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Abstract

Configuration systems enable industrial companies to automate and thus rationalize
production process planning within the orderfulfilment process. Particularly great poten-
tial lies in the automatic configuration of bills of materials and routings, i.e., in product
and process configuration. To date, configuration systems have not been implemented
comprehensively for this purpose. The main obstacles are the effort required to create
the configuration models that define the framework conditions and rules for configura-
tion, as well as the high probability of errors in these models. These challenges can be
overcome with data-driven methods such as machine learning techniques. These me-
thods can be used to create models for product and process configuration based on
past orders and to validate them through pattern recognition. This can contribute to the
wider use of configuration systems in production process planning and thus to greater
efficiency in order processing in industrial companies. However, according to the cur-
rent state of research, data-driven methods in connection with configuration models
have only been researched rudimentarily.

The aim of this thesis is therefore to lay the scientific foundations for the use of data-
driven methods for creating and validating models for product and process configura-
tion. It answers the questions of which methods are suitable for this purpose and how
effective their use is. To this end, suitable methods are developed and evaluated from
a technical perspective as part of a demonstration. This includes the data-based crea-
tion of the elements of industry-standard models for product and process configuration:
super bills of materials, super routings, and dependencies in the form of rules between
the variables of the models. In addition, the expansion of the data base and the data-
driven validation of rules are considered. The demonstration of the developed methods
shows that both the data-driven creation and the data-driven validation of product and
process configuration models are fundamentally possible and in many cases lead to
accurate results.






Kurzzusammenfassung

Konfigurationssysteme ermdglichen Industrieunternehmen die Automatisierung und
damit Rationalisierung der Arbeitsablaufplanung im Rahmen des Auftragsabwicklungs-
prozesses. GroRRes Potenzial besteht hierbei insbesondere in der automatischen Kon-
figuration von Stucklisten und Arbeitsplanen, d. h. fur die Produkt- und Prozesskonfigu-
ration. Bisher werden Konfigurationssysteme hierfir nicht umfassend eingesetzt. We-
sentliche Hinderungsgriinde sind der Aufwand fiir die Erstellung sowie die hohe Feh-
leranfalligkeit der hinterlegten Konfigurationsmodelle, die die Rahmenbedingungen und
Regeln der Konfiguration festlegen. Diesen Herausforderungen kann mit datenbasier-
ten Methoden, wie z. B. Verfahren des maschinellen Lernens, begegnet werden. Hier-
mit kdnnen Modelle fur die Produkt- und Prozesskonfiguration zum einen auf Basis zu-
rlckliegender Auftrage erstellt und zum anderen durch Mustererkennung tberpriift wer-
den. Dadurch kann ein Beitrag zu einem weitergehenden Einsatz von Konfigurations-
systemen in der Arbeitsablaufplanung und damit zu einer hdheren Effizienz des Auf-
tragsabwicklungsprozesses in Industrieunternehmen geleistet werden. Nach Stand der
Forschung sind jedoch datenbasierte Methoden im Zusammenhang mit Konfigurations-
modellen nur rudimentar erforscht.

Ziel der vorliegenden Arbeit ist es deshalb, die wissenschaftlichen Grundlagen fiir den
Einsatz datenbasierter Methoden zur Erstellung und Uberpriifung von Modellen fir die
Produkt- und Prozesskonfiguration zu legen. Es werden die Fragen beantwortet, wel-
che Methoden hierfiir geeignet sind und wie effektiv deren Einsatz ist. Hierfir werden
geeignete Methoden entwickelt und im Rahmen einer Demonstration aus technischer
Sicht bewertet. Dies umfasst die datenbasierte Erstellung der Bestandteile von indust-
rielblichen Modellen der Produkt- und Prozesskonfiguration: Maximalsttcklisten, Ma-
ximalarbeitsplane sowie Abhangigkeiten in Form von Regeln zwischen den Variablen
der Modelle. Daruber hinaus werden die Erweiterung der Datenbasis und die datenba-
sierte Uberpriifung von Regeln betrachtet. Die Demonstration der entwickelten Metho-
den zeigt, dass sowohl die datenbasierte Erstellung, als auch die datenbasierte Uber-
prifung von Produkt- und Prozesskonfigurationsmodellen grundsatzlich mdéglich ist und
in vielen Fallen zu genauen Ergebnissen fihrt.
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Menge aller Bezeichnungen von ZKs in einer
Menge von VSTLs

Lange des langsten gemeinsamen Pfades zweier
ZKs i und j zu den Wurzeln ihrer jeweiligen VSTL
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Formelzeichen

§f]?”f N Maximal mdgliche Lange eines langsten gemeinsa-
' men Pfades zweier ZKs i und j zu den Wurzeln ih-

rer jeweiligen VSTL

Slazk Menge Menge aller Labels von ZKs in einer Menge von
VSTLs

SVSTL Menge Menge von VSTLs, die fir die datenbasierte Erstel-
lung einer MSTL verwendet werden

st [0,1] Normierte Kontextahnlichkeit zweier ZKs i und j

uftak (0,1} Entscheidungsvariable, die angibt, ob ein STO-
Platzhalter j aktiv ist (1) oder nicht (0)

u,‘fj”'” {0,1} Entscheidungsvariable, die angibt, ob eine VSTL k
einem STO-Platzhalter j zugeordnet ist (1) oder
nicht (0)

uf}’f“f” {0,1} Entscheidungsvariable, die angibt, ob eine ZKK i
der MSTL einem STO-Platzhalter j zugeordnet ist
(1) oder nicht (0)

Kapitel 4.3

Formelzeichen Typ Bedeutung

agye [0,1] Normierte Distanz zweier AVOs i und j basierend
auf ihrer Kontextahnlichkeit

SEo Menge Menge der nicht vorhandenen Kanten in einem
VAPL i, die jeweils nicht vorhandene Vorrangbezie-
hungen darstellen

SFot Menge Menge der nicht vorhandenen Kanten in einem
VAPL i, die jeweils nicht vorhandene Vorrangbezie-
hungen darstellen, jeweils angegeben als Labels
der inzidenten Knoten

SEOMAPL Menge Menge der nicht vorhandenen Kanten in einem
MAPL, die jeweils nicht vorhandene Vorrangbezie-
hungen darstellen

SEOMAPLL Menge Menge der nicht vorhandenen Kanten in einem
MAPL, die jeweils nicht vorhandene Vorrangbezie-
hungen darstellen, jeweils angegeben als Labels
der inzidenten Knoten

SE Menge Menge der Kanten in einem VAPL i, die jeweils
Vorrangbeziehungen darstellen

St Menge Menge der Kanten in einem VAPL i, die jeweils
Vorrangbeziehungen darstellen, jeweils angegeben
als Labels der inzidenten Knoten

SELMAPL Menge Menge der Kanten in einem MAPL, die jeweils Vor-

rangbeziehungen darstellen



Formelzeichen

Xl

SE 1,MAPL,L

Nach
Si

so

L

SV,MAPL

SV,MAPL,L

Menge

Menge
Menge
Menge
Menge
Menge
Menge
Menge

Menge

Menge der Kanten in einem MAPL, die jeweils Vor-
rangbeziehungen darstellen, jeweils angegeben als
Labels der inzidenten Knoten

Menge der Labels von AVOs, die einem AVO i in
einem VAPL nachfolgen

Menge der Labels von AVOs, die zu einem AVO i
in einem VAPL in keiner Beziehung stehen

Menge der Knoten in einem VAPL i, die jeweils
AVOs darstellen

Menge der VAPLs die flr die datenbasierte Erstel-
lung eines MAPL verwendet werden

Menge der Labels von AVOs, die einem AVO i in
einem VAPL vorausgehen

Menge der Labels von Knoten in einem VAPL i, die
jeweils AVOs darstellen

Menge der Knoten in einem MAPL, die jeweils
AVKs darstellen

Menge der Labels von Knoten in einem MAPL, die
jeweils AVKs darstellen

Kapitel 4.4 und Anhang A5

Formelzeichen Typ

Bedeutung

A M4 q

am,i

Cm

LExklM onome

LM onome

an

Dn

Dp

{0,13

0,1}

Liste

Liste

Entscheidungsvariable, die angibt, ob das neu hin-
zuzufiigende Monom n™ + 1 den positiven Daten-
punkt i akzeptiert (1) oder nicht (0)

Parameter, der angibt, ob Monom m den positiven
Datenpunkt i im Trainingsdatensatz akzeptiert (1)
oder nicht (0)

Obere Schranke im Algorithmus Alg®8 fir die mini-
male Komplexitat des zu ermittelnden booleschen
Ausdrucks

Anzahl der Literale in Monom m. Entspricht dem
entsprechenden Zielfunktionskoeffizienten des MP
Liste von Monomen, die einem RMP nicht hinzuge-
fugt werden dirfen

Liste der Monome in einem RMP

Index der Entscheidungsvariable eines RMP in der
verzweigt wird

Anzahl der negativen Datenpunkte im Trainingsda-
tensatz

Anzahl der positiven Datenpunkte im Trainingsda-
tensatz
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Formelzeichen

nF

nM

SN GanzZ
TTraining

Um

*
uy)}(iMP

XMP*

XRMP*

N
N
Menge

Tabelle
0,1}
0,1}
R

R
{0,1}

0,1}

{0,1}

{0,1}

Anzahl der Features in einem Trainingsdatensatz
Anzahl der berlcksichtigten Monome in einem RMP

Menge aller nichtganzzahligen Entscheidungsvari-
ablen in der optimalen Lésung eines XRMP

Ein Trainingsdatensatz

Entscheidungsvariable des RMP, die festlegt, ob
Monom m Teil des zu lernenden booleschen Aus-
drucks ist (1) oder nicht (0)

Wert der Entscheidungsvariable m in der optimalen
Lésung des XMP

Entscheidungsvariable des DP, welche der Neben-
bedingung i des XRMP zugeordnet ist

Wert einer Entscheidungsvariablen v; in der optima-
len Lésung eines DP

Stelle f des negativen Anteils eines Monoms p in
Dual-Rail-Darstellung

Entscheidungsvariable, die angibt, ob das neu hin-
zuzufugende Monom die dem Feature f entspre-
chende Variable als negatives Literal enthalt (1) o-
der nicht (0)

Stelle f des positiven Anteils eines Monoms y in
Dual-Rail-Darstellung

Entscheidungsvariable, die angibt, ob das neu hin-
zuzufuigende Monom die dem Feature f entspre-
chende Variable als positives Literal enthalt (1) oder
nicht (0)

Wabhrheitswert des i-ten positiven Datenpunkts hin-
sichtlich Feature f

Negierter Wahrheitswert des i-ten positiven Daten-
punkts hinsichtlich Feature f

Wahrheitswert des i-ten negativen Datenpunkts
hinsichtlich Feature f

Negierter Wahrheitswert des i-ten negativen Daten-
punkts hinsichtlich Feature f

Optimaler Zielfunktionswert eines MP

Optimaler Zielfunktionswert eines RMP

Optimaler Zielfunktionswert eines SP

Optimaler Zielfunktionswert eines XMP

Optimaler Zielfunktionswert eines XRMP
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Kapitel 4.5

Formelzeichen Typ

Bedeutung

Bl,j (€9)

BHL (x)
Bl ()

dDist

Dist
di

(iKomp

Komp
d,;

MS
dijk

LExklM onome

nD

nKl,HL

KLMS
Mk

Mw
VR

MS
Tjk

Vorh
Uge,m

Um

MSs

Bool. Ausdr.

Bool. Ausdr.
Bool. Ausdr.

N

{01}

Liste

Z

Boolescher Ausdruck, der dem j-ten Modell in VR [
entspricht

Boolescher Ausdruck, der der HLF entspricht
Boolescher Ausdruck, der der MSF jk des VR [ ent-
spricht

Kleinster Abstand einer Lésung, d. h. Variante, zu
allen bereits im Trainingsdatensatz befindlichen Va-
rianten

Hamming-Abstand einer Lésung von einem bereits
im Datensatz vorhandenen Datenpunkt i

Maximale Differenz der Komplexitat eines Modells
zur Komplexitat des komplexitatsminimalen Modells
in einem VR, bei der es noch bericksichtigt wird
Differenz der Komplexitat eines Modells j zur Kom-
plexitat des komplexitatsminimalen Modells im VR [
Entscheidungsvariable, die angibt, ob sich die Vor-
hersagen der Modelle j und k des VR des Labels [
fur eine Losung, d. h. eine Variante, unterscheiden
(1) oder nicht (0)

Liste von Monomen, die einem RMP nicht hinzuge-
fugt werden dirfen

Anzahl der Datenpunkte in einem Trainingsdaten-
satz

Anzahl der Features eines Trainingsdatensatzes
Anzahl der Klauseln in einer HLF

Anzahl der Klauseln in der MSF jk eines VR [

Anzahl der Labels in einem Trainingsdatensatz
Anzahl der Auspragungen eines Produktmerkmals
Definierte GroRe der VRs fiir Methode 5
Gewichtung der MSF, die den Modellen j und k im
VR [ zugeordnet ist

Parameter, der festlegt, ob Monom m Teil des k-ten
booleschen Ausdrucks in einem Versionenraum ist
(1) oder nicht (0)

Entscheidungsvariable des RMP, die festlegt, ob
Monom m Teil des zu lernenden booleschen Aus-
drucks ist (1) oder nicht (0)

Gewichtung des Kriteriums Modellseparation



XVI Formelzeichen
w}’ﬂL {0,1} Parameter, der angibt, ob Klausel m der HLF das
' Feature f als positives Literal enthalt (1) oder nicht
(0)
W)?inﬁm {0,1} Parameter, der angibt, ob Klausel m der MSF jk
o des VR des Labels [ das Feature f als positives Li-
teral enthalt (1) oder nicht (0)
W]Zl;fl” {0,1} Parameter, der angibt, ob Klausel m der HLF das
' Feature f als negatives Literal enthalt (1) oder nicht
(0)
W;lin;q‘im {0,1} Parameter, der angibt, ob Klausel m der MSF jk
o des VR [ das Feature f als positives Literal enthalt
(1) oder nicht (0)
Xf {0,1} Auspragung von Feature f in einer zu wahlenden
Variante
x}f]?”‘ {0,1} Auspragung von Feature f in der bereits im Trai-
ningsdatensatz vorhandenen Variante i
Kapitel 4.6
Formelzeichen Typ Bedeutung
SReg Menge Menge von Regeln eines LLKM
T Ausreifier Tabelle Tabelle, die fir jeden Eintrag einer Literal- oder Mo-
nomtabelle den Ausreillerwert angibt
T Alternativ Tabelle Tabelle, die fiir jeden Eintrag einer Literal- oder Mo-

nomtabelle den alternativen Eintrag mit der héchs-
ten Vorhersagewahrscheinlichkeit enthalt

Kapitel 5.1 und Anhang A7

Formelzeichen

Typ

Bedeutung

S

[0,1]

[0,1]

Parameter des Approximate Model Countings, der
das Signifikanzniveau des resultierenden Intervalls
festlegt

Parameter des Approximate Model Countings, der
die GroRe des resultierenden Intervalls festlegt

Kapitel 5.2 und Anhang A8

Formelzeichen Typ Bedeutung

pmin {0,1} Variable, die angibt ob fiir ein Experiment eine mini-
male MSTL erstellt wurde (1) oder nicht (0)

pZB1 {0,1} Variable, die angibt ob fiir ein Experiment die Zeit-

beschrankung flr Schritt 1 der Methode 2 erreicht
wurde (1) oder nicht (0)
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XVII

bZBZ

dMSTL
(iMSTL
dMSTL,abs
dSTO

STO
dk,l

nAbh

AnzPart

N

AnzPart,gen
ij
1’lB GK

nCle

Mult
nSmg

STO

Sum
SumMax
VSTL

ZKK

S 33 3 =3

nZI(I(,MSTL

nZuTeLlen

Abh

BGK

{0,13

[0,1]

Z

zZ Z 2 Z 2

[0,1]

[0.1]

Variable, die angibt ob fiir ein Experiment die Zeit-
beschrankung fir Schritt 2 der Methode 2 erreicht
wurde (1) oder nicht (0)

Normierte Distanz der Ergebnis- und der Referenz-
MSTL

Maximal mégliche Distanz der Ergebnis- und der
Referenz-MSTL

Absolute Distanz der Ergebnis- und der Referenz-
MSTL

Differenz der Anzahlen von STOs in einer Ergebnis-
und einer Referenz-MSTL

Distanz zweier STOs k und [ einer MSTL

Anzahl der ZKKs in einer Referenz-MSTL, die von
der gliltigen STO abhangen

Anzahl méglicher Partitionen einer Zahl i deren
kleinster Summand gréRer gleich j ist

Anzahl mdéglicher Partitionen einer Zahl i deren
kleinster Summand j ist

Anzahl der BGKs in einer Referenz-MSTL

Anzahl der Cluster derjenigen STO mit der gerings-
ten Clusteranzahl in der Ergebnis-MSTL, falls diese
weniger Cluster aufweist als die Referenz-MSTL,
ansonsten in der Referenz-MSTL

Anzahl der Multipositionen je STO einer Referenz-
MSTL

Anzahl der Positionen je STO einer Referenz-MSTL
mit singularen Bezeichnungen

Anzahl der STOs in einer MSTL

Ein Summand einer Ganzzahlpartition
GroRter Summand einer Ganzzahlpartition
Anzahl der VSTLs in der Menge SV5Tt

Anzahl der ZKKs, die einer STO einer Referenz-
MSTL zugeordnet sind

Anzahl von ZKKs in einer Referenz-MSTL

Natirliche Zahl fur die eine Ganzzahlpartition gene-
riert werden soll

Anteil von ZKKs einer MSTL, die von der gultigen
STO abhangen

Verhaltnis der Anzahl von BGKs zu ZKKs in einer
Referenz-MSTL



XVIII

Formelzeichen

Mult

TRadSTO

TRadZKK

Cl
Sk
SSTO

SVS TL

§

[0; 0,5)

Menge
Menge
Menge

[0,1]

[0,1]

Anteil mehrfach auftretender Bezeichnungen von
ZKKs, die einer STO einer Referenz-MSTL zuge-
ordnet sind

Radius eines Intervalls aus dem die Auftretens-
wahrscheinlichkeiten fir STOs gleichmafig zufallig
gewahlt werden

Radius eines Intervalls aus dem die Auftretens-
wahrscheinlichkeiten fir ZKKs gleichmafig zufallig
gewahlt werden

Menge an Clustern zu BGKs in einer MSTL k

Menge aller STOs einer Ergebnis- und einer Refe-
renz-MSTL

Menge von VSTLs, die fur die datenbasierte Erstel-
lung einer MSTL verwendet werden

Parameter des Uniform Model Samplings, der das
Signifikanzniveau des Intervalls festlegt, in dem
eine Gleichverteilung angenahert wird

Parameter des Uniform Model Samplings, der das
Intervall festlegt, in dem eine Gleichverteilung ange-
nahert wird

Kapitel 5.3 und Anhang A9

Formelzeichen Typ

Bedeutung

bmin

bZBl

bZBZ

dMAPL
dAMAPL
dMAPL,abs

dSTO

STO
dk,l

nAbh

{01}

{01}

{01}

Variable, die angibt ob fiir ein Experiment ein mini-
maler MAPL erstellt wurde (1) oder nicht (0)
Variable, die angibt ob fiir ein Experiment die Zeit-
beschrankung fur Schritt 1 der Methode 3 erreicht
wurde (1) oder nicht (0)

Variable, die angibt ob fiir ein Experiment die Zeit-
beschrankung fur Schritt 2 der Methode 3 erreicht
wurde (1) oder nicht (0)

Normierte Distanz des Ergebnis- und des Referenz-
MAPL

Maximal mogliche Distanz des Ergebnis- und des
Referenz-MAPL

Absolute Distanz des Ergebnis- und des Referenz-
MAPL

Differenz der Anzahlen der STOs in einem Ergeb-
nis- und einem Referenz-MAPL

Distanz zweier STOs k und [ eines MAPL

Anzahl der AVKs eines Referenz-MAPL, die von
der glltigen STO abhangen
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AK

nAKMLn

nAK ,MAPL
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nsing

STO
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VBZ
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Abh
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VBZ

RadAK

T.RadSTO

E1,Bez
Sk

SSTO
SVAPL
tM3'1

tM3'2
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[0; 0,5)

[0; 0,5)

Menge

Menge

Menge

[0.1]

Anzahl der AVKs, die einer STO eines Referenz-
MAPL zugeordnet sind

Anzahl der AVKs je STO eines Referenz-MAPL so-
fern dieser weniger STOs aufweist als ein zugehori-
ger Ergebnis-MAPL, ansonsten Anzahl der AVKs je
STO des Ergebnis-MAPL

Anzahl der AVKs in einem Referenz-MAPL

Anzahl der Multipositionen je STO eines Referenz-
MAPL

Anzahl der Positionen je STO eines Referenz-
MAPL mit singularen Bezeichnungen

Anzahl der STOs in einem Referenz-MAPL
Anzahl der VAPLs in der Menge SVAPL
Anzahl der Vorrangbeziehungen in einem MAPL

Anteil von AVKs eines Referenz-MAPL, die von der
gliltigen STO abhangen

Anteil mehrfach auftretender Bezeichnungen von
AVKs, die einer STO eines Referenz-MAPL zuge-
ordnet sind

Anteil von gultigen Vorrangbeziehungen in einem
MAPL an allen méglichen Vorrangbeziehungen in
diesem Referenz-MAPL

Radius eines Intervalls aus dem die Auftretens-
wahrscheinlichkeiten fir AVKs gleichmaRig zufallig
gewahlt werden

Radius eines Intervalls aus dem die Auftretens-
wahrscheinlichkeiten fir STOs gleichmaRig zufallig
gewahlt werden

Menge der Vorrangbeziehungen in einer STO k ei-
nes Referenz-MAPL bezogen auf die Bezeichnun-
gen der AVOs

Menge aller STOs eines Ergebnis- und eines Refe-
renz-MAPL

Menge von VAPLs, die fur die datenbasierte Erstel-
lung eines MAPL verwendet werden
Zeitbeschrankung in Sekunden fir Schritt 1 der Me-
thode 3 fur ein Experiment

Zeitbeschrankung in Sekunden flr Schritt 2 der Me-
thode 3 fiir ein Experiment

Parameter des Uniform Model Samplings, der das
Signifikanzniveau des Intervalls festlegt, in dem
eine Gleichverteilung angenahert wird
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[0,1]

Parameter des Uniform Model Samplings, der das
Intervall festlegt, in dem eine Gleichverteilung ange-
nahert wird

Kapitel 5.4 und Anhang A10

Formelzeichen Typ

Bedeutung

korrL
bl

korrM
bi

nL

TlM inFeatures

nTest
nTraining
=Traini
pTraining
rGenEx

rGenIn

rModEx

rModln

tRe g

{01}

{01}

[0,1]

[0,1]

[0,1]

[0,1]

Variable die angibt, ob das i-te Label des j-ten Da-
tenpunkts eines Testdatensatzes durch ein trainier-
tes Modell korrekt wiedergegeben wird (1) oder
nicht (0).

Variable die angibt, ob ein auf dem i-ten Label ei-
nes Datensatzes trainiertes Modell dem tatsachlich
gliltigen Modell fir dieses Label entspricht (1) oder
nicht (0).

Anzahl der Labels in einem Datensatz

Einstellparameter des Algorithmus DK-XTSD, der
angibt, ab wie vielen Features in einem Teiltrai-
ningsdatensatz der Algorithmus von Chatterjee
(2018) eingesetzt wird

Anzahl der Datenpunkte in einem Testdatensatz

Anzahl der Datenpunkte in einem Trainingsdaten-
satz

GroRte Anzahl von Datenpunkten in einem Trai-
ningsdatensatz tber alle Trainingsdatensatze einer
Experimentreihe

Mittlere Genauigkeit von datenbasiert erstellten Re-
geln auf einem Testdatensatz ohne Berlicksichti-
gung von Standardpositionen

Mittlere Genauigkeit von datenbasiert erstellten Re-
geln auf einem Testdatensatz unter Bericksichti-
gung von Standardpositionen

Anteil der logisch Ubereinstimmenden Regeln zwi-
schen einem datenbasiert erstellten und einem tat-
sachlichen LLKM ohne Beriicksichtigung von Stan-
dardpositionen

Anteil der logisch Uibereinstimmenden Regeln zwi-
schen einem datenbasiert erstellten und einem tat-
sachlichen LLKM unter Bericksichtigung von Stan-
dardpositionen

Zeitbeschrankung in Sekunden flr die datenba-
sierte Erstellung einer Regel im Rahmen eines Ex-
periments
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Kapitel 5.5 und Anhang A11

Formelzeichen Typ

Bedeutung

nTraining N
ﬁTraining N
n'R N
TGenEx [0, 1]
whMS [0,1]

Anzahl der Datenpunkte in einem Trainingsdaten-
satz

GroRte Anzahl von Datenpunkten in einem Trai-
ningsdatensatz Uber alle Trainingsdatensatze einer
Experimentreihe

Grofle der VRs fir Methode 5

Mittlere Genauigkeit von datenbasiert erstellten Re-
geln auf einem Testdatensatz ohne Berlicksichti-
gung von Standardpositionen

Gewichtung des Kriteriums Modellseparation angibt

Kapitel 5.6 und Anhang A12

Formelzeichen Typ

Bedeutung

kDatenpunkte {0‘5; 1}
kFeatures {l()gz,
sqrt}
nlehler N
kFehlerart {Gleichv.,
)
kGewichtung {N.gesetzt,
Ausgegl.}
kM {A,B,C}
TlDT N
vij fallabhangig
Xi {051}
xi,,- {0'1}
xinit fallabhangig
yj {0,1}

Verwendetes Verfahren zur Auswahl von Daten-
punkten fir den Random-Forest-Algorithmus

Verwendetes Verfahren zur Auswahl von Features
fur den Random-Forest-Algorithmus

Anzahl der eingebrachten Fehler in einem LLKM
Art der eingebrachten Fehler in einem LLKM

Verwendetes Verfahren zur Gewichtung von Daten-
punkten fir den Random-Forest-Algorithmus

Betrachtetes Konfigurationsmodell

Anzahl der verwendeten Entscheidungsbaume fur
den Random-Forest-Algorithmus

Jj-te mégliche Auspragung eines Produktmerkmals i
in einem HLKM des Industriepartners

Variable zur Darstellung des i-ten Produktmerkmals
in One-Hot-Codierung fir boolesche Merkmale

Jj-te Variable zur Darstellung des i-ten Produktmerk-
mals in One-Hot-Codierung fur kategorische und
mehrwertige Merkmale

Produktmerkmal in einem Konfigurationsmodell
Auspragung eines abhéangigen Parameters i in ei-
nem Konfigurationsmodell
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Anhang A1

Formelzeichen Typ

Bedeutung

R

FRER=ERzZz2zZ27R

Koeffizienten der Nebenbedingungen des MP oder
RMP

Parameter der rechten Seite des MP oder RMP
Zielfunktionskoeffizient des MP oder RMP
Anzahl der Zeilen des RMP

Anzahl der Spalten des RMP
Entscheidungsvariable des MP oder RMP
Entscheidungsvariable des RMP
Entscheidungsvariable des DP

Wert der zugehdrigen Entscheidungsvariable flr
eine optimale Lésung des DP



Einleitung 1

1 Einleitung

Im Folgenden wird zunachst der Forschungsgegenstand der vorliegenden Arbeit moti-
viert und dessen Kontext dargestellt (Kapitel 1.1). AnschlieRend werden hieraus Prob-
leme und zugehorige Forschungsfragen abgeleitet (Kapitel 1.2). AbschlieRend wird die
Methodik zur Beantwortung der Forschungsfragen vorgestellt (Kapitel 1.3).

1.1 Motivation

Industrieunternehmen, die auftragsbezogen entwickelte Produkte (engl. Engineer-to-
Order, ETO) anbieten, stehen unter einem hohen Wettbewerbsdruck und sehen sich
zunehmend mit steigenden Anforderungen hinsichtlich Produktqualitat und Lieferzeiten
konfrontiert (Cannas et al. 2022, S. 974). Die auftragsbezogene Konfiguration (engl.
Configure-to-Order, CTO) unter Einsatz von Konfigurationssystemen bietet Unterneh-
men die Mdglichkeit, diese Anforderungen zu erflllen. Einerseits kbnnen Produkte in
hoher Variantenanzahl angeboten und damit individuelle Kundenwinsche adressiert
werden (EIMaraghy et al. 2013, S. 632). Andererseits bestehen gegenlber der auf-
tragsbezogenen Entwicklung deutliche Vorteile hinsichtlich Produktqualitat, Lieferzeit
und Kosten (Haug et al. 2019b, S. 134). Damit gewinnt der Wandel hin zu CTO und
damit die Einflihrung von Konfigurationssystemen fir ETO-Unternehmen an Bedeutung
(Cannas et al. 2022, S. 980).

Konfigurationssysteme unterstlitzen oder automatisieren dispositive Aufgaben im
Auftragsabwicklungsprozess, wie insbesondere das Verfassen der Anforderungsspezi-
fikation' sowie die Erstellung von Stiicklisten? und Arbeitspléanen (Zhang et al. 2015, S.
58). Die Erstellung von Stiicklisten und Arbeitsplénen ist in Industrieunternehmen eine
zentrale Aufgabe der Arbeitsplanung (Wiendahl 2019, S. 190), welche im Fokus der
vorliegenden Arbeit steht. Eine Studie von Myrodia et al. (2018) zeigt, dass von 59
betrachteten Unternehmen, die Konfigurationssysteme einsetzen, 56 % diese aus-
schlielich fir den Vertrieb und nicht fir technische Aufgaben nutzen. Damit bleibt Po-
tenzial fur den Einsatz von Konfigurationssystemen fiir technische Aufgaben im Rah-
men der Arbeitsplanung wie insbesondere die Erstellung von Stiicklisten mittels Pro-
duktkonfiguration und Arbeitsplanen mittels Prozesskonfiguration teilweise

! Siehe hierzu z.B. Bender & Gericke (2021, S. 198-199).

2 Wie in Kapitel 2.1 ausgefihrt wird, existieren in Unternehmen typischerweise verschiedene Arten von Stiicklis-
ten. Die vorliegende Arbeit betrachtet jedoch ausschlieRlich die Konfiguration von Fertigungsstiicklisten, weshalb
im Folgenden sofern nicht anders angegeben mit Stlicklisten Fertigungsstiicklisten gemeint sind.
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ungenutzt. Dies ist insbesondere vor dem Hintergrund relevant, dass in einer Studie
von Prote et al. (2017) 52 % von 91 befragten Unternehmen gerade den Aufwand flr
die Erstellung von Arbeitsplanen als hoch oder zu hoch einschatzten. Somit besteht
auch fiir Unternehmen, die bereits konfigurierbare Produkte anbieten, Potenzial fur die
Einfihrung von Konfigurationssystemen zur Produkt- und Prozesskonfiguration.

Den Vorteilen der Einflihrung eines Konfigurationssystems stehen Herausforderun-
gen gegeniber. Typischerweise handelt es sich bei der Einflhrung eines Konfigurati-
onssystems um ein Projekt, an dem Experten verschiedener Disziplinen beteiligt sind
(Haug et al. 2012, S. 476), das mehrere Monate dauert (Haug et al. 2019b, S. 139) und
mehrere tausend Mitarbeiterstunden in Anspruch nimmt (Kristjansdottir et al. 2018a, S.
66; Shafiee et al. 2020, S. 14). Die Nutzung eines Konfigurationssystems setzt ein kon-
figurierbares Produkt voraus. Dessen Varianten bilden eine Produktfamilie (Tiihonen et
al. 1998, S. 30-35). Varianten eines Produkts werden im Konfigurationsprozess durch
Entscheidungen im Rahmen zuvor festgelegter Moglichkeiten spezifiziert (Abbasi et al.
2013, S. 162). Dadurch ergibt sich im Gegensatz zu einem auftragsbezogen entwickel-
ten Produkt ein definierter und beschrankter Produktraum. Dieser kann jedoch mit typi-
schen Variantenanzahlen von z. B. 10%* im Anlagenbau (Bluméhr et al. 2019, S. 36)
eine unlberschaubare Groflke aufweisen. Diese Komplexitat setzt sich in den Konfigu-
rationsmodellen, die die Wissensbasis fiir eine Konfiguration darstellen, fort: In der Li-
teratur sind Konfigurationsmodelle mit 18.000 hinterlegten Regeln alleine fir die Erstel-
lung von Stiicklisten beschrieben (Sinz 2004, S. 3). Vor diesem Hintergrund kann erklart
werden, warum Wissensbereitstellung und Wissensmodellierung zu den groRten Her-
ausforderungen bei der Einfiihrung und Nutzung von Konfigurationssystemen zahlen
(Haug et al. 2019a, S. 121; Kristjansdottir et al. 2018b, S. 203).

Werden Konfigurationssysteme fiir eine bestehende Produktlinie eingefiihrt, sind im
Unternehmen technische Produktdokumentationen wie insbesondere Stiicklisten und
Arbeitsplane fur Produktvarianten aus zuriickliegenden Auftragen vorhanden®. Diese
sind insofern korrekt, als sie bereits fiir eine erfolgreiche Auftragsabwicklung verwendet
wurden. Da diese Dokumente i. d. R. von Domanenexperten erstellt wurden, sind sie
das Produkt desselben Domanenwissens, das auch der Erstellung von

3 Aufgrund des Betrachtungsrahmens der vorliegenden Arbeit sind im Folgenden mit technischer Produktdoku-
mentation (kurz: Dokumentation, auch: Dokumente) sofern nicht anders angegeben Fertigungsstiicklisten und
Arbeitsplane gemeint. Eine technische Produktdokumentation kann in der industriellen Praxis jedoch weitere Do-
kumente umfassen, wie z. B. von Bender & Gericke (2021, S. 905-906) beschrieben.
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Konfigurationsmodellen zugrunde liegt. Es ist deshalb davon auszugehen, dass hieraus
mittels datenbasierter Methoden Muster extrahiert werden kdnnen, aus denen sich
ein Konfigurationsmodell erstellen lasst, das das zugrundeliegende Domanenwissen
reprasentiert. In Fallen in denen eine ausreichende Anzahl von Daten in Form von tech-
nisch dokumentierten Produktvarianten zur Verfugung steht, kann die Erstellung von
Konfigurationsmodellen potenziell vollstédndig automatisiert werden.

Es ist jedoch davon auszugehen, dass nicht in allen Fallen initial gentigend Daten zur
Verfugung stehen, um flr eine bestehende Produktlinie ein Konfigurationsmodell mit
ausreichender Genauigkeit automatisch zu erstellen. Ggf. ist zum einen eine sukzes-
sive datenbasierte Verfeinerung im laufenden Betrieb mdglich: Die mittels Konfigurati-
onssystemen erstellten Stlicklisten und Arbeitsplane werden manuell Gberprift und das
Konfigurationsmodell wird ggf. angepasst, bis eine ausreichende Genauigkeit vorliegt.
Eine manuelle Uberwachung und Anpassung im Betrieb ist in der Industrie auch fir
manuell erstellte Konfigurationsmodelle Ublich. Dadurch kann jedoch bei der Auftrags-
abwicklung zusatzlicher Aufwand anfallen, der zu einer Erhéhung der Lieferzeit filhren
kann. Zum anderen kann die Erweiterung der Datenbasis unabhangig vom Auftrags-
abwicklungsprozess erfolgen. Dafir werden aus dem Raum aller zuldssig spezifizier-
baren Produktvarianten diejenigen ausgewahlt, die einen hohen Informationsgewinn fiir
eine datenbasierte Erstellung des Konfigurationsmodells erwarten lassen. Fur diese
werden Dokumente, d. h. Stilcklisten und Arbeitsplane, erstellt, so dass sich zusatzli-
che Daten fiir eine datenbasierte Erstellung von Konfigurationsmodellen ergeben. Prin-
zipiell ermoglicht ein solches Vorgehen auch Unternehmen mit geringer Expertise in
der Wissensmodellierung eine Erstellung von Konfigurationsmodellen durch die Vor-
gabe von Beispielen. Die Auswahl geeigneter Varianten* stellt hierbei jedoch eine
Herausforderung dar.

Aufgrund ihrer Komplexitat sind Konfigurationsmodelle nicht nur aufwandig zu erstellen,
sondern auch fehleranfallig (Voronov 2013, S. 4). Fehler kdnnen bei der Pflege der
Modelle oder bereits bei deren Erstellung auftreten (Shafiee et al. 2020, S. 14). Die
Uberfiihrung von Domanenwissen in ein Modell erfolgt i. d. R. nicht durch Domé&nenex-
perten selbst, sondern durch Experten fir Wissensreprasentation (engl. Knowledge Re-
presentation Experts) in Abstimmung mit den Domanenexperten (Haug et al. 2012, S.
475-478). Diese Arbeitsteilung geht mit typischen Schnittstellenproblemen, wie

4 Hier und im Folgenden wird der Begriff Variante als Kurzform flir Produktvariante verwendet.
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insbesondere Missverstandnissen oder einer unzureichenden Wissensweitergabe, ein-
her, aus denen Fehler resultieren kdnnen (Haug et al. 2012, S. 478; Shafiee et al. 2017,
S. 987-988). Dartiiber hinaus zeigen Felfernig et al. (2015) in einer Studie mit zehn
erfahrenen Experten flr Wissensreprasentation, dass auch diesen in nicht unerhebli-
chem Mafle Fehler bei der Formalisierung von Wissen unterlaufen. Fehler in Konfigu-
rationsmodellen kdnnen jedoch auch bei einer datenbasierten Erstellung und dartber
hinaus durch manuelle Anderungen des Konfigurationsmodells im Betrieb entstehen.
Werden mit Hilfe von Konfigurationssystemen im Rahmen der Arbeitsplanung Stiicklis-
ten und Arbeitsplane erstellt, haben diese Fehler einen unmittelbaren Einfluss auf die
Produktionsdurchfuihrung. In Folge kann es zu schwerwiegenden Unterbrechungen des
Materialflusses, zu Mangeln in der Produktqualitat oder sogar zu Mangeln in der Pro-
duktsicherheit kommen (Kiichlin 2020, S. 9). Der Uberpriifung von Konfigurationsmo-
dellen kommt damit eine herausragende praktische Bedeutung zu. In der Literatur zu
maschinellem Lernen werden Methoden der Anomalieerkennung erfolgreich einge-
setzt, um Hinweise auf Fehler in Datensatzen zu erhalten (Aggarwal 2017, S. 399-422).
Konfigurationsmodelle kdnnen zu einem gewissen Teil in Daten umgewandelt werden,
die sich fiir eine solche Anomalieerkennung eignen®. Auch fiir die Uberpriifung von
Konfigurationsmodellen erscheint daher der Einsatz von datenbasierten Methoden
vielversprechend®.

Es lasst sich festhalten, dass in der Industrie Potenzial fur die Einfihrung und weiter-
gehende Verwendung von Konfigurationssystemen, insbesondere fir die Produkt- und
Prozesskonfiguration, besteht. Diesem Potenzial stehen jedoch Herausforderungen ge-
genuber, wie insbesondere ein hoher Erstellungsaufwand und eine hohe Fehleranfal-
ligkeit von Konfigurationsmodellen. Datenbasierte Methoden bieten Mdglichkeiten, die-
sen Herausforderungen zu begegnen, sind aber — wie in Kapitel 3 dargelegt wird — noch
nicht ausreichend erforscht, um in der industriellen Praxis eingesetzt werden zu kén-
nen. Deshalb befasst sich die vorliegende Arbeit mit der datenbasierten Erstellung und

5 Diese Daten sind formalisierte Reprasentationen eines Konfigurationsmodells und damit insbesondere nicht mit
Daten in Form von spezifizierten Produktvarianten zu verwechseln, die fiir die Erstellung von Konfigurationsmo-
dellen verwendet werden kénnen.

6 Auch fiir die Uberpriifung von Stiicklisten und Arbeitsplénen, die als Eingangsdaten fiir die Erstellung von Kon-
figurationsmodellen dienen kann prinzipiell Anomalieerkennung eingesetzt werden. Dies liegt jedoch nicht im Be-
trachtungsrahmen der vorliegenden Arbeit, auch wenn sich die in Kapitel 4.6 dargestellte Methode prinzipiell auf
diesen Anwendungsfall Gibertragen lasst.
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Uberpriifung von Modellen zur Produkt- und Prozesskonfiguration. Abbildung 1.1 ver-
anschaulicht das entsprechende Konzept schematisch.

Daten
Manuelle Erstellung

o (Dokumentierte Produktvarianten)
S — &
Experte‘ @ Erstellung |l

Anforderungs- Produkt- und

spezifikation Prozesskonfigurationsmodell
- [ ] »pmmm P

Maximalstiickliste Maximalarbeitsplane

Stiickliste

=

Arbeitsplane

Produktion

Fehlerhinweise
Daten ) = Uber- \%
(Modellreprasentation) & o priifung PN

Abbildung 1.1: Konzept der datenbasierten Erstellung und Uberpriifung von Modellen
zur Produkt- und Prozesskonfiguration

1.2 Probleme und Forschungsfragen

Um die industrielle Relevanz der vorliegenden Arbeit zu gewéhrleisten, wird von Konfi-
gurationssystemen und zugehdrigen Konfigurationsmodellen ausgegangen, wie sie ge-
genwartig in der Industrie eingesetzt werden. Diese bestehen aus

- Maximalstiicklisten, die die potenziellen Komponenten des konfigurierbaren
Produkts enthalten,

- Maximalarbeitsplanen, die die potenziellen Arbeitsvorgénge seines Herstellpro-
zesses enthalten sowie

- Regeln, die die Elemente der Maximalstiickliste bzw. des Maximalarbeitsplans
und deren Auspragungen auf Basis der Anforderungsspezifikation festlegen,

wie in Kapitel 2.2.2.4 ausgefuhrt wird. Um Maximalstucklisten und Maximalarbeitsplane
von den individuell furr jede Variante erstellten Stuicklisten und Arbeitsplanen abzugren-
zen, werden letztere im Folgenden als variantenbezogene Stlcklisten bzw. Arbeits-
pléne bezeichnet. Die datenbasierte Erstellung von Produkt- und Prozesskonfigurati-
onsmodellen basiert auf der Pramisse, dass im Unternehmen bereits entwickelte und
vertriebene Varianten eines Produkts vorliegen und die konfigurierbaren Merkmale des
Produkts bereits definiert sind. Der Fokus der vorliegenden Arbeit liegt auf
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Anwendungsféllen, in denen das Unternehmen bereits ein Konfigurationssystem fur
den Vertrieb einsetzt, aber nicht fir die Arbeitsablaufplanung’. Die entwickelten Metho-
den kénnen auf Anwendungsfalle (ibertragen werden, in denen das Unternehmen zwar
kein Konfigurationssystem flr den Vertrieb einsetzt, aber dennoch eine Anforderungs-
spezifikation auf Basis definierter Produktmerkmale erstellt. Da das Produkt bereits ver-
trieben wird, wird davon ausgegangen, dass im Unternehmen bereits technisch doku-
mentierte Varianten — d. h. durch Merkmale spezifizierte Varianten mit zugehérigen va-
riantenbezogenen Stiicklisten und variantenbezogenen Arbeitsplanen — vorliegen. De-
ren Anzahl kann ausreichend grof® sein, um ein hinreichend genaues Konfigurations-
modell zu erstellen oder zu gering, so dass eine Erweiterung der Datenbasis notwendig
ist.

Unter diesen Pramissen und vor dem Hintergrund des in Kapitel 1.1 gegebenen Kon-
textes lassen sich die folgenden Probleme als Gegenstand der vorliegenden Arbeit
identifizieren.

