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ABSTRACT

f-Block element-based metal-organic framework (f-MOF) thin films, incorporating lanthanides and actinides, have emerged
as a promising class of materials due to their unique properties and potential in sensing, luminescence, and energy-related
applications. While MOF powders have been widely explored, many advanced applications—particularly in optics, electronics,
and heteroepitaxial integration-require the controlled architecture and substrate interface that only thin films can provide. This
review comprehensively summarizes recent advances in the synthesis, characterization, and functional deployment of f-MOF
thin films, highlighting diverse fabrication techniques such as composite MOF particle assembly, layer-by-layer deposition,
in situ solvothermal deposition, and electrodeposition. Tabulated data covering polymeric matrices, self-supporting structures,
substrates, and synthesis conditions are included to support comparative analysis. The wide range of demonstrated applications,
including luminescence sensing, anti-counterfeiting, radiation detection, and catalysis, are critically assessed alongside challenges
in film stability, scalability, and performance optimization. Finally, future research directions are proposed, emphasizing the need
for innovative synthetic strategies, advanced characterization tools, and tailored functional designs to fully exploit the potential of
f-MOF thin films in next-generation technologies.

Abbreviations: (R)- or (S)-DMPDB, (R)- or (S)-6,6'-dimethyl-5,5'-di(4-methoxycarbonyl)phenyl-3,3’-diiodo-1,1’-biphenyl-2,2’-diol; 1,2,4-BTC, 1,2,4-benzenetricarboxylic acid; 2,6-DHTA,
2,6-Dihydroxyterephthalic acid; 2,6-PDC, Pyridine-2,6-dicarboxylate; 2-stp, 2-sulfonylterephthalate; 3,5-H2bct, 3,5-bis(3’-carboxyphenyl)-1,2,4-triazole; 3,5-PDA, Pyridine-3,5-dicarboxylic acid; 3,5-PZDC,
3,5-pyrazoledicarboxylic acid; 4,4’-bpy, 4,4’-bipydine; SAIPA, 5-aminoisophthalic acid; 5-Tbip, 5-tert-butylisophthalic acid; AHBA, 3-amino-4-hydroxybenzoic acid; BABDC, 2,5-bis(allyloxy)terephthalic
acid; BCTPE, (E)-4,4-(1,2-diphenylethene-1,2-diyl)dibenzoic acid; BDC, 1,4-dicarboxybenzene; bdcbpCl2, 1,1'-bis(3,5-dicarboxyphenyl)-4,4’-bipyridinium dichloride; BDPO, N,N’
bis(3,5-dicarboxy-phenyl)-oxalamide; BIDC, benzimidazole-4,7-dicarboxylic acid; BITD, 5'-(4,5-bis(4-carboxyphenyl)-1H-imidazol-2-yl)- [1,1":3",1"-terphenyl]-4,4”-dicarboxylic acid; BPA,
bis[3-(4-methoxyphenyl)-propyl |propanedioic acid); BPDC, biphenyl-4,4‘-dicarboxylic acid; BPO, benzoyl peroxide; bpydbH2, 4,4'-(4,4'-bipyridine-2,6-diyl) dibenzoic acid; BPyDC,
2,2'-bipyridine-4,4'-dicarboxylic acid; BPYDC, 2,2’-bipyridine-5,5’-dicarboxylic; BQDC, 2,2-biquinoline-4,4'-dicarboxylate; BTA, 1,2,4,5-benzenetetracarboxylic acid; BTB,
1,3,5-tri(4-carboxyphenyl)-benzene; BTC, 1,3,5-benzenetrisbenzoic acid; BTDB, 4,4’-(benzo|c][1,2,5]thiadiazole-4,7-diyl)dibenzoic acid; BTEB, 4,4',4” 4'""-benzene-2,3,5,6-tetrayl-tetrabenzoate; BTEC,
1,2,4,5-benzenetetracarboxylic acid; BTTB, 4,4',4”,4"""-pyrazine-2,3,5,6-tetrayl-tetrabenzoate; CBIA, 5-(5-carboxypyridin-3-yl)isophthalic acid; CMC-Na, Carboxymethylcellulose sodium; CS, chitosan;
CTP-COOH, Hexa-(4-carboxyl-phenoxy)-cyclotriphosphazene; dabco, 1,4-diazobicyclo[2.2.2]octane); DCHB, 4'-di(4-carboxylphenoxy)hydroxyl-2,2’-bipyridyl; Dcam, (1R,3S)-(+)-camphorate; DHTA,
2,5-dihydroxyterephthalic acidic; DOBPDC, 3,3’-dihydroxy-4,4'-biphenyldicarboxylic acid; DPPA, 4-(2,5-dicarboxyphenoxy)phthalic acid; DPDF, 1,4-bis(3’,5’-dicarboxyphenyl)-2,3-difluorobenzene;
EMA, ethyl methacrylate; FDA, 2,5-furandicarboxylic acid; FPTA, 3-polyfluorobiphenyl-3’4,5™-tricarboxylic acid; H2BTBC, 4’,4""’-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis([1,1’-biphenyl]-4-carboxylic
acid; H2CPCA, 1-(4-carboxyphenyl)-1H-pyrazole-4 carboxylic acid; H2TDA, Thiophene-2,5-dicarboxylate; H2TDDA, 4,4-(1 H -1,2,4-triazole-3,5-diyl)dibenzoic acid; H2TNDA,
4,4-(1°,3",3’-trimethyl-6-nitrospiro[chromene-2,2’-indoline]-4,7’-diyl)dibenzoic acid; H3ICA, imidazole-4,5-dicarboxylic acid; H4BPTC, benzophenone-3,3’,4,4'-tetracarboxylate; H4EBTC,
1,1’-ethynebenzene-3,3’,5,5'-tetracarboxylic acid; H4PDIA, 5,5’-(propane-1,3-diylbis(oxy))di-isophthalic acid; HSDCBA, 3,5-di(2’,4’- dicarboxylphenyl) benozoic acid; HDPB,
(1,1":3',1""-terphenyl)-3,3",5,5""-tetracarboxylic acid; Hnpc, 5-nitro-2-pyridinecarboxylic acid; HPAN, Hydrolyzed polyacrylonitrile; Hpbmc, 2-(pyridine-2-yl)-1H-benzimidazole-5-carboxylic acid; IPIA,
5-(4-(imidazol-1-yl) phenyl) isophthalic acid; LbL, Layer-by-Layer; Lcam, (1S,3R)-(—)-camphorate; MC, methylcellulose; MMMs, Mixed-matrix membranes; MOFs, Metal-organic frameworks; NaH2SIP,
5-sulfoisophthalic acid monosodium salt; NDC, naphthalenedicarboxylic acid; NH2-BDC, 2-aminoterephthalic acid; Oba, 4,4"-oxybis(benzoic acid); PBA, Poly Butyl acrylate; PCL, polycaprolactone;
PDA, Polydopamine; PDMS, polydimethylsiloxane; PEBA, polyether block amide; PEG, polyethylene glycol; PEMA, Poly (Ethyl Methacrylate); PFSA, Perfluorosulfonic acid; Phen, 1,10-phenanthroline;
PI, polyimide; PLA, polylactic acid; PMMA, polymethylmethacrylate; PSF, polysulphone; PTFE, polytetrafluoroethylene; PU, Polyurea; PVA, polyvinyl alcohol; PVA, polyvinyl alcohol; PVDF,
polyvinylidene fluoride resin; PVTP, Poly(2-vinyl terephthalic acid); RHP, randomly hyper branched polymers; SA, sodium alginate; SAM, self-assembled monolayer; SDS, sodium dodecyl sulfate; TAA,
1,1,1-Trifluoroacetylaceton; TATB, 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine; TBAPy, 1,3,6,8-tetrakis(p-benzoic acid)pyrene; tBrBDC, Tetrabromoterephthalic acid; TCBPA,
tris((4-carboxyl)phenylduryl)amine; tCIBDC, 2,3,5,6-tetrachloroterephthalic acid; TCPP, 5,10,15,20-(4-carboxyphenyl)porphyrin; tFBDC, Tetrafluoroterephthalic acid; TGIC, triglycidyl isocyanurate;
TPBA, 4-([2,2":6",2"-terpyridin]-4’-yl) benzoic acid; TPE, 4,4',4"",4""-(ethene-1,1,2,2-tetrayl)-tetrabenzoic acid; TTA, 2-Thenoyltrifluoroacetonate.
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1 | Introduction

The f-block elements, encompassing the lanthanides and
actinides, have attracted significant attention due to their unique
electronic structures, which stem from the progressive filling
of the 4f and 5f orbitals [1, 2]. Although both series involve
f-orbital occupation, the 4f orbitals in lanthanides are well-
shielded, leading to predominantly ionic bonding and stable
trivalent states. In contrast, the 5f orbitals in actinides are more
spatially extended, enabling stronger covalent interactions and a
broader range of accessible oxidation states [3]. f-Block elements
exhibit exceptional physicochemical properties, including
sharp optical emission [4], high magnetic anisotropy [5], and
complex redox behavior [6], providing the basis for a wide
range of advanced applications, such as luminescent devices [4],
quantum materials [7], catalysis [6], and nuclear energy systems
[8]. Despite their potential, conventional f-block compounds-
such as oxides, phosphates, and halides-are often limited by
poor structural tunability, limited processability, and narrow
absorption bands, which constrain their broader applicability in
emerging technologies [9].

These limitations can be addressed by metal-organic frame-
works (MOFs) incorporating f-block elements, which represent
a promising class of materials that allow for modular design
through the incorporation of organic ligands, enabling precise
control over structure and functionality [9, 10]. In contrast to
traditional inorganic f-block compounds, MOFs offer distinct
advantages, including enhanced photon absorption capacity,
structural adaptability, adjustable porosity, exploiting host-guest
interactions, and improved chemical stability [11, 12]. These
characteristics facilitate the precise manipulation of f-element
coordination environments and the fine-tuning of functional
properties [13].

f-Block elements possess unique optical and electronic properties,
including sharp emission lines and long-lived excited states, mak-
ing them particularly well-suited for luminescent applications,
such as sensing. In this context, MOFs offer an ideal platform
due to their porous architecture, which facilitates efficient analyte
diffusion and interaction with the luminescent centers. Their
high surface area and inherent selectivity further enable the
sensitive detection of specific analytes, including small molecules
and ions [14]. In addition, the organic linkers comprising the
framework can be switched under external stimuli (in particular
light) to add further functionality [15, 16].

The incorporation of lanthanide ions into MOF architectures
imparts versatile luminescent behavior and enables the con-
struction of highly responsive molecular sensing frameworks,
whereas actinide-based MOFs demonstrate significant potential
in applications such as actinide sequestration, catalysis, sensing,
and radiation-hardened materials [17]. Their superior framework
stability, adaptability in host-guest chemistry, and ability to
incorporate multiple functionalities make f-block element-based
metal-organic frameworks (f-MOFs) highly advantageous over
traditional f-block compounds [10, 18].

Building on the unique advantages of f-MOFs, the fabrica-
tion of f-MOF thin films has emerged as a critical research

frontier, driven by the growing demand for device integration
and miniaturized functional materials [19]. Precise deposition
and controlled crystallization of these MOFs in thin-film form
are essential for applications in luminescent sensing, anti-
counterfeiting, X-ray imaging, optoelectronics, and selective
sorption technologies [20, 21]. Precise deposition further enables
the fabrication of hetero-multilayer f-MOF thin films, integrating
the distinct properties of individual MOF layers to achieve
synergistic effects beyond the capabilities of single-component
systems [19, 22]. Although fabricating f-MOF films is critically
important, their deposition onto various substrate types remains
a significant challenge. One major difficulty arises from the
diverse coordination environments and intrinsic coordination
distortions of these metal centers, which lead to structural
heterogeneity [10]. Unlike their bulk crystalline counterparts,
MOF thin films demand precise control over thickness, uni-
formity, and surface roughness to ensure film quality and
performance [19]. These requirements are particularly strin-
gent in optical applications [23]. The stringent requirements
for homogeneity necessitate highly controlled synthesis condi-
tions, including strict regulation of precursor concentrations,
deposition parameters, and growth kinetics. Achieving films
with reproducible quality and low defect density remains a
major challenge, hindering both large-scale fabrication and
practical implementation [22, 24, 25]. To date, various strategies
for preparing MOF thin films have been explored, includ-
ing composite-MOF-particle approaches, layer-by-layer (LbL)
assembly, in situ solvothermal deposition, electrodeposition,
and other innovative methods—each offering specific advan-
tages with respect to film thickness control, crystallinity, and
compatibility with different substrates. As shown in Figure 1,
recent years have witnessed a rapid surge in research on f-
MOF thin films, with a wide variety of potentially applicable
materials being fabricated into thin-film form through diverse
synthetic approaches. Advancements in these fabrication tech-
niques have enabled the development of highly ordered, defect-
controlled MOF thin films with enhanced performance and
stability.

