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Abstract

Reinforcement learning (RL) demonstrated immense success in modeling complex physics-driven
systems, providing end-to-end trainable solutions by interacting with a simulated or real environ-
ment, maximizing a scalar reward signal. In this work, we propose, building upon previous work,
an end-to-end multi-agent RL approach with assignment constraints for reconstructing particle
tracks in pixelated particle detectors. Our approach optimizes collaboratively a parameterized
policy, functioning as a heuristic to a multidimensional assignment problem, by jointly minimiz-
ing the total amount of particle scattering over the reconstructed tracks in a readout frame. To sat-
isfy constraints, guaranteeing a unique assignment of particle hits, we propose a safety layer solv-
ing a linear assignment problem for every joint action. Further, to enforce cost margins, increas-
ing the distance of the local policies predictions to the decision boundaries of the optimizer map-
pings, we recommend the use of an additional component in the blackbox gradient estimation,
forcing the policy to solutions with lower total assignment costs. We empirically show on simu-
lated data, generated for a particle detector developed for proton imaging, the effectiveness of our
approach, compared to multiple single- and multi-agent baselines. We further demonstrate the
effectiveness of constraints with cost margins for both optimization and generalization, introduced
by wider regions with high reconstruction performance as well as reduced predictive instabilities.
Our results form the basis for further developments in RL-based tracking, offering both enhanced
performance with constrained policies and greater flexibility in optimizing tracking algorithms
through the option for individual and team rewards.

1. Introduction

Reinforcement learning (RL) and multi-agent RL (MARL) are promising paradigms for constructing
and optimizing autonomous agents that can compete in a wide variety of complex sequential decision
problems, such as games (Mnih e al 2013, Silver et al 2018), robotics (Gu et al 2017, Andrychowicz et al
2020) or autonomous driving (Kendall et al 2019) by discovering complex interaction mechanisms in
the underlying environment. Coupled with the tremendous success in the aforementioned fields, RL has
recently demonstrated great potential in optimizing and controlling physics processes (Kain et al 2020,
Degrave et al 2022, Vage 2022, Kortus et al 2023), by maximizing a scalar reward signal using trial and
error (Littman 1994, Sutton and Barto 2018). Especially for combinatorial problems, RL has been shown
to learn generalizable policies that can even outperform supervised learning approaches, despite the lack
of ground truth information (Joshi et al 2021). Kortus et al (2023) and Vage (2022) have shown for
charged particle tracking used in high-energy physics reconstruction the potential of deep RL for optim-
izing over otherwise non-differentiable discrete assignment operations. The presented approaches aim to

© 2026 The Author(s). Published by IOP Publishing Ltd
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construct discrete sets of particle tracks over subsequent layers under the influence of particle interaction
mechanisms. Modeling each track independently, as proposed in previous work, however, reduces the
total system’s observability as the interactions of neighboring tracks are neglected. Further, the simpler
problem formulation of independent interacting tracks fails to constrain the solution set to globally feas-
ible solutions with exclusive hit assignments. Extending previous work, we further investigate the concept
of MARL-based charged particle tracking as a combinatorial optimization problem to tackle the afore-
mentioned limitations of single-agent systems. We therefore propose a collaborative MARL approach
with assignment constraints, iteratively optimizing a joint policy of multiple track followers. We repres-
ent the stepwise agent constraints as a centralized safety layer, ensuring unique hit assignment across all
agents, both during training and inference. The assignment constraints are realized by solving for every
reconstruction step a linear sum assignment problem (LSAP) projecting the unsafe local agent policies to
a global safe policy. Our main contributions and findings in this paper summarize as follows:

e Building upon previous work in Kortus et al (2023), we propose multiple multi-agent extensions of
RL-based particle tracking. To maximize both information availability during training and restrict
global information during execution, we utilize decentralized agents with optional safety layer, satis-
fying assignment constraints, trained in a centralized manner using centralized critic architectures.

o We extend the blackbox (BB) differentiation technique by Vlastelica et al (2020) by adding an extra
simple gradient component, effectively increasing the cost margins between predictions and decision
boundaries, which leads to significantly better training and generalization capabilities. We provide a
supplementary ablation study, highlighting the robustness of the biased gradient estimator to the exact
choice of cost margin gradient weighting.

e We demonstrate excellent empirical performance of our method compared to a conventional sequen-
tial track follower (Pettersen et al 2020) as well as single-agent (Kortus et al 2023) and multi-agent
baselines and highlight the advantage of constrained policy optimization for high particle densities.

e Finally, we validate the benefit of the designed multi-agent architecture and the necessity of the
adapted gradient through the safety layer by examining reconstruction performance, reward sur-
faces (Sullivan et al 2022), prediction instabilities (Fard et al 2016), and policy entropy.

2. Theory and background

Throughout this work, we focus on particle data generated by the digital tracking calorimeter (DTC)
prototype developed by the Bergen pCT Collaboration (Alme et al 2020, Aehle et al 2023) for proton com-
puted tomography. While the general methodology of the proposed MARL-based tracking is in prin-
ciple extendable to particle detectors of arbitrary geometry (subject to detector-specific adaptations in,
e.g. reward design), we leave a more general application for different particle detectors for further work.
In the following section, we describe both the detector and the basic particle interaction mechanisms
expected at relevant particle energies of O(230 MeV).

Bergen pCT detector prototype: The Bergen pCT DTC is a multi-layer high-granular pixelated tracking
calorimeter, consisting in total of 43 sensitive layers with two tracking layers followed by 41 detector-
absorber sandwich calorimeter layers. The high granularity of the detector prototype enables the sim-
ultaneous tracking of multiple particles for improved time efficiency. Each sensitive layer, spanning an
area of 27X 16.6 mm, is composed using multiple strips of ALPIDE pixel sensors (Mager 2016, Aglieri
Rinella 2017) with additional 3.5 mm aluminum absorbers in each calorimeter layer, functioning both as
absorber and carrier. To reduce scattering of particles, allowing for accurate directional measurements of
particles entering the detector, both tracking layers are separated by 57.8 mm air gaps, while the carrier
material is significantly reduced. Further details and a fine-grained decomposition of the detector mater-
ial are described in Alme et al (2020). While the proposed MARL formulation itself is independent of
the exact detector composition, the unique material budgets of the tracking and calorimeter layers lead
to distinct particle interaction behaviors. Since the learned policy must account for these layer-specific
interactions to accurately estimate particle direction and energy, these differences introduce additional
complexity to the learning task.

Particle interactions and tracking Accelerated charged particles undergo numerous complex interac-
tions with the traversed matter (Groom and Klein 2000), each contributing uniquely to changes in their
trajectories. In proton imaging, charged particles are mainly influenced by electromagnetic Coulomb
interactions with atomic electrons and nuclei (Groom and Klein 2000, Gottschalk 2018).
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As charged particles pass through matter, they lose small amounts of energy through interactions
with atomic electrons, resulting in the particle incrementally slowing down until it eventually stops
around its projected range. The process itself is stochastic but captured in terms of mean energy loss
or linear stopping power as a function of particle energy (Bethe 1932). The stopping power increases
sharply near the end of the particle’s path, forming a distinct Bragg peak, providing its beneficial char-
acteristic for proton therapy. Despite the electromagnetic force acting on the charged particle, its path
remains unchanged due to the relatively low mass of the atomic electron.

When interacting with atomic nuclei, charged particles are randomly deflected from their straight
path. Integrated over thin slabs of material (e.g. the aluminum absorbers or separating air gaps), the
particle deflection angles are characterized by an approximately Gaussian shape (Highland 1975, Groom
and Klein 2000). Multiple scattering constitutes the primary driver of complexity in reconstructing
the original particle trajectory in a readout frame of multiple particles, as it causes the path to deviate
unpredictably from a straight line.

Additionally, on some occasions, particles undergo complex inelastic interactions with the atomic
nucleus in a destructive process where the original primary particle is absorbed, and new particles ori-
ginate from this process. Due to its highly stochastic nature, secondary tracks originating from the new
particles cause additional complexities during reconstruction and are unusable for imaging.