- Die datenbasierte Erstellung von Modellen zur Produkt- und Prozesskonfigura-
tion (Problem 1),
- die datenbasierte Erstellung von Maximalstticklisten (Problem 2),
- die datenbasierte Erstellung von Maximalarbeitsplanen (Problem 3),
- die datenbasierte Erstellung von Regeln (Problem 4),
- die Auswahl von reprasentativen Varianten zur Erweiterung der Datenba-
sis (Problem 5),
- und die datenbasierte Uberpriifung von Regeln (Problem 6).

Die Probleme 1 und 6 ergeben sich unmittelbar aus den in Kapitel 1.1 beschriebenen
Herausforderungen in der industriellen Praxis. Die Probleme 2, 3 und 4 ergeben sich
fur die in der industriellen Praxis lGberwiegend eingesetzten und zuvor beschriebenen
Konfigurationsmodelle als Teilprobleme von Problem 1. Problem 5 ist ein Teilproblem
von Problem 1 fiir Anwendungsfalle mit unzureichender Datenbasis. Es wird betrachtet,
um die industrielle Relevanz der vorliegenden Arbeit fur eine groe Anzahl von Anwen-
dungsféllen zu gewéhrleisten. Durch Problem 6 wird die Uberpriifung von Konfigurati-
onsmodellen im Rahmen der vorliegenden Arbeit auf die Uberpriifung von Regeln

7 Dieser Fall wird u. a. von Haug et al. (2019a, S. 126) und Bredahl Rasmussen et al. (2021, S. 8) flr verschiedene
Industrieunternehmen beschrieben. Seine Einordnung gegeniber den Idealtypen ETO und CTO wird in Kapitel
2.2.1 thematisiert.
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beschrankt. Insbesondere diese werden in der Literatur als fehleranfallig angesehen
(z. B. von Kuchlin 2020, S. 1).

Die Probleme 1 bis 6 werden im Rahmen der vorliegenden Arbeit gelést. Dadurch ist
es abschlieRend mdglich, die folgenden Forschungsfragen zu beantworten:

- Wie und wie zuverlassig kénnen Produkt- und Prozesskonfigurationsmodelle da-
tenbasiert erstellt werden? (Forschungsfrage 1)
- Wie und wie zuverlassig kdnnen Maximalstlcklisten datenbasiert erstellt
werden? (Forschungsfrage 2)
- Wie und wie zuverlassig kdnnen Maximalarbeitsplane datenbasiert erstellt
werden? (Forschungsfrage 3)
- Wie und wie zuverlassig kdbnnen Regeln datenbasiert erstellt werden?
(Forschungsfrage 4)
- Wie und wie effektiv kann die Datenbasis fir die datenbasierte Erstellung
von Regeln erweitert werden? (Forschungsfrage 5)
- Wie und wie zuverlassig kdnnen Regeln in Produkt- und Prozesskonfigurations-
modellen datenbasiert liberpriift werden? (Forschungsfrage 6)

1.3 Methodik und Aufbau der Arbeit

Die vorliegende Arbeit Iasst sich den Technikwissenschaften im Sinne der Deutschen
Akademie der Technikwissenschaften (acatech) zuordnen. ,Technikwissenschaften
schaffen kognitive Voraussetzungen firr Innovation in der Technik und Anwendung
technischen Wissens und legen die Grundlagen fir die Reflexion ihrer Implikationen
und Folgen® (acatech (Hrsg.) 2013, S. 18). Das Ubergeordnete Ziel der vorliegenden
Arbeit entspricht dem Ubergeordneten Ziel der Technikwissenschaften ,erweiterte[ ]
Moglichkeitsrdume] ] fur das technische Handeln® zu schaffen (acatech (Hrsg.) 2013,
S. 19). Dabei folgt diese Arbeit dem Paradigma des Design Science Research. ,[Design
Science Research] seeks to enhance technology and science knowledge bases via the
creation of innovative artifacts that solve problems and improve the environment in
which they are instantiated” (vom Brocke et al. 2020, S. 1). Konkret entspricht die vor-
liegende Arbeit dem Design Science Research Process nach Peffers et al. (2007),
der in Abbildung 1.2 (1) dargestellt ist.
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Abbildung 1.2: Methode und Aufbau der Arbeit (Methode nach Peffers et al. 2007, S.
93)

Auch der Aufbau der vorliegenden Arbeit entspricht dem Design Science Research
Process, wie in Abbildung 1.2 (2) veranschaulicht. In Kapitel 1 wurden die in der vorlie-
genden Arbeit betrachteten Probleme 1 bis 6 und zugehdrige Forschungsfragen aus
der industriellen Praxis abgeleitet. In Kapitel 2 werden die flr diese Arbeit relevanten
Grundlagen vermittelt. Damit wird einerseits im Sinne des Design Science Research
Process der Kontext der definierten Probleme beschrieben. Andererseits wird das not-
wendige Vorwissen zum Verstandnis der im Rahmen der Arbeit entwickelten Artefakte
vermittelt. In Kapitel 3 werden die Probleme 1 bis 6 konkretisiert indem Anforderungen
an die zu deren LAsung erforderlichen Artefakte aus der ibergeordneten Problemstel-
lung abgeleitet werden. AulRerdem wird untersucht, inwieweit bestehende Ansatze
nach Stand der Forschung diese Anforderungen bereits erflllen (entsprechend Peffers
et al. 2007, S. 90). Aus der Differenz ergibt sich ein Lésungsdefizit, das durch die Ent-
wicklung geeigneter Artefakte geschlossen wird. In Kapitel 4 werden die im Rahmen
der vorliegenden Arbeit entwickelten Methoden 1 bis 6 zur Lésung der Probleme 1 bis
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6, d. h. Artefakte im Sinne der obigen Definition, vorgestellt. In Kapitel 5 werden die
Methoden auf industrienahe Anwendungsfélle angewandt. Hierdurch wird ihre grund-
satzliche Anwendbarkeit demonstriert und ihre Effektivitat quantifiziert. In Kapitel 6 wer-
den diese Ergebnisse diskutiert und auf Basis dessen die Forschungsfragen 1 bis 6
beantwortet. Darliber hinaus wird ein Ausblick auf den weiteren Entwicklungsbedarf
gegeben, der im Sinne des Design Science Research Process als Grundlage fur wei-
tere Entwicklungszyklen dient. Abschlielend wird die Arbeit in Kapitel 7 zusammenge-
fasst. Die Kommunikation der aus der Arbeit hervorgegangenen Erkenntnisse im Sinne
des Design Science Research Process erfolgte bereits durch Veroffentlichung eines
ersten Ansatzes (Frey et al. 2023) und wird durch die vorliegende Arbeit, welche 6ffent-
lich zuganglich ist, komplementiert.
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2 Grundlagen

Wie zuvor motiviert, wird durch die vorliegende Arbeit ein Beitrag zur Unterstutzung der
Arbeitsplanung durch die datenbasierte Erstellung und Uberpriifung von Modellen zur
Produkt- und Prozesskonfiguration geleistet. Zu diesem Zweck werden u.a. Verfahren
des Maschinellen Lernens (ML) eingesetzt. Dementsprechend werden im Folgenden
die wichtigsten Grundlagen der Arbeitsplanung (Kapitel 2.1), der Konfiguration (Kapitel
2.2) und des ML (Kapitel 2.3) dargestellt.

2.1 Arbeitsplanung

Die Arbeitsplanung in Industrieunternehmen hat die Aufgabe, ,die erforderlichen Ver-
fahren, Betriebsmittel und Ablaufe [festzulegen], um ein Erzeugnis zu fertigen oder eine
Dienstleistung auszufiihren“ (Wiendahl 2019, S. 189). Sie stellt neben der Arbeitssteu-
erung, die die planmaRige Durchfihrung der Produktion sicherstellt, eine Teilaufgabe
der Arbeitsvorbereitung dar (Eversheim 2002, S. 1-7). Die Arbeitsplanung kann wie-
derum in die Arbeitssystemplanung und die Arbeitsablaufplanung unterteilt werden
(Westkamper 2006, S. 155). Abbildung 2.1 zeigt die Gliederung der relevanten Begriffe.

Arbeitsvorbereitung
Arbeitsplanung Arbeitssteuerung

Planung von Verfahren, Betriebsmitteln und Sicherstellung der Auftragsabwicklung geman
Ablaufen der Produktion Plan
T
Arbeitsablaufplanung Arbeitssystemplanung
Planung und Gestaltung der Planung und Gestaltung von Betriebsmitteln
Produktionsprozesse fiir die Produktion

Abbildung 2.1: Aufgaben der Arbeitsvorbereitung (Eigene Darstellung nach Wiendahl
2019, S. 189, Westkamper 2006, S. 155 und Eversheim 2002, S. 1-7)

Die Aufgaben der Arbeitsplanung lassen sich dariiber hinaus nach ihrer Fristigkeit in
kurz-, mittel- und langfristig einteilen (Wiendahl 2019, S. 189-190). Die kurzfristigen
Aufgaben der Arbeitsplanung konnen weitgehend der Arbeitsablaufplanung zugeordnet
werden. Sie umfassen die Arbeitsplanerstellung, die Erstellung von Fertigungsstticklis-
ten (sog. Sticklistenverarbeitung), die NC-Programmierung sowie die Fertigungshilfs-
mittelplanung (Wiendahl 2019, S. 190). Der Einsatz von Konfigurationssystemen im
Rahmen der Arbeitsplanung ist im Wesentlichen fiir die Erstellung von Stiicklisten
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(STLs) und Arbeitsplanen (APLs) und damit in der Arbeitsablaufplanung relevant. Es
kann somit prazisiert werden, dass die vorliegende Arbeit sich mit Modellen zur Pro-
dukt- und Prozesskonfiguration im Rahmen der Arbeitsablaufplanung befasst. Die
beiden hierfiir zentralen Begriffe STL und APL werden im Folgenden naher erlautert.

STLs enthalten die eindeutig identifizierten Komponenten einer Baugruppe oder eines
montierbaren Produkts mit Menge und Einheit (ISO 7573:2008-11, S. 2—4). In der vor-
liegenden Arbeit werden sowohl Einzelteile, als auch montierte Gruppen von Einzeltei-
len zusammenfassend als Komponenten bezeichnet. Komponenten, die das betrach-
tete Unternehmen zukauft, werden als Zukaufkomponenten (ZKs) bezeichnet. Wird ex-
plizit der Begriff Baugruppe verwendet, ist damit eine Baugruppe gemeint, die im Un-
ternehmen montiert wird und damit keine ZK ist. Neben ZKs und Baugruppen, die keine
bzw. mehrere untergeordnete Komponenten in der STL aufweisen, kdnnen in der Pra-
xis auch Komponenten mit genau einer untergeordneten Komponente in STLs auftre-
ten. Dies kann z. B. der Fall sein, wenn eine bestimmte Komponente in verschiedenen
Zustanden, wie z. B. vor und nach einer Warmebehandlung, in der Stiickliste erfasst
wird. Dieser Fall wird jedoch in der vorliegenden Arbeit nicht betrachtet. STLs kdnnen
mehrstufige Hierarchien aufweisen. Gangige Formate fiir STLs sind, wie in Abbildung
2.2 dargestellt, Mengenubersichtsstiicklisten, Strukturstiicklisten und Baukastenstiick-
listen (Wiendahl 2019, S. 159-164). Hinsichtlich ihrer Funktion sind u. a. Konstruktions-
stlicklisten, die im Rahmen der Produktentwicklung erstellt werden und Fertigungs-
stlicklisten, die als Grundlage fiir die Produktionsdurchfiihrung geeignet sind, zu unter-
scheiden (Eversheim 2002, S. 23). Aufgrund ihrer unterschiedlichen Funktion kénnen
sich Konstruktionsstiicklisten und Fertigungsstuicklisten u. a. in ihrer Struktur unter-
scheiden, d. h. in der Weise wie ZKs zu Baugruppen zusammengefasst werden

Strukturstuckliste Baukastenstuckliste Mengenubersichts-
stlickliste

Produkt

Produkt

Produkt

1 Stk.

il

Komponente 1

Komponente 1 Komponente 2 Komponente 1 Komponente 2

4 Stk.
Komponente 2

Komponente 2 Komponente 3

Komponente 1

1 Stk.

]

Komponente 3

Komponente 2 Komponente 3

Abbildung 2.2: Gangige Formate fiir Stlcklisten nach Wiendahl (2019, S. 159-164)
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(Wiendahl 2019, S. 194). Baugruppen in Konstruktionsstticklisten fassen i. d. R. ZKs
zusammen, die gemeinsam eine Produktfunktion abbilden wohingegen Fertigungs-
stlicklisten Baugruppen definieren, die als Zwischenzustande in der Montage auftreten
(Wiendahl 2019, S. 194). Bei den in der vorliegenden Arbeit betrachteten variantenbe-
zogenen Stucklisten (VSTLs) handelt es sich um Fertigungssttcklisten.

Der APL ist das Ergebnis der Arbeitsplanerstellung und beschreibt ,die Vorgangsfolge
zur Herstellung eines Teils, einer Baugruppe oder eines Erzeugnisses” (Wiendahl
2019, S. 191). Ein APL bestehti. d. R. aus mehreren Arbeitsvorgangen (AVOs), flr die
jeweils mindestens das verwendete Material, der Arbeitsplatz, die Betriebsmittel und
die Vorgabezeiten hinterlegt sind (Wiendahl 2019, S. 191). Ein AVO ist i. d. R. einem
Arbeitsplatz zugeordnet und umfasst alle Arbeitsinhalte, die fir einen Auftrag an diesem
Arbeitsplatz ausgefiihrt werden (Eversheim 2002, S. 24). Da Arbeitsplatze in der in-
dustriellen Praxis mehr oder weniger umfassend abgegrenzt werden, kdnnen AVOs in
der Industrie mehr oder weniger grof3en Teilen des gesamten Herstellprozesses ent-
sprechen. Die Arbeitsinhalte eines AVOs kdnnen weiter in Operationen unterteilt wer-
den, wodurch der APL verfeinert wird (Wiendahl 2019, S. 195). Der Detaillierungsgrad
der Arbeitsplanung ist das Ergebnis einer Aufwand-Nutzen-Abwagung und kann von
Fall zu Fall unterschiedlich sein (Eversheim 2002, S. 1). In der vorliegenden Arbeit wird
nicht zwischen AVOs und Operationen unterschieden, sondern jeweils der Begriff AVO
verwendet. Je nach Anwendungsfall kann ein AVO somit mehr oder weniger Arbeitsin-
halt umfassen.

2.2 Konfiguration

Im Folgenden werden zunéachst die zentralen Begriffe zu Konfiguration im industriellen
Kontext, die fir die vorliegende Arbeit relevant sind, eingefihrt (Kapitel 2.2.1). Anschlie-
Rend wird auf Systeme und Modelle der Vertriebs-, Produkt- und Prozesskonfiguration
sowie auf integrierte Konfigurationsmodelle néher eingegangen (Kapitel 2.2.2). Zuletzt
wird entsprechend des Rahmens der vorliegenden Arbeit die Erstellung und Uberprii-
fung dieser Modelle thematisiert (Kapitel 2.2.3).

2.2.1 Zentrale Begriffe der Konfiguration

Wie Oddsson & Ladeby (2014, S. 419-422) zeigen, gibt es in der Literatur ahnliche,
wenn auch z .T. nicht Ubereinstimmende, Definitionen der zentralen Begriffe Konfigu-
ration, Konfigurationsmodell (KM) und Konfigurationssystem (KS). Auf Basis einer
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umfassenden Literaturanalyse erarbeiten sie Begriffsdefinitionen, an denen sich die
vorliegende Arbeit orientiert. Der Begriff Konfiguration meint zum einen den Prozess
des Konfigurierens und zum anderen das Ergebnis dieses Prozesses (Felfernig et al.
2014, S. 6). In der vorliegenden Arbeit werden dementsprechend uberall dort die Be-
griffe Konfigurationsprozess und Konfigurationsergebnis verwendet, wo dies fir das
Verstandnis erforderlich ist.

Der Konfigurationsprozess |6st die Konfigurationsaufgabe. Darunter verstehen Odds-
son & Ladeby (2014, S. 420) die Kombination vordefinierter Elemente sowie das Fest-
legen von deren Eigenschaften unter Berlcksichtigung von Beschrankungen und zu-
lassigen Schnittstellen, sodass gegebene Anforderungen erflllt werden. Wie Oddsson
& Ladeby (2014, S. 420) ausfuhren, kann das Ergebnis des Konfigurationsprozesses
auch Beziehungen zwischen den Elementen enthalten. Je nach betrachteter Konfigu-
rationsaufgabe kdnnen Elemente im Sinne der Definition z. B. Komponenten und Be-
ziehungen z. B. meronymische Beziehungen, d. h. Ist-Bestandteil-von-Beziehungen,
sein. Die Eigenschaften der vordefinierten Elemente, im Folgenden auch als Parameter
bezeichnet, und deren Definitionsbereiche sind i. d. R. ebenfalls vordefiniert (siehe Bei-
spiel von Felfernig et al. 2014, S. 56). In der vorliegenden Arbeit wird auch das Vorhan-
densein oder Nichtvorhandensein eines Elements in einer Kombination ebenfalls als
Parameter des Elements verstanden. Beschrankungen bestehen somit immer zwi-
schen Parametern, kdnnen jedoch auch ausdriicken, dass sich das Vorhandensein ver-
schiedener Elemente gegenseitig bedingt oder ausschliet (angelehnt an Hvam et al.
2008, S. 214-215). Abweichend von Oddsson & Ladeby (2014) wird in der Literatur
nicht nur der Begriff Beschréankungen verwendet, sondern zwischen Beschréankungen
und Regeln unterschieden (beispielsweise von Hvam et al. 2008, S. 211-215)8. Eine
Regel legt die Auspragung eines Parameters auf Basis der Auspragung eines bestimm-
ten anderen Parameters fest und ist somit unidirektional (Hvam et al. 2008, S. 211—
214). Regeln besitzen fir die vorliegende Arbeit eine herausragende Bedeutung. Im
Folgenden wird deshalb ebenfalls zwischen bidirektionalen Beschrankungen und
unidirektionalen Regeln unterschieden und tbergeordnet der Begriff Abhangigkeiten
verwendet. Vor dem gegebenen Hintergrund ist der Konfigurationsprozess in der vor-
liegenden Arbeit auf Basis der Definition einer Konfigurationsaufgabe nach Oddsson &

8 Kapitel 2.2.2.2 geht auf diese Begriffe im Zusammenhang mit Produktkonfiguration genauer ein.
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Ladeby (2014) wie folgt definiert: Die Konfiguration im Sinne des Konfigurationspro-
zesses umfasst

- die Auswahl von Elementen aus einer vordefinierten Menge von Elementen,

- die Festlegung der Auspragungen der vordefinierten Parameter dieser Elemente
im Rahmen vordefinierter Definitionsbereiche,

- und die Festlegung der Beziehungen zwischen den Elementen aus einer vorde-
finierten Menge mdglicher Beziehungen

unter Beriicksichtigung von Abhangigkeiten, sodass gegebene Anforderungen erfillt
werden. Entsprechend der liblichen Begriffsverwendung in der Literatur (beispielsweise
Zhang et al. 2010, S. 213) wird in der vorliegenden Arbeit davon gesprochen, dass
durch den Konfigurationsprozess der betrachtete Gegenstand wie insbesondere ein
Produkt oder ein Prozess konfiguriert wird. Die Konfiguration im Sinne des Konfigu-
rationsergebnisses besteht aus ausgewahlten Elementen mit festgelegten Parame-
terauspragungen, die zueinander in festgelegten Beziehungen® stehen.

r Konfigurationssystem

Konfigurationsmodell

¥ Abhangigkeit d; v
Element e; > Element e, < Element e;
Parameter p, ;: Bezieh- Bezieh-
{Wertvy; 1, Wertvy 15, ...} ung Parameter p, , {Wertv,, ;, ung
Parameter p; ,: Wertv, 15, ...}

{Wert v, ,,, Wertv, 55, ...}

Konfiguration (Prozess)

¥ Abhangigkeit d; v
Element e, > Element e, < Elemente;
Parameter p, ;: Bezieh- Bezieh-
{Wertvy,,, Wert vy ;,, ...} ungri | pParameter p,: uRgT;
Parameter p, ,: {Wertv, 1, Wertvy 5, ...}

{Wertv,,, Wertvy,,, ...}

Konfiguration (Ergebnis)

A 4

Element e; Element e,

Bezieh-
Parameter p, ; = Wert v, , ung ry

Parameter p, , = Wert v, ,, ~ Parameterp,, = Wert v,

Abbildung 2.3: Schematische Darstellung der relevanten Begriffe im Kontext industriel-
ler Konfigurationssysteme

9 Beziehungen sind damit in der vorliegenden Arbeit von Abhangigkeiten zu unterscheiden, auch wenn die beiden
Begriffe in der Literatur nicht scharf voneinander abgegrenzt sind. Beziehungen zwischen Elementen des
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Angelehnt an die Definition von Produktkonfigurationsmodellen nach Oddsson & La-
deby (2014, S. 420) enthalt ein Konfigurationsmodell eine Menge vordefinierter Ele-
mente mit vordefinierten Parametern mit vordefinierten Definitionsbereichen. Dariiber
hinaus enthalt es die moglichen Beziehungen zwischen den Elementen sowie die gul-
tigen Abhangigkeiten zwischen deren Parametern. Angelehnt an die Definition von Pro-
duktkonfigurationssystemen nach Oddsson & Ladeby (2014, S. 422) werden in der vor-
liegenden Arbeit software-basierte Systeme, die den Nutzer dabei unterstutzen auf Ba-
sis eines hinterlegten KM eine Konfiguration vorzunehmen als Konfigurationssys-
teme bezeichnet. Der Begriff Konfigurator wird synonym hierfir verwendet. Abbildung
2.3 stellt die eingeflihrten Begriffe anhand eines abstrahierten KM dar'®. Auf die kon-
krete Ausgestaltung von KMs wird in den folgenden Kapiteln eingegangen.

Nach Hvam et al. (2008, S. 15-27) sind in Industrieunternehmen u. a. Spezifikationen
von Angeboten, Produkten und Produktionsprozessen zu erstellen. Unternehmen, die
dem Prinzip der auftragsbezogenen Entwicklung (Engineer-to-Order, ETO) folgen, er-
stellen diese Spezifikationen nach Auftragseingang (Hvam et al. 2008, S. 28-30). Un-
ternehmen, die dem Prinzip der auftragsbezogenen Konfiguration (Configure-to-Or-
der, CTO) folgen, erstellen hingegen auftragsunabhangige Spezifikationen, die als Ba-
sis fur die Erstellung von auftragsbezogenen Spezifikationen mittels Konfiguration die-
nen (Hvam et al. 2008, S. 28-30). Die auftragsunabhangig erstellten Spezifikationen
entsprechen hierbei den oben beschriebenen Elementen und Abhangigkeiten des Kon-
figurationsmodells. Im Gegensatz zur ETO existiert damit fir die CTO ein definierter
und geschlossener Losungsraum (Kourtis et al. 2024, S. 154). Zwischen den Idealtypen
ETO und CTO findet sich in der Praxis ein Kontinuum fir den Grad der auftragsunab-
hangig erstellten Spezifikationen (Hvam et al. 2008, S. 28-30). Beispiele hierfiir sind
Unternehmen, die, wie in Kapitel 1.1 und 1.2 beschrieben, Konfigurationssysteme aus-
schlieRlich im Vertrieb nutzen.

2.2.2 Typen von Konfigurationssystemen und -modellen

KSs koénnen nach ihrem Einsatzzweck in Vertriebs-, Produkt-, Prozess- und Instand-
haltungskonfigurationssysteme eingeteilt werden (Zhang et al. 2020, S. 1-3).

Konfigurationsmodells werden teilweise oder vollstandig in das Konfigurationsergebnis libernommen. Abhangig-
keiten hingegen schranken die Méglichkeiten im Konfigurationsprozess ein und liegen im abschlieRenden Konfi-
gurationsergebnis nicht vor.

10 Die GroRen d, e, p, r und v stehen als Platzhalter fiir bestimmte Abhangigkeiten (d), Elemente (e), Parameter
(p), Beziehungen (r) bzw. Parameterauspragungen (v).
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Instandhaltungskonfigurationssysteme sind nicht Gegenstand der vorliegenden Arbeit.
Vertriebs-, Produkt- und Prozesskonfigurationssysteme werden im Folgenden erlautert,
wobei der Fokus auf den zugehdrigen KMs liegt.

2.2.2.1 Vertriebskonfigurationssysteme und -modelle

Vertriebskonfigurationssysteme werden haufiger als Vertriebskonfiguratoren (engl.
sales configurator oder commercial configurator) bezeichnet. Sie unterstitzen einen
Kunden oder einen Vertriebsmitarbeiter, der mit dem Kunden interagiert, dabei ein Pro-
dukt vollstandig und korrekt mittels Konfiguration zu spezifizieren, d. h. zu konfigurieren
(Trentin et al. 2014, S. 694). Die Konfiguration erfolgt i. d. R. durch das Auspragen von
Produktmerkmalen'!, wobei unzuldssige Kombinationen von Merkmalauspragungen
durch hinterlegte Beschrankungen ausgeschlossen sind (Abbasi et al. 2013, S. 166—
170). Insbesondere bei der Gestaltung von Vertriebskonfiguratoren flr die direkte In-
teraktion mit dem Kunden ist darauf zu achten, dass die abgefragten Merkmale dem
Nutzer ermoglichen, seine Anforderungen zu artikulieren (Salvador & Forza 2007,
117ff). Die Vertriebskonfiguration stellt damit nicht zwingend eine technische Spezi-
fikation des Produkts dar, sondern erfolgt u. U. auf Ebene der Kundenanforderungen
oder der Produktfunktionen (Salvador & Forza 2007, S. 117-119). Fir eine konfigu-
rierbare Pumpe kann z. B. aus Sicht des Kunden ein Produktmerkmal sinnvoll sein, das
das geférderte Medium beschreibt. Dieses Produktmerkmal kann sich in vielfaltiger
Weise auf die technische Spezifikation des Produkts — wie z. B. auf die Auswahl der
verwendeten Werkstoffe fiir verschiedene Komponenten — niederschlagen. Die Uber-
setzung einer Vertriebskonfiguration in eine technische Spezifikation ist insbesondere
in diesen Fallen nicht trivial (siehe auch Anwendungsfall von Salvador & Forza 2007,
S. 125). Durch die definierten Merkmale und deren Definitionsbereiche sowie die hin-
terlegten Beschrankungen, definiert das in Vertriebskonfiguratoren hinterlegte Ver-
triebskonfigurationsmodell einen Konfigurationsraum. Jede mdégliche Vertriebskonfi-
guration aus dem Konfigurationsraum entspricht einer méglichen Variante des konfigu-
rierbaren Produkts. Die Vertriebskonfiguration ist die Basis fiir den in der vorliegenden
Arbeit betrachteten Produkt- und Prozesskonfigurationsprozess. In manchen Fallen
schliel3t die Vertriebskonfiguration in der Praxis auch bereits die Beschreibung von

" Im Folgenden bezeichnen Produktmerkmale (kurz: Merkmale) Eigenschaften des Produkts aus Sicht des Kun-
den und sind Teil der Angebotsspezifikation. Mit Parametern werden demgegentiber im Folgenden Eigenschaften
des Produkts oder seiner Komponenten bezeichnet, die im Rahmen der technischen Spezifikation festgelegt wer-
den (siehe Kapitel 2.2.1).
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Komponenten des Produktes ein, wodurch sich eine Vertriebsstlickliste ergibt (Brinkop
et al. 2012, S. 10). Somit kann ein flieRender Ubergang zur Produktkonfiguration be-
stehen. Vertriebskonfiguratoren verfiigen i. d. R. Uber zusatzliche Funktionen, die den
Vertrieb unterstiitzen, wie insbesondere die Ermittlung von Preisen und Lieferkonditio-
nen sowie eine Angebotserstellung (Trentin et al. 2012b, S. 47). Diese sind jedoch fir
die vorliegende Arbeit nicht relevant.

2.2.2.2 Produktkonfigurationssysteme und -modelle

Der Begriff Produktkonfiguration wird in der Literatur in einem engen und einem weiten
Sinne verwendet. Autoren wie z. B. Trentin et al. (2012a) nutzen den Begriff Produkt-
konfiguration in einem weiten Sinne fiir Konfigurationsaufgaben in verschiedenen Be-
reichen von Industrieunternehmen einschlief3lich Vertrieb und Produktion. In der vorlie-
genden Arbeit wird jedoch in einem engen Sinne in Anlehnung an Zhang et al. (2013,
S. 465-466) unter Produktkonfiguration die Konfiguration eines Produkts aus techni-
scher Sicht und damit insbesondere die Auswahl und Parametrierung seiner Kompo-
nenten verstanden'?. Damit ist die Produktkonfiguration von der Vertriebskonfiguration
und der Prozesskonfiguration zu unterscheiden.

Gangige Produktkonfigurationsmodelle in der Literatur sind objektorientiert’ und las-
sen sich als Verbindung einer Strukturdarstellung und einer zugehérigen Semantik be-
schreiben. Fir die Strukturdarstellung werden insbesondere Klassendiagramme in Uni-
fied Modelling Language (UML), Produktvarianten-Master und Featuremodelle (Felfer-
nig et al. 2014, S. 52-59; Haug et al. 2010, S. 410-412) verwendet. Abbildung 2.4 zeigt
beispielhaft eine Strukturdarstellung eines Produktmodells in Form eines UML-Klassen-
diagramms (1) und eines Produktvarianten-Masters (2). Fir Featuremodelle sei auf Fel-
fernig et al. (2014, S. 52-54) verwiesen. Die Semantik kann sich einerseits aus der
Strukturdarstellung selbst ergeben. Die Darstellung in Abbildung 2.4 impliziert z. B.,
dass sich Scheiben- und Felgenbremsen als Instanzen derselben Klasse gegenseitig
ausschlieBen. Andererseits kann sie in Form von Abhangigkeiten beschrieben werden
(siehe Kapitel 2.2.1 und Beispiel von Felfernig et al. 2014, S. 52-59).

12 In der vorliegenden Arbeit ist die Produktkonfiguration auf die Konfiguration von Stiicklisten beschrankt. Die
Konfiguration weiterer technischer Dokumente, wie insbesondere technischer Zeichnungen, wird nicht betrachtet.
13 Auch wenn Objektorientierung in kommerziellen KS oftmals nicht vollstandig umgesetzt ist, lasst sich ein ob-
jektorientiertes Modell darin weitgehend realisieren (siche Rasmussen et al. 2020), weshalb der Fokus an dieser
Stelle auf objektorientierten Modellen liegt.
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(1) Fahrrad (2) O Fahrrad
Typ: {Trekkingrad, Rennrad} Beschreibung: ...
Ausfiihrung: {Standard, Premium} Typ:_(Trekkir.]grad, Rennrad) _
AL Ausfiihrung : (Standard, Premium) _
1 2 Scheibenbremse
Rahmen Bremse
—— ) Bremse ------
Material: {Stahl, Beschreibung: ...
Carbon} = Stahl Felgenbremse
—O Rahmen
[ scheibenbremse | Felgenbremse | Beschreibung: ...

Material : (Stahl, Carbon), Standardwert: Stahl

—& Meronymie —» Aggregation —— Meronymie --- Aggregation
(Generalisierung) (Generalisierung)

Abbildung 2.4: Beispielhafte Strukturdarstellung eines Produktkonfigurationsmodells
als UML-Klassendiagramm (1) und Produktvarianten-Master (2)

Eine Abhangigkeit in Form einer Regel kénnte z. B.

(F ahrrad.Typl* = Rennrad) V (Fahrrad. Ausfihrung = Premium) 2.1

= (Rahmen.Material = Carbon)
und eine Abhangigkeit in Form einer Beschrankung z. B.

(Fahrrad.Typ = Rennrad) V (Fahrrad. Ausfihrung = Premium) 2.2
< (Rahmen.Material = Carbon)

lauten. Im ersten Fall missten zwingend zunachst die Parameter Typ und Ausflhrung
festgelegt werden. AnschlieRend wirde ein Rahmen aus Carbon gewahlt werden, so-
fern ein Rennrad oder ein Fahrrad in Premiumausfiihrung gewahlt wurden. Andernfalls
ware das Rahmenmaterial nach Standardwert Stahl. Im zweiten Fall kbnnen die Para-
meter Typ, Ausfliihrung und Rahmenmaterial in beliebiger Reihenfolge beliebig gewahlt
werden. Es muss nur gewabhrleistet sein, dass abschlieffend die Beschrankung einge-
halten wird. Regelbasierte Modelle werden in der Literatur zum Teil kritisch gesehen
(beispielsweise von Mailharro 1998, S. 384). Sie sind aber in der Praxis gebrauchlich,
wie in Kapitel 2.2.2.4 ausgefihrt wird. Deshalb werden sie in der vorliegenden Arbeit
betrachtet. Abhangigkeiten, die im Konfigurationsmodell hinterlegt sind, kdnnen in die
Strukturdarstellung des Konfigurationsmodells aufgenommen (siehe Beispiel von Fel-
fernig et al. 2014, S. 52-59) oder in separaten Dateien, wie z. B. Class-Responsibility-

4 Hier und im Folgenden bezeichnet die Schreibweise [Klasse/Objekt].[Attribut] eine Referenz auf das Attribut
einer Klasse oder eines Objekts wie in der objektorientierten Programmierung tblich.
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Collaboration-Karten's, abgebildet werden.

Modelle zur Konfiguration von VSTLs folgen in ihrer Strukturdarstellung i. d. R. dem
Aufbau einer STL. Es existieren verschiedene Strukturdarstellungen in Form von Stuick-
listen wie z. B. modulare Sticklisten, Variantenstiicklisten, generische Stiicklisten und
Maximalstticklisten fir deren vollstéandige Erlduterung auf Jiao et al. (2000, S. 299-300)
verwiesen sei. Nach Jiao et al. (2000, S. 299-300) enthalten generische Stiicklisten
ausschlieBlich Generalisierungen — d. h. Aggregationen von Komponentenklassen
(KKs) wie die Klasse Bremse im Beispielfall — und meronymische Beziehungen. Dem-
gegenulber enthalten Maximalstiicklisten (MSTLs) nach Jiao et al. (2000, S. 299-300)
mit Verweis auf Kneppelt (1984) bestimmte Komponenten, die in den VSTLs auftreten
kénnen. Diesen wird je nach gewahlter Variante eine Liste mit hinzuzufugenden oder
zu entfernenden Komponenten beigefiigt. Abweichend hiervon folgt die vorliegende Ar-
beit fir MSTLs dem Verstandnis'® von Ram Babu et al. (2014, S. 96) wonach eine
Maximalstiickliste alle Komponenten enthélt, die lber alle Varianten hinweg auftreten
koénnen. In der vorliegenden Arbeit werden Maximalstlcklisten objektorientiert be-
schrieben. Sie bestehen aus einer Klasse je Komponente, die in einer moglichen Vari-
ante auftreten kann, sowie einer Klasse, die das Produkt selbst reprasentiert. Eine
Klasse wird im Rahmen des Konfigurationsprozesses als Objekt instanziiert, falls sie
fur eine bestimmte Variante bendtigt wird; andernfalls wird sie nicht instanziiert (ange-
lehnt an Felfernig et al. 2014, S. 55-59). KKs definieren somit, welche Komponenten —
und damit welche Elemente im Sinne der in Kapitel 2.2.1 gegebenen Definition — in
einer VSTL auftreten kdnnen. Generalisierungen sind moglich und werden jeweils
durch eine ihrer aggregierten Klassen instanziiert. Die in Abbildung 2.4 gezeigte Struk-
turdarstellung entspricht einer Maximalsttickliste. In diesem Beispiel kdnnte ein Fahrrad
konfiguriert werden, indem ein Produkt der Klasse Fahrrad mit Typ Rennrad und Aus-
fihrung Premium, eine Komponente der Klasse Rahmen mit Material Carbon und eine
Komponente der Klasse Scheibenbremse instanziiert wiirden. lhre Instanzen werden
Teil der VSTL. In diesem Fall kdnnte die Klasse Felgenbremse nicht instanziiert wer-
den, da sie derselben Superklasse wie die Klasse Scheibenbremse zugeordnet ist. Wie
in Kapitel 4.1.1 ausgeflihrt wird, besteht ein Produktkonfigurationsmodell in der

15 Fiir Class-Responsibility-Collaboration-Karten sei auf Hvam et al. (2008, S. 186—-195) verwiesen.

16 Dieses Verstéandnis liegt auch den Konfigurationssystemen der SAP SE zu Grunde. Siehe
https://help.sap.com/docs/SAP_S4HANA_ON-
PREMISE/a73402f511734e6eac56063e631bf24e/c162b6531de6b64ce10000000a174cb4.html (zuletzt Gber-
priift am 07.06.2025)
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vorliegenden Arbeit aus einer MSTL sowie aus Regeln, die die Elemente der VSTL und
deren Auspragungen festlegen.

Meronymische Beziehungen zwischen Klassen der MSTL spiegeln sich in Komponen-
ten der VSTLs wider (siehe Beispiel von Felfernig et al. 2014, S. 55-59), d. h. durch
das Produktkonfigurationsmodell sind die Baugruppen und damit die Flgereihenfolge
festgelegt. Die Fligereihenfolge eines Produkts kann jedoch innerhalb eines Unterneh-
mens von Fall zu Fall unterschiedlich sein (Romanowski & Nagi 2004, S. 317-318).
Unterschiede kénnen sich z. B. fur verschiedene Produktionssysteme aufgrund unter-
schiedlicher Fugemittel, fir verschiedene Varianten aufgrund unterschiedlicher Zu-
ganglichkeit der Fligestelle (Jiménez 2013, S. 240-242) und zu verschiedenen Zeit-
punkten aufgrund von Anderungen ergeben. Dementsprechend kénnen VSTLs fiir das
gleiche Produkt von unterschiedlichen Fiigereihenfolgen ausgehen und somit alterna-
tive Strukturen aufweisen, wie in Abbildung 2.5 veranschaulicht. VSTL 1 und VSTL 2
unterscheiden sich in den benétigten ZKs, weisen jedoch keine Widerspriche in der
Flgereihenfolge auf. VSTL 3 hingegen weist eine andere Struktur auf, da die ZKs B
und C vor den ZKs A und B gefiigt werden. In der vorliegenden Arbeit wird in einem
solchen Fall der Begriff Strukturalternative (STA) verwendet. VSTL 1 und 2 entspre-
chen somit einer anderen STA des Produkts als VSTL 3. VSTLs die verschiedenen
STAs entsprechen, kdnnen sich in mehreren meronymischen Beziehungen zugleich
unterscheiden. Entsprechend der oben genannten Ursachen kdnnen zwei STAs in
VSTLs einerseits technisch begriindet sein, womit beide zugleich giiltig sind. Anderer-
seits kdnnen sie durch inkonsistente Planungsstande oder schlicht menschliche Fehler

ANBICD
VSTLA1 VSTL 2 VSTL 3

I J I J
T T

Strukturalternative 1 Strukturalternative 2

VSTL = Variantenbezogene Stiickliste

Abbildung 2.5: Strukturalternativen in variantenbezogenen Stucklisten
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begriindet sein, womit evtl. nur eine oder keine der beiden aktuell giltig ist. Werden
VSTLs fiur die datenbasierte Erstellung von Produktkonfigurationsmodellen verwendet,
mussen STAs in VSTLs erkannt und, falls sie technisch begriindet sind, im KM abge-
bildet werden.

2.2.2.3 Prozesskonfigurationssysteme und -modelle

Die Entwicklung von Systemen fir die Produktkonfiguration reicht bis in die 1970er
Jahre zuriick (Hotz et al. 2014, S. 9). Demgegeniber wurde das Konzept der Prozess-
konfiguration in der Literatur erst Anfang der 2000er Jahre durch Schierholt (2001) um-
fassend beschrieben'”. Als Grund hierfiir sieht Schierholt, dass lange Zeit bei der Pro-
duktkonfiguration von Montageprodukten ausgegangen worden sei, bei denen die Mon-
tageprozesse durch die STL determiniert seien (Schierholt 2001, S. 412). Er weist da-
rauf hin, dass dies bei der Teilefertigung nicht der Fall sei und betrachtet beispielhaft
die Fertigung von Blechen und Coils (Schierholt 2001, S. 412—423). Die durchzuflih-
renden Teilprozesse hangen in diesem Anwendungsfall u. a. von der Breite des zu fer-
tigenden Blechs sowie von dessen Werkstoff ab, d. h. es wird eine Prozesskonfigura-
tion auf Basis der Merkmale des Endprodukts durchgefiihrt. Es sei an dieser Stelle an-
gemerkt, dass sich auch fiir Montageprodukte die Prozesskonfiguration nicht zwangs-
laufig trivial aus der Produktkonfiguration ergibt. Auch wenn durch eine Baugruppe der
VSTL . d. R. festgelegt ist, dass ein Fligevorgang fur die Komponenten der Baugruppe
erforderlich ist, ist damit noch nicht das Fligeverfahren'® determiniert. Darliber hinaus
kénnen im Rahmen der Montage weitere Verfahren erforderlich sein, die sich nicht aus
den Komponenten der Baugruppen ergeben. Beispiele hierfiir sind das Fillen, Be-
schichten, Justieren, Prufen (DIN 8580:2022-12, S. 13) oder Aufspielen von Software.
Zuletzt kdnnen auch Falle auftreten, in denen auch die Durchflihrung eines Fligevor-
gangs nicht durch die Baugruppe alleine determiniert ist. Beispielsweise kann die Ver-
triebskonfiguration vorsehen, dass auf Wunsch des Kunden ein bestimmtes Bauteil in
der Montage der Baugruppe nur beigelegt, aber nicht gefligt wird, weil der Kunde selbst
eine entsprechende Montage vornimmt. In der vorliegenden Arbeit wird deshalb sowohl
die Produkt- als auch die Prozesskonfiguration fur Produkte der Teilefertigung und der

17 Die Moglichkeit Arbeitsplane in Abhangigkeit der gewahlten Variante zu konfigurieren wird jedoch bereits einige
Jahre zuvor von Haag (1998, S. 78) als Funktion von SAP R/3 erwahnt.
8 Flr Fugeverfahren sei auf Deutsches Institut fir Normung e.V. (2022, S. 13) verwiesen
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Montage betrachtet. Die beiden Falle werden im Folgenden nur insoweit explizit unter-
schieden, als dies notwendig ist.

Ausgehend von der Arbeit von Schierholt (2001) werden in der Literatur Prozesskonfi-
gurationsmodelle analog zu bestehenden Produktkonfigurationsmodellen beschrieben.
Die Elemente dieser Modelle entsprechen den Teilprozessen des Produktionsprozes-
ses. Sie sind entweder Fertigungstechnologien wie im Falle von Schierholt (2001, S.
412) oder AVOs wie in Kapitel 2.1 beschrieben (beispielsweise auch bei Wang et al.
2017). Entsprechend sind die Ergebnisse der Prozesskonfiguration Technologieket-
ten bzw. variantenbezogene Arbeitspléne (VAPLs). Die vorliegende Arbeit beschrankt
sich auf Prozesskonfiguration im Rahmen der Arbeitsablaufplanung zur Erstellung von
VAPLs. Prozesskonfigurationsmodelle kdnnen analog zu Produktkonfigurationsmodel-
len als Verbindung einer objektorientierten Strukturdarstellung und einer Semantik be-
schrieben werden. Abbildung 2.6 zeigt ein einfaches Beispiel fiir ein Prozesskonfigura-
tionsmodell. Fir ein umfassendes Prozesskonfigurationsmodell nach Stand der For-
schung sei auf Wang et al. (2017, S. 957) verwiesen.