This review provides a comprehensive analysis of recent advance-
ments concerning f-MOF thin films, emphasizing their design
principles, fabrication techniques, structural characterization,
and potential applications in emerging technologies. The discus-
sion goes beyond prior analyses centered on the luminescent
applications of lanthanide-based MOF powders [26-28]. instead,
it summarizes and compares the fabrication methodologies and
developmental progress of f-MOF thin films. Furthermore, for
actinide-based MOFs, this review offers a complete analysis
of their thin-film architectures, offering a critical assessment
that extends beyond previous discussions limited to crystallo-
graphic studies and bulk-phase applications [18, 29]. Specifically,
it explores various preparation methods for f-MOF thin films,
including composite-MOF-particle thin films, LbL assembly, in
situ solvothermal deposition, and electrodeposition. Additionally,
the review highlights the diverse applications of these thin
films, with a particular focus on their use as photonic materials
and devices. By drawing parallels between the development of
lanthanide-based MOF thin films and the emerging potential of
actinide-based MOF thin films, this review provides insights into
future research directions, anticipating significant progress in the
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FIGURE 1 | Publications trends of f-MOF thin films/membranes
and their fabrication methods. Publication results were obtained from
Web of Science with the topic of all lanthanide/actinide elements &
film/membranes. The data was collected on September 14th, 2025.

design and utilization of actinide-MOF thin films for advanced
technological applications.

2 | Fabrication Methods of f-MOF Thin Film
Materials

The fabrication of lanthanide- and actinide-based MOF thin films
involves a meticulous process aimed at achieving uniformity, pre-
cise thickness control, and multifunctional properties. According
to the Hard-Soft Acid-Base (HSAB) principle, lanthanide and
actinide ions are strong Lewis acids and preferentially coordinate
with hard Lewis bases such as carboxylate groups, forming highly
stable coordination bonds. As a result, {-MOFs often exhibit
superior structural and hydrolytic stability compared to widely
studied d-block MOFs based on metals such as copper and
zinc, positioning them among the most robust metal-organic
frameworks. This enhanced stability enables the application
of simpler and more versatile thin-film fabrication techniques
for -MOFs. Achieving consistent deposition across large areas
while maintaining the desired crystallographic orientation and
porosity is a meticulous process that often requires precise
tuning of synthesis parameters such as temperature, pressure,
and concentration of reactants. Techniques such as composite
MOF particle thin film assembly, LbL assembly, MOF particles
deposition/in situ solvothermal synthesis, and electrodeposition
are commonly employed to construct these films.

2.1 | Composite f-MOF Particle Thin Film
Assembly

Composite f-MOF particle thin films constitute a class of
secondary processing approaches that involve combining pre-
formed f-MOF particles with other components to produce
various forms of functional materials. Representative tech-
niques include mixed-matrix membranes (MMMs), hydrogel-
based films, electrospinning, and inkjet printing of MOF-particle-
doped inks. Presently, this approach stands as the most widely

utilized strategy for the fabrication of thin films based on f-MOFs.
The synthesis of MOF particles via hydrothermal or solvothermal
methods facilitates their subsequent processing into membranes
through relatively straightforward techniques, thereby obviating
the need for extensive optimization of film-forming conditions
for well-characterized MOF materials. This methodology is par-
ticularly advantageous in meeting the contemporary demand for
scalable and practical film fabrication techniques for f-MOFs.

Embedding f-MOF particles into polymers enables the fabrication
of flexible, self-supporting films and membranes. Compared to
direct deposition of f-MOF particles onto substrates, composite
thin films with polymeric fillers more effectively address chal-
lenges such as continuous film formation and the prevention
of pinhole defects that compromise membrane performance.
This enhancement is particularly advantageous for applications
in gas adsorption and separation, as the MOF fillers facilitates
superior control over gas permeability and selectivity, while
polymer matrix provides structural support and rapid film shape
regulation. Furthermore, f-MOF-based films provide enhanced
protective capabilities for applications such as temperature sens-
ing, anti-counterfeiting coatings, and luminescent frequency
conversion. The inclusion of polymeric components plays a
crucial role in preserving the structural integrity and functional
stability of these films under operational conditions.

Mixed-matrix membranes (MMMs) constitute a category of com-
posite membranes engineered by incorporating inorganic fillers
or organic-inorganic hybrid materials into a polymeric matrix
[32]. As summarized in Figure 1, MMMs currently represent
one of the most widely adopted approaches for fabricating f-
MOF-based thin films. This is primarily due to their favorable
processing ease, scalability, versatility, and tunability. As pre-
sented in Figure 2, these membranes are commonly fabricated
through a casting-based synthesis approach. This strategy syn-
ergistically combines the beneficial properties of the polymeric
phase, which offers mechanical flexibility and processability, with
those of the dispersed filler phase, which enhances the functional
performance of the membrane. The choice of polymer phase
is typically determined by a comprehensive evaluation of the
polymer’s intrinsic properties and the intended application of
the MMMs. As summarized in Table 1, polyvinylidene fluoride
(PVDF) is often employed in combination with fMOFs due
to its strong chemical stability, while polyvinyl alcohol (PVA),
a highly hydrophilic polymer, is selected for MMMs designed
for aqueous-phase applications. Polydimethylsiloxane (PDMS),
owing to its excellent processability, is frequently utilized in appli-
cations requiring thin-film patterning. Poly(methyl methacrylate)
(PMMA), with its high optical transparency and ease of pro-
cessing, is particularly suitable for MMMs leveraging the optical
properties of f-MOFs. Polymers such as Nafion are primarily
employed in applications demanding efficient proton transport.
Polymers of intrinsic microporosity (PIM-1), due to their inher-
ent microporous structure, are well-suited for gas separation
or host-guest recognition. Meanwhile, poly(butyl methacrylate)
(PBMA) and similar polymers, despite their lower permeabil-
ity, exhibit excellent film-forming properties and processability,
making them ideal for MMMs that capitalize on the physical
characteristics of f-MOFs. In recent years, numerous studies
have demonstrated that MOF-based MMMs exhibit outstand-
ing performance in applications such as gas separation and
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FIGURE 2 | (a)Copolymerization of polymerizable Ln-BABDC with butyl methacrylate monomers into polyMOF hybrid membrane; (b) The tensile
stress—strain curves of the Eug o5 Tbg 9975-BABDC-PBMA membrane (red) and PBMA (black); (c) Pictures of the Ln-BABDC-PBMA membrane under
365 nm UV lamp; (a—c) are reproduced with permission [30]. Copyright 2020, Wiley-VCH; (d) MMMs method Preparation of the 1-Eu@PDMS flexible

imaging film. Reproduced with permission [31]. Copyright 2025, Elsevier.

selective sensing, which can be attributed to the distinctive
porous structures of MOFs [33]. By leveraging the advantages of
MMMs fabrication and the unique physicochemical properties of
f-MOFs, a growing body of research has been dedicated to the
development of f-MOF composite MMMs. These investigations
aim to further refine the structural and functional performance
of such membranes, particularly for advanced separation and
purification applications.

MMMs have emerged as a promising strategy for enhancing chiral
separation efficiency, combining the superior selectivity of porous
fillers with the processability of polymeric matrices. In the study
of Ben, Qiu and coworkers, the integration of chirality-enriched
Eu-MOFs into a polymer of PIM-1 matrix exemplifies the
advantages of MMMs for enantioselective applications [34]. The
chirality-enriched Eu-MOFs provide well-defined chiral channels
for host-guest interactions, while PIM-1 ensures mechanical
stability and facilitates membrane fabrication.

Chen and coworkers fabricated MMMs by incorporating Ln-
MOFs into a polybutyl methacrylate polymer, resulting in a
luminescent thermometer with excellent processability, includ-
ing tailorability, flexibility, and strong adhesion, which originated
from its PBMA polymeric matrix [30]. Huang, Zhao and cowork-
ers designed a Ln(III)-Cu,l, heterometallic organic framework
exhibiting intense X-ray absorption and X-ray-excited lumines-
cence. By employing the MMM fabrication method, a scintillator
film with a high spatial resolution of 12.6 Ip/mm was developed
through the incorporation of Ln(III)-Cu,I, MOFs into a PMMA
matrix [35].

In the work of Han and Cui, MMMs enhanced the enantiose-
lective properties of chiral isostructural lanthanide metal-organic
framework nanosheets (MONSs) with the mechanical robustness
of polymer matrices, enabling scalable and flexible sensing plat-
forms [36]. This approach enhances stability, facilitates analyte
diffusion, and improves recyclability, making MMMs ideal for
practical applications in chiral recognition and vapor detection.
The fluorescence-sensing application is examined in greater
depth in Section 3.1.

Various f-MOF materials with specialized functional properties,
including applications in anti-counterfeiting, protective coat-
ings, and photochromic coatings, have been processed into thin
films by leveraging the high quality, facile fabrication, and self-
supporting film-forming capabilities of MMMs. However, the
integration of polymeric materials into MMMs can partially
obstruct the intrinsic porous channels of MOF particles. This
blockage may diminish the selectivity for guest molecules and
the response rate of f-MOF-based thin films when compared
to their powdered forms [37]. Consequently, the functional
performance of these films in applications that demand rapid
molecular recognition and transport may be somewhat limited.
Additionally, the thickness of composite f-MOF particle-based
films is heavily influenced by several factors, such as the crystal
size of the MOF powder precursor, the homogeneity of MOF
particle dispersion within the polymer matrix, and the specific
coating or deposition method utilized [38]. These limitations pose
significant challenges for the fabrication of ultrathin MOF-based
membranes with precise structural control. As such, further
research is essential to refine the processing techniques for
ultrathin f-MOF membranes, ensuring enhanced film uniformity,
retention of porosity, and optimal functional performance for
advanced applications in separation, sensing, and catalysis.

For fabrication of thin films based on composite MOF particles,
electrospinning is a widely used technique that offers higher
specific interface areas and generally superior mechanical prop-
erties compared to other polymer-based film types. As outlined
in previous studies, electrospun MOF-doped thin films are
generally fabricated using one of three approaches: “MOF-in-
fiber,” “MOF-on-fiber,” and “MOF-seed-fiber.” [130]. For f-MOFs,
the coordination conditions of f-orbitals are relatively stringent.
As a result, most studies employing electrospinning for f-MOF
thin films have adopted the “MOF-in-fiber” and “MOF-on-fiber”
strategy. (Figure 3) Although membranes produced by electro-
spinning are generally less suitable for obtaining structures dense
enough for purification and separation applications, they are
more advantageous for applications leveraging the porous chan-
nel characteristics of MOFs. The high specific interface area of
electrospinning f-MOF films has led to promising performance in
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TABLE 1 | Comparison of f-MOF thin films by MMMs method.

