulations the distances between the sulfur atom of HsGrx1
and the sulfur atoms of Hma were restrained to values smaller than 9 A with a force constant of
10000 kJ mol ! nm~2 to reduce the conformational sampling. For the reaction step 2, a snapshot
of the system containing the Grx-S-S-Hma intermediate was selected from a QM/MM metady-
namics simulation of reaction (1). Due to the previous TDE, one of the sulfur atoms of Hma was
deprotonated and thus carried a negative charge. To prepare the system for a nucleophilic attack
by GS™, the following equilibration scheme was applied. First, the system was equilibrated with
the deprotonated sulfur atom for 100 ns. Next, the sulfur atom was protonated, one chloride ion
added, and the system equilibrated for 100 ns. Then the GS™ molecule was introduced and two
chloride ions were introduced into the system which was simulated for another 100 ns. Two struc-
tures with high RMSD and radius of gyration difference were selected from the obtained trajectory
and, analogously to the procedure described in the previous paragraph, used as starting structure
for two additional 500 ns long simulations with new initial velocities. The distances between the
sulfur atom of GS™ and the sulfur atoms of the Grx-S-S-Hma intermediate were restrained to
values smaller than 9 A with a force constant of 50000 kJmol 'nm~2. For the third and final
catalytic step 3, a structure of the HsGrx1-S-SG intermediate was taken from a QM /MM meta-
dynamics simulation of reaction (2). The molecule was placed in a cubic box of ca. 6 x 6 x 6 nm?,
solvated with 8126 TIP3P water molecules, electro-neutralized with one sodium ion and equili-
brated for 100 ns. The nucleophile GS™ was then introduced followed by another simulation of
100 ns, from which two starting structures were selected according to the same criteria described
for the reactions (1) and (2). Analogously, two 500 ns long simulations were performed with new
initial velocities of the atoms, keeping the S-S distances between GS™ and HsGrx1-S-SG below
6 A with a force constant of 10000kJmol 'nm~2. For all simulated reaction step, the 2x500 ns
long trajectories per system were analyzed to estimate the regioselectivity of the possible thiol-
disulfide exchanges. 2D histograms of the distances between the nucleophilic sulfur atoms and the
two respective target sulfur atoms were obtained with a bin size of 0.1 A. Based on this analysis,
an attack was considered possible if the the distance between the nucleophilic sulfur and the target
was less than 5 A and the attack angle greater than 130°, indicated by gray shaded ares.
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7.2.3. QM/MM simulations

A-ML and SRP

All QM/MM simulation employ DFTB3 with a different set of parameters. When employing
standalone DFTB3, the SRP developed in Ref. [221] was applied, which had been parametrized
against B3LYP calculations. For A-ML augmented DFTB3, the standard 3ob-mod parameter
set'?* was used. In this setup, the energies are first evaluated using DFTB3 and subsequently
corrected by the A-ML component. The underlying concept is that the network is trained to
learn the energy difference, Eanr,,, between the DFTB3 baseline and the CCSD(T)/aug-cc-
pVTZ reference. The corrected DFTB3/A-ML energy is then obtained by adding this correction
to the baseline energy Epprps/ami, = EprrB3 + EAaMLoe- The A-ML model is implemented in
DFTB+ and is available on Github.?33 Theoretical details can be found in Section 5.1.1.

Unbiased Simulations

All QM /MM simulations were performed with a local GROMACS 2020%% version patched with
PLUMED 2.5.1330:331 and interfaced with a modified DFTB+ 19.12?! extended by the A-ML
correction. Analogously to previous studies??!:334 the QM regions of the respective systems com-
prised the side chains of the three cysteines for which a thiol-disulfide exchange was investigated.
The link atom approach was used to cap the QM region with hydrogen atoms that were placed
along the Ca and CfS bonds at a fixed distance. The QM regions consisted of 15 atoms described
by the semiempirical density functional theory method DFTB3 and two different sets QM /MM
simulations of the catalytic cycle were performed. The first set used the 30B parameter set!?* with
a reparamterized S-S repulsive potential based on B3LYP /def2-TZVPP data.??! In the second set,
the artificial neural network correction that learned the energy difference between DFTB with the
unmodified 30B parameter set and CCSD(T)/aug-cc-pVTZ level of theory was appplied.??! The
rest of the systems were described with the AMBER99SB-ILDN3?7 force field and TIP3P water.
For each system, a starting structure was taken from one of the two respective classical 500 ns
MD simulations that met an accessibility criterion for a possible nucleophilic attack. An attack
was considered possible if the distance between the nucleophilic sulfur and the targeted sulfur was
less than 6 A and the attack angle greater than 130°. The systems were equilibrated for 100 ps
in an NPT ensemble with the same settings as for the classical simulations, with two changes.
A time step of 0.5 fs was used and the electrostatic interactions between the QM region and the
MM system were scaled down by a factor of 0.75 to compensate for the missing polarization of

the MM environment.303-304

Metadynamics Simulations

The free energy profiles of the TDE using the SRP and the A-ML approach were obtained with
QM /MM well-tempered multiple walker metadynamics.!77 181182184 A 9D setup was used, where
the S-S distances between the respective nucleophilic sulfur atoms S,,. and the attacked sulfur
atoms Sqtr were used as first reaction coordinate and the S-S distances between the attacked

83



7 Reduction Pathway of Glutaredoxin 1 Investigated with QM/MM Molecular Dynamics Using a Neural
Network correction

sulfur atoms Scr and the leaving sulfur atoms S), as second reaction coordinate. Depending
on the system, the S-S distances were restrained to values smaller than or 10 A with a force
constant of 10000 kJmol ' nm~2 to reduce conformational sampling. Moreover, the Spuc—Sctr—Sig
angles were restrained to values larger than 130° with a force constant of 100000 kJ mol !rad™!.
Either 16 or 24 walkers were used with a simulation time of at least 1.8 ns or 1.4 ns per Walker,
respectively. This resulted in a total simulation time of at least 28.8 ns for each system. Gaussian
potentials with a width of 0.2 A and an initial height of 0.5kJ mol ™! were deposited and read
every 500 fs. A bias factor of v = 20 was used. Following the setup in Ref. [221] and Ref. [334],
the sum of switching functions depending on the three S-S distances was restrained to prevent
bond breaking of the disulfide bond while the sulfur anion Sy, is too far away. Restraints were
also applied to the coordination numbers of the C5 atoms with their bonded hydrogen atoms to
prevent deprotonation by the sulfur anion at short distances.

7.3. Results and Discussion

7.3.1. Regioselectivity

The proposed monothiol reduction cycle of Grx involves three catalytic steps, see Figure 7.1D.52
In each step, the respective nucleophilic sulfur anion Sy, can attack one of the disulfide bonded
sulfurs, resulting in two possible thiol-disulfide exchanges per step. In step 1 the catalytic cycles

is initiated by the sulfur anion Ség’rx either attacking the sulfur atom S%fma 12{8ma

or S of the protein
substrate Hma. In order to proceed, step 2 requires an attack of the glutathione thiolate GS;
on the disulfide bonded SZ}_. However, the disulfide bonded sulfur atom of Hma (S% . or S )
could also be attacked which would then lead to a different pathway. In the final step 3, a second
glutathione anion GS; must attack the disulfide bonded glutathione GS; to form GSSG, but
an attack on Sé?’rx is a also conceivable although this would regenerate the same mixed disulfide

molecule (HsGrx1-S-SG).

To estimate the regioselectivity, 2D histograms has been calculated for distances between the
respective nucleophilic sulfur atoms S,y and the potential targets S¢ir from classical molecular
dynamics simulations, compare Figures 7.2-7.4. The number of approaches of Sy, onto the
target sulfur atoms such that an attack complex can be formed were counted. Only geometries
where the Spuc—Setr distances were less than 5 A and the angle between the three sulfur atoms
Z(SnucSetrSig) > 130° were considered. For each system, the accessibility for each attack was
calculated, expressed as the percentage of the structures that met the criterion, see Table 7.1.

It was found in step 1 (Figure 7.2) that S, is attacked more often by SZ. than S .. The

Hma Hma-

estimated accessibilities are 0.54% and 0.04%, respectively. However, QM /MM metadynamics of

this attack showed a very large barrier of more than 23 kcal /mol (Figure B.1 in the Appx.) whereas

28
Hma

D). Therefore, S%ISma is considered as the main nucleophilic target.

the barrier height for an attack on S is much smaller with ca. 12 kcal/mol (Figure 7.5A and
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Figure 7.2.: Evaluation of accessibility for the nucleophilic attack based on the histogram of the sulfur—sulfur
distances calculated from classical MD simulations of the reaction step 1 including both regioiso-

mers Ser S%I?ma and Ser S%Bma The gray shaded areas correspond to structures that meet the

accessibility criterion.

In step 2, the mixed disulfide bond Ser SHma between the enzyme and the protein substrate
is then attacked by GSy, see Figure 7.3. In the classical simulations, GS] can easily attack
SéBrX with an accessibility of 1.30% compared to 0.39% for an attack on SHma The analysis for
the alternative regioisomer from step 1, Ser SHma is shown in Figure B.2 in the Appx. This
observation suggests the possible formation of glutathionylated HMA and the reduced form of
Grx as a competing side reaction, warranting further consideration.

step attack accessibility [%)]
Grx-S237 — S27-Hma 0.54
Grx-S23~ — S28-Hma 0.04
5 GS; — S23-Grx 1.30
GS; — S28-Hma 0.39
5 GS; — GSy 28.04
GS; — S23-Grx 0.04

Table 7.1.: Estimated accessibility of the different possible nucleophilic attacks in the catalytic reduction cycle
of HsGrx1 based on the histograms shown in Figure 7.2-7.4. An attack was considered feasible if the
distance between the nucleophilic and the attacked sulfur atom (Spuc—Sctr) was less than 5 A and the
attack angle between the sulfurs Z(SnucSctrSig) > 130°. The accessibility is expressed as the sum of
structures that met the criterion divided by the total number of counts.
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Figure 7.3.: Evaluation of accessibility for the nucleophilic attack based on the histogram of the sulfur—sulfur
distances calculated from classical MD simulations of the reaction step 2 including both regioisomers
GSffSé‘g’rx and GSffSQHSma. The gray shaded areas correspond to structures that meet the accessi-
bility criterion.

In step 3, another GS; molecule attacks one sulfur atom of the newly formed disulfide bond
GSI—S%;?}X, compare Figure 7.4. An attack on GS| is more likely to occur with an accessibility of
28.04% compared to an attack on S2G3rX with 0.04%. The regioselectivity of step 1 is not known
from experiments but the estimated regiospecificities for step 2 and step 3 are the same as those
experimentally observed by Ukuwela et al.? They find only small traces of the glutathionylated
Hma, the product for the less likely attack for step 2 in this study. In addition, small traces
of the glutathionylated HsGrx1 enzyme were found, the product of step 2 and the less likely
attack for step 3 found in this work. To further investigate the possible reaction pathways, free
energy profiles of the three regioselective attacks were computed with QM/MM metadynamics
simulations.
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Figure 7.4.: Evaluation of accessibility for the nucleophilic attack based on the histogram of the sulfur—sulfur
distances calculated from classical MD simulations of the reaction step 3 including both regioisomers
GS;5-51G and G55 fSé‘grx. The gray shaded areas correspond to structures that meet the accessibility
criterion.

7.3.2. Free Energy Surfaces

Each attack was simulated twice, using either the SRP or the A-ML energy correction. The
obtained FESs are shown in Figure 7.5 and the reaction barriers in Table 7.2. The barrier heights
and reaction energies determined by the two methods agree very well, with differences ranging
from 0.2 to 1.2 kcal/mol.

In step 1, the initial disulfide bond S?"Hma-S*®Hma represents the global minimum on the FES.

27
Hma

in its deprotonated form, since protonation steps are not included in the present QM /MM setup.
Using DFTB/SRP and DFTB/A-ML as the QM methods, the computed activation barriers for the
reduction step are AG¥red = 11.3 and 12.5 kecal mol ™!, respectively. The corresponding reaction

The reduction product S*Grx-S*®Hma corresponds to a local minimum, in which S remains

free energies are AG = +5.0 and +5.8 kcal mol~!, which implies barrier heights for the reverse
oxidation reaction of AG¥ox = 6.3 and 6.7 kcal mol ™.

In the catalytic step 2, the global minimum corresponds to the disulfide bond S?*Grx-S*®*Hma,
with S?"Hma being protonated in the present setup. A nucleophilic attack of a glutathione anion
on the sulfur atom of HsGrx1 forms the disulfide GS'-S?*Grx, which represents a local minimum
on the free energy surface. The reaction free energies are AG = +6.5 and +7.2 kcal mol~! for
DFTB/SRP and DFTB/A-ML, respectively. The corresponding activation barriers are AG¥red =
18.6 and 20.1 kcal mol~! for the reduction, and AG%, = 12.1 and 12.1 kcal mol~! for the reverse
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Figure 7.5.: Free-energy surfaces (FESs) of the three consecutive thiol-disulfide exchanges in the monothiol route
of HsGrx1 with Hma as substrate and GSH as co-substrate. FESs of step 1 to 3 (left to right)
obtained with DFTB using the SRP (A-C) and with DFTB using the A-ML correction (D-F).
Contour lines are drawn every 2.5 kcal/mol.

oxidation reaction. In the final step 3, a second glutathione anion attacks the first glutathione
moiety disulfide-bonded to HsGrx1, yielding oxidized glutathione (GSSG) as a local minimum on
the free energy surface. Using either DFTB/SRP or DFTB/A-ML, the reaction free energy is
AG = 1.0 kcal mol~! in both cases. The corresponding activation barriers are AG¥red = 12.1 and
12.4 keal mol~! for the reduction, and AG¥ox = 11.1 and 11.4 kcal mol~! for the reverse oxidation
reaction.

Table 7.2.: Reaction barriers of the catalytic reactions between HsGrx1l (Grx), the protein substrate Hma (P),
and GSH. The barriers were obtained with DFTB using the 30B-mod parameter set or the A-ML
model. All values in kcal/mol.
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GreS™ + P-(S); Grx-S-S-P(SH) + GS~

Grx1-S-SG + GS™

Method = = =
Grx-S-S-P(S7) Grx-S-SG + P-(SH)(S7) Grx-S™ + GSSG

DFTB/SRP 11.3 /6.3 18.6 / 12.1 12.1 / 11.1

DFTB/A-ML 12.5 / 6.7 20.1 / 12.1 124 /114




7.3. Results and Discussion

The FESs obtained with the two correction schemes differ markedly in both their energetics and
overall topology. In the DFTB/A-ML calculations, the minima appear narrower and the energy
rises more steeply than in the DFTB/SRP results. For instance, in step 3, the global mini-
mum associated with the disulfide bond GS1-S23Grx spans GS2-S!Grx distances of 3.5-5.5 A
with DFTB/A-ML (horizontal minimum in Figure 7.5F), whereas the corresponding minimum
obtained with DFTB/SRP extends over a broader range from 3.5 to nearly 10 A (Figure 7.5C).
This discrepancy originates from the different treatment of many-body effects. The SRP approach
modifies only the two-body repulsive potential Erep, while the A-ML correction explicitly incor-
porates many-body interactions. These effects become particularly significant when the sulfur
atoms deviate from linear alignment, as the S—S—S angles in the present setup vary between 130°
and 180°.

7.3.3. Model Evaluation

For completeness, the following section provides a brief summary of the comparative perfor-
mance of DFTB/A-ML and DETB/SRP. A detailed analysis is available in the previous study in
Ref. [221], and the full discussion in the context of the present work is given in Ref. [223].

The evaluation was performed by comparing free-energy surfaces (FESs) and relative energies for
a model system consisting of a methyl thiolate and dimethyl disulfide in the gas phase. Structures
from the corresponding data set were analyzed using CCSD(T) and B3LYP as reference methods.
The geometric analysis focused on the torsion angle spanning the disulfide bridge, identified as the
main contributor to the observed errors. The data set comprised two subsets: (1) a linear scan of
S-S distances ranging from 2.0 to 3.2 A, and (2) a non-linear set obtained from QM /MM metady-
namics simulations covering S-S separations up to 7.0 A and variable S-S-S angles. For the linear
subset, DFTB/SRP reproduced the B3LYP reference energies within +2 kcal mol™!, whereas
DFTB/A-ML matched CCSD(T) results with deviations below 0.5 kcal mol~! across the entire
potential energy surface (PES). In the more flexible non-linear subset, DFTB/SRP and B3LYP
PESs were qualitatively similar but exhibited quantitative deviations of up to 10 kcal mol™!,
particularly for short and non-linear S-S arrangements. These discrepancies originate from the
two-body nature of the SRP correction and its limited ability to describe torsional and many-
body effects. By contrast, DFTB/A-ML reproduced the CCSD(T) PES with high fidelity, typi-
cally maintaining deviations within +3 kcal mol~!. To further assess torsional behavior, potential
energy scans of the C-S-S—C dihedral in dimethyl disulfide were performed in the gas phase.
DFTB/SRP and DFTB/A-ML energies agreed closely near the staggered conformation, differing
by less than 1 kcal mol~!. However, for other torsional configurations, particularly the eclipsed
conformation, SRP exhibited significant deviations of up to 5.5 kcal mol™!, confirming its tendency
to underestimate rotational barriers due to the neglect of three- and four-center interactions.?20:33%
The A-ML correction alleviates this limitation by incorporating many-body effects and thereby

provides a more accurate torsional energy profile.
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7.4. Conclusion

The mechanism of enzymatic disulfide bond reduction by glutaredoxins is still under debate and
several models have been proposed. In this work, classical and QM/MM simulations were used

1.2 Based on their experiments,

to investigate the reduction pathway proposed by Ukuwela et a
the reduction cycle should proceed over three consecutive, regiospecific thiol-disulfide exchanges
between the monothiol enzyme HsGrx1, the protein substrate Hma and the co-substrate GSH.
In classical MD simulations, similar regioselectivity by means of an accessibility criterion from
histograms of the S-S distances between the respective nucleophilic and the two target sulfur
atoms was found. Feasibility of individual enzymatic reaction steps were assessed by the reaction

barriers present in the free-energy surface (FES) obtained via QM /MM metadynamics.

This approach requires extensive phase space sampling, which poses a challenge for ab initio and
DFT methods due to their high computational cost. As an alternative, minimum energy pathway
algorithms can be employed or relaxed geometry optimization calculations at stationary points
along a reaction coordinate performed.?3¢ However, such approaches usually neglect motions of
the environment, which can lead to errors. In addition, approximations for the entropy have to be
used to obtain the Gibbs free energy. In contrast, adequate sampling accounts for all important
configurational changes, and the Gibbs free energy is directly obtained. This was achieved by using
the semiempirical DFTB method as a QM method, which is about 3 orders of magnitude faster
than DFT-GGA using moderately sized basis sets. However, DFTB fails to accurately describe the
thiol-disulfide exchange reaction, as do most DFT-GGA functionals due to correlation effects.???
As a workaround, specific reaction parameters (SRP) and a machine-learned energy correction (A-
ML) were developed in previous work??! and are employed here for the free energy calculations.
The computational cost of the A-ML correction is comparable to a DFTB calculation. With
both corrections, the obtained barriers heights are about 12 kcal/mol for step 1 and 3 and about
20 kcal/mol for step 2, which lies in the order of magnitude of typical enzymatic reactions.
Therefore, the calculation indicate that disulfide bond reduction by HsGrx1 most likely occurs via

the mechanism proposed by Ukuwela et al.

However, there are some differences in the obtained free energy profiles. The A-ML correction
yields barriers that are up to 1.5 kcal/mol larger than those obtained with the SRP, and the
minima are narrower than with the SRP. Comparing the corrections with their respective reference
methods, B3LYP for the SRP and CCSD(T) for the A-ML correction, showed that the SRP
reproduces the reference energies at short S-S distances very well, but exhibits large errors at
larger S-S distances. In addition, the SRP underestimates the torsional energy of the C-S-S-C
dihedral angle between disulfide bonded molecules. The machine-learned energy correction, on the
other hand, reproduces the reference energies for all given structures with high accuracy. Hence,
the PMFs obtained with the A-ML correction are considered more accurate.

Nevertheless, all investigated reactions are uphill, which is unexpected for an enzymatic reactions.
This behavior likely arises from the QM /MM setup, in which the subsequent protonation of the
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cysteinyl thiols S28 and S27 in the protein substrate HMA was omitted for technical reasons. The
protonated Hma species are most likely lower in energy than the deprotonated ones, since most
cysteinyl thiols are considered to have a pK, of 8 or higher. In contrast, the enzymatically active
cysteinylthiols of glutaredoxins typically have a pK, < 5 and are therefore usually deprotonated
and readily available to initiate a nucleophilic attack. Moreover, the direction of the catalytic cycle
is controlled by the concentration of GSH. An excess of GSH leads to the reduction of the disulfide
bond of the substrate and an excess of GSSG to oxidation. Considering all these findings, it can be
concluded that disulfide bond reduction by HsGrx1 most likely follows the mechanism proposed
by Ukuwela et al. The present work represents the first application of the DEFTB/A-ML approach
since its introduction, demonstrating its potential for accurate free energy simulations at moderate
computational cost. This framework can be readily applied in future studies to achieve extensive
sampling with improved accuracy. Further investigations may explore alternative mechanistic
models, comparing their regioselectivities and barrier heights with the results reported here.
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8. Transferring Collective Variables from Molecular
Dynamics Simulations to QM/MM Simulations
for Reactivity Exploration in Dynamic Systems

8.1. Introduction

Proteins exhibit a hierarchical organization spanning multiple spatial and temporal scales, en-
compassing local chemical reactivity, non-covalent interactions, and large-scale conformational
motions. Together as outlined in Chapter 1, these layers define the fundamental framework from
which biomolecular structure and function emerge. However, inquiring into biomolecular processes
requires more than methods that merely span a spectrum of spatial and temporal scales. Different

timescales can be coupled in nonlinear ways, forming hierarchical dynamics between levels.337

Reactions in proteins occur at specific sites, where substrates bind, undergo sequential transfor-
mations, and are released as products. These chemical steps are often coupled to slower confor-
mational motions that gate access to the active site, reshape binding sites, and reorganize local
environments, thereby modulating reactivity.243:33%:339 For instance, human glucokinase exhibits
distinet conformers whose relative populations determine catalytic rates.?*® Importantly, the cou-
pling can occur bidirectionally. Fast, local fluctuations and reactive events can feed back onto
slower processes, biasing or even triggering larger-scale rearrangements.?! In dihydrofolate reduc-
tase, ligand binding, while local and comparatively rapid, can reorganize the ps—ms conformational

dynamics of the enzyme.?4?

Hierarchical coupling between fast and slow motions has also been observed in T4 lysozyme,
where long molecular dynamics (MD) simulations combined with dimensionality reduction and
targeted perturbations revealed that rapid hinge opening—closing is linked to a slower locking
step.2? Reciprocal interactions between reactivity and conformational dynamics are further evi-
dent in the formation of a mature fibrin clot from fibrinogen precursors in blood coagulation.?4
Fast thiol-disulfide exchange (TDE) reactions (see Section 1.1.1) occur at specific cysteine pairs
and alter local protein topology.!* 16 Observations of TDE in protein systems suggest that these
reactions redistribute strain and reorganize hydrogen bonding and electrostatics.?34:344:345 Accord-
ingly, these local changes propagate across the molecule on slower timescales, producing domain
movements and interface repacking that reshape access to reactive cysteines and modify their
microenvironments. The slow-motion cycle can be reset when a subsequent TDE, now primed by

the preceding global rearrangement, occurs.'” 19 Thus, for the reaction network it can be expected
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that rapid reactive steps gate slow structural transitions and that the resulting conformational
state, in turn, gates the next reaction, perpetuating a reaction-dynamics cycle.

To elucidate the mechanistic coupling between chemical reactivity and conformational dynamics
in such systems, methods are needed that can resolve individual reaction events and relate them
to slower, large-scale structural transitions. A pragmatic approach is to generate conformational
ensembles with MD and then probe the reactivity at selected conformations.?*6347 This manual
selection of states is only feasible for systems with few accessible states and clear timescale separa-
tion. For macromolecules that undergo conformational cycles or exhibit promiscuous interactions,
this approach quickly becomes intractable because of the number of states to be considered. This
shifts the focus toward approaches that also account for transitions between states, thereby pro-

viding a more complete picture of how molecular processes unfold.

In response, suitable methods should avoid bias towards predefined states and instead enable a
more continuous exploration of states. Various methodological advances aim to capture such dy-
namics more effectively. The combination of kinetic Monte Carlo with MD extends the timescales
that can be accessed within a classical framework and allows for reactivity.?43%9 Griter et al.