Bremsen einstellen

Endmontage Funktionspriifung

Prifstation:
{Station 1, Station 2}

Anschlusse prifen

—> Vorrangbeziehung

Abbildung 2.6: Beispielhafte Darstellung eines Prozesskonfigurationsmodells

Analog zu MSTLs liegt der vorliegenden Arbeit das Verstandnis von Maximalarbeits-
planen (MAPLs) nach Ram Babu et al. (2014, S. 96) zugrunde, wonach MAPLs alle
AVOs, die fir eine zulassige Variante auftreten kénnen, enthalten. Im Sinne der Objek-
torientierung werden in der vorliegenden Arbeit AVOs in MAPLs als Klassen — im Fol-
genden Arbeitsvorgangsklassen (AVKs) genannt — beschrieben. Diese werden im Zuge
der Konfiguration in Abhangigkeit der Variante ggf. instanziiert. Durch die Klassen sind
die AVOs und deren Parameter als wahlbare Elemente im Sinne der Definition aus
Kapitel 2.2.1 vorgegeben. Zwischen AVKs kdnnen Vorrangbeziehungen bestehen, wel-
che sich in den VAPLs widerspiegeln und parallele Ausfihrungen von AVOs — wie in
Abbildung 2.6 zu sehen —zulassen kdnnen. Wie in Kapitel 4.1.1 ausgefuhrt wird, besteht
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ein Prozesskonfigurationsmodell in der vorliegenden Arbeit aus einem MAPL sowie aus
Regeln, die die Elemente des VAPL und deren Auspragungen festlegen.

Ebenso wie in VSTLs kénnen auch in VAPLs STAs auftreten und missen bei der da-
tenbasierten Erstellung von Prozesskonfigurationsmodellen berticksichtigt werden.
Beispielsweise unterscheiden sich die VAPLs 1 und 2 in Abbildung 2.7 in den benétig-
ten AVOs, weisen jedoch keine Widerspriiche in ihrer Struktur auf. VAPL 3 hingegen
sieht vor, dass B zwingend vor C ausgefiihrt werden muss und entspricht damit einer
anderen STA.

Strukturalternative 1 Strukturalternative 2

VAPL = Variantenbezogener Arbeitsplan

Abbildung 2.7: Strukturalternativen in variantenbezogenen Arbeitsplanen

2.2.2.4 Integrierte Vertriebs-, Produkt- und Prozesskonfigurationssysteme und -
modelle

In der Praxis kdnnen die vorgestellten Vertriebs-, Produkt- und Prozesskonfigurations-
modelle als integrierte Modelle auftreten, auf die im Folgenden eingegangen wird. Auf-
bauend auf bestehenden KMs entwickeln Zhang et al. (2013; 2020) integrierte Ver-
triebs-, Produkt- und Prozesskonfigurationsmodelle. In den Modellen existieren u. U.
Beschrankungen innerhalb des Vertriebskonfigurationsmodells, d. h. bestimmte Aus-
pragungen der Produktmerkmale lassen sich nicht miteinander kombinieren. Je Klasse
des Produktkonfigurationsmodells existiert ein Prozesskonfigurationsmodell, das die
Montage und Bearbeitung des Produkts oder der entsprechenden Komponente be-
schreibt. Die Auspragungen der Produktmerkmale beschranken das Produkt- und Pro-
zesskonfigurationsmodell. Im Rahmen dieser Beschrankungen werden im Anschluss
an den Vertriebskonfigurationsprozess automatisch mittels mathematischer Optimie-
rung ein herstellkostenoptimales Produkt und herstellkostenoptimale Prozesse konfigu-
riert. Es findet somit keine vollstéandig integrierte Vertriebs-, Produkt- und Prozesskon-
figuration statt, sondern zunachst eine Vertriebskonfiguration und anschlieRend eine
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integrierte Produkt- und Prozesskonfiguration. Diese sequenzielle Trennung findet
sich auch in kommerziell verfligbaren Systemen fiir die Vertriebs-, Produkt- und Pro-
zesskonfiguration. Derjenige Teil des KS, der die Funktionen des Vertriebskonfigura-
tors (siehe Kapitel 2.2.2.1) bereitstellt wird in diesem Kontext als High-Level-Konfigu-
rationssystem (HLKS) bezeichnet (Haag 1998, S. 78). Derjenige Teil des KS, der die
Funktionen eines integrierten Produkt- und Prozesskonfigurationssystems bereitstellt,
wird demgegentiber als Low-Level-Konfigurationssystem (LLKS) bezeichnet (Haag
1998, S. 78). Aulerdem werden in der vorliegenden Arbeit flr die entsprechenden KMs
die Begriffe High-Level-Konfigurationsmodell (HLKM) und Low-Level-Konfigurati-
onsmodell (LLKM) verwendet.

Fir LLKMs besteht ein Unterschied zwischen Stand der Forschung und Stand der
Technik. Dies wird im Folgenden anhand der kommerziell verfligbaren Konfigurations-
systeme LO-VC und AVC'® der SAP SE (SAP) erlautert. In diesen Systemen werden
fur die Klasse des Produkts im HLKM und ggf. auch fir bestimmte KKs sog. Konfigura-
tionsprofile angelegt, die Abhangigkeiten, i. d. R. Beschrankungen, zwischen den Klas-
senmerkmalen enthalten. Auf Basis der Konfigurationsprofile kann die High-Level-Kon-
figuration vorgenommen werden, welche als Ausgangspunkt fur die Low-Level-Konfi-
guration dient. Das LLKM ist durch eine MSTL sowie einen APL je Komponente defi-
niert. Der APL je Komponente beschreibt den Herstellprozess dieser Komponente, ggf.
aus ihren Subkomponenten. Er kann ein MAPL sein, sofern der Herstellprozess der
Komponente von der gewahlten Produktvariante abhangt. Die Elemente der MSTL und
der MAPLs konnen von der High-Level-Konfiguration oder von anderen Elementen der
MSTL und der MAPLs abhangen. Als Abhangigkeiten kénnen jedoch im LLKM keine
Beschrankungen auftreten, sondern ausschlie8lich Regeln. Diese treten entweder in
Form von Auswahlbedingungen oder in Form von Prozeduren auf. Auswahlbedingun-
gen werden genutzt, um direkt oder indirekt in Abhangigkeit von der High-Level-Konfi-
guration zu entscheiden, ob eine Komponente oder ein Arbeitsvorgang Teil einer be-
stimmten VSTL bzw. eines bestimmten VAPL ist. Prozeduren werden genutzt, um
Merkmale von Elementen auszuprégen. (Blumohr et al. 2019, S. 153-259)%

19 LO-VC (Logistik-Variant Configuration) ist ein Konfigurationssystem im Rahmen des SAP ERP; AVC (Advan-
ced Variant Configuration) ist dessen Nachfolgeprodukt. Die Ausflihrungen gelten fiir beide Systeme. (zu SAP
LO-VC siehe https://help.sap.com/docs/SAP_S4HANA_ON-PREMISE/a73402f511734e6eac56063e631bf24e/
1a40b953495bb44ce10000000a174cb4.htmli?locale=de-DE (zuletzt Gberpriift am 07.06.2025)

20 Steht in der vorliegenden Arbeit eine Quellenangabe hinter dem Satzzeichen wird der gesamte Absatz bis zu
dieser Stelle nach dieser Quelle indirekt zitiert.
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Damit entspricht das LLKM der SAP-Systeme nicht den von Zhang et al. (2020) be-
schriebenen Produkt- und Prozesskonfigurationsmodellen, welche beschrankungsba-
siert sind und eine Konfiguration durch Optimierung vornehmen. Durch in der Literatur
beschriebene Anwendungsfalle (siehe Anwendungsfalle von Braun 2021, S. 83—92 und
Chatras et al. 2016, S. 564 1) sowie online verfligbare Produktinformationen?' kann be-
statigt werden, dass dies auch fiir andere kommerziell verfliigbare, integrierte KSs gilt.
Gegenwartig ist nicht bekannt, ob kommerziell verfligbare KSs zukiinftig beschran-
kungsbasierte LLKMs, wie von Zhang et al. (2013; 2020) beschrieben, bereitstellen
werden. Dazu ware u. a. die Implementierung eines optimierungsbasierten Low-Level-
Konfigurationsprozesses notwendig. Die vorliegende Arbeit orientiert sich deshalb an
den gegenwartig in der Praxis eingesetzten KSs mit beschrankungsbasierten HLKMs
und regelbasierten LLKMs. Das datenbasiert zu erstellende KM ist damit in der vor-
liegenden Arbeit konkret ein LLKM nach Stand der Technik. Der Fokus hinsichtlich der
datenbasierten Erstellung von Regeln liegt auf Auswahlbedingungen und nicht auf Pro-
zeduren. Ein HLKM mit definierten Produktmerkmalen und Definitionsbereichen wird
vorausgesetzt (siehe Kapitel 1.2).

2.2.3 Erstellung und Uberpriifung von Konfigurationsmodellen

2.2.3.1 Erstellung von Konfigurationsmodellen

Die Erstellung von KMs ist von der Entwicklung von KSs abzugrenzen. Letzteres ist
nicht Gegenstand der vorliegenden Arbeit. Es wird jedoch nicht ausgeschlossen, dass
die Erstellung eines KM parallel zur Entwicklung eines KS erfolgt. Dies kann der Fall
sein, wenn als KS keine Standardsoftware eingesetzt wird. Soll ein KS gemeinsam mit
einer neuentwickelten Produktfamilie eingefiihrt werden, kann die Entwicklung der Pro-
duktfamilie und des KM integriert erfolgen. Fiir eine Beschreibung eines Entwicklungs-
prozesses fur Produktfamilien, der das KM berticksichtigt sei auf Gauss et al. (2021)
verwiesen. Darliber hinaus zeigen Hanna et al. (2023), wie Modelle, die fiir die modell-
basierte Produktentwicklung eingesetzt werden, auch fiir die Produktkonfiguration ge-
nutzt werden konnen. In der vorliegenden Arbeit, ebenso wie in den existierenden

21 Siehe z. B. Oracle CPQ (ehemals BigMachines): https://help.bigmachines.com/BMIHelp/Content/BOM_Map-
ping/BOM_Overview.htm?TocPath=Configuration%7CBOM%20Mapping%7C 0 (zuletzt uUberprift am
07.06.2025)

Configit Ace: https://configit.com/learn/tech-talks/bom-validation-delivering-on-the-configuration-promise/ (zuletzt
Uberpriuft am 07.06.2025)
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Vorgehensmodellen zur Erstellung von KMs (siehe Shafiee et al. 2017, S. 988), wird
die Erstellung von KMs jedoch unabhangig von einer Produktentwicklung betrachtet.

Auf Basis der existierenden Vorgehensmodelle zur Erstellung von KMs teilen Shafiee
et al. (2017, S. 990-995) den Erstellungsprozess in vier Schritte ein (Abbildung 2.8, 1):
die Festlegung des Umfangs des KM, die Erfassung von Wissen, die Modellierung und
Validierung von Wissen sowie die Dokumentation und Instandhaltung. Der Umfang des
KM wird hinsichtlich der zu erfiillenden Funktionen, der Funktionsweise und der einzu-
schlieenden Produkte mittels Stakeholderanalyse festgelegt (Shafiee et al. 2017, S.
992-993). Fur die Wissenserfassung wird das bendtigte Wissen kategorisiert und es
werden die relevanten Quellen und Ressourcen ermittelt (Shafiee et al. 2017, S. 991).
Fur die Wissensmodellierung schlagen Shafiee et al. (2017) die Verwendung von Pro-
duktvarianten-Mastern in Verbindung mit Class Responsibility-Collaboration-Karten zur
standardisierten Beschreibung von Abhangigkeiten vor. Hvam et al. (2008, S. 34) be-
schreiben den Vorgang der Wissensmodellierung in Anlehnung an Duffy & Andreasen
(1995, S. 30-31) ausfihrlicher als mehrstufigen Prozess (Abbildung 2.8, 2). In diesem
Prozess wird, ausgehend von der realen Welt, zunachst ein Phdanomenmodell in Form
eines Produktvarianten-Masters erstellt, das die relevanten Aspekte des zu modellie-
renden Produkts enthalt (Hvam et al. 2008, S. 34). Das Phanomenmodell muss zu-
nachst keiner strengen Form genligen und kann damit so gestaltet werden, dass es flr
Domanenexperten leicht verstandlich ist (Hvam et al. 2019, S. 4436). Fur den Fall eines
bestehenden und historisch gewachsenen Produktprogramms, von dem Hvam et al.
(2008) ausgehen, wird das Phanomenmodell als Beschreibung des bestehenden Pro-
duktprogramms erstellt (Hvam et al. 2008, S. 139-170). Als nachstes wird das Phano-
menmodell formalisiert, woraus ein Informationsmodell (Hvam et al. 2008, S. 34) als
verfeinerter Produktvarianten-Master oder als UML-Diagramm resultiert (Hvam et al.
2008, S. 54). AbschlieRend wird das Informationsmodell in einem Computermodell
umgesetzt (Hvam et al. 2008, S. 34), so dass ein ausfilhrbares KS entsteht. Wie von

Ei;sft;gusngeies e v Vs Modellierung und Dokumentation und
angs d 9 Validierung von Wissen Instandhaltung

Konfigurationsmodells

Reale Welt } Phanomenmodell } Informationsmodell } Computermodell

Abbildung 2.8: Vorgehensmodell zur Erstellung von Konfigurationsmodellen nach Sha-
fiee et al. (2017, S. 990-995) und Duffy und Andreasen (1995, S. 30-31)




Grundlagen 27

Shafiee et al. (2017, S. 991) beschrieben, kann im Zuge der Modellierung eine Uber-
prifung des Modells stattfinden (siehe Kapitel 2.2.3.2). Die im Rahmen des Erstellungs-
prozess entstehenden Modelle dienen abschliefiend als Grundlage fir die Dokumenta-
tion des KM sowie seine Instandhaltung im Betrieb (Shafiee et al. 2017, S. 995).

Die vorliegende Arbeit stellt eine datenbasierte Alternative zu dem in der Literatur be-
schriebenen manuellen Prozess dar. Das zu erstellenden KM in Form einer MSTL, ei-
nes MAPL und der zugehdrigen Regeln ist ein objektorientiertes Informationsmodell,
das eine unmittelbare Umsetzung in ein Computermodell erméglicht. Im Gegensatz
zum klassischen Vorgehen wird jedoch nicht von Wissen Uber ein reales System, son-
dern von Beobachtungen in Form von Daten des realen Systems ausgegangen.

2.2.3.2 Uberpriifung von Konfigurationsmodellen

Die Ansétze zur Uberpriifung von KMs kénnen in Verifikation und Validierung einge-
teilt werden. Die Zuordnung bestehender Ansétze zur Uberpriifung von KMs ist jedoch
in der Literatur nicht eindeutig. Z. B. nutzen sowohl Voronov (2013, S. 185) als auch
Braun (2021, S. 58-59) formale Prifverfahren um automatisch zu tberprifen, ob es in
einem KM Komponenten gibt, die Uberhaupt nicht ausgewahlt werden kénnen. Voronov
(2013) ordnet dies der Verifikation und Braun (2021) der Validierung zu. Die vorliegende
Arbeit verwendet ein Unterscheidungskriterium fiir Ansatze zur Uberpriifung von KMs,
das sich an Sinz (2004, S. 108—109) anlehnt: Wenn ein Ansatz Domanenwissen erfor-
dert ist er der Validierung zuzuordnen, ansonsten der Verifikation. In diesem Sinne ist
die im Rahmen der vorliegenden Arbeit entwickelte Methode zur Uberpriifung von KMs
(siehe Kapitel 4.6) der Validierung zuzuordnen. Neben der Einteilung in Verifikation und
Validierung existiert eine Einteilung fiir die Ansatze zur Uberpriifung von wissensba-
sierten Systemen nach Meseguer & Preece (1995, S. 337-339). Diese unterscheidet:

- Inspektion: Manuelle Uberpriifung des Systems durch einen Experten

- Statische Verifikation: Automatische Uberpriifung des Systems auf logische
Widerspriche

- Empirisches Testen: Uberpriifung des Systems durch Anwendung auf ausge-
wiahlte Beispiele und manuelle Uberpriifung der Ergebnisse

- Evaluation: Untersuchung inwiefern das System die Anforderungen der Nutzer
im Betrieb erfullt

Diese Einteilung dient als Grundlage fur die Einordnung des Stands der Forschung in
Kapitel 3.6.2. In diesem Sinne ist die im Rahmen der vorliegenden Arbeit entwickelte
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Methode zur Uberpriifung von KMs (siehe Kapitel 4.6) als Methode zur Unterstiitzung
der Inspektion einzuordnen.

2.3 Maschinelles Lernen

Im Folgenden werden zunachst die zentralen Begriffe des maschinellen Lernens ein-
gefiihrt, die firr die vorliegende Arbeit relevant sind (Kapitel 2.3.1). Auf Basis dessen
werden die beiden Problemstellungen des Uberwachten (Kapitel 2.3.2) und unuber-
wachten Lernens (Kapitel 2.3.3) erlautert, die firr die vorliegende Arbeit relevant sind.

2.3.1 Zentrale Begriffe des maschinellen Lernens

Nach DIN EN ISO/IEC 22989:2023-04 bezeichnet maschinelles Lernen einen ,Pro-
zess der Optimierung von Modellparametern durch computergestitzte Verfahren, so
dass das Verhalten des Modells den Daten oder Erfahrungen entspricht® (DIN EN
ISO/IEC 22989:2023-04, S. 16). Dieser Prozess wird auch als Training eines Modells
bezeichnet und die hierfiir verwendeten Daten als Trainingsdaten (DIN EN ISO/IEC
22989:2023-04, S. 17). Nach Definition setzt das maschinelle Lernen voraus, dass ein
Modelltyp und damit die bestehenden Anpassungsmoglichkeiten definiert sind, dass
eine Metrik — in der Literatur u. a. als Evaluations- oder Verlustfunktion bezeichnet —
existiert, nach der optimiert werden kann und dass ein Vorgehen fir die Optimierung
festgelegt ist (Domingos 2012, S. 79). Bestehende Verfahren des ML unterscheiden
sich im Wesentlichen in diesen drei Aspekten (Domingos 2012, S. 79). Fir eine umfas-
sende Ubersicht tiber Verfahren des ML sei auf Li (2024) verwiesen. Fiir Optimierungs-
verfahren im Zusammenhang mit ML sei im Allgemeinen auf Aggarwal (2020) verwie-
sen. In der vorliegenden Arbeit wird fur die Optimierung im Speziellen Spaltengenerie-
rung (engl. Column Generation, CG) genutzt, ein Prinzip, um lineare Optimierungsprob-
leme mit einer groRen Anzahl von Variablen effizient zu I16sen. Hierauf wird in Anhang
A1 eingegangen.

Die fir das ML verwendeten Daten liegen als Datenpunkte mit identischem Format
vor, die zu einem Datensatz zusammengefasst werden (DIN EN ISO/IEC 22989:2023-
04, S. 14; Jung 2022, S. 19-20). Datenpunkte stellen atomare Datenelemente dar, die
von ML-Algorithmen in groRBer Anzahl verarbeitet werden (DIN EN ISO/IEC
22989:2023-04, S. 15). Was bei einer gegebenen Problemstellung konkret als Daten-
punkt betrachtet wird, muss vom Modellierer in Abhangigkeit des Anwendungsfalls ent-
schieden werden (Jung 2022, S. 19-20). Bei der Erstellung von LLKMs ist ein
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Datenpunkt eine Variante. Eigenschaften von Datenpunkten, die aus den Datenpunk-
ten automatisch abgeleitet werden kénnen, werden als Features bezeichnet (Jung
2022, S. 204). Fir eine Variante, die bereits durch Produktmerkmale beschrieben ist,
liegt es z. B. nahe, die Produktmerkmale selbst als Feature des Datenpunkts zu be-
trachten??. Datenpunkte in einem Datensatz sind i. d. R. mit denselben Features be-
schrieben (Mahalle 2022, S. 17). Jedes Feature hat einen definierten Definitionsbe-
reich. Dieser kann numerisch sein — d. h. ein Zahlenbereich wie z. B. fir eine Abmes-
sung eines Produkts — oder kategorisch — d. h. eine Menge definierter Symbole wie
z. B. fur die Farbe eines Produkts (Qamar & Raza 2020, S. 64). Bei bindren Features
handelt es sich um einen speziellen Fall kategorischer Features, die lediglich zwei ver-
schiedene Werte annehmen kénnen (Mahalle 2022, S. 16), wie z. B. die Eigenschaft
einer Variante einer bestimmten Norm zu genugen. Neben Features konnen Daten-
punkte weitere Eigenschaften besitzen, die sich nicht automatisch aus dem Datenpunkt
selbst ergeben. Diese Eigenschaften werden den Datenpunkten durch Annotation zu-
geordnet und als Labels bezeichnet (Jung 2022, S. 26). Bei der datenbasierten Erstel-
lung von LLKMs kann ein Label fir eine Variante z. B. angeben, ob zur Herstellung der
Variante ein bestimmter AVO bendétigt wird. Labels kdnnen ebenso wie Features nu-
merisch oder kategorisch und im Speziellen binar sein (Jung 2022, S. 26). Ob flr einen
verwendeten Datensatz Labels vorhanden sind oder nicht, ist ein entscheidendes Kri-
terium fUr die Einteilung von Problemstellungen des maschinellen Lernens: Wenn La-
bels vorhanden sind, liegt liberwachtes Lernen (engl. Supervised Learning, SL) vor,
andernfalls uniiberwachtes Lernen (engl. Unsupervised Learning, UL)?® (Jung 2022,
S. 12-15).

2.3.2 Uberwachtes Lernen

SL dient dazu, auf Basis des Datensatzes ein Modell zu erstellen, das den tatsachlich
bestehenden Zusammenhang zwischen Features und Labels mdglichst genau wieder-
gibt (Qamar & Raza 2020, S. 45). Sowohl pradiktive Modelle des SL als auch LLKMs,
wie sie in der Industrie eingesetzt werden, stellen eine Beziehung zwischen Eingangs-
daten in Form von Datenpunkten bzw. Produktmerkmalen und Ausgangsdaten in Form

22 Der Begriff Feature wird in der vorliegenden Arbeit ausschlieflich im Sinne des ML verwendet und nicht als
Synonym fiir Produktfeature im Sinne der Produktentwicklung, auch wenn Features in weiten Teilen der vorlie-
genden Arbeit Produktmerkmalen entsprechen.

23 Darliber hinaus existiert mit dem bestarkenden Lernen (engl. Reinforcement Learning) eine weitere Kategorie,
die fur die vorliegende Arbeit jedoch nicht relevant ist; fiir eine umfassende Darstellung des bestarkenden Lernens
sei auf Ris-Ala (2023) verwiesen.
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von Labels bzw. VSTLs und VAPLs her. Aufgrund dieser Analogie ist das SL von Be-
deutung fur die datenbasierte Erstellung von LLKMs.

Die Probleme des SL kdnnen in Klassifikation und Regression unterteilt werden. Eine
Klassifikation liegt vor, falls die betrachteten Labels kategorisch sind und eine Re-
gression, falls sie numerisch sind (Jung 2022, S. 26). Bei einem Klassifikationsproblem
werden die Auspragungen, die das kategorische Label annehmen kann als Klassen?*
bezeichnet (Jung 2022, S. 26). Klassifikationsprobleme kénnen weiter unterteilt werden
in binare Probleme bei denen es zwei Klassen gibt, d. h. binare Labels, und Multiklas-
sen-Probleme mit mehr als zwei Klassen (Jung 2022, S. 26-27). Darlber hinaus kon-
nen Probleme des SL vorliegen, bei denen einem Datenpunkt mehrere Labels zuge-
ordnet sind. Diese Probleme werden als Multi-Label-Probleme bezeichnet (Jung
2022, S. 27). Abbildung 2.9 veranschaulicht die zentralen Begriffe des SL an einem
Beispiel. Im Beispiel liegt mehr als ein Label und fir zwei der Labels jeweils mehr als
eine Klasse vor. Deshalb handelt es sich dabei um ein Multi-Label- und Multiklassen-
Problem. Multi-Label-Probleme sind fur die vorliegende Arbeit relevant, da VSTLs und
VAPLs i.d. R. durch mehr als eine numerische oder kategorische Eigenschaft be-
schrieben werden. Ein Multi-Label-Problem mit n Labels kann in n Singlelabel-Prob-
leme zerlegt werden, die jeweils in ihren Features Ubereinstimmen. Dieses Vorgehen
wird als Binary-Relevance-Ansatz?® bezeichnet (Tidake & Sane 2018, S. 1046—-1047).

Multilabel-Problem

A

Feature 1 Feature 2 Label 1 Label 2
Datenpunkt 1 Kategorie a 0,1 Klasse A Klasse Z
Datenpunkt 2 Kategorie B 7,8 Klasse C Klasse Y
Datenpunkt 3 Kategorie a 3,5 Klasse B Klasse X
L J L J ! | J
T T T T
Kategorisches Feature Numerisches Feature Multiklassen-Problem

Abbildung 2.9: Beispielhafte Darstellung von Begriffen des Gberwachten Lernens (Ei-
gene Darstellung auf Basis von Jung 2022, S. 26-27)

24 Diese sind nicht zu verwechseln mit Klassen in objektorientierten Modellen wie in Kapitel 2.2.2 vorgestellt.

25 Es existieren weitere Ansatze bei denen z. B. mehrere Labels zu einem Label zusammengefasst werden Tidake
& Sane (2018, S. 1046-1049). Die resultierenden Modelle sind jedoch nicht in Regeln Uberfiihrbar, wie sie in
LLKM vorliegen und damit fiir die vorliegende Arbeit nicht relevant.
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Der Trainingsdatensatz, auf Basis dessen das Modell optimiert wird, enthalti. d. R. nur
einen Teil aller grundsatzlich méglichen Datenpunkte. Die Herausforderung besteht
deshalb darin, ein Modell zu trainieren, das dennoch korrekte Vorhersagen Uber die
Auspragungen der Labels von allgemeinen Datenpunkten treffen kann. Diese Fahigkeit
wird als Generalisierungsfahigkeit bezeichnet (Jung 2022, S. 129). Die Generalisie-
rungsfahigkeit eines SL-Modells wird i. d. R. Gberpriift, indem Vorhersagen des Modells
fur Datenpunkte auRerhalb des Trainingsdatensatzes betrachtet werden. Diese werden
mit den tatsachlichen Labelauspragungen fur diese Datenpunkte verglichen (DIN EN
ISO/IEC 22989:2023-04, S. 32). Dieses Vorgehen wird als Testen bezeichnet und die
dafur verwendeten Daten als Testdaten (DIN EN ISO/IEC 22989:2023-04, S. 32). Von
den Testdaten sind die Validierungsdaten zu unterscheiden. Diese werden zur Aus-
wahl eines Modelltyps oder zur Einstellung von Hyperparametern eines Modells ver-
wendet (DIN EN ISO/IEC 22989:2023-04, S. 32).

Fir eine Diskrepanz zwischen den Modellvorhersagen und den tatséchlichen Auspra-
gungen der Labels beim Testen kann es drei Ursachen geben: Verzerrung, Varianz und
Rauschen (Aggarwal 2021, S. 442-443). Verzerrung (engl. Bias) beschreibt den Teil
der Abweichung, der darauf zurlickzuflihren ist, dass das verwendete Modell vereinfa-
chende und unzutreffende Annahmen Uber bestehende Zusammenhange impliziert
(Aggarwal 2021, S. 442—-443). Wenn z. B. ein lineares Regressionsmodell zur Model-
lierung eines Datensatzes angewandt wird, dem ein nichtlinearer Zusammenhang zwi-
schen Features und Labels zugrunde liegt, bleibt ein Vorhersagefehler bestehen, der
unabhangig von der Grofie des Trainingsdatensatzes ist. Varianz (engl. Variance) be-
zeichnet den Anteil der Abweichung, der darauf zurlickzufiihren ist, dass das gelernte
Modell nicht statistisch robust bzgl. der verwendeten Datenpunkte ist (Aggarwal 2021,
S. 443). Je kleiner der Trainingsdatensatz ist, desto starker hangt das gelernte Modell
davon ab, welche der moéglichen Datenpunkte fur das Training verwendet werden, d. h.
die Varianz kann durch eine VergrofRerung des Trainingsdatensatzes reduziert werden.
Rauschen (engl. Noise) bezeichnet den Anteil der Abweichung, der auf Fehler in den
Daten zuriickzufiihren ist, wie z. B. Messfehler bei der Datenerhebung (Aggarwal 2021,
S. 443). Selbst fiir ein Modell, das die GesetzmaRigkeit hinter den betrachteten Daten
vollsténdig korrekt abbildet, verbleibt diese Abweichung, da sie sich unsystematisch in
den Trainings- und Testdaten widerspiegelt. Varianz und Verzerrung sind abhangig von
der Komplexitat des verwendeten Modells (Jung 2022, S. 129) wobei unter Modell-
komplexitat die Anzahl einstellbarer Modellparameter verstanden wird (Spiegelhalter
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et al. 2002, S. 584). Modelle mit hoher Komplexitat kénnen im Zuge der Optimierung
eng an den Trainingsdatensatz angepasst werden (Jung 2022, S. 126—130). Deshalb
wird im Allgemeinen davon ausgegangen, dass die Generalisierungsfahigkeit von Mo-
dellen bei steigender Modellkomplexitat zunachst aufgrund abnehmender Verzerrung
zunimmt und anschlielend aufgrund zunehmender Varianz abnimmt (Jung 2022, S.
130). Dazwischen liegt im Allgemeinen eine optimale Modellkomplexitat (siehe Abbil-
dung 2.10)%. Fur Modelle in Form von booleschen Ausdriicken, auf die in Kapitel 3.4
naher eingegangen wird, ist eine Beschrankung der Modellkomplexitat wichtig, um eine
hohe Generalisierungsfahigkeit zu erreichen (Liu et al. 2016, S. 134—-143). Verzerrung
und Varianz hadngen eng mit den Effekten Unteranpassung (engl. Underfitting) und
Uberanpassung (engl. Overfitting) zusammen, bei denen eine zu geringe bzw. zu hohe
Modellkomplexitat zu schlechter Generalisierungsfahigkeit fiihrt (Emmert-Streib & Deh-
mer 2019, S. 533-534). Unteranpassung geht mit hoher Verzerrung und geringer Vari-
anz einher, Uberanpassung mit geringer Verzerrung und hoher Varianz (Rocks & Mehta
2022, S. 1).

Insbesondere in Anwendungsfallen in denen die Vorhersagen eines Modells weitrei-
chende Konsequenzen haben kdnnen, besteht neben der Anforderung einer hohen Ge-
neralisierungsfahigkeit haufig auch die Anforderung der Interpretierbarkeit. Hierunter
versteht man, dass der Prozess zum Schlussfolgern einer Vorhersage fur Menschen
verstandlich ist (Rudin et al. 2022, S. 11). Dies trifft auf viele pradiktive Modelle des ML,
wie z. B. gangige Tiefe Neuronale Netze (engl. Deep Neural Networks, DNN), nicht zu

Vorhersagefehler
A

Unteranpassung Uberanpassung

y

Optimale Modellkomplexitat | Modellkomplexitat

Abbildung 2.10: Schema der optimalen Modellkomplexitat in Anlehnung an Jung (2022,
S. 129)

26 Tiefe neuronale Netze (engl. Deep Neural Networks) kdnnen Ausnahmen von diesem Verhalten zeigen (Jung
(2022, S. 130)), werden jedoch in der vorliegenden Arbeit nicht betrachtet.
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(Rudin 2019, S. 206). In der Industrie eingesetzte LLKMs missen im Allgemeinen in-
terpretierbar sein, da sie manuell gepflegt werden. Methoden zum ML interpretierbarer
Modelle sind deshalb fiir die vorliegende Arbeit besonders relevant. Interpretierbarkeit
unterscheidet sich von Erklarbarkeit. Unter Erklarbarkeit wird verstanden, dass die
Vorhersagen eines nichtinterpretierbaren Modells post-hoc durch ein anderes Modell
erklart werden kénnen (Rudin 2019, S. 206). Z. B. werden Vorhersagen von DNNs zur
Bilderkennung durch die Relevanz von Pixeln fir eine bestimmte Vorhersage erklart,
wobei jedoch die Modelle selbst nicht interpretierbar sind (Rudin 2019, S. 208). Auf-
grund der Interpretierbarkeit von LLKMs die in der Industrie genutzt werden, ist Er-
klarbarkeit fur diese Modelle nicht relevant.

Wie in Kapitel 1.2 erlautert, werden in der vorliegenden Arbeit Anwendungsfalle beruck-
sichtigt, bei denen flr eine datenbasierte Erstellung von LLKMs nicht genligend anno-
tierte Datenpunkte — d. h. Varianten mit zugehdérigen VSTLs und VAPLs — zur Verfu-
gung stehen. In diesen Fallen soll der bestehende Datensatz erweitert werden. Dieses
Vorgehen entspricht im Kontext des ML dem aktiven Lernen (engl. Active Learning,
AL). Beim AL liegen initial einige annotierte Datenpunkte vor und die Anfrage von La-
bels fir weitere Datenpunkte geht mit Kosten einher. Abbildung 2.11 stellt das Konzept
des AL schematisch dar. Auf Basis der annotierten Datenpunkte wird ein Modell trai-
niert. AnschlieRend werden bei einem sog. Orakel, wie z. B. einem Domanenexperten,
ein oder mehrere Labels fur einen oder mehrere weitere Datenpunkte angefragt. Nach
Erhalt der Labels wird das Modell erneut trainiert, wobei aufgrund abnehmender Vari-
anz eine hoéhere Generalisierungsfahigkeit zu erwarten ist. Dieser Vorgang wird so
lange wiederholt bis ein Budget aufgebraucht, eine festgelegte Generalisierungsfahig-
keit erzielt oder ein anderes Abbruchkriterium erreicht ist. (Tharwat & Schenck 2023, S.
820-840)

Die Herausforderung des AL besteht darin, mit der Anfrage weniger Labels eine még-
lichst grofRe Steigerung der Generalisierungsfahigkeit zu erreichen. Hierfiir existieren
verschiedene Strategien. Informationsbasierte Anfragestrategien ermitteln den In-
formationsgewinn eines Labels auf Basis bereits trainierter Modelle. Es werden z. B.
Labels fir Datenpunkte angefragt, fiir die eine hohe Vorhersageunsicherheit besteht
oder die einen grofRen erwarteten Einfluss auf das zuletzt trainierte Modell oder dessen
Vorhersagen erwarten lassen. Alternativ hierzu werden beim Query by Committee
(QBC) mehrere Modelle trainiert und anschlieRend Datenpunkte ausgewahlt, fur die die
Vorhersagen des Komitees heterogen sind. Bei reprasentationsbasierten
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Labels erhalten — Modell trainieren — Anfrage stellen

"R P >

Orakel

X1

Abbildung 2.11: Schema des aktiven Lernens (Eigene Darstellung auf Basis von Thar-
wat und Schenck 2023, S. 820-840)

Anfragestrategien ist die Anfrage hingegen von der Verteilung der Datenpunkte im
Feature-raum abhangig. Der Featureraum ist derjenige — i. d. R. mehrdimensionale —
Raum, der durch die Wertebereiche der Features aufgespannt wird. Es werden entwe-
der Datenpunkte gewabhlt, die weit entfernt von anderen Datenpunkten, in Bereichen
mit hoher Dichte oder im Zentrum von Clustern liegen. (Tharwat & Schenck 2023, S.
828-836)

Grundsatzlich kdnnen drei verschiedene Anwendungsszenarien des AL unterschieden
werden. Beim poolbasierten AL liegt die Gesamtheit der mdglichen Datenpunkte als
endliche diskrete Menge vor. Fir eine Labelanfrage wird aus diesem Pool ein nichtan-
notierter Datenpunkt ausgewahit. Beim streambasierten AL werden die moglichen Da-
tenpunkte nacheinander betrachtet und es wird jeweils entschieden, ob fir den betrach-
teten Datenpunkt ein Label angefragt werden soll. Bei der Membership Query Syn-
thesis (MQS) werden Datenpunkte nicht aus einer endlichen Menge von Datenpunkten
ausgewahlt, sondern unter Berlcksichtigung bestimmter Bedingungen generiert. Pool-
basiertes AL ist das in der Literatur Uberwiegend betrachtete Szenario. MQS wird fur
viele Anwendungsfalle als ungeeignet angesehen, weil nicht sichergestellt werden
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kann, dass die generierten Datenpunkte vom Orakel sinnvoll annotiert werden kénnen.
(Tharwat & Schenck 2023, S. 826—-827) Wie in Kapitel 4.5 ausgefiihrt wird, ist MQS fiir
den Anwendungsfall der vorliegenden Arbeit jedoch geeignet und vorteilhaft.

2.3.3 Uniiberwachtes Lernen

UL dient dazu, Muster zu erkennen, die jeweils die Datenpunkte untereinander oder die
Features untereinander in Beziehung setzen (Aggarwal 2021, S. 299). UL wird zum
Clustern von Datenpunkten, zum Aggregieren von Features und zur Reduktion der Di-
mension des Datensatzes eingesetzt (Aggarwal 2021, S. 299). Darlber hinaus wird UL
zum Erkennen von AusreiBBern in Datensatzen verwendet. Nach einer vielzitierten De-
finition von Hawkins (1980, S. 1) handelt es sich bei AusreilRern um Beobachtungen,
die so sehr von anderen Beobachtungen abweichen, dass der Verdacht naheliegt, dass
sie durch einen anderen Mechanismus generiert wurden. Der Begriff Anomalie wird in
der vorliegenden Arbeit, wie auch in der Literatur (Aggarwal 2017, S. 1), synonym
hierzu verwendet. In der Literatur finden sich zahlreiche Arbeiten die Anomalieerken-
nung nutzen um Hinweise auf Fehler zu erhalten. Dabei kann es sich um technische,
aber auch menschenverursachte Fehler handeln, wie z. B. um Fehler in der industriel-
len Montage (Rijayanti et al. 2023), bei der Steuerung von Flugzeugen (lgenewari et al.
2019) oder bei der Erstellung von medizinischen Behandlungsplanen (Sipes et al.
2014). Der Einsatz von Anomalieerkennung fiir das Ermitteln von Fehlern in LLKMs
erscheint deshalb aussichtsreich.

Existierende Ansatze zur Anomalieerkennung auf Datensatzen ohne Labels lassen sich
in vier Kategorien einteilen: dichte-, distanz-, wahrscheinlichkeits- und abhangigkeits-
basierte Ansatze (Li & van Leeuwen 2023, S. 2518-2519). Bei dichte- und distanzba-
sierten Ansatzen werden Datenpunkte als Anomalien identifiziert, wenn sie sich in ei-
nem Bereich des Featureraums mit geringer Dichte befinden bzw. einen grof3en Ab-
stand zu anderen Datenpunkten aufweisen (Li & van Leeuwen 2023, S. 2518). In wahr-
scheinlichkeitsbasierten Ansatzen wird die plausibelste Wahrscheinlichkeitsvertei-
lung fir das Zustandekommen der Datenpunkte ermittelt. Es werden diejenigen Daten-
punkte als Anomalien identifiziert, die nach dieser Verteilung eine geringe Auftretens-
wahrscheinlichkeit aufweisen (Li & van Leeuwen 2023, S. 2518).
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Abhingigkeitsbasierte Ansitze nutzen Methoden des SL um Abhangigkeiten?” zwi-
schen Features zu ermitteln und damit Muster im Datensatz zu erkennen. Datenpunkte
werden als Anomalien identifiziert, wenn sie dem ermittelten Muster nicht entsprechen
(Li & van Leeuwen 2023, S. 2519-2520). Wie in Kapitel 4.6 ausgefiihrt wird, sind fir
die vorliegende Arbeit abhangigkeitsbasierte Ansatze relevant.

27 Bei Abhangigkeiten im Sinne abhangigkeitsbasierter Ansatze des UL handelt es sich um Muster in Daten. Sie
sind nicht zu verwechseln mit Abhangigkeiten die in einem KM definiert sind und in Kapitel 2.2.1 erlautert werden.
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3 Stand der Forschung

Im Folgenden werden fiir jedes der in Kapitel 1.2 definierten Probleme 1 bis 6 die An-
forderungen an die entsprechenden Methoden 1 bis 6 zur Lésung dieses Problems
prazisiert. Dies entspricht dem zweiten Schritt des Design Science Research Process
(DSRP, siehe Kapitel 1.3). Die folgenden Unterkapitel entsprechen den Problemen 1
bis 6. Je Problem werden zunachst auf Basis des in Kapitel 1.1 beschriebenen Kontex-
tes und der Motivation der vorliegenden Arbeit Anforderungen (A) an die zugehdrige
Methode abgeleitet. AnschlieRend wird jeweils untersucht, inwieweit Methoden nach
Stand der Forschung diese Anforderungen erfiillen. SchlieRlich wird je Problem das
bestehende Lésungsdefizit ermittelt, das durch die Entwicklung eigener Methoden be-
hoben werden soll.

3.1 Problem 1: Datenbasierte Erstellung von Konfigurationsmo-
dellen

3.1.1 Anforderungen

Wie in Kapitel 1.1 beschrieben, liegt das Potenzial von Konfigurationssystemen (KSs)
fur die Arbeitsablaufplanung in der automatischen Erstellung von variantenbezogenen
Sticklisten (VSTLs) und variantenbezogenen Arbeitsplanen (VAPLs). Entsprechend
der Definition einer Konfiguration in Kapitel 2.2.1 beinhaltet dies jeweils die Festlegung
der Elemente und ihrer Parameterauspragungen sowie der Struktur der VSTL bzw. des
VAPL. Die datenbasiert erstellten Low-Level-Konfigurationsmodelle (LLKMs) mussen
daher in der Lage sein, die Komponenten der VSTL auszuwahlen (Anforderung A1a:
Auswahl von Komponenten), die Auspragungen derer Parameter zu definieren (An-
forderung A1b: Auspragung der Komponentenparameter) und die Struktur der
VSTL festzulegen (Anforderung A1c: Festlegung der Stiicklistenstruktur). Hinsicht-
lich des Arbeitsplans (APL) missen sie in der Lage sein, die Arbeitsvorgange (AVOs)
des VAPL auszuwéahlen (Anforderung A1d: Auswahl von Arbeitsvorgdngen), die
Auspragungen derer Parameter zu definieren (Anforderung A1e: Auspragung der
Arbeitsvorgangsparameter) und die Struktur des VAPL festzulegen (Anforderung
A1f: Festlegung der Arbeitsplanstruktur). Damit diese Modelle nach ihrer Erstellung
von Experten gepflegt werden kénnen, miissen sie — ebenso wie LLKMs, die derzeit in
der Industrie verwendet werden — interpretierbar sein (Anforderung A1g: Interpretier-
bares Modell). Zuletzt werden auch Félle beriicksichtigt, in denen die Anzahl der
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verfligbaren Datenpunkte zu gering ist, um ein ausreichend genaues LLKM datenba-
siert zu erstellen (siehe Kapitel 1.1). Dazu muss es mdglich sein, den Datensatz mog-
lichst effizient zu erweitern (Anforderung A1h: Erweiterung der Datenbasis).

