KIT | KIT-Bibliothek | Impressum | Datenschutz

Unsupervised segmentation of micro-CT scans of polyurethane structures by combining hidden markov random fields and a U-Net

Grolig, Julian ORCID iD icon 1; Griem, Lars ORCID iD icon 1; Selzer, Michael ORCID iD icon 1; Kauczor, Hans-Ulrich; Triphan, Simon M. F.; Nestler, Britta; Koeppe, Arnd ORCID iD icon
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Extracting a digital representation of a material from images is a prerequisite for any quantitative structure-property analysis. Supervised convolutional neural networks (CNNs) now deliver state-of-the-art segmentation accuracy, but their performance depends on large, manually annotated training sets; an impractical requirement for most bulk micro-computed-tomography (CT) studies. Classical unsupervised techniques such as Hidden-Markov Random Fields (HMRF) avoid the need for ground-truth labels, yet they are typically slow and yield lower-quality segmentations. Here, we introduce HMRF-UNet, a hybrid framework that embeds the probabilistic neighborhood model of HMRF directly into the U-Net’s loss function. The loss simultaneously (i) enforces spatial smoothness through higher-order neighborhood terms, (ii) respects class-wise intensity distributions, and (iii) benefits from data-driven feature learning. By combining HMRF’s label-free regularization with the fast inference of CNNs, the method delivers unsupervised segmentation at a speed comparable to that of supervised networks. We evaluate the approach on a CT dataset of polyurethane (PU) foam. ... mehr


Postprint §
DOI: 10.5445/IR/1000190406
Frei zugänglich ab 01.03.2027
Originalveröffentlichung
DOI: 10.1016/j.mtcomm.2026.114817
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2026
Sprache Englisch
Identifikator ISSN: 2352-4928
KITopen-ID: 1000190406
Erschienen in Materials Today Communications
Verlag Elsevier
Seiten 114817
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page