To recover usable characteristic properties of the particles, tracking algorithms aim to model or learn
the pattern of the particle in the detector readouts under the influence of the inherent interaction mech-
anisms, aiming to reconstruct complete and coherent particle trajectories.

3. Related work

Particle tracking: While early particle tracking algorithms heavily relied on conventional algorithms
such as iterative (Frithwirth 1987, Pettersen et al 2020), evolutionary (Mankel 1997) or combinatorial
(Pusztaszeri et al 1996) approaches, modern tracking solutions heavily utilize machine learning to tackle
the increasing combinatorial explosion due to increasing particle counts. Especially geometric deep learn-
ing, operating either on node (Kieseler 2020, Lieret et al 2023) or edge level (DeZoort et al 2021, Kortus
et al 2025) of graph representations, demonstrated to be highly effective, while maximizing computa-
tional efficiency. Aiming to combine advantages from conventional tracking and deep learning, recent
work on RL-based tracking demonstrated, both on discrete- (Kortus et al 2023) and continuous action
spaces (Vage 2022), the ability to learn reconstruction policies in an end-to-end fashion by interacting
with an environment. Our work extends the mechanisms in Kortus ef al (2023) to a multi-agent setting,
reducing partial observability and enforcing assignment constraints on the learned policy during both
training and inference.

Safe/constrained RL: Learning safe policies, operating under safety or functional constraints, is an emer-
ging research field, both in single- and multi-agent RL. For this work, we focus on state-wise safety by
constraining the set of feasible policies. Our work is closely related to the idea of safety layers and shield-
ing. Pham et al (2018) proposed OptLayer for robotic control, embedding robot constraints as a quad-
ratic program that is solved end-to-end differentiable with an interior point method. Dalal et al (2018),
Sheebaelhamd et al (2021), proposed the usage of an implicit safety layer that performs action correc-
tion of the policy using a linearized version of the constraint function. Similarly, Alshiekh et al (2017),
ElSayed-Aly et al (2021)proposed the usage of safety editors, restricting the agent to safe actions by
either reducing the safe action space or correcting unsafe actions of the policy. Vinod ef al (2022, 2024)
decouples agent constraints and optimization by training individual agents and restricting the use of the
constraint layer to inference.

4. Methodology

In the following, we outline a general notion of constrained and unconstrained collaborative charged
particle tracking, extending existing work described in Kortus et al (2023), and propose multiple agent
architectures for the centralized training for decentralized execution (CTDE) paradigm (Oliehoek et al
2008). We specifically chose this unique scheme to

e Restrict the usage of global information and costly communication protocols in the policy paramet-
erization, keeping decentralized policies more tractable compared to a centralized approach, where
the joint state and action spaces grow exponentially with the number of agents (Olichoek and Amato
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Figure 1. General description of charged particle tracking framework for single- or multi-agent reinforcement learning. The
agent (right) learns by iterated interaction with the environment, represented as a directed acyclic graph (left), reconstruction
policies that maximize the obtained rewards. Agent components marked with dashed lines are optional and are only used for
some agent configurations.

2016, Gronauer and Diepold 2022). This further contributes to minimizing negative adverse effects on
the inference performance compared to the single-agent baseline’.

e Yet, we aim to propagate and exploit globally available information shared between all agents dur-
ing training in a centralized critic. By doing so, we ensure and foster collaborative behavior between
agents, contributing to reducing ambiguities at higher particle densities.

Finally, we describe different training schemes for both unconstrained and constrained MARL with
CTDE, highlighting the task-specific modifications required to tackle the specific challenges introduced
by both multi-agent and constrained formulation of the reconstruction task. The extended RL-based
tracking framework together with the integration of new components is outlined in figure 1.

4.1. Problem statement
We formulate sequential multi-agent particle tracking over multiple layers of discrete particle readout
data as a decentralized partially observable Markov decision process (Dec-POMDP) (Bernstein et al 2009) on
a directed acyclic graph structure. The Dec-POMDP framework is an extension of the standard partially
observable Markov decision process (POMDP) (Kaelbling et al 1998) to a multi-agent setting, enabling
a principled way of dealing with the effect of uncertainties with respect to other agents (Oliehoek and
Amato 2016).

Let S be a set of global (unobservable) environment states describing all partial track candidates in
a readout frame up to a specific layer. Given any set of partial track candidates, the aim is to iteratively
extend them by a set of connections to hits in the subsequent layer (in the following also referred to as
track segments), such that a shared reward signal is optimized. However, instead of perceiving the global
environment state, each agent i € N can only draw individual local observations ogi) ~ O; from the joint
observation space O = {O;}_|. To maintain compatibility with the single-agent framework while min-
imizing global and shared information, local agent observations follow the state definition of the single-
agent MDP in Kortus et al (2023). Each observation is composed of the last reconstructed track segment
and all possible next track segments of the track candidate associated with agent i according to

) _ _ Lo 0 (ONENO)
0; Dec-POMDP — 5t,MDP = {Vt ’etfl,t} U U {Vt+l,j’et,t+1,j} . (1)
JEN (v:)
Here {vt(i),efi)u} defines the vertex and edge of the last reconstructed track segment, defined by a
connection between two subsequent layers, and Uje N(v,){"gl.j’ egt) +1’j} is the set of next candidates for
extending the current track candidate.

Each agent, parameterized by either a deterministic ,ug) or stochastic policy Féi), can select, based

on its perceived observation, from a set of local actions aii) € A; defined by the set of possible next seg-
ments (see figure 2). To enforce unique hit assignment, the factored joint action space A = {A;} | over

3 To enforce a richer representation of the environment state, communication schemes (Foerster et al 2016, Jiang and Lu 2018) can be
optionally integrated at the expense of increased cost of evaluating the agent’s policies.

4
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Figure 2. Schematic representation of the sequential particle tracking procedure for a single agent (i) with a stochastic policy 7(")
over the set of detector layers. The transition dynamic between layers is described as edges in a directed acyclic graph (hit graph).

all agents is optionally constrained to feasible actions. For each interaction, all agents receive a single
shared scalar reward signal r; € R, accumulated until a terminal state sy. This terminal state is induced
by the absence of further valid actions, signifying a complete reconstruction of the readout frame.

Graph construction: Following the parameterization of particle readouts described in Kortus et al
(2023), we model the particle data as a directed acyclic graph (hit graph), where each hit represents

a vertex in the graph. Edges are generated between hits of adjacent layers, opposite to the direction

of the particle, directing a reconstruction from less occupied area in the detector to the first tracking
layer (see figure 2). Both vertices and edges are parameterized by a set of features v; = [AE,x,y,1,] and
eij = [rij, 0ij, ¢y, defining the energy deposition and position of the hit with a one-hot encoded layer
index as well as the spherical coordinates of the edge connections. Finally, we employ the feature nor-
malization scheme described in Kortus et al (2023) with beam spot centering, compensating for the
beam position in the detector, providing translation invariant features.

Sampling of track candidates: Track candidates are constructed for any given hit graph, starting from

all initial unoccupied graph vertices in the last detector layer, by iteratively adding new vertices in sub-
sequent layers until a terminal state in the first detector layer is reached (see figure 2). Unassigned ver-
tices in subsequent layers are incrementally added to the list of track candidates to ensure a full recon-
struction of the readout frame®*. To provide a starting track segment, functioning as an initial local
observation, we rely in this work on ground-truth seeding (Kortus ef al 2023), avoiding unwanted
dependencies of seeding algorithms on the performance of the proposed algorithms and providing an
agnostic performance upper bound for MARL-based tracking. This mechanism is selected specifically to
avoid complex interactions of both mechanisms during evaluation. When moving beyond this controlled
experimental setting, ground-truth seeding has to be replaced with a suitable (ground-truth-free) seeding
mechanism, either from literature or specifically designed for MARL-based tracking. For independently
reconstructed particle tracks, an imperfect seeding with error rate €; reduces the upper-bounded success
probability by a factor (1 — ¢,). Under strictly enforced assignment constraints as proposed, additional
cascading errors can further influence performance. Therefore, both error rates and the interaction with
the tracking algorithm are paramount to ensure efficient operations. This matter and possible imple-
mentations are further discussed in section 6. To further quantify the effects of imperfect sampling as a
function of the seeding error rate eg, we perform a supplementary ablation study (appendix C) by ana-
lyzing a synthetically corrupted seeding mechanism that enables a fine-tunable control over seeding qual-
ity. A detailed interpretation of the results is performed in the relevant sections.