3.1.2 Relevante Arbeiten

Fir die manuelle Erstellung von Konfigurationsmodellen (KMs) existieren Vorgehens-
modelle wie in Kapitel 2.2.3.1 beschrieben und von Shafiee et al. (2017) zusammen-
fassend dargestellt. Diese sind grundsatzlich geeignet, um vollstandige Modelle fiir die
Produkt- und Prozesskonfiguration zu erstellen. Allerdings sind diese Vorgehensmo-
delle nicht datenbasiert und weisen deshalb die in Kapitel 1.1 beschriebenen Nachteile
auf. Im Folgenden werden Ansatze zur datenbasierten Erstellung von KMs sowie wei-
terer Modelle betrachtet, die eine Konfiguration von VSTLs oder VAPLs ermdglichen.
Entsprechend der herausragenden Bedeutung der Produktkonfiguration in der Literatur
beschranken sich bestehende Ansatze zur datenbasierten Erstellung auf die Produkt-
konfiguration. Im Kontext der Arbeitsablaufplanung existieren jedoch dartber hinaus
Ansatze, die der Erstellung von Modellen dienen, mit denen VAPLs in einem weiten
Sinne generiert werden konnen. Auch wenn diese Modelle keine KMs im Sinne der
vorliegenden Arbeit sind, werde diese Arbeiten aufgrund ihrer &hnlichen Funktion im
Folgenden ebenfalls betrachtet.

Datenbasierte Erstellung von Konfigurationsmodellen

Es existieren drei verwandte Ansatze von Wang et al. (2023), He et al. (2021) und Shao
et al. (2006), die sich mit der datenbasierten Erstellung von Produktkonfigurationsmo-
dellen befassen?®. Ansétze, die sich explizit mit der datenbasierten Erstellung von Pro-
zesskonfigurationsmodellen befassen existieren hingegen nicht. Die Ansatze von
Wang et al. (2023) und Shao et al. (2006) gehen davon aus, dass bereits eine generi-
sche Stickliste definiert ist. Fir jede generische Klasse existieren verschiedene maogli-
che Instanzen, die in Abhangigkeit der Produktmerkmale oder der Parameter tberge-
ordneter Klassen ausgewahlt werden. Der Ansatz von He et al. (2021) geht ebenfalls
von generischen Klassen aus, bericksichtigt jedoch keine meronymischen Beziehun-
gen zwischen den Klassen. Wang et al. (2023) ordnen den generischen Klassen

28 Darliber hinaus existiert eine Arbeit von Chen & Wang (2009), die sich mit der datenbasierten Erstellung eines
Modells befasst, dass als Teil eines Produktkonfigurationssystems beschrieben wird. Dieses dient jedoch der
Ubertragung von Produktmerkmalen auf Designparameter des Produkts und nicht der Erstellung von Stiicklisten.
Deshalb wird es an dieser Stelle nicht naher betrachtet.
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Parameter zu. Diese hangen allerdings nicht unmittelbar von den Produktmerkmalen
ab, sondern werden durch die Auswahl einer Instanz ausgepragt. Dies beschrankt die
Méachtigkeit des KM. Die beiden anderen Ansatze beriicksichtigen keine Parameter der
Komponenten. Der Fokus der drei Arbeiten ist die datenbasierte Erstellung der Abhan-
gigkeiten uber die die Instanzen der generischen Klassen ausgewahlt werden. Dafir
werden automatische Featureselection und heuristische Entscheidungsbaumklassifika-
tion (Wang et al. 2023) bzw. Association Rule Mining (He et al. 2021; Shao et al. 2006)
eingesetzt. Die datenbasierte Erstellung der verwendeten generischen Klassen oder
deren Beziehungen ist nicht Gegenstand der existierenden Arbeiten.

Datenbasierte Erstellung pradiktiver Modelle fiir die Arbeitsablaufplanung

Die existierenden Ansatze zur datenbasierten Erstellung von pradiktiven Modellen stel-
len Alternativen zu klassischen Ansatzen des Computer Aided Process Plannings
(CAPP) dar. Bei den klassischen Ansatzen werden typischerweise APLs auf Basis von
Regeln, die durch Experten definiert werden, erstellt (Hussong et al. 2021, S. 648;
Schenk 2014, S. 754). Die entsprechenden Arbeiten von Hussong et al. (2021), Na-
tarajan & Gokulachandran (2020), Schuh et al. (2019), Schuh et al. (2017) und Amaitik
(2012) gehen, wie das klassische CAPP, von Bauteilen aus, die durch Fertigungsfea-
ture?® beschrieben sind. Abweichend davon verwendet der Ansatz von Hashimoto &
Nakamoto (2021) eine Voxel-Darstellung eines CAD-Modells als Ausgangsbasis und
der Ansatz von Joo et al. (2001) Metadaten, die das CAD-Modell beschreiben. Die An-
satze nutzen historische Daten, um tiefe neuronale Netze (DNNs) — oder im Fall von
Schuh et al. (2019) und Schuh et al. (2017) Entscheidungsbdume — zu trainieren, um
AVOs und z. T. auch zugehdérige Maschinen, Werkzeuge und Prozessparameteraus-
pragungen vorherzusagen. Hussong et al. (2021), Schuh et al. (2019) und Schuh et al.
(2017) schlagen darilber hinaus vor, Methoden des maschinellen Lernens (ML) auch
fur die Bestimmung der Reihenfolge von AVOs einzusetzen, wobei Hussong et al.
(2021) hierfiir konkret auf DNNs mit einer Long Short Term Memory-Architektur ver-
weist. Die entsprechenden Vorschlage werden jedoch nicht weiter ausgefiihrt und es
bleibt offen, wie mit einem solchen Ansatz allgemeine APLs — d. h. auch solche mit
nichtlinearer Struktur — berlcksichtigt werden kénnen.

29 Fertigungsfeature entsprechen geometrischen Elementen mit zugehdriger Semantik (Hussong et al. 2021, S.
649).
30 Fiir eine Erlauterung eines solchen Ansatzes sei auf Aggarwal (2021, S. 290-294) verwiesen.
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3.1.3 Losungsdefizit

Tabelle 3.1: Stand der Forschung zur datenbasierten Erstellung von Konfigurationsmo-
dellen
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Tabelle 3.1 gibt einen Uberblick Gber Anséatze zur datenbasierten Erstellung von KMs
nach Stand der Forschung sowie deren Anforderungserfillung. Derzeit existieren nur
wenige Ansatze, die explizit fir die datenbasierte Erstellung von KMs entwickelt wur-
den. Diese beschranken sich auf die Produktkonfiguration und vernachlassigen die da-
tenbasierte Erstellung von Strukturen der MSTL und des MAPL. Im thematisch angren-
zenden Umfeld des CAPP existieren Ansatze zum Lernen pradiktiver Modelle fir die
Inferenz von APLs. Die gelernten pradiktiven Modelle sind typische Modelle des ML
und nicht mit industrietiblichen KMs vergleichbar, die aus Maximalstucklisten (MSTLs),
Maximalarbeitsplanen (MAPLs) und Regeln bestehen. Darlber hinaus bleibt die Struk-
tur von APLs weitgehend unberlcksichtigt. Zusammenfassend Iasst sich festhalten,
dass die datenbasierte Erstellung industrieller KMs nur rudimentar erforscht ist. Insbe-
sondere besteht kein integrierter Ansatz zur datenbasierten Erstellung von LLKMs. Die
zu entwickelnde Methode 1 soll in der Lage sein, LLKMs datenbasiert zu erstellen und
dabei die Anforderungen A1a bis A1h berlcksichtigen. Auf die Anforderungen A1b und
A1e wird in der vorliegenden Arbeit dabei nur am Rande eingegangen, weil der Fokus
auf der Auswahl von Elementen liegt (siehe Kapitel 2.2.2.4). In den folgenden Kapiteln
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wird untersucht, inwieweit in der Literatur Ansatze zur Adressierung der Teilprobleme
von Problem 1 existieren.

3.2 Problem 2: Datenbasierte Erstellung von Maximalstiicklisten

3.2.1 Anforderungen

Bei der datenbasierten Erstellung von MSTLs sollen keine Informationen die in den
Daten — d. h. den verwendeten VSTLs — vorhanden sind verloren gehen. Damit muss
es moglich sein, jede zur Erstellung verwendete VSTL aus der resultierenden MSTL zu
konfigurieren (Anforderung A2a: Informationserhaltung). Die Menge an verfligbaren
Daten kann von Fall zu Fall unterschiedlich sein und auch Falle mit hoher Datenverfuig-
barkeit sollen berticksichtigt werden kénnen (Anforderung A2b: Skalierbarkeit). Wie
in Kapitel 2.2.2.2 erlautert, kbnnen Strukturalternativen (STAs) in VSTLs auftreten.
Diese kdnnen technisch begriindet sein oder Inkonsistenzen im Datensatz darstellen.
Sind sie technisch begriindet, miissen die entsprechenden alternativen Strukturen als
Optionen im KM abgebildet werden. Wenn sie Inkonsistenzen im Datensatz darstellen,
ist es wichtig, dass sie in einer datenbasiert erstellten MSTL sichtbar sind, damit sie
von einem Doménenexperten als solche erkannt werden kénnen. Eine Methode zur
datenbasierten Erstellung von MSTLs muss daher in der Lage sein, STAs in den ein-
gehenden VSTLs zu erkennen und in der MSTL darzustellen (Anforderung A2c:
Strukturalternativen). Zuletzt soll vermieden werden, dass die Methoden Aspekte in-
dustrietblicher Stucklisten nicht berticksichtigen und damit nicht praktisch anwendbar
sind. VSTLs mit mehreren identisch bezeichneten Komponenten an verschiedenen Po-
sitionen der VSTL, im Folgenden Multikomponenten genannt, sind im Sinne der Gleich-
teilverwendung in der Industrie Ublich. Liegen Multikomponenten in VSTLs vor und wer-
den nicht explizit berticksichtigt, kdnnen sie falschlicherweise als STA erkannt werden.
Wenn z. B. eine Komponente an zwei verschiedenen Positionen in der Stiickliste auf-
treten kann und zwei VSTLs jeweils eine der beiden Positionen enthalten existieren
vermeintlich zwei mdégliche Strukturen fir die MSTL. Deshalb miissen Multikomponen-
ten in den VSTLs erkannt und bei der Erstellung der MSTL berlicksichtigt werden (An-
forderung A2d: Multikomponenten). Es muss aulRerdem beriicksichtigt werden, dass
Baugruppen in der Praxis beliebig viele und insbesondere mehr als zwei Subkompo-
nenten aufweisen konnen (Anforderungen A2e: Vielelementigkeit). Dadurch sind be-
stimmte in der Literatur beschriebene Ansatze prinzipiell ausgeschlossen.
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3.2.2 Relevante Arbeiten

Im Folgenden werden entsprechend der Problemstellung Ansatze zur Erstellung von
MSTLs auf Basis von VSTLs betrachtet. Fir die vorliegende Arbeit ist die Kernidee der
unten vorgestellten Arbeit von Moussa & ElMaraghy (2018) von herausragender Be-
deutung. Die Arbeit nutzt einen Ansatz um phylogenetische Baume, welche evolutio-
nare Beziehungen zwischen Lebewesen darstellen, zusammenzufiihren. Dabei handelt
es sich um eine Problemstellung aus dem Fachgebiet der Phylogenetik, die mit dem
Zusammenfihren von VSTLs in einer MSTL vergleichbar ist. Da diese Problemstellung
in der Phylogenetik bereits umfassend erforscht ist, besteht groRes Potenzial in einem
Transfer bestehender Ansatze. Deshalb werden im Folgenden auch zwei ausgewéhlte
Ansatze der Phylogenetik néher betrachtet, welche fiir die vorliegende Arbeit relevant
sind. Anhang A2.1 geht auf die relevanten Begriffe der Phylogenetik ein und zeigt die
Grenzen der Ubertragbarkeit bestehender Ansatze der Phylogenetik.

Datenbasierte Erstellung von Maximalstiicklisten und vergleichbarer Strukturen

Moussa & EIMaraghy (2019) und Kashkoush & EIMaraghy (2014) entwickeln aufeinan-
der aufbauende Ansatze zur Ableitung sog. Master Assembly Networks aus sog. As-
sembly Sequence Trees. Assembly Sequence Trees und Master Assembly Networks
sind Graphen, deren Knoten Zukaufkomponenten (ZKs) darstellen, die im Rahmen der
Montage zu einer Baugruppe gefligt werden. Sie entsprechen in ihrer Funktion und
ihrem Aufbau VSTL bzw. MSTL, weshalb sie im vorliegenden Kapitel betrachtet wer-
den. Die Autoren codieren Master Assembly Networks als Bindrmatrizen. Diese Codie-
rung setzt voraus, dass das Master Assembly Network ein Binarbaum ist. Mittels Me-
taheuristiken werden Losungen in Form von Binarmatrizen erstellt. Hierbei wird die Ro-
binson-Foulds-Distanz zwischen dem zugehdrigen Master Assembly Network und den
eingehenden Assembly Sequence Trees als zu minimierende Fitnessfunktion verwen-
det. Bei dieser Distanz handelt es sich um eine in der Phylogenetik gebrauchliche Met-
rik fir die Unahnlichkeit zweier Baume. Das Verfahren stellt nicht sicher, dass alle ein-
gehenden Assembly Sequence Trees aus dem Master Assembly Network konfiguriert
werden kénnen. Insbesondere kdnnen Falle auftreten in denen die Fitnessfunktion op-
timal wird, wenn bestimmte Assembly Sequence Trees im Master Assembly Network
nicht berlcksichtigt werden. Dies ist vor allem dann der Fall, wenn deren Struktur von
der Mehrheit der Assembly Sequence Trees abweicht. Multikomponenten werden nicht
betrachtet.
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Moussa & EIMaraghy (2018) entwickeln ebenfalls einen Ansatz zur Ableitung von Mas-
ter Assembly Networks aus Assembly Sequence Trees. Die Autoren nutzen einen Al-
gorithmus aus der Phylogenetik um sog. Galled Networks zu erstellen. Dabei handelt
es sich um Graphen mit beschrankter Abweichung von einer Baumstruktur. Wie An-
hang A2.1 ausflhrt, stellt der Ansatz nicht sicher, dass alle eingehenden Assembly Se-
quence Trees aus dem resultierenden Master Assembly Network konfiguriert werden
kénnen. Dartber hinaus kann der Ansatz keine Multikomponenten berlcksichtigen, da
hierfir keine Analogie in der Phylogenetik existiert.

Kashkoush & EIMaraghy (2015) und Kashkoush & EIMaraghy (2016) entwickeln einen
Ansatz um Produktfamilien bzw. Master Assembly Sequences in Baumstruktur aus
VSTLs bzw. Assembly Sequence Trees abzuleiten. Hierflr codieren sie sowohl die ein-
gehenden Baume als auch den resultierenden Baum jeweils als Matrix. Sie nutzen ma-
thematische Optimierung, um eine maéglichst hohe Ahnlichkeit der Matrix des resultie-
renden Baums mit den Matrizen der eingehenden Bdume zu erzielen. Das von ihnen
aufgestellte Optimierungsproblem geht jedoch davon aus, dass alle Baume Binar-
baume sind und keine Multikomponenten vorliegen. STAs werden nicht berlicksichtigt.
Treten in den eingehenden Baumen STAs auf, bildet der resultierende Baum genau
eine davon ab, sodass Baume mit anderen Strukturen nicht abgeleitet werden kénnen.
Multikomponenten werden nicht berlcksichtigt.

Romanowski & Nagi (2004) entwickeln eine Methode, um aus VSTLs eine generische
STL zu erstellen. Ein wiederkehrendes Prinzip der entwickelten Methode ist das Clus-
tering auf Basis von AhnlichkeitsmaRen. Zunichst werden ZKs durch Clustering gene-
ralisiert wobei ein aggregiertes Ahnlichkeitsmal verwendet wird, das u. a. syntaktische
und semantische Ahnlichkeit der Bezeichnungen beriicksichtigt. Als néchstes werden
die VSTLs auf Basis der Ahnlichkeit inrer Baugruppen geclustert. Dabei ergibt sich die
Ahnlichkeit der Baugruppen jeweils aus der Ahnlichkeit der untergeordneten Kompo-
nenten und somit letztlich aus der Ahnlichkeit der enthaltenen ZKs. Zuletzt werden je
Cluster die Baugruppen aller enthaltenen VSTLs geclustert, so dass jeweils eine gene-
rische MSTL mit einer Baugruppenklasse je Baugruppencluster entsteht. Der Ansatz
von Romanowski & Nagi (2004) berlicksichtigt explizit STAs, allerdings bestehen bei
deren Ermittlung folgende Defizite. Es ist a priori nicht bekannt, wie viele STAs in den
VSTLs vorliegen und damit wie viele Cluster von VSTLs zu bilden sind. Heuristische
Vorgehen wie insbesondere das eingesetzte Silhouette-Verfahren kdnnen nicht garan-
tieren, dass die ermittelte Anzahl von STAs tatsachlich vorliegt. DarGber hinaus lasst
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das verwendete Distanzmalf fir VSTLs nicht zwingend auf STAs schlieRen. VSTLs, die
nur in wenigen Baugruppen tbereinstimmen, kénnen sehr unterschiedliche ZKs enthal-
ten und missen sich nicht zwingend in ihrer Struktur widersprechen. AuRerdem gehen
innerhalb eines Clusters von VSTLs Informationen tiber STAs verloren, wenn Baugrup-
pen auf Basis ihrer Ahnlichkeit zusammengefasst werden. Zuletzt kann nicht ausge-
schlossen werden, dass durch die Zusammenfassung von ZKs im Rahmen der Gene-
ralisierung STAs entstehen, die tatsachlich in den VSTLs nicht vorliegen. Dieser Fall
kann auftreten, wenn die ZKs eigentlich verschiedenen Positionen der MSTL entspre-
chen. Multikomponenten kdnnen im beschriebenen Ansatz nicht berlicksichtigt werden,
da diese zwangslaufig zusammengefasst wiirden und damit zu STAs flhren wirden,
die in den VSTLs nicht vorliegen.

Algorithmen aus der Phylogenetik

Wie zuvor erlautert, |asst sich eine Analogie zwischen phylogenetischen Baumen und
STLs herstellen, die auch von Moussa & EIMaraghy (2018) genutzt wird. Damit ist es
naheliegend, Anséatze zur Synthese phylogenetischer Bdume bzw. Netzwerke auf die
Anwendbarkeit fir die Erstellung von MSTLs zu untersuchen. Die Literatur zur Syn-
these phylogenetischer Bdume bzw. Netzwerke ist umfangreich, weshalb im Folgenden
nur zwei ausgewahlte, besonders relevante Arbeiten vorgestellt werden.

Deng & Fernandez-Baca (2018) stellen einen Algorithmus vor, der die Synthese eines
Baums ermdglicht, der eine Menge gegebener Baume darstellen kann. Existiert kein
solcher Baum gibt der Algorithmus eine entsprechende Ausgabe zurlick. Damit kann
zwar erkannt werden, dass STAs vorliegen, jedoch nicht welche. Au3erdem lassen sich
aus dem synthetisierten Baum die eingehenden Baume nicht in dem fur die vorliegende
Arbeit relevanten Sinne ableiten (siehe Problematik der Darstellbarkeit in Anhang
A2.1).

Nach Huson & Linz (2018) gab es zum Zeitpunkt der Verdffentlichung keine Algorith-
men, die in der Lage waren, aus Baumen mit beliebiger Topologie, Netzwerke zu syn-
thetisieren, die alle Bdume darstellen kénnen. Sie prasentieren einen solchen Algorith-
mus, der jedoch nur fiir genau zwei eingehende Baume angewandt werden kann. Es
existieren neuere Arbeiten, die jedoch erhebliche Einschrankungen bzgl. der Topologie
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der eingehenden Baume aufweisen, weshalb sie fur die vorliegende Arbeit nicht rele-
vant sind %',

3.2.3 Losungsdefizit

Tabelle 3.2: Stand der Forschung zur datenbasierten Erstellung von MSTLs

A2a A2b A2c A2d A2e

e = Vollstandig erfiillt Informa-
o = Teilweise erflillt tionserhal-
o = Nicht erfiillt tung

Skalierbar-  Struktural- Multikompo- Vielelemen-
keit ternativen nenten tigkeit

Datenbasierte Erstellung von Maximalstiicklisten und vergleichbarer Strukturen
Moussa & EIMaraghy 2019; Kash-

koush & ElMaraghy 2014 © ® ° © ©
Moussa & EIMaraghy 2018 o [ ° o °
Kashkoush & EIMaraghy 2016, 2015 o [ o o o
Romanowski & Nagi 2004 o ) © o °
Algorithmen aus der Phylogenetik

Deng & Fernandez-Baca 2018 ] [ © o °
Huson & Linz 2018 o o ° o °

Tabelle 3.2 gibt einen Uberblick liber die Anséatze zur datenbasierten Erstellung von
MSTLs nach Stand der Forschung sowie deren Anforderungserfillung. Es lasst sich
festhalten, dass die Anforderungen A2a und A2d trotz ihrer praktischen Relevanz bis-
her nicht berucksichtigt werden. Die zu entwickelnde Methode 2 soll diese Liicke schlie-
Ren. Sie soll in der Lage sein, MSTLs auf Basis von VSTLs zu erstellen und dabei alle
Anforderungen A2a bis A2e erfiillen.

3.3 Problem 3: Datenbasierte Erstellung von Maximalarbeitspla-
nen

3.3.1 Anforderungen

Analog zu den Anforderungen an Methoden zur datenbasierten Erstellung von MSTLs
(Problem 2) gelten fir die datenbasierte Erstellung von MAPLs (Problem 3) die folgen-
den Anforderungen: Alle eingegangenen VAPLs mussen sich aus dem MAPL konfigu-
rieren lassen (Anforderung A3a: Informationserhaltung), auch groRe Anzahlen von
VAPLs missen verarbeitet werden kdnnen (Anforderung A3b: Skalierbarkeit) und

31 Beispielhaft sei hier auf den Ansatz von Schaller et al. (2021) verwiesen der voraussetzt, dass die Baume alle
auf derselben Menge an Taxa definiert sind.
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STAs missen erkannt und dargestellt werden kénnen (Anforderung A3c: Struktural-
ternativen). Analog zu Multikomponenten in VSTLs kénnen in VAPLs Multivorgéange
vorliegen, d. h. mehrfach auftretende identisch bezeichnete AVOs, was beriicksichtigt
werden muss (Anforderung A3d: Multivorgdnge). Zuletzt sollen auch bezliglich der
verarbeitbaren VAPLs Einschrankungen in der Struktur vermieden werden. Es sollen
deshalb nicht nur lineare VAPLs, sondern auch solche mit Parallelitaten bertcksichtigt
werden kénnen (Anforderung A3e: Parallelitaten).

3.3.2 Relevante Arbeiten

Im Folgenden werden entsprechend der Problemstellung Ansatze zur Erstellung von
MAPLs auf Basis von VAPLs betrachtet. Darliber hinaus werden Arbeiten betrachtet,
die sich mit verwandten Problemstellungen befassen. Hierzu zéhlen die datenbasierte
Erstellung von Vorranggraphen sowie das Process Discovery, d. h. die Ermittlung von
Geschaftsprozessmodellen aus Ereignisdaten.

Datenbasierte Erstellung von Maximalarbeitspldanen

Es liegen ahnliche Ansatze von Zhang (2012), Zhang & Rodrigues (2009), Zhang et al.
(2008) sowie Jiao et al. (2007) zur Erstellung von Strukturen vor, die als Generic Pro-
cesses, Process Platforms oder Generic Routings bezeichnet werden. In |hrer Funktion
entsprechen diese Strukturen einem MAPL. Allerdings gehen die Autoren von APLs der
Montage aus und nehmen an, dass diese aufgrund der konvergenten Struktur der Mon-
tage als Baume dargestellt werden kdnnen. Jedem AVO sind Komponenten der STL
und ggf. Eigenschaften wie Ressource oder Bearbeitungszeit zugeordnet. Jiao et al.
(2007) und Zhang et al. (2008) clustern die eingehenden VAPLs auf Basis ihrer Ahn-
lichkeit. Dabei wird die strukturelle Ahnlichkeit mittels Tree Edit Distance und die Ahn-
lichkeit der enthaltenen AVOs u. a. durch syntaktische und semantische Ahnlichkeit er-
mittelt. Fir jedes Cluster wird ein sog. Basisbaum erstellt, der das Cluster reprasentiert,
wobei auf diesen Schritt in keiner der Arbeiten im Detail eingegangen wird. Die einzel-
nen Basisbaume werden zu einem MAPL zusammengefasst indem schrittweise solche
Kanten aus der Vereinigungsmenge aller Kanten hinzugefluigt werden, die die Baum-
struktur des MAPL nicht verletzen. Im Gegensatz zu Jiao et al. (2007) und Zhang et al.
(2008) nehmen Zhang & Rodrigues (2009) und Zhang (2012) eine explizite Generali-
sierung der AVOs in den eingehenden VAPLs vor. Daraus entstehen generalisierte Ar-
beitsvorgangsklassen (AVKs). Sie fassen VAPLs zu Basisbaumen zusammen, wenn
diese die gleichen AVKs sowie die gleichen sequentiellen Beziehungen enthalten. Das
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weitere Vorgehen isti. W. analog zu dem von Jiao et al. (2007) und Zhang et al. (2008).
Grundsatzlich kénnen die erstellten Basisbaume als STAs aufgefasst werden. Letztlich
sind diese im resultierenden MAPL jedoch nicht mehr erkennbar. Bei der Erstellung des
MAPL aus den Basisbdumen und evtl. bereits bei der Erstellung der Basisbaume selbst
ist nicht garantiert, dass Vorgéngerbeziehungen zwischen AVOs vollstdndig erhalten
bleiben. Deshalb lassen sich nicht zwingend alle eingehenden VAPLs aus dem MAPL
konfigurieren. Die Ansatze sind darilber hinaus nur anwendbar, wenn sich die betrach-
teten VAPLs als Baume darstellen lassen, was u. a. bedeutet, dass fir eine Kompo-
nente keine parallelen AVOs ausgefiihrt werden kénnen.

Mit der Arbeit von Navaei & EIMaraghy (2018) existiert ein auf mathematischer Opti-
mierung basierender Ansatz zur Erstellung von MAPLs aus VAPLs. Die Autoren codie-
ren die VAPLs als Adjazenzmatrizen und bestimmen mittels Optimierung eine Ad-
janzenzmatrix fur einen MAPL, die die geringste euklidische Distanz zu allen Adjazenz-
matrizen der VAPLs aufweist. STAs in den VAPLs werden im MAPL nicht abgebildet
und Multivorgange werden nicht beriicksichtigt. Eine Informationserhaltung ist auch bei
optimaler Ahnlichkeit nicht sichergestellt.

Datenbasierte Erstellung von Vorranggraphen

Vorranggraphen besitzen eine gro3e Bedeutung fir die Montageplanung. Sie schran-
ken den Raum aller Montagereihenfolgen auf technisch mdgliche Montagereihenfolgen
einschlieBlich Parallelitaten ein und definieren damit den Losungsraum flr eine Opti-
mierung von Montagereihenfolgen (Altemeier et al. 2009, S. 73). Da die manuelle Er-
stellung von Vorranggraphen aufwandig ist, existieren in der Literatur Ansatze zur da-
tenbasierten Erstellung von Vorranggraphen. Da zu jedem APL genau ein Vorrang-
graph existiert, der nur diesen APL zulasst, kénnen VAPLs und MAPLs als Vorranggra-
phen dargestellt werden. Die datenbasierte Erstellung von Vorranggraphen ist deshalb
fur die Problemstellung der vorliegenden Arbeit relevant.

Wird ein Vorranggraph auf Basis von APLs erstellt, wird zunachst fur jedes Paar von
AVOs ermittelt, in welcher Abfolge diese in den APLs auftreten. Ist diese Abfolge immer
gleich, wird davon ausgegangen, dass eine entsprechende Vorrangbeziehung besteht.
Ist diese Abfolge nicht fur alle APLs gleich, gibt es zwei alternative Vorgehensweisen.
Die erste Vorgehensweise sieht vor, dass in diesem Fall keine Vorrangbeziehung zwi-
schen den beiden AVOs existiert, da beide Abfolgen in giiltigen APLs auftreten. Dieser
Ansatz wird von Altemeier et al. (2009) eingefiihrt. Klindworth et al. (2012) integrieren
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diesen Ansatz in eine Methode zur Linienaustaktung. Otto & Otto (2014) ergénzen die
Methode von Klindworth et al. (2012) in dem sie aufzeigen, wie Vorrangbeziehungen
auf Basis von Experteninterviews und im Unternehmen vorhandenen Daten ermittelt
werden kdnnen. Guiza et al. (2022) entwickeln die Methode von Altemeier et al. (2009)
weiter, indem sie auch APLs anderer Produkte berticksichtigen. Dazu ermitteln sie mit
Hilfe von Ahnlichkeitsanalysen, welche AVOs aus verschiedenen APLs einander ent-
sprechen. Alle diese Ansétze berlicksichtigen keine STAs. Wenn flir verschiedene Va-
rianten entgegengesetzte Vorrangbeziehungen existieren, fihrt dies dazu, dass im re-
sultierenden Vorranggraph keine entsprechenden Vorrangbeziehungen enthalten sind.
Damit gehen bestimmte Vorrangbeziehungen in den eingehenden APLs verloren. Mul-
tivorgdnge werden in keiner der Arbeiten berlcksichtigt.

Die zweite Vorgehensweise beriicksichtigt demgegeniber STAs. Im Ansatz von Henri-
oud et al. (2002) wird eine Vorrangbeziehung zwischen zwei Vorgéangen i und j nur
dann verworfen, wenn eine Folge «ijf und eine Folge ajif vorliegen, d. h. wenn die
alternative Reihenfolge im selben Kontext auftritt. Treten alternative Reihenfolgen in
unterschiedlichen Kontexten auf, sehen die Autoren im resultierenden Vorranggraphen
bedingte Vorrangbeziehung vor. Auf Basis des Wissens Uber bedingte Vorrangbezie-
hungen im Vorranggraphen ist ersichtlich, welche Vorrangbeziehungen von STAs be-
troffen sind, jedoch nicht welche in sich konsistenten STAs in den VAPLs auftreten.
Aufgrund der hohen Generalitat des resultierenden Vorranggraphen lassen sich alle
eingehenden VSTLs daraus konfigurieren. Der Ansatz von Henrioud et al. (2002) ist
allerdings auf lineare VAPLs beschrankt und bericksichtigt keine Multivorgange.

Mit den Arbeiten von Minzu & Bratcu (1999) sowie Bratcu et al. (1999) existiert ein
Ansatz, der widersprichliche Reihenfolgen von AVOs auf alternative Vorranggraphen
zurlckflhrt. Die Autoren zeigen, wie die Menge der APLs so partitioniert werden kann,
dass fur jede Klasse ein widerspruchsfreier Vorranggraph erstellt werden kann. Dies
entspricht der Ermittlung optionaler Strukturen in MAPLs. Allerdings beriicksichtigt der
von Minzu & Bratcu (1999) entwickelte Algorithmus nur lineare APLs, die darlber hin-
aus jeweils alle existierenden AVOs enthalten miissen. Multivorgange werden nicht be-
trachtet.

Process Discovery

Process Discovery ist ein Teilgebiet des Process Minings, das sich mit der Erstellung
von Prozessmodellen auf Basis von Ereignisdaten befasst. Ein Prozessmodell stellt die



Stand der Forschung 49

Aktivitaten eines Prozesses und deren Beziehungen zueinander dar. Ereignisdaten als
Eingangsdaten des Process Discoverys geben an, welche Aktivitaten in einem betrach-
teten System fiir welche Prozessinstanz zu welchem Zeitpunkt ausgefiihrt wurden. Da-
raus lassen sich flr jede Prozessinstanz lineare Abfolgen von Aktivitaten, sog. Traces,
ableiten. (van der Aalst 2022)

Ein Prozessmodell kann als eine Darstellungsform eines MAPL interpretiert werden,
weshalb die automatische Erstellung von Prozessmodellen prinzipiell fiir die vorlie-
gende Arbeit relevant ist. Ein wesentlicher Unterschied zur datenbasierten Erstellung
von MAPLs besteht jedoch in den Eingangsdaten: Traces sind lineare Abfolgen von
Aktivitaten wohingegen APLs auch Parallelitaten aufweisen kdnnen.

Es existieren Methoden des Process Discoverys nach Stand der Forschung, die STAs
teilweise berlicksichtigen kdnnen: Sofern in einem Trace eine Aktivitat A vor einer Ak-
tivitat B und in einem anderen Trace B vor A ausgefiihrt wird, kann dies durch Algorith-
men nach Stand der Forschung erkannt und dargestellt werden (siehe beispielsweise
Augusto et al. 2022). Es entsteht ein Zyklus im Prozessmodell, der zwar auf das Vor-
handensein von STAs hinweist, aber nicht erkennen lasst, welche in sich konsistenten
STAs vorliegen.

3.3.3 Losungsdefizit

Tabelle 3.3: Stand der Forschung zur datenbasierten Erstellung von Maximalarbeits-
planen

A3a A3b A3c A3d A3e

e = Vollstandig erfiillt Informa-

o = Teilweise erfiillt tionserhal- Skalierbar- Struktural- Multivor- Paralleli-

o = Nicht erfllt tung keit ternativen gange taten
Datenbasierte Erstellung von Maximalarbeitsplanen
Zhang 2012; Zhang & Rodrigues 2009; Zhang o ° © o o

et al. 2008; Jiao et al. 2007
Navaei & EIMaraghy 2018 o ° o o °

Datenbasierte Erstellung von Vorranggraphen
Guiza et al. 2022; Otto & Otto 2014, Klind-

worth et al. 2012; Altemeier et al. 2009 °® °© © °
Henrioud et al. 2002 o L] © o o
Bratcu et al. 1999; Minzu & Bratcu 1999 ° ° ] o o
Process Discovery

Process Discovery nach van der Aalst (2022) ° ° ° ° o

und Augusto et al. (2022)
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Tabelle 3.3 gibt einen Uberblick tiber den Stand der Forschung zur datenbasierten Er-
stellung von MAPLSs. Die einschlagigen Ansatze beschrankten sich auf APLs mit Baum-
struktur und zeigen keine STAs im MAPL. In der Literatur zum Lernen von Vorranggra-
phen werden STAs Uberwiegend nicht beriicksichtigt. Lediglich die Arbeit von Minzu &
Bratcu (1999) adressiert diesen Aspekt vollumfanglich. Deren Einschrankung auf line-
are VAPLs, die jeweils alle existierenden AVOs enthalten limitiert die praktische An-
wendbarkeit jedoch stark. Die zu entwickelnde Methode 3 soll die Vorteile der existie-
renden Methoden kombinieren um die Anforderungen A3a bis A3e vollstéandig zu erfll-
len.

3.4 Problem 4: Datenbasierte Erstellung von Regeln

3.4.1 Anforderungen

Die Regeln eines LLKM entsprechen einem pradiktiven Multi-Label-Modell des uber-
wachten Lernens (SL), wobei jeder abhangige Parameter einem Label entspricht (siehe
auch Kapitel 2.3.2). Ebenso, wie ein Multi-Label-Modell nach dem Binary-Relevance-
Ansatz in mehrere Single-Label-Modelle zerlegt werden kann, lassen sich die Regeln
eines LLKM unabhéangig voneinander betrachten. Werden Regeln in Form von Aus-
wahlbedingungen (siehe Kapitel 2.2.2.4) betrachtet, entspricht die datenbasierte Erstel-
lung dieser Regeln mehreren binaren Klassifikationsproblemen mit jeweils einem Label.
Hierfiir existieren verschiedene Verfahren des SL. Fir die vorliegende Problemstellung
kdénnen jedoch nur Verfahren des SL verwendet werden, die interpretierbare Klassifi-
kationsmodelle erstellen (Anforderung A4a: Interpretierbarkeit). Ansonsten waren
die resultierenden Regeln und damit das LLKM nicht interpretierbar.

Um eine allgemeine Anwendbarkeit der Methode zu gewahrleisten, missen dariiber
hinaus alle prinzipiell méglichen logischen Regeln zwischen binéren Variablen erkannt
werden kénnen (Anforderung A4b: Logikagnostik). Analog zu den Anforderungen
der Informationserhaltung in den Kapiteln 3.2.1 und 3.3.1 muss das Modell in der Lage
sein, die verwendeten Daten zu reproduzieren. Wird also eine Variante ausgewahlt, die
in den Trainingsdaten vorhanden ist, miissen die resultierende VSTL und der resultie-
rende VAPL dieselben sein wie in den Trainingsdaten. Das entspricht einer maximalen
Vorhersagegenauigkeit auf den Trainingsdaten, die in der Literatur auch als perfekte
Trainingsgenauigkeit bezeichnet wird (Anforderung Adc: Perfekte Trainingsgenau-
igkeit).
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Wie in Kapitel 2.3.2 beschrieben, muss bei der Erstellung eines Modells mittels SL
i. d. R. ein Kompromiss zwischen hoher Trainingsgenauigkeit und geringer Komplexitat
gefunden werden. Aufgrund der vorliegenden Problemstellung wird eine perfekte Trai-
ningsgenauigkeit vorausgesetzt. Im Sinne einer guten Generalisierbarkeit ist somit eine
minimale Komplexitat des Modells anzustreben (Anforderung A4d: Minimale Kom-
plexitat). Diese Anforderung tragt auch zur Interpretierbarkeit der gelernten Regeln bei.
Zuletzt soll die Methode fiir allgemeine Falle und damit auch flir Problemstellungen mit
vielen Features und groRRen Datensatzen anwendbar sein. Deshalb sollen Algorithmen
fir das Training verwendet werden, die hinsichtlich ihrer Recheneffizienz zumindest
nicht hinter anderen Arbeiten aus dem Stand der Forschung zurlickstehen (Anforde-
rung Ade: Recheneffizienz).

3.4.2 Relevante Arbeiten

Relevant sind, wie oben erlautert, nur Arbeiten, die sich mit bindren Singlelabel-Klassi-
fikationsproblemen befassen. Dariliber hinaus mussen die gelernten Modelle interpre-
tierbar sein. In der Literatur finden sich drei Arten von interpretierbaren Modellen, die
Regeln darstellen oder in Regeln Uberfiihrt werden konnen: Entscheidungsbaume, Re-
gellisten (engl. Decision Lists) und Regelmengen (engl. Decision Sets). Regellisten und
Regelmengen enthalten Regeln, die jeweils aus einer Bedingung und einer Folgerung
bestehen. Die Bedingungen entsprechen jeweils einem Monom, d. h. konjunktiv ver-

Regelliste Entscheidungsbaum knlpften Literalen2. Bei der binaren Klas-
sifikation entspricht die Folgerung der Zu-
ordnung des Datenpunkts zu einer positi-
ven oder negativen Klasse. Im Folgenden
werden die Regeln entsprechend als posi-
tiv oder negativ bezeichnet. Bei einer Re-

1. %, X3 - Falsch
2. x;x4 - Wahr

3. Standard: Falsch
Regelmenge

XXXy

gelliste ist im Gegensatz zu einer Regel-
menge die Reihenfolge der Regeln von Be-
deutung. Die Inferenz erfolgt durch die Zu-

X1X3X4

Disjunktive Normalform

X1X2X4 V X1 X3Xy

ordnung eines Datenpunkts zu einer
Klasse gemaR der ersten Regel, deren Be-
dingung sie erflllt. Regelmengen im Sinne

Abbildung 3.1: Interpretierbare Modelle

32 | jterale bezeichnen boolesche Variablen oder deren Negation
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von Rudin et al. (2022) enthalten ausschlieRlich positive Regeln. Eine Zuordnung zur
negativen Klasse erfolgt, falls keine der Regeln zutrifft. Eine Regelmenge entspricht
somit einem booleschen Ausdruck in disjunktiver Normalform (DNF). Dabei handelt es
sich um eine disjunktive Verknipfung von Monomen. (Rudin et al. 2022, S. 11-16)

Abbildung 3.1 veranschaulicht die Modelle anhand derselben booleschen Funktion. Es
sei angemerkt, dass Regellisten und Regelmengen nicht nur von bindren Labels, son-
dern auch von binaren Features ausgehen, die sich als boolesche Variablen darstellen
lassen. Dies stellt allerdings keine Beschrankung des Anwendungsfalls dar, da sich
numerische Features in diskrete Features und diskrete Features in bindre Features um-
wandeln lassen (Kotsiantis & Kanellopoulos 2006, S. 47-56, Potdar et al. 2017, S. 7—
8).

Abweichend hiervon werden in der Logical Analysis of Data — einem Teilgebiet des
Operations Research — Regelmengen mit gewichteten positiven und negativen Regeln
verwendet (Ouyang & Chou 2020, S. 1). Bei der Inferenz wird das kumulierte Gewicht
der erflllten positiven und negativen Regeln verglichen und ein Datenpunkt derjenigen
Klasse mit dem héherem kumulierten Gewicht zugeordnet (Ouyang & Chou 2020, S.
1). Da bei der Interpretation solcher Regelmengen konkurrierende Regeln und Ge-
wichte zu berlicksichtigen sind, ist davon auszugehen, dass sie schwer zu interpretie-
ren sind. Sie sind deshalb fir die Problemstellung der vorliegenden Arbeit weniger ge-
eignet als Regelmengen im Sinne von Rudin et al. (2022) und werden nicht weiter be-
trachtet. Im Folgenden liegt deshalb das Verstéandnis von Regelmengen nach Rudin et
al. (2022) zu Grunde, d. h. Regelmengen enthalten ausschlielich positive Regeln.

Sowohl Entscheidungsbaume als auch Regellisten und Regelmengen lassen sich in
eine Abfolge von Wenn-Dann-Abfragen tberfiihren und sind damit grundséatzlich in KSs
nach Stand der Technik implementierbar. Regelmengen gelten jedoch als besonders
einfach zu interpretieren und insbesondere einfacher als Entscheidungsbaume und Re-
gellisten (Lakkaraju et al. 2016, S. 1675). Aufgrund der besseren Interpretierbarkeit be-
fasst sich die vorliegende Arbeit mit Abhangigkeiten in Form von Regelmengen, d. h.
booleschen Ausdriicken in DNF. Im Folgenden werden deshalb Ansatze des SL be-
trachtet, die in der Lage sind, solche Modelle zu lernen.

Heuristiken zur Optimierung der Komplexitidt von Regelmengen

Viele Anséatze zum Lernen von Regelmengen nutzen Heuristiken, um Regelmengen mit
geringer Komplexitat zu lernen. An dieser Stelle sei auf Yang et al. (2021) verwiesen,
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die einen Uberblick tber den diesbeziiglichen Stand der Forschung geben und eine
Heuristik zur datenbasierten Erstellung von Regelmengen entwickeln. Iterativ werden
mittels lokaler Suche Regeln aufgestellt, die das gewichtete Mittel aus der Anzahl falsch
klassifizierter negativer Datenpunkte, falsch klassifizierter positiver Datenpunkte, der
Uberlappung positiver Regeln und der Anzahl von Regeln bestmdglich verbessert. Im
Allgemeinen koénnen heuristische Verfahren weder eine minimale Komplexitdt noch
eine perfekte Trainingsgenauigkeit garantieren. Eine Ausnahme hiervon bildet die Heu-
ristik ,One Clause a Time" von Triantaphyllou (2006). Sie erstellt boolesche Ausdriicke
in Konjunktiver Normalform (KNF) mit moglichst wenigen Klauseln. Eine Erzeugung von
Ausdriicken in DNF ist nach demselben Prinzip mdglich. Dem Ausdruck wird schritt-
weise diejenige Klausel minimaler Lange hinzugefiigt, die moglichst viele negative Da-
tenpunkte ablehnt, d. h. auf falsch abbildet, und zugleich alle positiven Datenpunkte
akzeptiert, d. h. auf wahr abbildet. Der Algorithmus terminiert, sobald alle negativen
Datenpunkte durch den Ausdruck abgelehnt werden. Damit wird eine perfekte Trai-
ningsgenauigkeit garantiert. Aufgrund der heuristischen Vorgehensweise kann jedoch
ebenfalls keine minimale Komplexitat des resultierenden Ausdrucks garantiert werden.