350 and hydrogen atom transfer3®! can

applied this strategy to investigate how local bond scission
trigger large-scale structural rearrangements in collagen. However, such approaches remain con-
strained by the approximations inherent to the underlying force field and the assumption of strict

timescale separation.350

On the other hand, quantum mechanics/molecular mechanics (QM/MM) simulations allow sam-
pling of protein conformations while retaining reactivity at active sites, reducing computational
cost and extending timescales. However, the computational cost of the QM region still limits
extensive conformational exploration.'?"339 In their 2021 review,'?” Cui et al. discuss the im-
provement of sampling efficiency in QM/MM simulations as one of the major “burning issues”
in the field. In principle, adaptive QM/MM schemes'" 156 could be used to apply quantum
mechanics only when reactions occur and revert to more efficient models when conformational
sampling dominates. However, these approaches are still under development and not yet ready for
simulations of macromolecules. They are methodologically sophisticated and can lead to temporal
and spatial artifacts and additional uncertainty in calculations.!47151:153 An alternative avenue is
a static QM /MM partitioning combined with enhanced sampling to accelerate the exploration of
protein conformations directly in the QM /MM framework. Starting from a typical QM /MM setup
that employs a set of collective variables (CVs) to sample the reaction within the QM region, one
can extend this set to also accelerate sampling of the MM environment, such as conformational
changes in proteins. Efficient sampling of the environment reduces simulation time needed to
reveal potential couplings between chemical reactions and conformational dynamics.'?” Despite
its promise, the explicit use of a second set of CVs to characterize the environment has rarely
been applied in QM /MM simulations, and its capacity to uncover mechanistic couplings remains
largely unexplored. Reported applications have been restricted to additional CVs targeting local
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133,352
353

motions of single residues, or to less specific descriptors of protein structures such as sol-

vent accessible surface area3® or root-mean-square deviations.?** A notable gap remains in the

systematic developments and applications.

This limited progress underscores a critical challenge: suitable CVs for complex macromolecular
motions remain difficult to define, and the computational expense of QM /MM restricts the sta-
tistical robustness needed to learn effective collective variables (CVs) via machine learning (ML)
algorithms. 191,192,195,197,355.356 Ty address this challenge, the present exploratory study transfers
machine-learned CVs obtained from long classical MD to QM/MM simulations in order to im-
prove conformational sampling efficiency. The learning procedure employs two classical linear
dimensionality-reduction algorithms, principal component analysis (PCA) and time lagged inde-
pendent component analysis (tICA). As a pilot system, TDE in a simplified model of fibrinogen
is considered, which exemplifies the coupling of disulfide exchange with protein conformational
dynamics. The dimensionality-reduction task compresses the feature space defined by five di-
hedral angles that characterize the conformational dynamics of a single disulfide bond into a
1-dimensional CV.3°73%8 The choice of these dihedral descriptors is motivated by the established
observation that distinct disulfide conformations are associated with specific structural and func-
tional roles in proteins.?®"3% Although developed in this specific context, the strategy relies on
classical ML to reduce complexity, preserve interpretability, and facilitate evaluation and trans-
ferability, providing a foundation for broader applications in QM/MM simulations.

8.2. Methods

The computational workflow of this study integrates classical MD and QM /MM simulations in a
sequential manner to address the challenge of sampling conformational changes coupled to chemical
reactivity. (1) Classical MD simulations were carried out to generate statistically robust training
data and ensure adequate sampling of rare conformational events. (2) Linear dimensionality
reduction methods, namely principal component analysis (PCA) and time-lagged independent
component analysis (tICA), were applied to the trajectory data to extract low-dimensional CVs
that encode essential dynamical modes. PCA?38:3% and tICA309361 have been successfully applied
to derive CVs for protein dynamics in classical MD simulations. The aforementioned approaches
were chosen because they are computationally inexpensive and data efficient, and they produce
interpretable variables with fewer parameters than deep learning methods, thereby improving
validation, reproducibility, and transferability across systems.!90:293:231 (3) The learned CVs were
applied in QM /MM metadynamics (MTD) simulations, combined with a second CV describing
the TDE to construct a 2-dimensional enhanced sampling setup. Finally, the resulting simulations
were analyzed to characterize transition events, probe the coupling between protein conformational
changes and chemical reactivity, and assess the structural heterogeneity of the space sampled.
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Model

A simplified system for studying reaction dynamics in fibrinogen aggregates was constructed from
two small protein models linked by a disulfide bridge. Homo sapiens glutaredoxin (Grx) (PDB ID:
1JHB) and HMA4n (Hma) (PDB ID: 2KKH) were covalently linked by a disulfide bridge between
Cys23 of Grx and Cys27 of Hma. Cys26 of Grx is deprotonated and can approach the disulfide
bridge to initiate a TDE. This pilot system allows the probing of domain movements and interface
repacking, since the minimal structural unit consists of a central disulfide and the surrounding
interfaces (Figure 8.1C). The prospective application of dimensionality reduction aims to reduce
the 10-dimensional feature space describing the torsional dynamics of the critical disulfide bond to
a single CV (see Machine Learning below). The choice of these dihedral descriptors is motivated
by the well-established observation that distinct disulfide conformations are associated with spe-

357358 By capturing these fundamental processes

cific structural and functional roles in proteins.
in a reduced system, the dynamics of the larger macromolecular complex can be repetitively

reconstructed by extending the number of considered disulfide moieties.

Classical MD Simulation

All simulations were performed with periodic boundary conditions using GROMACS 2020.2362 and
the AMBER99SB-ILDN force field.??” Short-range electrostatic and Lennard-Jones interactions
were calculated with a cutoff of 10 A, while long-range electrostatics were treated with particle-
mesh Ewald summation.'% The neighbor list was updated every 10 MD steps. The leap-frog

163 was used with a 2 fs integration time step. Initial atomic velocities were drawn

t332

integrator
from a Maxwell-Boltzmann distribution at 300 K and controlled by the Bussi thermosta
with a relaxation time constant of 0.1 ps. Pressure was maintained at 1 bar using the Parrinello—
Rahman barostat!™ with a coupling constant of 2.0 ps, isotropic coupling, and a compressibility of
4.5 % 107° bar ! in all directions. The prepared systems were equilibrated in two stages, beginning
with a 10 ns isothermal-isochoric ensemble (NVT) run followed by a 10 ns isothermal-isobaric
ensemble (NPT) run. During equilibration, harmonic position restraints with a force constant of
1000 kJ mol™! nm~2 were applied. After equilibration, unrestrained production simulations of
1 ps in length were performed under the same conditions, and snapshots of the trajectories were
saved every 80 ps, resulting in a dataset of 12500 configurations.

Machine Learning

Features. The new CV was learned from 12500 configurations generated by classical MD sim-
ulations. The five dihedral angles spanning the disulfide bond were chosen as input features
(Figure 8.2). The choice of these dihedral descriptors is motivated by the well-established obser-
vation that distinct disulfide conformations are associated with specific structural and functional

roles in proteins.?>"3%® Because dihedral angles are periodic, they cannot be directly employed in
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Figure 8.1.: Hierarchical organization and model system of disulfide-coupled dynamics in fibrinogen aggregates.
(A) Structural model of fibrinogen aggregates showing the spatial distribution of disulfide bonds
(yellow spheres) along the longitudinal axis. (B) Simplified model composed of Grx (blue) and Hma
(red) covalently linked by a central disulfide bridge. The system size is reduced to an approximate
diameter of 6 nm. The five torsional angles (x1—x5) across the disulfide linkage define the structural
features used for machine learning, while the distances d; and ds define the CV describing the TDE.
(C) Representative twisting and compressive motions at the protein—protein interface, constrained
by the central disulfide bond, are shown as plausible modes of flexibility implied by general structural
considerations. (D) Ilustration of conformational changes following thiolate—disulfide exchange. The
structural rearrangement is depicted as a hinge motion between two a-helices, representing a local
conformational response within a larger framework.

ML due to numerical discontinuities. To ensure continuity, each dihedral was embedded in Eu-
clidean space by transforming it into its sine and cosine components, thereby mapping the torsion
onto the unit circle. Formally, a torsion angle  is represented as the pair (cosx,sin x).3*"3® This
transformation expands the feature set from five torsional angles to ten sine—cosine components,

yielding a smooth and Euclidean representation well suited for ML applications.

Principal Component Analysis. PCA was carried out using the Python package scikit-learn
(version 1.6.1). The exact full singular value decomposition algorithm was applied, and the data
were centered prior to transformation. All components of the resulting space are listed in Ta-
ble C.1, and the corresponding explained variances are shown in Figure 8.3 (left). Further details
on PCA can be found in Section 5.2.1.
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Figure 8.2.: Definition of the five torsional angles in a disulfide bond. The torsions x1, x2, X3, X4, X5 are defined
by consecutive dihedral angles along the N-C—-C—-S—S—C—C—N linkage. In the present construct, the
sequence of torsions is oriented from the Grx side of the disulfide bridge toward Hma. Together,
these five dihedral angles describe the conformational flexibility of the disulfide bridge.363

Time-Lagged Independent Component Analysis. tICA was performed using the Python
package PYEMMA (version 2.5.12) without kinetic mapping and with a lag time of 0.8 ns. VAMP2
scores for different lag times are presented in Figure C.1. All components of the resulting space
are listed in Table C.2, and the corresponding implied timescales are shown in Figure 8.3 (right).
Additional details on tICA are provided in Section 5.2.2.

QM/MM Simulations and Enhanced Sampling.

QM /MM Simulations. If not otherwise stated, simulation options were retained from the pre-
ceding classical MD setup. The QM region comprised the side chains of the three cysteine residues
directly involved in the thiol-disulfide exchange (Cys23 and Cys26 of Grx and Cys27 of Hma).
The truncation was applied at the Cg atom, with the bond between C, and Cg capped by hydro-
gen link atoms placed at a fixed position along the bond vector. In total, the QM region consisted
of 12 residue atoms and 3 link atoms. The QM /MM partitioning followed the setup previously
reported in Ref. [334]. The QM region was treated using DFTB3,12%:122:288 yging the 30b!23:124 pa-
rameter set and a reparameterized S-S repulsive potential as presented in Ref. [221]. Electrostatic
interactions between the charged QM region and the MM environment were scaled by a factor
of 0.75. This scaling corresponds to the inverse square root of the optical dielectric constant and
compensates for the absence of explicit electronic polarization in the MM environment.303:304,334
To allow the system to adapt to the QM /MM Hamiltonian, an initial equilibration was carried
out via a 100 ps NPT QM/MM simulation with a 0.5 fs integration step. The equilibrated struc-
tures were then used as start structures for MTD simulations, which were performed with a 1 fs
integration step. All simulations were performed with a local implementation of QM/MM in
GROMACS 2020.2%%0 and DFTB+,?! which is available from a public repository,?92:293 patched
with PLUMED?33:331 (version 2.5.1).

Enhanced Sampling. One-dimensional (1D) and two-dimensional (2D) multiple-walker MTD

181,364,365 simulations were performed using 24 walkers with 2 ns simulation time each, resulting in
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a total of 48 ns of trajectory data. In the 1D setup, the first collective variable CV; described the
TDE by measuring the distances (dj, dg) of the lateral sulfur atoms (S1 and S3) from the central
sulfur atom (S2) within the disulfide bond, as shown in Figure 8.1 panel B. S1 is located in Cys26 of
Grx, which is deprotonated and can initiate TDE; S3 is located in Cys27 of Hma. CV; was defined
as the antisymmetric distance coordinate difference d; —ds. In the 2D setup, CV1 was retained and
a machine-learned CV was included as CVsy to explore the conformational space. CVy was defined
by the PCVARS directive in PLUMED. The Gaussian height was set to 0.5 kJ mol~! and deposited
every 0.5 ps. The deposited biases of all walkers were exchanged at the same interval. The
Gaussian width was set to 0.01 for CVy and 0.05 for CVy. Additional restraints were introduced
to restrict the conformational space and prevent undesired side reactions within the QM region.
The general setup followed the protocol in Ref. [334], where details on the switching functions and
restrained coordination numbers can be found. Restraints were applied to confine the disulfide
system within a physically meaningful region of conformational space by limiting sulfur—sulfur
separations to below 10 A, excluding bond-breaking events without a proximal thiolate through
coordination-number restraints between the three sulfurs, and preventing Cg deprotonation by
restraining the coordination between each sulfur and its Cg—H atoms.

Analysis

Additional analyses were carried out to assess sampling efficiency, structural heterogeneity, and
protein—protein interactions. The attacking angle was defined by atoms S1-S2—S3 (angle be-
tween Cys26,Cys23 and Cys27). The radius of gyration was computed with PLUMED, exclud-
ing the highly flexible C-terminal tail of Hma (residues 108-120) to avoid spurious fluctuations.
Protein—protein interactions near the disulfide bridge were quantified with PLUMED by calcu-
lating coordination numbers (F.) between atoms of both protein partners within a 6 A cutoft.
The solvent-accessible surface area (SASA) was calculated for the cysteines forming the disulfide
bridge via the Hasel?% approximation implemented in PLUMED. Conformational diversity was
visualized using nonlinear dimensionality reduction via t-distributed Stochastic Neighbor Embed-
ding (t-SNE), implemented in scikit-learn (version 1.6.1) with a perplexity of 40 and a learning
rate of 200. The t-SNE algorithm projects high-dimensional data into a 2D map that preserves
local structural relationships, enabling intuitive visualization of distinct conformational states.367
Data from all simulations were labeled and combined to calculate the t-SNE projections used for
comparing the sampled configurations. All 10 sine—cosine components of the torsion angles were
used as input. For an additional input set, the input was extended by the radius of gyration and
the coordination numbers (F.). To further delineate discrete interaction states, a 2D Gaussian
Mixture Model (GMM) was fitted to the results of prior analyses using scikit-learn (version 1.6.1).
The attacking angle and the solvent-accessible surface area (SASA) disulfide were used as local
descriptor and the radius of gyration and the coordination numbers (FP.) were used as global de-

scriptions. Models with one to six components were trained with full covariance matrices, five
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initializations, and a covariance regularization of 107%, and the optimal model was chosen by mini-
mizing the Bayesian information criterion.?%® For the analysis of structural heterogeneity based on
the 2D free-energy surface (FES), representative structural clusters were extracted from specific
regions (“landmarks”). These landmarks were defined by rectangular windows in the respective 2D
CV spaces. In the 2D PC1 QM /MM simulations, four regions were assigned according to their z-
and y-coordinate ranges: Landmark 1 (z: 0.23-0.47, y: —1.40 to —0.14), Landmark 2 (z: 0.11-0.24,
y: 0.88-1.26), Landmark 3 (z: —0.29 to —0.07, y: 0.88-1.26), and Landmark 4 (x: —0.30 to —0.15,
y: —1.00 to —0.47). Similarly, in the 2D IC1 QM /MM simulations, four corresponding regions were
defined as Landmark 1 (z: 0.20-0.30, y: —1.80 to —1.40), Landmark 2 (z: 0.20-0.30, y: 0.20-0.40),
Landmark 3 (2: —0.30 to —0.10, y: 0.20-0.40), and Landmark 4 (x: -0.30 to —0.10, y: —1.90 to —1.50).
The free-energy surface (FES) for component two (PC2 and tIC2) are shown in Figure C.6.

8.3. Results and Discussion

This study investigates how machine-learned CVs derived from classical MD simulations can en-
hance conformational sampling in QM/MM simulations of TDE as a pilot system for coupling
between chemical reactions and conformational changes in protein systems. A detailed descrip-
tion of the computational workflow is provided in Section 8.2, and a description of the model
system is given in Figure 8.1 to establish the context. The results are presented in three parts:
(1) The machine-learned CVs optimized for classical MD trajectories are analyzed to verify that
they capture physically meaningful dynamical modes and are suitable for application in QM /MM.
(2) The 2D QM/MM MTD simulations are run and evaluated by comparing sampling efficiency,
configurational coverage, and convergence with classical MD and 1D QM /MM simulations. This
analysis shows how the learned CV affects reactivity and conformational sampling. (3) Based
on the combined structural and energetic data, a mechanistic hypothesis for the thiol-disulfide
exchange reaction is formulated.

8.3.1. Evaluating CVs

The PCA and tICA were run on 12500 configurations generated by classical MD simulations
and used sine—cosine components of the five torsion angles in the disulfide bridge as features.
Before employing the learned CVs in QM/MM simulations, it is essential to evaluate them to
ensure their validity. This assessment can be conducted directly on the classical MD data. A new
embedding is only meaningful if it provides a reduced representation that preserves the targeted
metric of the original feature space within a low-dimensional space. This property is typically
reflected by a spectral gap between successive components.?36240 For PCA, the targeted metric is
the explained variance, shown in Figure 8.3 (left), which exhibits a distinct gap between the first
and second components. The first principal component alone already captures 85% of the total
variance, demonstrating that the dimensionality can be effectively reduced from ten to one without
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substantial information loss. For tICA, the targeted metric is the implied timescale derived from
the eigenvalue spectrum (Figure 8.3, right). The first component captures the slowest dynamical
mode with an implied timescale of 184.1 ps, while for the second component it decreases sharply to
4.8 ps, again revealing a significant spectral gap. This confirms that both PCA and tICA efficiently
compress the torsional feature space into a single dominant CV that retains the essential dynamical

information of the original data.
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Figure 8.3.: Spectral properties of the PCA and tICA models trained on the torsional feature set (five (cos x, sin x)
pairs). The left panel shows the explained variance of the first ten principal components obtained
from the PCA model, and the right panel displays the eigenvalue spectrum and corresponding implied
timescales of the tICA model. Both reveal a clear spectral gap, indicating that a single dominant
component captures the essential slow dynamics of the system.

The presence of a characteristic spectral gap confirms that both PCA and tICA perform effective
dimensionality reduction. However, this criterion alone is not sufficient to ensure that the resulting
components represent physically meaningful motions of the molecular system. To verify their
relevance, the MD trajectory was projected onto the first components obtained from PCA and
tICA. Both time series exhibit a closely matching temporal evolution, characterized by a sharp
fluctuation at approximately 110 ns, a major transition around 650 ns, and a smaller rearrangement
near 900 ns, as shown in Figure 8.4. In contrast, projections onto higher components (Figures C.2
and C.3) display only minor fluctuations without distinct switching behavior, reinforcing the
interpretation of a spectral gap and indicating that only the first component describes a collective

transition between two dominant states.

This conclusion is further supported by the pairwise scatter plots of the first five components
obtained by dimensionality reduction (Figures C.4 and C.5 for PCA and tICA, respectively),
where only combinations including the first component separate into two distinct clusters, while
all others form diffuse, spherical distributions. The exploration of the 10-dimensional feature space
sampled during the MD trajectory can be visualized by reducing it to two dimensions using t-SNE

for illustrative purposes. Figure 8.5 shows four color-coded clusters that correspond to distinct
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regions of the original feature space. These clusters indicate that specific time intervals of MD
trajectories occupy separate regions in the high-dimensional torsion space and reveal underlying
dynamical transitions between them. Overall, the leading components (PC1 and IC1) thus provide
a compact, low-dimensional representation that distinguish two dominant conformational states,
supporting their suitability as collective variables CVs for subsequent QM /MM simulations.
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Figure 8.4.: Projection of the molecular dynamics trajectory onto the first component obtained from PCA (upper
panel) and tICA (lower panel). Both projections reveal a comparable temporal evolution, illustrating
that the leading component in each method captures a dominant mode of the system.

To resolve which structural motions underlie the state transition captured by the first principal
component (PC1) and the first independent component (IC1), the torsional features were examined
directly. Figure 8.6 (upper panel) shows the time series of the ten input features, represented as
five sine—cosine pairs, in a window centered on the transition at 650 ns. The largest, concerted
changes occur for i, x2, and ys. Figure 8.6 (middle panel) reports the corresponding x torsion
angles over the full trajectory. Notably, the transition at 650 ns coincides with step-like shifts in
X1, X2 and x5 that occur only once and persist thereafter. The corresponding structural change
is shown in the lower panel. Changes in y2 and x5 mark the event and indicate a concerted
reorientation of the cysteine side chains around the disulfide bond. For reference, y2 belongs to
the Grx side of the bridge, whereas x5 belongs to the Hma side. This reorganization primes the
system for the global rearrangement and also modulates local dynamics of the disulfide bridge.

Both the first principal component (PC1) and the first independent component (IC1) capture
the same transition events, despite being optimized for distinct criteria, maximal variance and
maximal autocorrelation, respectively. This agreement indicates that the targeted transition is
characterized by both high variance and slow dynamics, consistent with a free energy surface com-
posed of two narrow basins separated by a broad barrier, where intrastate fluctuations are small
compared to those associated with the transition. Previous studies have emphasized that tICA
may occasionally detect statistically insignificant'¥! or random modes®%? due to its bias toward
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Figure 8.5.: Two-dimensional t-SNE projection of the 10-dimensional torsional feature space sampled during the
MD trajectory. Four color-coded clusters (red, green, blue, yellow) correspond to distinct regions of
the high-dimensional space, indicating that specific segments of the PC1 trajectory populate separate
regions associated with characteristic dynamical states. The insets show the corresponding PC1 time
series, highlighting the intervals that map onto each cluster.

rare events. However, no such artifacts are observed here, confirming that both methods identify
physically meaningful collective motions. The individual components for all construced CVs are
shown in Table C.3, with cosine similarity and correlation coefficients around 0.9, indicating high

correspondence.

A noticeable similarity is observed in the temporal evolution of the component weights ¢; pc1
(left) and ¢;1c1 (right), as shown in Figure 8.7. The variance of these weights is higher for the
features corresponding to the Hma side of the disulfide bridge (x3—x5), which could be attributed
to the flexible loop from which the cysteine residue extends toward Grx. The weights of the PC1
components respond most clearly to the major transition at 650 ns and subsequently converge to
stable values. The IC1 weights exhibit stronger initial fluctuations but gradually stabilize toward
the end of the trajectory, indicating a slower convergence of the independent component.

A final aspect to consider is whether the observed conformational changes at the disulfide bridge
couple to structural rearrangements spanning a lager part of the protein complex. Figure 8.8
compares the time evolution of PC1 (panel A) with the torsion angles x1—x5 (panel B), the radius
of gyration R, (panel C), and the coordination number F. between the protein interfaces (panel D).
The selected quantities provide measures of the protein environment: the y; angles capture local
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Figure 8.6.: Upper panel: sine—cosine representations of x1 to x5 in a window around 650 ns, showing concerted
sign changes most prominently for yi, x2, and x5. Middle panel: x; to x5 torsion angles over the
full trajectory; the 650 ns event corresponds to step-like, persistent shifts in 1, x2 and ys, with
smaller adjustments in the remaining torsions. In both panels, solid lines denote features with the
largest changes, whereas dashed lines denote features with comparatively minor variations. Lower
panel: corresponding concerted reorientation of the cysteine side chains around the disulfide bond.

conformational changes directly linked to the disulfide geometry, R, reflects global changes in
molecular compactness and overall shape, and P, quantifies interfacial contacts that report on
packing and interaction strength between the two protein domains. In contrast to the step-like
transitions observed for the disulfide torsions, both R, and P, vary more gradually over time,
with their extrema around 350 ns. Minor but discernible shifts also occur near 110 ns and 650 ns,
coinciding with transitions detected in PC1. These trends indicate that variations in the disulfide
geometry are accompanied by subtle adjustments of protein packing and overall compactness.

Overall, the analysis shows that the machine-learned CVs derived from classical MD are suited for
use in QM /MM simulations. Both PCA and tICA reveal a clear spectral gap and capture a distinct
transition involving a concerted reorientation of the cysteine side chains. The corresponding mode
links local disulfide dynamics with broader structural rearrangements, indicating that changes in
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Figure 8.7.: Time evolution of the component weights ¢; pc1 (left) and ¢; 1c1 (right) derived from the sine-cosine
representations of x1—x5. The PC1 weights converge steadily after the transition, while IC1 shows
stronger initial fluctuations and slower stabilization.

the bridge geometry coincide with subtle adjustments in protein packing and compactness. Further
2D QM /MM simulations will supplement the current view of whether these motions are correlated.
They may also provide greater capacity to explore how this relationship is relevant for describing

or controlling the coupling between reactivity and conformational change in QM /MM simulations.
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Figure 8.8.: Time evolution of local and global structural descriptors compared to the projection onto PC1. (A)
Projection of the MD trajectory onto PC1, identifying major conformational transitions at approxi-
mately 110 ns and 650 ns. (B) Time series of the torsional angles x1—x5 describing the local geometry
of the disulfide bridge; step-like changes in x2, x2 and x5 mark the transition. (C) Radius of gyration
R of the protein, reporting on overall compactness and global shape; gradual changes are observed
over time, with minor perturbations coinciding with the main transition events. (D) Coordination
number P, between the protein interfaces, reflecting interdomain packing and contact formation;
local minima at 110 ns and 650 ns indicate transient loosening of the interface. Wells or transition
points that coincide with the events observed in PC1 are indicated by red dashed lines; where gradual
trends are detected, their direction is highlighted by red arrows.
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8.3.2. Applying CVs in QM/MM

The newly derived and validated CVs were subsequently employed in QM /MM enhanced sampling
simulations. 1D and 2D QM /MM multiple-walker metadynamic simulations were performed with
a total simulation time of 48 ns each. The first collective variable, CVy, described the TDE. In
the 2D setup, CV was retained and a machine-learned CV was included as CVy to explore the
conformational space. The 1D setup serves as a reference to judge the influence of additional
CVs on sampling. Central to this evaluation are the sampling efficiency within the CV space, the
10-dimensional torsional feature space, and the influence of global conformational changes.