Objective: We attempt to find, by repeatedly interacting in the described environment, a joint policy that
collaboratively maximizes the gathered expected discounted return of track candidates under a shared
team reward. Similar to Kortus et al (2023), we aim to optimize the reconstruction policy by minimizing
the average amount of particle scattering in a readout frame over all agents i € N. We thus define the
shared reward signal as the negative average scatter angle obtained for each segment transition defined

4 Adding vertices as additional track candidates dynamically increases the number of agents in the next reconstruction step.

5
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based on. The agent (network architecture on the right) observes a state, describing the current particle trajectory, and chooses
a next particle hit in the subsequent layer. The reward is defined based on the physical likelihood of the undertaken transition.
Reproduced from Kortus et al (2023). CC BY 4.0.

by a hit triplet (v,—y,vs, v141) over three subsequent layers as

N @ 0
1 Py

,t:_ﬁzarccos % 7 2)
=1 [z 117 neewy

Here p,_,,= (p,—p,_,) and p,,., = (p,., — p,) denote the path segments for previously reconstruc-
ted and current action selection. In the multi-agent case, we rely on this naive description over the more
detailed modeling of the energy-dependent scattering behavior (Highland 1975), described in Kortus et al
(2023), to remove the dependence of the reward signal on full track candidates, making it more suitable
for both on- and off-policy algorithms. Despite its practical effectiveness, the simplified reward lacks the
physics-informed weighting of scattering events, limiting its fidelity to realistic track behavior.

4.2. Architecture and implementation

In this section, we describe extensions to the existing attention-based agent parameterization (Kortus
et al 2023) for multi-agent RL, providing both a permutation-invariant and action-size-independent pro-
cessing for collaborative charged particle tracking (see figure 3). Our main focus lies on the design of
centralized critic components that can be seamlessly integrated into the existing framework for particle
tracking (Kortus ef al 2023). To improve over the existing architecture, we simplify the policy by mov-
ing computationally intensive layers from the policy to the centralized critic, limiting the availability of
this information to the training phase while reducing inference overhead. Finally, we propose the use
of a differentiable safety layer inspired by Dalal et al (2018), Sheebaelhamd et al (2021) for constrained
particle tracking, guaranteeing unique assignments of particle hits. We further provide useful gradient
information, building upon existing work in decision-focused learning by Vlastelica et al (2020), Sahoo
etal (2023).

Feature preparation: Following the description of local observations in section 4.1, we extract edge- and
node-level features for both last reconstructed (v,_; — v;) and possible next track segments (v; — v,y ;)
from the hit graph. Both are projected by separate multi-layer perceptrons (¥; and V¥,) into an equally
sized higher dimensional embedding space (h°™) according to

pembs () _ Uy ([vi,e-1,]) and

obs

K0 — v, ([vet1,€41,j] ) + PE-ARF (sco (€1—1,1,€1041,7) )

act,j

. 3)

For performance reasons, we omit the additional feature vector generated by a graph neural net-
work as proposed in Kortus et al (2023), as we found the simple feature description to be sufficient in
combination with the use of a safety layer. The positional encoding with adaptive receptive field (PE-ARF)
mechanism, proposed in Kortus et al (2023), is used to provide relative information of segment can-
didates. PE-ARF utilizes cosine similarity information to create sinusoidal embedding vectors similar
to Vaswani et al (2017), providing a strong inductive bias for tracking. This mechanism is augmented
by an adaptive rescaling mechanism, dynamically reallocating the resolution of the positional encoding
based on the current graph topology.
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Local agent policies: We parameterize a local deterministic policy /Lg) (or equivalently wéi) for stochastic
policies) of each agent using a pointer mechanism (Vinyals et al 2015) (Ptr-Net), with parameter sharing
between agents. The policy is designed to predict the conditional probability of the local action a con-
ditioned on observation- and action features. Therefore, the policy utilizes additive attention (Bahdanau

et al 2015) according to

ozj(i) = v tanh (W1 hemb’(i) + themb’(i)) , (4)

act,j obs

where W, W, and v are learnable parameter matrices/vectors. The output scorings are normalized over
all possible segments using a Softmax activation. By computing individual scores for each observation-
and action feature combination, the resulting policy is invariant to both permutations of the graph edges
and the total number of available action candidates.

Communication: We focus in this work on decentralized actor architectures, requiring no or minimal
global communication during inference, thus minimizing the computational overhead of communication
protocols. While Kortus et al (2023) uses multi-head attention (MHA) to learn an agreement between
segment candidates, we consider this mechanism as a form of communication and thus reallocate it for
all multi-agent architectures from the actor to the centralized critic, reducing the computational cost of
evaluating the policy.

Safety policy layer: To correct the predicted local policies for duplicate assignments, we propose, sim-
ilar to Kortus et al (2025), the usage of a centralized safety layer (Dalal et al 2018, Sheebaelhamd et al
2021), performing for every reconstruction step an action correction for the learned joint policy by solv-
ing a LSAP. The safety layer ensures during both training and inference a full or partial unique matching
between source (Vs) and target vertices (V) defined by

min E HijCij

(i,j)e€
s.t. Z/’Lij:L ]GVT’ (5)
i€Vs
Z i <1, i€Vs
JEVT

that minimizes the required cost of deviating from the proposed local policies. Here c;; € C are the indi-
vidual elements of a |Vr| x |Vs| cost matrix, defined either by infinite cost for assignments already occu-
pied by another track due to its initial seeding mechanism or by the L2-norm of the local policy to the
one-hot encoding of the corresponding target vertex, according to

(6)

{||p]' (ajlo) =1 (a;) ||} if not used for seeding
C1j = .
00 otherwise.

Solving an LSAP for each interaction in the environment scales with O(n*) as the number of hits
n in the detector layer grows, therefore adding additional cost to the agent evaluation. For the exper-
iments conducted in this work, solving the LSAP for a dense cost matrix posed no unsustainable cost
(see appendix A), yet scaling the approach to larger detectors might require additional considerations.
The impact of the safety layer and possible relaxations of the problems for scaling the solution to larger
detector setups are therefore discussed in section 6.

By projecting the unsafe action, the action-corrected policy becomes inherently deterministic, requir-
ing off-policy optimization and an exploratory policy for generating training samples. We sample track
candidates with random exploration using parameter noise (Fortunato et al 2018, Plappert et al 2018).
We therefore replace the linear layers of the pointer mechanism with noisy linear layers (Fortunato
etal 2018).

BB differentiation: To provide gradient information for the combinatorial solver integrated into the
safety layer we follow the BB scheme by Vlastelica et al (2020). The authors proposed for differentiating
through combinatorial solvers of the general form y(C) = argmin,cy ¢(C,y), substituting the piecewise
constant solvers mapping of combinatorial solvers at the point C by a linear interpolation between the
points C and €’ according to
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VER (€)== [r(€) —m(c)]. where (7)

C’zclip(é—&—/\zu}: (y(é)),o,oo). ®8)

Here, y(C) and y(C’) are solutions generated by predicted and perturbed costs. Further, A € R+
functions as a tunable hyperparameter, interpolating between truthfulness and informativeness of the
gradients (Vlastelica et al 2020). The usefulness of the gradient information for particle tracking has
already been demonstrated in Kortus et al (2025).

Cost margins: With an increasing number of solution sets, the policy becomes prone to settle changes
in the cost matrix, limiting generalization. Sahoo et al (2023) proposed adding random noise to the pre-
dicted cost, increasing the margin to the decision boundaries of the predictive output’. As we found this
mechanism to be highly unstable for our use case, we instead propose including an additional compon-
ent V& to the BB-scheme, with

VEBf, (c) + uvgf(é) . where vgf(é) —y (c) , 9)

forcing the assignments of the joint policy p in the direction of lower assignment costs. The influence
of V& can be controlled using the hyperparameter v € R, where larger values of v enforce stronger
cost margins at the cost of introducing increased bias to the policy gradients. We find that the cost mar-
gin gradient component is only nominally sensitive to the exact choice of weighting constant v (see
appendix B for more details), thus requiring only a coarse-grained tuning of the parameter.