Polymeric Self- Operational
matrix Metal Organic ligands  supporting Application medium Literature
Agarose Eu tCIBDC Y Fluorescent sensing  Aqueous (Sensing) [39]
for metronidazole
and picric acid
CS Ce(IV) Fumaric acid Y CO,/N, separation Gas (Separation) [40]
Epoxy resin Ce(IID) BTC N Epoxy-based Air [41]
anti-corrosion
coating
Epoxy resin Ce(III) Imidazole N Anti-corrosion and Aqueous [42]
erosion wear (corrosion)
resistance
Epoxy Tb BTC N Smart coating for Aqueous [43]
resin&curing corrosion detection (anticorrosion)
agent
Epoxy silane Eu, Tb BTC N Temperature Air (Sensing) [44]
sensing; White light
emission
Matrimid 5218 Y BTC Y CO, capture Gas (separation) [45]
MC Tb, Gd BTA Y Ln-containing MOF N/A [46]
film preparation
method
Nafion Ce(III), Ni(IT) BTC Y Electrochemical Aqueous (Sensing) [47]
sensor for bisphenol
A
Nafion Ce(1V), Zr(IV) BDC Y Proton conductivity ~ Gas (conductivity) [48]
PBA&PVA Ln-to-Tb NH,-BDC Y Fluorescence Aqueous and vapor [49]
sensors for Th**, (Sensing)
U0,*, Cr,0,%,
Aldehydes Vapor
PBMA Eu, Tb BABDC Y Fluorescent Air (sensing) [30]
thermometer
PCL Eu BTTB; BTEB Y Fluorescence Aqueous (Sensing) [50]
sensors for
tetracycline
PDA Ce(IID) BDC Y Ultrafiltration Aqueous [51]
membranes (Separation)
PDA Ce(IIT) BTC N Superhydrophobic Salt Vapor [52]
anti-corrosion (corrosion)
coating
PDMS Eu BTC Y Photoluminescence Air [53]
conversion;
anti-counterfeiting
PDMS Eu NDC Y Fluorescence 0, gas (Sensing) [54]
sensors for oxygen
PDMS Tb, Gd Alkylated ligand Y Dynamic Air [55]
anticounterfeiting
and information
encryption
PDMS Eu, Gd BdcbpCl, Y Anti-counterfeiting; Aqueous (Sensing) [31]
fluorescence sensors
for Fe3*
(Continues)
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TABLE 1 | (Continued)
Polymeric Self- Operational
matrix Metal Organic ligands  supporting Application medium Literature
PDMS Tb Alkylated ligands Y Multi-level Air [56]
information (anticounterfeiting)
encryption;
anti-counterfeiting
PDMS Tb DOBPDC Y MOFs-based flexible  Air (scintillating) [57]
scintillator film
Imaging
PDMS Th(IV) Hnpc Y Photothermal Air [58]
conversion
PDMS Eu,Tb BDC Y Anti-counterfeiting Air [59]
applications
PEBA Ho BTC, BDC Y Ho-MOFs as Aqueous [60]
modifier on (Separation)
membrane transport
properties
PEMA Eu, Tb, Sm, Dy BTC Y Ln-MOF film N/A [61]
preparation method
PEMA Eu,Tb,Sm, Dy, 5-Tbip N Ln?** ion N/A [62]
Cd functionalized
polymer film
preparation
PEMA Eu, Tb, Sm, In BPYDC N White-Light Air [63]
Emission
PEMA Eu(III), Zr(IV) NH,-BDC N Fluorescence Organic solvent [64]
sensors for trace (Sensing)
water in organic
solvents
PEMA Tb, Eu, Sm, Dy, 2-Stp; N Fluorescence Urinary (Sensing) [65]
Zn 4,4-Bpy sensors for Benzene
PEMA Eu, Tb, Sm, Dy, PDC N White-Light Air [66]
Mo Emission
PEMA Eu, Tb, Sm, Dy, BTC N White-Light Air [67]
Mo, Cu Emission
PES Eu, Dy, Tb (R)- or (S)-DMPDB Y Fluorescence Organic solvent [36]
sensors for terpenes (Sensing)
and terpenoids
PFSA Ce(III) BTC Y Proton exchange Gas (conductivity) [68]
membrane fuel cells
PI Eu,Tb BTC N Luminescent coating N/A [69]
film preparation
method
PIM-1 Eu(III) BTC Y Chiral recognition Organic solvent [34]
and separation (Separation)
PLA Eu,Tb Ligand containing N Fluorescence Aqueous (Sensing) [70]
12 carboxyl groups sensors for Fe** ions
PLA Tb Isophthalic Y Fluorescence Urine (Sensing) [71]
acid/phosphazene sensors for
conjugate phenylglyoxylic acid
(Continues)
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TABLE 1 | (Continued)

Polymeric Self- Operational
matrix Metal Organic ligands  supporting Application medium Literature
PMMA Tb 5AIPA Y Fluorescence Aqueous (Sensing) [72]
sensors for
nitrofuran
antibiotics
PMMA Nd-to-Dy BTB Y Formation and Air [73]
encapsulation of
Perovskites in
Ln-MOF film
PMMA Tb BTC N Fluorescence Vapor (Sensing) [74]
sensors for
nitroaromatic
explosive vapours
PMMA Tb, Eu, Gd Nicotinic acid Y MOFs-based flexible  Air (scintillating) [35]
scintillator film
Imaging
PMMA Sm, Eu, Dy, Tb  1,4-NDC; 2,6-NDC Y X-ray imaging Alr (scintillating) [75]
PMMA Eu, Tb Phen Y Temperature sensing Air [76]
PMMA Eu BTC Y Trichromatic LED  Ambient (emission) [77]
modules
PMMA Tb BIDC N Fluorescence Vapor (Sensing) [78]
sensors for
benzaldehyde
PMMA Eu,Tb,Sm,Dy,Yb, NaH,SIP Y Temperature Air (Sensing) [79]
Nd,Er,Bi Sensing
PMMA Eu, Tb, Gd 2,6-DHTA Y Fluorescence Vapor (Sensing) [80]
sensors for ethanol
PMMA Gd, Eu tCIBDC; phen Y Fluorescence Organic solvent [81]
sensors for (Sensing)
nitrophenols
PMMA La, Ce, Dy H;DCBA Y Fluorescence Aqueous (Sensing) [82]
sensors for Fe** and
MnO*~
PMMA Eu, Tb, Sm, Dy NaH,SIP Y Anti-counterfeiting Air [83]
(anticounterfeiting)
PMMA/PDMS Tb BTC Y Fluorescence NO, gas (Sensing) [84]
sensors for NO, gas
PSF Ce(IV), Zr(IV) BDC Y Dye rejection Aqueous [85]
(Separation)
PSF & PMMA Tb AHBA Y Water vapor Vapor (Adsorption) [86]
adsorption and
proton conductivity
PSF/ Matrimid Eu(II), Tb, Sr(IT) Imidazolate; Y Luminescent N/A [87]
5218 4,4 -bpy mixed-matrix
membranes
preparation method
PTFE Eu 3,5-H,bct Y Fluorescence Aqueous (Sensing) [88]
sensors for
colchicine
(Continues)
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TABLE 1 | (Continued)

Polymeric Self- Operational
matrix Metal Organic ligands  supporting Application medium Literature
PTFE Eu, Tb BTB Y Fluorescence Aqueous (Sensing) [89]
sensors for
metronidazole and
tetracycline
PTFE Eu, Tb H,CPCA Y Anti-counterfeiting Air [90]
materials
PU Eu(IID), Zr(IV) NH,-BDC Y Fluorescence Air (Sensing) [91]
temperature sensing
PVA Eu, Tb CTP-COOH Y Fluorescence Aqueous/gas [92]
sensors for styrene (Sensing)
vapor and Fe** ion
PVA Eu, Tb bpydbH, Y Proton exchange Gas (conductivity) [93]
membranes
PVA Gd TCPP Y Full-color Air [94]
fluorescence
emission
PVA Eu, Tb BTC Y Fluorescence Aqueous (Sensing) [95]
sensors for
carbamazepine
PVA Tb BTEC N Fluorescence Aqueous (Sensing) [96]
sensors for paraquat
PVA Eu, Gd, Tb, Dy, BDPO Y Fluorescence Aqueous (Sensing) [97]
Sm sensors for Cr,0,%,
Cr0,>, Fe*, TNP
PVA Pr, Ce TBAPy Y Fluorescent sensing ~ Vapor (Sensing) [98]
for HCI
PVA Eu NH,-BDC; H,TDA Y Fluorescence Serum /aqueous [99]
sensors for PDC (Sensing)
PVA Eu TPBA Y Fluorescence Aqueous (Sensing) [100]
sensors for
jatrorrhizine
molecule
PVA Eu, Tb BPYDC Y Fluorescence Serum (Sensing) [101]
sensors for
L-Noradrenaline
PVA and hardener Eu,Tb H,PDIA Y Fluorescence Aqueous (Sensing) [102]
sensors for
antibiotics
PVA/PU Eu BPyDC Y Fluorescence Aqueous (Sensing) [103]
sensors for carcinoid
biomarker
PVDF Eu(III), Zr(IV) 1,4-NDC Y Fluorescent Air (Sensing) [104]
thermometer
PVDF Ce(IV) BTC Y Antithrombotic Blood (Coating) [105]
coating for
blood-contacting
medical devices
(Continues)
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TABLE 1 | (Continued)

Polymeric
matrix

Metal

Organic ligands

Self-
supporting

Application

Operational
medium

Literature

PVDF

PVDF

PVDF

PVDF

PVDF

PVDF

PVDF

PVDF

PVDF

PVDF
PVDF

PVDF

PVDF

PVDF

PVDF & carbon
black

Eu

Eu

Eu,Tb

Eu

Ce(I10)

Tb(IID),Zr(IV)

Eu,Tb

Eu

Eu

Eu, Tb. Zr
Th(IV)

Th(IV)

Th(IV)

Th(IV)

Ce(IV)

Pyromellitic acid

Conjugated

polymer ligands

IPIA

BTDB

FDA, H,TDA,

3,5-PZDC

BDC

DCHB

NDC

HDPB

Phen; BTC
BITD

TCBPA

BCTPE

BCTPE

BTC

Y

Fluorescence
sensors for
formaldehyde

Fluorescence
sensors for
1-hydroxypyrene

Fluorescence
sensors for
favipiravir

Fluorescence

sensors for AI** and

Ga3+

Membrane coating

in lithium metal
batteries

Fluorescence
sensors for
histamine

Fluorescence
sensors for
4-hydroxy-3-

methoxymandelic

acid
Fluorescence
sensors for
antibiotics;
Fluorescent
thermometer

Fluorescence
sensors for hemin

and p-nitrophenol

Temperature sensing

Fluorescence
sensors for

radioiodine species

Fluorescence
sensors for Cr(VI)
anions

Fluorescence

sensors for chromate

and dichromate

Fluorescence

sensors for chromate

and dichromate

Electrochemical

sensor for dopamine

Aqueous and gas

(Sensing)

Urine (Sensing)

Serum (Sensing)

Organic solvent

(Sensing)

Solid (batteries)

Gas (Sensing)

Aqueous (Sensing)

Aqueous (Sensing)

Organic solvent
(Sensing)

Air
Organic solvent
(Sensing)
Aqueous (Sensing)
Aqueous (Sensing)

Aqueous (Sensing)

Aqueous (Sensing)

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]
[116]

[117]

[118]

[118]

[119]

(Continues)
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TABLE 1 | (Continued)

Polymeric

matrix Metal Organic ligands

Self- Operational
supporting

Application medium Literature

PVDF&PVA Tb H,TDDA

PVDF&PVA Eu,Tb, Na,Zn FDA

PVDF&Super-P Ce(IV) NH,-BDC

PVDF/PCL Eu HDPB, phen

PVTP Tb BTC

RHP Eu,Tb BABDC

SA Eu, Tb, Zn BTC, 2-

methylimidazole
TGIC Tb NH,-BDC; Phen

MC&PEG Eu NH,-BDC

502 glue Eu H,TDA

Y Fluorescence
sensors for
metronidazole

Aqueous (Sensing) [120]

Y Fluorescent
thermometer

Y Inhibit the “shuttle
effect” in
lithium-sulfur
batteries

Air (Sensing) [121]

Solid (batteries) [122]

Y Fluorescence
sensors for pH and
folic acid; visible
fingerprint
identifying

Aqueous (Sensing) [123]

Y Fluorescence
sensors for UO,?" in
water

Aqueous (Sensing) [124]

Y Glassy state
self-healing ability;
Fluorescent
thermometer

Air (Sensing) [125]

Y Fluorescence
sensors for
acetophenone

Vapor (Sensing) [126]

N Fluorescent
thermometer

Air (Sensing) [127]

Y Fluorescence
sensors for fish
freshness

Gas (sensing) [128]

Y Fluorescence
sensors for
nitroimidazole
antibiotics

Aqueous (Sensing) [129]

fields such as fluorescence sensing and highly efficient heteroge-
neous catalysis. As illustrated in Table 2, polyacrylonitrile (PAN)
is the preferred choice for most electrospun membranes due to its
semi-crystalline nature, high solubility in solvents such as N,N-
dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), and
structural stability during electrospinning. PAN also boasts high
commercial maturity, with its exceptional mechanical strength
and thermal stability being well-documented in the literature.
The inaugural synthesis of {-MOF films via the electrospinning
technique was documented by Wang and coworkers [131]. In
their study, a highly stable nano-sized Ce-MOF was successfully
engineered into an effective coating catalyst for Knoevenagel
condensation reactions. This achievement was realized through
strategic defect engineering and the application of electrospin-
ning fabrication methods. Furthermore, Zhu and coworkers
highlighted the rapid, efficient, and real-time detection capa-
bilities of electrospun Ln-MOF films, alongside their superior
recyclability, underscoring the potential of these materials in
practical applications [132-134].