The underlying idea is to transfer the machine-learned CV from classical MD simulations to the
QM/MM framework in order to enhance sampling of the relevant conformational space. These
CVs were trained to capture a dominant transition that is accessible on the MD timescale. The
states associated with these transitions are referred to as the pre-jump and post-jump states, as
illustrated in Figure 8.4. Consequently, improved sampling in the QM /MM simulations is achieved
when these states are visited and interconverted more frequently.

Figure 8.9 illustrates the exploration of the CV space during the QM/MM metadynamics simu-
lations. Each column corresponds to a distinct setup: the first two employ 2D simulations using
either the first principal component (PC1) or the first time-lagged independent component (IC1)
as the second CV, while the third column represents the 1D reference simulation along the reac-
tive CV1. The rows display projections onto the PC1 and IC1 components, respectively, enabling
a direct comparison of the conformational space sampled in each setup. The machine-learned
CVs were derived from classical MD trajectories in which the disulfide bridge remained intact
and therefore capture the dynamics of the covalently connected cysteine pair. In contrast, the
QM /MM simulations explicitly sample the TDE, involving bond rupture and reformation, which
introduces distinct dynamical regimes. Accordingly, configurations corresponding to the broken
disulfide bond are shown in pale colors. These regions lie outside the domain where the learned
CVs are well-defined. The dashed lines indicate the values of the CV that define the pre-jump and
post-jump states observed in the MD trajectory (Figure 8.4). Sampling efficiency can be assessed
according to three criteria: the frequency of transitions between both states, the residence times

within each state, and the relative populations of the broken and intact disulfide forms.

The sampling behavior differs markedly between the setups (Figure 8.9). Both 2D simulations
employing PC1 and IC1 as the second CV reach the post-jump state consistently. In contrast, the
1D simulation visits this state only briefly, as indicated by sharp transient spikes, suggesting short-
lived fluctuations rather than stable configurations. The 2D simulations, however, not only reach
but also maintain the post-jump state for extended periods, demonstrating improved stability and
more extensive sampling of the relevant conformational space. Moreover, in the 1D simulation,
the system rapidly proceeds to the broken disulfide state and remains there for most of the
trajectory. In the 2D setups, by contrast, the reduced population of the broken disulfide form
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indicates that inclusion of the additional CV facilitates broader and more efficient exploration of
the conformational landscape.

In both 2D setups, PC1 and IC1 exhibit stable sampling of the post-jump state. However, the
sampling is generally more efficient within the space defined by the employed CV. For example,
the simulation using PC1 as the second CV shows a higher transition frequency and greater
state stability along PC1, while IC1 in this setup is still sampled more effectively than in the
1D reference. Conversely, in the 2D simulation employing IC1, this component is sampled more
extensively than PC1, although the difference is less pronounced. Notably, the broken disulfide
state is reached more readily and explored more frequently in the IC1 setup, suggesting that PC1
favors conformations less conducive to bond cleavage. This offers a more nuanced view compared
to the analysis based on the classical MD results, in which the CVs exhibited nearly identical
projections.

QM/MM 2D PC 1 QM/MM 2D IC 1 QM/MM 1D
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Figure 8.9.: Time evolution of the first principal (PC1, top row) and time-lagged independent (IC1, bottom
row) components during the QM/MM metadynamics simulations. Columns correspond to different
simulation setups: 2D simulations using PC1 (left) or IC1 (middle) as the second collective variable,
and the 1D reference simulation (right). Dashed lines indicate the CV values defining the pre- and
post-jump states observed in the classical MD trajectory. Pale colors denote configurations associated
with the broken disulfide bond, where the machine-learned CVs lose their intended definition. Total
simulation time for each setup was 48 ns.

The 2D QM /MM metadynamics setups achieved better sampling of the IC1 and PC1 spaces than
the one-dimensional setup. A more comprehensive assessment, however, is obtained by examin-
ing the full 10-dimensional torsional space, which provides a detailed view of how the underlying
conformational space is explored. Figure 8.10, panel (A), presents the t-SNE projection of this
10-dimensional torsional space onto two dimensions. The first column shows the conformational
space sampled in the classical MD simulation, with color coding distinguishing the pre-jump and
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post-jump states. The subsequent columns show the corresponding projections for the QM /MM
metadynamics simulations, where the post-jump states from the classical trajectory are retained
as a reference. A comparison based on the projected area of sampled configurations indicates that
sampling efficiency increases in the order: 1D < 2D (IC1) < 2D (PC1). Overall, the 2D simu-
lations achieve a more heterogeneous and extensive exploration of the conformational landscape.
Remarkably, in contrast to the observations made in the reduced CV spaces (Figure 8.9), the post-
jump states are not sampled by the QM /MM simulations in the 10-dimensional torsional space.
Instead, all three simulations predominantly explore conformational clusters located between the
regions corresponding to the post-jump states form the classical MD, with the 2D setups showing

notably denser coverage of these intermediate regions.
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Figure 8.10.: t-SNE projections of the sampled conformational space based on torsional and global structural
descriptors. Panel (A) shows the 10-dimensional torsional feature set, while panel (B) includes
the extended twelve-dimensional set incorporating the radius of gyration and coordination number
of interfacial residues. Each column corresponds to one simulation setup: classical MD (left), 2D
QM/MM MTD using PC1 and IC1 as collective variables (middle), and 1D QM/MM MTD (right).
Insets highlight regions near the classical post-jump basin. The inclusion of global descriptors in the
12D projection refines the separation between pre- and post-jump ensembles and reveals distinct
sampling behavior among the different setups.

A possible explanation for the absence of stabilized pre- and post-jump states involves global
protein conformational changes. As discussed in the analysis of the CVs, Figure 8.8 illustrates
how the global protein structure can undergo continuous drift, which remains unaccounted for by
the learned CV. To test this hypothesis, the same t-SNE clustering analysis was repeated using an
extended feature set comprising twelve dimensions. The additional features included the radius of
gyration and the coordination number characterizing the interacting protein surfaces. The results,
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shown in Figure 8.10, panel (B), follow the same structural layout as panel (A). Incorporating
these global descriptors resulted in a clearer separation of the conformational clusters, suggesting
that the pre- and post-jump states differ from the conformations sampled in the 2D QM/MM
simulations, due to changes in the overall protein structure. Furthermore, the analysis reveals
that the 1D simulation fails to capture a cluster near the reference post-jump state, which is
sampled in the 2D setups. This observation suggests that the machine-learned CV is not fully
orthogonal to global protein conformational dynamics and may implicitly facilitate sampling of
the corresponding conformational space.

These results confirm that the overall sampling of the genuine 10D torsion space is more wide-
ranginge in the 2D setup than in the 1D case. However, enforced exploration of previously observed
states in the classical MD simulations is hindered in the QM /MM simulations for two main rea-
sons. (1) The construction of the machine-learned CV introduces a higher degree of degeneracy.
Even when the CV values appear similar, the corresponding conformational ensembles can differ
substantially. (2) Continuous drift of the global protein structure can stabilize distinct conforma-
tional states, preventing their recurrence when PC1 and IC1 are applied as CVs in the QM /MM
simulations.

8.3.3. Mechanism Hypotheses

The 2D setup establishes a framework for systematically modeling the underlying reaction mecha-
nism. By mapping the reaction pathway on the FES, this approach integrates both conformational
and reactivity information. The improved sampling captures a broader range of relevant struc-
tures, offering a more reliable basis for identifying the conformational changes that drive the
reaction. Once the critical regions and transition states on this surface are identified, a detailed
analysis of structural heterogeneity can be conducted to characterize the ensemble that dominates

each segment of the reaction path.

Panel B and E in Figure 8.11 show the 2D FESs obtained using the PC1 and IC1 setups, re-
spectively. Each FES exhibits a similar topology characterized by two broad basins along the
PC1/IC1 direction, connected by a transition region at high CV values that forms a corridor. Lo-
cal minima were defined as landmarks, as indicated by the numbers in the FESs. The presence of
this restricted pathway indicates that the simulations sample conformations of differing reactivity.
The basin lowest in free energy in both setups is located at positive values of d1-d3, representing
the reactant disulfide (initial state). The second basin, corresponding to the product disulfide,
is shallow and lies 12 kcal mol™' higher in energy than the former. This destabilization likely
arises from the Grx to Hma binding, which is unfavorable and imposes strain on the newly formed
disulfide bond. The FES based on PC1 shows a transition state at approximately 20 kcal mol™!,
about 2 kcal mol~! lower than that obtained with IC1. However, the barrier between landmarks 2
and 3 is similar for both surfaces, around 17.5 kcal mol~!. In the PC1 FES, the transition state
is not elevated relative to landmark 2, but landmark 1 is lowered in energy, resulting in a deeper
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basin with a relative barrier of about 5 kcal mol~!. This feature is absent in the IC1 FES, where

the corresponding basin is shallower with a relative barrier of about 2.5 kcal mol™!'. Thus, PC1

was able to identify lower-energy conformations in the landmark 1 region.
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Figure 8.11.: Local and global structural heterogeneity along the 2D QM /MM MTD simulations performed using

PC1 (top row) and IC1 (bottom row) as collective variables. (A,D) Local features capture struc-
tural variability around the disulfide bridge based on the disulfide SASA and the nucleophilic attack
angle between the nucleophilic and electrophilic sulfur atoms. (B,E) Free energy surfaces (FESs)
obtained from the 2D projections using PC1 and IC1, respectively, showing four main regions (1-4)
corresponding local minima along the reaction coordinate. Contours are drawn in 2.5 kcal mol~!
increments. (C,F) Global descriptors represent large-scale conformational changes based on the
protein radius of gyration and the interdomain coordination number, reporting on molecular com-
pactness and interfacial packing. Clustering was performed using a Gaussian Mixture Model (GMM)
to identify distinct structural ensembles associated with local and global heterogeneity along the
reaction pathway. The grid sectors in the left and right panels correspond to the four regions indi-
cated in the central panels, illustrating the characteristic structural features within each basin. The
GMM weights (w) are indicated for each cluster, and the ellipsoids represent one standard deviation
of the corresponding Gaussian components.
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Having identified the landmarks, the structural analysis was further refined by clustering local and
global descriptors. Clustering is widely used to identify reaction intermediates, trace transition
pathways, and distinguish kinetically distinct conformational ensembles.?31:370:371 The clustering
was performed using a Gaussian Mixture Model (GMM), which models the observed density as a
superposition of Gaussian distributions and thus helps to delineate underlying processes and their
relative contributions. The local descriptors capture structural changes occurring at the disulfide
bridge and in its immediate vicinity. This analysis was based on the solvent-accessible surface
area (SASA) of the disulfide and on the nucleophilic attack angle between the nucleophilic and
electrophilic sulfur atoms. Alterations in the local environment or in the disulfide conformation
modulate its solvent exposure, which is quantified by the SASA.3™ The attack angle provides a
complementary measure, as the transition state (T'S) of the TDE reaction follows a prototypical
Sn2 mechanism, for which a near-linear geometry is optimal.°%%%66 Given the coexistence of
multiple structural ensembles that preorganize the system to varying degrees toward the TS, the
attack angle serves as a sensitive descriptor of this preorganization.?” Panel A and D of Figure 8.11
show the local clustering results for the 2D QM/MM MTD simulations using PC1 and ICI,
respectively. The global clustering was based on the radius of gyration (Rg) and the coordination
number of interfacial interactions (F.). Ry reflects global changes in molecular compactness and
overall shape, whereas P. quantifies interfacial contacts that report on the packing and interaction
strength between the two protein domains. Panel C and F show the clustering results obtained
from the global descriptors.

Focusing first on the local clustering, both setups reveal that the structures associated with land-
mark 1 can be distinguished by their attack angle. The structures are dominated an ensemble that
exhibits smaller attack angles, indicating a preorganization that disfavors formation of an optimal
transition-state geometry and explaining the absence of reactive configurations in this region of
the FES. Conversely, landmark 2 is dominated by structures that support a nearly linear sulfur
geometry, consistent with a lower transition-state barrier. In the PC1 setup, all structures display
attack angles between 120° and 180°, whereas in the IC1 setup a subpopulation of approximately
24% adopts smaller angles near 60°. The ensemble corresponding to landmark 3 closely resembles
that of landmark 2 but exhibits higher solvent accessibility of the disulfide. In contrast, for land-
mark 4, the disulfide SASA becomes the distinguishing feature, revealing that these structures
expand in a way that increases solvent exposure. However, despite the enhanced accessibility,
reactivity does not increase, as the entering solvent molecules displace the attacking sulfur from
its coordination shell.

Turning to the global clustering, the IC1 setup reveals three clusters for each landmark, all located
within similar ranges of the global descriptors. This heterogeneity reflects the sampling of distinct
protein conformations and torsional states, as discussed in Section 8.3.2, which can influence the
system’s reactivity. In contrast, the PC1 setup exhibits pronounced heterogeneity in landmark 1,
where five distinct clusters are observed. These clusters correspond to multiple global conforma-
tions and binding poses that restrict the accessible torsional configuration space. Upon progressing
from landmark 1 to landmark 2, the ensemble converges into two closely spaced clusters, indicating
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a reduction in global heterogeneity as the system approaches the near-transition-state ensemble.
This suggests that landmark 1 functions as a conformational reservoir from which only a sub-
set of structures, those preorganized for reactivity, proceed toward the transition region. The
accompanying decrease in the number of clusters from landmark 1 to 2 thus reflects a conforma-
tional filtering process that selects reactive configurations. Consistent with this interpretation, the
PC1 setup exhibits greater heterogeneity in landmark 1, which coincides with the identification
of lower-energy conformations in this landmark region compared to IC1. Landmarks 2 and 3,
representing the reactive ensemble, display comparable local and global heterogeneity within each
setup. However, the IC1 simulations retain a higher degree of structural diversity, as seen in Pan-
els D and F, compared to PC1 in Panels A and C. This observation suggests that local and global
motions are not decoupled and highlights the importance of their coupling to achieve thorough
sampling. Overall, these findings demonstrate that global protein—protein interactions strongly
influence the binding pose and, consequently, the local reactivity at the disulfide bridge. While the
2D sampling enhances exploration of the disulfide torsional space, differences in binding geometry

impose constraints on the extent to which this torsional space can be effectively sampled.

8.4. Conclusion

In a novel approach, this study investigated the coupling between chemical reactivity and confor-
mational change in protein systems by enhanced conformational sampling in QM /MM simulations
through the use of machine-learned CVs. By applying principal component analysis (PCA) and
time lagged independent component analysis (tICA) for dimensionality reduction to generate CVs
from classical MD data, it establishes a framework that not only improves configurational sam-
pling in QM /MM but also facilitates its analysis. The resulting 2D MTD simulations revealed a
complex but interpretable interplay between local and global structural heterogeneity, in which
reactive and conformational transitions are dynamically linked. The development was tested for
thiol-disulfide exchange (TDE) in a protein system coupled to dynamics of a central disulfide
bridge. However, its simple and broadly applicable design ensures general transferability to other

proteins.

The collective variables PC1 and IC1, learned from PCA and tICA, respectively, were identified
as suitable low-dimensional representations that effectively reduce the original 10D torsional fea-
ture space of a disulfide bridge to a single dimension. Both components capture the dominant
conformational events observed in the classical MD trajectory, indicating a partial overlap in the
configurational subspaces spanned by these modes. When extending 1D QM/MM MTD simula-
tions of the thiol-disulfide exchange (TDE) to 2D setups by adding PC1 or IC1 as second CV,
the sampling of the conformational space was markedly improved. However, the conformational
space during the QM /MM simulations does not fully overlap with that represented in the orig-
inal MD training data. The learned CVs exhibit a higher degree of degeneracy, leading to the

exploration of structures that are indistinguishable by the new CVs but differ substantially in
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the genuine 10D space. This effect becomes particularly relevant when global protein geometry
varies, as protein—protein interactions constrain the accessible disulfide torsional space and limit
the extent to which it can be effectively sampled. Consequently, an inherent asymmetry arises
between the analytical and exploratory properties of PC1 and IC1: during analysis, the structural
context is fixed by the reference data, whereas during exploration, this context can shift dynam-
ically, altering the relation between the CVs and the underlying conformational landscape. The
findings further emphasize that local and global motions are not fully decoupled. More efficient
sampling of the conformational space of the disulfide torsion angles also alters global dynamics,
leading to a slow shift in binding poses and interface repacking. Conversely, protein—protein in-
teractions modulate both the accessibility and the reactivity of the disulfide center. Differences in
binding geometry impose constraints on the extent to which the torsional space can be effectively
sampled, explaining the non-overlapping configurations observed between the 10D torsional space
of the MD data and the QM /MM simulations.

Reaction modeling based on structural clustering suggests that ensembles are more reactive if they
exhibit local compression of the disulfide bond, resulting in a more compact active site, and in
preorganized geometries that support a near-linear Sn2 transition state. The observed reduction
in cluster diversity indicates a conformational filtering process in which only preorganized states
proceed toward the transition region. The IC1 setup explores a larger fraction of reactive con-
figurations, whereas PC1 achieves broader sampling of protein conformations and binding poses,
leading to the identification of lower-energy states. Moreover, PC1 demonstrates the ability to
transition from a heterogeneous, non-reactive ensemble to a more homogeneous, reactive ensem-
ble, reflecting higher specificity. From this perspective, PC1 represents a more suitable choice for
conformational sampling in this setup.

MTD inherently introduces flexibility and heterogeneity into the system, allowing less interde-
pendent ensembles to emerge as individual walkers explore distinct regions of the FES. This
behavior, while expected, highlights an opportunity to exploit the coupling between local reac-
tivity and global conformational dynamics as a design element for controlling sampling behavior.
For instance, uncontrolled fluctuations between binding poses interfere with both convergence and
reproducibility of the simulation. The observed degeneracy of the machine-learned CVs can be
constrained by the protein binding interface, which provides a structural anchor. Variations in
binding poses may introduce ambiguities and emphasize the need for explicit control over the
global context during enhanced sampling. Future work could aim to investigate the extent to
which the coupling between local reactivity and global conformational dynamics can be exploited
as a controllable design feature in enhanced sampling. By constructing tailored simulation setups
and CVs specifically designed to represent the coupling between local reactivity and global con-
formational change, it may be possible to stabilize binding orientations and reduce ambiguities
arising from multiple binding poses. Moreover, refining the machine-learned CVs to incorporate
global structural information or to adapt dynamically to the conformational context could help
mitigate degeneracy and improve sampling consistency. Such developments would enhance the
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reproducibility and interpretability of QM/MM simulations and would ultimately enable more
precise exploration of complex reactive landscapes.
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9. Summary and Outlook

The challenge of computational studies of proteins stems from a complex hierarchy spanning spa-
tial and temporal scales, as introduced in Chapter 1. It is complex in a recursive sense, as localized
chemical reactions can initiate global conformational changes, which in turn feed back to modulate
the reactivity of that reactive site. A case in point is thiol-disulfide exchange (TDE). Here, the
reaction between sulfur atoms in cysteine residues can break a disulfide bridge and prime the con-
formational ensemble to undergo a larger-scale conformational rearrangement, which subsequently
modulates localized reactivity by relieving or imposing strain or by altering the electrostatic en-
vironment. Such coupling between local chemical reactivity and global conformational dynamics
calls for methods that combine chemical accuracy with sampling efficiency to access timescales rel-
evant to protein function. Hybrid quantum mechanics/molecular mechanics (QM/MM) methods
tackle this issue in a conceptually elegant way to balance chemical accuracy and computational
efficiency. They mirror the system’s inherent hierarchy by treating the reactive site quantum
chemically (QM) while representing the surrounding protein environment classically (MM). The
choice of QM method is central to this balance, as it must provide sufficient accuracy at the reac-
tive site without imposing a computational cost that would hinder the overall sampling required
to describe biologically relevant motions. Equally important is the embedding of the QM region
within the MM environment, since inaccuracies at the interface can introduce significant artifacts
that compromise the reliability of the entire calculation. Even when these aspects are carefully
controlled, conformational sampling can remain a bottleneck, which necessitates additional strate-

gies.

The work presented in this thesis addressed the computational study of protein systems by in-
tegrating QM /MM simulation, enhanced sampling, and machine learning within a multiscale
framework. It investigated three central questions. (1) Does the electrostatic embedding of the
QM region within the MM environment introduce significant errors by truncating nonbonded in-
teractions? If so, how severe are these errors, and can they be mitigated? (2) For elucidating
the TDE mechanism catalyzed by Homo sapiens glutaredoxin (Grx), can QM/MM simulations
augmented with a artificial neural network (ANN) based A-ML correction enhance the accuracy
of the QM region? What specific improvements does this correction provide for the QM region,
and how do these advances enable a more reliable mechanistic characterization in a system of
realistic biological complexity? (3) Can simple machine-learned collective variables (CVs) derived
from classical trajectories be transferred into QM /MM enhanced-sampling simulations to improve
conformational sampling?
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Summary. (1) Chapter 6, Non-covalent Interactions at the QM-MM Interface in the Semi-
Empirical and Density-Functional Limit, investigated how the QM—-MM interface limits the accu-
racy of QM /MM simulations, with a particular focus on hydrogen bonding in neutral and ionic
dimers. The QM region was treated using two representative methods: the density functional the-
ory (DFT) functional ®B97X-V and the semiempirical density functional tight binding (DFTB)
model, while the General Amber Force Field (GAFF) was used for the MM region. Prior to this
analysis, the magnitude and origin of interface-induced errors had only been quantitatively char-
acterized, leaving open how strongly interaction energies are perturbed when key polarization or
charge transfer (CT) interactions cross the QM-MM boundary. This limitation is consequential
because even localized energetic errors can propagate across larger spatial and temporal scales in
multiscale simulations. The results demonstrated that, even when reliable density functionals are
used in the QM region, substantial errors arise from mismatches in polarity, polarizability, and
CT description across the interface, with particularly pronounced inaccuracies for ionic hydrogen
bonds. The study further showed that unoptimized Lennard-Jones parameters and missing short-
range polarization introduce additional errors that cannot be resolved by simple measures such as
scaling the QM-MM interactions. Strikingly, these deficiencies persist despite the widespread use
of QM /MM approaches. By analysing these effects systematically, the chapter established practi-
cal guidelines for QM region construction, showing that key donors, acceptors, and CT partners
must lie fully within the QM region. These findings provide a concrete step toward improving the
reliability of QM /MM simulations in protein settings.

(2) Chapter 7, Reduction Pathway of Glutaredoxin 1 Investigated with QM /MM Molecular Dy-
namics Using a Neural Network correction, demonstrated the effectiveness of applying a recently
introduced DFTB-based A-ML correction, an ANN correction, to enzymatic sulfur chemistry.
This model addresses the qualitative deficiencies of the standard DFTB description of the TDE
reaction, which arise from its limited treatment of electronic correlation and omission of many-
body interactions. As a result, uncorrected DFTB overestimates S—S bond distances and yields
inadequate transition states, leading to errors of up to 5 kcal mol™', an unacceptable magni-
tude for investigating enzymatic mechanisms. Grx, the enzyme studied here, catalyzes TDE and
plays a central role in maintaining cellular redox homeostasis. When applied to the Grx sys-
tem, QM/MM metadynamics (MTD) at the DFTB/A-ML level reproduced the experimentally
inferred regioselectivity of the three successive TDE steps and yielded more reliable barrier heights
by recovering the missing correlation and many-body effects. Remarkably, these improvements
in the accuracy of the QM region come with only minimal computational overhead without a
substantial loss of sampling efficiency. Consequently, analyses based on ensemble averages, such
as the regioselectivity assessed in this study, become both feasible and reliable. These results con-
firmed the plausibility of the proposed reaction pathway and highlight both the effectiveness of
the method and the broader appeal of machine-learned corrections for accurate, computationally

efficient multiscale simulations of enzymatic reactivity.