Centralized critic: To mitigate instationarity introduced by the otherwise independent learners (Tan
1993, Sunehag et al 2018), we propose centralized factored critic functions for state- V¥(o,) and action-
value function Q?(a;|o,), decomposing the global value function into agent-wise values (Sunehag et al
2018) according to

at,ot ZQ@ ( Oz 7¢(0ta0t)> (10)

1_1

v<ot>z}v§NjV§P (o 0 (00)). (an

i=1

Each agent-wise value is composed using local (a@,oﬁi)) and global information (¢(-), where ¢(-)
is a shared communication channel), utilizing a mixture of additive (Bahdanau et al 2015) and self-
attention (Igbal and Sha 2019) To provide for each agent a single feature, we compress the set of agent
observations (hobs,hgit) - hact ) for both V? and QY. For the action dependent Q-function, we model

the compressed representation h by a joint policy-weighted function of observation- action features
according to

M
> w(a,00) (hf)‘;’s‘fi’() +hZf:'j o )> . (12)

Here, & is an assembled feature over true and uncorrelated reference action features aggregated as a
weighted sum over multiple random samples from a replay buffer D following

ﬂmb,(i) b, emb
haCtJ éeerl:]()—’_’y 2 : hact] t’ ’ (13)
t/ /7]/N,D

where 7y is a hyperparameter. This expression functions as a smoothing and regularization term with
contextual information, allowing for reduced variance during training, improving convergence. For the
action-independent state-value function V7, the weighting of the action features is replaced by a learn-
able weighting, modeled using an additive attention mechanism (Bahdanau et al 2015) according to

> Additionally Rolinek et al (2020a, 2020b) proposed a cost margin mechanism enforcing increased margins by penalizing individual
predictions based on ground truth information; this mechanism is due to the usage of ground-truth however, incompatible with our
MARL approach.
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M
B = [hG) +> okl | with (14)
j=1
() _ mb, (i) b, (1)
ajl =’ tanh (Wlhzct,j +W2hzbs 1), (15)

The soft weighting makes the cross-state regularization for variance reduction obsolete. Further, we
encourage global communication between agents in form of two stacked self-attention blocks with layer
normalization (Ba ef al 2016) and skip connections (He et al 2016), each defined as

hy =N (n7,V + ReLU (MHA (G0 ) ). (16)

Finally, factored values are obtained as the average agent-wise estimate conditioned on hg)/hg,i) using
an MLP. The value range for Q and V is restricted for either raw- (sigmoid) or normalized rewards
(tanh) accordingly (additional details in section 4.3) and scaled by the learnable parameter s.

Q) =~ L350 (20 (1)) a7)
i=1

V(s) —;Iiytanh <<I>V (hg;))) (18)
i=1

For completed particle tracks without valid assignments (early termination), we employ a value
masking, where the relevant local agent-wise value estimates are excluded from the global value estimate.
This representation prevents the observation of rewards obtained after early termination, posing addi-
tional complexity to the credit assignments (Cohen et al 2021), however, we choose the masking mech-
anism in favor of simplicity of the overall architecture®.

4.3. Optimization of agents

The following section outlines the various optimization schemes used to optimize both unconstrained
and constrained agents. Special emphasis is placed on the details and necessary modifications when
applying these schemes to particle tracking.

Unconstrained on-policy baseline: We optimize an unconstrained joint policy using the multi-agent
proximal policy optimization algorithm (MAPPO) (Ma and Luo 2022, Yu et al 2022), providing an
extrapolation of the learning abilities of Kortus et al (2023) to a collaborative multi-agent setting. We use
the architecture described in section 4.2, replacing the deterministic joint policy py by an unconstrained
stochastic policy my and a centralized state-value estimator V?.. We estimate team advantages using the
generalized advantage estimator (Schulman et al 2016) and employ independent reward normalization
for calorimeter and tracker layer, following the normalization scheme in Kortus ef al (2023).

Off-policy optimization: To cope with the deterministic safety-layer corrected policies, we optimize it
similarly to Sheebaelhamd et al (2021), using a multi-agent variant of the deep deterministic policy gradi-
ent (DDPG) algorithm (Lillicrap et al 2016). However, while Sheebaelhamd et al (2021) uses the multi-
agent DDPG algorithm (Lowe et al 2017), we found the MATD3 (Ackermann ef al 2019) algorithm with
two critic networks, mitigating overestimation bias, together with periodical hard critic updates, worked
superior for our use case. We found the independent reward normalization mechanism to have a neg-
ative impact on the policy updates and thus only perform equal weighting of tracking and calorimeter
transitions in the critic loss. Finally, we use a replay buffer with a small buffer size, owed to the quickly
changing distribution of samples of the large joint action space (Hu et al 2021).

5. Experiments

For the studies reported in this work, we rely on Monte-Carlo simulations of detector readout
data (Kortus et al 2022), generated using the GATE toolkit (Jan et al 2004, 2011) based on the Geant4

6 While we did not witness significant issues in credit assignment, incremental updates of the architecture could introduce absorbing
states for agents with early termination (Cohen et al 2021), potentially further improving the learning abilities.
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Table 1. Overview of all considered RL and MARL particle tracking schemes evaluated in section 5.

Name Algorithm Centr. V/IQ ~ SL(T) SL(E)  SL-grad.

PPO Schulman et al (2017)

PPO-+LSA Schulman et al (2017) v

MAPPO Yu et al (2022) v

MATD3+LSA (BB) Ackermann et al (2019) v 075 vV v BB Vlastelica et al (2020)
MATD3+LSA (BB]’)  Ackermannetal (2019) 025 vV v BB + ours

simulation framework (Agostinelli et al 2003, Allison et al 2006, 2016). The dataset consists of multiple
simulations of a scanning pencil beam with and without water phantom (100 mm, 150 mm and

200 mm), positioned between the particle beam and detector. For the pencil beam source, a Gaussian
beam with o, = 0, = 5mm, an angular divergence 09 = 04 = 2.8 mrad and 3 mradmm beam emittance
is modeled. The data is further diversified by manually splitting the data into synthetic readout frames
of different particle densities (p*/F) of 50, 100, 150, and 200, which covers a range of particle counts
expected for a real beam-detector setup used in proton computed tomography. Each simulation consists
of 10000 simulated primary particles. All data is publicly available on Zenodo (Kortus et al 2022). As the
detector prototype in Alme et al (2020) is currently still under construction, no additional results on the
physical-world optimization or simulation-to-reality gaps are provided and left for future work.

Configurations: To explore the performance of single- and multi-agent systems of various degrees of
complexity, we construct variations of the agent described in the previous sections, summarized in

table 1. Each variant is constructed based on the selected optimization algorithm, the usage of a safety
layer (during training SL(T) and execution SL(E)) as well as the differentiation scheme. We could not
find a stable MATD3 configuration without a safety layer that consistently converged to low-reward solu-
tions, and thus excluded it from the results. The single agent results for PPO and PPO+LSA are based
on the trained models in Kortus et al (2023).

Training procedure: We use particle simulations without absorber material between the beam source
and detector for optimization, providing a worst-case scenario in terms of secondary production and
track length. We then train, for each configuration in table 1, five independent policies on sampled track
candidates for 3000 iterations with a particle density of 50 primary particles per readout frame to obtain
robust results with confidence intervals.

Baselines: In addition to the multi-agent schemes listed in table 1, we compare the reconstruction
performance with both two single-agent variants of particle tracking described in Kortus et al (2023)
(with an additional centralized version using the proposed safety layer during inference) and a sequen-
tial track follower searching for solutions that minimize the total amount of scattering (Pettersen et al
2020). To obtain comparable results, all techniques construct the initial seed used for tracking also using
ground-truth information. To situate our approach within current state-of-the-art tracking strategies,
we also report supplementary pilot results in appendix C, comparing it with a global GNN-based edge-
classification model developed with similar layerwise constraints (Kortus et al 2025), illustrating how
MARL performance compares under increasing seeding error rates.