Logikminimierung

Logikminimierung bezeichnet die Minimierung der Komplexitat boolescher Ausdriicke
(Sasao 2023, S. 12). Um die entsprechenden Methoden fir eine Klassifikation zu nut-
zen, wird der Trainingsdatensatz als Wahrheitstabelle interpretiert, wobei alle nicht vor-
handenen Eintrage als sog. Don’t Care-Eintrage aufgefasst werden. Im Zuge der Lo-
gikminimierung werden die Don’t Care-Eintrage so gewahlt, dass sich moglichst einfa-
che Ausdriicke ergeben. Klassische Verfahren der Logikminimierung, wie insbeson-
dere das Verfahren nach Quine und McCluskey, sind jedoch fiir groRe Datenmengen
und grof3e Anzahlen von Don’t Care-Eintragen aus Griinden der Recheneffizienz nicht
geeignet (Safaei & Beigy 2007, S. 405). Safaei & Beigy (2007) entwickeln eine heuris-
tische Adaption des Quine-McCluskey-Verfahrens mit héherer Recheneffizienz. Sasao
(2023) nutzt denselben Ansatz mit neueren Algorithmen der Logikminimierung, kann
damit jedoch trotzdem nur kleine Probleme mit weniger als 20 Features |6sen.

Exakte Optimierung mittels Ganzzahliger Linearer Optimierung

Dash et al. (2018) und Lawless et al. (2023) entwickeln zwei eng verwandte Anséatze,
die mittels ganzzahliger linearer Optimierung (engl. Integer Linear Programming, ILP)
eine Regelmenge ermitteln, die den Vorhersagefehler auf den Trainingsdaten
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minimiert. Dabei wird die Komplexitat — definiert als Anzahl der Literale tGber alle Regeln
— auf eine vorgegebene Hbhe beschrankt. Die bei der Optimierung berlicksichtigten
Regeln werden iterativ mittels Spaltengenerierung erstellt. Dadurch wird sicherge-
stellt, dass jede hinzugefligte Regel zur Reduzierung des Zielfunktionswerts beitragt
und dass eine optimale L6sung vorliegt, sobald keine weitere solche Regel mehr ge-
funden werden kann. Da die Komplexitat selbst nicht optimiert wird, weisen die resul-
tierenden Regelmengen im Allgemeinen keine minimale Komplexitat auf. Eine perfekte
Trainingsgenauigkeit wird nur erreicht, wenn die Komplexitat ausreichend hoch be-
schrankt wird.

Su et al. (2016) nutzen ILP um einen booleschen Ausdruck in KNF zu erstellen, der die
gewichtete Summe aus der Gesamtzahl an Literalen und der Trainingsgenauigkeit op-
timiert. Dabei werden jedoch nur positive Literale berlicksichtigt, was die darstellbaren
Modelle stark einschrankt. Zudem muss die Anzahl der Klauseln a priori festgelegt wer-
den.

Exakte Optimierung mittels Satisfiability-Solvern

Satisfiability-Solver (SAT-Solver) sind Programme zur Uberpriifung der Erfiillbarkeit
von booleschen Ausdriicken. Hiermit kann Uberpriift werden, ob ein boolescher Aus-
druck existiert, der bestimmte Anforderungen, wie insbesondere eine bestimmte Kom-
plexitat oder eine bestimmte Genauigkeit auf den Trainingsdaten, erflllt. Zum einen
existieren Ansatze von Junior et al. (2023), Ghosh et al. (2022), Cao et al. (2020),
Ghosh & Meel (2019) und Malioutov & Meel (2018), die die beiden genannten Zielkri-
terien gewichtet optimieren. Prinzipiell ist es moglich, ein Gewicht fir die Trainings-
genauigkeit zu ermitteln, das dazu flhrt, dass die optimale Lésung eine perfekte Trai-
ningsgenauigkeit aufweist. Mit den Ansatzen von Ignatiev et al. (2021), Yu et al. (2020)
und Ignatiev et al. (2018) existieren jedoch Verfahren, die speziell fur eine Optimierung
der Komplexitat unter Gewahrleistung einer perfekten Trainingsgenauigkeit entwickelt
wurden. Es ist deshalb davon auszugehen, dass sie fir diese Problemstellung rechen-
effizienter sind.

Fir die vorliegende Arbeit ist der Ansatz von Ignatiev et al. (2021) am relevantesten,
da er boolesche Ausdriicke in DNF mit einer minimalen Anzahl von Literalen und einer
perfekten Trainingsgenauigkeit bestimmt. Dabei werden zunachst mittels SAT-Solvern
alle Monome bestimmt, die alle negativen Datenpunkte ausschlieffen und nach ausge-
schlossenen positiven Datenpunkten nicht von anderen Monomen dominiert werden.



Stand der Forschung 55

AnschlieRend wird mittels ILP die komplexitdtsminimale Menge von Monomen be-
stimmt, die alle positiven Datenpunkte akzeptiert. Die Autoren zeigen, dass ihr Ansatz
recheneffizienter ist als die unten vorgestellten Ansatze von Yu et al. (2020) und Igna-
tiev et al. (2018). Der Ansatz ist dennoch nicht in der Lage, mit Rechnern nach Stand
der Technik Probleme mit mehr als 800 Datenpunkten in vertretbarer Zeit zu I6sen. Der
Ansatz sieht vor, dass ein ILP-Problem aufgestellt und geldst wird, dessen Matrix eine
Spalte fir jedes nach Problemstellung zuldssige Monom enthéalt. Die optimale Auswahl
von Monomen entspricht einem Set-Partitioning-Problem (siehe hierzu Rénnberg &
Larsson 2014, S. 532). Nach Stand der Forschung existiert mit Spaltengenerierung
(CG) ein effizientes Losungsverfahren fur Set-Partitioning-Probleme, das ohne die Er-
zeugung aller Spalten auskommt (Rénnberg & Larsson 2014, S. 529). Das Effizienz-
problem des Ansatzes lasst sich also auch dadurch erklaren, dass Optimierungsver-
fahren nach Stand der Forschung nicht genutzt werden. Hierfiir wére eine andere Mo-
dellierung notwendig.

Nach Ansatz von Yu et al. (2020) werden sowohl positive als auch negative Regeln
ermittelt, deren Bedingungen disjunkt sind. Dabei wird die Anzahl der Literale tGber alle
Regeln minimiert. Werden die negativen Regeln vernachlassigt, ergibt sich ein Aus-
druck in DNF. Allerdings ist dessen Anzahl von Literalen damit nicht unmittelbar Ge-
genstand der Optimierung.

Nach dem Ansatz von Ignatiev et al. (2018) wird ein boolescher Ausdruck in DNF er-
mittelt, der aus einer vorgegebenen Anzahl von Monomen besteht. Diese Anzahl kann
iterativ angepasst werden, um einen Ausdruck mit einer minimalen Anzahl von Mono-
men zu finden. Der resultierende Ausdruck ist damit optimal in Bezug auf die Anzahl
der Monome, garantiert aber keine optimale Losung in Bezug auf die Anzahl der Lite-
rale, d. h. die resultierenden Monome selbst kdnnen beliebig komplex sein.

Approximative Logiksynthese

Approximative Logiksynthese (engl. Approximate Logic Synthesis, ALS) ist ein Teilge-
biet der Informatik, das sich mit dem Entwurf méglichst kostenglinstiger logischer
Schaltungen befasst, die eine boolesche Funktion mdglichst genau abbilden. Wird der
Trainingsdatensatz als unvollstandige Wahrheitstabelle der zu approximierenden boo-
leschen Funktion aufgefasst, kdnnen existierende Verfahren der ALS fir die vorlie-
gende Problemstellung verwendet werden. Die entsprechenden Ansatze verfolgen in
der Regel nicht das Ziel, Trainingsdaten vollstéandig korrekt vorherzusagen (siehe z. B.
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Ansatz von Boroumand et al. 2021). Costamagna & Micheli (2023) stellen jedoch meh-
rere ALS-Ansatze vor, die dies ermoglichen und auf schrittweiser Dekomposition ba-
sieren. Auch wenn die durch ALS erstellten Ausdriicke i. d. R. gute Ergebnisse hinsicht-
lich der Komplexitat aufweisen, erfolgt keine Optimierung der Komplexitat womit insbe-
sondere keine minimale Komplexitat garantiert wird.

3.4.3 Losungsdefizit

Tabelle 3.4: Stand der Forschung zur datenbasierten Erstellung von Regeln

Ada Adb Adc Add Ade
Perfekte Minimale
e = Vollstandig erfiillt Interpre-  Logik- Trainings- K . Rechenef-
D oo e . . . omplexi- .
o = Teilweise erfillt tierbarkeit agnostik genauig- tt fizienz
o = Nicht erfullt keit

Heuristische Optimierung der Komplexitét
Yang et al. 2021 ° ° o o °
Triantaphyllou 2006 [ [ ] ) [
Logikminimierung
Sasao 2023, Safaei & Beigy 2007 L] [] [] ° o
Exakte Optimierung der Komplexitat
Dash et al. 2018; Lawless et al. 2023 [] [] © ) °
Suetal. 2016 L] o [ ° °
SAT-Solver
Cao et al. 2020; Ghosh et al. 2022; Ghosh &
Meel 2019; Junior et al. 2023; Malioutov & L] [] [ ° ©
Meel 2018
Ignatiev et al. 2021 L] ] ] ° ©
Ignatiev et al. 2018; Yu et al. 2020 L] (] (] © ©
Approximative Logiksynthese
Costamagna & Micheli 2023 ° ° ° o °

Wie Tabelle 3.4 zeigt, kann der Ansatz von Ignatiev et al. (2021) prinzipiell fir die da-
tenbasierte Erstellung von Regeln in LLKMs genutzt werden. Er weist jedoch eine
Schwache hinsichtlich seiner Recheneffizienz auf und ist damit fiir grofe Probleme nur
bedingt geeignet. Mit den Arbeiten von Lawless et al. (2023) und Dash et al. (2018), die
ein ahnliches Optimierungsproblem mittels CG I6sen, existiert ein Ansatz, der ein Opti-
mierungsverfahren nach Stand der Forschung nutzt. Dieser ist somit effizient, garantiert
jedoch keine perfekte Trainingsgenauigkeit. Die zu entwickelnde Methode 4 soll beide
Ansatze kombinieren um die Anforderungen A4a bis A3e vollstandig zu erflllen.
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3.5 Problem 5: Auswahl von reprasentativen Varianten zur Erwei-
terung der Datenbasis

Wie in Kapitel 3.1.3 dargestellt, berlicksichtigen weder die bestehenden Ansatze zur
datenbasierten Erstellung von Konfigurationsmodellen, noch die bestehenden Ansatze
zur datenbasierten Erstellung pradiktiver Modelle fur die Arbeitsablaufplanung den Fall,
dass keine ausreichend grof’e Datenbasis vorliegt. Wie in Kapitel 1.1 beschrieben, ist
es grundsatzlich mdglich, die Datenbasis vor der Erstellung des KM zu erweitern. Dafiir
mussen jedoch aus dem Konfigurationsraum systematisch Varianten ausgewahlt® wer-
den, die einen hohen Informationsgewinn fiir eine datenbasierte Erstellung der Regeln
des Konfigurationsmodells erwarten lassen. Dieses Vorgehen ist fir die datenbasierte
Erstellung von Regeln in der Literatur noch nicht erforscht®*. Es weist jedoch eine grofie
Ahnlichkeit mit dem Aktiven Lernen (AL, siehe Kapitel 2.3.2) im Kontext des ML auf. Im
Folgenden sollen deshalb ausgewahlte Arbeiten des AL betrachtet werden und es soll
untersucht werden, inwieweit sich diese fir die Anwendung auf die vorliegende Prob-
lemstellung eignen.

3.5.1 Anforderungen

Wie in Kapitel 3.4.1 beschrieben, kdnnen die Regeln eines LLKM als Multi-Label-Modell
im Sinne des SL interpretiert werden. Bei der Auswahl der Variante muss somit der
Informationsgehalt dieser Variante fir alle Regeln berlcksichtigt werden. Dies ent-
spricht einem Multi-Label-AL (Anforderung A5a: Multi-Label-AL).

Eine Herausforderung der vorliegenden Problemstellung ist der typischerweise grof3e
Konfigurationsraum mit u. U. 10%* zulassigen Varianten (siehe Kapitel 1.1), der einem
groRRen diskreten Featureraum im Sinne des SL entspricht. Da diese Featureraume auf-
grund ihrer GréRe nicht vollstdndig enumeriert werden kénnen, missen mdgliche

33 Die Auswahl einer Variante aus dem Konfigurationsraum entspricht einer zulassigen Kombination von Auspra-
gungen der Produktmerkmale (siehe Kapitel 2.2.2.1). Auch wenn der Konfigurationsraum nicht zwangslaufig eine
diskrete Menge ist, wird in der vorliegenden Arbeit davon gesprochen, dass Varianten aus dem Konfigurations-
raum ausgewahlt werden.

34 Der in Kapitel 3.3.2 vorgestellte Ansatz von Guiza et al. (2022) zur Erstellung von Montagevorranggraphen
adressiert das Problem einer zu kleinen Datenbasis, indem vorliegende Daten zu verwandten Produkten genutzt
werden. Inwieweit diese |dee auf die datenbasierte Erstellung von Regeln tbertragen werden kann, bleibt zu
untersuchen. In der vorliegenden Arbeit wird dieser Ansatz nicht verfolgt, da er voraussetzen wiirde, dass im
Unternehmen mehrere konfigurierbare Produkte mit ahnlichen Regeln existieren, was den Anwendungsbereich
stark einschrankt.
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Methoden des AL von nichtenumerierbaren Featurerdumen ausgehen (Anforderung
A5b: Nichtenumerierbarer Featureraum). Der Konfigurationsraum und damit der
Featureraum ist dariiber hinaus i. d. R. nicht konvex und kann durch das High-Level-
Konfigurationsmodell (HLKM) beliebig beschrankt sein. Dementsprechend missen
maogliche Methoden des Multi-Label-AL mit nichtkonvexen Featurerdumen umgehen
konnen (Anforderung A5c: Nichtkonvexer Featureraum) und Beschrankungen des
Featureraums bertcksichtigen (Anforderung A5d: Beschréankter Featureraum).

Wie in Kapitel 3.4.1 beschrieben, sind Modelle in Form boolescher Ausdriicke in DNF
fur die vorliegende Problemstellung besonders geeignet. Sie unterscheiden sich von
vielen Klassifikationsmodellen darin, dass aus ihnen keine Unsicherheit fir eine Klas-
sifikationsentscheidung ermittelt werden kann. Geeignete Ansatze dlrfen deshalb sol-
che Funktionen nicht voraussetzen (Anforderung A5e: Boolesche Ausdriicke).

3.5.2 Relevante Arbeiten

Die Methoden des Multi-Label-AL nach Stand der Forschung sind sdmtlich poolbasiert
(siehe Kapitel 2.3.2), d. h. gehen von enumerierbaren Featurerdumen aus und sind da-
mit fUr die vorliegende Problemstellung nicht geeignet. Sie werden deshalb nur der
Vollstandigkeit halber kurz beleuchtet. Darlber hinaus werden Ansatze zum Single-
Label-AL betrachtet, die Membership Query Synthesis (MQS) einsetzen und damit
keine vollstandige Enumeration des Featureraums voraussetzen. Schlief3lich wird auf
spezielle Methoden des AL, eingegangen, die einen Versionenraum (engl. Version
Space, VS) alternativer Modelle nutzen. Diese sind zwar ebenfalls nicht unmittelbar auf
die vorliegende Problemstellung anwendbar, das Konzept ist jedoch Ubertragbar (siehe
Kapitel 4.5).

Poolbasiertes Multi-Label-AL

Wu et al. (2020) geben einen umfassende Uberblick iiber Anséatze des Multi-Label-AL.
Diese werden vor allem zur Klassifikation von Bildern eingesetzt. In aktuellen Ansatzen
werden dabei Datenpunkte multikriteriell nach reprasentationsbasierten und informati-
onsbasierten Kriterien ausgewahlt. Bei informationsbasierten Kriterien erfolgt eine Ag-
gregation Uber alle Labels indem entweder die Auspragungen der Kriterien aggregiert
— z. B. gemittelt — werden oder die Datenpunkte je Label in eine Rangfolge gebracht
und die Range aggregiert werden (zu letzterem siehe Dwork et al. 2001). Es existieren
keine Arbeiten zu Multi-Label-AL, die von einem beschrankten Featureraum ausgehen
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oder boolesche Ausdriicke als Modelle verwenden. Da auflerdem durchgehend pool-
basiertes AL vorliegt, wird ein enumerierbarer Featureraum vorausgesetzt.

AL mit MQS

Anséatze des MQS kdénnen nach dem betrachteten Featureraum unterschieden werden:
stetig oder diskret. Fir stetige Featurerdume existieren einerseits Ansatze, die von ei-
nem Klassifikator ausgehen, der eine Klassengrenze im Featureraum induziert, wie
z. B. eine Support-Vector-Machine oder eine begrenzende Hyperebene eines Hal-
braums (siehe Englhardt & Bohm 2020, Chen & Fuge 2018, Chen et al. 2017 und Alab-
dulmohsin et al. 2015). In diesem Fall kdnnen Datenpunkte nahe der Klassengrenze
gewahlt werden. Darliber hinaus existieren Ansatze, die von einer impliziten Klassen-
grenze ausgehen und Datenpunkte zwischen annotierten Datenpunkten verschiedener
Klassen auswahlen (Wang et al. 2015 und Xuelei Hu et al. 2012). Beides ist nur fir
konvexe Featureraume moglich. Beschrankungen des Featureraums oder boolesche
Ausdriicke als Modelle werden nicht betrachtet.

Zur Anwendung von MQS auf diskreten Featurerdumen existiert nur die Arbeit von Ling
& Du (2008). Die Autoren nutzen den Bergsteigeralgorithmus, eine einfache Metaheu-
ristik, um den Featureraum nach dem Datenpunkt mit der hochsten Vorhersageunsi-
cherheit zu durchsuchen. Der Featureraum ist hierbei, abgesehen von den Definitions-
bereichen der Feature, nicht beschrankt. Das verwendete Pradiktionsmodell ist ein Ent-
scheidungsbaum.

AL unter Beriicksichtigung des Versionenraums

Grundsatzlich kann das Ziel des AL als Verkleinerung eines Versionenraums (VR) al-
ternativer moglicher Modelle verstanden werden. Dieser Ansatz wird beim QBC implizit
verfolgt, da die einzelnen Modelle des Komitees als VR aufgefasst werden kénnen. Um
das Komitee zu erzeugen, werden beim QBC i. d. R. identische Algorithmen auf ver-
schiedene Teilmengen des Trainingsdatensatzes angewandt (Kumar & Gupta 2020, S.
918). Prinzipiell kann der VR aber auch auf andere Weise aufgestellt werden. Ein fir
die vorliegende Arbeit relevanter Ansatz stammt von Mitchell (1977), der den VR aus
der Menge aller Regeln mit minimaler oder maximaler Spezifitat erstellt. Die Spezifitat
einer Regel ergibt sich aus der Anzahl der annotierten und nichtannotierten Daten-
punkte fir die sie gilt. Eine Regel ist hierbei ein einziges Monom im Sinne der Aussa-
genlogik, was die Machtigkeit der resultierenden Modelle einschrankt. Auerdem geht
der Autor nur am Rande darauf ein, wie Anfragen auf Basis des VR generiert werden
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koénnen. Der betrachtete Featureraum ist nicht beschrankt und wird fur das poolbasierte

Sampling als enumerierbar angenommen.
3.5.3 Losungsdefizit

Tabelle 3.5: Stand der Forschung zur Auswahl von reprasentativen Varianten zur Er-
weiterung der Datenbasis

A5a A5b A5c A5d Ab5e
£ E
- 5E & . 2
I &8 FE &g <
2 5% zg fg 2
L c® ¢o Tso 9
- . [ x = £ =
e = Vollstandig erflllt & 2P 2 G 2 %
o=Teilweiseerfilt 3 S% €85 8§ 3¢
o=Nichterfilt = 25 Zw @u @9
Poolbasiertes Multi-Label-AL
Poolbasiertes Multi-Label-AL (nach Wu et al. 2020) [] o ° o o
AL mit MQS
Alabdulmohsin et al. 2015; Chen & Fuge 2018; Englhardt & B6hm o ° o o °
2020; Wang et al. 2015; Xuelei Hu et al. 2012
Ling & Du 2008 [} ° ° o ¢}
AL unter Beriicksichtigung des Versionenraums
Mitchell 1977 [} ¢} ° o ©

Es existiert in der Literatur keine Methode zur Auswahl von reprasentativen Varianten
um LLKMs datenbasiert zu erstellen. Wie Tabelle 3.5 zeigt existiert auch in der Literatur
zu AL keine hierfir geeignete Methode und auch keine Methode, die durch nahelie-
gende Anpassung geeignet werden wiirde. Daher soll mit Methode 5 eine neue, prob-
lemspezifische AL-Methode entwickelt werden, die die Anforderungen A5a bis A5e er-
flllt.

3.6 Problem 6: Datenbasierte Uberpriifung von Regeln

3.6.1 Anforderungen

Inkonsistenzen in Regeln wie z. B. die Mdglichkeit, zwei sich gegenseitig ausschlie-
Rende Elemente der MSTL zu wéhlen, stellen offensichtlich starke Hinweise auf Fehler
dar. Sie sollen bei der Uberpriifung eines LLKM beriicksichtigt werden (Anforderung
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A6a: Beriicksichtigung logischer Inkonsistenzen)3. Wie in Kapitel 2.3.3 beschrie-
ben, wird dartiber hinaus in vielen Anwendungsfallen anderer Disziplinen Anomalieer-
kennung eingesetzt, um Fehler zu entdecken. Diese Fehler entsprechen nicht zwin-
gend logischen Widersprichen in einem Modell. Werden die Regeln eines LLKM als
Datenpunkte interpretiert, kdnnen einzelne Regeln gegeniber der Gesamtheit an Re-
geln Anomalien aufweisen. Damit liegen Hinweise auf Fehler vor, die liber Konsistenz-
fehler hinausgehen und deshalb ebenfalls bei der Uberpriifung des Modells verwendet
werden sollten (Anforderung A6b: Beriicksichtigung von Anomalien). Es kann dar-
Uber hinaus Fehler im LLKM geben, die sich weder in logischen Inkonsistenzen nieder-
schlagen noch in Anomalien. In Féllen, in denen eine hohe Genauigkeit gefordert ist,
muss es mdglich sein, mit zusatzlichem Aufwand die Genauigkeit des Modells weiter
zu erhohen, d. h. die Uberpriifung muss skalierbar sein (Anforderung A6c: Skalier-
barkeit).

3.6.2 Relevante Arbeiten

Entsprechend der in Kapitel 2.2.3.2 eingefiihrten Einteilung nach Meseguer & Preece
(1995, S. 337-339) kann die Literatur zur Uberpriifung von KSs und KMs in Inspektion,
statische Verifikation, empirisches Testen und Evaluation unterteilt werden. Da die Eva-
luation die Nutzung des KS und nicht primar das KM betrifft, wird sie im Folgenden nicht
betrachtet. Auf bestehende Ansétze zur Inspektion und statischen Verifikation sowie
zum empirischem Testen wird im Folgenden eingegangen.

Inspektion

Es existieren Methoden und Darstellungsweisen, die Experten dabei unterstitzen, sich
in KMs zurecht zu finden, wodurch wiederum die Inspektion unterstiitzt wird. Felfernig
et al. (2013) entwickeln z. B. ein Recommender System fiir Beschrankungen in be-
schrankungsbasierten KMs: Benutzern, die sich eine Beschrankung angesehen haben,
werden ahnliche Beschrankungen vorgeschlagen. Daneben existieren Moglichkeiten
der Visualisierung von Regeln fur allgemeine Expertensysteme. Beispielhaft sei auf
Baumeister & Freiberg (2011) verwiesen, die Mdglichkeiten zur graphischen Darstel-
lung von Abhangigkeiten vorstellen. Darliber hinaus existieren Ansatze, um durch das
Lésen von Erfillbarkeitsproblemen dem Experten Informationen uUber ein KM

35 |n der Literatur werden logische Inkonsistenzen auch als Anomalien bezeichnet. In der vorliegenden Arbeit ist
mit Anomalie jedoch immer Anomalie im Sinne des uniiberwachten Lernens gemeint.
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bereitzustellen, die firr eine Inspektion relevant sein kénnen. Sinz (2004) nennt hierfir
folgende Informationen: Gruppen von Produktmerkmalauspragungen, die fir jede zu-
|assige Variante gewahlt werden missen und Produktmerkmalauspragungen, die kei-
nen Einfluss auf die Zulassigkeit einer Variante haben. Tidstam et al. (2016) nennen
dariiber hinaus Komponenten, die immer oder nie gemeinsam auftreten und Produkt-
merkmalauspragungen, die nach High-Level-Beschrankungen immer gemeinsam auf-
treten. Diese Informationen dienen dem Verstandnis des KM und sind nicht notwendi-
gerweise Hinweise auf Fehler. Grundsatzlich kdnnen alle Fehler in einem KM durch
eine vollstandige und akribische Inspektion gefunden werden, weshalb das Vorgehen
skalierbar ist, auch wenn der Aufwand u. U. nicht wirtschaftlich ist.

Statische Verifikation

Sinz (2004) beschreibt folgende Hinweise auf Fehler, die durch das Lésen von Erflll-
barkeitsproblemen ermittelt werden kénnen: Nichtwahlbare Produktmerkmalauspra-
gungen nach High-Level-Beschrankungen, Reihenfolgenabhangigkeit der Regelaus-
fuhrung, nichtwahlbare Komponenten in der MSTL und das Vorkommen von sich ge-
genseitig ersetzenden Komponenten in derselben VSTL. Darliber hinaus sieht er das
Vorhandensein von nichtwahlbaren Produktmerkmalauspragungen als Information fuir
die Inspektion, was jedoch von Tidstam et al. (2016) als Hinweis auf einen Fehler im
Sinne der statischen Verifikation angesehen wird. Tidstam et al. (2016) erganzen au-
Rerdem Produktmerkmale fir die nur eine Auspragung gewahlt werden kann, verschie-
dene Produktmerkmalauspragungen, die nur gemeinsam auftreten und Regeln, die be-
reits von anderen Regeln impliziert werden. Es existieren Arbeiten weiterer Autoren,
die dieselben Fehlerhinweise fir eine statische Verifikation verwenden, wie z. B. Voro-
nov (2013) und Braun (2021). Die statische Verifikation hat den Vorteil, dass sie tat-
sachliche Fehler im KM identifizieren kann. Sie ermdglicht jedoch keine vollstéandige
Uberpriifung eines KM, da sich nicht alle Fehler in logischen Inkonsistenzen nieder-
schlagen.

Empirisches Testen

Die Herausforderung beim empirischen Testen liegt in der Auswahl der zu konfigurie-
renden und zu Uberprifenden Varianten. Die Arbeit von Glos et al. (2023) behandelt
das Testen eines konfigurierbaren Fahrzeugs durch den Bau von Vorserienfahrzeugen.
Die Autoren gehen davon aus, dass bestimmte Testfalle definiert sind, wie z. B. be-
stimmte Komponenten, die neu eingefiihrt wurden und getestet werden sollen. Mittels
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mathematischer Optimierung ermitteln sie die kleinste Anzahl zu produzierender Vari-
anten, die zusammen alle Testfalle abdecken. Einen ahnlichen Fall betrachten Walter
et al. (2016), die diejenigen Fahrzeugvarianten ermitteln, die zusammen alle Produkt-
merkmalauspragungen mindestens einmal realisieren. Die Literatur zum Testen von
industriellen KMs ist damit sehr begrenzt. Fir die Auswahl von Tests fiir konfigurierbare
Software existieren jedoch zahlreiche Ansatze. Hier sind t-way Teststrategien vorherr-
schend, die eine minimale Anzahl von Konfigurationen auswahlen, so dass jede Kom-
bination der Auspragungen von t Produktmerkmalen mindestens einmal vorkommt.
Dadurch kdénnen Fehler ermittelt werden, die aus der Interaktion von Produktmerkma-
len resultieren. Medeiros et al. (2016) zeigen eine Ubersicht und einen empirischen
Vergleich dieser und weiterer gangiger Teststrategien. Wie Medeiros et al. (2016) zei-
gen, steigt der Aufwand zum Finden von Fehlern beim empirischen Testen exponentiell
an, d. h. einige Fehler werden mit wenigen Tests gefunden, das Finden der letzten ver-
bleibenden Fehler erfordert jedoch einen hohen Aufwand. Liegen, wie bei industriellen
KMs Ublich, Beschrankungen hinsichtlich der wahlbaren Konfigurationen vor, miissen
diese bei der Zusammenstellung der Tests gemaR der Teststrategie beriicksichtigt wer-
den. Fiir eine Ubersicht (iber entsprechende Verfahren sei auf Wu et al. (2019) verwie-
sen.

3.6.3 Losungsdefizit

Tabelle 3.6: Stand der Forschung zur datenbasierten Uberpriifung von Konfigurations-
modellen

Ab6a A6b Aé6c

Beriicksichti-
e = \ollstandig erfillt gung von logi-
o = Teilweise erflillt schen Inkon-

Beriicksichti-
gung von Ano- Skalierbarkeit

o = Nicht erflillt sistenzen malien
Inspektion
Felfernig et al. 2013 o (o} °
Tidstam et al. 2016, Inspektion nach Sinz (2004) o o [
Visualisierung nach Baumeister & Freiberg (2011) u. a. o o []
Statische Verifikation
Braun 2021, Tidstam et al. 2016, Voronov 2013, Statische ° ° o

Verifikation nach Sinz (2004)
Empirisches Testen
Glos et al. 2023, Walter et al. 2016 o o ]

Kombinatorisches Testen von konfigurierbarer Software
nach Medeiros et al. (2016) und Wu et al. (2019)
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Wie Tabelle 3.6 zeigt, stehen mit der Inspektion und dem empirischen Testen zwei
Méglichkeiten zur Verfligung, um KMs prinzipiell vollstdndig auf Fehler Gberprifen zu
konnen. Die Inspektion kann durch Methoden aus der Literatur unterstiitzt werden. Eine
vollstandige Uberpriifung durch Inspektion stéRt jedoch fiir groke KMs an ihre Grenzen.
Das empirische Testen geht mit exponentiellem Aufwand fir das Finden von Fehlern
einher. Durch die Berlicksichtigung von Hinweisen aus der statischen Verifikation kdn-
nen Fehler, die sich in logischen Inkonsistenzen niederschlagen, unmittelbar gefunden
werden, wodurch die Uberpriifung von KMs effizienter wird. Durch eine Anomalieerken-
nung kénnten zusétzliche relevante Hinweise fiir die Uberpriifung gewonnen werden.
Ein solcher Baustein zur Uberpriifung von KMs existiert jedoch nach Stand der For-
schung nicht. Daher soll Methode 6 diese Moglichkeit bereitstellen und damit beste-
hende Methoden zur Uberpriifung von KMs komplementieren.
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4 Methoden

Im Folgenden werden die Methoden 1 bis 6 zur Lésung der Probleme 1 bis 6, welche
in Kapitel 1.2 eingeflihrt und in Kapitel 3 konkretisiert wurden, vorgestellt (Abbildung
4.1). Dies entspricht dem dritten Schritt des Design Science Research Process (DSRP,
siehe Kapitel 1.3). Ebenso wie Problem 1 den Problemen 2 bis 5 Gibergeordnet ist, greift
die Methode 1 auf die ihr untergeordneten Methoden 2 bis 5 zurlck (siehe Kapitel 1.3).
Sie beschreibt, wie die Methoden 2 bis 5 in Abhangigkeit des Anwendungsfalls integriert
werden kénnen, um Konfigurationsmodelle datenbasiert zu erstellen. Demgegenliber
beschreibt Methode 6 zur Lésung von Problem 6, wie Konfigurationsmodelle (KMs) da-
tenbasiert Uberprift werden kdnnen. Im Folgenden werden die Methoden 1 bis 6 vor-

gestellt®.
Methode 1: Datenbasierte Erstellung von Konfigurationsmodellen
| | | \ Methode 6:
Datenbasierte
Methode 2: Methode 3: Methode 4: Methode 5: Uberpriifung von
. . . Au§wahl v‘on Konfigurations-
Datenbasierte Datenbasierte Datenbasierte reprasentativen modellen
Erstellung von Erstellung von Erstellung von Varianten zur (Regeln)
Maximal- Maximal- Regeln Erweiterung der
stlcklisten arbeitsplanen Datenbasis

Abbildung 4.1: Ubersicht tiber die Methoden 1 bis 6

4.1 Methode 1: Datenbasierte Erstellung von Konfigurationsmo-
dellen

Im Folgenden wird zunachst das Schema der datenbasiert zu erstellenden Low-Level-
Konfigurationsmodelle (LLKMs) eingefiihrt (Kapitel 4.1.1). Anschliefend werden auf
Basis des industriellen Kontextes der vorliegenden Arbeit (siehe Kapitel 1.1) Anwen-
dungsszenarien fiur die datenbasierte Erstellung von LLKMs herausgearbeitet (Kapitel
4.1.2). AbschlieRend wird dargelegt, wie diese Anwendungsszenarien auf die dem
Problem 1 untergeordneten Probleme 2 bis 5 zurlickgefuhrt werden kénnen und wie

36 VVom Autor der vorliegenden Arbeit wurde bereits ein erster Ansatz veréffentlicht, um Low-Level-Konfigurati-
onsmodelle datenbasiert zu erstellen und zu Uberpriifen (Frey et al. 2023). Die darin skizzierten Ideen fiir geeig-
nete Methoden werden z. T. durch die Methoden 1 bis 6 aufgegriffen, ausgearbeitet und weiterentwickelt. Die
Methoden 1 bis 6 selbst sind bisher jeweils nicht veréffentlicht und nicht zur Veréffentlichung eingereicht.
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die in den folgenden Kapiteln vorgestellten Methoden zur Lésung dieser Probleme
durch Methode 1 integriert werden, um LLKMs datenbasiert zu erstellen (Kapitel 4.1.3).

4.1.1 Schema der betrachteten Low-Level-Konfigurationsmodelle

Im Folgenden werden industrietlibliche integrierte KMs betrachtet, wie sie in Kapitel
2.2.2.4 beschrieben sind. Diese lassen sich in ein High-Level-Konfigurationsmodell
(HLKM) und ein LLKM gliedern. Das LLKM besteht aus einer Maximalsttckliste (MSTL),
einem oder mehreren Maximalarbeitsplanen (MAPLs) sowie Abhangigkeiten in Form

von Regeln. Abbildung 4.2 (2) zeigt exemplarisch das im Rahmen der vorliegenden

Vertriebskonfigurationsklasse
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Abbildung 4.2: Schema der Maximalstlckliste und deren Abhangigkeiten in der vorlie-

genden Arbeit
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Arbeit entwickelte Schema einer MSTL in Form eines UML-Klassendiagramms sowie
madgliche zugehdrige Abhangigkeiten als Teil des LLKM. Die Klasse Vertriebskonfigu-
ration in Abbildung 4.2 (1) stellt das HLKM dar und wird im Rahmen des Vertriebskon-
figurationsprozesses als Beschreibung einer Variante aus Kundensicht instanziiert.
Zwischen den Merkmalen des Produkts im HLKM kénnen Abhangigkeiten in Form von
Beschrankungen bestehen.

Die MSTL besteht aus einer Klasse PK, aus der das Produkt instanziiert wird sowie
Komponentenklassen (KKs), aus denen Komponenten instanziiert werden. Ebenso wie
Komponenten in Baugruppen und Zukaufkomponenten (ZKs) eingeteilt werden kon-
nen, kann eine MSTL Baugruppenklassen (BGKs) und Zukaufkomponentenklassen
(ZKKs) enthalten. Die Produktklasse PK, aus der das Endprodukt instanziiert wird, ver-
flgt Uber Parameter p*¢, die das Endprodukt aus technischer Sicht beschreiben sowie
weitere Parameter, die spater eingefihrt werden. Im Gegensatz zur Produktklasse PK
sind KKs nicht zwingend aktiv, d. h. werden nicht zwingend bei der Konfiguration einer
variantenbezogenen Stiickliste (VSTL) instanziiert. Sie verfligen deshalb Uber einen
Parameter p4¥?*, der den Aktivitatszustand der KK angibt und im Rahmen des Konfi-
gurationsprozesses gesetzt wird. Aktive KKs werden zum Abschluss des Konfigurati-
onsprozesses instanziiert. Fur aktive KKs gibt der Parameter p™¢ an, in welcher Menge
die zugehorige Komponente in der VSTL in ihre Ubergeordnete Komponente eingeht.
ZKKs verfligen dariiber hinaus Uber eine Bezeichnung (p?¢?) und, sofern ZKKs mit
identischer Bezeichnung an verschiedenen Positionen der MSTL auftreten, liber eine
Positionsnummer (pf°%). Ebenso wie die Produktklasse PK kénnen BGKs und ZKKs
tiber Parameter p”* verfiigen, die die Komponenten aus technischer Sicht beschreiben,
wie z. B. deren Dimensionen oder Werkstoffe. Parameter von BGKs und ZKKs kénnen,
Uber Wenn-Dann-Regeln, von den Parametern ubergeordneter KKs abh&ngen. Ebenso
kénnen die Parameter der Produktklasse PK von den Produktmerkmalen abhangen.
Die Produktkonfiguration erfolgt von oben nach unten in der Hierarchie der MSTL.
Nachdem die Vertriebskonfiguration vorliegt und somit das Produkt nach dem HLKM
konfiguriert ist, wird zunachst die Produktklasse PK entsprechend der zugehorigen Re-
geln instanziiert, wobei ihre Parameter ausgepragt werden. Anschlielend werden die
Komponenten der darunterliegenden Ebene auf Basis ihrer Abhangigkeiten von der
Vertriebskonfiguration und der Produktklasse PK instanziiert usw. Baugruppen ohne
instanziierte Zukaufkomponenten sind leer und werden aus der resultierenden VSTL
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entfernt. Ebenso werden Komponenten entfernt, die nur liber genau eine Subkompo-
nente verfligen (siehe Kapitel 2.1).

Das verwendete Schema sieht die Mdglichkeit vor, Strukturalternativen der VSTLs in
der MSTL abzubilden, was einen wesentlichen Unterschied zu &hnlichen Schemata
nach Stand der Forschung darstellt. Aus der MSTL kdnnen VSTLs mit unterschiedli-
chen Strukturen, d. h. unterschiedlichen Fligereihenfolgen der ZKs, konfiguriert wer-
den. Diese alternativen, in der MSTL vorgesehenen Strukturen werden im Folgenden
als Strukturoptionen (STOs) bezeichnet. Im gezeigten Beispiel existieren zwei STOs,
die sich in der Position der Komponente mit Bezeichnung (Parameter p?¢?) ,Z1“ unter-
scheiden — in der Abbildung in griin und grau dargestellt. Der Parameter pS7° einer ZKK
legt fest, fiir welche STOs diese ZKK instanziiert werden kann: ZKK KK#, kann nur fir
STO 1 instanziiert werden und KKZ nur fiir STO 2%. Fur STO 1 wird also die Kompo-
nente Z1 zunachst mit der Komponente Z2 gefligt bevor die resultierende Baugruppe
in das Endprodukt eingeht. Fir STO 2 geht Z1 unmittelbar in das Endprodukt ein. Es
besteht offensichtlich ein enger Zusammenhang zwischen STOs in der MSTL und
Strukturalternativen (STAs) in den VSTLs die aus der MSTL konfiguriert werden. Wer-
den zwei VSTLs aus derselben MSTL mit unterschiedlichen STOs konfiguriert, kénnen
die beiden VSTLs STAs enthalten. Abbildung 4.3 zeigt fir den Beispielfall, dass das
jedoch nicht zwingend der Fall sein muss. Wirden im Beispielfall zwei VSTLs konfigu-
riert, die beide Zukaufkomponente Z1 nicht enthalten, wirden diese keine STAs

STO 1 gilt, STO 2 gilt, STO 1 gilt, STO 2 gilt,
Z1 aktiv Z1 aktiv Z1 inaktiv Z1 inaktiv

A

Strukturalternativen Keine Strukturalternativen

STO = Strukturoption

Abbildung 4.3: Konfiguration variantenbezogener Stlicklisten mit und ohne Struktural-
ternativen fur den Beispielfall in Abhangigkeit der gultigen Strukturoption

37 Eine ZKK wird somit im Konfigurationsprozess genau dann instanziiert, wenn ihr Aktivitatszustand dies vorsieht
(p*?* = wahr) und wenn die giiltige STO ihre Instanziierung zulsst.
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aufweisen, auch wenn jeweils von einer anderen STO ausgegangen wirde. Verschie-
dene STOs schlagen sich somit nicht immer in STAs konfigurierter VSTLs nieder. Bei
der datenbasierten Erstellung von MSTL entspricht jede STO der MSTL einer STA in
den eingegangenen VSTLs. Sind die STAs in den VSTLs technisch begriindet (siehe
Kapitel 2.2.2.2) kénnen die zugehdrigen STOs in der MSTL fir die Konfiguration ge-
nutzt werden. Die fiir einen Konfigurationsprozess giiltige STO (Parameter pSTOMSTL
der Produktklasse PK) kann entweder von der Vertriebskonfiguration abhangen oder
von Parametern, die nicht Teil des KM sind, wie z. B. dem produzierenden Werk.

Zwei STOs kénnen sich nicht nur, wie im Beispielfall, in der Position einer Komponente,
sondern in den Positionen beliebig vieler Komponenten unterscheiden. Auch STOs, die
die Positionen ganzer Baugruppen betreffen konnen abgebildet werden. Dazu werden
BGKs mit identisch bezeichneten Zukaufkomponenten definiert und die ZKKs je BGK
jeweils derselben STO zugeordnet. Identisch bezeichnete ZKKs an verschiedenen Po-
sitionen der MSTL, im Folgenden Multipositionen genannt, miissen im beschriebenen
Schema nicht zwingend verschiedenen STOs zugeordnet sein. Sind sie identischen
STOs zugeordnet, kdnnen sie zugleich instanziiert werden, wodurch Multikomponenten
in den aus der MSTL konfigurierten VSTLs auftreten konnen. In dem im Rahmen der
vorliegenden Arbeit verwendeten Schema kénnen STOs nicht nur in MSTLs, sondern
auch in MAPLs vorliegen, wie unten ausgefuhrt wird. Ebenso wie der Parameter
pSTOMSTL der Produktklasse PK die gliltige STO fir die Konfiguration der VSTL angibt,
geben die Parameter pSTOMAPL giner Produkt- oder Komponentenklasse die giltige
STO fir die Konfiguration des zugehérigen variantenbezogenen Arbeitsplans (VAPL)
an.