Hydrogel films, composed of three-dimensional networks of
hydrophilic polymeric chains with a high-water content (90-
99%) [141, 142]. offer significant advantages such as edibility
and cost-effectiveness, making them attractive for biomedical
and sensing applications, as shown in Figure 4. Their inherent
biocompatibility, low immunogenicity, minimal cytotoxicity, and
tunable physicochemical properties further enhance their utility
in various fields [143]. As summarized in Table 3, natural
polysaccharides such as sodium alginate, chitosan, and agarose
exhibit excellent biocompatibility and moderate adhesiveness,
along with favorable biodegradability. These properties make
their composites with -MOFs particularly suitable for biomarker
monitoring applications. In contrast, sodium carboxymethyl
cellulose (CMC-Na), while cost-effective and easily processable,
demonstrates hygroscopic tendencies that may compromise film
integrity. Nevertheless, its composites with f-MOFs show promis-
ing potential for gas sensing applications. Incorporating f-MOFs
into hydrogel films has demonstrated promising potential in
biosensing applications due to the synergistic combination of
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FIGURE 3 | (a) The synthesis process of the MOFs&PAN solution and the experimental setups for multinozzle electrospinning with a drum
collector by “MOF-in-fiber” strategy; Reproduced with permission [135]. Copyright 2016, Wiley-VCH; (b) Preparation process of Zn(Eu)-MOF@PAN
nanofibrous membrane by “MOF-on-fiber” strategy; Reproduced with permission [136]. Copyright 2023, Elsevier; (c) Schematic illustration of the
fabrication procedure of Eu//Tb side-by-side nanofibrous membrane. Reproduced with permission [137]. Copyright 2022, Elsevier.

the structural versatility of MOFs and the functional adaptability
of hydrogels. This approach not only facilitates the preservation
of the physical and chemical properties of f-MOF particles but
also enables the development of novel thin-film materials with
performance comparable to their powder counterparts. Thus,
hydrogel-based MOF films represent an emerging class of func-
tional materials with broad application prospects in advanced
sensing technologies.

Yan and coworkers demonstrated a two-dimensional Ln-MOF
hydrogel film for the monitoring of pyrethroid biomarkers and
amino acid, enabling the simultaneous detection of exposure time
and extent with high sensitivity and selectivity. The incorporation
of hydrogel in sensor film construction enhances portability,
facilitates visual detection, and preserves the structural stability
and luminescent properties of Ln-MOFs [144, 145]. In 2024,
Fedin and colleagues introduced Ln-MOF-based hydrogel films
with tunable luminescence and afterglow properties, achieving
highly selective and sensitive detection of ofloxacin (OFX) at
ultralow concentrations (1.1 x 10~° M) while also demonstrating
advanced anti-counterfeiting applications. The use of hydrogel
films in the fabrication of Ln-MOF-based materials is particularly
advantageous, as hydrogels provide a flexible, biocompatible, and
water-stable matrix that maintains the physical and chemical
integrity of Ln-MOF particles while broadening their applicabil-
ity in sensing and security technologies. Furthermore, hydrogel
films enable the efficient production of portable, visually inter-
pretable luminescent materials, making them highly suitable

for on-site antibiotic detection in food safety and environmental
monitoring applications [146].

Incorporating f-MOFs into printable inks and their subsequent
deposition onto substrates has gained significant attention as
a promising method for the fabrication of composite particle
thin films. By capitalizing on the stable visible-light emission
characteristics of f-MOFs, it is possible to develop lumines-
cent inks that can be employed in inkjet printing to create
customizable two-dimensional patterns. Owing to the favorable
chemical stability imparted by high-charge lanthanide ions coor-
dinated with organic ligands, f-MOFs can be dispersed under
a variety of conditions for the preparation of luminescent inks,
as summarized in Table 4. The selection of dispersants and
surfactants is critical, requiring not only efficient wetting of f-
MOF particles within a short period but also the maintenance
of colloidal stability. Given the oxophilic nature of f-block ions
and the prevalence of carboxylate-based linkers in these MOFs,
alcoholic dispersants have emerged as the primary solvent choice
in current practices. In 2015, Jinior and coworkers pioneered
the use of inkjet printing for the fabrication of Ln-MOF thin
films [156]. They dispersed Eu,(Mellitate) and Tb,(Mellitate)
particles into ink formulations and successfully printed patterned
films onto plastic foils and paper using a conventional inkjet
printer. Subsequently, Liang and coworkers developed a series
of lanthanide-doped Y-BTC MOFs (Tb**, Eu**, Sm**) by intro-
ducing an energy transfer (ET) manipulation strategy based on
host differential sensitization. This approach enabled large-scale
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TABLE 2 | electrospinning method.

Polymeric Organic Operational
matrix Strategies Metal ligands Application medium Literature
PAN “MOF-in-fiber”  Ce(III) BTB Coating catalyst Organic solvent [131]
(Catalysis)
PAN “MOF-on- Ce(IV) BDC Antibacterial adsorbent Wastewater [138]
fiber” (Separation)
PAN “MOF-in-fiber” Tb BTC Phosphate capture Aqueous (capture) [139]
PAN “MOF-on- Eu,Zn BTC Fluorescence sensors for nitrobenzene.  Organic solvent [136]
fiber” 4-nitrophenol, benzaldehyde, Fe** ions (Sensing)
PAN “MOF-in-fiber” Eu,Tb FPTA Fluorescence sensors for Aqueous (Sensing) [134]
2,6-pyridinedicarboxylic acid
PAN “MOF-in-fiber”  Tb, Gd BPA Fluorescence sensors for adenosine Urine (Sensing) [132]
triphosphate
PAN “MOF-in-fiber” Eu,Tb,Gd DPDF Fluorescence sensors for dopamine ~ Aqueous (Sensing) [133]
PCL/PVP “MOF-in-fiber” Eu,Tb BTC Fluorescence sensors for Fe>* and Cu?*  Aqueous (Sensing) [137]
PMMA /PVP “MOF-in-fiber” Eu BDC Fluorescence sensors for uric acid Urine [140]
(Sensing)
Stability thickness at the molecular level [162]. The ability to fabricate

oS Wl exibility / \Tra"sPa'e”CV

=)

Color Luminescence
tunability performance

FIGURE 4 | Five advantages of composite hydrogel film materials.
Reproduced with permission [146]. Copyright 2024, Wiley-VCH.

color tunability from green to red and adjustable lifetimes of
green emission within a range of 300-600 ps. As illustrated
in Figure 5, the preparation of f-MOFs into inkjet printing
facilitated the realization of luminescence lifetime imaging and
time-gated imaging concepts. These MOFs, characterized by
their efficiency, stability, and tunable optical properties, were
further employed in the development of security inks [157].
In 2024, Li and colleagues reported embedding spiropyran-like
photoactive molecules into the cavities of Ln-MOFs, creating
dynamically photo-responsive materials (Ln-MOFs@SP). These
materials were dispersed into inks and utilized for the fabrication
of invisible two-dimensional (2D) patterns. This method enabled
multi-channel, cross-disciplinary information encryption and
decryption, achieving applications such as invisible 2D codes,
fluorescent 2D codes, and fluorescent 3D codes through the
construction of multicolour modular 2D codes [158].

2.2 | Layer-by-Layer (LbL) Assembly
The LbL assembly of MOF thin films, in particular, allows for the

sequential deposition of f-block metal ions and organic linkers,
enabling precise control of f-MOFs over film composition and

MOF thin films via LbL deposition represents a significant
advancement in the fabrication of highly ordered and functional
materials. As shown in Figure 6a-e, this technique allows for
precise control over film thickness and composition, enabling
the creation of ultra-thin MOF films with tailored properties
[19]. One major advantage of LbL growth compared to using
dispersed powders is that it is not constrained by particle size,
allowing the fabrication of highly uniform films with minimal
thickness. Additionally, in several cases it has been demonstrated
that LbL situ growth on well-defined substrates results in fewer
defects, enhancing the structural integrity and performance of the
MOF thin films [163, 164]. The LbL deposition technique can be
combined with other thin film deposition methods, thus allowing
to integrate f-MOF thin films in more complex systems, enabling
the development of composite materials and advanced devices
such as light-emitting displays [165].

Hetero-multilayer thin films can be efficiently fabricated via
LbL assembly on functionalized substrates. Following the LbL
assembly of an initial surface-anchored MOF (SURMOF) thin
film, the exposed uncoordinated functional groups at the surface
of the thin films serve as anchoring sites for the subsequent
growth of a secondary MOF layer, enabling the facile construc-
tion of heterostructured architectures with distinct properties
[166]. The ability to seamlessly combine these films with other
functional layers opens up new possibilities for the design of
multifunctional materials and optoelectronic applications. In
Ln-MOFs, the shielded 4f orbitals of trivalent lanthanide ions
typically do not engage in coordination bonding, often leading
to isostructural frameworks across different lanthanides when
using the same organic MOF linker. The LbL assembly emerges
as a highly suitable approach for constructing hetero-multilayer
f-MOF thin films, as it offers significant advantages over mixed-
metal MOF thin films, particularly in terms of precise control
over emission properties and reduced unwanted energy trans-
fer. By employing heteroepitaxial architectures, bilayer systems
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FIGURE 5 | (a)Schematic illustration of pattern encryption in the spatial dimension via pattern design and inkjet printing process with green, red,

and yellow security inks; b) Photographs under daylight or 254 nm lamp irradiation. Scale bars in (b) represent 2 cm. Reproduced with permission [157].

Copyright 2020, Wiley-VCH.

enable tunable luminescence with predictable color output, as
demonstrated in Ln-SURMOFs, where the separation of Tb(IIT)
and Eu(IIl) layers minimizes direct energy transfer, unlike
mixed-metal bulk MOFs where random ion distribution leads
to inefficient emission tuning. Additionally, multilayer configu-
rations enhance thermal sensitivity in optical thermometers by
strategically isolating lanthanide layers, thereby improving the
accuracy of ratiometric temperature measurements compared
to mixed systems. These advantages make hetero-multilayer f-
MOFs highly suitable for advanced optoelectronic applications,
including white-light emission devices and sensitive optical
sensors [19, 167, 168].

As summarized in Table 5, the synthesis of f-MOFs often
requires precise control over reaction conditions, making pump-
assisted and dipping LbL methods particularly advantageous
for the fabrication high, optical quality thin films [168-170].
In a seminal study by Yang and coworkers (2017), europium-
based MOFs (Eu-NDC) were deposited onto hydrolyzed poly-
acrylonitrile (HPAN) substrates via LbL growth, yielding thin
films with a high density of accessible open pores [171]. This
structural feature significantly enhanced the material’s effi-
cacy as a sensor for aqueous formaldehyde detection. Further
developments by Chen et al. demonstrated the heteroepitaxial
growth of Tb/Eu-MOF thin films with controlled thickness and
preferred crystallographic orientation, while also minimizing
energy transfer between lanthanide ions-enabling precise tuning
of emission properties [168]. Building upon these advances,
triple-layer Tb/Eu/Gd-MOF architectures were subsequently
engineered for solid-state white-light-emitting applications [172].
More recently, Chen et al. (2023) reported the LbL epitax-
ial synthesis of luminescent, transparent MIL-103 MOF thin
films exhibiting exceptional sensitivity as optical thermome-
ters [167]. The same research group also achieved the LbL
assembly of high quality crystalline uranium-based MOF thin
films, as shown in Figure 6f-h, wherein uranyl units adopted

a highly symmetrical coordination geometry within a two-
dimensional framework, resulting in two distinct thermally
activated emission bands [170]. Further details regarding the
application of this uranium-based MOF thin films is presented
in Section 4.2.