(3) Chapter 8, Transferring Collective Variables from Molecular Dynamics Simulations to QM /MM
Simulations for Reactivity Exploration in Dynamic Systems, introduced a novel scheme in which
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9 Summary and Outlook

collective variables (CVs) learned from long classical molecular dynamics (MD) simulations ac-
celerate conformational sampling in QM/MM MTD simulations of TDE. Linear dimensionality-
reduction methods were used to identify key torsional modes of a disulfide bridge, yielding trans-
ferable low-dimensional descriptors of protein dynamics. Incorporated as additional coordinates
in two-dimensional QM /MM MTD, these machine-learned CVs improved sampling and revealed
coupling between local disulfide rearrangements and global protein geometry. The principal com-
ponent analysis (PCA)-derived CV provided more efficient sampling than the time lagged inde-
pendent component analysis (tICA)-based descriptor, especially in the binding regime. The new
CV also facilitates analysis. Only a subset of conformations preorganized the active site for a
near-linear Sy2 attack, indicating a conformational filtering mechanism that governs reactivity.
The results also highlight that learned CVs perform more reliably in analysis than in biasing.
When used to bias phase-space exploration, the CVs can exhibit significant degeneracy, which
can be constrained by uncontrolled motions such as protein binding. Using enhanced sampling
in QM /MM to improve conformational sampling of the environment represents a previously less
emphasized direction.'?” QM /MM developments have typically focused on accuracy rather than
dynamics. The introduced strategy establishes the CV as a central design element. Machine
learning enables CV construction from the system’s own dynamics rather than from dynamics-
agnostic assumptions. This provides a direct route to capture environment/reactivity coupling
within enhanced sampling in QM /MM simulations, an essential feature that a multiscale model
should include.

Limitations. At the same time, each line of investigation revealed limitations. (1) For the
hydrogen-bonding benchmark, the analysis was restricted to gas-phase dimers and a small num-
ber of cluster-type microenvironments, all described with fixed-charge models and a limited set of
QM methods. This design restricted the systematic evaluation of cooperative effects and explicit
MM polarization. As a result, the findings on QM region partitioning are most reliable for neutral
or weakly polar hydrogen bond (H-bond) motifs. They are less likely to transfer quantitatively to
solvated or highly charged systems where many-body polarization and CT play a more prominent
role. The sharp increase in QM /MM errors for ionic complexes, together with the strong corre-
lation between error magnitude and CT, underscores this limitation and points to the need for

embedding schemes that capture polarization and charge redistribution.

(2) In the Grx application, the simulated reaction path omits upstream and downstream pro-
ton—transfer steps of the cysteine residues. This omission alters the underlying free energy land-
scape and likely contributes to the endergonic reaction profiles observed. Uncertainties in the
binding poses present an additional limitation because their reliable optimization requires special-
ized strategies that were not applied here. As a result, the MTD bias accelerates exploration along
the chosen CVs but may not allow the global structure sufficient time to relax into a more favorable
binding pose. Further limitations arise from the treatment of electrostatics. The charged nature
of the QM region and the high polarizability of sulfur imply that the thermodynamics of disulfide
exchange are highly sensitive to the local electrostatic environment. Fixed protonation states near
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the active site can therefore introduce systematic bias because protonation—deprotonation equilib-
ria influence both charge distribution and local polarization. Finally, the current A-ML correction
adjusts only the intrinsic QM energetics relative to the target method. It does not capture changes
in the polarization of the QM region induced by the MM environment. This constraint may be

significant for accurately describing TDE in heterogeneous protein environments.

(3) The machine-learned CVs were derived from 10-dimensional input data. Because these CVs
are constructed as linear combinations of the underlying torsional coordinates, they retain an in-
herent degree of degeneracy. The structural configurations present in the training data generated
by MD simulation can impose local and global constraints that can partially lift the degeneracy
by limiting accessible conformations and shaping the exploration of phase space. For example, a
specific binding pose may immobilize a torsion that would otherwise remain flexible. When the
same CVs are transferred to a QM /MM simulation, the structural context can change and thereby
alter the relationship between the CV values and the set of actual molecular configurations in-
distinguishable by the CV. As a result, identical CV values may correspond to distinct global
structures such as different binding poses, and slow drift in global protein structure can further
distort the mapping between the reduced representation and the underlying conformational land-
scape. The corresponding free-energy surface (FES) should therefore be interpreted as qualitative
rather than quantitatively converged. A detailed analysis of CV degeneracy lies beyond the scope
of this work, but it remains a central consideration in CV design. Incorporating more global

descriptors represents a reasonable direction for reducing ambiguity in future applications.

Future Prospects. These limitations point toward several avenues for future development.
(1) For noncovalent interactions at QM—MM interfaces, expanding the set of systems to include
larger clusters, explicit solvent, and polarizable force fields would better capture condensed-phase
many-body responses and help separate interface artifacts from errors intrinsic to the underlying
methods. Rather than relying solely on geometric heuristics, QM region selection algorithms could
be employed to make a pertinent choice of QM region that reduces interface effects. The data set
created can facilitate the development. Recent extensions of DF'TB based on chemical-potential
equalization and multipolar expansions offer promising ways to improve charge redistribution and
polarization. Evaluating these models using the data generated here is a natural next step for
understanding how the QM-MM interface affects embedding. Assessing their robustness across
different interface types will be important for advancing model accuracy and transferability. Focus-
ing on free energies rather than binding energies as the central metric incorporates entropic effects
and may provide a more relevant objective function for optimization. Such efforts would require
free energy perturbation or reweighting schemes to probe the effects of the QM-MM interface.
Developing such approaches represents a compelling direction for future work.

(2) The application of the A-ML model to TDE in the Grx demonstrates its usefulness for re-
solving the energetics of disulfide exchange, motivating its application to other biologically and
pharmaceutically relevant systems. Antibodies, for instance, contain multiple disulfide bridges

that are essential for structural stability and function, making them high-value targets where
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accurate modeling of redox chemistry would be particularly important. Looking ahead, incor-
porating environmental electrostatics into the A-ML framework represents a natural progression.
This could be achieved by expanding the correction to account not only for intrinsic QM energetics
but also for the influence of the protein’s electrostatic landscape on the QM region. An additional
advance would be the integration of QM /MM simulations with constant-pH simulations, enabling
exploration of different protonation states in the MM environment and computation of free energy
surfaces that more closely reflect physiological conditions. To clarify the origin of the endergonic
reaction profiles, several steps can be taken. The proton-transfer steps of the cysteine residues
could be modeled using QM /MM MTD with an additional proton-transfer CV, which would pro-
vide a more complete representation of the reaction mechanism. However, the optimization of the
binding pose is likely the more significant omission. The present results indicate that resolving
this issue should be a higher priority, even though it has not yet been addressed systematically
in the field of QM/MM simulations. Structures generated by AlphaFold or docking protocols
offer reasonable starting points, and the introduction of additional CVs to guide binding-pose

relaxation appears appealing.

(3) As this contribution highlights the value of enhanced sampling within QM /MM for improving
conformational sampling of the environment, it also underscores the need to adapt and evaluate
these strategies across different systems and applications. Future developments may incorpo-
rate nonlinear dimensionality-reduction techniques, global structural descriptors during training,
or iterative refinement of CVs within the QM/MM environment. Constructing composite CVs
that explicitly capture the coupling between local reactivity and global conformational dynamics
could reduce degeneracy, stabilize sampling, and enhance the convergence and interpretability of

enhanced-sampling simulations.

Conclusion. More broadly, this thesis offers an encouraging outlook for advancing the calcula-
bility of protein systems across multiple scales. It demonstrates that progress requires not only
improved electronic-structure accuracy but also a deeper understanding of how errors propagate
across QM-MM interfaces, how approximate potentials can be corrected and reused, and how
machine learning can enhance sampling without compromising interpretability. The results ex-
tend well beyond the specific systems investigated. The QM-region selection principles derived
from hydrogen-bonding analysis are suitable to inform QM /MM partitioning in both enzymatic
and materials contexts. The use of a A-ML-enhanced semiempirical model in a realistic enzyme
system demonstrates that targeted corrections toward higher QM reference methods can yield
chemically meaningful free energy profiles at a fraction of the computational cost. The transfer
of machine-learned CVs from classical to QM /MM simulations is practical for integrating long-
timescale classical dynamics with accurate reactive modeling. Future efforts that consolidate
these advances by combining improved interface descriptions, ML-corrected QM methods, and
data-driven enhanced sampling into a unified workflow hold substantial promise for narrowing the
gap between biological complexity and computational tractability.

123






Part V.

Appendix

125






A. Non-covalent Interactions at the QM-MM
Interface in the Semi-Empirical and
Density-Functional Limit

Analysis

N . . 2
RMSE(X) = $ =5 (ABR00 - AB e))
=1

MSE(X) = 3 (ABQ(0) - B e
=1

RMSE(X)
N XN A (ref)

int

RMSE/p =

MSE(X)
F3N, AE()

int

MSE/pu =

(ref)

127
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DFTB/GAFF Interaction Energies

Neutral Hydrogen Bonds

Table A.1.: Composition of HB375x10 and IHB100x10 datasets; groups by interaction type, their size, and average
interaction energy AFEj, (kcal/mol) in each group.

HB375 IHB100
No Type  Size AFEiy Type Size AFEint
1 OH---O0 60 -81 OH*---O0 1 -224
2 NH:-- -0 65 -5.6 NHT---0 15 -23.0
3 OH:-- - N 45 -90 NH': - N 15 -22.7
4 NH---N 53 -58 NH"---C 4 -239
5 CH---O0 20 -44 OH---O0" 15 -26.2
6 CH---N 19 -45 OH---N- 3 -255
7 noHB 113 -33 OH---C~ 2 -178
8 NH-- -0~ 15 -194
9 NH-- N~ 6 -16.1
10 NH---C~ 5 -14.5
11 CH---0" 15 -9.3
12 CH---N- 3 -83
13 CH---C 1 -26
all 375 -5.6 100 -19.0
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Figure A.1.: MSE errors per bond type for HB375. DFTB/30b and ©B97X-V/ma-def2-TZVPP as QM for com-
parison, GAFF as MM, CCSD(T)/CBS as reference.
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Figure A.2.: Reference calculations for dipole moments of monomers in vacuum for HB375, »B97X-V /ma-def2-
TZVPP as reference method.
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Figure A.3.: Reference calculations for dipole moments of monomers in the complex for HB375, «B97X-V /ma-
def2-TZVPP as reference method.
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Figure A.4.: Reference calculations for the polarization response of the monomers in the QM/GAFF models in
HB375, ®B97X-V /ma-def2-TZVPP as reference method.
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Figure A.5.: Reference calculations for charge transfer in HB375 estimated by DFTB, ©B97X-V /ma-def2-TZVPP
NBO as reference method.
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lonic Hydrogen Bonds
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Figure A.7.: MSE errors per bond type for IHB100, DFTB/30b and wB97X-V as QM, GAFF as MM,
CCSD(T)/CBS as reference.
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Figure A.8.: Error distribution for charge transfer estimations in THB100, ©B97X-V /ma-def2-TZVPP NBO as
reference method.
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Figure A.9.: Reference calculations for dipole moments of monomers in vacuum for ITHB100, »B97X-V /ma-def2-
TZVPP as reference method.
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Figure A.10.: Reference calculations for dipole moments of monomers in the complex for IHB100, ©«B97X-V /ma-
def2-TZVPP as reference method.
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Figure A.11.: Reference calculations for the polarization response of the monomers in the QM/GAFF models in

THB100, ©@B97X-V /ma-def2-TZVPP as reference method.
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DFTB-CPE applied to HB375x10 and IHB100x10

Table A.2.: RMSE in kcal/mol for HB375 using DFTB/30b or DFTB-CPE as QM and CCSD(T)/CBS as refer-

ence.

DFTB DFTB/GAFF DFTB-CPE/GAFF GAFF/DFTB GAFF/DFTB-CPE GAFF

OH-O  1.00 1.85 1.81 1.76 1.73  1.76
NH-O 1.16 1.43 1.39 0.76 0.76  0.66
OH-N  3.52 3.23 3.21 4.80 475  3.12
NH-N  2.33 1.89 1.85 2.35 231 1.29
CH-O  0.49 1.37 1.36 0.96 0.92  0.96
CH-N 1.34 1.63 1.62 2.16 2.15  1.30
noHB  0.66 0.93 0.92 0.76 0.74  0.70

Table A.3.: MSE in kcal/mol for THB100 using DFTB/30b or DFTB-CPE as QM and CCSD(T)/CBS as reference.

DFTB DFTB/GAFF DFTB-CPE/GAFF GAFF/DFTB GAFF/DFTB-CPE GAFF

OH+-O 0.26 17.89 17.89 11.46 11.54 17.41
NH+-O 2.35 7.11 7.07 3.98 3.68 6.23
NH+-N  6.13 8.04 7.98 8.37 8.14 7.10
NH+-C  7.16 11.26 11.23 7.08 6.79 10.59
OH-O- -0.80 2.98 2.86 4.13 3.98 6.12
OH-N-  0.52 6.08 5.95 10.62 10.62 9.38
OH-C-  2.55 4.64 4.60 1.99 1.99 4.50
NH-O- 1.62 3.33 3.16 2.35 2.28 3.07
NH-N-  2.65 4.31 4.09 5.74 5.74 4.82
NH-C-  2.54 4.46 4.27 3.18 3.17 4.53
CH-O- -1.96 4.16 4.10 6.11 6.10 6.20
CH-N-  -0.85 3.60 3.54 5.25 5.24 4.96
CH-C-  -1.39 1.14 1.14 2.15 2.16 2.19
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Dissociation Curve for HB375x10 and IHB100x10
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Figure A.12.: MSE values along the entire dissociation curves in HB375x10. Results are shown for both com-
partmentalization schemes: QM/GAFF (left) and GAFF/QM (right), using CCSD(T)/CBS as the
reference. The upper row shows the RMSEs for the respective QM (QM/MM) methods relative
to the reference. Gray-shaded regions indicate areas where the DFTB/GAFF (or GAFF/DFTB)
hybrid model introduces additional error compared to isolated DFTB and GAFF components. The
lower row displays the differences between the curves shown in the upper row.
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RMSE (kcal/mol)

Figure A.13.: RMSE of AFEj, along the full dissociation curves in HB375x10 for both partitioning schemes,
QM/GAFF (left) and GAFF/QM (right). Solid lines include the Lennard-Jones contribution,
while dotted lines exclude it. At short distances, removing the LJ contribution markedly reduces
the RMSE, indicating that the LJ parameters dominate the short-range error. The remaining error

MSE (kcal/mol)

Figure A.14.: MSE of AE;,; along the full dissociation curves in HB375x10 for both partitioning schemes, QM /-
GAFF (left) and GAFF/QM (right). Solid lines include the Lennard-Jones contribution, while
dotted lines exclude it. At short distances, removing the LJ contribution markedly reduces the
MSE, indicating that the LJ parameters dominate the short-range error. The remaining error after
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Figure A.15.: Full range RMSE values at identical distance scaling factor along the entire dissociation curves in
HB375x10. The figure provides a complete view of the RMSE trends for both QM/GAFF and
GAFF/QM models for HB375x10.
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Figure A.16.: Full range MSE values at identical distance scaling factor along the entire dissociation curves in

HB375x10. The figure provides a complete view of the MSE trends for both QM/GAFF and
GAFF/QM models for HB375x10.
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Figure A.17.: Range of mean, minimum, and maximum Lennard-Jones (LJ) energy contributions in the
HB735x10 dataset as a function of the distance scaling factor. Shaded areas represent the standard
deviation (+£1o) around the mean for GAFF1 and GAFF2 parameters. The steep increase in LJ
energy below a scaling factor of 1.0 indicates excessive short-range repulsion.

Table A.4.: Systems in HB375x10 that show the largest Lennard-Jones interaction energies in kcal/mol at fqscaling
of 0.8 and 1.0. (u+ o) is shown for reference. Energies were calculated from the GAFF parameters.

ID

fdscaling:0-8 fdscaling: 1.0

ID fdscaling:0-8 fdscaling: 1.0

6.01

6.004
6.008
5.008
6.009
5.012
6.006
5.002
5.014
5.006
6.002
1.059
1.014
5.009
5.005
1.008
6.003
6.001

128.94
120.14
119.49
101.30
98.75
100.32
91.46
91.58
71.61
78.87
64.91
31.30
19.37
68.12
68.13
20.62
59.22
01.28

6.72
6.43
6.02
5.42
5.13
4.94
4.83
4.40
3.84
3.70
3.45
3.12
2.89
2.76
2.74
2.68
2.64
2.37

2.013
1.013
1.002
5.007
3.002
3.006
3.004
3.011
6.003
5.001
1.003
6.007
1.009
3.106
3.012
3.008
1.001

59.44
24.90
28.46
60.08
18.56
21.16
22.04
25.94
56.18
51.63
26.79
49.26
23.57
21.08
23.07
24.91
20.31

2.32
2.32
2.28
2.25
2.25
2.24
2.18
2.14
2.13
1.99
1.93
1.93
1.71
1.71
1.48
1.42
1.25

4o =111
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Figure A.18.: MSE values at identical distance scaling factor along the entire dissociation curves in THB100x10.
Results are shown for both compartmentalization schemes: QM/GAFF (left) and GAFF/QM
(right), using CCSD(T)/CBS as the reference. The upper row shows MSEs between the respective
QM (QM/MM) methods and the reference. The lower row shows the differences between the curve

144

in the upper row.



A Non-covalent Interactions at the QM-MM Interface in the Semi-Empirical and Density-Functional Limit

QM/MM MM/QM

[ X DFTB (A % DFTB (B)
i X wBITX-V s X wBITX-V

s — DFTB/GAFF : — GAFF/DFTB

- — WB97X-V/GAFF - — GAFF/wB97X-V

« DFTB/GAFF - LJ -
«+ wWBI7X-V/GAFF -1 |

« DFTB/GAFF - LJ
«+ WB9TX-V/GAFF - LJ

RMSE (kcal/mol)

xx”“x. JPLLER
B xl‘xx*--. .....

L OXXXXXXX X X X XXXXXXX X X X

08 10 12 14 16 18 20 08 10 12 14 16 18 2.0
distance scaling factor

30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0

Figure A.19.: RMSE of AFEj,; and subtracted LJ contribution along the full dissociation curves in ITHB100x10
for both partitioning schemes, QM/GAFF (left) and GAFF/QM (right). Solid lines include the
Lennard—Jones contribution, while dotted lines exclude it. At short distances, removing the LJ
contribution markedly reduces the RMSE, indicating that the LJ parameters dominate the short-
range error. The remaining error after LJ removal suggests additional contributions from the
QM-MM interface.
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Figure A.20.: MSE of AFE;,; and subtracted LJ contribution along the full dissociation curves in THB100x10
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for both partitioning schemes, QM/GAFF (left) and GAFF/QM (right). Solid lines include the
Lennard—Jones contribution, while dotted lines exclude it. At short distances, removing the LJ
contribution markedly reduces the MSE, indicating that the LJ parameters dominate the short-
range error. The remaining error after LJ removal suggests additional contributions from the
QM-MM interface.
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Figure A.21.: Full range RMSE values at identical distance scaling factor along the entire dissociation curves in
THB100x10. The figure provides a complete view of the RMSE trends for both QM/GAFF and
GAFF/QM models for THB100x10.
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Figure A.22.: Full range MSE values at identical distance scaling factor along the entire dissociation curves in

THB100x10. The figure provides a complete view of the MSE trends for both QM/GAFF and
GAFF/QM models for THB100x10.
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We analyzed the distribution of LJ energy contributions across the dataset, as shown in Fig-
ures A.23 and A.24. At fyscaling = 1.0, the mean of LJ energy is ~6 kcal/mol, but five systems
stand out as extreme outliers with LJ energies reaching ~196 kcal/mol. Table A.5 shows the
systems with the highest LJ energies at short distances in IHB100x10. A similar trend is observed
for neutral H-bonding, as shown in Figure A.17, but with a smaller magnitude of the deviation.
We further tested whether these outliers obscure the overall performance trends. For instance,
ethyne was a recurrent component in these outliers. For IHB100x10, excluding systems comprising
ethyne (4 systems), the error at fyscaling 0f 1.0 changes from 24 to 12 kcal/mol and at fyscaling
of 0.8 from 328 to 139 kcal/mol. Consistent with this, only 6 out of 100 systems in ITHB100x10
show overbinding at fscaling = 1.0 for GAFF. In HB375x10, the effect persists but is smaller in
magnitude. When excluding systems comprising ethyne (26 systems), the RMSE at fqscaling Of
1.0 changes from 1.8 to 1.6 kcal/mol and from 20.3 to 8.5 kcal/mol at fgscaling 0f 0.8. Only 48 out
of 375 systems show overbinding at fqscaling of 1.0 in the GAFF calculations. These results show
that systematic exclusion of outliers, such as ethyne-containing systems, remarkably reduces the
RMSE but does not alter the qualitative conclusion. The remaining deviations indicate that the
issue extends beyond these outliers and originates from generally over-repulsive LJ parameters in
GAFF at short distances.

In GAFF, the LJ parameters are identical for ionic and neutral systems. For example, the oxygen
atom type ‘0’ is uniformly assigned to hydrogen-bond acceptors in both ionic species, such as
oxalate, nitrite, acetate, and hydroxide, and in neutral molecules, such as acetamide or dimethyl-
carbonate. This lack of differentiation becomes particularly problematic for ionic complexes,
where equilibrium donor—acceptor distances can be shorter. While the Ry, donor-acceptor dis-
tance defined in GAFF is 3.5 A, the equilibrium distances observed in the dataset are notably
shorter. For example, the value is 2.6 A for the ammonium - - - dimethylcarbonate complex and
3.1 A for the ammonia - - - acetone complex. In addition, some systems exhibit unusually short
equilibrium distances relative to other systems of the same H-bond type, such as 2.9 A in ben-
zene - - - hydroxide versus 3.2 A in benzene - - - acetate. These findings highlight a fundamental
limitation of QM /MM calculations using L.J parameters from FF, as their transferability to diverse

short-range interactions is limited.
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Figure A.23.:

Figure A.24.:
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the THB100x10 dataset as a function of the distance scaling factor. Shaded areas represent the
standard deviation (+1o0) around the mean for GAFF1 and GAFF2 parameters. The steep increase
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Table A.5.: Systems in IHB100x10 that show the largest Lennard-Jones interaction energies in kcal/mol at
fdscaling of 0.8 and 1.0. () and (u+ o) are shown for reference. Energies were calculated from
the GAFF parameters.

ID fdscaling:0'8 fdscalingzl‘o

11.001 2906.90 196.36
11.003 1026.70 67.71
11.005 727.86 47.67
11.007 560.90 36.25
12.003 429.18 27.69
11.010 305.49 19.25
11.008 240.02 14.50
2.002 141.18 10.88
2.003 139.70 10.78
3.005 115.48 9.31
2.007 106.89 7.84
5.003 36.07 7.11
3.017 122.25 7.02
2.001 86.29 6.97
6.001 38.83 6.82
5.012 30.65 6.52
11.002 130.84 6.48
©w=6.43

W+ o = 27.69
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Deviations from Reference Equilibrium Position.
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Figure A.25.: Deviations of the equilibrium position of the dissociation curve between the QM/GAFF models
and the CCSD(T)/CBS reference in HB375.
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Figure A.26.: Deviations of the equilibrium position of the dissociation curve between the QM models or the
GAFF model and the CCSD(T)/CBS reference in HB375.
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Figure A.27.: Deviations of the equilibrium position of the dissociation curve between the QM/GAFF models
and the CCSD(T)/CBS reference in THB100.
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Figure A.28.: Deviations of the equilibrium position of the dissociation curve between the QM models or the
GAFTF model and the CCSD(T)/CBS reference in THB100.
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Table A.6.: Summary of differences between optimized values of fyscaling (corresponding to the structure with
the lowest energy for each method) and the reference value of fyscaling=1.0 taken from the datasets
HB375x10 and THB100x10.