Abbildung 4.4 zeigt exemplarisch das in der vorliegenden Arbeit verwendete Schema
eines MAPL mit den mdglichen Abhangigkeiten zur MSTL in Form von Regeln fir die
Baugruppe B1 der in Abbildung 4.2 dargestellten MSTL. Jede Arbeitsvorgangsklasse
(AVK) verfligt Gber einen Parameter p4¥?%, der angibt, ob der Arbeitsvorgang (AVO) fiir
eine bestimmte Variante aktiv ist, d. h. instanziiert wird. Ggf. verfiigt sie iber weitere
Parameter p*%, die z. B. den Arbeitsplatz, an dem der AVO ausgefiihrt wird, das ver-
wendete Werkzeug oder Einstellparameter einer verwendeten Maschine angeben. Die
Parameter der AVK kénnen — wie dargestellt — grundsatzlich von den Parametern der
zugehodrigen Komponentenklasse (KK), sowie deren lber- und untergeordneten KKs,
der Produktklasse und der Vertriebskonfiguration abhangen. STOs in MAPLs kdnnen
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Abbildung 4.4: Schema des Maximalarbeitsplans und dessen Abhéangigkeiten in der

vorliegenden Arbeit

analog zur Darstellung von STOs in MSTLs durch Duplizierung von AVKs dargestellt
werden, wie z. B. im Fall der AVK von AVO A2. In Abhangigkeit der gliltigen STO?®® ist
in diesem Fall eine parallele Ausfiihrung von A2 und A3 mdglich oder nicht. Der MAPL
wird als Vorranggraph aufgefasst. Die Beziehungen zwischen seinen AVKs sind Vor-
rangbeziehungen, d. h. bestimmte AVOs missen abgeschlossen sein, bevor ein

38 STO 1 und 2 in Abbildung 4.4 sind STO eines MAPL und entsprechen damit nicht den STO der MSTL in

Abbildung 4.2.
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anderer bestimmter AVO begonnen werden kann. Vorrangbeziehungen sind transitiv,
d. h. da A1 vor A2 auf Position 1 und A2 auf Position 1 vor A4 durchgefiihrt werden
muss, muss auch A1 vor A4 durchgefiihrt werden. Auf die Darstellung von Vorrangbe-
ziehungen, die durch andere Vorrangbeziehungen impliziert werden, kann jedoch nicht
verzichtet werden, da diese im Rahmen der Konfiguration verloren gehen kénnen. Wr-
den z. B. die AVOs A2 und A3 im Konfigurationsprozess nicht instanziiert werden,
wirde im VAPL keine Vorrangbeziehung zwischen A1 und A4 bestehen und beide
AVOs konnten parallel durchgefiihrt werden.

Da die AVKs von den Parametern der MSTL abhangig sind, erfolgt die Prozesskonfi-
guration nach der Produktkonfiguration. Da keine Abhangigkeiten zwischen den
AVKs des MAPL bestehen, kann die Instanziierung der AVKs im Rahmen der Prozess-
konfiguration in beliebiger Reihenfolge erfolgen. Dabei werden auch die Parameter der
AVOs ausgepragt. Entspricht ein VAPL nach der Konfiguration einem Graphen ohne
Quelle oder ohne Senke, wird ein fiktiver Start- bzw. Endarbeitsvorgang eingefligt, der
allen Quellen vorausgeht bzw. allen Senken nachfolgt. VAPLs sind damit immer gerich-
tete, zyklenfreie Graphen mit einer Quelle und einer Senke.

Fir die datenbasierte Erstellung von LLKMs wird in der vorliegenden Arbeit von einem
LLKM ausgegangen, das durch eine MSTL, MAPLs und Regeln, wie zuvor beschrie-
ben, definiert ist.

4.1.2 Konkretisierung der Anwendungsszenarien

Im Folgenden werden, wie Abbildung 4.5 zeigt, drei Phasen der Erstellung von LLKMs
unterschieden. Die Phasen kdénnen jeweils datenbasiert oder manuell durchgefiihrt
oder ubersprungen werden. Die Erstellung des LLKM vor Inbetriebnahme des zugeho-
rigen Low-Level-Konfigurationssystems (LLKS) wird in die Phasen Initialisierung und
Finalisierung eingeteilt. Bei der Initialisierung wird auf Basis bestehender Daten oder
manuell ein LLKM erstellt, das grundsatzlich die Konfiguration von VSTLs und VAPLs
ermdglicht. Bei der Finalisierung wird dieses Modell durch die Generierung zusatzli-
cher Daten oder manuell verfeinert, sodass die geforderte Genauigkeit der erstellten
VSTLs und VAPLs erreicht wird. I. d. R. wird ein LLKM nach Implementierung in einem
LLKS noch fir einige Zeit begleitet, indem VSTLs und VAPLs, die vom LLKS generiert
werden, von Experten iiberpriift werden. Bei Bedarf werden Anderungen am LLKM vor-
genommen. Die Anpassung kann dabei, wie heute Ublich, manuell erfolgen oder eben-
falls datenbasiert. Bei der datenbasierten Anpassung nehmen Experten zunachst
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Korrekturen an der VSTL oder den VAPLs vor. Diese neuen Daten werden anschlie-
Rend zusammen mit den bestehenden Daten fiir eine erneute automatische Erstellung
des LLKM genutzt. Einzelne Phasen kdnnen ausgelassen werden. Z. B. kann auf die
Finalisierung vor dem Betrieb des LLKS verzichtet und das LLKM im Betrieb abschlie-
Rend verfeinert werden. Aus den in Abbildung 4.5 gezeigten Mdglichkeiten ergeben
sich kombinatorisch 27 verschiedene Anwendungsszenarien fir die Erstellung von
LLKMs, wobei jedoch nicht alle sinnvoll sind. Im Folgenden wird auf die sinnvollen und
fur die vorliegende Arbeit relevanten Anwendungsszenarien eingegangen. Die Szena-
rien werden mit den Abkirzungen aus Abbildung 4.5 bezeichnet.

D M 0
Vor Betrieb
des LLKS Initialisierung: (DLl Manuell Keine
. (auf bestehenden Daten) Initialisierung
Finalisierung: LI pE i Manuell Keine
: (durch Generierung weiterer Daten) Finalisierung
Im Betrieb . Keine
des LLKS Anpassung: Manuell Anpassung

LLKS = Low-Level-Konfigurationssystem

Abbildung 4.5: Moglichkeiten der datenbasierten Erstellung von Low-Level-Konfigurati-
onsmodellen je Phase der Modellerstellung

Im Szenario DMM (datenbasierte Initialisierung, manuelle Finalisierung und manuelle
Anpassung) werden bestehende Daten genutzt, um ein initiales LLKM zu erstellen.
Dadurch kann der Aufwand gegentiber einer rein manuellen Erstellung reduziert wer-
den. Aspekte des LLKM, die von der datenbasierten Methode korrekt erfasst werden,
mussen von den Experten nicht mehr eingegeben und kdnnen insbesondere nicht tber-
sehen werden. Dieses Szenario ist damit auch fir Unternehmen relevant, die liber Ex-
pertise in der Erstellung von KMs verfiigen. Im Szenario DDD wird das LLKM vollstan-
dig datenbasiert erstellt, sodass prinzipiell keine Expertise hinsichtlich LLKMs benétigt
wird. Dieses Szenario ist fur Unternehmen relevant, die Uber wenig Expertise hinsicht-
lich KMs verfiigen oder Schnittstellenprobleme zwischen Doméanenexperten und Ex-
perten fur die Wissensreprasentation (siehe Kapitel 1.1) ausschlielien mdchten. In Sze-
nario DOM wird das LLKM initial auf Basis bestehender Daten erstellt und im Betrieb
manuell angepasst. Auf eine Finalisierung vor Inbetriebnahme des LLKS wird
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verzichtet. Dieses Szenario ist u. a. relevant, wenn initial viele Daten zur Verfuigung
stehen, sodass von einer ausreichend hohen Genauigkeit des automatisch erstellten
LLKM auszugehen ist und nur wenige manuelle Anpassungen im Betrieb zu erwarten
sind. Szenario DOD stellt eine effiziente Alternative zur vollstdndig manuellen Erstel-
lung von VSTLs und VAPLs auf Basis von Vertriebskonfigurationen dar. Es ist damit fur
Unternehmen relevant, die bisher ausschlieflich einen Vertriebskonfigurator nutzen.
Das LLKM wird auf Basis bestehender Daten automatisch erstellt und schlagt VSTLs
und VAPLs vor, die durch automatische Anpassung des Modells auf Basis zusatzlicher
Daten immer genauer werden. Damit kann ohne Aufwand fiir die Erstellung eines LLKM
der Aufwand flr die manuelle Erstellung von VSTLs und VAPLs reduziert werden. Im
folgenden Kapitel wird erlautert, wie die Methoden 2 bis 5 eingesetzt werden kénnen,
um die datenbasierte Erstellung von LLKMs in den verschiedenen Phasen zu ermdgli-
chen.

4.1.3 Integration der entwickelten Methoden

Abbildung 4.6 stellt das Vorgehen flr die drei Phasen der datenbasierten Erstellung
eines LLKM bei bestehendem HLKM dar. Bei der Initialisierung eines LLKM auf Basis
von bestehenden Daten — in Blau dargestellt — wird die Erstellung der MSTL, der

Problem 2 Problem 3 Problem 4
- Methode 2 - Methode 3 - Methode 4
Dokumentierte MSTL erstellen MAPLs Regeln LLKM / LLKS
. erstellen erstellen
Varianten
@ Dominen- Problem 5
R cxperte v - Methode 5
VSTL und VSTL und Variante
VAPLs VAPLs u HLKM / HLKS
. M- auswahlen
korrigieren konfigurieren

Il Datenbasierte Initialisierung

Il Datenbasierte Finalisierung
Datenbasierte Anpassung ipdenaliiag

HLKM = High-Level-Konfigurationsmodell, HLKS = High-Level-Konfigurationssystem,
VAPL = Variantenbezogener Arbeitsplan, VSTL = Variantenbezogene Stiickliste

Abbildung 4.6: Vorgehen je Phase der datenbasierten Erstellung von Low-Level-Konfi-
gurationsmodellen
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MAPLs und der zugehdrigen Regeln jeweils einmal durchlaufen. Diesen Schritten lie-
gen die in Kapitel 1.3 beschriebenen Probleme 2, 3 und 4 zugrunde.

Im Rahmen einer datenbasierten Finalisierung — in Abbildung 4.6 in Griin dargestellt
— wird der zur Verfligung stehende Datensatz erweitert. Dafiir werden VSTLs und VA-
PLs fur Varianten erstellt, die systematisch mittels Methode 5 ausgewahlt werden. Die-
ser Prozess verlauft iterativ. Zunachst wird eine Variante ausgewahlt, die im Sinne des
aktiven Lernens (AL) einen hohen Informationsgewinn verspricht (siehe Kapitel 2.3.2).
Dies entspricht dem in der vorliegenden Arbeit betrachteten Problem 5. Das zuvor auf
Basis der anfanglich vorhandenen Daten erstellte LLKM ermdglicht bereits eine Konfi-
guration einer zugehorigen VSTL sowie von VAPLs, wenn auch nicht mit ausreichend
hoher Genauigkeit. Die durch das LLKM generierte VSTL und die generierten VAPLs
werden von einem Domanenexperten Uberprift und bei Bedarf korrigiert. Die tGberpriif-
ten VSTLs und VAPLs gehen zusammen mit der durch ihre Vertriebskonfiguration be-
schriebenen Variante in den Pool der verfligbaren Daten ein. Mit diesen zuséatzlichen
Daten kann das LLKM neu erstellt werden, wobei eine héhere Genauigkeit zu erwarten
ist. Es wird eine weitere Variante ausgewahlt und der Prozess fortgesetzt, bis ein be-
stimmtes vom Unternehmen festzulegendes Abbruchkriterium erreicht ist. Je héher die
Anzahl der Iterationen, desto hoher die Genauigkeit des LLKM, desto héher jedoch
auch der Aufwand. Die in Kapitel 5.4.2 vorgestellten Ergebnisse der im Rahmen der
vorliegenden Arbeit durchgeflihrten Experimente kdnnen fiir eine Einschatzung der be-
nétigten Datenmenge genutzt werden. AuRerdem kdnnen je nach Anwendungsfall ver-
gleichbare Experimente an verwandten LLKMs durchgeflihrt werden, um eine geeig-
nete Datenmenge zu ermitteln. In diesem Prozess missen VSTLs und VAPLs durch
die Domanenexperten nicht neu erstellt, sondern nur Uberprift und evtl. korrigiert wer-
den. Damit ist der Aufwand fir die Bereitstellung einer bestimmten Menge von Doku-
menten nicht mit dem Aufwand fiir die Erstellung dieser Menge von Dokumenten gleich-
zusetzen. Darlber hinaus nimmt der Aufwand fir die Korrektur der VSTLs und VAPLs
mit jedem Durchlauf ab, da die durch das LLKM erstellten Dokumente immer genauer
werden.

Die datenbasierte Anpassung des LLKM im Betrieb — in Abbildung 4.6 in Grau darge-
stellt — verlauft analog zur datenbasierten Finalisierung. Dabei werden jedoch Varianten
nicht systematisch ausgewahlt, sondern ergeben sich aus Kundenauftragen.
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Bei allen drei Schritten werden die Methoden 2, 3 und 4 nacheinander durchgefihrt.
Abbildung 4.7 zeigt, wie diese aufeinander aufbauen®. Zunachst liegt je Variante eine
Vertriebskonfiguration, d. h. eine Auspragung der Produktmerkmale, sowie eine VSTL
und je Eigenfertigungskomponente dieser Variante ein VAPL vor (1). Die Gesamtheit
der VSTLs dient als Basis fiir die datenbasierte Erstellung der MSTL mittels Methode 2
(2). Im Zuge der Erstellung der MSTL werden Komponenten der VSTLs, die dieselbe
Funktion erflllen, zusammengefasst, wie z. B. die Baugruppen B1, B3 und B5. Die VA-
PLs zusammengefasster Komponenten bilden einen Datenpool fiir die Erstellung von
MAPLs fur diese Komponenten mittels Methode 3. Die Erstellung von MAPLs erfolgt

Varianten mit zugehérigen VSTL und VAPL Regeln erstellen (Methode 4)
] —
Variante 1

AkZu
X, -
=1 Pll(varL,, > X2 7 P,

X, =0
J

MAPL MAPLy,
Variante 2 VSTL2 VAPLp, — —

virt,.  ERirs,) Lot Tt ] ] o TG i

X1 X2 |p [Pz, || PAVE: PABKi |-
Variante 3 VSTL3 P3 1 0 ..l 0 - L1 10
. 1 1 L1 1 . o -
x =0 SN (VAPLgs LI | VAP Lo 0 1 L] 1 1 [.] o
x=1
: (2 ]2 ]z ]z ] o] Features Labels
MSTL erstellen (Methode 2) > MAPL erstellen (Methode 3)
——— ——

MAPL = {q itsplan, MSTL = VAPL = Vari; VSTL = Vari Stiickliste, STO = Strukturoption

Abbildung 4.7: Integration der Methoden 2, 3 und 4

39 Abbildung 4.7 nutzt gegeniiber der Darstellung in Kapitel 4.1.1 eine vereinfachte Darstellung, die Komponenten
lediglich mit ihrer Position und Bezeichnung und KK lediglich mit ihnrem Namen darstellt. Dies bedeutet nicht, dass
die Objekte bzw. Klassen keine weiteren Parameter aufweisen kdnnen.
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somit fiir das Produkt und jede Eigenfertigungskomponente, wobei die Reihenfolge der
Betrachtung beliebig ist. Die resultierenden MAPLs werden den entsprechenden Kom-
ponenten der MSTL zugeordnet (3). Liegen die MSTL und die MAPLs vollstandig vor,
sind alle Elemente des LLKM sowie deren Parameter bekannt und es kénnen Abhan-
gigkeiten, in Form von Regeln zwischen diesen, datenbasiert erstellt werden (4). Dafiir
werden die Parameter des KM, d. h. des HLKM, der MSTL und der MAPLs, in einer
Tabelle zusammengefasst, wie in Abbildung 4.7 (4) beispielhaft zu sehen. Fir jeden
Parameter wird eine Regel*° erstellt, die angibt, wie der Parameter von den Produkt-
merkmalen oder den anderen Parametern des KM abhangt. Im Sinne des liberwachten
Lernens (SL) (siehe Kapitel 2.3.2) stellt der zu pradizierende Parameter ein Label dar.
Die Merkmale oder Parameter, von denen er abhangt, entsprechen Features, d. h. beim
Lernen von Regeln liegt ein Single-Label-Problem vor.

In den folgenden Kapiteln werden die hier eingeordneten Methoden 2 bis 5 zur Umset-
zung von Methode 1 erlautert.

4.2 Methode 2: Datenbasierte Erstellung von Maximalstiicklisten

Im Folgenden wird die im Rahmen der vorliegenden Arbeit entwickelte Methode 2 zur
Lésung des Problems 2 — der datenbasierten Erstellung von MSTLs — vorgestellt. Me-
thode 2 behebt das in Kapitel 3.2.3 beschriebene Losungsdefizit nach Stand der For-
schung. Ausgehend von einer Menge S"5TL von VSTLs (siehe Kapitel 4.1.3, Abbildung
4.7) wird eine MSTL erstellt. Es wird davon ausgegangen, dass jede ZK einer VSTL
eine Bezeichnung aufweist, wie z. B. eine Materialnummer in einem Enterprise-Re-
source-Planning-System (ERP-System), die ihren Typ wie z. B. ,Halterung 123" ein-
deutig festlegt. Abbildung 4.8 gibt einen Uberblick tiber die 5 Schritte der Methode 2. In
Schritt 1 wird eine MSTL erstellt, indem Komponenten zu KKs zusammengefasst wer-
den — zunachst ohne Berlicksichtigung der Parameter der KKs. Die MSTL wird so er-
stellt, dass sie hinsichtlich der Anzahl ihrer ZKKs minimal ist. In Schritt 2 wird ermittelt,
welche STOs in der MSTL vorzusehen sind, um die STAs der VSTLs aus SVt abzu-
bilden. In Schritt 3 wird durch einen Experten Uberprift, ob die ermittelten STOs Hin-
weise auf Inkonsistenzen im Datensatz darstellen oder tatsachlich im Konfigurations-
prozess zu bertcksichtigen sind. In Schritt 4 werden die Parameter der KKs und deren

40 Eine solche Regel muss nicht genau einem Monom entsprechen, wie die Regeln einer Regelmenge im Sinne
von Rudin et al. (2022, siehe Kapitel 3.4.2). Sie kann z. B. auch eine Disjunktion mehrerer Monome sein und
damit einer Regelmenge entsprechen.
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mogliche Auspragungen aus den Parametern ihrer origindren Komponenten und deren
Auspragungen abgeleitet. In Schritt 5 werden ahnliche ZKKs durch eine Superklasse
generalisiert. Die Schritte werden nacheinander durchlaufen, wobei die Schritte 3 und
5 optional sind. AbschlieRend liegt eine MSTL, wie in Kapitel 4.1.1 beschrieben, vor,
aus der alle VSTLs aus S"STt konfiguriert werden kénnen. Die flinf Schritte werden im
Folgenden erlautert.

optional optional

Sl 18 Schritt 2: STOs Schritt 3: STOs Sehritt 4 Schritt 5: ZKKs

generalisieren

SVSTL

Minimale MSTL Parameter der

bestimmen prifen

erstellen KKs definieren

SR LR e --%

MSTL = lickliste, STO = Strukturoption, ZKK = Zukaufkomponentenklasse

Abbildung 4.8: Uberblick {iber die Schritte der Methode 2

4.2.1 Schritt 1: Minimale Maximalstiickliste erstellen

Schritt 1 greift auf den im Rahmen der vorliegenden Arbeit entwickelten und in Anhang
3.1 beschriebenen Algorithmus AlgMS™ zuriick. Dieser ist in der Lage, aus einer Menge
von VSTLs ohne Multikomponenten und ohne STAs eine MSTL zu erstellen, aus der
alle eingehenden VSTLs konfiguriert werden kdnnen. Fir VSTLs mit Multikomponenten
ist AIgMST nicht anwendbar. Fiir VSTLs mit STAs gibt AlgMS™ keine Ldsung zurtick,
wodurch AlgMST- auch genutzt werden kann, um zu tberprifen, ob STAs in einer Menge
von VSTLs vorliegen. Aufgrund seiner Einschrankungen kann er jedoch nicht unmittel-
bar genutzt werden, um aus einer Menge von VSTLs mit Multikomponenten oder STAs
eine MSTL zu erstellen.

Die Idee hinter dem ersten Schritt der Methode ist deshalb, die gegebenen VSTLs aus
SVSTL g0 zu adaptieren, dass sie keine Multikomponenten und keine STAs mehr auf-
weisen und anschlieRend daraus mittels AlgMS™ eine MSTL zu erstellen. Abbildung 4.9
veranschaulicht diese Idee. Die ZKs der initial vorliegenden VSTLs 1, 2 und 3 sind zur
Referenz rémisch nummeriert. Die VSTLs in Abbildung 4.9 (1), weisen Multikomponen-
ten auf, wie z. B. ZK Z3 in VSTL 2. AulRerdem tritt die Komponente Z2 in VSTL 2 und
VSTL 3 an verschiedenen Positionen auf. Somit entsprechen VSTL 2 und VSTL 3 ent-
weder verschiedenen STAs oder es kdnnen bis zu zwei Positionen Z2 im Endprodukt
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existieren, wobei je eine andere bei VSTL 2 und VSTL 3 aktiv ist. AlgMST ist fur den

Beispielfall nicht unmittelbar anwendbar.

Ex ante ist nicht bekannt, welche ZKs der VSTLs Instanzen derselben Klasse der zu
erstellenden MSTL sind. Dies kann jedoch — wie im Folgenden erlautert — prognostiziert
werden. Auf Basis dieser Prognose kénnen ZKs Uber ihre Bezeichnung hinaus mit einer
Nummer annotiert werden, die der Position ihrer Klasse in der MSTL entspricht. Diese
Nummer wird im Folgenden Klassennummer (KN) genannt. Durch die Klassennum-
mern werden identisch bezeichnete ZKs unterscheidbar, wodurch Multikomponenten
und STAs aufgeldst werden kdnnen. Die Subskripte der Zukaufkomponentenbezeich-
nungen in Abbildung 4.9 (2) entsprechen den KNs der ZKs. Die Verbindung aus Be-
zeichnung und KN einer ZK wird im Folgenden als Label dieser ZK bezeichnet. Verfiigt
eine ZK noch Uber keine KN entspricht ihr Label ihrer Bezeichnung. Nach vollstandiger
Annotation waren alle ZKs einer VSTL durch ihre Labels unterscheidbar, sodass keine
Multikomponenten mehr vorldgen. Da auflerdem ZKs derselben Klasse immer an der-
selben Position Uber alle VSTLs hinweg auftraten, lagen auch keine STAs mehr vor.
Um also mittels AlgMST- eine MSTL erstellen zu kénnen, ist eine Annotation der ZKs mit
KNs zu bestimmen, sodass keine Multikomponenten und keine STAs vorliegen. Eine
solche Annotation wird im Folgenden als zulassige Lésung bezeichnet. Jedes in den
annotierten VSTLs auftretende Label entspricht abschlieRend einer ZKK der zu erstel-
lenden MSTL.

VSTL 1 VSTL 2 VSTL 3
! !
(1) [ ] [2 ] [83 ] [+ ] [ 56 ]
[zs |22 |[23 [z | [zt |[25 |[2z |[25 |[2¢ | [Zt |[22 |[ 25 |[ 25 |[ 24 ]
| I 1 \Y \ VI \i VIl IX X Xl Xl Xl XV
VSTL 1 VSTL 2 VSTL 3
! !
(2) [ ] [52 | [53 | [+ | [ 56 ]
[z1, [ 22, |23, |z | [20, |23 N 2z20 || 23, |[ 24 | 22, |[ 22, ([ 23, [ 23, |[ 24, ]
| I 1 v \ VI Vil VIl IX X Xl Xl pll XV

VSTL = Variantenbezogene Stickliste

Abbildung 4.9: Umwandlung von variantenbezogenen Stucklisten mit Multikomponen-
ten und Strukturalternativen (1) in variantenbezogene Stlicklisten ohne Multikomponen-
ten und ohne Strukturalternativen (2)
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Es existiertimmer eine triviale zuldssige Lésung, in der alle ZKs Uber alle VSTLs hinweg
mit unterschiedlichen KNs annotiert sind. Aus dieser resultiert jedoch eine groRe Anzahl
verschiedener Labels und damit eine groBe Anzahl von ZKKs in der MSTL. Darliber
hinaus kénnten aus dieser MSTL ausschlieRlich die gegebenen VSTLs sowie Teilgra-
phen davon abgeleitet werden. Im Sinne des maschinellen Lernens (ML) weist diese
Lésung eine Uberanpassung an die gegebenen Daten auf. Nach dem in Kapitel 2.3.2
eingefuhrten Prinzip wird deshalb das komplexitatsminimale Modell, das die Daten
abbildet, d .h. diejenige MSTL mit der geringsten Anzahl von ZKKs, aus der alle gege-
benen VSTLs konfiguriert werden kénnen, gesucht. Die in Abbildung 4.9 (2) dargestelite
Ldésung ist zulassig und geht von sechs ZKKs aus — je eine ZKK Z1 und Z4 und je zwei
ZKK Z2 und Z3. Eine zulassige Losung mit weniger als sechs ZKKs existiert in diesem
Fall nicht, weshalb die dargestellte L6sung optimal ist. Es ist prinzipiell méglich, eine
optimale Lésung durch vollstdndige Enumeration zu ermitteln. Dabei wirde fiir alle
moglichen Lésungen Uberpriift, ob diese zulassig sind und abschlielend diejenige Lo-
sung mit der geringsten Anzahl unterschiedlicher Labels ausgewahlt. Die Anzahl még-
licher KNs je Bezeichnung ist nur durch die Anzahl von ZKs*' mit dieser Bezeichnung
Uber alle gegebenen VSTLs hinweg begrenzt ist. Dadurch wachst die Menge zu Uber-
prifender Losungen exponentiell mit der Anzahl der ZKs in den gegebenen VSTLs.
Eine solche triviale Methode scheitert deshalb fir relevante Problemstellungen an der
Recheneffizienz. Schritt 1 der Methode nutzt deshalb den effizienten Algorithmus Al-
gMinMSTL Zzyr optimalen Annotation von ZKs. Nach der Anwendung von AlgMnMSTL wird
mittels AlgMST- eine MSTL erstellt, aus der alle VSTLs aus SVSTL konfiguriert werden
kénnen. AlgMnMSTL findet sich in Anhang A3.3 als Pseudocode. Er besteht aus einer
Initialisierung sowie lterationen, was in den folgenden Kapiteln erlautert wird.

4.2.1.1 Initialisierung von Algorithmus AlgMinMSTL

AlgMnMSTL heginnt mit einer Initialisierung, in der die Reihenfolge festgelegt wird, in der
die ZKs aus den VSTLs annotiert werden.

41 Wenn hier und im Folgenden von der Anzahl von Komponenten gesprochen wird, ist damit immer die Anzahl
der entsprechenden Objekte in der STL gemeint. Die Menge, in der die Komponenten je Position in ihre Giberge-
ordneten Komponenten eingehen, ist — wie in Kapitel 4.1.1 beschrieben — ein Attribut des Objekts und wird dabei
nicht berlcksichtigt.
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4.21.1.1 Problematik der Betrachtungsreihenfolge

Die Entscheidung tber die Annotation von ZKs kann sequenziell getroffen werden. Da-
mit ergibt sich ein Suchbaum, in dessen Knoten — im Folgenden Entscheidungsknoten
genannt — jeweils Uber die Annotation einer ZK entschieden wird. Da eine ZK durch die
Annotation ein neues Label erhalt, kann jede Entscheidung auch als Entscheidung tber
das neue Label der ZK verstanden werden. In der Wurzel des Suchbaums wurden
noch keine, in den anderen inneren Knoten einige und in den Blattern alle ZKs in VSTLs
aus SVST! annotiert. Jedes Blatt des Suchbaums entspricht somit einer Losung. Den
Suchbaum vollstandig zu traversieren entspricht der oben beschriebenen vollstandigen
Enumeration und ist nicht effizient. Die vorliegende Methode nutzt deshalb zum einen
eine heuristische Tiefensuche, um schnell gute Lésungen zu finden. Zum anderen
nutzt sie Pruning, um Teilbdume des Suchbaums von der Betrachtung auszuschlie-
Ren, die keine besseren Ldsungen als die beste bereits bekannte Lésung enthalten
kénnen.

Welche KN der betrachteten ZK in einem Entscheidungsknoten zugeordnet wird ent-
scheidet dartiber mit welchem untergeordneten Entscheidungsknoten die Suche fort-
gesetzt wird. Jeder untergeordnete Entscheidungsknoten entspricht der Wurzel eines
Teilbaums des gesamten Suchbaums. Nach dem Prinzip der Tiefensuche, das in der
Methode angewandt wird, wird zun&chst dieser Teilbaum vollstdndig durchsucht. Falls
auf einer hohen Ebene des Suchbaums eine ungunstige Annotation vorgenommen
wird, fihrt das dazu, dass viel Rechenkapazitat dafiir aufgewandt wird, Teilbdume des
Suchbaums zu durchsuchen, die keine guten Losungen enthalten. Deshalb ist die Be-
trachtungsreihenfolge der ZKs, die im Rahmen der Initialisierung festgelegt wird, ent-
scheidend fiir die Effizienz des Algorithmus. Um Fehlentscheidungen auf hohen Ebe-
nen zu vermeiden, ist es sinnvoll, zundchst Uber diejenigen Annotationen zu entschei-
den, fir die die Wahrscheinlichkeit falscher Entscheidungen gering ist. Insbesondere
lassen sich ZKs mit Bezeichnungen, fiir die nur eine oder wenige Klassen in der zu
erstellenden MSTL existieren, mit héherer Sicherheit korrekt annotieren als solche, fiir
die viele Klassen existieren. Die Anzahl der Klassen je Bezeichnung in der MSTL ist
jedoch ex ante nicht bekannt, da die zu erstellende MSTL nicht bekannt ist. Im zuvor
eingefiihrten Beispiel ist z. B. bekannt, dass es mindestens zwei Klassen mit Bezeich-
nung Z3 in der MSTL geben muss, da z. B. die beiden Komponenten Z3 in VSTL 2 nicht
aus derselben Klasse instanziiert worden sein kdnnen. Da die Bezeichnung Z3 insge-
samt finfmal auftritt, kbnnen jedoch auch bis zu fiinf Klassen Z3 in der MSTL vorliegen.
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Analog gilt z. B., dass die Klassenanzahl fur Z2 in der MSTL zwischen 1 und 3 liegen
muss. Um im Rahmen der Initialisierung von AlgM™STL eine effiziente Betrachtungsrei-
henfolge festlegen zu kénnen, wird deshalb zunéchst je Bezeichnung [ die Anzahl nf7%!
an ZKKs mit dieser Bezeichnung in der MSTL prognostiziert. Dafiir wird ein Distanz-
maB zwischen ZKs derselben Bezeichnung verwendet, um einschatzen zu kdnnen,
welche ZKs wahrscheinlich aus derselben ZKK der letztlichen MSTL instanziiert wer-
den. Dieses wird im Folgenden vorgestellt.

4.21.1.2 Distanzen von Zukaufkomponenten

Das entwickelte Distanzmal basiert auf der Kontextdhnlichkeit von ZKs. Abbildung
4.10 zeigt die Distanzen fir den Beispielfall und eine beispielhafte Berechnung. Da
VSTLs eine Baumstruktur aufweisen, verfugt jedes Blatt, d. h. jede ZK, Uber genau ei-
nen Pfad zur Wurzel, d. h. zum Produkt. Ausgehend von der ZK selbst, wird die ZK in
jedem Knoten ihres Pfads mit anderen ZKs gefligt. Z. B. wird ZK | mit Bezeichnung Z1
zunachst im Knoten der der Baugruppe B1 entspricht mit der ZK Il (Z2) gefliigt und
anschlieBend im Knoten der dem Produkt entspricht mit den ZKs Ill (Z3) und IV (Z4).

zZ1 | | vV X z2 IV Xl Z3 |l vE viIE X Xl Z4 ’ vV X XV
| 0 05 0 1l 0 05 0 myo 05 1 0 05 V{0 05 0
V|05 0 033 vil|{o5 0 0,67 VI |05 0 067 0,33 0,67 IX {05 0 033
X | 0 033 0 Xl | 0 067 0 vili| 1 067 0 0,67 0,33 XIVi 0 033 0

Xll| o 033067 0 067

Xl 05 0,67 0,33 067 0

*Beispiel: Berechnung der Distanz dZvon | und V:

Pfad I: Pfad V: Ubereinstimmender Pfad:
[z=1||[(z]z] |[=]||zdlz]lz] Bz
B P B3 P sl =2
Potentielle Ubereinstimmung Relative Ahnlichkeit:
GeP.
Anz. 72 Anz. Z3 Anz. Z4 e max(0sy =1) max(02-1) 05
| 1 1 1 Sty = G _q . 3-1_ 7
v 1 2 1 _ w
Min 1 1 1 Distanz:
8 =3 dFf = 1-sE =05

Abbildung 4.10: Berechnung der Distanzen zwischen Zukaufkomponenten auf Basis
ihrer Kontextahnlichkeiten im Rahmen von AlgM"™STL fijr den Beispielfall
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Ge

Um die Distanz zweier ZKs i und j zu ermitteln, wird der Grad s;’; "I der Ubereinstim-

mung zwischen ihren Pfaden ermittelt, d. h. die Ubereinstimmung ihrer Fiigereihen-

folge. Es werden daflr aus den Knoten beider Pfade so wenig Labels wie moglich ent-
GePf
ij

bels im resultierenden gemeinsamen Pfad. Die Pfade | und V stimmen beispielsweise
Uberein, wenn aus dem Pfad der ZK | (Pfad I) der Knoten B1 und aus dem Pfad der ZK
V (Pfad V) der Knoten B3 sowie aus dem Knoten P das Label Z2 entfernt wird. Beide

Pfade enthalten nun einen Knoten, der wiederum zwei Labels — Z3 und Z4 — enthalt.

Damit ergibt sich s/ = 2.

fernt, um beide Pfade identisch werden zu lassen. s entspricht der Anzahl der La-

Die Berechnung des gemeinsamen Pfads mit der gréRten Ubereinstimmung weist Ahn-
lichkeit zu einem Longest Common Subsequence-Problem*? auf. Es kann ebenso
wie das Longest Common Subsequence-Problem mittels dynamischer Optimierung
effizient gelost werden. Eine Erlauterung sowie der Pseudocode des entsprechenden,
im Rahmen der vorliegenden Arbeit entwickelten Algorithmus, Alg®™Pfd findet sich in
Anhang A3.2. Der Grad der Ubereinstimmung wird normalisiert, indem er durch den
Grad der maximal méglichen Ubereinstimmung $¢¢*/ dividiert wird. Der gemeinsame
Pfad kann nicht mehr ZKs eines Labels enthalten als die geringere Anzahl von ZKs mit
diesem Label in den beiden Pfaden. Es gilt also fur die Pfade zweier ZKs i und j im
Allgemeinen

41

rGePf __

PfLa _Pfla
;i

min(n; ", n; )
kesLazk

wobei SL42K der Menge aller Labels von ZKs in den VSTLs in SVSTL entspricht und nfi“‘

einen Parameter darstellt, der angibt, wie oft ein Label k in einem Pfad i auftritt. Enthalt

der gemeinsame Pfad genau ein Label, liegt keine Ubereinstimmung im Sinne einer

GePf

identischen Abfolge von Labels vor. Um das zu berlcksichtigen, werden s; ;" und sein

Normierungsdivisor $/¢"" um 1 korrigiert. Fir 7" > 1 ergibt sich damit folgendes nor-

miertes MaB s7f fiir die Ahnlichkeit zweier ZKs i und j:

GePf _ 4.2
i ax@s; 7~ 1)
ij 26ePf _ 1

ij

42 Flr Longest Common Subsequence-Probleme sei auf Bergroth et al. (2000, S. 39-40) verwiesen.
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Fiir 77"/ < 1, d. h. falls beide Pfade zu wenige gemeinsame Labels enthalten um eine
Aussage Uber ihre Ahnlichkeit treffen zu kénnen, wird s7f = 1 angenommen. Da s/f

normiert ist, kann durch
dij = 1-sif 4.3

eine normierte Distanz zweier ZKs i und j bestimmt werden. Das so berechnete Dis-
tanzmal} lasst eine Aussage Uber die Undhnlichkeit des Kontextes, in denen Kom-
ponenten in ihren VSTLs auftreten, zu. Es wird eher davon ausgegangen, dass zwei
ZKs nicht aus derselben ZKK der MSTL instanziiert werden, wenn sie in unterschiedli-
chen Reihenfolgen mit anderen ZKs gefligt werden. Eine Herausforderung bei der Er-
mittlung der Ahnlichkeiten von Pfaden in VSTLs ist, dass zu Beginn alle Labels der ZKs
den Bezeichnungen der ZKs entsprechen. Es ist somit nicht klar, ob identische Labels
in den Pfaden auch dieselben KKs in der MSTL referenzieren, d. h. die Referenzen des
Males sind verzerrt. Je groRer der Datensatz, desto geringer ist der Einfluss von un-
systematischer Nichtlbereinstimmung und desto genauer ist das MafR. AuRerdem
steigt die Gite des Males, je mehr Annotationen vorliegen.

Sind fur eine bestimmte Bezeichnung die Distanzen der zugehdrigen ZK bekannt, kann
die Anzahl von ZKKs je Bezeichnung prognostiziert werden.

421.1.3 Prognose der Anzahl von Zukaufkomponentenklassen je Bezeich-
nung

Elemente auf Basis ihrer Distanzen zu gruppieren ist als Clustering eine zentrale Prob-
lemstellung des unlberwachten Lernens (UL, siehe 2.3.3). Die Prognose der Anzahl
von Klassen je Bezeichnung kann damit auf die Ermittlung einer optimalen Clusteran-
zahl im Rahmen des UL zurlickgeflihrt werden. Die maximale Anzahl von Clustern,
n¢tMax st trivial durch die Anzahl zu clusternder ZKs gegeben. Entsprechend des in
der Literatur gebrauchlichen Vorgehens (siehe z. B. Xu et al. 2016, S. 1493) wird fir
jede Clusteranzahl zwischen 1 und n¢™9* ein Clustering vorgenommen und die Giite
der resultierenden Clusterings verglichen. Das Clustering erfolgt in Methode 2 agglo-
merativ hierarchisch nach dem Average-Linkage-Kriterium*3. Als Mal fiir die Giite wird
dM? | die mittlere Intraclusterdistanz, d. h. die mittleren Distanzen der ZKs eines
Clusters gemittelt Gber alle Cluster, verwendet. Diese nimmt mit zunehmender Cluster-
anzahl tendenziell ab (siehe Abbildung 4.11). Bei einer bestimmten Clusteranzahl bildet

43 Fir eine Erlauterung dieses Verfahrens sei auf Miyamoto (2022, S. 19-24) verwiesen.
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sich jedoch ein sog. Elbow, auch Knee genannt, aus, d. h. ein Punkt, ab dem die weitere
Erhdhung der Clusteranzahl die Intraclusterdistanz nur noch geringfiigig reduziert. Die-
ser kann fiir diskrete Funktion nach Satopaa et al. (2011) als Punkt mit grof3tem ortho-
gonalem Abstand zu einer Diagonalen bestimmt werden (sog. Kneedle-Verfahren). In
der vorliegenden Arbeit wird die Diagonale als Verbindung der Punkte (0, 1) sowie
(nt™Max - 0) definiert. Fir das vorliegende Beispiel ergibt sich fiir Bezeichnung Z2 eine
optimale Clusteranzahl von 2, indem die ZKs Il und Xl| zu einem Cluster und VIl zu
einem anderen Cluster zusammengefasst werden. Die mittlere Intraclusterdistanz ist 0,
d. h. eine Erhéhung der Clusteranzahl wiirde das Clustering nicht weiter verbessern.

| z1 72 73 74
P! 1 2 2 1
G 0,28 0 0,31 0,28

*Beispiel: Berechnung der erwarteten Clusteranzahl fur Z2:

N 1
£ 08
29 06 _
g % 04 .Elbow bei 2
‘_2? 0’3 Anz. Cluster
= 0 1 ({11, VI, X1}) 2 ({1, X1y, {vI1}) 3 ({uy, vy, {X13)

Abbildung 4.11: Ermittlung der prognostizierten Klassenanzahl mittels Kneedle-Verfah-
ren im Rahmen von AlgM"MSTL f{ir den Beispielfall

Es ist somit im Rahmen der Unsicherheit des DistanzmalRes, wie oben beschrieben,
davon auszugehen, dass in der MSTL tatsachlich zwei Klassen mit Bezeichnung Z2
vorliegen. Auf Basis der prognostizierten Klassenanzahl sowie der Bewertung d™/¢P
des optimalen Clusterings kann die Betrachtungsreihenfolge festgelegt werden.

4.21.1.4 Festlegung der Betrachtungsreihenfolge

Wie in Kapitel 4.2.1.1.1 erlautert, ergibt sich die Betrachtungsreihenfolge primar aus
der prognostizierten Klassenanzahl. Sekundar wird die Intraclusterdistanz d"/?
herangezogen. Falls also zwei ZKs in der Anzahl prognostizierter Klassen ihrer Be-
zeichnung Ubereinstimmen, werden zunachst ZKs mit geringem d™/¢? betrachtet, da
deren Neigung zu einer héheren Klassenanzahl geringer ist. Liegt auch hier eine Uber-
einstimmung vor, werden ZKs die aus gréfleren VSTLs stammen vor solchen aus klei-
neren VSTLs betrachtet. Dafir wird jeder ZK ein Wert n7:¢" zugeordnet, der die An-
zahl von ZKs in derselben VSTL angibt. Werden ZKs aus grof’en VSTLs falsch
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zugeordnet, hat dies tendenziell einen grofRen Einfluss auf die Zuldssigkeit der Zuord-
nung. Ein solcher Fehler kann deshalb schnell automatisch entdeckt werden (siehe Ka-
pitel 4.2.1.2.3). Liegt auch fiir n7:¢" eine Ubereinstimmung vor, wird willkiirlich nach
kleinerem Index entschieden. Fir den Beispielfall ergibt sich somit die in Abbildung 4.12
gezeigte Betrachtungsreihenfolge. Auf Basis der Betrachtungsreihenfolge kann der
Suchbaum in aufeinanderfolgenden Iterationen traversiert werden.

| v IX X XV | v Vi
Prioritat 1:  nP7K! 1 1 1 1 1 1 2
Prioritat 2: dM¢? | 0,28 0,28 0,28 0,28 0,28 0,28 0
Prioritat 3: nSTLC™ | 5 5 5 5 4 4 5

| 1l VI vk X Xl
2 2 2 2 2 2
0 031 031 031 0,31 0,31
4 5 5 5 5 4

X
2
0
5

Abbildung 4.12: Festlegung der Betrachtungsreihenfolge der Zukaufkomponenten im
Rahmen von AlgM"MSTL fijr den Beispielfall

4.2.1.2 Iteration von Algorithmus AlgMnVsSTL

Eine Iteration entspricht einer Entscheidung im Suchbaum. Im Folgenden wird der Ab-
lauf einer lteration erlautert.

4.21.21 Ablauf einer Iteration

Die Baumsuche folgt der in der Initialisierung festgelegten Betrachtungsreihenfolge. Im
Beispielfall wird also zuerst Uber die Annotation der ZK V entschieden. Im Folgenden
wird eine lteration von AlgMnMSTL am Beispiel der Iteration 10 des Beispielfalls erlautert,

SVSTL

VSTLA1 VSTL 2 VSTL 3
(56 |
[ )[z2][zs [z ] [zn)[z3 )72 (23 J[za ] [20 (22 (25 |[25 [z |
| I} 1 \Y) V VI Vil Vil IX X Xl Xl Xl XIvV

Suchbaum

#: Aktion

VSTL = Variantenbezogene Stiickliste

Abbildung 4.13: Vorgenommene Annotationen und Zustand des Entscheidungsbaums
im Rahmen von AlgMnMSTL fiir den Beispielfall zu Beginn von Iteration 10
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da sich diese gut eignet, um das Vorgehen zu veranschaulichen. In Iteration 8 wurde
die ZK XI mit 1 annotiert. Diese Entscheidung wurde anschlieffend verworfen und ZK
Xl in Iteration 9 mit 2 annotiert. Es ergibt sich der in Abbildung 4.13 gezeigte Zustand
der VSTLs und der gezeigte Suchbaum als Ausgangslage fur Iteration 10. In lteration
10 wird entsprechend der Betrachtungsreihenfolge lber die Annotation der ZK Il mit
Bezeichnung Z2 entschieden.