The exceptional controllability of the LbL growth process further
extends to the encapsulation of guest molecules during film
deposition, significantly broadening the versatility of this self-
assembly technique. In 2012, Woll, Wickleder and colleagues
loaded europium b-diketonate complexes into HKUST-1 SUR-
MOFs, as illustrated in Figure 6i, resulting in enhanced photonic
absorption efficiency [173]. In 2015, Gu et al. demonstrated
the incorporation of lanthanide coordination compounds into
HKUST-1 thin films via LbL assembly, establishing a highly
precise and efficient approach for fabricating high-performance
white light-emitting devices [174]. Building upon this work, the
same group subsequently achieved the encapsulation of achiral
lanthanide complexes within chiral MOF thin films using LbL
assembly. As shown in Figure 6j, the resulting heterostruc-
tures exhibited pronounced circularly polarized luminescence
(CPL) with a high dissymmetry factor (g), highlighting the
potential of LbL techniques for engineering advanced photonic
materials [175].

2.3 | MOF Particles Deposition/In Situ
Solvothermal Synthesis

Early f-MOF materials were primarily synthesized as crystalline
or powder-based particles through hydrothermal or solvother-
mal methods. Consequently, one of the earliest approaches
for fabricating f-MOF thin films involved either the direct
deposition of MOF particles onto a substrate or the in situ
hydrothermal/solvothermal synthesis of thin films by immersing
the substrate under the same synthesis conditions, as exhibited
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spin coating method, and (e) LbL synthesis on QCM system. Reproduced with permission [19]. Copyright 2023, American Institute of Physics; (f) SEM
image of f-thin film (KIT-U-1) by LbL assembly from a top view (top) and cross section (bottom); (g) AFM image of KIT-U-1; (h) UV-visible transmittance
spectra of KIT-U-1 thin film in visible light range, inset photographs of KIT-U-1 under sunlight (left) and 285 nm ultraviolet light (right); Reproduced with
permission [170]. Copyright 2023, Wiley-VCH; (i) size of the Eu(bzac);bipy complexes and pore size estimation of Cus(btc),.xH,0-MOF; Reproduced
with permission [173]. Copyright 2012, Wiley-VCH; (j) Ln-complex loaded chirMOF thin film prepared by LbL encapsulation method for CPL property.

Reproduced with permission [175]. Copyright 2022, Springer.

in Figure 7. In 2010, Qiu, Lercher, and Zhang reported the
first f-MOF films by depositing MOF particles onto a substrate
using the spin-coating method [178]. As summarized in Table 6,
significant advancements in f-MOF film fabrication have been
realized through various innovative strategies. The primary
research impetus stems from the critical role of film formation
as a pivotal step in translating advanced f-MOF materials into
functional devices. For instance, MOF superstructures have been
obtained by interfacial MOF synthesis within micro-confined
environments, enabling precise control over film morphology and
assembly [179]. Additionally, secondary in situ growth of Eu-BDC
on UiO-66 has been demonstrated, achieving epitaxial growth
with the same ligand, thus enhancing structural integration
[180]. Post-synthetic modification of Eu-MOF with fluorescein
5-isothiocyanate (5-FITC) has been utilized to develop real-
time visual food freshness monitoring sensors, showcasing the
potential of functionalized Ln-MOF thin films in food safety
applications [181].

Recent advancements include the deposition of Ln-MOFs onto
ZnO nanowires, forming an alternating current electrolumi-
nescent emissive layer, which represents a significant step
toward MOF-based light-emitting devices [182]. These devel-
opments highlight the continuous evolution of f-MOF thin
film synthesis and their expanding applications in sensing,
optoelectronics, and functional coatings. However, simple direct
deposition approaches frequently result in island-like growth
(Volmer-Weber mode), producing films with significantly more
defects compared to mixed-matrix membranes (MMMs). Addi-
tionally, films prepared by methods such as layer-by-layer
(LbL) assembly present challenges in precise thickness con-
trol and exhibit inferior mechanical strength relative to elec-
trospun membranes. As illustrated in Figure 1, these limita-
tions have led to the gradual replacement of direct deposition
techniques for f-MOFs film fabrication by alternative meth-
ods offering superior performance characteristics in recent
years.
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FIGURE 7 | (a)Schematic diagram for the preparation of f-MOF thin films by in situ solvothermal synthesis; Reproduced with permission [183].
Copyright 2019, Wiley-VCH; (b) Schematic diagram of the EuMOF-FITC composite film by MOF particles deposition method for visual monitoring

of food freshness; Reproduced with permission [181]. Copyright 2021, Wiley-VCH; (c) Schematic illustration of micro-confined interfacial synthesis

capable of delivering MOF superstructures in homogeneous single phases (HKUST-1, ZIF-8, LnBTC), heterogeneous phases (particle-laden MOF), and
subsequent transfer of the free-standing MOF patterns on various substrates. Reproduced with permission [179]. Copyright 2016, Wiley-VCH.

2.4 | Electrodeposition

Electrodeposition has emerged as a promising technique for the
fabrication of Ln-MOF thin films, offering a high-throughput and
scalable approach for large-area thin film production [220-222].
This method employs an applied electrical potential to a con-
ductive substrate submerged in an electrolyte solution containing
lanthanide ions and organic linkers, inducing redox reactions at
the substrate interface that promote the nucleation and growth
of Ln-MOF thin films.(Figure 8) The electrodeposition process
enables precise control over film morphology and thickness
through modulation of key parameters, including applied voltage,
current density, and deposition time, yielding highly uniform and
adherent films. However, as evidenced in Table 7, significant vari-
ations exist in deposition mechanisms across different studies,
particularly regarding electrode positioning and required voltage
thresholds during the deposition process. Notably, this technique
stands out for its simplicity, scalability, and compatibility with
complex substrate geometries, making it particularly advanta-
geous for the development of advanced Ln-MOF thin films for
diverse applications.

In 2014, Yang and coworkers presented Ln-MOF thin films,
fabricated by electrodeposition, exhibited precise control over
film growth under mild conditions, enabling the formation of
dense, uniform, and water-stable films with enhanced lumines-
cent properties, making them ideal for applications in sensing

and environmental monitoring [220-222]. Cao and coworkers
demonstrated the ability of electrodeposition for fabricating Ln-
MOF thin films to rapidly and facilely deposit continuous and
dense films on unmodified, low-cost substrates within minutes.
The approach offers high efficiency and cost-effectiveness. It
also holds significant potential for practical applications in
sensing, lighting-emitting devices, and temperature detection
[223, 224]. Wu and coworkers demonstrated this method offers
enhanced optical properties, including structural and fluorescent
colors, and the ability to create dual-module sensors for effi-
cient multi-analyte detection, making it a versatile platform for
environmental monitoring and sensing applications [225].

In recently, Mohammed and coworkers also presented an in situ
electrochemical deposition method for fabricating compact Ln-
MOF thin films, which are tailored for high-resolution X-ray
imaging [226]. The electrochemical approach enables precise con-
trol over the growth of defect-free, continuous MOF thin films,
significantly reducing light scattering and enhancing material
density, thereby improving spatial resolution in X-ray imaging.
The key advantages of this method include the ability to produce
uniform, dense films with minimal light scattering, leading to
superior imaging performance compared to traditional methods,
and the potential for scalable production of high-performance
scintillators for medical and security applications. To date, the
electrochemical deposition of An-MOF thin films remains unex-
plored in the literature. However, such an approach could offer a
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FIGURE 8 | General scheme for electrodeposition of -MOFs onto
conductive substrate.

promising route for the rapid fabrication of ultrathin, uniform o-
particle-emitting sources on functional substrates, which would
hold significant potential for applications in nuclear energy and
radiation detection.

3 | Advanced Applications of Ln-MOF Thin Films

Lanthanide ions are well known for their sharp and stable
emission bands [9]. However, because f-f transitions are Laporte-
forbidden, individual lanthanide ions have intrinsically low
absorption cross-sections, making them inefficient at directly
capturing photons for electronic excitation. Fortunately, in
lanthanide-based coordination compounds such as Ln-MOFs,
organic ligands can serve as sensitizers by efficiently absorbing
light and transferring the energy to the lanthanide ions, thereby
enabling their excitation [232]. The excited electrons then transfer
from characteristic resonance energy levels back to the ground
state, leading to a significant enhancement in photoluminescence
efficiency. The energy levels of all trivalent lanthanide ions and
their characteristic emission bands are shown in Figure 9. This
phenomenon, commonly referred to as the “antenna effect”,
serves as a fundamental principle underlying the widespread
application of Ln-MOFs in optical and photonic technologies.
Inheriting the nature of Ln-MOFs, Ln-MOF thin films have
emerged as a versatile and highly functional class of materials,
offering significant potential in various advanced technological
applications due to their unique structural and optical properties.
These materials combine the inherent advantages of lanthanide
ions—such as sharp emission bands, long luminescent life-
times, and high thermal stability—with the structural tunability
of MOFs, resulting in films that are particularly suitable for
integration into devices.

3.1 | Sensing Application of Ln-MOF Thin Films

One of the primary applications of Ln-MOF thin films is in
the field of sensing. The versatile ligand design and tunable
pore structures of Ln-MOFs allow their luminescent properties
to be highly responsive to external stimuli or guest molecules,
modulating key photophysical processes such as ligand-to-metal
energy transfer, intersystem crossing, and non-radiative decay
rates. This tunability enables the selective detection of specific
analytes through distinct fluorescence responses. Furthermore,
in multi-lanthanide-doped Ln-MOF systems, energy transfer

(ner) between different lanthanide ions can be described by the
efficiency equation [234]:

Tpa
Ner =1—-—
p

where 7;,, and 7;, represent the emission lifetime of acceptor ions
(e.g., Eu** in the Eu-Tb system) and donor ions (e.g., Tb** in the
Eu-Tb system), respectively, in the in multi-lanthanide-doped Ln-
MOF systems.

The stimulus-dependent variation in energy transfer rates among
lanthanide ions provides an additional mechanism for the
highly discriminative sensing of external stimuli, making multi-
lanthanide Ln-MOFs particularly promising for advanced sens-
ing applications.

As demonstrated in Figure 10, the luminescent properties of
lanthanides make these films highly effective for optical sensing,
enabling the detection of a wide range of analytes, including
temperature, gas molecules, metal ions, and organic compounds.
The high surface area and porosity of the thin films facilitate
efficient interaction with target molecules, enhancing sensitivity
and selectivity.

Fransaer and coworkers presented the flexibility of electro-
chemical synthesis for producing luminescent Tb-MOF films
on various substrates, which effectively detect explosives like
2,4-dinitrotoluene (DNT) in both liquid and gas phases, under-
scoring their potential for security applications [227]. Wang et al.
demonstrated that electrodeposited Terbium-Succinate (Tb-SA)
thin films exhibit excellent water stability and a rapid, eye-
detectable response to Cu?' ions, making them suitable for
in-field environmental monitoring [221].

Wang et al. highlight the advantage of Tb(III)-functionalized
CP coatings on ZnO micronanoarrays, which exhibit selective
luminescence quenching for acetone detection, offering a low-
cost and convenient sensing platform with potential applications
in volatile organic compound (VOC) monitoring [194]. The study
by Gao et al. demonstrated that mixed-crystal Ln-MOF thin films
enable self-referencing and self-calibrating luminescent sensing
of pharmaceuticals by leveraging the distinct emission intensity
ratios of Eu** and Tb** transitions, providing a stable and
accurate method for molecular recognition and concentration
quantification [198]. In the study of Cao and coworkers, the
Ln@UiO-66-Hybrid thin films exhibit dual-emitting properties
with high relative sensitivity (up to 4.26% K!) for ratiometric
temperature sensing, leveraging the wide emission range and
stable luminescence of lanthanide ions and organic ligands
within the MOF structure [224].