System n o o’
HB375x10 GAFF 0.022 0.004
DFTB -0.0018 0.001

DFTB/GAFF 0.029 0.005
AMBER/DFTB  0.028 0.005
wBI7X-V 0.001 0.000
»BI7X-V/GAFF  0.000 0.005
GAFF/0B97X-V  0.007 0.004
[HB100x10 GAFF 0.086 0.003
DFTB -0.018 0.003
DFTB/GAFF 0.056 0.010
AMBER/DFTB  0.066 0.016
wBI7X-V 0.004 0.000
»wBI7X-V/GAFF  0.025 0.012
GAFF/wB97X-V  0.077 0.014

154



A Non-covalent Interactions at the QM-MM Interface in the Semi-Empirical and Density-Functional Limit

PL-REX dataset - microenvironment models

Result for PL-REX

Table A.7.: Identity and number of ligands in the selected subsets of receptor—-ligand systems from the PL-REX

dataset.
No. Target Protein Lig.
01-CA2 Hum. carbonic anhydrase II 10
02-HIV-PR HIV-1 protease 22
03-CK2 Zea mays casein kinase 2 16
05-Cath-D Hum. cathepsin D 10
06-BACE1 Hum. beta-secretase 1 16
07-JAK1  Hum. Janus kinase 1 12

09-CDK2 Hum. cyclin-dependent kinase 2 31
10-MMP12 Hum. matrix metallopeptdase 12 18

Table A.8.: Mean number of H-bonds that involve donor or acceptor atoms of the ligand and are located within
a radius of 3.2 A to the complementing atom of the receptor in PL-REX. Only nitrogen and oxygen
species were considered and reported separately as donors (D. N and D. O) and acceptors (A. N
and A. O) for the ligand. Hover and Hunder count the mean number of ionic H-bonds types that
showed overestimation (CH or OH donor to ASP or GLU carboxylate acceptor) or underestimation
(NH donor to ASP or GLU carboxylate acceptor; N or O acceptor to LYS or ARG ammonium donor)
in THB100x10. Also reported are the mean contributions from LJ and electrostatic interactions (el.)
of the DFTB/MM models, energy in kcal/mol.

System D.N D.O A.N A. O Htotal Hover Hunder AESL AEL
DFTB/GAFF AMBER/DFTB
02-HIV-PR 1.86 2.50 0.05 3.86 827 295 0.32 -82.95 -84.97 -70.67
05-Cath-D 2,90 1.80 0.10 3.90 8.70 0.9 0.0 -84.54 -53.17 -53.17
06-BACE1 2.81 1.50 0.00 2.00 6.31 1.06 0.0 -3.56 -6.16 -63.43
03-CK2 0.06 0.25 0.00 031 0.62 0.19 0.06 -11.00 -10.44 -36.91
07-JAK1  1.33 0.33 1.00 0.67 3.33 042 1.42 -52.05 -48.70 -46.41
09-CDK2  2.61 0.00 0.16 0.65 3.42 0.0 1.48 -48.30 -42.09 -41.18
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Scaling

Effects of Charge Scaling in HB375/IHB100
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Figure A.29.:
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distance scaling factor

Effects of QM-MM scaling factors on the RMSE along the dissociation curves in HB375x10. Re-
sults are shown for both partitioning schemes: QM/GAFF (left) and GAFF/QM (right), using
CCSD(T)/CBS as the reference.
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Figure A.30.: Effects of QM-MM scaling factors on the RMSE along the dissociation curves in THB100x10.
Results are shown for both partitioning schemes: QM/GAFF (left) and GAFF/QM (right), using
CCSD(T)/CBS as the reference.
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Figure A.31.: Effects of QM-MM scaling factors on the MSE along the dissociation curves in HB375x10. Re-

sults are shown for both partitioning schemes: QM/GAFF (left) and GAFF/QM (right), using
CCSD(T)/CBS as the reference.
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Figure A.33.: Effects of QM—MM scaling factors on the individual compound classes for HB375.

159



A Non-covalent Interactions at the QM-MM Interface in the Semi-Empirical and Density-Functional Limit

s OH* -0 mmm NH* -C B OH-C- NH—-C~ CH-N-
mm NHT—O mmm OH-0" NH—-0" mm CH-0" . ol
NH* —N  mmm OH-N- s NH-N-
MSE (kcal/mol) RMSE (kcal/mol)
8F 16 F
4+ 12+
LN
. N OF 'Ir" l'll|'l' 8l
.8 — —4F al
S -8 )
- 8F 16F
£ ar ' | 12}
e — m 0_ | | - - | _
8 — _qal i 81
n _gl 4t
1 1 0
8f 16 3
4+ 12+
LN
A3 e et |
— -4 I al
_8— 1 1 O
DFTB/GAFF GAFF/DFTB DFTB/GAFF GAFF/DFTB

Figure A.34.: Effects of QM-MM scaling factors on the individual compounds classes for IHB100.

Table A.9.: Effects of QM-MM scaling factors on the RMSEs for ®B97X-V/GAFF models applied to HB375x10.

Full QM QM/MM MM/QM MM/MM

1.00 0.14 1.20 0.68 1.50
1.10 0.14 1.43 1.03 1.50
1.20 0.14 1.96 1.67 1.50
1.30 0.14 2.65 2.42 1.50

Table A.10.: Effects of QM-MM scaling factors on the MSEs for «B97X-V/GAFF models applied to HB375x10.

Full QM QM/MM MM/QM MM /MM

1.00 0.03 0.21 0.03 0.92
1.10 0.03 -0.35 -0.54 0.92
1.20 0.03 -0.95 -1.14 0.92
1.30 0.03 -1.57 -1.76 0.92
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Table A.11.: Effects of QM-MM scaling factors on the RMSEs for ©B97X-V/GAFF models applied to IHB100x10.

Full QM QM/MM MM/QM MM /MM

1.00 0.38 6.00 5.28 7.35
1.10 0.38 7.00 4.95 7.35
1.20 0.38 9.05 5.61 7.35
1.30 0.38 11.72 7.26 7.35

Table A.12.: Effects of QM-MM scaling factors on the MSEs for «B97X-V/GAFF models applied to HB375x10.

Full QM QM/MM MM/QM MM /MM

1.00 -0.03 1.57 3.18 5.96
1.10 -0.03 -0.87 1.20 5.96
1.20 -0.03 -3.46 -0.86 5.96
1.30 -0.03 -6.16 -3.01 5.96
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Effects of Charge Scaling in PL-REX

Table A.13.: Errors for best QM-MM scaling factors (). Content of the rows in descending order for each model:
error for optimal A, corresponding optimal A\, improvements for optimal A compared to the unscaled

model.

System 1 2 3 5t 6 7 9 10

RMSE DFTB/GAFF 554 340 4.28 231 1.76 3.87 3.44 7.46
A .15 10 11 10 09 1.0 1.0 1.1
A -20.88 0.0 -1.09 0.0 -1.76 0.0 0.0 6.26
AMBER/DFTB 4.71 3.92 429 2.11 3.50 4.25 4.10 4.62
A 0.65 1.0 1.2 1.0 085 1.05 1.1 0.7
A 119.09 0.0 -2.12 0.0 -3.73 0.09 -2.75 51.52

MSE DFTB/GAFF -493 0.79 -0.07 -1.54 0.10 -1.34 -0.83 -1.86
A 1.1 1.0 1.3 1.0 09 10 1.0 1.15
A -31.28 0.0 -397 0.0 -1.57 0.0 0.0 -9.96
AMBER/DFTB 4.35 -1.26 0.23 0.30 -0.03 -0.78 0.33 2.09
A 0.65 1.0 135 1.0 08 1.05 1.1 0.7
A 119.43 0.0 -4,21 0.0 4,05 0.56 0.49 54.37
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Reduction Pathway of Glutaredoxin 1 Investigated with QM/MM Molecular Dynamics Using a Neural Network

Correction

Increment QM-MM Scaling Factors
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Figure A.35.: Correlation AFE;,; between increment QM-MM scaling factors and the electrostatic contribution
in the QM/MM models for system 005Cath.
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B. Reduction Pathway of Glutaredoxin 1

Investigated with QM/MM Molecular Dynamics
Using a Neural Network correction

DFTB/SRPg3,vp

25
20
" HMA4n HsGrx1
2
23 %
15
N £
©
o
=
1009
28 <
27
5
B 23
2 8 10 0

4 6
S(ZSBrx_SEIIZ/IAM [A]

Figure B.1.: FES for alternative regioselectivity of TDE in the monothiol pathway of Grx reacting with Hma as

substrate and GSH as co-substrate in step 1, calculated using the specific reaction parameterization
(SRP) method. Contour lines are drawn every 2.5 kcal/mol.
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Figure B.2.: Evaluation of accessibility for the nucleophilic attack based on the histogram of the sulfur—sulfur

distances calculated from classical MD simulations of the alternative reaction step 2 including both
regioisomers Sé:ﬂrfo%I?ma and Séix,s%{éima_ The gray shaded areas correspond to structures that meet
the accessibility criterion.
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C. Machine Learned Collective Variables for
Augmented QM/MM Sampling

lag time
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Figure C.1.: VAMP2 scores are shown for different lag times using 10 sine—cosine pairs derived from the five
disulfide torsion angles.
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Table C.1.: Cosine and sine components of the disulfide torsion angles (;) defining the principal component
obtained by PCA.

pPC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

) -0.44 -0.19 -0.01 0.16 -0.16 -0.44 -0.39 0.23 0.56 0.01
) 0.30 0.06 0.30 -0.10 -0.02 -0.06 -0.83 -0.21 -0.26 -0.01
) 0.36 0.60 -0.30 0.20 -0.10 -0.35 -0.02 0.48 -0.11 -0.01
) 0.47 -0.64 0.27 -0.08 -0.02 -0.26 0.17 0.44 -0.09 -0.01
x3) 0.02 0.00 0.04 -0.08 -0.96 0.21 0.05 -0.01 -0.02 -0.13
) -0.01 -0.00 -0.01 0.02 0.13 -0.03 -0.00 -0.01 0.03 -0.99
) 0.01 -0.27 -0.50 0.08 -0.13 -0.54 0.07 -0.50 -0.32 -0.00
) 0.15 -0.27 -0.71 -0.24 0.06 0.42 -0.32 0.22 0.12 -0.00
) 0.02 0.21 0.02 -0.89 0.01 -0.31 0.11 -0.06 0.21 0.00
) -0.59 -0.04 0.00 -0.21 0.01 -0.02 -0.09 0.41 -0.66 -0.02

Table C.2.: Cosine and sine components of the disulfide torsion angles (;) defining the principal component
obtained by tICA.

IC1 IC2 IC3 1IC4 IC5 IC6 ICT IC8 1IC9 IC10

-0.22 0.41 0.73 -1.62 -1.96 2.38 -2.59 7.59 -0.31 -2.80
0.13 -1.54 0.29 2.75 -2.96 2.80 2.65 -2.48 3.50 -2.77
0.22 0.10 0.31 -1.03 -4.45 -1.75 -3.51 -0.11 0.83 1.47
0.24 3.28 -1.53 -0.62 -2.58 -1.54 -2.71 -0.24 0.35 1.21
0.14 -0.13 0.42 -1.90 3.25 -1.04 -1.32 -0.18 6.72 0.59
0.04 0.35 -1.65 2.78 4.58 -3.16 7.37 12.22 30.94 22.77
0.20 0.54 3.74 2.53 -0.54 -4.11 4.30 -2.30 1.02 -2.02
0.07 -0.39 0.53 1.11 0.64 4.14 -3.15 0.35 0.18 1.17
-0.00 -0.24 -1.36 2.69 1.30 -1.90 -1.23 3.45 -0.59 -1.72
-0.57 1.46 -1.16 1.86 -4.50 -1.74 -1.88 -7.17 2.87 2.53

cos(Xl
(X1
(X2
in(x2
COS(X3
in(x3
cos(x4
sin(y4
cos( x5
sin(ys

)
)
)
)
)
)
)
)
)
)
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Projections of the MD trajectory onto the first four principal components (PC1-PC4) obtained
from the PCA. Compared to the first component, higher components display moderate fluctuations
and several smaller transitions over the course of the simulation, indicating that these components
represent higher-frequency or less collective motions of the system.
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Figure C.3.: Projections of the molecular dynamics trajectory onto the first four independent components
(IC1-IC4) obtained from the tICA. The first component shows a clear two-state transition, while
the higher components display smaller fluctuations and intermittent transitions, corresponding to
faster or less dominant dynamical processes in the system.
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Figure C.4.: Pairwise scatter plots of the first five principal components obtained from the PCA. Distinct sep-
aration is observed only for projections involving PC1, while the remaining component pairs form
diffuse, isotropic distributions, indicating that most structural variance is captured by the first prin-
cipal component.
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Figure C.5.: Pairwise scatter plots of the first five independent components obtained from the tICA. Clear
separation between two states is observed in plots involving IC1, while the remaining component
pairs form diffuse or overlapping distributions, indicating that the dominant slow process is primarily
captured by the first independent component.
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IC1 normal PC1 mean

cos(x1) -0.22  -0.30 -0.44 -0.49
sin(y1) 013  0.17 0.30 -0.32
cos(x2) 0.22  0.29 0.36 0.16
sin(x2) 0.24  0.32 047 0.28
cos(xz) 0.14  0.19 0.02 0.15
sin(ys) 0.04  0.05-0.01 0.97
cos(x4) 0.20  0.27 0.01 -0.91
sin(ys) 0.07 009 0.15 0.07
cos(ys) 0.00 -0.01 0.02 0.37
sin(xs) -0.57  -0.76 -0.59 -0.24

Table C.3.: Comparison of the feature weights for the IC1 from tICA and the PC1 from PCA. Note that IC1
values were normalized, as the independent component does not have unit norm by default. The
listed coefficients correspond to the trigonometric components of the dihedral angles y; (i = 1-5).
Both vectors have a high cosine similarity and correlation values (approximately 0.9).
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Figure C.6.: FES obtained from MTD simulations using PC2 (left) and IC2 (right) as the second CV.

173






Bibliography

[1]

G. S. Adair, A. V. Bock, and H. Field. “THE HEMOGLOBIN SYSTEM: VI. THE OXYGEN DISSO-
CIATION CURVE OF HEMOGLOBIN”. In: Journal of Biological Chemistry 63.2 (Mar. 1925), pp. 529
545.

Igor A. Lavrinenko, Gennady A. Vashanov, and Yury D. Nechipurenko. “Study of hemoglobin by G. S.
Adair and his oxygenation equation: background, history, and significance—on the 100th anniversary of
Adair’s equation”. In: Biophysical Reviews (Aug. 2025).

J. C. Kendrew et al. “A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis”.
In: Nature 181.4610 (Mar. 1958), pp. 662—666.

Peter Y. Chou and Gerald D. Fasman. “Prediction of protein conformation”. In: Biochemistry 13.2 (Jan.
1974), pp. 222-245.

B. J. Alder and T. E. Wainwright. “Phase Transition for a Hard Sphere System”. In: The Journal of
Chemical Physics 27.5 (Nov. 1957), pp. 1208-12009.

Scott A. Hollingsworth and Ron O. Dror. “Molecular Dynamics Simulation for All”. In: Neuron 99.6 (Sept.
2018), pp. 1129-1143.

Alexandre Ambrogelly, Sotiria Palioura, and Dieter So6ll. “Natural expansion of the genetic code”. In:
Nature Chemical Biology 3.1 (Jan. 2007), pp. 29-35.

Roman A. Laskowski, James D. Watson, and Janet M. Thornton. “From protein structure to biochemical
function?” In: Journal of Structural and Functional Genomics 4.2 (June 2003), pp. 167-177.

David Lee, Oliver Redfern, and Christine Orengo. “Predicting protein function from sequence and struc-
ture”. In: Nature Reviews Molecular Cell Biology 8.12 (Dec. 2007), pp. 995-1005.

Nikolaos Louros, Joost Schymkowitz, and Frederic Rousseau. “Mechanisms and pathology of protein mis-
folding and aggregation”. In: Nature Reviews Molecular Cell Biology 24.12 (Dec. 2023), pp. 912-933.

Nigel Goldenfeld and Leo P. Kadanoff. “Simple Lessons from Complexity”. In: Science 284.5411 (Apr.
1999), pp. 87-89.

Gregory C. Finnigan et al. “Evolution of increased complexity in a molecular machine”. In: Nature 481.7381
(Jan. 2012), pp. 360-364.

Richard N. McLaughlin Jr et al. “The spatial architecture of protein function and adaptation”. In: Nature
491.7422 (Nov. 2012), pp. 138-142.

P. J. Hogg. “Contribution of allosteric disulfide bonds to regulation of hemostasis”. In: Journal of Throm-
bosis and Haemostasis 7.s1 (2009), pp. 13-16.

Kyungho Kim et al. “Platelet protein disulfide isomerase is required for thrombus formation but not for
hemostasis in mice”. In: Blood 122.6 (Aug. 2013), pp. 1052-1061.

Diego Butera and Philip J. Hogg. “Fibrinogen function achieved through multiple covalent states”. In:
Nature Communications 11.1 (Oct. 2020), p. 5468.

Chuanliu Wu et al. “Interplay of Chemical Microenvironment and Redox Environment on Thiol-Disulfide
Exchange Kinetics”. In: Chemistry — A European Journal 17.36 (2011), pp. 10064-10070.

Wenbo Zhang et al. “Intra- and inter-protein couplings of backbone motions underlie protein thiol-disulfide
exchange cascade”. In: Scientific Reports 8.1 (Oct. 2018), p. 15448.

175



Bibliography

[19]

[20]

176

Mathivanan Chinnaraj, Robert Flaumenhaft, and Nicola Pozzi. “Reduction of protein disulfide isomerase
results in open conformations and stimulates dynamic exchange between structural ensembles”. In: Journal
of Biological Chemistry 298.8 (Aug. 2022).

Vishal Annasaheb Adhav and Kayarat Saikrishnan. “The Realm of Unconventional Noncovalent Inter-
actions in Proteins: Their Significance in Structure and Function”. In: ACS Omega 8.25 (June 2023),
pp. 2226822284,

Ana-Nicoleta Bondar. “Graphs of Hydrogen-Bond Networks to Dissect Protein Conformational Dynamics”.
In: The Journal of Physical Chemistry B 126.22 (June 2022), pp. 3973-3984.

Eleanor Campbell et al. “The role of protein dynamics in the evolution of new enzyme function”. In: Nature
Chemical Biology 12.11 (Nov. 2016), pp. 944-950.

Daniele Sonaglioni et al. “Dynamic Personality of Proteins and Effect of the Molecular Environment”. In:
The Journal of Physical Chemistry Letters 15.20 (May 2024), pp. 5543-5548.

Werner Kiihlbrandt. “Structure and Mechanisms of F-Type ATP Synthases”. In: Annual Review of Bio-
chemistry 88 (June 2019), pp. 515-549.

Hui Guo and John L. Rubinstein. “Structure of ATP synthase under strain during catalysis”. In: Nature
Commaunications 13.1 (Apr. 2022), p. 2232.

Gregory A. Petsko and Dagmar Ringe. Protein Structure and Function. Oxford: Oxford University Press,
2004.

Peter J. Bickel et al. “Finding important sites in protein sequences”. In: Proceedings of the National
Academy of Sciences 99.23 (Nov. 2002), pp. 14764-14771.

Alexandra Shulman-Peleg, Ruth Nussinov, and Haim J. Wolfson. “Recognition of Functional Sites in Pro-
tein Structures”. In: Journal of Molecular Biology 339.3 (June 2004), pp. 607-633.

Matthew C Zwier and Lillian T Chong. “Reaching biological timescales with all-atom molecular dynamics
simulations”. In: Current Opinion in Pharmacology. Endocrine and metabolic diseases/New technologies -
the importance of protein dynamics 10.6 (Dec. 2010), pp. 745-752.

Andreas Kukol, ed. Molecular Modeling of Proteins. Vol. 1215. Methods in Molecular Biology. New York,
NY: Springer New York, 2015.

Trygve Helgaker, Poul Jgrgensen, and Jeppe Olsen. Molecular Electronic-Structure Theory. Chichester:
Wiley, 2000.

Anders S. Christensen et al. “Semiempirical Quantum Mechanical Methods for Noncovalent Interactions
for Chemical and Biochemical Applications”. In: Chemical Reviews 116.9 (May 2016), pp. 5301-5337.

W. G. Noid. “Perspective: Coarse-grained models for biomolecular systems”. In: The Journal of Chemical
Physics 139.9 (Sept. 2013), p. 090901.

A. Warshel and M. Levitt. “Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric
stabilization of the carbonium ion in the reaction of lysozyme”. In: Journal of Molecular Biology 103.2
(May 1976), pp. 227-249.

Hans Martin Senn and Walter Thiel. “QM/MM Methods for Biomolecular Systems”. In: Angewandte
Chemie International Edition 48.7 (2009), pp. 1198-1229.

Marc W. van der Kamp and Adrian J. Mulholland. “Combined Quantum Mechanics/Molecular Mechanics
(QM/MM) Methods in Computational Enzymology”. In: Biochemistry 52.16 (Apr. 2013), pp. 2708-2728.

Xiya Lu et al. “QM/MM free energy simulations: recent progress and challenges”. In: Molecular Simulation
42.13 (Sept. 2016), pp. 1056-1078.



Bibliography

Katja-Sophia Csizi and Markus Reiher. “Universal QM/MM approaches for general nanoscale applica-
tions”. In: WIREs Computational Molecular Science 13.4 (2023), e1656.

Yonathan Lissanu Deribe, Tony Pawson, and Ivan Dikic. “Post-Translational Modifications in Signal Inte-
gration”. In: Nat Struct Mol Biol 17.6 (6 2010), pp. 666—672.

Shahin Ramazi and Javad Zahiri. “Post-Translational Modifications in Proteins: Resources, Tools and
Prediction Methods”. In: Database 2021 (2021), baab012.

Deborah Fass and Colin Thorpe. “Chemistry and Enzymology of Disulfide Cross-Linking in Proteins”. In:
Chem. Rev. 118.3 (2018), pp. 1169-1198.

William J. Wedemeyer et al. “Disulfide Bonds and Protein Folding”. In: Biochemistry 39.15 (2000),
pp. 4207-4216.

Yu. M. Torchinskii. Sulfhydryl and Disulfide Groups of Proteins. Boston, MA: Springer US, 1974.

Keith Brocklehurst and Marek P. J. Kierstan. “Propapain and Its Conversion to Papain: A New Type of
Zymogen Activation Mechanism Involving Intramolecular Thiol-Disulphide Interchange”. In: Nature New
Biology 242.119 (119 1973), pp. 167-170.

Mitsuhiro Okamoto and Yoshimasa Morino. “Affinity Labeling of Aspartate Aminotransferase Isozymes
by Bromopyruvate”. In: Journal of Biological Chemistry 248.1 (1973-01-10), pp. 82-90.

Philip Hogg. Functional Disulphide Bonds: Methods and Protocols. Humana New York, NY, 2019.

Hiram F. Gilbert. “[2] Thiol/Disulfide Exchange Equilibria and Disulfidebond Stability”. In: Methods in
Enzymology. Vol. 251. Biothiols Part A Monothiols and Dithiols, Protein Thiols, and Thiyl Radicals.
Academic Press, 1995, pp. 8-28.

Robert B. Freedman. “How Many Distinct Enzymes Are Responsible for the Several Cellular Processes
Involving Thiol:Protein-Disulphide Interchange?” In: FEBS Letters 97.2 (1979), pp. 201-210.

Glenn Dranoff. “Targets of Protective Tumor Immunity”. In: Annals of the New York Academy of Sciences
1174.1 (2009), pp. 74-80.

Pedro Alexandrino Fernandes and Maria Jodo Ramos. “Theoretical Insights into the Mechanism for Thi-
ol/Disulfide Exchange”. In: Chemistry — A European Journal 10.1 (2004), pp. 257-266.

Péter Nagy. “Kinetics and Mechanisms of Thiol-Disulfide Exchange Covering Direct Substitution and
Thiol Oxidation-Mediated Pathways”. In: Antiozidants & Redox Signaling 18.13 (2013-05), pp. 1623-1641.

Marina Putzu et al. “On the Mechanism of Spontaneous Thiol-Disulfide Exchange in Proteins”. In: Phys.
Chem. Chem. Phys. 20.23 (2018), pp. 16222-16230.

Zhiyong Cheng et al. “Reactivity of Thioredoxin as a Protein Thiol-Disulfide Oxidoreductase”. In: Chem.
Rev. 111.9 (2011-09-14), pp. 5768-5783.

Marcel Deponte. “Glutathione Catalysis and the Reaction Mechanisms of Glutathione-Dependent En-
zymes”. In: Biochimica et Biophysica Acta (BBA) - General Subjects. Cellular Functions of Glutathione
1830.5 (2013), pp. 3217-3266.