Performance metrics: We assess and compare the performance of the proposed tracking algorithms
using track purity (p) and efficiency (¢), estimated after prior rejecting partial or implausible tracks
using simple cuts for scattering angle and energy deposition according to Pettersen et al (2021). We
select according to Kortus et al (2023) an angular cut of Afn,x = 271 mrad, corresponding to an 2o
upper bound for particles in the last layer before stopping using extrapolated values from the PSTAR
database (Berger et al 1999) and an energy cut of AE;, = 2.5keV um~! (Pettersen et al 2020, 2021).
Additionally, a minimum track length of 4 layers is enforced. For assessing the correctness of a track, we
rely on a perfect matching criterion, where all hits in a track need to be correctly assigned.

5.1. Optimization and tracking performance

We examine and compare the performance for all configurations in table 1 to identify and quantify the
necessary factors for multi-agent-based particle tracking using MARL. Figure 4 shows the average reward
obtained during training as a function of network updates and sampled track segments. Here, we find
similar training performance for the on-policy MAPPO and off-policy MATD3 approaches for an equal
number of training iterations. However, due to the on-policy nature of MAPPO, requiring data gener-
ated from the current policy, this approach requires significantly more transitions to converge and is
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Figure 4. Average return obtained by the agents over time during training, plotted as a function of performed updates (for
MAPPO: iteration over all epochs are counted as a single update) and sampled track transitions.

thus significantly more sample inefficient than the off-policy MATD3 algorithm, utilizing a replay buf-
fer. Further, while all multi-agent variants except for the unconstrained MATD3 approach, which we
excluded from the experiments, converge to high average team rewards, MAPPO converges consistently
to the highest average reward, suggesting the best optimization behavior of all. Finally, we find that both
constrained agents with cost margins show significantly faster convergence to high rewards, requiring
approximately 300 training iterations less than the other agents.

Table 2 extends the previous results by summarizing the reconstruction performance (purity p and
efficiency €) of all MARL and baseline algorithms. We find that, while achieving lower average rewards
compared to MAPPO, MATD3+LSA (BB}’ ) outperforms all baseline and MARL variants in both con-
figurations of v by a significant margin. Especially for higher particle densities, the constrained policy
with cost margins can benefit from the increased assignment complexity, outperforming the single-agent
and unconstrained algorithms. We find the safety layer to be a critical component in multi-agent track-
ing, allowing for efficient sampling during training and inference, simplifying spatial credit assignment
across agents, while avoiding duplicate assignment of particle hits. As previously outlined and supple-
mented by appendix B, we find the performance of MATD3+LSA(BB;) to be robust to the exact choice
of v, producing similar results for both selected configurations. Therefore no extensive optimization of
this parameter is needed, and only a coarse-grained optimization might be necessary to transfer the res-
ult to different detector setups.

To quantify the impact of the multi-agent optimization, we compare the performance of
MATD3+LSA(BB{?, , ) with a post-training centralized version of the single-agent PPO algorithm
(PPO+LSA). Table 3 shows that PPO+LSA achieves similar performance, with only slight improvements
in performance for the multi-agent approach. We find that the overall difference in performance is stat-
istically not or only marginally significant (avg. p-values obtained by one-sided t-test (Welch 1947): p:
0.19, e: 0.12)), demonstrating the strong ability of single-agent RL to efficiently learn reasonable condi-
tional probabilities usable to resolve assignment conflicts during inference. Similar results are presented
in Kortus et al (2025) for supervised learning. However, for large particle multiplicities (e.g. 200 p™ /F)
we find the constrained multi-agent approach to outperform the single-agent approach by 0.75 per-
centage points (pp) (p-value: 0.03) in purity and 1.12 pp (p-value: 0.02) in efficiency, while only using
limited information of the single-agent reward, indicating the usefulness of constrained multi-agent
optimization to account for high amounts of ambiguities in hit candidates. Supplementary comparisons
with a supervised edge-classification approach (Kortus et al 2025) in appendix C show that the proposed
MARL approach achieves comparable performance for low to moderate synthetic seeding error rates (see
figure 12). Especially for high particle densities and residual energies, MARL proves to be a strong com-
petitor; however, its effectiveness diminishes as readout frames become increasingly sparse.

5.2. Effectiveness of cost margins

We verify the effectiveness of the enforced cost margins, described in section 4.2, by analyzing the pre-
dictive entropy of the learned policies. We rely on this measure as a proxy for quantifying the distance
to the closest decision boundary, where lower predictive entropies suggest larger margins due to the
lower ambiguity in the assignment probabilities. While this does not guarantee a monotonous depend-
ency between entropy and cost margins, large discrepancies are a strong indication of differences in
cost margins. Figure 5 shows the distribution of the agents’ local policies estimated over all decisions
generated over a subset of the first five environments in the dataset for multiple particle density and
phantom configurations. We find that local agent policies trained without enforced cost margins show
the highest predictive uncertainties (Avg. entropy H(u) = 4.099 4 0.221), indicating only minimal separ-
ation or spread of assignment cost. For both parameter values of v, weighing the cost-margin gradient,
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Table 2. Reconstruction performance for water phantoms of 100, 150 and 200 mm thickness and 100, 150 and 200 primaries per frame
pt/F. The highest scores are highlighted in bold. Results for Track follower and PPO are reproduced from Kortus et al (2023).
CC BY 4.0.

100 mm Water Phant 150 mm Water Phant 200 mm Water Phant
p*/F Algorithm p [%] (1) e [%] (1) p[%] (1) e [%] (1) p[%] (1) € [%] (1)
50 Track follower 88.1+0.0 79.7 £0.0 90.3+0.0 82.7+0.0 91.2+0.0 83.8+0.0
PPO 92.5+0.2 81.5+0.3 93.8+0.1 84.0+0.4 94.5+0.1 85.5+0.2
MAPPO 80.1+21.7 70.3+£19.5 82.7+19.5 73.64+18.0 83.9+19.7 75.8+18.0
MATD3+LSA (BB) 56.6+21.5 48.6+19.3 63.54+22.4 5524+21.1 68.8+22.9 60.1£22.9

MATD3+LSA (BB:" o) 96.2+0.1 84.0+0.1 97.04+0.1 859+0.1 97.34+0.1 87.3+0.0
MATD3+LSA (BBiL,, ) 96.34+0.2 84.0+0.2 969401 857+0.1 97.34+0.1 87.2+0.2

100 Track follower 83.0+0.0 74.6£0.0 86.6 0.0 79.0+0.0 87.4+0.0 80.3+0.0
PPO 85.7+0.2 75.1+£0.5 89.0+0.2 79.1+£0.5 89.5+£0.1 80.9+0.3
MAPPO 71.3+24.1 62.4£215 751£23.0 66.3£21.3 76.3£23.3 68.8£21.2
MATD3+LSA (BB) 40.2+204 342+17.6 48.6+23.2 42.0+20.8 55.0+253 48.1+234

MATD3+LSA (BB:Loo) 91.940.2 79.5+0.2 94.14+0.1 825+0.2 93.640.1 83.5+0.1
MATD3+LSA (BBYZo, ) 91.940.2 79.5+0.2 940402 824+02 93.74+0.1 83.5+0.2

150  Track follower 79.1+£0.0 70.9+0.0 83.2+0.0 75.7+0.0 84.7+£0.0 77.7+0.0
PPO 80.6+0.3 70.8 £0.6 84.0£0.1 74.5+0.6 85.5+0.2 77.1+£0.3
MAPPO 65.0+244 57.2+21.8 6944234 61.3+219 71.3+244 643+£222
MATD3+LSA (BB) 31.4+18.0 26.6*£153 39.6%£21.5 34.0%£189 46.4+£244 40.6%£22.0