4.21.2.2 Ermittlung der zuldssigen Aktionen und Auswahl einer Aktion

Zunachst werden die zuldssigen Aktionen im gegebenen Entscheidungsknoten be-
stimmt und bewertet. Eine Aktion entspricht dem Annotieren der betrachteten ZK mit
einer bestimmten KN, d. h. dem Zuordnen eines bestimmten Labels. Wird eine KN ge-
wahlt, mit der bisher noch keine ZK derselben Bezeichnung annotiert wurde, entsteht
ein neues Label und damit eine neue ZKK in der letztendlichen MSTL. Um zuerst Teil-
baume zu durchsuchen, die eine geringe Komplexitat der MSTL erwarten lassen, wird
nur dann ein neues Label eingefuhrt, wenn der ZK kein bestehendes Label zugeordnet
werden kann. Dabei sind verbotene Aktionen des Entscheidungsknotens zu beruck-
sichtigen. Hierbei handelt es sich um Aktionen, die in diesem Entscheidungsknoten be-
reits zuvor ausgefihrt und verworfen wurden. Auflerdem ist es grundséatzlich unzulas-
sig, eine ZK mit einer KN zu annotieren, mit der bereits eine ZK mit derselben Bezeich-
nung in derselben VSTL annotiert wurde. Durch diese Regel wird berlicksichtigt, dass
zwei ZK derselben VSTL nicht aus derselben ZKK der MSTL instanziiert werden kdn-
nen.

Existieren mehrere Labels, die der ZK zugeordnet werden kdnnen, ist eine optimale
Aktion zu bestimmen. Fur jedes der Labels, existiert eine Gruppe von ZKs in den
VSTLs aus SVSTt, denen dieses Label bereits zugeordnet wurde. Fir alle ZKs einer
solchen Gruppe wird angenommen, dass sie aus derselben ZKK der MSTL instanziiert
werden. Um also eine optimale Aktion zu ermitteln, ist zu untersuchen, zu welcher
Gruppe von ZKs die betrachtete ZK die geringste Distanz aufweist. Hierfiir wird das in
Kapitel 4.2.1.1.2 erlauterte Distanzmal} verwendet und je mdéglichem Label, d. h. je
Gruppe, die mittlere Distanz zu den zugehdrigen ZKs berechnet. Im Beispielfall (siehe
Abbildung 4.14) liegen fir die Bezeichnung der betrachteten Komponente, Z2, bereits
zwei verschiedene KNs vor (1 und 2). AuRerdem existieren im Entscheidungsknoten
keine verbotenen Aktionen. Damit darf kein neues Label eingefiihrt werden, sondern
es muss entweder das Label Z2;1 oder das Label Z2;2 zugeordnet werden. Die
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‘ Zulassige Aktionen bestimmen: {1,2} {— Verbotene Aktionen fiir diese Entscheidung: keine

— > ulassige Aktionen
E><|§t|e!'en Bewerten:
zulassige : Zukau-
, o KN: 1 2 komponente >
Aktionen? Zugehorig: | VI | XI ponen’
- annotieren: KN 2
Distanz: 05| 0

0: 05| 0

Abbildung 4.14: Vorgehen zur Ermittlung einer Aktion in einem Knoten des Suchbaums
im Rahmen von AlgMnMSTL fiir den Beispielfall

betrachtete ZK weist zu der ZK mit Label Z2;2 die geringste Distanz auf, woraus sich
eine Annotation mit KN 2 als optimale Aktion ergibt.

Nachdem die optimale Aktion bestimmt ist, wird die ZK entsprechend annotiert. Exis-
tieren fir einen Entscheidungsknoten keine zulassigen Aktionen, d. h. sowohl die Zu-
ordnung von bestehenden Labels als auch die Einfihrung eines neuen Labels wurden
bereits durchgefiihrt und verworfen, findet ein Backtracking statt. In diesem Fall wird
die zuletzt gewahlte Aktion riickgangig gemacht, der vorherige Entscheidungsknoten
ausgewahlt und die zuletzt gewahlte Aktion als verbotene Aktion des Entscheidungs-
knotens gespeichert. Die bisher beschriebene Vorgehensweise ermdglicht prinzipiell
das Ermitteln einer optimalen Lésung durch vollstandige Traversierung des Such-
baums. Die Effizienz der Suche kann jedoch, wie im Folgenden erlautert wird, durch
Pruning weiter erhoht werden.

4.21.2.3 Pruning

Es existieren in AlgM"™STL zwej Kriterien, auf Basis derer ein Entscheidungsknoten von
der weiteren Betrachtung ausgeschlossen werden kann. Das erste basiert auf der un-
teren Schranke bY" fiir die Komplexitat der Losungen, die aus dem Zustand im Ent-
scheidungsknoten hervorgehen kénnen. Die Anzahl der ZKKs je Bezeichnung [ in der
MSTL kann nicht geringer sein als die maximale Anzahl n}"%E an Positionen von ZKs
mit dieser Bezeichnung tber alle VSTLs aus S”5Tt hinweg, da nicht mehrere ZKs einer
VSTL aus derselben Klasse instanziiert werden kénnen. Sie kann fiir die finale Lésung
aulerdem nicht geringer sein als die Anzahl nkV5¢Z der KNs zu dieser Bezeichnung I,
die im aktuellen Zustand bereits vorliegen. Damit gilt fir die untere Schranke in einem
Entscheidungsknoten

pun — Z max(n{\/luxBJn{(NBeZ) ‘ 4.4

lesBez
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wobei $8¢% der Menge aller Bezeichnungen von ZKs in VSTLs in SVST! entspricht. Falls
bU" gréRer als die Komplexitat ™™ der besten bisher gefundenen Lésung ist, kann
ausgehend vom aktuellen Knoten des Suchbaums keine Losung mit einer geringeren
Komplexitat als die beste bisher gefundene Lésung erzielt werden. Der Knoten muss
nicht weiter betrachtet werden und es wird ein Backtracking durchgefiihrt. Wird somit
schnell eine gute Losung gefunden, muss ein groRer Teil des Suchbaums nicht be-
trachtet werden, was zur Effizienz des Algorithmus beitragt. Abbildung 4.15 zeigt das
Vorgehen fur den Beispielfall wobei sich aus den vorherigen lterationen bereits eine
Lésung mit Komplexitat 11 — d. h. eine MSTL mit 11 ZKKs — ergeben hat.

pMin =11
MaxB KNBez MaxB ,,KNBez MaxB ,,KNBez
pUn — max(ny{?, nfYPe4) + max(ngs™®, ng}"e%) + max(nys*®, nfyoe)

& .
T ma (il i) g <

max(1,1) + max(1,2) + max(2,0) + max(1,1) = 6

Abbildung 4.15: Pruning auf Basis einer unteren Schranke im Rahmen von AlgMnMSTL
fur den Beispielfall

Das zweite fur das Pruning genutzte Kriterium ist die Zulassigkeit des Zustands im
Entscheidungsknoten. Damit eine Lésung relevant ist, muss sie zulassig sein. Im Such-
baum koénnen Knoten auftreten, aus denen sich durch weitere Annotationen von ZKs
keine zuldssigen Lésungen mehr ergeben kénnen. In diesen Féllen mussen die unter-
geordneten Knoten im Suchbaum nicht betrachtet werden. Um diese Falle zu ermitteln,
wird AlgMSTt auf die VSTLs in SVSTL angewandt, wobei die VSTLs auf die bereits anno-
tierten ZKs reduziert werden. Eine solche Reduktion erfolgt, indem alle noch nicht

VSTL1 VSTL 2 VSTL 3
[21, [ 22, ] [za, ] [z1,] [22, ] [ 24, |
| 1l v \% Vi IX
L J
T
Ist der Zustand Ja
g AlghsTt zulassig?

VSTL = Variantenbezogene Stiickliste

Abbildung 4.16: Zulassigkeitspriifung im Rahmen von AlgM"™MSTL fiir den Beispielfall
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annotierten ZKs aus den VSTLs temporar entfernt werden und anschlie3end alle Bau-
gruppen ohne untergeordnete ZKs ebenfalls temporar entfernt werden (siehe Abbil-
dung 4.16). Alle annotierten Komponenten werden durch ihre Labels, d. h. ihre Bezeich-
nungen und KNs, identifiziert. Wie in Kapitel 4.2.1.2.2 beschrieben, kdnnen im Rahmen
von AlgMnMSTL keine zwei identisch bezeichneten Komponenten einer VSTL mit dersel-
ben KN annotiert werden. Damit liegen fir die reduzierten VSTLs keine Multikompo-
nenten vor und AlgMSTt ist anwendbar. Durch Anwendung von AlgMSTt kann ermittelt
werden, ob die reduzierten VSTLs STAs enthalten. Ggf. kann unterhalb des betrachte-
ten Knotens keine zulassige Losung existieren, weil STAs durch das Hinzufligen wei-
terer Annotationen nicht aufgelést werden kdnnen. In diesem Fall erfolgt ein Backtra-
cking.

4.21.2.4 Abschluss einer lteration

Zum Abschluss einer Iteration wird Gberprift, ob die in der Iteration erfolgte Annotation
eine neue beste Losung impliziert. Die h6chste Komplexitat der Lésung, die ausgehend
von einem Knoten des Suchbaums noch erreicht werden kann, die obere Schranke b°?,
wird realisiert, wenn alle noch nicht annotierten ZKs jeweils mit unterschiedlichen KNs
annotiert werden. Entsprechend kann aus jedem Zustand trivial eine Losung generiert
werden. Sei nV¥" die Anzahl noch nicht annotierter ZKs, dann gilt

ob NiAn KNBez 4.5
b + n )

=n
lesBez

Ist b°? Kkleiner als die Komplexitat b der besten bisher gefundenen Lésung wird der

Wert von bM™ durch den Wert von bh°” ersetzt und die aus dem Knoten abgeleitete

Lésung als neue beste Losung gespeichert. Wurden im betrachteten Knoten bereits

alle ZKs zugeordnet, d. h. ist der Knoten ein Blatt des Suchbaums, kann die Suche von

diesem Knoten aus nicht fortgesetzt werden und es erfolgt ein Backtracking. Abbildung

4.17 zeigt das Vorgehen fiir den Beispielfall.

—ﬁ hOb = pNiAn 4 piNBez | pkNBez 4 piiBez 4 nfNBeZ — 64+ 14+2+0+1=10 }—‘
ja bM"aktualisieren: nein .
hOb < pMing pMin .= pob — 1 Néchste
- Iteration
o

Losung speichern

pMin =11

Abbildung 4.17: Abschluss einer lteration von AlgM™STL f{ir den Beispielfall
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4.21.2.5 Terminierung von Algorithmus AlgMnMsSTL

Der Algorithmus AlgMn™STL terminiert, sobald der Suchbaum, exklusive der ausge-
schlossenen Teilbdume, vollstdndig durchsucht wurde. Dies ist genau dann der Fall,
wenn ein Backtracking zur Wurzel des Suchbaums erfolgt ist und hier keine zulassigen
Aktionen mehr existieren. Da auRerdem AlgM"™STL in der Lage ist zu jedem Zeitpunkt
die beste bisher gefundene Lésung zuriickzugeben, kdnnen weitere Gbliche Abbruch-
kriterien flir Baumsuchen verwendet werden, wie z. B. eine bestimmte Laufzeit, Anzahl
Iterationen, Zeit ohne Verbesserung von b oder Anzahl Iterationen ohne Verbesse-
rung von b, Nach Abschluss von AlgMnMSTL jiegt eine optimale Annotation der ZKs
vor. Mittels AlgMS™ kann somit eine MSTL mit geringstmdglicher Anzahl von ZKKs er-
stellt werden. Firr den Beispielfall terminiert AlgM"™MSTL nach 37 Iterationen und es ergibt

sich die in Abbildung 4.18 gezeigte
MSTL wobei die Subskripte der
B24,6 . .
Klassen Multipositionen abbilden.
[ 23, || z2, || z1 || z3, || 72, || 74 | Diese MSTL gibt noch keinen Auf-

schluss darlber, ob die zugrunde-
Abbildung 4.18: Resultierende Maximalstuckliste liegenden VSTLs STAs enthalten
nach Schritt 1 der Methode 2 fiir den Beispielfall

und ggf. welche.

4.2.2 Schritt 2: Strukturoptionen bestimmen

In Schritt 2 werden die STAs der VSTLs aus S"5Tt ermittelt und in der MSTL als STOs
abgebildet.

4.2.2.1 Problematik der Ermittlung von Strukturoptionen in einer Maximalstiick-
liste

Bei den Klassen Z2; und Z2, in der beispielhaften MSTL (siehe Abbildung 4.18) kann
es sich sowohl um STAs als auch um Multipositionen in der MSTL handeln. Entweder
kann also ZK Z2 an verschiedenen Positionen in einer VSTL auftreten oder eine VSTL
kann bis zu zwei ZKs Z2 enthalten. Welcher Fall vorliegt, kann aus den Daten nicht mit
Sicherheit geschlossen werden. Deshalb wird folgende Annahme getroffen, die im Fol-
genden als Maximalitatsannahme bezeichnet wird: Eine ZK mit einer bestimmten Be-
zeichnung kann in einer VSTL, die aus der MSTL konfiguriert werden kann, nicht ofter
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auftreten, als in einer der gegebenen VSTLs*. Je gréBer der vorhandene Datensatz
ist, desto groRer ist die Wahrscheinlichkeit, dass darin eine VSTL existiert, die die ma-
ximal mogliche Anzahl von Positionen flr eine Bezeichnung enthalt. Damit ermdglicht
die Maximalitdtsannahme, dass das vorhergesagte Modell bei zunehmender Daten-
menge gegen das tatsachliche Modell konvergiert. Aufgrund der Maximalitdtsannahme
ist es bei einer kleinen Datenmenge mdglich, dass dem Nutzer zu priifende STOs an-
gezeigt werden, die sich mit zusétzlichen Daten auflésen wirden. Diese STOs sind ggf.
vom Nutzer zu verwerfen.

Unter der Maximalitdtsannahme I8sst sich eindeutig entscheiden, ob STAs vorliegen,
jedoch nicht, wie viele STAs vorliegen und welche VSTLs eine gemeinsame Struktur
aufweisen. AlgMST fiihrt z. B. fur die VSTLs a, B und y in Abbildung 4.19 zu keiner
Lésung, d. h. die VSTLs enthalten STAs. Wird VSTL « entfernt, ergibt sich hingegen
eine Losung. Daraus kdnnte geschlossen werden, dass VSTL g und VSTL y einer STA
entsprechen und VSTL « einer anderen. Derselbe Effekt tritt jedoch auf, wenn VSTL g
oder VSTL y entfernt werden. Welche VSTLs eine gemeinsame Struktur aufweisen und
somit einer STA entsprechen, ist somit nicht eindeutig. Auch der Schluss, dass jede der
VSTLs einer eigenen STA entspricht und damit also drei verschiedene Montagereihen-
folgen fur das Produkt in den Daten existieren, ist zunéachst zuldssig. Um systematisch
Uber vorliegende STAs entscheiden zu kénnen, wird die folgende Annahme getroffen,
die im Folgenden als Minimalitdtsannahme bezeichnet wird: Es liegen in den gegebe-
nen VSTLs nicht mehr STAs vor, als notwendig sind, um den Datensatz vollstandig zu
erklaren. Diese Annahme folgt dem Prinzip eines Modells geringer Komplexitat. Fur
den Fall in Abbildung 4.19 ist so-
mit jeder genannte Schluss zul3s-

sig, der von zwei STAs ausgeht;

VSTLy z.B. konnte die Struktur von

VSTL a
VSTL = Variantenbezogene Stiickliste VSTL a und VSTL ﬁ als eine STA

angesehen werden und die von
VSTL y als eine andere. Je STA
in den betrachteten VSTLs liegt

Abbildung 4.19: Beispielhafte variantenbezogene
Sticklisten mit Strukturalternativen

4 Eine alternative plausible Annahme waére, dass grundsatzlich in den VSTL keine STAs vorliegen und Multipo-
sitionen in der MSTL immer mit mehrfach auftretenden Komponenten im Produkt einhergehen, auch wenn dieser
Fall in den VSTL nicht vorliegt. Das wiirde allerdings dazu fiihren, dass relevante Hinweise auf Fehler unberiick-
sichtigt bleiben. Aufgrund der in Kapitel 1.1 beschriebenen Auswirkungen von Fehlern in KM ist die gewahlte
Annahme somit geeigneter.
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eine STO in der datenbasiert erstellten MSTL vor. Im Sinne der Minimalitatsannahme
ist also eine MSTL mit einer minimalen Anzahl von STOs zu ermitteln, aus der sich alle
VSTLs aus SVSTt konfigurieren lassen.

4.2.2.2 Optimierungsproblem zur Ermittlung von Strukturoptionen in einer Maxi-
malstiickliste

Die STOs, die in der zu erstellenden MSTL abschlieRend vorliegen, sind ex ante nicht
bekannt. Deshalb wird fir das im Folgenden hergeleitete Optimierungsproblem eine
ausreichend groRe Anzahl n?* an STO-Platzhaltern eingefiihrt. STO-Platzhalter kon-
nen aktiv oder inaktiv sein. Jeder STO-Platzhalter, der im Zuge der Optimierung akti-
viert wird, ergibt abschlieRend eine STO in der MSTL. Nach Minimalitdtsannahme sind
also so wenige STO-Platzhalter zu aktivieren wie nétig, d. h. primares Optimierungs-
kriterium ist die Anzahl aktiver STO-Platzhalter.

Jede ZKK der MSTL aus Schritt 1 muss abschlieRend denjenigen STOs zugeordnet
sein, fur die sie instanziiert werden kann (siehe Kapitel 4.1.1). Es muss sichergestellt
werden, dass es fiir jede VSTL aus SVS™* mindestens eine STO in der MSTL gibt, die
alle ZKKs enthalt, die notwendig sind um alle ZKs dieser VSTL zu instanziieren. Das
im Folgenden hergeleitete Optimierungsproblem hat deshalb zwei Aspekte. Einerseits
werden die ZKKs der MSTL den STO-Platzhaltern zugeordnet, andererseits werden
die VSTLs aus S"S™ den STO-Platzhaltern zugeordnet. Ein STO-Platzhalter ist aktiv,
wenn ihm mindestens eine ZKK oder eine VSTL zugeordnet ist. Die beiden oben ge-
nannten Aspekte lassen sich nicht unabhangig voneinander betrachten: Falls eine be-
stimmte VSTL einer bestimmten STO zugeordnet ist, missen auch alle ZKKs, die not-
wendig sind, um diese VSTL zu konfigurieren, dieser STO zugeordnet sein.

Die Struktur aller VSTLs, die im Zuge der Optimierung demselben STO-Platzhalter zu-
geordnet werden, kann als eine STA betrachtet werden. Es kann vorkommen, dass
keine der VSTLs, die gemeinsam eine STA bilden ZKs mit einer bestimmten Bezeich-
nung enthalten. Damit kdnnte unter den oben genannten Bedingungen nicht ausge-
schlossen werden, dass nach Abschluss der Optimierung STO-Platzhalter existieren,
denen keine ZKKs mit entsprechender Bezeichnung zugeordnet sind. Damit ware es
moglich, dass abschliefiend STOs in der MSTL existieren, die nicht zulassen, dass
Komponenten mit dieser Bezeichnung Uberhaupt instanziiert werden kénnen. Dadurch
wirden STOs einen Zusammenhang zwischen der Struktur konfigurierbarer VSTLs und
den darin vorkommenden Typen von Komponenten herstellen. Dies wirde die Menge
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an konfigurierbaren VSTLs unbegriindet einschrénken und wiirde auch nicht dem ei-
gentlichen Zweck von STOs entsprechen. Um dies zu vermeiden, wird im Folgenden
das sekundare Optimierungskriterium verwendet, dass so viele ZKKs wie mdglich
einem STO-Platzhalter zugeordnet werden sollen. Damit wird auBerdem sichergestellt,
dass abschlieRend einer STO der MSTL mindestens eine ZKK je Bezeichnung zuge-
ordnet ist.

Das Optimierungsproblem lasst sich wie folgt mit den Variablen aus Tabelle 4.1 be-
schreiben. Sein prinzipieller Aufbau entspricht einem Graph-Coloring-Problem?*®, bei
dem Knoten eines Graphen unter gewissen Restriktionen Farben zugeordnet werden.

Tabelle 4.1: Variablen und Parameter des Optimierungsproblems zur Ermittlung von

Strukturoptionen in einer Maximalsttickliste

8¢z Menge der Indizes von Bezeichnungen in $5¢?
[KBez Menge der Indizes von Klassen der MSTL, die die Bezeichnung [
L tragen; aus Schritt 1 bekannt
I Menge der Indizes von STO-Platzhaltern; es gilt I** = {1, ...,n"}
JVSTL Menge der Indizes von VSTLs aus SVST%
7KK Menge der Indizes von ZKKs in der MSTL
[ZKKVSTL Menge der Indizes von ZKKs, die fiir die Konfiguration der VSTL k
k aus der MSTL bendtigt werden; aus Schritt 1 bekannt
nMaxB Parameter, der angibt, wie oft eine Bezeichnung mit Index [ maximal
L in einer VSTL aus SVST! auftritt
uf'** € {0,1} | Variable, die angibt, ob STO-Platzhalter j aktiv ist (1) oder nicht (0)
WVSTLPL ¢ (0,1} Variable, die angibt, ob VSTL k dem STO-Platzhalter j zugeordnet
k.j 74 1ist (1) oder nicht (0)
uZKKPL ¢ 10,1} | Variable, die angibt, ob die ZKK i der MSTL dem STO-Platzhalter j
b zugeordnet ist (1) oder nicht (0)

Optimierungsproblem zur Ermittlung von Strukturoptionen

(7KK % |1P1] + 1) Z uPtak _ Z Z uinIgK,Pz
jEIPl ie]ZKK jGIPl !

§ ZKK,Pl
[[ZKE| 5 yPlAk > u?t
/ terzkr

min

s.t.:

4.6

vj € IP D

45 Fiir Graph-Coloring-Probleme sei auf Méndez-Diaz & Zabala (2006, S. 826—827) verwiesen.




94 Methoden

ufih > uftr vj € 1?/{1} 2
MaxB ZKK,PL i Pl B
n/'* > Zlel{mezuz,j vjelt,viel®” (3)
VSTL,PL
Z Uy, j > 1 vk € [VSTE (€))
jEIPl

ZKK,PL ZKKVSTL VSTL,PL ,

Zielf’“‘"’s” o = i * Uej vk €15 vj e 1Pt (5)

Da stets

D e D B S0P 4 1 47
ielZKK jerp ’

gilt wird die Minimierung der Anzahl aktiver STO-Platzhalter als primares Ziel und die
Zuordnung von ZKKs zu STOs als sekundares Ziel behandelt. Nebenbedingung 1
stellt sicher, dass ein STO-Platzhalter als aktiv gilt und im Zielfunktionswert berticksich-
tigt wird, sobald ihm eine ZKK zugeordnet wurde*®. Nebenbedingung 2 besagt, dass
ein STO-Platzhalter nur aktiv sein kann, wenn der STO-Platzhalter mit um 1 geringerem
Index aktiv ist. Damit wird die Reihenfolge festgelegt, in der die Platzhalter aktiviert
werden, wodurch der Lésungsraum eingeschrankt wird. Derartige Nebenbedingungen
zum Brechen der Symmetrie des Losungsraums werden auch fiir Graph-Coloring-Prob-
leme eingesetzt (Méndez-Diaz & Zabala 2006, S. 828). Nebenbedingung 3 setzt die
Maximalitadtsannahme um. Nebenbedingung 4 stellt sicher, dass jede VSTL mindes-
tens einem STO-Platzhalter und damit mindestens einer STO der letztlichen MSTL zu-
geordnet ist. Andernfalls kénnten MSTLs entstehen, aus denen bestimmte VSTLs aus
SYSTL fiir keine der moglichen STOs abgeleitet werden kénnen. Nebenbedingung 5

stellt sicher, dass die Variable w5 nur dann auf 1 gesetzt werden darf, wenn tat-

sachlich alle fir k bendtigten ZKKs dem STO-Platzhalter j zugeordnet sind. Nebenbe-
dingung 5 komplementiert somit Nebenbedingung 4. Aus der optimalen Lésung des
aufgestellten Optimierungsproblems ergibt sich zum einen, wie viele STOs in der MSTL
vorliegen und zum anderen, welche VSTLs und welche ZKKs jeweils welcher STO zu-
geordnet sind.

nflkann mit n* = |SVSTL| trivial gewéhlt werden. Anhang A3.4 erlautert, wie heuristisch
ein kleineres nP' ermittelt werden kann, das dennoch die L&sbarkeit des

46 Damit ist ein STO-Platzhalter insbesondere aktiv, wenn ihm eine VSTL und damit alle ZKKs dieser VSTL zu-
geordnet sind, so dass auf eine entsprechende Nebenbedingung fiir die Zuordnung von VSTLs verzichtet werden
kann.
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Optimierungsproblems 4.6 sicherstellt. Dadurch kann das Optimierungsproblem effizi-
enter gel6st werden.

4.2.2.3 Abschluss von Schritt 2

Existiert nach der L6sung des Optimierungsproblems mehr als ein aktiver STO-Platz-
halter liegen in der MSTL STOs vor. Welche ZKKs fir welche STOs instanziiert werden

kénnen, ist durch 1, 3™ in der optimalen Lésung gegeben. Klassen, die jeder Gruppe

zugeordnet sind, d. h. fiir jede STO instanziiert werden kénnen, sind unabhangig von
der geltenden STO. Fur die entsprechenden ZKs kdnnen keine alternativen Positionen
in der Fugereihenfolge existieren. Fiir den Beispielfall ergibt sich nach Lésung des Op-
timierungsproblems die in Abbildung 4.20 gezeigte MSTL mit zwei STOs. Die STOs,
denen die ZKKs jeweils zugeordnet sind, sind mit Superskript notiert. Bei ZKKs, die
unabhangig von der STO sind wird auf das Superskript verzichtet. In STO 1 wird Z2
zunachst mit Z1 und Z3 gefligt und die daraus resultierende Baugruppe mit einer Bau-
gruppe, die aus Z3 und Z4 besteht. In STO 2 wird Z2 zunachst mit Z3 und Z4 gefiigt
und anschliefend mit einer Baugruppe, die aus Z1 und Z3 besteht. Nach Abschluss
von Schritt 2 liegt eine MSTL vor,

deren ZKKs STOs zugeordnet

B13,5 B246 sind. Weitere Parameter der KKs

sind noch offen. Auf Basis der Er-
|Z31 ” h ” Z1 ” 73, ” 723 ” Z4 | gebnisse aus Schritt 2 kann gepriift

werden, ob die ermittelten STOs
Abbildung 4.20: Resultierende Maximalstiickliste Hinweise auf Inkonsistenzen in den

nach Schritt 2 von Methode 2 fiir den Beispielfall
Daten darstellen.

4.2.3 Schritt 3: Strukturoptionen priifen

Das Uberpriifen der STOs ist optional und der einzige manuelle Schritt der Methode. In
der MSTL sind nach Schritt 2 STOs erkennbar, welche den STAs in den VSTLs aus
SVSTL entsprechen. Ein Domanenexperte kann nun die STOs und zugehérigen STAs
daraufhin Gberprifen, ob sie Inkonsistenzen in den Daten oder begriindete alternative
Montagereihenfolgen darstellen. Ist ersteres der Fall, kdnnen die Ursache fir die In-
konsistenz ermittelt und unzutreffende STOs aus der MSTL geléscht werden. Ist letz-
teres der Fall, kann der Experte entscheiden, ob die jeweils gliltige STO von der ge-
wahlten Variante abhangt oder von sonstigen Einflussgrofen. Hangt sie von der
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gewahlten Variante, d. h. den Auspragungen der Produktmerkmale ab, kann die Ab-
hangigkeit der glltigen STO (siehe Kapitel 4.1.1, Parameter pST%M5TL) von den Pro-
duktmerkmalen mittels Methode 4 (siehe Kapitel 4.4) datenbasiert ermittelt werden.
Hangt die gultige STO von anderen EinflussgréRen, wie z. B. dem ausfiihrenden Werk
ab, ist dies im KM zu hinterlegen. Wird keine Priifung durchgefiihrt, wird davon ausge-
gangen, dass alle STOs guiltig und von der gewahlten Variante abhangig sind.

4.2.4 Schritt 4: Parameter der Komponentenklassen definieren

Wie oben beschrieben, sind fur die Produktklasse und die Komponentenklassen der
MSTL, abgesehen von ihrer STO-Zuordnung, noch keine Parameter definiert. Dies ge-
schieht in Schritt 4. Aus Schritt 1 ist bekannt, aus welchen Komponenten eine Klasse
der MSTL jeweils hervorgegangen ist. Die Parameter der Klassen ergeben sich aus
den Parametern ihrer originaren Komponenten. Die Bezeichnungen von ZKKs ergeben
sich aus den Bezeichnungen ihrer origindren Komponenten, ihre Positionen aus ihren
KNs und ihre zugehodrigen STOs aus Schritt 2. Der Aktivitdtszustand aller KKs ist vom
Typ Boolean. Die mdglichen STOs des zugehoérigen MAPL bleiben bis zur Durchfih-
rung von Methode 3 offen. Die Definitionsbereiche aller weiteren Parameter ergeben
sich durch Vereinigung der Definitionsbereiche der urspriinglichen Komponenten, wie

Komponente | Komponente V Komponente X

Bezeichnung (pf¢?) = ,B1*

Position (pf°) = N/A

Aktiv (pf*?*) = True

Menge (p*®) = v}*®

Zugehérige STOs (p;T°) = {1,2}
STO des MAPL (pSTOMAPLY = thd

Parameter pf¢ = v/{

Bezeichnung (p#¢?) = ,B1*
Position (pf°%) = N/A

Aktiv (pf*?) = True

Menge (p') = v/®

Zugehérige STOs (py™°) = {1,2}
STO des MAPL (p§TOM4PL) = tod

Parameter py% = vp%

Bezeichnung (p£¢?) = ,B1"
Position (px°%) = N/A

Aktiv (p£*?*) = True

Menge (p'®) = vy'®

Zugehdrige STOs (p3'°) = {1,2}
STO des MAPL (pSTOMAPLY = thd

Parameter py4 = vk

i

Bezeichnung (pgf(fz) =,B1"

Position (p;;’(jz) =N/A
Aktiv (p,’;;fz“): bool
Menge (pyiz): (v}"®, v’ v}

Komponentenklasse KK%
Zugehérige STOs (pg(?) ={1,2}
STO des MAPL (p;{;];"”"“): tbd

P .
Parameterpyy, : Wit vhe.vE%}

MAPL = i i STO = ption

Abbildung 4.21: Bildung einer Komponentenklasse fiir den Beispielfall
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fr den Beispielfall in Abbildung 4.21 zu sehen. Die nach Schritt 4 vorliegende MSTL
ist vollstandig und kann fir die Produktkonfiguration, wie in Kapitel 4.1.1 beschrieben,
eingesetzt werden. Damit liegt der erste Baustein des zu erstellenden LLKM vor. Um
jedoch die Verstandlichkeit der MSTL zu erhéhen, kénnen ZKKs mit ahnlicher Funktion
in Superklassen aggregiert, d. h. generalisiert, werden.

4.2.5 Schritt 5: Zukaufkomponentenklassen generalisieren

Zwei ZKKs sind Kandidaten fiir eine Generalisierung, wenn sie an derselben Position
in der MSTL —d. h. als meronymisch untergeordnete Elemente derselben Klasse — auf-
treten, wenn sie denselben STOs zugeordnet sind und wenn keine VSTL in SVSTL exis-
tiert, in der beide ZKKs zugleich auftreten. Mit den von Romanowski & Nagi (2004)
entwickelten AhnlichkeitsmaRen (siehe Kapitel 3.2.2) kann ermittelt werden, ob es
sinnvoll ist, ZKKs, die Kandidaten fiir eine Generalisierung sind, tatsachlich zu genera-
lisieren. Ggf. wird eine Superklasse in die MSTL eingefiigt und die entsprechenden
ZKKs dieser untergeordnet. Im Gegensatz zum Ansatz von Romanowski & Nagi (2004)
findet die Generalisierung damit statt nachdem die STAs in den VSTLs aus SV5™t in der
MSTL als STOs erfasst wurden, sodass keine STAs in den VSTLs durch die Generali-
sierung entstehen kénnen.

4.3 Methode 3: Datenbasierte Erstellung von Maximalarbeitspla-
nen

Im Folgenden wird die im Rahmen der vorliegenden Arbeit entwickelte Methode 3 zur
Lésung des Problems 3 — der datenbasierten Erstellung von MAPLs — vorgestellt. Me-
thode 3 behebt das in Kapitel 3.3.3 beschriebene Losungsdefizit nach Stand der For-
schung. Ausgehend von einer Menge SV4PL von VAPLs (siehe Kapitel 4.1.3, Abbildung
4.7) wird ein MAPL erstellt. Es wird davon ausgegangen, dass jeder AVO in VAPLs aus
SV4PL mit einer Bezeichnung versehen ist, die seinen Typ eindeutig bestimmt, wie z. B.
durch eine genormte Bezeichnung gemafl DIN-Norm 8580 (DIN 8580:2022-12). Ist
dies nicht der Fall, kann vorab eine Generalisierung vorgenommen werden, indem
AVOs mit ahnlichen Bezeichnungen und Parametern zusammengefasst werden. Die
Ahnlichkeit kann dabei in Anlehnung an das von Romanowski & Nagi (2004, S. 322)
entwickelte Ahnlichkeitsmaf fiir ZKs berechnet werden. STAs, die aus der Generalisie-
rung herrtihren, mussen bei der manuellen Prufung korrigiert werden. AVOs desselben
Typs kdnnen an mehreren Positionen in einem VAPL zugleich auftreten, d. h. die
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VAPLs aus S"4PL kénnen Multivorgénge enthalten. VAPLs aus S"4PL kénnen dariiber
hinaus STAs aufweisen. Entsprechend kann der resultierende MAPL Multipositionen
und ausgewiesene STOs, wie in Kapitel 4.1.1 beschrieben, enthalten.

In der vorliegenden Arbeit wird von VAPLs in Form von Vorranggraphen ausgegan-
gen. Liegen VAPLs in Form von Ablaufdiagrammen vor, kdnnen diese unter der An-
nahme, dass alle indirekten Vorrangbeziehungen gelten, in Vorranggraphen Uberfuhrt
werden. Umgekehrt lassen sich Vorranggraphen durch transitive Reduktion*” in Ablauf-
diagramme Uberfiihren. Abbildung 4.22 zeigt die im Folgenden als Beispiel verwende-
ten VAPLs aus S"4PL jeweils in Form von Ablaufdiagrammen (1) und in Form von Vor-
ranggraphen (2). Die AVOs sind mit ,A“ und einer fortlaufenden Nummer bezeichnet,
wobei identisch bezeichnete AVOs auftreten kdnnen. Zur Referenz sind die AVOs r6-
misch nummeriert‘®. Analog zu dem in Methode 2 eingesetzten Algorithmus AlgMST-
(siehe Anhang A3.1) wurde im Rahmen der vorliegenden Arbeit ein Algorithmus Alg-
MAPL entwickelt. Dieser ist in der Lage fir eine Menge SV4PL von VAPLs in Form von
Vorranggraphen ohne Multivorgange und ohne STAs einen MAPL zu erstellen, aus
dem alle VAPLs aus SV4PL, wie in Kapitel 4.1.1 beschrieben, konfiguriert werden kon-
nen. Enthalten die VAPLs aus SV4PL STAs gibt AlgMAPt zurlick, dass keine Lésung er-
mittelt werden kann. AlgMAPt wird in Anhang A4.1 erlautert und als Pseudocode darge-
stellt.

VAPL 1 VAPL 2 VAPL 3
(1) [41 o a2 |- a3 | a4 ] [41 a2 P a1] [[a1 H
[ [ i v v Vi vil vill XI
X
@) [ ' I v i vill X
VT Y W « G

VAPL = Variantenbezogener Arbeitsplan

Abbildung 4.22: Beispielhafte variantenbezogene Arbeitsplane in Ablaufdiagramm- und
Vorranggraphdarstellung

47 Fir transitive Reduktion sei auf Skiena (2020, S. 559-562) verwiesen
48 Diese Nummerierung hat keinen Bezug zu der in Kapitel 4.2.1 verwendeten Nummerierung von Zukaufkompo-
nenten.
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AIgMAPL kann eingesetzt werden, um einen MAPL aus VAPLs mit Multivorgdngen und
STAs zu erstellen. Dies erfolgt analog zu der in Kapitel 4.2.1 vorgestellten Erstellung
von MSTLs aus VSTLs mit Multikomponenten und STAs durch AlgMS™. Die in Kapitel
4.2 dargestellten finf Schritte von Methode 2 zur Erstellung einer MSTL aus einer
Menge SVSTE von VSTLs kdnnen somit auf die Erstellung eines MAPL aus einer Menge
SVAPL yon VAPLs (bertragen werden. In den folgenden Kapiteln wird deshalb aus-
schlieBlich auf die notwendigen Anpassungen eingegangen. Abbildung 4.23 zeigt die
funf Schritte der Methode 3 im Uberblick.

optional optional

SOt Schritt 2: STOs Schritt 3: STOs SIEIRAE Schritt 5: AVKs
Minimalen y .. Parameter der
bestimmen priifen

generalisieren

MAPL erstellen AVKs definieren

AVK = Ar MAPL = STO=

Abbildung 4.23: Uberblick {iber die Schritte der Methode 3

4.3.1 Schritt 1: Minimalen Maximalarbeitsplan erstellen

Schritt 1 der Methode 3 nutzt einen Algorithmus AlgMi"MAPL " der weitgehend dem in
Kapitel 4.2.1 vorgestellten Algorithmus AlgM"™STL entspricht. Auf eine separate Darstel-
lung als Pseudocode wird deshalb verzichtet. Die Grundidee ist ebenfalls, die AVOs
der VAPLs aus SV4PL mit Klassennummern (KNs) zu versehen um somit VAPLs ohne
STAs und Multivorgange zu erhalten. Die Verbindung einer Bezeichnung und einer
KN wird auch fir AVOs als Label bezeichnet (siehe Kapitel 4.2.1).

Zunachst findet eine Initialisierung statt, in der die Betrachtungsreihenfolge der AVOs
in den VAPLs aus S"4PL festgelegt wird. Dies erfolgt analog nach prognostizierter
Klassenanzahl je Bezeichnung, Intraclusterdistanz des Clusterings sowie der Anzahl
von AVOs im zugehdrigen VAPL. Fir das Clustering wird analog zum DistanzmaR fur
ZKs in VSTLs ein Distanzmaf fiir AVOs in VAPLs bendtigt. Hierfiir wird das Maf d;/°
fur die Distanz zweier AVOs i und j eingefuhrt, das ebenfalls auf dem Konzept der
Kontextahnlichkeit basiert. Fir jeden der beiden AVOs werden jeweils die folgenden
drei Mengen an Labels bestimmt: S7°" enthalt die Labels der vorausgehenden AVOs
im zugehorigen VAPL, sYah enthélt die Labels der nachfolgenden AVOs im
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zugehérigen VAPL und S enthélt die Labels von AVOs, die in keiner Beziehung zu
dem betrachteten AVO stehen. Fur AVO Il in VAPL 1 im Beispielfall aus Abbildung
4.22 gilt z. B. )97 = {A1, A2}, SN#h = {A4} und SO = @. Fur AVO X gilt SY°" = {41},
syach = (44} und SZF = {A2}. Fir jede der drei Beziehungsarten wird die Kardinalitat
der Schnittmengen bestimmt. Fir den Beispielfall gilt [S/9" nSYoT| = |{A1}| =1,
|Sheeh nsyach| = [{A4} =1 und |SPP nSZP| =|@] = 0. Die Ubereinstimmung ent-
spricht der Summe der Kardinalitéaten, d. h. 2 im Beispielfall. Um diese zu normieren
wird die maximal mégliche Ubereinstimmung als Kardinalitat der Schnittmenge S/ n
S{"* bestimmt wobei S;* die Menge aller Labels in dem zu AVO i gehdrigen VAPL
bezeichnet. Im Beispielfall gilt |S);" N Sy*| = [{A1, A2, A3, A4}| = 4. Damit ergibt sich
eine normierte Ubereinstimmung s{{/¢ von Z = 0,5 und damit eine Distanz dfj}§ von 1 —
0,5 = 0,5 fur die beiden AVOs lll und X. Aligemein gilt
o _ |SiVor n SjVorl + |SiNach n SjNachl + |SiOB n SjOB| 4.8

LJ |SiV,L n SjV,Ll ’

falls |/ n S{"*| > 0 und ansonsten s//° = 1. Damit ergibt sich d//° als
dvo =1 — 5o, 4.9

Die Iterationen von AlgM"MAPL grfolgen wie in Kapitel 4.2.1.2 beschrieben. Dabei wird
fur die Uberpriifung der Zulassigkeit anstelle von AlgMS™ der zuvor eingefiihrte Algo-
rithmus AlgM*FL verwendet. Analog zur Uberpriifung von teilweise annotierten VSTLs,
wie in Kapitel 4.2.1.2.3 beschrieben, werden bei der Uberpriifung der VAPLs in einem
bestimmten Knoten des Suchbaums jeweils nur die bereits annotierten AVOs berlick-
sichtigt. Analog zu der in Kapitel 4.2.1.2.3 beschriebenen Reduktion von VSTLs auf
annotierte ZKs kdnnen VAPLs auf ihre annotierten AVOs reduziert werden. Hierbei wer-
den alle nicht annotierten AVOs und alle zu die-
Al, A2, sen AVOs inzidenten Kanten entfernt. AlgMnMAPL
nutzt dieselben Abbruchkriterien wie AlgMnMSTL,
Nach dem Abbruch lasst sich auf Basis der ge-
gebenen VAPLs mit annotierten AVOs mittels
AIgMAPL ein MAPL erstellen, aus dem alle VAPLs
Abbildung 4.24: Maximalarbeitsplan konfiguriert werden koénnen. In diesem sind
nach Schritt 1 fiir den Beispielfall noch keine STOs hinterlegt, was im folgenden

A3, A4,

Schritt erfolgt. Fur den Beispielfall ergibt sich
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der in Abbildung 4.24 dargestellte MAPL, wobei Indizes die Positionen der AVKs ange-
ben.

4.3.2 Schritt 2: Strukturoptionen bestimmen

Die Ermittlung der STOs in dem zuvor erstellten MAPL erfolgt analog zu Schritt 2 der
Methode 2 (siehe Kapitel 4.2.2) durch mathematische Optimierung. Es wird das gleiche
Optimierungsproblem aufgestellt, wobei AVOs und VAPLs STO-Platzhaltern zugeord-
net werden, sodass ebenfalls nicht mehr AVOs mit derselben Bezeichnung einem
Platzhalter zugeordnet werden, als diese Bezeichnung maximal in einem der VAPLs
aus SVAPL auftritt. Im Beispielfall ergeben sich die in Abbildung 4.25 (1) mit Superskrip-
ten dargestellten STO 1 und STO 2. Diese betreffen jeweils die mit A3 bezeichneten
AVOs. Der MAPL in Vorranggraphdarstellung (1) kann mittels transitiver Reduktion in
einen MAPL in Ablaufdiagrammdarstellung (2) umgewandelt werden. Die ermittelten
STOs sind daraufhin zu Uberprifen, ob sie Fehlerhinweise darstellen.