Yuan Qi and Nick V. Grishin. “Structural Classification of Thioredoxin-like Fold Proteins”. In: Proteins:
Structure, Function, and Bioinformatics 58.2 (2005), pp. 376-388.

Jonathan D. Gough et al. “Folding Disulfide-Containing Proteins Faster with an Aromatic Thiol”. In: J.
Am. Chem. Soc. 124.15 (2002-04-01), pp. 3885-3892.

Luis Eduardo S. Netto et al. “Conferring Specificity in Redox Pathways by Enzymatic Thiol/Disulfide
Exchange Reactions”. In: Free Radic. Res. 50.2 (2016), pp. 206—-245.

177



Bibliography

178

Fredrik Aslund et al. “Glutaredoxin-3 from Escherichia Coli: AMINO ACID SEQUENCE, 1H AND 15N
NMR ASSIGNMENTS, AND STRUCTURAL ANALYSIS”. In: Journal of Biological Chemistry 271.12
(1996-03-22), pp. 6736—6745.

Jennifer L Martin. “Thioredoxin —a Fold for All Reasons”. In: Structure 3.3 (1995-03-01), pp. 245-250.

A. Holmgren. “Thioredoxin and Glutaredoxin Systems”. In: J Biol Chem 264.24 (1989-08-25), pp. 13963—
13966.

Hideaki Kamata and Hajime Hirata. “Redox Regulation of Cellular Signalling”. In: Cellular Signalling 11.1
(1999-01-01), pp. 1-14.

Ashwinie A. Ukuwela et al. “Glutaredoxins Employ Parallel Monothiol-Dithiol Mechanisms to Catalyze
Thiol-Disulfide Exchanges with Protein Disulfides”. In: Chem. Sci. 9.5 (2018), pp. 1173-1183.

Fernando T. Ogata et al. “Glutaredoxin: Discovery, Redox Defense and Much More”. In: Redoz Biology 43
(2021), p. 101975.

Robert D. Bach, Olga Dmitrenko, and Colin Thorpe. “Mechanism of thiolate-disulfide interchange reactions
in biochemistry”. In: The Journal of Organic Chemistry 73.1 (Jan. 2008), pp. 12-21.

Steven M. Bachrach and Debbie C. Mulhearn. “Nucleophilic Substitution at Sulfur: SN2 or Addition-
Elimination”. In: The Journal of Physical Chemistry 100.9 (Jan. 1996), pp. 3535-3540.

Manikandan Paranjothy et al. “Mechanism of Thiolate-Disulfide Exchange: Addition—Elimination or Effec-
tively SN27 Effect of a Shallow Intermediate in Gas-Phase Direct Dynamics Simulations”. In: The Journal
of Physical Chemistry A 116.47 (Nov. 2012), pp. 11492-11499.

Marco Bortoli et al. “Addition—Elimination or Nucleophilic Substitution? Understanding the Energy Pro-
files for the Reaction of Chalcogenolates with Dichalcogenides”. In: J. Chem. Theory Comput. 12.6 (2016),
pp. 2752-2761.

Martina Wunderlich, Rainer Jaenicke, and Rudi Glockshuber. “The Redox Properties of Protein Disulfide
Tsomerase (DsbA) of Escherichia Coli Result from a Tense Conformation of Its Oxidized Form”. In: Journal
of Molecular Biology 233.4 (1993), pp. 559-566.

N. Srinivasan et al. “Conformations of Disulfide Bridges in Proteins”. In: International Journal of Peptide
and Protein Research 36.2 (1990), pp. 147-155.

Maurice L. Huggins. “The Structure of Fibrous Proteins.” In: Chemical Reviews 32.2 (Apr. 1943), pp. 195—
218.

Linus Pauling, Robert B. Corey, and H. R. Branson. “The structure of proteins: Two hydrogen-bonded
helical configurations of the polypeptide chain”. In: Proceedings of the National Academy of Sciences 37.4
(Apr. 1951), pp. 205-211.

Alan R. Fersht et al. “Hydrogen bonding and biological specificity analysed by protein engineering”. In:
Nature 314.6008 (Mar. 1985), pp. 235-238.

George A. Jeffrey. An Introduction to Hydrogen Bonding. Oxford, U.K.: Oxford University Press, 1997.

Hideaki Umeyama and Keiji Morokuma. “The origin of hydrogen bonding. An energy decomposition study”.
In: Journal of the American Chemical Society 99.5 (Mar. 1977), pp. 1316-1332.

Stephanie C. C. van der Lubbe and Célia Fonseca Guerra. “The Nature of Hydrogen Bonds: A Delineation
of the Role of Different Energy Components on Hydrogen Bond Strengths and Lengths”. In: Chemistry —
An Asian Journal 14.16 (2019), pp. 2760-2769.

George N. Pairas and Petros G. Tsoungas. “H-Bond: The Chemistry-Biology H-Bridge”. In: ChemistrySelect
1.15 (2016), pp. 4520-4532.



Bibliography

[81]

[82]

[83]

Tamar Schlick. Molecular Modeling and Simulation: An Interdisciplinary Guide. 2nd ed. New York:
Springer, 2010.

N. S. Punekar. Enzymes: Catalysis, Kinetics and Mechanisms. Singapore: Springer Nature Singapore, 2018.

Gordon G. Hammes, Stephen J. Benkovic, and Sharon Hammes-Schiffer. “Flexibility, Diversity, and Co-
operativity: Pillars of Enzyme Catalysis”. In: Biochemistry 50.48 (Dec. 2011), pp. 10422-10430.

Daniel Herschlag and Aditya Natarajan. “Fundamental Challenges in Mechanistic Enzymology: Progress
toward Understanding the Rate Enhancements of Enzymes”. In: Biochemistry 52.12 (Mar. 2013), pp. 2050
2067.

N. S. Golubev et al. “The role of short hydrogen bonds in mechanisms of enzymatic action”. In: Journal
of Molecular Structure. HORIZONS IN HYDROGEN BOND RESEARCH 1993 Proceedings of the Xth
Workshop \ldHorizons in Hydrogen Bond Research\rd, 322 (June 1994), pp. 83-91.

Daniel Herschlag and Margaux M. Pinney. “Hydrogen Bonds: Simple after All?” In: Biochemistry 57.24
(June 2018), pp. 3338-3352.

Kumari Soniya and Amalendu Chandra. “Free energy landscapes of prototropic tautomerism in pyridoxal
5’-phosphate schiff bases at the active site of an enzyme in aqueous medium?”. In: Journal of Computational
Chemistry 39.21 (2018), pp. 1629-1638.

Philip Hanoian et al. “Perspectives on Electrostatics and Conformational Motions in Enzyme Catalysis”.
In: Accounts of Chemical Research 48.2 (Feb. 2015), pp. 482-489.

Elinor Erez, Deborah Fass, and Eitan Bibi. “How intramembrane proteases bury hydrolytic reactions in
the membrane”. In: Nature 459.7245 (May 2009), pp. 371-378.

Ofer Rahat et al. “Understanding hydrogen-bond patterns in proteins using network motifs”. In: Bioinfor-
matics 25.22 (Nov. 2009), pp. 2921-2928.

Lydia Nisius and Stephan Grzesiek. “Key stabilizing elements of protein structure identified through pres-
sure and temperature perturbation of its hydrogen bond network”. In: Nature Chemistry 4.9 (Sept. 2012),
pp. 711-717.

Hiroshi Ishikita and Keisuke Saito. “Proton transfer reactions and hydrogen-bond networks in protein
environments”. In: Journal of The Royal Society Interface 11.91 (Feb. 2014), p. 20130518.

Malte Siemers et al. “Bridge: A Graph-Based Algorithm to Analyze Dynamic H-Bond Networks in Mem-
brane Proteins”. In: Journal of Chemical Theory and Computation 15.12 (Dec. 2019), pp. 6781-6798.

Michalis Lazaratos, Konstantina Karathanou, and Ana-Nicoleta Bondar. “Graphs of dynamic H-bond
networks: from model proteins to protein complexes in cell signaling”. In: Current Opinion in Structural
Biology. Biophysical and Computational Methods Cryo EM 64 (Oct. 2020), pp. 79-87.

Masayoshi Nakasako. “Network of Hydrogen Bonds Around Proteins”. In: Hydration Structures of Proteins.
Ed. by Masayoshi Nakasako. Soft and Biological Matter. Springer, 2021, pp. 163-182.

Ji¥i Cerny and Pavel Hobza. “Non-covalent interactions in biomacromolecules”. en. In: Physical Chemistry
Chemical Physics 9.39 (2007), pp. 5291-5303.

Anders S. Christensen et al. “Intermolecular interactions in the condensed phase: Evaluation of semi-
empirical quantum mechanical methods”. In: The Journal of Chemical Physics 147.16 (Oct. 2017).

Ruben Santamaria. Molecular Dynamics. Cham, Switzerland: Springer Nature Switzerland AG, 2023.

Andrew R. Leach. Molecular Modelling: Principles and Applications. 2nd ed. Harlow, England: Prentice
Hall, 2001.

Frank Jensen. Introduction to Computational Chemistry. Third edition. Chichester, UK ; Hoboken, NJ:
John Wiley & Sons, 2017. 638 pp.

179



Bibliography

[97]

[98]

[99]

[100]

[101]

[102]

103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

180

Harold C. Urey and Charles A. Bradley. “The Vibrations of Pentatonic Tetrahedral Molecules”. In: Phys.
Rev. 38 (11 Dec. 1931), pp. 1969-1978.

Matthias Buck et al. “Importance of the CMAP Correction to the CHARMMZ22 Protein Force Field:
Dynamics of Hen Lysozyme”. In: Biophysical Journal 90.4 (Feb. 2006), pp. L36-L38.

Wei Kang, Fan Jiang, and Yun-Dong Wu. “Universal Implementation of a Residue-Specific Force Field
Based on CMAP Potentials and Free Energy Decomposition”. In: Journal of Chemical Theory and Com-
putation 14.8 (Aug. 2018), pp. 4474-4486.

Wendy D. Cornell et al. “A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids,
and Organic Molecules”. In: Journal of the American Chemical Society 117.19 (May 1995), pp. 5179-5197.

Alexander D. MacKerell et al. “All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies
of Proteins”. In: Journal of Physical Chemistry B 102 (1998), pp. 3586—3616.

Jay W. Ponder et al. “Current Status of the AMOEBA Polarizable Force Field”. In: The Journal of Physical
Chemistry B 114.8 (Mar. 2010), pp. 2549-2564.

Adri C. T. van Duin et al. “ReaxFF: A Reactive Force Field for Hydrocarbons”. In: Journal of Physical
Chemistry A 105 (2001), pp. 9396-94009.

Siewert J. Marrink et al. “The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations”.
In: Journal of Physical Chemistry B 111 (2007), pp. 7812-7824.

Petra Florova et al. “Explicit Water Models Affect the Specific Solvation and Dynamics of Unfolded
Peptides While the Conformational Behavior and Flexibility of Folded Peptides Remain Intact”. In: Journal
of Chemical Theory and Computation 6.11 (Nov. 2010), pp. 3569-3579.

Saeed Izadi, Ramu Anandakrishnan, and Alexey V. Onufriev. “Building Water Models: A Different Ap-
proach”. In: The Journal of Physical Chemistry Letters 5.21 (Nov. 2014), pp. 3863-3871.

Alexey V. Onufriev and Saeed Izadi. “Water models for biomolecular simulations”. In: WIREs Computa-
tional Molecular Science 8.2 (2018), e1347.

Sachini P. Kadaoluwa Pathirannahalage et al. “Systematic Comparison of the Structural and Dynamic
Properties of Commonly Used Water Models for Molecular Dynamics Simulations”. In: Journal of Chemical
Information and Modeling 61.9 (Sept. 2021), pp. 4521-4536.

Chulwoo Park, Ferlin Robinson, and Daejoong Kim. “On the Choice of Different Water Model in Molecular
Dynamics Simulations of Nanopore Transport Phenomena”. In: Membranes 12.11 (Nov. 2022), p. 1109.

Chuan Tian et al. “ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum
Mechanics Energy Surfaces in Solution”. In: Journal of Chemical Theory and Computation 16.1 (Jan.
2020), pp. 528-552.

P. Hohenberg and W. Kohn. “Inhomogeneous Electron Gas”. In: Phys. Rev. 136 (3B 1964-11-09), B864—
B8T71.

Wolfram Koch and Max C. Holthausen. A Chemist’s Guide to Density Functional Theory. 2nd ed. Wein-
heim: Wiley-VCH, 2001.

John P. Perdew and Karla Schmidt. “Jacob’s Ladder of Density Functional Approximations for the Ex-
change—Correlation Energy”. In: AIP Conference Proceedings. Vol. 577. 1. AIP, 2001, pp. 1-20.

Markus Bursch et al. “Best-Practice DFT Protocols for Basic Molecular Computational Chemistry**”. In:
Angewandte Chemie International Edition 61.42 (2022), €202205735.

Van-Quan Vuong and Qiang Cui. “Reparameterization of the chemical-potential equalization model with
DFTBS3: A practical balance between accuracy and transferability”. In: The Journal of Chemical Physics
158.6 (Feb. 2023), p. 064111.



Bibliography

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

Michael Gaus, Qiang Cui, and Marcus Elstner. “Density Functional Tight Binding: Application to Organic
and Biological Molecules”. In: WIREs Comput Mol Sci 4.1 (2014), pp. 49-61.

G Seifert, H Eschrig, and W Bieger. “An Approximation Variant of LCAO-X-ALPHA Methods”. In:
Zeitschrift Fur Physikalische Chemie-Leipzig 267.3 (1986), pp. 529-539.

Gotthard Seifert and Jan-Ole Joswig. “Density-Functional Tight Binding—an Approximate Density-
Functional Theory Method”. In: WIREs Computational Molecular Science 2.3 (2012), pp. 456—465.

D. Porezag et al. “Construction of tight-binding-like potentials on the basis of density-functional theory:
Application to carbon”. In: Physical Review B 51.19 (May 1995), pp. 12947-12957.

M. Elstner et al. “Self-Consistent-Charge Density-Functional Tight-Binding Method for Simulations of
Complex Materials Properties”. In: Phys. Rev. B 58.11 (1998), pp. 7260-7268.

Marcus Elstner and Gotthard Seifert. “Density Functional Tight Binding”. In: Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences 372.2011 (2014-03-13), p. 20120483.

Michael Gaus, Qiang Cui, and Marcus Elstner. “DFTB3: Extension of the Self-Consistent-Charge Density-
Functional Tight-Binding Method (SCC-DFTB)”. In: Journal of Chemical Theory and Computation 7.4
(Apr. 2011), pp. 931-948.

Michael Gaus, Albrecht Goez, and Marcus Elstner. “Parametrization and Benchmark of DFTB3 for Organic
Molecules”. In: Journal of Chemical Theory and Computation 9.1 (Jan. 2013), pp. 338-354.

Michael Gaus et al. “Parameterization of DFTB3/30B for Sulfur and Phosphorus for Chemical and Bio-
logical Applications”. In: Journal of Chemical Theory and Computation 10.4 (Apr. 2014), pp. 1518-1537.

Xiya Lu et al. “Parametrization of DFTB3/30B for Magnesium and Zinc for Chemical and Biological
Applications”. In: The Journal of Physical Chemistry B 119.3 (Jan. 2015), pp. 1062-1082.

Maximilian Kubillus et al. “Parameterization of the DFTB3 Method for Br, Ca, Cl, F, I, K, and Na
in Organic and Biological Systems”. In: Journal of Chemical Theory and Computation 11.1 (Jan. 2015),
pp. 332-342.

Qiang Cui, Tanmoy Pal, and Luke Xie. “Biomolecular QM/MM Simulations: What Are Some of the
“Burning Issues”?” In: The Journal of Physical Chemistry B 125.3 (Jan. 2021), pp. 689-702.

Jan Reza¢ and Pavel Hobza. “Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical
Quantum Mechanical Methods”. In: Journal of Chemical Theory and Computation 8.1 (Jan. 2012), pp. 141—
151.

Qiang Cui et al. “A QM/MM Implementation of the Self-Consistent Charge Density Functional Tight
Binding (SCC-DFTB) Method”. In: The Journal of Physical Chemistry B 105.2 (Jan. 2001), pp. 569-585.

Xiya Lu et al. “Regulation and Plasticity of Catalysis in Enzymes: Insights from Analysis of Mechanochem-
ical Coupling in Myosin”. In: Biochemistry 56.10 (Mar. 2017), pp. 1482-1497.

Daniel Roston, Darren Demapan, and Qiang Cui. “Extensive free-energy simulations identify water as the
base in nucleotide addition by DNA polymerase”. In: Proceedings of the National Academy of Sciences
116.50 (Dec. 2019), pp. 25048-25056.

Beatrix M. Bold et al. “Benchmark and performance of long-range corrected time-dependent density func-
tional tight binding (LC-TD-DFTB) on rhodopsins and light-harvesting complexes”. In: Physical chemistry
chemical physics 22.19 (May 2020), pp. 10500-10518.

Denis Maag et al. “O to bR transition in bacteriorhodopsin occurs through a proton hole mechanism”. In:
Proceedings of the National Academy of Sciences 118.39 (Sept. 2021), €2024803118.

Junichi Ono, Chika Okada, and Hiromi Nakai. “Hydroxide Ion Mechanism for Long-Range Proton Pumping
in the Third Proton Transfer of Bacteriorhodopsin”. In: ChemPhysChem 23.22 (2022), €¢202200109.

181



Bibliography

[135] Rui Lai, Guohui Li, and Qiang Cui. “Flexibility of Binding Site is Essential to the Ca?* Selectivity in
EF-Hand Calcium-Binding Proteins”. In: Journal of the American Chemical Society 146.11 (Mar. 2024),
pp. 7628-7639.

[136] “Mixed Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations of Biological Sys-
tems in Ground and Electronically Excited States”. In: Chemical Reviews (2015). Ed. by Elizabeth Brunk
and Ursula Rothlisberger.

[137) John R. Sabin, Erkki Bréandas, and Sylvio Canuto. Combining Quantum Mechanics and Molecular Me-
chanics: Some Recent Progresses in QM-MM Methods. Advances in Quantum Chemistry 59. Amsterdam
Boston: Elsevier Academic Press, 2010.

[138] Gérald Monard et al. “Determination of enzymatic reaction pathways using QM/MM methods”. In: Inter-
national Journal of Quantum Chemistry 93.3 (2003), pp. 229-244.

[139] Gerrit Groenhof. “Introduction to QM/MM Simulations”. In: Biomolecular Simulations. Ed. by Luca
Monticelli and Emppu Salonen. Vol. 924. Methods in Molecular Biology. Totowa, NJ: Humana Press,
2013, pp. 43-66.

[140] Hai Lin and Donald G. Truhlar. “Redistributed Charge and Dipole Schemes for Combined Quantum
Mechanical and Molecular Mechanical Calculations”. In: The Journal of Physical Chemistry A 109.17
(May 2005), pp. 3991-4004.

[141] Guanhua Hou et al. “A Modified QM /MM Hamiltonian with the Self-Consistent-Charge Density-Functional-
Tight-Binding Theory for Highly Charged QM Regions”. In: Journal of Chemical Theory and Computation
8.11 (Nov. 2012), pp. 4293-4304.

[142] Patricia Amara and Martin J. Field. “Evaluation of an ab initio quantum mechanical /molecular mechanical
hybrid-potential link-atom method”. In: Theoretical Chemistry Accounts 109.1 (Feb. 2003), pp. 43-52.

[143] Bo Wang and Donald G. Truhlar. “Including Charge Penetration Effects in Molecular Modeling”. In:
Journal of Chemical Theory and Computation 6.11 (Nov. 2010), pp. 3330-3342.

[144] G. Andrés Cisneros, Jean-Philip Piquemal, and Thomas A. Darden. “Quantum Mechanics/Molecular Me-
chanics Electrostatic Embedding with Continuous and Discrete Functions”. In: The Journal of Physical
Chemistry B 110.28 (July 2006), pp. 13682-13684.

[145] Tomas Kubat, Kai Welke, and Gerrit Groenhof. “New QM/MM Implementation of the DFTB3 Method
in the Gromacs Package”. In: Journal of Computational Chemistry 36.26 (2015), pp. 1978-1989.

[146] Mattia Bondanza et al. “Polarizable embedding QM /MM: the future gold standard for complex (bio)systems?”
In: Physical Chemistry Chemical Physics 22.26 (July 2020), pp. 14433-14448.

[147) Rosa E. Bulo et al. “Toward a Practical Method for Adaptive QM/MM Simulations”. In: Journal of
Chemical Theory and Computation 5.9 (Sept. 2009), pp. 2212-2221.

[148]  Soroosh Pezeshki and Hai Lin. “Recent developments in QM /MM methods towards open-boundary multi-
scale simulations”. In: Molecular Simulation 41.1-3 (Feb. 2015), pp. 168-189.

[149] Min Zheng and Mark P. Waller. “Adaptive quantum mechanics/molecular mechanics methods”. In: WIREs
Computational Molecular Science 6.4 (2016), pp. 369-385.

[150] Adam W. Duster et al. “Adaptive quantum/molecular mechanics: what have we learned, where are we,
and where do we go from here?” In: WIRFEs Computational Molecular Science 7.5 (2017), e1310.

[151] Hiroshi C. Watanabe and Qiang Cui. “Quantitative Analysis of QM/MM Boundary Artifacts and Correc-
tion in Adaptive QM/MM Simulations”. In: Journal of Chemical Theory and Computation (May 2019).

[152] Zeng-hui Yang. “On-the-fly determination of active region centers in adaptive-partitioning QM/MM?”. In:
Physical Chemistry Chemical Physics 22.34 (Sept. 2020), pp. 19307-19317.

182



Bibliography

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

163]

[164]

[165]

[166]
167]

[168]

[169]

[170]

[171]

Jia-Ning Wang et al. “Accelerated Computation of Free Energy Profile at Ab Initio Quantum Mechan-
ical/Molecular Mechanics Accuracy via a Semiempirical Reference Potential. 4. Adaptive QM/MM?”. In:
Journal of Chemical Theory and Computation 17.3 (Mar. 2021), pp. 1318-1325.

Joani Mato et al. “Adaptive-Partitioning Multilayer Dynamics Simulations: 1. On-the-Fly Switch between
Two Quantum Levels of Theory”. In: Journal of chemical theory and computation 17.9 (Sept. 2021),
pp. 5456-5465.

Shengheng Yan, Binju Wang, and Hai Lin. “Reshaping the QM Region On-the-Fly: Adaptive-Shape
QM/MM Dynamic Simulations of a Hydrated Proton in Bulk Water”. In: Journal of Chemical Theory
and Computation 20.9 (May 2024), pp. 3462-3472.

Holden Paz et al. “The Effects of Conformational Sampling and QM Region Size in QM /MM Simulations:
An Adaptive QM /MM Study With Model Systems”. In: Journal of Computational Chemistry 46.11 (Apr.
2025), p. 70109.

Mark E. Tuckerman. Statistical Mechanics: Theory and Molecular Simulation. Oxford Graduate Texts.
Oxford: Oxford University Press, 2010.

Herman J. C. Berendsen. Simulating the Physical World: Hierarchical Modeling from Quantum Mechanics
to Fluid Dynamics. Cambridge: Cambridge University Press, 2007.

George David Birkhoff. “Proof of the ergodic theorem”. In: Proceedings of the National Academy of Sciences
17.12 (1931), pp. 656-660.

Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From Algorithms to Applications.
Computational Science Series. San Diego: Academic Press, 2002.

Efrem Braun et al. “Best Practices for Foundations in Molecular Simulations [Article v1.0]”. In: Living
journal of computational molecular science 1.1 (2019), p. 5957.

Benedict J. Leimkuhler, Sebastian Reich, and Robert D. Skeel. “Integration Methods for Molecular Dy-
namics”. In: Mathematical Approaches to Biomolecular Structure and Dynamics. Ed. by Jill P. Mesirov,
Klaus Schulten, and De Witt Sumners. New York, NY: Springer New York, 1996, pp. 161-185.

Michael P. Allen and Dominic J. Tildesley. Computer Simulation of Liquids. Oxford University Press, June
2017.

Loup Verlet. “Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-
Jones Molecules”. In: Phys. Rev. 159.1 (1967-07-05), pp. 98—103.

Tom Darden, Darrin York, and Lee Pedersen. “Particle mesh Ewald: An N log(N) method for Ewald sums
in large systems”. In: The Journal of Chemical Physics 98.12 (June 1993), pp. 10089-10092.

GROMACS Development Team. GROMACS User Manual. accessed 2025-11-23. GROMACS. 2025.