MATD3+LSA (BB{_o) 88.84+0.2 76.84+0.3 909402 79.240.2 91.240.2 81.140.2
MATD3+LSA (BB, ; 88.8+0.4 76.74+04 91.1+0.3 79.24+0.3 91.4+0.2 81.21+0.3

200  Track follower 75.4+0.0 67.4£0.0 80.1+£0.0 72.9+0.0 81.6£0.0 75.0+£0.0
PPO 75.5+0.3 66.6 0.6 80.3+0.4 71.1£0.6 81.9+0.3 73.9+0.4
MAPPO 59.6£23.6 52.8%£21.2 652£235 57.6%£22.0 669£24.8 60.5+£22.6
MATD3+LSA (BB) 25.8+£15.8 21.84+13.3 33.7£194 289+16.8 40.7£22.7 3561203

MATD3+LSA (BBjZo01) 84.740.3 73.0£0.3 88.2£0.2 76.6 £0.3 88.2+0.2 78.2£0.2
MATD3+LSA (BBZ,, ) 849403 733403 88.6+03 76.7+0.3 884103 783104

Table 3. Reconstruction performance, measured in terms of purity p and efficiency e for water phantoms of 100, 150 and 200 mm
thickness and 100, 150 and 200 p /F. The highest scores are highlighted in bold. Results for PPO-+LSA are generated with the models
reproduced from Kortus et al (2023). CC BY 4.0.

100 mm Water Phant 150 mm Water Phant 200 mm Water Phant
p"/F  Algorithm p (%] (1) e[l (M) plwIM e[ () pl%]I (M)  e[%] ()
50 MATD3+LSA (BB~ 96.31+0.2 84.0+0.2 96.9+0.1 85.7+0.1 97.3+0.1 87.24+0.2
PPO+LSA 95.9+0.2 83.3+£0.6 97.0+0.1 85.7+0.4 97.2+0.3 87.21+0.4

100 MATD3+LSA (BBZ,;) 91.9+0.2 79.54+0.2 94.04+0.2 824+0.2 93.74+0.1 83.5+0.2
PPO+LSA 91.5+0.4 79.0+05 94.04+0.2 82340.3 93.6+£04 83.3+0.4

150  MATD3+LSA(BB{’,,) 88.84+0.4 76.7+0.4 91.1+0.3 79.2+0.3 91.44+0.2 81.240.3
PPO+LSA 884404 759409 90.5+04 78.6+0.6 90.84+0.5 80.240.5

200 MATD3+LSA (BB, ; 849+03 733+03 88.6+03 767103 88.44+0.3 78.310.4
PPO+LSA 84.0+0.5 72.0£0.9 87.9+0.4 75.8+0.7 87.7+£0.8 77.1£0.6

the long tail of the distribution is reduced significantly, lowering the average entropy by multiple orders
of magnitude (H(jt,—0.01) = 0.241 £0.002 and H(p,—o.1) = 0.022 4-0.003). The steep reduction in aver-
age entropy, indicates that the optimization process benefits from the additional gradient component,
effectively increasing the separation from decision boundaries. We find, similar to the results in table 2,
that the reduction in uncertainty is robust to the exact choice of v, showing only marginal different val-
ues that are likely due to random mechanisms during training.

5.3. Analysis of policy constraints and cost margins

To understand why certain agents, despite achieving similar rewards during training, exhibit vastly dif-
ferent outcomes in terms of reconstruction quality, the following section presents analyses of reward sur-
faces for different agents, together with their corresponding surfaces of reconstruction performance. By
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Figure 5. Distributions of the uncertainties in local policy predictions, measured as the predictive entropy for various water
phantoms and particle densities. Techniques with enforced cost margins demonstrate significantly reduced uncertainties.
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Figure 6. Two-dimensional reward and performance surfaces of multi-agent framework with (MATD3+4LSA(BB;~, ,)) and
without cost margins (MATD3+LSA(BB)) generated along the first two principal directions, calculated over the intermediate
training checkpoints. Marked with « are the trained network parameters.

comparing the reward surfaces with the track reconstruction performance, we aim to compare and high-
light discrepancies in optimization and generalization and highlight the importance of policy constraints
as well as cost margins. Sullivan et al (2022) previously demonstrated the benefit of visualizing loss land-
scape for characterizing the complexity of learning tasks in RL, providing a compelling empirical tool
for analyzing the otherwise complex optimization behavior of MARL. We generate all surfaces, based on
the technique described in Li et al (2018), Sullivan ef al (2022), as two-dimensional slices through the
high-dimensional landscapes along two directions defined by v and 7 according to

fle,B) = L(6" +av + fn). (19)

We parameterize v and 7 as the first two principal components over saved training checkpoints,
capturing the most informative directions of the training trajectory through the parameter space (Li
etal 2018). All figures are generated for the 100 p™ /F, 100 mm phantom dataset with a resolution of
25%25 uniformly sampled parameter configurations in a region of [—1,1] x [—1,1] for cost margins and
[—3,3] x [-3,3] for constrained and unconstrained policies. In the latter, we experienced multiple con-
figurations where the policy showed numerical issues, resulting in the prediction of nan values, marked
in black.

Cost margins: Analyzing the characteristic structure of reward and performance surfaces for agents with
and without enforced cost margins, displayed in figure 6, we confirm the initial finding in section 5.1,
that enforcing cost margins with the additional cost margin term is paramount, significantly improving
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Figure 7. Two-dimensional reward and performance (purity and efficiency) surfaces of multi-agent framework with
(MATD3+LSA(BB;~ |)) and without policy constraints (MAPPO) generated along the first two principal components, cal-
culated over the intermediate training checkpoints. Marked with x are the trained network parameters.

both optimization and generalization performance. Although the reward surfaces for policies with and
without cost margins exhibit a similar shape and therefore indicate a similar complexity of the learn-
ing task (Sullivan et al 2022) which is in agreement with figure 6, we observe a substantial disparity in
the surfaces for reconstruction purity and efficiency. We find that the agents with cost margins (right)
converge to regions characterized by relatively wide, smooth, and connected maxima, while the surfaces
without cost margins (left) are dominated by multiple distinct, narrow minima in the loss landscape.
We argue that the smooth, connected shapes in the loss landscape suggest both improved generalization
performance (Hochreiter and Schmidhuber 1994) and increased robustness to perturbations, enabled
by adequate separation from decision boundaries, while reducing the complexity during training. As a
result, agents without cost margins fail to efficiently learn robust and generalizable patterns, therefore
yielding subpar results on test data.

Policy constraints: Figure 7 visualizes the differences in learning abilities for the unconstrained MAPPO
and constrained MATD3+LSA architecture with cost margins. Here, we find, similarly to figure 6, good
agreement of the reward surfaces with wide and smooth regions of high reward, while the uncon-
strained policy shows extended regions of high reward. However, the reward surfaces of the uncon-
strained MAPPO correlate only moderately with the reconstruction performance, demonstrating a strong
degeneracy of the reward surface introduced by the larger combinatorial space caused by unconstrained
assignments. Therefore, a larger set of agent parameterizations reflects high-reward policies with small
average scattering angles. Due to misaligned reward signals, allowing for high-reward solutions without
constraint satisfaction, the unconstrained agents demonstrate a significant decline in performance with
significant fluctuations between runs, governed by random effects during training (see table 2). The
strong degeneracy of the reward surfaces demonstrates the necessity of policy constraints for collaborat-
ive multi-agent optimization. Alternatively, additional cost terms, representing soft constrained solutions,
might be beneficial to improve the performance of unconstrained MARL for charged particle tracking.
However, the additional complexity of balancing reward and cost terms most likely outweighs the pos-
sible improvements.

5.4. Functional similarities and prediction instabilities

While post-training centralized single-agent (PPO+LSA) and per-design centralized multi-agent policies
(MATD3+-LSA) achieve strong empirical reconstruction performances at low particle densities, MARL
shows a clear and growing advantage as particle counts increase. Therefore, a remaining key question is
whether the two approaches learn similar reconstruction policies, why centralized agents perform super-
ior in high-particle scenarios, and how stable the optimization and final learned policies are, e.g. across
random initializations. Especially, ensuring consistency in tracking performance with minimal variations
in prediction is paramount for the unsupervised optimization of the approach and its application in
potential safety-critical applications.
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Figure 9. Distributions of prediction instabilities on a readout frame level generated for all combinations presented in figure 8.