In 2020, Chen and coworkers achieved a novel mixed-lanthanide
polyMOF membrane designed for ratiometric temperature sens-
ing applications [30]. Using a photoinduced post-synthetic
copolymerization strategy, the researchers created a flexible, elas-
tic, and processable membrane that combines the temperature
sensing capabilities of Ln-MOFs with enhanced mechanical prop-
erties. This membrane demonstrates robust stability under harsh
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FIGURE 9 | (a)Schematic representations of the “antenna effect”; (b) Schematic representation of the energy levels of organic ligands and Ln3+
ions (Eu*, Tb3*, Gd3*), illustrating the typical “antenna effect” observed in Ln-MOFs. (A = absorption; F = fluorescence; P = phosphorescence; S =

singlet; and T = triplet; AE; = energy gap between S; and T; of ligands; AE,p, = energy gap between T; and excited state of Eu** ions; AE,py, = energy

gap between T, and excited state of Tb3* ions). (c) Emission fingerprint of some LnIII highlighting the main emissions within the UV-to-IV spectral
window. (d) Partial Dieke diagram representing the energy levels arising from the #f,, configurations of Ln(IIT) and their main electronic transitions.

Figure 9c,d are reproduced with permission [233]. Copyright 2025, Elsevier.
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conditions, such as high humidity and extreme pH levels (0-14), In 2021, Yuan and coworkers discussed the development of a Ln-
enabling accurate temperature mapping in challenging envi- MOF thin film for detecting antibiotic residues in food [235]. This
ronments. This innovation highlights the potential for practical ~ bimetallic TbEu-MOF thin film demonstrates high sensitivity
applications of Ln-MOF-based luminescent thermometers across and selectivity for sulfamerazine and malachite green, utilizing
various fields, including biology, chemistry, and engineering. ratiometric fluorescence changes for detection. A smartphone
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application aids in visualizing results, making it a practical tool
for ensuring food safety. Meanwhile, Ouyang and coworkers
demonstrated enhanced water stability and detection sensitivity
for UO,2* (LOD of 0.75 nM) in PVTPCTb-TBT thin films,
by integrating polymeric ligands as molecular scaffolds and
antennae, enabling efficient energy transfer and selective analyte
enrichment for on-site environmental monitoring [124]. Cui and
coworkers developed a chiral isostructural Ln-MOF nanosheet
MMMs were utilized as a fluorescence-sensing platform, demon-
strating high enantioselectivity in the detection of terpenes
and terpenoids. The thin-film configuration of these materials
enhances recyclability and mitigates clogging issues, making
them advantageous for practical sensing applications [36].

A dual-lanthanide MOF thin film sensor for detecting trace water
in organic solvents was introduced by Xiao and coworkers [236].
The dual-lanthanide MOF utilizes a urea-containing ligand and
innovative response mechanisms to achieve high sensitivity and
a broad detection range. The sensor changes its luminescence
from red to green based on water content, functioning as a
“traffic light” indicator. This design includes a logic device for
simple, intelligent water detection, and the MOF-loaded paper
microsensor enables real-time visual water assay with the help
of a smartphone.

Liu and coworkers introduced an Ln-MOF doped with Eu** and
Tb3* for highly sensitive and selective ethanol vapor detection
[80]. The ethanol binds to the framework, changing the energy
transfer efficiency between the ions to enable luminescence-
based detection. This film is portable, processable, and exhibits
good repeatability. This membrane offers excellent mechanical
properties and stability under extreme conditions, facilitat-
ing temperature mapping in harsh environments. While both
utilize Ln-MOFs’ luminescent properties, the former is opti-
mized for temperature sensing, and the latter for ethanol vapor
sensing.

In summary, the sensing applications of Ln-MOF thin films
primarily arise from their stimuli-responsive optical properties,
which are modulated by interactions between the periodic coor-
dination structure of Ln-MOFs, and the target analytes (small
molecules, temperature, etc.). Key mechanisms include charge
transfer between ligands and metal centers, fluorescence reso-
nance energy transfer (FRET), and dynamic quenching effects,
all of which can alter the luminescence behavior of the thin films
[237, 238]. These processes lead to detectable changes in emis-
sion intensity, wavelength shifts, or lifetime variations, enabling
visible or spectroscopic responses. The structural tunability and
high porosity of Ln-MOFs further enhance their selectivity and
sensitivity toward specific analytes, making them promising
candidates for optical sensing platforms. The thin-film morphol-
ogy not only facilitates rapid analyte diffusion but also allows
for integration into device-based sensing systems, highlighting
their practical potential in environmental monitoring, chemical
detection, and biomedical diagnostics [19].

3.2 | Light-Emitting Diodes of Ln-MOF Thin Films

Beyond sensing applications, Ln-MOF thin films have emerged
as promising candidates for light-emitting diodes (LEDs). The

tunable emission properties of lanthanides, enabled by the strate-
gic selection of specific metal ions and organic linkers, facilitate
the rational design of LEDs with tailored chromatic output
and enhanced performance. Notably, the structural versatility of
Ln-MOFs allows for the incorporation of multiple lanthanide
centers within a single framework, enabling multicolor emission
through red-green-blue (RGB) mixing strategies. The resulting
photoluminescence profiles can be precisely characterized using
Commission Internationale de 1'Eclairage (CIE) chromaticity
coordinates, providing an accurate and systematic approach to
color tuning and quantification. Such adaptability positions Ln-
MOF thin films as a highly versatile platform for advancing
next-generation optoelectronic devices, particularly in lighting
and display technologies.

Recent studies have demonstrated the potential of Ln-MOF
thin films as efficient solid-state emitters for LED applications.
Zhou and Yan reported a strategy for imparting tunable and
white-light luminescence to Al-MIL-53-COOH nanocrystals by
encapsulating Eu’* and Tb** ions, achieving dual-emissive
behavior through both ligand-centered and lanthanide-based
emissions [189]. These films exhibited high quantum yields, good
thermal stability, and compatibility with aqueous environments,
indicating suitability for practical devices. Complementarily, Gu,
Zhang and coworkers developed a liquid-phase epitaxy (LPE)
approach to incorporate lanthanide coordination compounds
into HKUST-1 thin films with high encapsulation efficiency [174].
By modulating the ratios of Eu**, Tb**, and Gd** complexes, they
achieved homogeneous, oriented films with tunable emission,
including high-quality white light, suitable for RGB-based LED
devices. Together, these studies highlight the structural control,
emission tunability, and processability of Ln-MOF thin films,
positioning them as promising materials for next-generation LED
technologies.

In 2020, Chen et al. investigated the application of Ln-MOF
thin films in LED technology [172]. The study focuses on
SURMOF devices that utilize heteroepitaxial architectures to
achieve white-light emission. These devices demonstrate efficient
and stable luminescent performance, with the added capability
of temperature-dependent luminescence, which is valuable for
creating smart lighting systems. The white-light emission is
achieved through a combination of lanthanide ions, providing
high color purity and stability, which are critical for advanced
LED applications.

Deng and Peng employed Ln-MOF thin films for LED appli-
cations due to their unique advantages in achieving high-
performance white-light emission under near-infrared (NIR)
excitation [208]. The integration of lanthanide upconversion
nanoparticles and organic dyes within a ZIF-8 framework enables
efficient energy transfer processes, resulting in a single-phase
phosphor with exceptional color quality (CIE coordinates of
0.33, 0.33), high color rendering index (CRI = 93), and tun-
able emission. The MOF matrix offers superior thermal and
chemical stability, preventing aggregation-induced quenching
and ensuring long-term durability, even under harsh condi-
tions. Additionally, as shown in Figure 11, the thin-film format
simplifies device fabrication, allowing direct assembly onto com-
mercial NIR LED chips. This approach overcomes limitations
of traditional phosphors, such as UV toxicity and mismatched
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FIGURE 11 | (a)The photograph of a 980 nm LED chip. Photographs
of a rough white light-emitting LED assembled from the upconversion
nanoparticles (NaYF,:Yb,Tm@NaYF,) @ZIF-8 thin film with a near-
infrared 980 nm LED chip when the LED is turned off (b) and turned on
(c). Reproduced with permission [208]. Copyright 2021, Elsevier.

degradation rates, while leveraging the porous structure to isolate
and stabilize luminescent components.

In 2022, Zhu and Wang explored the use of Ln-MOF thin films
in LED applications [239]. These nanocomposites exhibit dual-
mode luminescence and are used to enhance the efficiency and
stability of white LEDs. By incorporating lanthanide ions into the
MOF structure, the resulting thin films provide high color purity
and stability, making them suitable for advanced lighting and
display technologies. This study highlights the potential of Ln-
MOF thin films in improving LED performance and broadening
their application in various fields.

3.3 | Anti-Counterfeiting Application

Effective anti-counterfeiting materials must meet several key
requirements: [240-242]. (1) high security, ensuring features are
difficult to replicate; (2) multifunctionality, incorporating multi-
ple authentication modes (e.g., optical, chemical, or mechanical
responses); (3) durability, maintaining stability under environ-
mental stressors; and (4) scalability, enabling cost-effective mass
production. Additionally, advanced anti-counterfeiting technolo-
gies should integrate dynamic responsiveness (e.g., to light,
heat, or chemicals) and machine-readable features for enhanced
verification.

Ln-MOF thin films are particularly advantageous in this field due
to their tunable luminescence, allowing precise control over emis-
sion colors and lifetimes via lanthanide ion selection and organic
linker modification. Their high quantum yields and sharp emis-
sion bands enable distinct, easily identifiable patterns that resist
duplication. Furthermore, Ln-MOFs exhibit stimuli-responsive
behavior (e.g., thermochromism or photochromism), permitting
dynamic security features. Their nanoscale porosity facilitates the
incorporation of additional encryption elements, such as guest
molecules or quantum dots, enhancing complexity. Compared
to conventional materials (e.g., dyes or quantum dots), Ln-MOF
films offer superior chemical and thermal stability, ensuring long-
term functionality. Thus, Ln-MOF thin films represent a next-
generation solution, combining high security, versatility, and
practical feasibility for advanced anti-counterfeiting applications.

In 2015, the study by Junior and coworkers demonstrated the
inkjet printing of Ln-MOFs onto flexible substrates, such as
plastic and paper, for anti-counterfeiting applications [156]. The
Ln-MOF inks exhibited sharp, tunable emission under UV light,

enabling the creation of covert, high-security patterns. The
method leverages rapid crystallization, adhesion stability, and
resistance to mechanical/thermal stress, making it suitable for
document authentication and product labeling. Subsequently,
the dual-switchable luminescent and chromic properties were
demonstrated, which enable dynamic, stimuli-responsive color
and emission changes under external triggers such as light,
temperature, or humidity [31, 56].

The nature of Ln-MOFs, including high quantum yields, tunable
emission colors, and ability to integrate with polymers like
PDMS or PMMA enhance durability and flexibility, making
them suitable for rewritable information storage and advanced
encryption [83]. The study by Yu et al. (2024) introduces a water-
stable 2D lanthanide metal-organic framework (NIIC-2-Tb) with
exceptional luminescence properties, achieving ultra-sensitive
detection of ofloxacin (OFX) at concentrations as low as 1.1
X 10-9 M with rapid response times (6 s).144 Additionally,
the unique photophysical properties of Ln-MOFs, including
time-resolved luminescence and multi-stimuli responsiveness,
provide high-security features that are difficult to replicate, fur-
ther solidifying their role in next-generation anti-counterfeiting
technologies [55, 161, 240].

3.4 | Applications of Chiral Ln-MOF Thin Films

Chiral MOFs are a class of porous crystalline materials with
inherent chirality, offering precise control over enantioselective
processes in catalysis, separation, and sensing, making them
crucial for advancing pharmaceutical, chemical, and materials
science applications [34]. Chiral Ln-MOFs have emerged as a
significant subclass of chiral MOFs due to their unique lumi-
nescent and magnetic properties, which are derived from the
f-electrons of lanthanide ions. These materials are constructed
using enantiopure organic ligands or through spontaneous
resolution, resulting in frameworks with well-defined chiral
environments. Ln-MOFs exhibit exceptional potential in enan-
tioselective applications such as catalysis [243], sensing [244],
and separation [245], leveraging their high stability and tunable
porosity. Their ability to combine chirality with luminescence
also makes them promising candidates for circularly polarized
luminescence (CPL) and nonlinear optics (NLO) [246-248]. The
development of chiral Ln-MOFs has expanded the toolbox for
designing multifunctional materials with tailored properties for
advanced technological and biomedical applications.