Shuichi Miyamoto and Peter A. Kollman. “Settle: An analytical version of the SHAKE and RATTLE
algorithm for rigid water models”. In: Journal of Computational Chemistry 13.8 (1992), pp. 952-962.

Jean-Paul Ryckaert, Giovanni Ciccotti, and Herman J. C Berendsen. “Numerical Integration of the Carte-
sian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes”. In: Journal of
Computational Physics 23.3 (1977-03-01), pp. 327-341.

Berk Hess et al. “LLINCS: A Linear Constraint Solver for Molecular Simulations”. In: Journal of Computa-
tional Chemistry 18.12 (1997), pp. 1463-1472.

Lorién Lopez-Villellas et al. “ILVES: Accurate and Efficient Bond Length and Angle Constraints in Molec-
ular Dynamics”. In: Journal of Chemical Theory and Computation 21.18 (Sept. 2025), pp. 8711-8719.

H. J. C. Berendsen et al. “Molecular dynamics with coupling to an external bath”. In: The Journal of
Chemical Physics 81.8 (Oct. 1984), pp. 3684-3690.

183



Bibliography

[172]

[173]

[174]

[175]
[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183)]

[184]

[185)]

[186]

[187]

188

[189]

[190]

[191]

184

D. J. Evans and B. L. Holian. “The Nose-Hoover Thermostat”. In: J. Chem. Phys. 83.8 (1985), pp. 4069
4074.

M. Parrinello and A. Rahman. “Polymorphic transitions in single crystals: A new molecular dynamics
method”. In: Journal of Applied Physics 52.12 (Dec. 1981), pp. 7182-7190.

Herbert Solomon. Geometric Probability. CBMS-NSF Regional Conference Series in Applied Mathematics
28. Philadelphia: Society for Industrial and Applied Mathematics (STAM), 1978.

Raosaheb Latpate et al. Advanced Sampling Methods. Singapore: Springer, 2021.

Clara D. Christ, Alan E. Mark, and Wilfred F. van Gunsteren. “Basic ingredients of free energy calculations:
A review”. In: Journal of Computational Chemistry 31.8 (2010), pp. 1569-1582.

Alessandro Barducci, Massimiliano Bonomi, and Michele Parrinello. “Metadynamics”. In: WIREs Compu-
tational Molecular Science 1.5 (2011), pp. 826-843.

Leslie L. Chavez, José N. Onuchic, and Cecilia Clementi. “Quantifying the Roughness on the Free Energy
Landscape: Entropic Bottlenecks and Protein Folding Rates”. In: J. Am. Chem. Soc. 126.27 (2004-07-14),
pp. 8426-8432.

Vojtech Spiwok, Zoran Sucur, and Petr Hosek. “Enhanced sampling techniques in biomolecular simula-
tions”. In: Biotechnology Advances. BioTech 2014 and 6th Czech-Swiss Biotechnology Symposium 33.6,
Part 2 (Nov. 2015), pp. 1130-1140.

Wenhui Shen, Tong Zhou, and Xinghua Shi. “Enhanced sampling in molecular dynamics simulations and
their latest applications—A review”. In: Nano Research 16.12 (Dec. 2023), pp. 13474-13497.

A. Laio and M. Parrinello. “Escaping free-energy minima”. In: Proceedings of the National Academy of
Sciences 99.20 (Oct. 2002), pp. 12562-12566.

Alessandro Laio and Francesco L Gervasio. “Metadynamics: A Method to Simulate Rare Events and
Reconstruct the Free Energy in Biophysics, Chemistry and Material Science”. In: Rep. Prog. Phys. 71.12
(2008), p. 126601.

Alessandro Barducci, Giovanni Bussi, and Michele Parrinello. “Well-Tempered Metadynamics: A Smoothly
Converging and Tunable Free-Energy Method”. In: Phys. Rev. Lett. 100.2 (2008), p. 020603.

Paolo Raiteri et al. “Efficient Reconstruction of Complex Free Energy Landscapes by Multiple Walkers
Metadynamics”. In: J. Phys. Chem. B 110.8 (2006), pp. 3533-3539.

G. M. Torrie and J. P. Valleau. “Nonphysical sampling distributions in Monte Carlo free-energy estimation:
Umbrella sampling”. In: Journal of Computational Physics 23.2 (Feb. 1977), pp. 187-199.

Mihaly Mezei. “Adaptive umbrella sampling: Self-consistent determination of the non-Boltzmann bias”. In:
Journal of Computational Physics 68.1 (Jan. 1987), pp. 237-248.

Johannes Késtner. “Umbrella sampling”. In: WIREs Computational Molecular Science 1.6 (2011), pp. 932
942.

Eric Darve, David Rodriguez-Gémez, and Andrew Pohorille. “Adaptive biasing force method for scalar
and vector free energy calculations”. In: The Journal of Chemical Physics 128.14 (Apr. 2008), p. 144120.

Omar Valsson and Michele Parrinello. “Variational Approach to Enhanced Sampling and Free Energy
Calculations”. In: Physical Review Letters 113.9 (Aug. 2014), p. 090601.

Soumendranath Bhakat. “Collective variable discovery in the age of machine learning: reality, hype and
everything in between”. In: RSC Advances 12.38 (2022), pp. 25010-25024.

Florian Sittel and Gerhard Stock. “Perspective: Identification of collective variables and metastable states
of protein dynamics”. In: The Journal of Chemical Physics 149.15 (Oct. 2018), p. 150901.



Bibliography

[192]

193]

[194]

[195]

196]

[197]

[198]

[199]

200]

[201]

[202]

203]

[204]

205

206]

207]

208

209]

210]

[211]

Robert T. McGibbon, Brooke E. Husic, and Vijay S. Pande. “Identification of simple reaction coordinates
from complex dynamics”. In: The Journal of Chemical Physics 146.4 (Jan. 2017), p. 044109.

Alexandros Altis et al. “Construction of the free energy landscape of biomolecules via dihedral angle
principal component analysis”. In: The Journal of Chemical Physics 128.24 (June 2008), p. 245102.

Rafael C. Bernardi, Marcelo C.R. Melo, and Klaus Schulten. “Enhanced Sampling Techniques in Molecular
Dynamics Simulations of Biological Systems”. In: Biochimica et Biophysica Acta (BBA) - General Subjects
1850.5 (2015-05), pp. 872-877.

Hythem Sidky, Wei Chen, and Andrew L. Ferguson. “Machine learning for collective variable discovery
and enhanced sampling in biomolecular simulation”. In: Molecular Physics 118.5 (Mar. 2020), e1737742.

Jakub Rydzewski, Ming Chen, and Omar Valsson. “Manifold learning in atomistic simulations: a conceptual
review”. In: Machine Learning: Science and Technology 4.3 (Sept. 2023), p. 031001.

Shams Mehdi et al. “Enhanced Sampling with Machine Learning: A Review”. In: Annual review of physical
chemistry 75.1 (June 2024), pp. 347-370.

Paraskevi Gkeka et al. “Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynam-
ics: Application to Materials and Biological Systems”. In: Journal of Chemical Theory and Computation
16.8 (Aug. 2020), pp. 4757-4775.

Raul P. Pelaez et al. “TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular Simulations”. In:
Journal of Chemical Theory and Computation 20.10 (May 2024), pp. 4076-4087.

Kobchikova P. P. et al. “Machine learning interatomic potentials in biomolecular modeling: principles,
architectures, and applications”. In: Biophysical Reviews (Aug. 2025).

Yuanqging Wang et al. “On the design space between molecular mechanics and machine learning force
fields”. In: Applied Physics Reviews 12.2 (Apr. 2025), p. 021304.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. Adaptive Computation and Machine
Learning. Cambridge, MA: MIT Press, 2016.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data Min-
ing, Inference, and Prediction. 2nd. Springer Series in Statistics. New York, NY: Springer, 2017.

Yinuo Yang et al. “Machine Learning of Reactive Potentials”. In: Annual Review of Physical Chemistry 75
(June 2024), pp. 371-395.

Jorg Behler and Michele Parrinello. “Generalized Neural-Network Representation of High-Dimensional
Potential-Energy Surfaces”. In: Phys. Rev. Lett. 98.14 (Apr. 2007), p. 146401.

Jorg Behler. “Four Generations of High-Dimensional Neural Network Potentials”. In: Chem. Rev. 121.16
(2021), pp. 10037-10072.

K. T. Schiitt et al. “SchNet — A deep learning architecture for molecules and materials”. In: The Journal
of Chemical Physics 148.24 (Mar. 2018), p. 241722.

Michael Gastegger, Kristof T. Schiitt, and Klaus-Robert Miiller. “Machine learning of solvent effects on
molecular spectra and reactions”. In: Chemical Science 12.34 (Sept. 2021), pp. 11473-11483.

Philipp Thoélke and Gianni De Fabritiis. TorchMD-NET: Equivariant Transformers for Neural Network
based Molecular Potentials. arXiv:2202.02541 [physics] version: 2. Apr. 2022.

Raghunathan Ramakrishnan et al. “Big Data Meets Quantum Chemistry Approximations: The A-Machine
Learning Approach”. In: J. Chem. Theory Comput. 11.5 (May 2015), pp. 2087-2096.

Lin Shen and Weitao Yang. “Molecular Dynamics Simulations with Quantum Mechanics/Molecular Me-
chanics and Adaptive Neural Networks”. In: J. Chem. Theory Comput. 14.3 (Mar. 2018), pp. 1442-1455.

185



Bibliography

212]

[213]

[214]

[215]

[216]

[217]

[218]

219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

186

Raidel Martin-Barrios et al. “An overview about neural networks potentials in molecular dynamics simu-
lation”. In: International Journal of Quantum Chemistry 124.11 (2024), e27389.

Martin Novacek and Jan Reza¢. “PM6-ML: The Synergy of Semiempirical Quantum Chemistry and Ma-
chine Learning Transformed into a Practical Computational Method”. In: Journal of Chemical Theory and
Computation (Jan. 2025).

Jinzhe Zeng et al. “Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum
Mechanical/Molecular Mechanical Simulations of Chemical Reactions in Solution”. In: Journal of Chemical
Theory and Computation 17.11 (Nov. 2021), pp. 6993-7009.

Grégoire Ferré, Terry Haut, and Kipton Barros. “Learning molecular energies using localized graph kernels”.
In: The Journal of Chemical Physics 146.11 (Mar. 2017), p. 114107.

Frank Noé et al. “Machine Learning for Molecular Simulation”. In: Annual Review of Physical Chemistry
71 (Apr. 2020), pp. 361-390.

Lifeng Xu and Jian Jiang. “Synergistic Integration of Physical Embedding and Machine Learning Enabling
Precise and Reliable Force Field”. In: Journal of Chemical Theory and Computation 20.18 (Sept. 2024),
pp. 7785-7795.

Lennard Boselt, Moritz Thiirlemann, and Sereina Riniker. “Machine Learning in QM/MM Molecular Dy-
namics Simulations of Condensed-Phase Systems”. In: Journal of Chemical Theory and Computation 17.5
(May 2021), pp. 2641-2658.

Timothy J. Giese et al. “Combined QM /MM, machine learning path integral approach to compute free
energy profiles and kinetic isotope effects in RNA cleavage reactions”. In: Journal of Chemical Theory and
Computation 18.7 (July 2022), pp. 4304-4317.

Junmian Zhu et al. “Artificial neural network correction for density-functional tight-binding molecular
dynamics simulations”. In: MRS Commaunications 9.3 (Sept. 2019), pp. 867-873.

Claudia L. Gémez-Flores et al. “Accurate Free Energies for Complex Condensed-Phase Reactions Using
an Artificial Neural Network Corrected DFTB/MM Methodology”. In: Journal of Chemical Theory and
Computation 18.2 (Feb. 2022), pp. 1213-1226.

Rui P. P. Neves et al. “Benchmarking of Density Functionals for the Accurate Description of Thiol-Disulfide
Exchange”. In: J. Chem. Theory Comput. 10.11 (Nov. 2014), pp. 4842-4856.

Julian Boser et al. “Reduction pathway of glutaredoxin 1 investigated with QM/MM molecular dynamics
using a neural network correction”. In: The Journal of Chemical Physics (2022), p. 154104.

Thom H. Dunning Jr. “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron
through neon and hydrogen”. In: The Journal of Chemical Physics 90.2 (Jan. 1989), pp. 1007-1023.

Krishnan Raghavachari et al. “A fifth-order perturbation comparison of electron correlation theories”. In:
Chemical Physics Letters 157.6 (May 1989), pp. 479-483.

Giulio Imbalzano et al. “Automatic selection of atomic fingerprints and reference configurations for
machine-learning potentials”. In: The Journal of Chemical Physics 148.24 (Apr. 2018), p. 241730.

Bastien Casier et al. “Using principal component analysis for neural network high-dimensional potential
energy surface”. In: The Journal of Chemical Physics 152.23 (June 2020), p. 234103.

Kun Yao et al. “The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics”.
In: Chemical Science 9.8 (Feb. 2018), pp. 2261-2269.

M. Gastegger et al. “wACSF—Weighted atom-centered symmetry functions as descriptors in machine
learning potentials”. In: The Journal of Chemical Physics 148.24 (Mar. 2018), p. 241709.



Bibliography

[230]

[231]

[232]

[233)]

[234]

[235]

236

237]

238

[239]

[240]

[241]
[242]

[243]

[244]

[245]

246

[247]

Haohao Fu et al. “Collective Variable-Based Enhanced Sampling: From Human Learning to Machine Learn-
ing”. In: The Journal of Physical Chemistry Letters 15.6 (Feb. 2024), pp. 1774-1783.

Aldo Glielmo et al. “Unsupervised Learning Methods for Molecular Simulation Data”. In: Chemical Reviews
121.16 (Aug. 2021), pp. 9722-9758.

Andrea Amadei, Antonius B. M. Linssen, and Herman J. C. Berendsen. “Essential dynamics of proteins”.
In: Proteins: Structure, Function, and Genetics 17.4 (Dec. 1993), pp. 412-425.

Gia G. Maisuradze, Adam Liwo, and Harold A. Scheraga. “Principal component analysis for protein folding
dynamics”. In: Journal of molecular biology 385.1 (Jan. 2009), pp. 312-329.

Charles C. David and Donald J. Jacobs. “Principal Component Analysis: A Method for Determining the
Essential Dynamics of Proteins”. In: Methods in molecular biology (Clifton, N.J.) 1084 (2014), pp. 193-226.

Guillermo Pérez-Hernandez et al. “Identification of slow molecular order parameters for Markov model
construction”. In: The Journal of Chemical Physics 139.1 (July 2013), p. 015102.

Pratyush Tiwary and B. J. Berne. “Spectral gap optimization of order parameters for sampling complex
molecular systems”. In: Proceedings of the National Academy of Sciences 113.11 (Mar. 2016), pp. 2839
2844.

Alessandro Giuliani. “The application of principal component analysis to drug discovery and biomedical
data”. In: Drug Discovery Today 22.7 (July 2017), pp. 1069-1076.

Vojtéch Spiwok, Petra Lipovova, and Blanka Krélova. “Metadynamics in Essential Coordinates: Free En-
ergy Simulation of Conformational Changes”. In: The Journal of Physical Chemistry B 111.12 (Mar. 2007),
pp. 3073-3076.

Florian Sittel, Thomas Filk, and Gerhard Stock. “Principal component analysis on a torus: Theory and
application to protein dynamics”. In: The Journal of Chemical Physics 147.24 (Dec. 2017), p. 244101.

Matthias Ernst, Steffen Wolf, and Gerhard Stock. “Identification and Validation of Reaction Coordinates
Describing Protein Functional Motion: Hierarchical Dynamics of T4 Lysozyme”. In: Journal of Chemical
Theory and Computation 13.10 (Oct. 2017), pp. 5076-5088.

I. T. Jolliffe. Principal Component Analysis. Second. New York: Springer, 2002.

Christian R. Schwantes and Vijay S. Pande. “Improvements in Markov State Model Construction Reveal
Many Non-Native Interactions in the Folding of NTL9”. In: Journal of Chemical Theory and Computation
9.4 (Apr. 2013), pp. 2000-2009.

Shingo Ito et al. “Toward understanding whole enzymatic reaction cycles using multi-scale molecular
simulations”. In: Current Opinion in Structural Biology 95 (Dec. 2025), p. 103153.

Ivén Solt et al. “Evaluating Boundary Dependent Errors in QM/MM Simulations”. In: The Journal of
Physical Chemistry B 113.17 (Apr. 2009), pp. 5728-5735.

Rimsha Mehmood and Heather J. Kulik. “Both Configuration and QM Region Size Matter: Zinc Stability
in QM/MM Models of DNA Methyltransferase”. In: Journal of Chemical Theory and Computation 16.5
(May 2020), pp. 3121-3134.

Alvaro Pérez-Barcia et al. “Effect of the QM Size, Basis Set, and Polarization on QM/MM Interaction
Energy Decomposition Analysis”. In: Journal of Chemical Information and Modeling 63.3 (Feb. 2023),
pp. 882-897.

Goran Giudetti et al. “How Reproducible Are QM /MM Simulations? Lessons from Computational Studies
of the Covalent Inhibition of the SARS-CoV-2 Main Protease by Carmofur”. In: Journal of Chemical
Theory and Computation 18.8 (Aug. 2022), pp. 5056-5067.

187



Bibliography

248

249

[250]

[251]

[252]

253

[254]

[255]

[256]

257]

[258]

[259]

260]

[261]

[262]

263]

[264]

265

188

Camila M. Clemente, Luciana Capece, and Marcelo A. Marti. “Best Practices on QM /MM Simulations of
Biological Systems”. In: Journal of Chemical Information and Modeling 63.9 (May 2023), pp. 2609-2627.

Junming Ho et al. “How Accurate Are QM /MM Models?” In: The Journal of Physical Chemistry A (Dec.
2024).

Carles Curutchet et al. “Electronic Energy Transfer in Condensed Phase Studied by a Polarizable QM /MM
Model”. In: Journal of Chemical Theory and Computation 5.7 (July 2009), pp. 1838-1848.

Albert DeFusco et al. “Modeling Solvent Effects on Electronic Excited States”. In: The Journal of Physical
Chemistry Letters 2.17 (Sept. 2011), pp. 2184-2192.

Filippo Lipparini, Chiara Cappelli, and Vincenzo Barone. “Linear Response Theory and Electronic Tran-
sition Energies for a Fully Polarizable QM /Classical Hamiltonian”. In: Journal of Chemical Theory and
Computation 8.11 (Nov. 2012), pp. 4153-4165.

Nanna Holmgaard List, Jégvan Magnus Haugaard Olsen, and Jacob Kongsted. “Excited states in large
molecular systems through polarizable embedding”. In: Physical Chemistry Chemical Physics 18.30 (July
2016), pp. 20234-20250.

Daniele Loco et al. “A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground
State Energies to Electronic Excitations”. In: Journal of Chemical Theory and Computation 12.8 (Aug.
2016), pp. 3654-3661.

Christopher J. R. Illingworth et al. “Classical Polarization in Hybrid QM /MM Methods”. In: The Journal
of Physical Chemistry A 110.20 (May 2006), pp. 6487-6497.

Abir Ganguly, Eliot Boulanger, and Walter Thiel. “Importance of MM Polarization in QM/MM Studies
of Enzymatic Reactions: Assessment of the QM /MM Drude Oscillator Model”. In: Journal of Chemical
Theory and Computation 13.6 (June 2017), pp. 2954-2961.

Gerhard Konig et al. “A Comparison of QM /MM Simulations with and without the Drude Oscillator Model
Based on Hydration Free Energies of Simple Solutes”. In: Molecules 23.10 (Oct. 2018), p. 2695.

Heather J. Kulik et al. “How Large Should the QM Region Be in QM/MM Calculations? The Case of
Catechol O-Methyltransferase”. In: The Journal of Physical Chemistry B 120.44 (Nov. 2016), pp. 11381-
11394.

Klaus Miiller-Dethlefs and Pavel Hobza. “Noncovalent Interactions: A Challenge for Experiment and The-
ory”. In: Chemical Reviews 100.1 (Jan. 2000), pp. 143-168.

Kevin E. Riley and Pavel Hobza. “Noncovalent interactions in biochemistry”. In: WIREs Computational
Molecular Science 1.1 (2011), pp. 3—-17.

Carles Curutchet et al. “Energy decomposition in molecular complexes: Implications for the treatment of
polarization in molecular simulations”. In: Journal of Computational Chemistry 24.10 (2003), pp. 1263—
1275.

Kittusamy Senthilkumar et al. “Analysis of polarization in QM/MM modelling of biologically relevant
hydrogen bonds”. In: Journal of The Royal Society Interface 5.suppl 3 (Sept. 2008), pp. 207-216.

Peng Zhou et al. “Fluorine Bonding — How Does It Work In Protein—Ligand Interactions?” In: Journal of
Chemical Information and Modeling 49.10 (Oct. 2009), pp. 2344-2355.

Sadhana Kumbhar, Frank D. Fischer, and Mark P. Waller. “Assessment of Weak Intermolecular Interactions
Across QM /MM Noncovalent Boundaries”. In: Journal of Chemical Information and Modeling 52.1 (Jan.
2012), pp. 93-98.

Xinchun Guo et al. “Use of QM/MM scheme to reproduce macromolecule—small molecule noncovalent
binding energy”. In: Computational and Theoretical Chemistry 991 (July 2012), pp. 134-140.



Bibliography

[266] Rong-Zhen Liao and Walter Thiel. “Comparison of QM-Only and QM/MM Models for the Mechanism of
Tungsten-Dependent Acetylene Hydratase”. In: Journal of Chemical Theory and Computation 8.10 (Oct.
2012), pp. 3793-3803.

[267]  Jakub Kollar and Vladimir Frecer. “How accurate is the description of ligand—protein interactions by a
hybrid QM /MM approach?” In: Journal of Molecular Modeling 24.1 (Dec. 2017), p. 11.

[268] Nedjoua Drici. “Analysis of polarization in hydrogen bonded complexes: An asymptotic projection ap-
proach”. In: Chemical Physics Letters 696 (Mar. 2018), pp. 1-7.

[269] Shani Zev et al. “A Benchmark Study of Quantum Mechanics and Quantum Mechanics-Molecular Me-
chanics Methods for Carbocation Chemistry”. In: Journal of Chemical Theory and Computation 18.1
(Jan. 2022), pp. 167-178.

[270] Roberto Lopez et al. “QM/MM Energy Decomposition Using the Interacting Quantum Atoms Approach”.
In: Journal of Chemical Information and Modeling 62.6 (Mar. 2022), pp. 1510-1524.

[271] Elahe K. Astani et al. “DFT QM/MM MD Calculations to Identify Intermolecular Interactions within the
Active Sites of MraYA A Bound to Antibiotics Capuramycin, Carbacaprazamycin, and 3<Hydroxymureidomycin
A”. In: ChemistrySelect 8.46 (2023), €202302657.

[272] Xuewei Xiong et al. “QM/MM-Based Energy Decomposition Analysis Method for Large Systems”. In: The
Journal of Physical Chemistry A 128.18 (May 2024), pp. 3529-3538.

[273] Jan Reza¢. “Non-Covalent Interactions Atlas Benchmark Data Sets: Hydrogen Bonding”. In: J. Chem.
Theory Comput. 16.4 (Apr. 2020), pp. 2355-2368.

[274] José A. Fernandez. “Exploring Hydrogen Bond in Biological Molecules”. In: Journal of the Indian Institute
of Science 100.1 (Jan. 2020), pp. 135-154.

[275] Martin B. Peters et al. “Structural Survey of Zinc-Containing Proteins and Development of the Zinc
AMBER Force Field (ZAFF)”. In: Journal of Chemical Theory and Computation 6.9 (Sept. 2010), pp. 2935—
2947.

[276] John A. Gerlt et al. “Understanding enzymic catalysis: the importance of short, strong hydrogen bonds”.
In: Chemistry € Biology 4.4 (Apr. 1997), pp. 259-267.

[277)  Abigail G. Doyle and Eric N. Jacobsen. “Small-Molecule H-Bond Donors in Asymmetric Catalysis”. In:
Chemical Reviews 107.12 (Dec. 2007), pp. 5713-5743.

[278] Li L. Duan et al. “Intra-protein hydrogen bonding is dynamically stabilized by electronic polarization”. In:
The Journal of Chemical Physics 130.11 (Mar. 2009), p. 115102.

[279] Yang Li et al. “Electrostatic Polarization Effect on Cooperative Aggregation of Full Length Human Islet
Amyloid”. In: Journal of Chemical Information and Modeling 58.8 (Aug. 2018), pp. 1587-1595.