To quantify potential prediction instabilities (Fard et al 2016, Klabunde et al 2023), we closely follow
the techniques in Fard eral (2016), Klabunde and Lemmerich (2023), where the amount of disagreement
between two predictors f; and f, is quantified as the average fraction of classification errors, defined as

d= xI}E [1 {argmaxf; (x) # argmaxf (x)}]. (20)
»J1,2
Klabunde and Lemmerich (2023) proposes an additional extension (min-max normalized disagree-
ment), mapping the raw disagreement rates to a value range of [0, 1] providing better interpretabil-
ity over the initial approach in Fard et al (2016). Following this definition, dnorm (f;,f2) is calculated
according to

d(f]afZ) — mind(fl 7](2)
maxd (f,,f») — mind (f,,f2)’

with mind(f;,f2) = [gun(;) — e (f,)] and maxd(f;,f3) = min (qeee(f;) + qere(£,), 1), where g, is the
error rate of a model. However, due to the sequential nature of RL, the presented concept of quantifying
prediction instabilities is not directly applicable, as different predictions lead to changing track candid-
ates. We thus calculate the prediction instability for all manually constructed correctly assigned states,
avoiding the propagation of errors throughout the whole detector.

Figure 8 shows both the full correlation-like instability matrix for all combinations of trained agents
across agent type and random initializations, as well as the grouped distribution of values. We find that
PPO and MATD3+LSA show pronounced differences in training behavior, resulting in substantial pre-
diction instabilities, with a median of approximately 16.5%. Across different random initializations of the
same agent type, we find that the instabilities are reduced.

Our analysis reveals that the centralized multi-agent approach (MATD3+LSA) exhibits lower pre-
diction instabilities compared to the single-agent method (PPO+LSA), with an average reduction of
0.98 pp (p-value: 0.01). We further find that while for both approaches average prediction instabil-
ity is considerably low, outliers on a frame-by-frame level, in the form of a long tail of the otherwise
Gaussian distribution (see figure 9), demonstrate more pronounced instabilities for complex readout
frames, posing additional risk for the reconstruction of complex readout frames. Here, we find that our
multi-agent approach is able to reduce the number of outliers more effectively compared to the single-
agent approach. We argue that the improved stability for complex readout frames with a high amount of
ambiguities is closely related to the previous results presented in table 3, highlighting the importance of
multi-agent optimization for charged particle tracking.

dnorm(ﬁvﬁ): (21)
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6. Discussion

Our MARL framework with assignment constraints introduces a novel ground-truth-free particle track-
ing scheme, bridging the gap between iterative reconstruction algorithms and deep learning methods,
and extending previous work presented in Kortus et al (2023). While Kortus et al (2023) demonstrated
the feasibility of RL for charged particle tracking, we show that collaborative optimization with shared
information and assignment constraints further improves performance. Nonetheless, several limitations
remain or arise from the use of assignment constraints, which are discussed in the rest of this section.

Safety layer scalability and approximate solutions: For the experiments conducted in this work, we find
that solving the safety layer at every interaction only introduces a marginal computational cost that does
not significantly improve reconstruction. Yet, scaling this mechanism to larger detector systems requires
additional considerations, as solving LSAP scales cubically w.r.t. particles in the readout frame. To ensure
sufficient scaling, multiple optimizations can be integrated, including:

o Parallelization: To improve scaling of the LSAP solver, GPU-accelerated implementations (Date and
Nagi 2016, Kawtikwar and Nagi 2024) provide significant performance gains for large-scale LSAP
problems, improving scalability for large detector systems. Additional parallelization over multiple
readout frames can further reduce the effective cost per particle track.

o Sparsity: As detector scale increases, the cost matrix can be increasingly sparsified due to structural
constraints in the detector geometry (e.g. distant or opposite layers in barrel detectors). Further,

a divide-and-conquer-type reduction of complexity can be achieved by partitioning the detector
into feasible subproblems with independent cost matrices. Optimized solvers for sparse LSAP (e.g.
LAPMOD (Volgenant 1996)) can exploit sparsity in cost matrices, reducing both memory usage and
computational overhead.

e Approximate solver: Finally, if none of the previous optimizations for exact solvers can scale
sufficiently, approximate alternatives, such as Sinkhorn (Brun et al 2022) or auction-based
algorithms (Bertsekas 1988), provide scalable alternatives to exact LSAP solutions. To remain with
feasible gradient information, adaptations to the gradient estimation scheme might be necessary. Soft
approximations, however, often provide out-of-the-box gradients, removing the necessity for dedicated
gradient estimators.

Track seeding: In this work the isolated performance of MARL-based tracking is investigated to limit
coupling effects between both tracking and seeding procedures. As a replacement, conventional seeding
mechanisms such as doublet and triplet finding (Mankel and Spiridonov 1999) can be integrated isol-
ated from the main tracking procedure. Applying unique assignment constraints (equation (5)) further
enables finding locally consistent seeds; however, interactions with the reconstruction algorithm are neg-
lected. Interpreting the process of seeding as tracking under perceptually aliased observations (track his-
tory is aliased) opens a framework to directly integrate the seeding procedure into the agent architecture,
limiting error cascades caused by isolated seeding. Initial studies showed large potential; further work is,
however, still required to optimize both performance and integration of this mechanism.

Parameter efficiency: Compared to SOTA GNN-based algorithms, our reconstruction policy requires
considerably more parameters to ensure robust convergence during optimization. This, however, comes
at the cost of increased runtime during inference. Therefore, incremental updates require increased para-
meter efficiency to optimize runtimes. This can be achieved either by optimizing the proposed architec-
ture or by using alternative optimization techniques such as parameter pruning (Han et al 2015). Initial
results utilizing gradual parameter pruning during training are already promising; additional work is yet
required.

Simulation to reality transfer: Due to the lack of a physical detector setup, we were not able to verify
on-device training abilities of the proposed MARL reconstruction scheme. Therefore, further work is still
required to demonstrate and quantify training performance on real detector systems and to quantify the
simulation-to-reality gap introduced by utilizing simulated data for optimization.

7. Conclusion

In this paper, we introduce multiple extensions to an existing single-agent RL scheme for charged
particle tracking, enabling the joint reconstruction of particle tracks in a multi-agent setting with
additional (optional) assignment constraints. We realize the assignment constraints by an implicit,
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centralized safety layer, projecting the local unsafe actions onto global safe actions. We demonstrate the
robust empirical performance of our approach on simulated data for a detector prototype designed for
proton computed tomography. Our findings demonstrate that constrained optimization offers a signific-
ant advantage over its unconstrained MARL counterpart. We attribute the subpar convergence of uncon-
strained approaches to the high degeneracy of solutions that maximize the team reward signal while pro-
ducing a significant amount of incorrect tracks and the increased complexity of spatial credit assignment
in the unconstrained action space. While we were able to achieve similar performance for a post-hoc
centralized agent at low to moderate particle densities, we find that learning particle tracking with con-
straints both improves reconstruction at high particle densities and reduces predictive instability across
random initializations. This suggests that while single-agent training can suffice under simpler condi-
tions, it struggles to generalize in more complex regimes where ambiguity is prevalent. Supplementary
results analyzing the sensitivity of the proposed approach to increasingly imperfect seeding highlight the
competitive performance of our approach beyond sequential track follower architectures. When com-
pared to a state-of-the-art edge-classification architecture, we find significant potential, particularly for
high particle multiplicities and high residual energy corresponding to longer tracks, encouraging fur-
ther research. Using multi-agent techniques for optimization provides more flexibility than single-agent
RL enabling the design of more sophisticated reward functions utilizing information that can only be
obtained collaboratively for an aggregate over multiple particle tracks in a readout frame. Further mod-
eling all tracks in a readout frame provides the potential to resolve aliased local observations, e.g. par-
tial description of seeds, enabling enhanced architectures incorporating complex processes such as seed-
ing. With the results presented, we aim to extend this work in the future to a generalized and adaptive
particle tracking framework that can learn policies for different particle/tracking detectors with addi-
tional components, e.g. magnetic fields, and is also able to adapt to dynamic changes introduced by,

e.g. aging of the detector components. We further aim to further reduce the computational complexity
of our approach to enable reliable scaling to arbitrary detector designs.
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Appendix A. Computational demands for solving an LSAP for the safety layer

Solving the LSAP, defined by the safety layer in section 4.2, comes with a worst-case runtime complexity
of O(n?) w.r.t. the number of hits in the detector layer, posing a potential bottleneck for reconstruction.
To guarantee an efficient execution of the reconstruction algorithm, it is paramount to quantify the cost
of this operation. We therefore provide general benchmark results for solving the LSAP of the action
constraint layer using py-lapsolver’ implementing the LAPJV algorithm (Jonker and Volgenant 1987).
All following results were obtained on an AMD EPYC 9135 16-core processor using the 100 mm water
phantom, which yields the highest residual energy and thus track length of all test data.