Building on these foundational developments, the fabrication
of chiral Ln-MOF thin films represents a critical step toward
practical applications. Qiu and Ben presented the synthesis
of chirality-enriched MOFs (CE-MOFs) using achiral building
blocks and recoverable chiral dopants, which exhibits enantios-
elective recognition and separation capabilities [34]. The study
demonstrated that CE-MOFs, when incorporated into MMMs,
enable chiral separation with performance influenced by solvent
polarity, achieving an enantiomeric excess (ee) value of 9% in non-
polar solvents. The findings highlight the potential of CE-MOFs
for cost-effective and scalable applications in chiral separation
technologies. The creation of circularly polarized luminescence
(CPL) thin films by incorporating achiral lanthanide com-
plexes into chiral MOFs (chirMOFs) was described by Gu and
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coworkers [175]. Using a layer-by-layer encapsulation strategy,
these films exhibit tunable chiroptical properties due to the
unique combination of chiral porous MOFs and adjustable lumi-
nescent complexes. This enables the development of advanced
materials for optical devices and sensors with applications in
enantioselective detection and asymmetric catalysis.

3.5 | Applications in Catalysis

The redox behavior of cerium differs markedly from other
lanthanides due to its relatively low 4f ionization potential
barrier, whereas most lanthanide ions exhibit significantly higher
4f ionization energies [249]. Consequently, unlike the majority
of lanthanides, which lack accessible variable oxidation states,
Ce stands out as the only lanthanide in Ln-MOFs capable of
efficient catalytic activity. This unique property arises from the
reversible redox transition between Ce(III) ([Xe]4f!) and Ce(IV)
([Xe]4£%), which facilitates the generation of catalytically active
sites essential for various chemical transformations [250]. Duan
and coworkers demonstrated the potential of Ce-MOF particles
in asymmetric catalysis, where homochiral Ce-MOFs exhibited
excellent enantioselectivity in cyanosilylation reactions [243].
Truhlar and coworkers demonstrated the crucial role of Ce(IV)
low-lying 4f orbitals in promoting efficient ligand-to-metal charge
transfer, which enhances charge separation and photocatalytic
activity for applications like water splitting and CO, reduction in
Ce-UiO-66 particles [251].

However, due to the influence of current thin-film fabrication
processes on the catalytic sites of materials, reports on the
preparation of Ce-MOFs into thin films for catalytic applications
remain quite limited at this stage. An electrospun nano-Ce-MOF
(BIT-58) thin films were reported by Wang and coworkers and
utilized into catalytic application [131]. The thin film enhanced
the catalytic performance by exposing more active sites (10x acid
sites, 7xX mesopore volume) due to reduced particle size (~30 nm).
With high MOF loading (70 wt.%), these films exhibit excellent
mechanical stability, retained porosity (409 m? g™1), and efficient
mass transport. They achieve full conversion in Knoevenagel
condensation and remain reusable. The method allows scalable
fabrication and direct substrate coating, enabling inert surfaces
to function as robust catalysts, ideal for continuous-flow or batch
reactions. Inspired from this work, we believe that combining Ce-
MOFs with exceptional catalytic activity and advanced thin-film
fabrication techniques (such as LbL growth or electrodeposition)
could further expose additional catalytic active sites, ultimately
yielding catalytic thin films with industrial potential. In addition,
the stable tetravalent state of Ce has been frequently incorporated
into UiO-type MOFs structures [252]. Exploiting the high stability
of Ce-UiO-type MOFs, significant progress has been made in
adsorption and separation applications [138, 203].

The Ce(IV) ions in Ce-UiO-type MOFs, compared to Zr(IV)
ions, exhibited lower proton affinity and higher proton transfer
capability which facilitates the construction of hydrogen-bonded
networks and enhances proton conductivity in the composite
membrane [48]. The Ce-UiO-type MOFs also exhibited strong
antibacterial properties motivated by its intrinsic haloperoxidase-
like activity in the research of Wang and Li [138]. The electrospun
Ce-UiO-MOF membrane provided a high specific surface area

and enhanced adsorption capacity for the removal of 24-
dichlorophenoxyacetic acid from water.

In summary, Ln-MOF thin films represent a burgeoning field
of research with diverse applications in sensors, LED materials,
anti-counterfeiting, chiral applications, and catalysis application.
Their unique combination of structural and physical properties,
coupled with their tunability and integration potential, positions
them as key materials for future advancements in these areas.

4 | Advanced Applications of An-MOF Thin Films

Although far less studied than Ln-MOFs, An-MOF thin films
are attracting growing interest due to their distinctive struc-
tural and functional properties, positioning them promising for
applications in radiation and thermal management. The broader
range of accessible oxidation states in actinide ions, compared to
lanthanides, stems from the weaker shielding of their 5f orbitals.
A previous comprehensive review, from Schmidt and co-workers,
detailed the synthesis, structural design, and structure-property
relationships of An-MOFs [18]. In a separate review, Shustova and
co-workers summarized subsequent developments, emphasizing
applications in gas storage and separation, photophysics, cataly-
sis, and electronics [29]. The group’s subsequent work provided a
comparative analysis of the characteristics and interrelationships
of thorium-, uranium-, and zirconium-MOF materials [253]. In
contrast to these prior works on bulk materials, the scope of this
section is specifically dedicated to the emerging research on An-
MOF thin films. Our discussion will evaluate the current progress
in fabrication techniques and identify promising An-MOF com-
positions with inherent properties amenable to processing as thin
films. These distinctive electronic and bonding characteristics
endow An-MOFs with unique redox activity, harder Lewis acidity,
and enhanced coordination flexibility. While isomorphism is
frequently observed in Ln-MOFs due to their similar ionic
radii and oxidation states, it is more constrained in An-MOFs
as a result of greater variability in oxidation states and ionic
radii. However, isomorphism remains feasible within homovalent
actinide series. By incorporating high-atomic-number elements
such as uranium and thorium into the modular MOF architec-
ture, An-MOF thin films synergize the intrinsic properties of
actinides—including radioactivity and heavy-element effects—
with the structural tailorability and porosity of MOFs, further
expanding their functional utility.

4.1 | X-Ray Scintillation and Radiation Protection

In the field of X-ray detection and radiation protection, actinide
elements, characterized by their high atomic number (Z),
exhibit exceptional radiation absorption capabilities. Conse-
quently, actinide-element compounds incorporating high-Z ele-
ments have emerged as promising materials for applications such
as X-ray scintillators and radiation shielding [254]. By selecting
suitable ligands and actinide metal centers, An-MOFs with
unique structural features can be assembled, making them criti-
cal components in medical imaging, security scanning, and high-
energy physics experiments. Within this application domain, the
fabrication of An-MOF thin films represents a key research direc-
tion for advancing X-ray scintillation and radiation protection
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FIGURE 12 | (a)Bright green emission of uranyl-organic framework (SCU-9) excited by X-ray in a powder X-ray diffractometer. Reproduced with

permission [255]. Copyright 2018, Wiley-VCH; (b) Schematic illustrations and digital image of the lab-built optoelectronic device integrating Th-101 as the
RGB-based dosimeter. (c) Schematic illustration showing the design principle of the optoelectronic device for X-ray dosimetry. (d) RGB integer (green)
of Th-101 as versus X-ray dose. Reproduced with permission [256]. Copyright 2022, American Chemical Society.

technologies. In thin-film form, An-MOFs can simultaneously
achieve rapid radiation response and comprehensive shielding
performance. Moreover, the processability of thin films offers a
versatile pathway for integrating An-MOFs with other materials
and interfaces, facilitating the development of composite systems
for enhanced functional performance.

Wang and coauthors explored the development of An-MOF thin
films for X-ray scintillation applications [255, 257]. As illustrated
in Figure 12, these uranyl-based MOFs exhibit strong lumines-
cent responses when exposed to X-rays, making them effective
scintillators for detecting ionizing radiation. The incorporation
of actinide elements enhances both stopping power and light
yield due to their high-Z nature and unique charge-transfer
emissions. The thin films demonstrate high sensitivity and rapid
response times, highlighting their potential for use in medical
imaging, security screening, and environmental monitoring. Sub-
sequently, Lin and Wang demonstrated the innovative use of
a thorium-based MOFs as a host matrix for a photoresponsive
guest molecule, enabling highly sensitive and selective X-ray
dosimetry through radical-induced photochromism [258]. The
incorporation of thorium led to a record-low detection limit of
0.047 Gy among photochromic sensors. The exclusive stability
and electronic properties of thorium facilitate radical gener-

ation and stabilization within the framework. Furthermore,
the same group presented a novel thorium-based nanocluster,
Th-101, which exhibits unprecedented dual fluorochromic and
piezochromic behavior under ionizing radiation, enabling highly
sensitive and wide-range (0-15 kGy) colorimetric X-ray dosimetry
via RGB-based readout [256]. The incorporation of thorium, a
high-Z actinide, significantly enhances X-ray attenuation and
facilitates efficient energy conversion, while the unique electronic
structure and strong ligand bonding ensure exceptional radiolytic
stability (up to 6 MGy). The integration of Th-101 into a compact
optoelectronic device allows for real-time, on-site dose quan-
tification. Fabrication of such materials into thin films would
enable the development of flexible, large-area, and wearable
radiation sensors, with significant potential for applications in
medical diagnostics, radiation safety, and high-dose industrial
processing.

Schmidt and coworker presented the innovative development
of a thorium-based MOF, Th-INA-1, constructed from isoni-
cotinic acid, which exhibits exceptional radiation resistance—
withstanding doses up to 6 MGy of 8- or y-irradiation—while
maintaining structural integrity [259]. Its high thorium content
(~47 wt.%) and unique hexanuclear cluster topology contribute
to superior stability and selective crystallization capability in
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the presence of competing fission products. The incorporation
of high-Z thorium significantly enhances X-ray attenuation,
making such materials highly suitable for radiation detection
applications. The coating of Th-INA-1 as thin film would offer
great potential for use in nuclear environments, medical imaging,
and portable dosimetry devices. Lin’s group also presented vari-
ous thorium-based cluster materials, which uniquely integrates
reversible X-ray-induced radiochromism and efficient radiation
shielding within a single platform—a dual-functionality rarely
achieved in previous studies [58, 260]. Its millimeter-scale single
crystals enable direct visualization of X-ray penetration and
exhibit attenuation efficiency comparable to leaded glass.

In 2025, a flexible 2D uranium-based MOF (SCU-334) is reported
by Wang and coworkers, exhibiting significantly enhanced
radiation resistance for X-ray imaging applications [261]. Its
innovation lies in the use of a flexible organic linker and
abundant hydrogen bonds, which dissipate radiation energy
efficiently and enable self-healing, retaining over 90% lumines-
cence after 50 Gy irradiation—outperforming prior rigid uranium
MOFs. Uranium is essential due to its high atomic number and
intrinsic luminescence, providing strong X-ray absorption and
efficient scintillation. Processing into flexible films facilitates
integration into large-area, bendable detectors, enabling high-
resolution (11 Ip/mm) X-ray imaging with excellent mechanical
and environmental stability for practical applications. A highly
sensitive luminescent dosimeter was also produced by a novel
uranyl-based MOFs (U-OX-PIP) for ultralow-dose detection of
both UV and X-ray radiation [262]. Its innovation lies in the
radical-mediated fluorescence quenching mechanism, enabled
by radiation-induced C-O-¢ species within the robust uranyl-
oxalate framework, achieving a record-low detection limit of 8.61
X 1073 Gy.