[280] Adam Pecina et al. “SQM2.20: Semiempirical quantum-mechanical scoring function yields DF T-quality pro-
tein—ligand binding affinity predictions in minutes”. In: Nature Communications 15.1 (Feb. 2024), p. 1127.

[281] Marek Freindorf and Jiali Gao. “Optimization of the Lennard-Jones parameters for a combined ab ini-
tio quantum mechanical and molecular mechanical potential using the 3-21G basis set”. In: Journal of
Computational Chemistry 17.4 (1996), pp. 386-395.

[282] Demian Riccardi, Guohui Li, and Qiang Cui. “Importance of van der Waals Interactions in QM/MM
Simulations”. In: The Journal of Physical Chemistry B 108.20 (May 2004), pp. 6467-6478.

[283] Junmei Wang et al. “Development and testing of a general amber force field”. In: Journal of Computational
Chemistry 25.9 (July 2004), pp. 1157-1174.

[284] Romelia Salomon-Ferrer, David A. Case, and Ross C. Walker. “An overview of the Amber biomolecular
simulation package”. In: WIRFEs Computational Molecular Science 3.2 (2013), pp. 198-210.

189



Bibliography

[285]

[286]

[287]

288

[289)]

290]

[201]

[292]
203]
[204]

295]

296]

[297]
298]

299]

300]

301]

302]

303]

304]

[305]

190

David A. Case et al. “AmberTools”. In: Journal of Chemical Information and Modeling 63.20 (Oct. 2023),
pp. 6183-6191.

M. J. Frisch et al. Gaussian 09, Revision A.02. Gaussian, Inc. Wallingford CT, 2016.

Narbe Mardirossian and Martin Head-Gordon. “wB97M-V: A combinatorially optimized, range-separated
hybrid, meta-GGA density functional with VV10 nonlocal correlation”. In: The Journal of Chemical
Physics 144.21 (June 2016), p. 214110.

Qiang Cui and Marcus Elstner. “Density functional tight binding: values of semi-empirical methods in an
ab initio era”. In: Physical Chemistry Chemical Physics 16.28 (June 2014), pp. 14368-14377.

Jan Reza¢. “Empirical Self-Consistent Correction for the Description of Hydrogen Bonds in DFTB3”. In:
Journal of Chemical Theory and Computation 13.10 (Oct. 2017), pp. 4804-4817.

Mark James Abraham et al. “GROMACS: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers”. In: SoftwareX 1-2 (2015), pp. 19-25.

B. Hourahine et al. “DFTB+, a software package for efficient approximate density functional theory based
atomistic simulations”. In: The Journal of Chemical Physics 152.12 (2020), p. 124101.

Tomas Kubaf. https://github.com/tomaskubar/dftbplus. last accessed 2025-02-17.
Tomas Kubaf. https://github.com/tomaskubar/gromacs-dftbplus. last accessed 2025-02-17.

Darrin M. York and Weitao Yang. “A chemical potential equalization method for molecular simulations”.
In: The Journal of Chemical Physics 104.1 (Jan. 1996), pp. 159-172.

Timothy J. Giese and Darrin M. York. “Density-functional expansion methods: grand challenges”. en. In:
Theoretical Chemistry Accounts 131.3 (Feb. 2012), p. 1145.

Steve Kaminski et al. “Extended Polarization in Third-Order SCC-DFTB from Chemical-Potential Equal-
ization”. In: The Journal of Physical Chemistry A 116.36 (Sept. 2012), pp. 9131-9141.

Anders Steen Christensen. https://github.com/andersx/cpe-source. last accessed 2025-02-17.

F. Neese. “Software update: the ORCA program system, version 5.0”. In: WIRES Comput. Molec. Sci.
12.1 (2022), e1606.

Eric D. Glendening, Clark R. Landis, and Frank Weinhold. “NBO 6.0: Natural bond orbital analysis
program”. In: Journal of Computational Chemistry 34.16 (2013), pp. 1429-1437.

Van-Quan Vuong et al. “Multipole Expansion of Atomic Electron Density Fluctuation Interactions in the
Density-Functional Tight-Binding Method”. In: Journal of Chemical Theory and Computation 19.21 (Nov.
2023), pp. 7592-7605.

Jaroslaw A. Kalinowski et al. “Class IV Charge Model for the Self-Consistent Charge Density-Functional
Tight-Binding Method”. In: The Journal of Physical Chemistry A 108.13 (Apr. 2004), pp. 2545-2549.

Omar Demerdash, Eng-Hui Yap, and Teresa Head-Gordon. “Advanced Potential Energy Surfaces for Con-
densed Phase Simulation”. In: Annual Review of Physical Chemistry 65.Volume 65, 2014 (Apr. 2014),
pp. 149-174.

Igor Leontyev and Alexei Stuchebrukhov. “Accounting for electronic polarization in non-polarizable force
fields”. In: Physical Chemistry Chemical Physics 13.7 (Feb. 2011), pp. 2613-2626.

Brian J. Kirby and Pavel Jungwirth. “Charge Scaling Manifesto: A Way of Reconciling the Inherently
Macroscopic and Microscopic Natures of Molecular Simulations”. In: The Journal of Physical Chemistry
Letters 10.23 (Dec. 2019), pp. 7531-7536.

Timothy J. Giese and Darrin M. York. “Many-body force field models based solely on pairwise Coulomb
screening do not simultaneously reproduce correct gas-phase and condensed-phase polarizability limits”.
In: The Journal of Chemical Physics 120.21 (June 2004), pp. 9903-9906.


h
https://github.com/tomaskubar/gromacs-dftbplus
h

Bibliography

306]

307]

308]

309]

[310]

[311]

312]

313]

[314]

315]

316

317]

318

319]

320]

[321]

322]

Riccardo Chelli, Vincenzo Schettino, and Piero Procacci. “Comparing polarizable force fields to ab initio
calculations reveals nonclassical effects in condensed phases”. In: The Journal of Chemical Physics 122.23
(June 2005).

John D. Chodera and David L. Mobley. “Entropy-Enthalpy Compensation: Role and Ramifications in
Biomolecular Ligand Recognition and Design”. In: Annual Review of Biophysics 42.Volume 42, 2013 (May
2013), pp. 121-142.

Eliot Boulanger and Walter Thiel. “Toward QM /MM Simulation of Enzymatic Reactions with the Drude
Oscillator Polarizable Force Field”. In: Journal of Chemical Theory and Computation 10.4 (Apr. 2014),
pp. 1795-1809.

Qiang Zhu et al. “Treating Polarization Effects in Charged and Polar Bio-Molecules Through Variable
Electrostatic Parameters”. In: Journal of Chemical Theory and Computation 19.2 (Jan. 2023), pp. 396—
411.

Maria Karelina and Heather J. Kulik. “Systematic Quantum Mechanical Region Determination in QM /MM
Simulation”. In: Journal of Chemical Theory and Computation 13.2 (Feb. 2017), pp. 563-576.

Timothy J. Giese, Jinzhe Zeng, and Darrin M. York. “Transferability of MACE Graph Neural Network
for Range Corrected A-Machine Learning Potential QM /MM Applications”. In: The Journal of Physical
Chemistry B 129.22 (June 2025), pp. 5477-5490.

Xiaoliang Pan et al. “Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme
Reactions”. In: Journal of Chemical Theory and Computation 17.9 (Sept. 2021), pp. 5745-5758.

Jonathan A. Semelak et al. Advancing Multiscale Molecular Modeling with Machine Learning-Derived
Electrostatics. en. Feb. 2025.

Ge Song and Weitao Yang. “NepolP/MM: Toward Accurate Biomolecular Simulation with a Machine
Learning/Molecular Mechanics Model Incorporating Polarization Effects”. In: Journal of Chemical Theory
and Computation 21.11 (June 2025), pp. 5588-5598.

Marcel Baer et al. “Spectral Signatures of the Pentagonal Water Cluster in Bacteriorhodopsin”. In:
ChemPhysChem 9.18 (2008), pp. 2703-2707.

Darren Demapan et al. “Factors That Determine the Variation of Equilibrium and Kinetic Properties
of QM/MM Enzyme Simulations: QM Region, Conformation, and Boundary Condition”. In: Journal of
Chemical Theory and Computation 18.4 (Apr. 2022), pp. 2530-2542.

Julian Boser. “QM/MM Molecular Dynamics Simulation of Thiol-Disulfide Exchange by Glutaredoxin”.
Master’s Thesis. Karlsruhe, Germany: Karlsruhe Institute of Technology, 2022.

Yanwu Yang et al. “Reactivity of the Human Thioltransferase (Glutaredoxin) CT7S, C25S, C78S, C82S
Mutant and NMR, Solution Structure of Its Glutathionyl Mixed Disulfide Intermediate Reflect Catalytic
Specificity,” in: Biochemistry 37.49 (1998), pp. 17145-17156.

Ashwinie A. Ukuwela et al. “Reduction Potentials of Protein Disulfides and Catalysis of Glutathionylation
and Deglutathionylation by Glutaredoxin Enzymes”. In: Biochem. J. 474.22 (2017), pp. 3799-3815.

Jannik Zimmermann et al. “One Cysteine Is Enough: A Monothiol Grx Can Functionally Replace All
Cytosolic Trx and Dithiol Grx”. In: Redox Biology 36 (2020), p. 101598.

Molly M. Gallogly, David W. Starke, and John J. Mieyal. “Mechanistic and Kinetic Details of Catalysis of
Thiol-Disulfide Exchange by Glutaredoxins and Potential Mechanisms of Regulation”. In: Antiozid. Redox
Signal. 11.5 (2009), pp. 1059-1081.

Christopher Horst Lillig and Carsten Berndt. “Glutaredoxins in Thiol/Disulfide Exchange”. In: Antioxi-
dants & Redoz Signaling 18.13 (2013), pp. 1654-1665.

191



Bibliography

323]

324]

325

326]

327]

328

329]

330]

331]

332]

333]

334]

[335]

336

337]

338]

339]

340]

192

Chaohong Sun, Marcelo J Berardi, and John H Bushweller. “The NMR solution structure of human glutare-
doxin in the fully reduced form”. In: J. Mol. Biol. 280.4 (1998), pp. 687-701.

Matthias Zimmermann et al. “Metal Binding Affinities of Arabidopsis Zinc and Copper Transporters:
Selectivities Match the Relative, but Not the Absolute, Affinities of Their Amino-Terminal Domains”. In:
Biochemistry (2009), pp. 11640-11654.

Maja Gruden et al. “Benchmarking Density Functional Tight Binding Models for Barrier Heights and
Reaction Energetics of Organic Molecules”. In: J. Comput. Chem. 38.25 (Sept. 2017), pp. 2171-2185.

Zoltan Bodrog, Balint Aradi, and Thomas Frauenheim. “Automated Repulsive Parametrization for the
DFTB Method”. In: Journal of Chemical Theory and Computation 7.8 (Aug. 2011), pp. 2654-2664.

Kresten Lindorff-Larsen et al. “Improved side-chain torsion potentials for the Amber ff99SB protein force
field”. In: Proteins: Structure, Function, and Bioinformatics 78.8 (2010), pp. 1950-1958.

Christopher 1. Bayly et al. “A well-behaved electrostatic potential based method using charge restraints
for deriving atomic charges: the RESP model”. In: J. Phys. Chem. 97.40 (1993), pp. 10269-10280.

Junmei Wang et al. “Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calcula-
tions”. In: J. Mol. Graph. Model. 25.2 (2006), pp. 247-260.

Massimiliano Bonomi et al. “Promoting transparency and reproducibility in enhanced molecular simula-
tions”. In: Nature Methods 16.8 (Aug. 2019), pp. 670-673.

Gareth A. Tribello et al. “PLUMED 2: New feathers for an old bird”. In: Computer Physics Communications
185.2 (Feb. 2014). arXiv: 1310.0980, pp. 604-613.

Giovanni Bussi, Davide Donadio, and Michele Parrinello. “Canonical sampling through velocity rescaling”.
In: The Journal of Chemical Physics 126.1 (Jan. 2007), p. 014101.

T. Kubarf. https://github. com/tomaskubar/dftbplus/tree/machine-learning. last accessed on 27
July 2022. 2021.

Denis Maag et al. “Electrostatic interactions contribute to the control of intramolecular thiol-disulfide
isomerization in a protein”. In: Physical Chemistry Chemical Physics 23.46 (Dec. 2021), pp. 26366-26375.

Ka Hung Lee et al. “Performance of Density-Functional Tight-Binding in Comparison to Ab Initio and
First-Principles Methods for Isomer Geometries and Energies of Glucose Epimers in Vacuo and Solution”.
In: ACS Omega 3.12 (2018), pp. 16899-16915.

Rui P. P. Neves, Pedro Alexandrino Fernandes, and Maria Jodo Ramos. “Mechanistic Insights on the
Reduction of Glutathione Disulfide by Protein Disulfide Isomerase”. In: Proc. Natl. Acad. Sci. U.S.A.
114.24 (June 2017), E4724-E4733.

Sebastian Buchenberg, Norbert Schaudinnus, and Gerhard Stock. “Hierarchical Biomolecular Dynamics:
Picosecond Hydrogen Bonding Regulates Microsecond Conformational Transitions”. In: Journal of Chem-
ical Theory and Computation 11.3 (Mar. 2015), pp. 1330-1336.

Steven D. Schwartz. “Protein dynamics and the enzymatic reaction coordinate”. In: Topics in current
chemistry 337 (2013), pp. 189-208.

T. Kubaf, M. Elstner, and Q. Cui. “Hybrid Quantum Mechanical/Molecular Mechanical Methods For
Studying Energy Transduction in Biomolecular Machines”. In: Annual Review of Biophysics 52.Volume 52,
2023 (May 2023), pp. 525-551.

Yasmin Abu Agel et al. “Glucokinase (GCK) in diabetes: from molecular mechanisms to disease pathogen-
esis”. In: Cellular & Molecular Biology Letters 29.1 (Sept. 2024), p. 120.


https://github.com/tomaskubar/dftbplus/tree/machine-learning

Bibliography

[341]

[342]

[343]

[344]

[345]

346

[347]

[348]

[349)]

[350]

351]

352]

353]

354]

355

[356]

357]

Ville R. I. Kaila. “Resolving Chemical Dynamics in Biological Energy Conversion: Long-Range Proton-
Coupled Electron Transfer in Respiratory Complex I”. In: Accounts of Chemical Research 54.24 (Dec.
2021), pp. 4462-4473.

Randall V. Mauldin, Mary J. Carroll, and Andrew L. Lee. “Dynamic Dysfunction in Dihydrofolate Re-
ductase Results from Antifolate Drug Binding: Modulation of Dynamics within a Structural State”. In:
Structure 17.3 (Mar. 2009), pp. 386-394.

Anna C. Nelson et al. “Mathematical models of fibrin polymerization: past, present, and future”. In:
Current Opinion in Biomedical Engineering 20 (Dec. 2021), p. 100350.

Arun P. Wiita et al. “Force-dependent chemical kinetics of disulfide bond reduction observed with single-
molecule techniques”. In: Proceedings of the National Academy of Sciences 103.19 (May 2006), pp. 7222—
7227.

Fabian Kutzki et al. “Disulfide bond reduction and exchange in C4 domain of von Willebrand factor
undermines platelet binding”. In: Journal of Thrombosis and Haemostasis 21.8 (Aug. 2023), pp. 2089
2100.

Yang Yang, Haibo Yu, and Qiang Cui. “Extensive Conformational Transitions Are Required to Turn On
ATP Hydrolysis in Myosin”. In: Journal of Molecular Biology 381.5 (Sept. 2008), pp. 1407-1420.

Anil R. Mhashal et al. “The role of the Met20 loop in the hydride transfer in Escherichia coli dihydrofolate
reductase”. In: Journal of Biological Chemistry 292.34 (Aug. 2017), pp. 14229-14239.

Daniel T Gillespie. “A general method for numerically simulating the stochastic time evolution of coupled
chemical reactions”. In: Journal of Computational Physics 22.4 (Dec. 1976), pp. 403—434.

Emanuel K. Peter, Igor V. Pivkin, and Joan-Emma Shea. “A kMC-MD method with generalized move-sets
for the simulation of folding of a-helical and B-stranded peptides”. In: The Journal of Chemical Physics
142.14 (Apr. 2015), p. 144903.

Benedikt Rennekamp et al. “Hybrid Kinetic Monte Carlo/Molecular Dynamics Simulations of Bond Scis-
sions in Proteins”. In: Journal of Chemical Theory and Computation 16.1 (Jan. 2020), pp. 553-563.

Kai Riedmiller et al. “Substituting density functional theory in reaction barrier calculations for hydrogen
atom transfer in proteins”. In: Chemical Science 15.7 (Feb. 2024), pp. 2518-2527.

Marko Hanzevacki et al. “All Roads Lead to Carbinolamine: QM/MM Study of Enzymatic C-N Bond
Cleavage in Anaerobic Glycyl Radical Enzyme Choline Trimethylamine-Lyase (CutC)”. In: The Journal
of Physical Chemistry B 129.37 (Sept. 2025), pp. 9322-9332.

Sani Idris Alhassan et al. “Multiscale Computational Workflow to Determine Stability of Disulfide Bridges
in Proteins-Application to IgG Antibodies”. In: Journal of Chemical Information and Modeling (Oct. 2025),
pp. 11187-11202.

Rui P. P. Neves, Pedro A. Fernandes, and Maria J. Ramos. “Role of Enzyme and Active Site Conformational
Dynamics in the Catalysis by a-Amylase Explored with QM/MM Molecular Dynamics”. In: Journal of
Chemical Information and Modeling 62.15 (Aug. 2022), pp. 3638-3650.

Dahlia R. Weiss and Michael Levitt. “Can Morphing Methods Predict Intermediate Structures?” In: Journal
of Molecular Biology 385.2 (Jan. 2009), pp. 665-674.

Laura Orellana. “Large-Scale Conformational Changes and Protein Function: Breaking the in silico Bar-
rier”. In: Frontiers in Molecular Biosciences 6 (Nov. 2019).

Yuguang Mu, Phuong H. Nguyen, and Gerhard Stock. “Energy landscape of a small peptide revealed by
dihedral angle principal component analysis”. In: Proteins: Structure, Function, and Bioinformatics 58.1
(Jan. 2005), pp. 45-52.

193



Bibliography

[358)

[359]

360]

361]

362]

363]

364]

365

[366]

367]

368

369]

370]

[371]

372)

194

Alexandros Altis et al. “Dihedral angle principal component analysis of molecular dynamics simulations”.
In: The Journal of Chemical Physics 126.24 (June 2007), p. 244111.

Francois Sicard and Patrick Senet. “Reconstructing the free-energy landscape of Met-enkephalin using
dihedral principal component analysis and well-tempered metadynamics”. In: The Journal of Chemical
Physics 138.23 (June 2013), p. 235101.

James McCarty and Michele Parrinello. “A variational conformational dynamics approach to the selection of
collective variables in metadynamics”. In: The Journal of Chemical Physics 147.20 (Nov. 2017), p. 204109.

Mohammad M. Sultan and Vijay S. Pande. “tICA-Metadynamics: Accelerating Metadynamics by Using
Kinetically Selected Collective Variables”. In: Journal of Chemical Theory and Computation 13.6 (June
2017), pp. 2440-2447.

Mark J. Abraham et al. GROMACS 2020 User Manual. Accessed: 2 October 2025. GROMACS development
team. 2020.

Joyce Chiu and Philip J. Hogg. “Allosteric disulfides: Sophisticated molecular structures enabling flexible
protein regulation”. In: Journal of Biological Chemistry 294.8 (Feb. 2019), pp. 2949-2960.

M. Bonomi and M. Parrinello. “Enhanced Sampling in the Well-Tempered Ensemble”. In: Physical Review
Letters 104.19 (May 2010), p. 190601.

Giovanni Bussi and Alessandro Laio. “Using metadynamics to explore complex free-energy landscapes”.
In: Nature Reviews Physics 2.4 (Mar. 2020), pp. 200-212.

Winnfried Hasel, Thomas F. Hendrickson, and W. Clark Still. “A rapid approximation to the solvent
accessible surface areas of atoms”. In: Tetrahedron Computer Methodology 1.2 (Jan. 1988), pp. 103—116.

Vojtéch Spiwok and Pavel Ki{z. “Time-Lagged t-Distributed Stochastic Neighbor Embedding (t-SNE) of
Molecular Simulation Trajectories”. In: Frontiers in Molecular Biosciences 7 (2020).

Geoffrey J. McLachlan and Suren Rathnayake. “On the number of components in a Gaussian mixture
model”. In: WIREs Data Mining and Knowledge Discovery 4.5 (2014), pp. 341-355.

Steffen Schultze and Helmut Grubmiiller. “Time-Lagged Independent Component Analysis of Random
Walks and Protein Dynamics”. In: Journal of Chemical Theory and Computation 17.9 (Sept. 2021),
pp. 5766-5776.

Jun-hui Peng et al. “Clustering algorithms to analyze molecular dynamics simulation trajectories for com-
plex chemical and biological systemst”. In: Chinese Journal of Chemical Physics 31.4 (Aug. 2018), pp. 404
420.

Sayari Bhattacharya and Suman Chakrabarty. “Mapping conformational landscape in protein folding:
Benchmarking dimensionality reduction and clustering techniques on the Trp-Cage mini-protein”. In: Bio-
physical Chemistry 319 (Apr. 2025), p. 107389.

Katra Kolsek, Camilo Aponte-Santamaria, and Frauke Gréter. “Accessibility explains preferred thiol-
disulfide isomerization in a protein domain”. In: Scientific Reports 7.1 (Aug. 2017), p. 9858.



	Abstract
	Zusammenfassung
	List of Publications
	Journal articles

	Contents
	List of Figures
	List of Tables
	Acronyms
	I Introduction
	1 Calculability of Proteins on Multiple Scales
	1.1 Biomolecular Context
	1.1.1 Thiol–Disulfide Exchange in Proteins
	1.1.2 Hydrogen Bonds in Proteins



	II Theoretical Background
	2 Potential Energy Functions and Molecular Models
	2.1 Molecular Mechanics
	2.1.1 Force Fields

	2.2 Quantum Chemistry
	2.2.1 Density Functional Theory
	2.2.2 Density-Functional Tight-Binding

	2.3 Hybrid QM/MM Approach

	3 Molecular Dynamics Simulations
	3.1 Finite Difference Methods
	3.1.1 Constant Temperature and Constant Pressure Ensembles


	4 Enhanced Sampling
	4.1 Collective Variables
	4.2 Importance Sampling Based on Bias and Collective Variables
	4.2.1 Metadynamics


	5 Machine Learning for Molecular Dynamics Simulations
	5.1 Machine-Learned Molecular Potentials
	5.1.1 -ML Potential

	5.2 Machine Learning for Enhanced Sampling
	5.2.1 Principal Component Analysis
	5.2.2 Time Lagged Independent Component Analysis



	III Contributions
	6 Non-covalent Interactions at the QM-MM Interface in the Semi-Empirical and Density-Functional Limit
	6.1 Introduction
	6.2 Methodology
	6.2.1 Benchmark Data
	6.2.2 QM/MM Model

	6.3 Results and Discussion
	6.3.1 Pairwise Models
	6.3.1.1 Neutral Hydrogen Bonds
	6.3.1.2 Ionic Hydrogen Bonds

	6.3.2 Microenvironment Models
	6.3.3 Scaling of the QM-MM Electronic Interaction

	6.4 Summary and Conclusion

	7 Reduction Pathway of Glutaredoxin 1 Investigated with QM/MM Molecular Dynamics Using a Neural Network correction
	7.1 Introduction
	7.2 Methods
	7.2.1 Model
	7.2.2 Classical Simulations
	7.2.3 QM/MM simulations

	7.3 Results and Discussion
	7.3.1 Regioselectivity
	7.3.2 Free Energy Surfaces
	7.3.3 Model Evaluation

	7.4 Conclusion

	8 Transferring Collective Variables from Molecular Dynamics Simulations to QM/MM Simulations for Reactivity Exploration in Dynamic Systems
	8.1 Introduction
	8.2 Methods
	8.3 Results and Discussion
	8.3.1 Evaluating CVs
	8.3.2 Applying CVs in QM/MM
	8.3.3 Mechanism Hypotheses

	8.4 Conclusion


	IV Summary and Outlook
	9 Summary and Outlook

	V Appendix
	A Non-covalent Interactions at the QM-MM Interface in the Semi-Empirical and Density-Functional Limit
	B Reduction Pathway of Glutaredoxin 1 Investigated with QM/MM Molecular Dynamics Using a Neural Network correction
	C Machine Learned Collective Variables for Augmented QM/MM Sampling
	Bibliography