Figure 10 presents the runtime results of the LSAP solver as a function of particle density. Both
single LSAP execution times for an entire detector layer (left) and approximate average LSAP costs for
reconstructing a whole particle track are included. We include both randomly generated and true cost
matrices for comparison:

e Random cost matrix: The cost matrix is generated for a fixed size N x N, with each ¢; € C sampled
from a normal distribution with zero mean and unit variance. Solving the LSAP for the random cost
matrix functions as an upper bound in complexity, as no structured sparsity, resulting in beneficial
initial conditions, can be exploited by the solver.

e True cost matrix: As a realistic comparison, true cost matrices of reconstructed trajectories are used.
To remove non-representative cost matrices that are significantly smaller than N, an additional filter,
requiring the size of C to be at least 0.95% in both rows and columns is employed.

For simplicity, the approximate runtime per track is estimated for both random and true cost matrices
by multiplying the average reconstruction time times the average of occupied detector layers (30),
providing an upper bound on the total cost.

We find that for all tested configurations, no disproportionate overhead is introduced by the LSAP
solver. The additional structure in the cost matrix introduced by the trained local policies further
improves the performance significantly. Yet, with increasing particle count, the runtime scales polyno-
mially, potentially requiring further optimization (see section 6).

7 py-lapsolver, developed by Christoph Heindl, is available under https://github.com/cheind/py-lapsolver.
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Appendix B. Ablation studies of cost margin scaling

Section 4.2 introduces a cost margin term to the blackbox gradient scheme by Vlastelica et al (2020) that
depends on the hyperparameter A for scaling. While this mechanism proves to be effective in the presen-
ted empirical evaluation, low sensitivity of this constant is paramount to make it functional beyond this
work. Figure 11 presents ablation results, demonstrating the sensitivity of the hyperparameter selection
on the reconstruction performance. We therefore include normalized purity and efficiency scores (nor-
malized w.r.t. ¥ =0.1) for the 100 mm water phantom at various particle counts.

As outlined in section 5.1, we find the performance to be robust to the exact parameter choice. Yet,
it requires some degree of tuning to achieve good results. Values outside the range of [0.01,0.1] result
in an increasing degradation of performance. With increasing particle density, this effect becomes more
pronounced as the combinatorial complexity and, therefore, ambiguity increase. Therefore, careful tuning
of this hyperparameter becomes increasingly important. As the approach is itself independent of ground-
truth information during training, initial tuning of this value on simulated data might become necessary
to obtain optimal results.

Appendix C. Imperfect seeding and global particle tracking

Ground truth seeding is implemented in this work to isolate the performance of the agents from unre-
lated processing steps to assess and contrast the reconstruction quality of proposed multi-agent recon-
struction schemes with various sequential reconstruction algorithms. While this ensures controlled test-
ing of the algorithms, relying on ground truth seeding is infeasible for real detector operation. Relying
on ground truth seeding further prevents comparisons with global reconstruction schemes that operate
independent of track seeds, as it systematically overestimates its realistic performance.

To examine the sensitivity of the proposed reconstruction scheme to imperfect seeding and provide
a method-agnostic comparison with global reconstruction techniques, we derive a synthetic corrupted
seeding mechanism that enables fine-grained control of error rates while ensuring geometrically coher-
ent error patterns. With this mechanism, we extend our analysis in section 5.1 by an edge classification
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Figure 12. Sensitivity of the multi-agent MATD3-LSA tracking scheme to imperfect seeding introduced by synthetic errors for
different particle counts and phantom geometries. Additional baseline results for a global edge-classification baseline are repro-
duced from Kortus et al (2025). CC BY 4.0.

GNN architecture developed for the investigated detector (Kortus et al 2025). This enables a direct com-
parison with state-of-the-art global reconstruction methods while also incorporating assignment con-
straints similar to the described safety layer.

Corrupted seeding: Synthetically injecting incorrect seeds into the ground truth seeding mechanism
requires a geometrically plausible perturbation of assignment indices subject to unique assignment con-
straints. To ensure that the seeds do not conflict with the reconstruction policy, seeding is performed
prior to evaluating the policy®. For each layer with N seeds, we draw a random number of corrupted
seeds with

n ~ Binomial (N, ¢;) . (22)

Subsequently, we generate n corrupted seeds by replacing the true successor v; — v; with an alternat-
ive neighbor v; from the k=8 nearest neighbors of v;. To enforce geometric coherence, each neighbor is
weighted proportional to the Euclidean distance to the true seed with

i = exp (_”Pj_pj/H)

- . (23)
S renn P (116~ 2l

Random errors are constructed as a corruption set C = {(vj,vy) }, where for every error (1) both v;
and vy are distinct, and (2) no v; appears in any v;.. Selecting v; that already appears as a ground-truth
seed can invalidate two assignments simultaneously. To keep the total number of corrupted seeds con-
sistent with the sampled budget n, we associate each pair with a cost ¢jy and restrict the total cost of the
corruption set C to n. Selecting a vy that already appears as a ground-truth seed effectively affects two
seeds at once, coming at a cost ¢y = 2; otherwise the cost ¢ defaults to one.

Imperfect seeding and global particle tracking: Figure 12 visualizes the sensitivity of the multi-agent
reconstruction scheme MATD3-LSA to imperfect seeding as a function of ¢;. Given the robustness to the

8 In a realistic deployment, where the seeding algorithm is replaced by a conventional geometric seeding algorithm (e.g. doublet or
triplet seeding), the sequence of seeding and policy evaluation can be modified to take advantage of the high quality of decisions
obtained from the MARL policy.
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parameter choice of v (appendix B), we restrict the evaluation v = 0.1. Further, the reconstruction per-
formance of the global edge-classification scheme in Kortus et al (2025) is included, enabling a detailed
extrapolated comparison with state-of-the-art techniques. For both approaches, the average performance
over five independent training runs is reported.

Across all particle densities and phantom geometries, we observe that the reconstruction perform-
ance degrades approximately linearly with the seeding error rate. Importantly, the degradation in recon-
struction performance comes primarily at the cost of reconstruction efficiency, while the track purity
remains largely unaffected. This behavior highlights the robustness of the MARL policy to compensate
for invalid initial local observations obtained from seeding. By enforcing assignment constraints, the
incorrect seeds are consistently guided to continue the correct track associated with the vertex vj. The
resulting inconsistencies cause the track candidates to be removed by the employed track filter with only
minimal impact on reconstruction purity.

Comparing the reconstruction performance to the GNN approach, we find that MARL-based track-
ing is generally outperformed for low particle density even with no or marginal seeding errors. Yet,
we find improved generalization ability for densely occupied readout frames and high residual ener-
gies (reduced material in the phantom geometry). For 200p™" /F MARL attains higher reconstruction
efficiency and track purity and continues to perform well even in the presence of considerable seeding
errors. As a result, the sequential MAR method attains a lower per-edge error rate than the global edge-
classification model. To maximize the overall performance of our proposed approach, the choice of the
seeding mechanism is therefore paramount to ensure efficient operation and competitiveness with state-
of-the-art reconstruction algorithms.
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