4.2 | Optical Responsive Materials and Devices

The development of optical responsive materials, particu-
larly those exhibiting photoelectric conversion and stimulus-
dependent luminescence, has garnered significant attention for
applications in sensing, imaging, and optoelectronics. Among
these, -MOFs offer unique opportunities due to their tunable
electronic structures and rich photophysical behaviors. While
Ln-MOFs have been extensively explored for their lumines-
cent properties—such as sharp line-like emissions and long
lifetimes—An-MOFs present a largely untapped resource with
complementary and often superior characteristics. Notably, An-
MOFs exhibit distinctive photoelectronic properties, such as
enhanced electron-phonon coupling, broad and intense ligand-
to-metal charge transfer (LMCT) bands, and efficient energy
transfer pathways, which are seldom observed in their lan-
thanide analogues [17]. The integration of actinide and lanthanide
centers within f-MOF thin films further enables synergistic
functionalities. Such advanced architectures not only broaden
the scope of stimuli-responsive behaviors but also pave the way
for novel optoelectronic devices, including high-sensitivity pho-
totransistors and ratiometric fluorescent thermometers. Thus,
the targeted development of f-MOF thin films—especially
those incorporating actinides—holds great promise for achieving
unprecedented performance in optical sensing and light-driven
applications.

Wang and coworkers demonstrated a heterobimetallic actinide-
lanthanide organic framework (SCU-UEu-2) that achieves near-
unity energy transfer from UO,>* to Eu®*, yielding a record
photoluminescence quantum yield of 92.68% [263]. The incor-
poration of uranium significantly enhances the luminescence
efficiency of EuMOFs, which due to the unique photophysical
properties of uranyl stemming from the intrinsic HOMO-LUMO
transition. Such An/Ln-MOFs combine strong stopping power
with high luminescence efficiency, ideal for radiation detection.
Processing into thin films would facilitate device integration,
improve response speed, and enable flexible composite designs
for advanced scintillation and radiation protection applications.

Shustova and coworkers explores the development of het-
erometallic An-MOFs with photoresponsive properties [184].
These MOFs incorporate both actinides and transition met-
als, allowing for dynamic and static tuning of their electronic
properties. The research focuses on the synthesis, structural char-
acterization, and investigation of their optoelectronic properties,
revealing the potential for these materials in advanced electronic
applications. One significant highlight of the study is the applica-
tion of these MOFs in MOF-based field-effect transistors (FETS).
The thin films of the MOFs exhibit remarkable optoelectronic
properties, such as tunable band gaps and photoresponsiveness,
making them suitable for use in FETs. These properties enable
the MOFs to function effectively as semiconducting materials
in electronic devices, opening new avenues for the design and
development of advanced MOF-based optoelectronic systems

Chen et al. explored the innovative use of uranium-based MOF
thin films [170]. These films were synthesized using a layer-by-
layer technique, resulting in consistent, crystalline, and oriented
SURMOFs. One of the standout features of these uranium-
based MOF thin films is their phonon-assisted temperature-
dependent photoluminescence, which manifests in two unusual
thermal-activated emission bands, also known as “hot-bands.” As
presented in Figure 13, a significant application highlighted in
the study is the development of a single-metal ratiometric optical
thermometer. This device leverages the unique thermal sensitiv-
ity of the uranium-based MOF thin films to measure temperature
with high precision. The exceptional thermal sensitivity and
stability of these films make them particularly suitable for optical
thermometry, providing a new avenue for temperature sensing
technologies in various scientific and industrial applications.

4.3 | Potential of An-MOF Thin Films in
Emerging Application

Beyond their well-documented roles in X-ray scintillation and
optical responsive materials, An-MOFs have emerged as promis-
ing materials in several other cutting-edge applications, particu-
larly in selective adsorption, gas separation, and heterogeneous
catalysis [18, 29]. Compared to actinide inorganic materials,
actinide MOFs (An-MOFs) provide a greater diversity of well-
defined and highly tunable coordination environments [264]. At
the same time, the inherent stability of the MOF framework
helps to protect the performance-defining properties of the
actinide ions against degradation induced by changing external
conditions [265]. The developments of An-MOFs have drawn
considerable interest, owing to the distinctive physicochemical
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thin film at 77 and 297 K; (c) Two-dimensional map of the temperature-dependent photoluminescent spectra of KIT-U-1 thin film; (d) Plotting of the

natural logarithm of photoluminescent intensity ratio between the normal excited state and the first hot excited state against reciprocal temperature for
KIT-U-1, R, = 0.998. Reproduced with permission [170]. Copyright 2024, Wiley-VCH.

properties of actinide ions—including their large ionic radii,
accessible multiple oxidation states, and abundant coordina-
tion environments—which, when integrated with the structural
modularity and high surface area of MOFs, lead to unique
functionalities not easily achieved with typical transition metal
or lanthanide-based frameworks. For instance, the presence of
highly charged actinide nodes and open metal sites promotes
strong and selective interactions with small molecules such
as water, iodine or xenon/krypton mixtures, making An-MOFs
exceptional candidates for gas separation and nuclear waste
treatment. Likewise, in heterogeneous catalysis, the multivalent
nature and Lewis acidity of actinide centers facilitate a range
of chemical transformations, including C-H activation, CO,
conversion, and redox reactions, with enhanced selectivity and
stability.

These disciplines continue to generate substantive theoretical
and practical innovations. Wang and coworkers presented a
novel reaction-induced preorganization strategy to construct a
heterobimetallic An-MOF, SCU-16-U, with thorium and ura-
nium precisely arranged within a single crystalline architecture
[266]. The in situ oxidation of formate to carbonate creates
a uranyl-specific coordination site, enabling efficient incorpo-
ration of hexavalent uranium. This heterobimetallic An-MOF
exhibits enhanced bifunctional catalytic properties, leveraging
the complementary Lewis acidity and photocatalytic activity
of distinct actinide centers, thereby highlighting the potential
of multimetallic An-MOFs in advanced catalytic applications.
Another work presented a series of uranyl-organic coordination
polymers constructed using a semirigid benzimidazole-based

carboxylate ligand, which enables precise tuning of coordi-
nation geometry and enhances both photocatalytic activity
and structural stability [267]. The materials featured hydroxyl-
bridged dinuclear uranyl centers and high porosity, exhibits
exceptional visible-light absorption, efficient charge separation,
and superior catalytic performance in the oxidative coupling of
benzylamines.

Recent years An-MOFs also exhibited exceptional potential for
the adsorption of small molecules due to their high porosity,
tunable structures, and abundant active sites [268, 269]. For
instance, thorium MOFs demonstrate remarkable iodine cap-
ture capacity and luminescent sensing for iodate, while uranyl
phosphonate frameworks show high stability and efficient uptake
of americium and toxic gases like SO, and NH;. Their unique
coordination environments and structural robustness make An-
MOFs promising materials for radionuclide sequestration and
environmental remediation.

The fabrication of such An-MOFs into thin films represents
a critical step toward their practical implementation, enabling
improved mass transport, higher accessibility to active sites, and
easier integration into device architectures. Thin-film configura-
tions not only maximize the exposure of functional actinide sites
but also facilitate the construction of composite membranes and
catalytic interfaces, thereby opening new pathways for advanced
separation technologies and flow-reactor catalysis [270, 271].
Thus, the transition from bulk powders to thin films is essential
for harnessing the full application potential of An-MOFs in these
emerging fields.
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In summary of this section, An-MOF thin films constitute an
emerging frontier in materials science, with profound potential
for applications in X-ray scintillation, optical thermometry, and
radiation detection. The synergistic integration of actinides,
distinctive electronic and spectroscopic properties with the
structural tunability of MOFs renders these materials uniquely
suited for advancing radiation-related technologies. This review
comprehensively surveys recent progress in An-MOF thin films,
emphasizing their synthetic strategies, functional properties,
and applications in these specialized domains. Despite these
promising developments, research on An-MOFs remains in its
nascent stages, with current efforts primarily focused on struc-
tural exploration and preliminary application studies. Conse-
quently, significant opportunities persist for further investigation
into their design, performance optimization, and technological
integration.

5 | Conclusions and Outlook

f-MOF thin films have emerged as a versatile platform for
harnessing the distinctive electronic, magnetic, photophysical,
and catalytic properties of lanthanide and actinide ions, offering
opportunities that extend well beyond those of conventional f-
element compounds. Within this class, lanthanide-based MOF
thin films represent the more established and extensively studied
systems. A growing body of research has demonstrated their
remarkable potential across a range of advanced applications,
including sensing, photonics, and optoelectronics, owing to
their unique combination of tunable optical behavior, electronic
versatility, and well-defined, porous crystalline structure. Recent
studies on Ln-MOF thin films have increasingly focused on the
development of tailored ligands, architecturally diverse frame-
works, and advanced thin-film deposition techniques to enable
precise responses to specific external stimuli and experimental
conditions. By leveraging the distinctive spatial configurations of
ligands, the stable resonance energy levels of lanthanide ions, and
the diverse pore structures within Ln-MOFs, researchers have
explored new frontiers in high-sensitivity and high-selectivity
optical or electrical sensing devices for gas and liquid phases.
Additionally, the development of Ln-MOF thin films for anti-
counterfeiting technologies, chiral luminescence, and other
advanced applications holds significant promise. A particularly
promising direction lies in the integration of Ln-MOF thin
films into wearable devices and biomimetic skin. The flexibility,
tunable porosity, and responsive nature of these materials make
them ideal candidates for next-generation wearable sensors,
energy-efficient displays, and adaptive artificial skin systems.
These applications could revolutionize fields such as healthcare,
robotics, and human-machine interfaces, offering unprecedented
functionality and performance.

In contrast to lanthanides, actinides have so far received less
attention. An-MOF thin films remain in their nascent stages,
presenting both challenges and opportunities for future research.
Advances in An-MOF crystal and powder studies are expanding
the library of candidate materials, which will provide critical
insights for the design and optimization of An-MOF thin films.
Given the radioactive nature of actinides, developing mild syn-
thetic approaches and stabilizing their structural frameworks is
of paramount importance. Drawing lessons from the evolution of

Ln-MOF thin films, establishing reliable and scalable fabrication
techniques for high-quality An-MOF thin films will be a crucial
first step. The radioluminescence and nuclear interactions of
actinides enable An-MOF thin films to selectively capture and
detect radionuclides, offering potential for safer nuclear fuel
processing, waste management, and radiation detection. Fur-
thermore, the distinctive 5f electronic configurations of actinides
endow An-MOFs with exceptional functionalities in photore-
sponse and potential catalytic applications. The development
of An-MOF thin films will not only enhance the material’s
safety and practicality but also pave the way for their inte-
gration into functional devices. Future efforts should focus on
overcoming synthetic challenges, elucidating structure-property
relationships, and exploring their potential in both nuclear and
non-nuclear applications.

The potential convergence of lanthanide and actinide MOF thin
film research offers a unique opportunity to address complex
challenges in energy, environmental science, and advanced mate-
rials. By combining the optical and electronic advantages of
lanthanides with the nuclear and radiation-related properties of
actinides, hybrid MOF systems could be developed for multifunc-
tional applications. For example, dual-lanthanide-actinide MOF
thin films could be designed for simultaneous optical sensing and
radiation detection, enabling real-time monitoring in hazardous
environments.

An especially desirable property to incorporate into framework
materials and into f-MOFs is electrical conductivity. Since earlier
reports on MOFs based on metals such as Fe and Co have been
retracted [272], Ln-MOFs based on La and Nd were the first
framework compounds to demonstrate metallic behavior [273].
For device integration, however, the development of f-MOF thin
films with proper electrical contacts—such as standard four-
point probe configurations—is essential. To date, Cu;(HHTP),
SURMOFs fabricated via the layer-by-layer method [22]. are the
only MOF thin films in which metallic conductivity has been
clearly established. Extending such investigations to Ln-based
SURMOFs would be highly desirable, as this could open up a new
field of applications for electrically conductive f-MOF thin films.

In conclusion, the future of lanthanide- and actinide-based MOF
thin films is bright, with numerous high-impact applications on
the horizon. Continued interdisciplinary collaboration, coupled
with advancements in synthesis, characterization, and theoretical
modeling, will be essential to unlock the full potential of these
materials. As the field matures, these thin films are poised to play
a transformative role in addressing global challenges related to
energy, security, and environmental sustainability.
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