(1) (2)

Abbildung 4.25: Resultierender Maximalarbeitsplan mit Strukturoptionen fiir den Bei-
spielfall

4.3.3 Schritt 3: Strukturoptionen priifen

Die Prifung der STOs erfolgt analog zu Schritt 3 der Methode 2 (siehe Kapitel 4.2.3).
Es ist dabei zu berlcksichtigen, dass STOs wie zuvor erlautert auch die Konsequenz
einer unzuldssigen Generalisierung sein konnen. Die Uberfiihrung des MAPL in eine
Ablaufdiagrammdarstellung mittels transitiver Reduktion erleichtert die Uberpriifung
durch Doméanenexperten.

4.3.4 Schritt 4: Parameter der Arbeitsvorgangsklassen definieren

Die Parameter einer AVK des MAPL ergeben sich analog zu Schritt 4 der Methode 2
(siehe Kapitel 4.2.4) aus deren originaren AVOs. Wie in Kapitel 4.2.4 beschrieben,
ergibt sich die Gesamtheit der Parameter einer AVK als Komposition der Parameter
ihrer AVOs. Deren Definitionsbereiche ergeben sich als Vereinigung der entsprechen-
den Auspragungen in den AVOs. Der resultierende MAPL ist vollstandig und kann fir
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einen Konfigurationsprozess verwendet werden. Um die Verstandlichkeit des MAPL zu
erhéhen, kénnen auch fir AVKs Generalisierungen vorgenommen werden.

4.3.5 Schritt 5: Generalisierung von Arbeitsvorgangsklassen

Zwei oder mehreren AVKs des MAPL kann prinzipiell eine Superklasse zugeordnet
werden, wenn sie in keinem eingehenden VAPL gemeinsam instanziiert werden und
wenn sie an derselben Position des MAPL auftreten, d. h. dieselben Mengen SL-V"T,
sNach ynd S aufweisen. Bei dieser Betrachtung sind die Labels der beiden Vorgange
selbst zu vernachlassigen. Um zu entscheiden, welche AVKs letztlich zusammenge-
fasst werden sollen, kann ebenfalls ein AhnlichkeitsmaR fiir AVKs auf Basis ihrer
Bezeichnung und Parameter verwendet werden. Dies ist jedoch nicht Gegenstand der
vorliegenden Arbeit.

Nach Anwendung von Methode 3 liegt ein MAPL vor, aus dem alle VAPLs aus SVAPL
konfiguriert werden kénnen. Im Rahmen von Methode 1 (siehe Kapitel 4.1.3) wird Me-
thode 3 einmal fir jede Klasse der MSTL angewandt, die dem Produkt oder einer ei-
gengefertigten Komponente entspricht. Dabei werden jeweils alle VAPLs betrachtet,
die zu Objekten gehdren, die aus dieser Klasse instanziiert werden. Fir jede dieser
Klassen in der MSTL liegt somit abschliefend ein MAPL vor. Um ein vollstéandiges
LLKM zu erhalten, sind zuletzt die Regeln der Parameter der MSTL und der MAPLs zu
ermitteln.

4.4 Methode 4: Datenbasierte Erstellung von Regeln

Im Folgenden wird die im Rahmen der vorliegenden Arbeit entwickelte Methode 4 zur
Lésung des Problems 4 — der datenbasierten Erstellung von Regeln — vorgestellt. Me-
thode 4 behebt das in Kapitel 3.4.3 beschriebene Lésungsdefizit nach Stand der For-
schung.

Je nach abhangigem Parameter (siehe Kapitel 4.1.3) liegt bei der datenbasierten Er-
stellung von Regeln entweder eine Regression oder eine Klassifikation im Sinne des
ML vor. Handelt es sich bei der zu erstellenden Regel um eine Auswahlbedingung, ist
der abhéngige Parameter binar. Er gibt an, ob die entsprechende Klasse der MSTL
oder des MAPL fur die gewahlte Variante instanziiert wird oder nicht. Es liegt somit ein
binédres Klassifikationsproblem vor. Hierauf liegt der Schwerpunkt der vorliegenden
Arbeit (siehe Kapitel 2.2.2.4). Fur andere Falle von Regeln sei auf interpretierbare Mo-
delle des ML in der Literatur verwiesen, wie z.B. von Rudin et al. 2022
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zusammenfassend dargestellt. Im Folgenden wird von bindren Features ausgegangen.
Wie in Kapitel 3.4.2 beschrieben, stellt dies jedoch keine Einschrankung des Anwen-
dungsfalls dar. Ggf. sind nichtbinare Produktmerkmale oder Parameter des KM zu-
nachst in ein oder mehrere binare Features umzuwandeln. Ein Feature entspricht da-
mit im Folgenden nicht zwingend genau einem Produktmerkmal oder einem Parameter
des KM. Der Trainingsdatensatz ergibt sich wie in Kapitel 4.1.3 beschrieben. Dabei
entspricht ein Datenpunkt einer Variante und es wird jeweils nur das Label betrachtet,
das dem vorherzusagenden Parameter entspricht. Somit liegt ein Trainingsdatensatz
TTraining mit bindren Features und genau einem binaren Label vor. Auf Basis dessen
ist ein boolescher Ausdruck in disjunktiver Normalform (DNF) mit minimaler Kom-
plexitat, d. h. minimaler Anzahl Literale, zu bestimmen, der eine perfekte Trainings-
genauigkeit aufweist. Dieser Ausdruck entspricht der Regel*?, durch die der abhangige
Parameter, wie z. B. das Vorhandensein einer Komponente in der Maximalstuckliste,
im LLKM festgelegt wird.

Ein boolescher Ausdruck in DNF besteht aus konjunktiv verknipften Monomen, wie
z. B. der Ausdruck (x; A x,) V (37 A x5 A x4) eine Konjunktion der Monome (x; A x,) und
(36, A x5 A x,) darstellt. Damit der Ausdruck zulassig ist, muss er alle negativen Daten-
punkte des Trainingsdatensatzes ablehnen, d. h. auf falsch abbilden, und alle positiven
Datenpunkte akzeptieren, d. h. auf wahr abbilden. Diese Anforderung lasst sich auf die
Monome des Ausdrucks herunterbrechen. Jedes der Monome muss insofern zulassig
sein, als es alle negativen Datenpunkte ablehnt. Aulerdem muss flr jeden positiven
Datenpunkt mindestens ein Monom existieren, das diesen akzeptiert. Fur einen Daten-
satz kdnnen prinzipiell alle zulassigen Monome ermittelt werden. Somit kann prinzipiell
das folgende Master-Problem (MP) mit den in Tabelle 4.2 eingefiihrten Variablen und
Parametern aufgestellt werden.

Tabelle 4.2: Variablen und Parameter des Master-Problems

;i € (0,1} Pargmeter, der angibt, ob Monom m derj positiven Datenpunkt i im
' Trainingsdatensatz akzeptiert (1) oder nicht (0)
c €N Anzahl qer Litera!e' in Monom m. Entspricht dem entsprechenden
m Zielfunktionskoeffizienten des MP
nP? € N Anzahl der positiven Datenpunkte im Trainingsdatensatz

49 Eine solche Regel ist eine Disjunktion von Monomen und entspricht damit einer Regelmenge im Sinne von
Rudin et al. (2022).
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nM eN Anzahl der bertcksichtigten Monome in einem RMP
u,, €{0,1} Entscheidungsvariable des RMP, die festlegt, ob Monom m Teil des
m ’ zu lernenden booleschen Ausdrucks ist (1) oder nicht (0)
Master-Problem 4.10
min ccugt+ .. teomugm
s.t. a U+ . Fagmum 201
m
pop Uy + .+ Qo muUym 21
Uy Uy = 0 2)

Uy, Uym € Z 3)

Zu jedem MP existiert eine Liste LM°"°™e die jeder Spalte das zugehdrige Monom zu-
ordnet. Die Zielfunktion entspricht der kumulierten Anzahl der Literale in allen ausge-
wahlten Monomen. Die Nebenbedingungen 1 stellen sicher, dass fiir jeden positiven
Datenpunkt mindestens ein Monom gewahlt wird, das diesen Datenpunkt akzeptiert.
Somit wird jeder positive Datenpunkt des Trainingsdatensatzes durch den resultieren-
den booleschen Ausdruck akzeptiert. Da auBerdem jedes der wahlbaren Monome alle
negativen Datenpunkte ablehnt, ist fir jede zulassige Lésung des MP sichergestellt,
dass der resultierende boolesche Ausdruck jeden negativen Datenpunkt ablehnt. Aus
der Definition von u,, ergibt sich neben Nebenbedingung 2 auch u,, ..., u,» < 1. Auf
entsprechende Nebenbedingungen im MP kann jedoch verzichtet werden, da aufgrund
der positiven Zielfunktionskoeffizienten keine optimale Lésung mit u,, > 1 flr ein t €
{1, ...,nM} existiert.

Die Anzahl der Variablen des MP entspricht der Anzahl zulassiger Monome flr den
Trainingsdatensatz und kann damit sehr grof3 werden. Auferdem besteht ein erhebli-
cher Rechenaufwand darin, diese Monome vollstandig zu bestimmen. Deshalb wird in
der vorliegenden Methode 4 das MP weder explizit aufgestellt noch direkt gelost, son-
dern das Prinzip der Spaltengenerierung (CG) angewandt (siehe Anhang A1.1). Ab-
bildung 4.26 gibt einen Uberblick (iber die Schritte der Methode. In Schritt 1 wird zu-
nachst eine heuristische Losung des MP ermittelt. Auf Basis dessen werden ein redu-
ziertes Master-Problem (RMP) und das zugehdrige relaxierte reduzierte Master-
Problem (XRMP) aufgestellt. Dem initialen XRMP werden in Schritt 2 solange Spalten
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hinzugeflgt, bis sich eine Lésung des relaxierten Master-Problems (XMP) ergibt. Ist
diese nichtganzzahlig und somit keine zuldssige Losung des MP, findet eine ggf. mehr-
fache, Verzweigung statt, sodass abschlieRend eine optimale Lésung des MP vorliegt.
Die optimale Losung des MP gibt an, welche Monome Teil des komplexitdtsminimalen
booleschen Ausdrucks sind.

TTraining Schritt 1: Initialisierung des XRMP Schritt 2: Lésung des MP

Features Lab. (g Axg) V(X Ax3 Axy) Monome : x; Axy, X7y AX3z AXy, X1, X3
X x| . S ' MP = 0, 1L 1,
Lo Y min  2u; + 3y, lu ,
- | 0 s.it. 1wy, + Ou, = 1 \'/
o[1|...]0 o, + 1w, = 1 *1V X
u,u,; € R

MP = Master-Problem, XRMP = Relaxiertes reduziertes Master-Problem

Abbildung 4.26: Uberblick (iber die Schritte der Methode 4

4.4.1 Schritt 1: Initialisierung des relaxierten reduzierten Master-Problems

Um ein |6sbares RMP aufstellen zu kdnnen, missen zulassige Monome bekannt sein,
die zusammen genommen alle positiven Datenpunkte des Trainingsdatensatzes ak-
zeptieren. Dies entspricht einem booleschen Ausdruck mit perfekter Trainingsgenauig-
keit, welcher jedoch nicht zwingend komplexitatsminimal sein muss. Zur Ermittlung ei-
nes solchen booleschen Ausdrucks kann grundsatzlich jede Heuristik zur datenbasier-
ten Erstellung von booleschen Ausdriicken eingesetzt werden, die eine perfekte Trai-
ningsgenauigkeit gewahrleistet. Wie in Kapitel 3.4.2 beschrieben, trifft dies auf mehrere
der von Costamagna & Micheli (2023) vorgestellten Verfahren zu. Darlber hinaus gilt
dies auch fur Heuristiken zur Erstellung von Entscheidungsbaumen, die kein Pruning
einsetzen. An dieser Stelle ist eine geringe Rechenzeit wichtiger als ein resultierender
Ausdruck mit moglichst geringer Komplexitat, da die Losung lediglich als Ausgangsba-
sis fur eine Optimierung dient. Auflerdem kann selbst firr gute L6sungen nicht zwingend
davon ausgegangen werden, dass ihre Monome flr die optimale Losung relevant sind.
Deshalb wird auf Heuristiken zur Erstellung von Entscheidungsbaumen zurlickgegrif-
fen, welche sehr recheneffizient sind (Osisanwo et al. 2017, S. 133—-134). Gangige Ver-
fahren wie z. B. C5.0 oder CART gehen von einem Wurzelknoten aus und fligen schritt-
weise untergeordnete Knoten hinzu, wobei jeder Knoten eine Partition des Datensatzes
anhand eines Features darstellt (Patil et al. 2012, S. 2). Fir die Auswahl des Features
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existieren verschiedene sog. Splitting-Kriterien. Tangirala (2020) vergleicht die beiden
gangigen Splitting-Kriterien Gini-Index und Informationsgewinn basierend auf Entropie
miteinander. Der Vergleich ergibt, dass sich die jeweils resultierenden Entscheidungs-
baume hinsichtlich ihrer Generalisierungsfahigkeit nicht signifikant unterscheiden. Fur
die vorliegende Arbeit wird der Gini-Index als Splitting-Kriterium verwendet®. Auf
Pruning wird verzichtet, um eine initiale Losung mit perfekter Trainingsgenauigkeit zu
erhalten. Jeder Pfad des Baumes, der von der Wurzel zu einem Blatt fuhrt, das der
positiven Klasse zugeordnet ist, entspricht einem Monom des booleschen Ausdrucks,
mit dem das RMP initialisiert wird. Aus den Datenpunkten die in seinen Blattern verblei-
ben ergibt sich, welche der positiven Datenpunkte das Monom akzeptiert. Damit kann
ein zulassiger boolescher Ausdruck ermittelt und somit konnen die initialen Monome
des RMP bestimmt werden.

Abbildung 4.27 (2) veranschaulicht die heuristische Initialisierung eines RMP anhand
des beispielhaften Datensatzes, der in Abbildung 4.27 (1) dargestellt ist. Fir die Erstel-
lung des Entscheidungsbaums sind je Knoten die verbleibenden Datenpunkte sowie
der Gini-Index der moglichen Splits dargestellt. Bei uneindeutigem minimalem Gini-In-
dex wird der Split willkurlich in dem zuerst gelisteten Feature durchgefihrt. Features,
die keine Information Uber eine Klassenaufteilung enthalten, weil sie nur eine Auspra-
gung aufweisen, werden nicht bertcksichtigt. Es ergeben sich zwei Monome, die als
Basis fir die Formulierung des initialen RMP dienen, was in Abbildung 4.27 (3) darge-
stellt ist. Je Monom enthalt das RMP eine Spalte. Die Zielfunktionskoeffizienten des
RMP entsprechen der Anzahl der Literale von Monom 1 bzw. Monom 2. Dessen Ne-
benbedingungskoeffizienten geben wieder, dass Monom 1 den positiven Datenpunkt 1
akzeptiert und Monom 2 den positiven Datenpunkt 2.

Das ermittelte RMP entspricht dem MP aus Formel 4.10, berlcksichtig jedoch nur die
Monome aus LM°m°™e¢ ynd die entsprechenden Spalten der Koeffizientenmatrix. Auf
eine explizite allgemeine Darstellung des RMP wird deshalb an dieser Stelle verzichtet.
Aus dem initialen RMP wird ein initiales XRMP abgeleitet, im Folgenden als XRMP 1
bezeichnet, indem Nebenbedingung 3 in Optimierungsproblem 4.10 durch Nebenbe-
dingung 3.1 ersetzt wird:

50 Fir die bindre Klassifikation mit bindren Features ergibt sich der Gini-Index eines Features als
1o * (1 — 18 —1&) + 1 * (1 — v — r4) wobei r; den Anteil der Datenpunkte darstellt, fiir die das Feature den Wert
i annimmt und r;; den Anteil der Datenpunkte, fur die das Feature den Wert i annimmt und deren Label j ist
(hergeleitet aus Aggarwal 2021, S. 195).
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U, . UM € R (3.1). 4.1
Das XRMP 1 dient als Ausgangspunkt fiir die Lésung des MP. Fir den Beispielfall
ergibt sich als XRMP 1 das in Abbildung 4.27 gezeigte Optimierungsproblem, jedoch
mit u;, u, € R.

(1) [instanz Features Label (3) Initiales RMP
X4 Xy X3 X4 y
Neg. 1 0 0 0 0 0
Neg. 2 0 1 0 0 0 min 2u; + 3u,
Pos.1| 1 1 0 1 1 st lu, + Oup > 1
Pos. 2 0 0 1 1 1 ou, + 1u, = 1
Neg.3| 0 0 0 1 0 o €
(2) X1 XpX3X Yy Split: X;  Xp X3 Xy X1Xo|X3 Y
00000 Gini 0,3 047 0,3 0,27 1101
01000 0011
11011 0000
00111 ;
00010 Split: X, - X | X
Gini 0,33 0,33 0,33
X X3y  Split X, X
011 Gini NA 0
000
Yo (X1 Axg) V(X1 AX3 A Xy)
(X4 AXq A X3)
RMP = Reduziertes Master-Problem Monom 1 Monom 2

Abbildung 4.27: Initialisierung des reduzierten Master-Problems fir den Beispielfall

4.4.2 Schritt 2: L6sung des Master-Problems

Das XMP wird mittels Alg®® geldst, indem XRMP 1 solange Spalten hinzugefiigt wer-
den, bis sich durch das Hinzuftigen weiterer Spalten keine Verbesserung des optimalen
Zielfunktionswerts z*™P" mehr erzielen Iasst (siehe Kapitel 4.4.2.1). Fir jede Spalte, die
dem XRMP hinzugefligt wird, wird das zugehorige Monom in LM°mome gespeichert.
Nachdem dem XRMP die letzte Spalte hinzugeflgt wurde, liegt ein abschlieRendes
XRMP vor, das im Folgenden als XRMP L bezeichnet wird. Die optimale Losung des
XRMP L entspricht der optimalen L6sung des XMP. Aufgrund der Relaxierung ist die
optimale Lésung des XMP potenziell nicht ganzzahlig und damit nicht zwangslaufig
eine zulassige Losung des MP. Um eine ganzzahlige optimale Losung zu erhalten, kon-
nen nichtganzzahlige optimale Losungen sukzessive ausgeschlossen und neue XMPs
aufgestellt werden, welche wiederum mittels AlgC® geldst werden kdnnen. Auf diese
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Weise ist Alg®® in einen libergeordneten Algorithmus AlgB&® eingebettet. AlgB&P verbin-
det CG basierend auf Pricing-Modellen mit einem Branching-Ansatz und ist deshalb der
Klasse der sog. Branch-and-Price-Verfahren®' zuzuordnen.

Aus didaktischen Griinden wird im Folgenden zunéchst der Algorithmus Alg®® und im
darauffolgenden Kapitel 4.4.2.2 dessen Einbettung in den Ubergeordneten Algorithmus
AlgB&® erlautert.

4.4.2.1 Optimierung eines reduzierten Master-Problems mittels Spaltengenerie-
rung (Alg©®)

Alg®® I5st ein XMP, ausgehend von einem initialen XRMP. Anhang A5.2 zeigt den Al-
gorithmus in Pseudocode. Zunachst handelt es sich bei diesem XRMP um das in Schritt
1 ermittelte XRMP 1. Als erstes wird das XRMP in ein Dualproblem (DP) tberflhrt um
die Opportunitatskosten seiner Nebenbedingungen zu berechnen.

4.4.21.1 Aufstellen und Lésen des Dualproblems

Das DP des XRMP lasst sich mit den in Tabelle 4.3 beschriebenen Variablen sowie
den in Kapitel 4.4 eingefihrten Variablen und Parametern des MP — die auch im XRMP
vorliegen — beschreiben.

Tabelle 4.3: Variablen des Dualproblems

Entscheidungsvariable des DP, die der Nebenbedingung i des XRMP

vi€R zugeordnet ist

Dualproblem 412

max Z Vi
i€{1,..nDP}

s.t. Z QAg,iVi
i€{1,..nDP}

v, = 0 Vief(l,..n®} (2)

IN

cn Yme{l,..,nM} (D

v, € R Vie{l..,n’"} (3)

51 Fir Branch-and-Price-Verfahren sei auf Wilhelm (2001, S. 177) verwiesen
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Die Zielfunktionskoeffizienten des DP sind entsprechend der rechten Seite des XRMP
durchgehend 1. Nebenbedingung 1 ergibt sich aus der Dualisierung. Da
Uy, ..., u,m = 0 gilt, muss nach der Dualisierung vy, ..., v,0p = 0 gelten (Nebenbedin-
gung 2). Das DP kann mittels Solvern flr lineare Optimierung (engl. Linear Program-
ming, LP) gel6st werden. Die optimale Lésung v* = (v1, ..., v, pp) des DP entspricht den
Opportunititskosten der Nebenbedingungen des XRMP. v; gibt an, um wie viel sich
der optimale Zielfunktionswert des XRMP verringern, d. h. verbessern, wiirde, wenn die
rechte Seite der entsprechenden Nebenbedingung des XRMP um 1 verringert werden
wirde. Wird ein Eintrag der rechten Seite des XRMP um 1 verringert wird die entspre-
chende Nebenbedingung i inaktiv. Damit kann v; im vorliegenden Fall wie folgt inter-
pretiert werden: v; entspricht der Verbesserung des Zielfunktionswertes des XRMP,
falls ein Monom in das XRMP aufgenommen und ausgewahlt wiirde, das den positiven
Datenpunkt i akzeptiert. Daraus ergibt sich eine Gewichtung der positiven Daten-
punkte. Die Verbesserung des optimalen Zielfunktionswerts des XRMP entsteht konk-
ret dadurch, dass durch das neue Monom, das den Datenpunkt i akzeptiert, andere
zuvor ausgewahlte Monome, die den Datenpunkt i akzeptieren, nicht mehr benétigt
werden. Dieser Verbesserung steht jedoch eine Verschlechterung des Zielfunktions-
werts gegenuber, die sich daraus ergibt, dass das neue Monom in den booleschen
Ausdruck aufgenommen wird. Auf Basis dessen lasst sich ein Pricing-Problem (auch
Subproblem, SP) aufstellen. Dieses dient dazu ein zuldssiges Monom zu ermitteln, das
positive Datenpunkte mit einem mdglichst hohen kumulierten Gewicht akzeptiert und
dabei mdglichst wenige Literale enthalt.

Abbildung 4.28 (1) zeigt das initiale XRMP 1, das sich fiir den in Kapitel 4.4.1 einge-
fihrten Beispielfall aus dem initialen RMP ergibt. Abbildung 4.28 (2) zeigt darlber hin-
aus das zugehorige DP und dessen optimale Losung. Gemal v* hat ein zusatzliches
Monom, das den positiven Datenpunkt 2 akzeptiert ein hdheres Gewicht, als eines, das

(1) XRMP 1 (2) Dualproblem 1
min 2u; + 3u, max v, + v, w;i,v3) =(2,3)
s.t. luy + Ou, = 1 s.t. vy + 0v, <
Ou; + 1u, = 1 oy, + 1v, < 3
uju; € R vy, Uy € R

XRMP = Relaxiertes reduziertes Master-Problem

Abbildung 4.28: Relaxiertes reduziertes Master-Problem und zugehoriges Dualproblem
fur den Beispielfall
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den Positiven Datenpunkt 1 akzeptiert. Das ist dadurch begriindet, dass im ersten Fall
das Monom (x; A x,) mit 2 Literalen und in letzten Fall das Monom (&; A x5 A x,) mit 3
Literalen im initialen booleschen Ausdruck ersetzt werden kann.

4.4.21.2 Aufstellen des Subproblems

Mit der optimalen Lésung v* = (vj, ..., v, py) des DP lasst sich das SP wie folgt mit den

zusatzlichen in Tabelle 4.4 eingefihrten GroRen aufstellen.

Tabelle 4.4: Variablen und Parameter des Subproblems

Entscheidungsvariable, die angibt, ob das neu hinzuzufiigende Mo-

@iy € {01} nom n™ + 1 den positiven Datenpunkt i akzeptiert (1) oder nicht (0)

n" €N Anzahl der Features im Trainingsdatensatz
n’" e N Anzahl der negativen Datenpunkte im Trainingsdatensatz
vl EN \I:/)Vlfrt einer Entscheidungsvariablen v; in der optimalen Losung des

n Entscheidungsvariable, die angibt, ob das neu hinzuzufligende Mo-
wi €{0,1} nom die dem Feature f entsprechende Variable als negatives Lite-
ral enthalt (1) oder nicht (0)

v Entscheidungsvariable, die angibt, ob das neu hinzuzufiigende Mo-
we €{0,1} | nom die dem Feature f entsprechende Variable als positives Literal
enthalt (1) oder nicht (0)

Wabhrheitswert des i-ten negativen Datenpunkts hinsichtlich Fea-

xir €{0,1}

ture f
x?} €{0,1} | Wahrheitswert des i-ten positiven Datenpunkts hinsichtlich Feature
i )
f
Subproblem 413
min wi +wft = Z Vi My
fef1,..,nf} i€{1,..,nPpr}
s.t z 7 (1 =) +wixi) +nf g < pr yie {1,..,n%} (1)
Fe{L..nF}

p
wp(L=xip) +WiXE > 1 vie(l,..,n"")  (2)
feq,...nfy

wf € {01} Vie{l,..,nf} (3)
wi € {0,1} Vi€ {1,...,n"} 4)
a;mpq. € {01} Vie{1,..,nPP}  (5)
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Durch die Variablen w}’ und wf* ist das neu hinzuzufiigende Monom definiert. Diese
Darstellung eines Monoms wird auch als Dual-Rail-Darstellung bezeichnet (Ignatiev
etal. 2021, S. 3809). Die Summe Y rc(;, nF w}’ + wyf in der Zielfunktion berticksichtigt
die Erhdhung, d. h. Verschlechterung, des optimalen Zielfunktionswertes des XRMP
durch Hinzufligen des neuen Monoms aufgrund der in ihm enthaltenen positiven und

negativen Literale. Die Summe Y;cy, n0py Vi @; ,m,, €ntspricht der Verringerung —d. h.

Verbesserung — des optimalen Zielfunktionswerts des XRMP, die sich dadurch ergibt,
dass das neue Monom hinzugefiigt wird (siehe Kapitel 4.4.2.1.1). Sie berlcksichtigt
damit die Verringerung der Opportunitatskosten. Nebenbedingung 1 sorgt dafiir, dass

a; ,p,, den Wert 0 annimmt, wenn der positive Datenpunkt i des Trainingsdatensatzes
durch das neue Monom nicht akzeptiert wird. Dabei gibt die Summe Zfe{l,...,nF} w}’(l -
xf}) + w}lxi’} an, in wie vielen Variablen das neue Monom und Datenpunkt i nicht Gber-
einstimmen. Eine Nichtubereinstimmung liegt vor, wenn im neuen Monom eine Variable
als positives bzw. negatives Literal enthalten ist, aber Datenpunkt i fir diese Variable
den Wert 0 bzw. 1 aufweist. Nur wenn die Summe den Wert 0 annimmt, kann a; ,m,
den Wert 1 annehmen. Nebenbedingung 2 stellt sicher, dass das neue Monom keinen
negativen Datenpunkt des Trainingsdatensatzes akzeptiert, d. h., dass fur jeden sol-
chen Datenpunkt mindestens in einer Variablen eine Nichtlibereinstimmung vorliegt.
Auf Nebenbedingungen w}’ + wft < 1 zur Sicherstellung der Komplementaritat von wf”
und wg fr f € {1, ...,nf} kann verzichtet werden, weil durch einen Versto gegen eine
solche Nebenbedingung der Zielfunktionswert verschlechtert wiirde, ohne damit eine
zusatzliche Nebenbedingung 1 oder 2 zu erfilllen. Es existiert deshalb keine optimale
Losung fur die w}f’ +wg =2flrein f € {1, ...,nF} gilt. Abbildung 4.29 (1) zeigt das erste
SP fiir den Beispielfall. Beispielsweise gibt der Zielfunktionskoeffizient von a, ; an, dass
eine Verbesserung des optimalen Zielfunktionswerts des XRMP 1 um bis zu 2 mdglich
ware, falls das neu hinzuzufligende Monom den positiven Datenpunkt 1 akzeptiert. Da-
mit das neu hinzuzufigende Monom den positiven Datenpunkt 1 akzeptiert, darf es
jedoch keines der Literale x;, x;, X, oder X, enthalten, was durch Nebenbedingung
Pos.1 sichergestellt wird. Damit das neu hinzuzufugende Monom daruber hinaus zu-
Iassig ist, muss es alle negativen Datenpunkte ausschliefen, was durch die Nebenbe-
dingungen Neg. 1, Neg. 2 und Neg. 3 gewahrleistet wird.



112 Methoden

(1) Subproblem 1

min wl+ wh+ wl+ wl+ wli+ wli+ wi+ wi—2 a3 —3 a3

s.t. wy +wli+ wi + wl+4 ap < 4 (Pos.1)
wl+ wl + wi+ w} +4 a3 < 4 (Pos.2)
wl+ wi+ wi+ wl > 1 (Neg.1)
wP + wi+ wl + wi > 1 (Neg.2)
wl+ wl+ w? + wy > 1 (Neg.3)

wy,wlwh,wy, wi wi, wi wit, ag 5,05 € {0,1}
(2) (wlp‘,wf*,w:*,w”;) =(1,0,0,0), (W{L*,Wf*,wgﬁ,w{”) =(0,0,0,0), (a;,3,a§,3) =(0,1)

Monom 3: x3, Optimaler Zielfunktionswert: —2 (< 0) = Monom hinzufligen

Abbildung 4.29: Erstes Subproblem fiir den Beispielfall

4.4.21.3 Losen des Subproblems

Das SP kann mittels ILP-Solvern gel6st werden. Die Anzahl der Variablen im SP ent-
spricht 2nf + nP? und die Anzahl der Nebenbedingungen entspricht n?? + nP". Fir
Trainingsdatensatze mit vielen Literalen und Datenpunkten kann das SP damit groR
und rechenintensiv werden. Das hat eine groRe Auswirkung auf die Rechenzeit, weil
das SP im Zuge des Alg®©i. d. R. mehrfach gelést werden muss. Dies ist eine generelle
Herausforderung der CG, weshalb Wilhelm (2001) den Einsatz problemspezifischer
Heuristiken zur Losung des SP empfiehlt. Im Rahmen der vorliegenden Arbeit wurde
mit AlgPricingHeurstk ging solche problemspezifische Heuristik entwickelt, die sich in An-
hang A5.3 findet. Fur die heuristischen Lésungen des SP kénnen zwei Félle auftreten.
Erstens kann sich z57" < 0 ergeben. In diesem Fall wurde heuristisch eine Spalte ge-
funden, die dem XRMP hinzugefligt werden kann um eine Verbesserung des optimalen
Zielfunktionswerts z¥*MP" zu erméglichen. Die CG kann fortgesetzt werden, ohne das
SP exakt I6sen zu miissen. Zweitens kann sich z57" > 0 ergeben. In diesem Fall wurde
heuristisch keine Spalte gefunden, die dem XRMP hinzugefligt werden kann um eine
Verbesserung des optimalen Zielfunktionswerts zX®MP* zu erméglichen. Da die heuris-
tische Losung keine Optimalitat garantiert, kann nicht ausgeschlossen werden, dass
eine Lésung des SP mit z57" < 0 existiert. Um eine optimale Lésung des XRMP zu
garantieren, muss in diesem Fall das SP exakt geldst werden. Eine Heuristik zur L6-
sung des SP kann das exakte Losen des SP somit nicht grundséatzlich ersetzen. Sie
kann aber die Anzahl der Falle reduzieren, in denen das SP exakt gelést werden muss.
Ergibt sich nach heuristischer oder optimaler Lésung des SP z57" < 0 wird das XRMP
aktualisiert, indem die entsprechende Spalte hinzugefiigt wird. Fir den Beispielfall
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ergibt sich die in Abbildung 4.29 (2) gezeigte optimale Lésung des SP, die dem Monom
x5 entspricht®2. Der optimale Zielfunktionswert des DP, -2, ist kleiner als 0, weshalb dem
XRMP eine entsprechende Spalte hinzugeflgt wird.

4.4.21.4 Aktualisierung des relaxierten reduzierten Master-Problems

Die Auspragungen der Variablen wfp und wf fur f € {1, ...,nF}in der optimalen Lésung
des SP ergeben das neu hinzuzufigende Monom in Dual-Rail-Darstellung. Prinzipiell
entsprechen die Ausprégungen der Variablen a; ,m,, fiir i € {1, ...,n"?} den Koeffizien-
ten der neu hinzuzufiigenden Spalte des XRMP. Allerdings werden diese fir alle i, mit
v; = 0im Zuge der Optimierung willkiirlich gewahlt, da sie keinen Einfluss auf den Ziel-
funktionswert haben. Um die Koeffizienten der neuen Spalte zu ermitteln, d. h. um zu
ermitteln, welche positiven Datenpunkte das neue Monom akzeptiert, kann fur jeden
positiven Datenpunkt i die Bedingung ¥ c(;,..nry Wy (1 = xj;) + wi'xj; > 1 ausgewertet
werden. Der Zielfunktionskoeffizient des neuen Monoms im RMP ergibt sich als An-
zahl der in ihm enthaltenen positiven und negativen Literale aus Efe{l,...,nF}W;J +wp.
Damit kann dem XRMP eine neue Variable u,»_, mit Zielfunktionskoeffizient c,,m,,und
Nebenbedingungskoeffizienten a;,m,, hinzugefligt werden. Aus dem aktualisierten

XRMP kann durch Dualisierung ein neues DP abgeleitet werden®® usw.
44.21.5 Terminierung

Der Algorithmus terminiert, sobald sich aus dem SP ergibt, dass durch Hinzufiigen ei-
nes weiteren Monoms keine Verbesserung des optimalen Zielfunktionswerts mehr
moglich ist. Die optimale Lésung des letzten XRMP entspricht der optimalen Losung
des XMP, wobei alle Variablen des XMP, die nicht im letzten XRMP enthalten sind, auf
0 gesetzt werden. Abbildung 4.30 (1) zeigt das aktualisierte XRMP und das aktualisierte
DP fir den Beispielfall. Im Beispielfall wiirde ein weiteres SP aufgestellt werden, aus
dem sich das Monom x; ergibt. Nach der Lésung eines weiteren dualen Problems ergibt
sich fir das daraus folgende SP eine optimale Losung mit Zielfunktionswert 0. Nach
abschlielender Losung des XRMP ergibt sich eine ganzzahlige optimale Lésung und
damit eine optimale Lésung des MP. Diese entspricht dem in Abbildung 4.30 (2)

52 Neben der angegebenen optimalen Losung besitzt das Problem in diesem Fall noch eine zweite optimale L6-
sung, die dem Monom x; entspricht, das spater hinzugefiigt wird. Die Wahl der optimalen Lésung hat keinen
Einfluss auf die Komplexitat des resultierenden booleschen Ausdrucks.

53 Beim Einsatz von Solvern nach Stand der Technik, die das primale und duale Problem zugleich l6sen, kann
auf die explizite Formulierung des DP verzichtet werden.



114 Methoden

gezeigten optimalen booleschen Ausdruck, der gegenlber der initialen Losung 2 statt
5 Literale enthalt. Eine Verzweigung ist in diesem Beispiel nicht notwendig. Ist die L6-
sung des XMP hingegen nichtganzzahlig ist diese Lésung durch zusatzliche Nebenbe-
dingungen auszuschlieen und es sind entsprechend neue XMPs aufzustellen. Dies
geschieht im Rahmen des Uibergeordneten Algorithmus AlgB&P.

(1) XRMP 2 Dualproblem 2
min 2u; + 3u, + 1lug max v, + v, i v3) =(2,1)
s.t. luy + Ou, + Ouz = 1 s.t. vy + Ov, < 2
Ou;, + 1u, + 1luz = 1 ov, + 1v, < 3
Uq, Uy € R oy, + 1y, < 1
V1, V; € R

(2) Optimaler boolescher Ausdruck: x; V x3

XRMP = Relaxiertes reduziertes Master-Problem

Abbildung 4.30: Zweites relaxiertes reduziertes Master-Problem und zugehdriges Du-
alproblem sowie finale L6sung des Master-Problems fiir den Beispielfall

4.4.2.2 Ermittlung eines optimalen booleschen Ausdrucks mittels Branch and
Price (AlgBP)

Abbildung 4.31 stellt das Vorgehen des Algorithmus Alg®®® schematisch dar. Zunachst
wird mittels Alg®®, wie oben beschrieben, eine optimale Lésung des XMP bestimmt,
wobei das in Schritt 1 ermittelte XRMP 1 als Ausgangsproblem dient. Ist die optimale
Lésung des XMP nichtganzzahlig, wird sie ausgeschlossen und es werden neue, un-
tergeordnete XMPs aufgestellt, woraus sich eine Verzweigung ergibt. Die optimalen
Lésungen der neuen XMPs kdnnen erneut nichtganzzahlig sein, so dass weitere Ver-
zweigungen entstehen kénnen. Durch den auf diese Weise nach und nach entstehen-
den Baum kann das MP gel6st werden. Dabei wird Pruning mit Hilfe einer oberen
Schranke b° durchgefiihrt, um die Recheneffizienz zu erhéhen. Das Vorgehen wird im
Folgenden erlautert.

44221 Verzweigung

Um nichtganzzahlige Lésungen auszuschlie3en, kénnen bekannte Verfahren der ILP
eingesetzt werden, wie z. B. Schnittebenenverfahren oder Branch-and-Bound-Verfah-
ren. Die vorliegende Arbeit nutzt ein Branch-and-Bound-Verfahren. Sei u*“"" =
(u3, ..., u,m) die optimale Lésung des XMP, die, wie in Kapitel 4.4.2 beschrieben, der
optimalen Lésung von XRMP L entspricht. Sei sN6e"#2 = {j € {1, ...,n"}:u; & {0,1}} die
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Algce
XMP
1
XRMP1 ™| yrmpL |-»| RMPL > Ak‘“g'f'ere
]
~ - Nicht weiter
?
Ldsung ganzzahlig? betrachten

nein

Verzweigen
/ \
XMP (u,v: = 0) XMP (u,v: = 1)
XRMP_ RMP RMP
XRMP L (uan =0) > (w,vz = 0) XRMP L (u,v: =1) —

L
—

Lésung o Aktualisiere

ganzzahlig oder b°
2 2b%2 Nicht weiter
nein betrachten

Verzweigen

RMP = Reduziertes Master-Problem, XMP = Relaxiertes Master-Problem, XRMP = Relaxiertes reduziertes Master-Problem

Abbildung 4.31: Schematischer Ablauf des Algorithmus AlgB&P

Menge aller Indizes nichtganzzahliger Entscheidungsvariablen in u*?*. Es wird der
erste Index n'? = min({i € SN%4"?Z}) ausgewahlt, fiir den die zugehorige Variable in
der optimalen Losung nichtganzzahlig ist. In diesem Index wird das XMP verzweigt
(engl. to branch), indem jeweils ein XMP(u,v= = 0) und ein XMP(u,,v>= = 1) mit den zu-
satzlichen Nebenbedingungen w,v- = 0 bzw. u,v- = 1 erstellt werden®*. Diese unterge-
ordneten XMPs werden analog zum initialen XMP mittels Alg®® geldst. Hierfur kann
XRMP L als initiales XRMP verwendet werden, wobei die Variable u,v- entsprechend
fixiert wird.

54 Bzgl. der hier vorgestellten Methode 4 besteht der Fokus der vorliegenden Arbeit darin, CG im Rahmen von
Branch & Price fir die datenbasierte Erstellung von Regeln in LLKM grundsétzlich nutzbar zu machen. Es ist nicht
der Anspruch der vorliegenden Arbeit, das Potenzial, das Branch & Price fiir die effiziente L6sung entsprechender
Optimierungsprobleme bietet, auszuschépfen. Um die Recheneffizienz weiter zu erhéhen, besteht Potenzial fiir
den Einsatz anspruchsvollerer Meta-Verfahren, wie z. B. Branch & Cut, anspruchsvollerer Modellierungen wie
z. B. Dantzig-Wolfe-Reformulierungen und anspruchsvollere Verzweigungsstrategien wie z. B. eine Verzweigung
mit Vorausschau. Eine Herausforderung besteht jeweils darin, diese Ansétze im SP zu beriicksichtigen.
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Fur XRMPs mit Variablen, die auf O fixiert sind, sind die zugehdrigen SPs zuséatzlich zu
beschranken. Es dirfen keine Spalten in das XRMP aufgenommen werden, die iden-
tisch zu Spalten sind, deren zugehdrige Variablen im Zuge der Verzweigung auf O fixiert
wurden — andernfalls wiirden Endlosschleifen entstehen. Es muss deshalb eine Liste
mit ausgeschlossenen Monomen (LF¥k!Monome) gefijhrt werden, die beim Aufstellen
des SP durch Nebenbedingungen ausgeschlossen werden. Sei u € LE¥kiMonome gin 7).

vor ausgeschlossenes Monom und (wP*,w™) = (wf*, ..., wPr,wi™, .., w't) dessen
Dual-Rail-Darstellung. Dann missen dem SP folgende Nebenbedingungen hinzugefiigt
werden:
WWW”+Z 1-wl*)(1—-wP 4.14
Z refrnF) 7 fe{l,...nF}( 7= wp) _ -1

VH € LExklMonome .

nuoon o _on
+Zfe{1....nF}Wf s +zfe{1_mnp}(1 wit)(1 - wf)

Die Terme X c(y,. sy Wy Wi Und X reqy . ory Wy Wi entsprechen den Anzahlen von Lite-
ralen, die sowohl fiir das ausgeschlossene Monom als auch fiir die Lésung in positiver

bzw. negativer Form auftreten. Die Terme Y c(; .r(1—w/*)(1-wf) und
Yreqr,..nr)(1 = w*)(1 - wf) entsprechen den Anzahlen von Literalen, die weder fir

das ausgeschlossene Monom noch fir die Lésung in positiver Form auftreten. Insge-
samt entspricht die linke Seite der Nebenbedingungen somit der Anzahl von Stellen, in
denen die Lésung und das ausgeschlossene Monom (ibereinstimmen. Diese Uberein-
stimmung muss kleiner als 2nf — die Anzahl aller Stellen — sein.

Bei der Fixierung von Variablen eines XRMP auf 0 kénnen Falle eintreten, fir die das
XRMP keine Lésung mehr besitzt. Ggf. sind Monome in das XRMP aufzunehmen, um
die Losbarkeit wiederherzustellen. Auf diese Falle geht Anhang A5.4 ein.

Mit der vorgestellten, ggf. mehrfachen, Verzweigung kann eine ganzzahlige optimale
Lésung des XMP und damit eine optimale Losung des MP gefunden werden. Allerdings
kann die Effizienz des Vorgehens erhoht werden, indem nicht alle Teilbaume des re-
sultierenden Suchbaums vollstandig betrachtet werden. Es wird deshalb — wie fur
Branch-and-Bound-Verfahren tblich — Pruning durchgefiihrt, indem die méglichen Ziel-
funktionswerte eines Teilbaums mit einer oberen Schranke (engl. bound) verglichen
werden.
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44.2.2.2 Pruning

XRMP L kann nicht nur als initiales XRMP fur untergeordnete XMPs verwendet werden,
sondern auch um eine obere Schranke b° fiir zM?" — den optimalen Zielfunktionswert
des MP — zu berechnen. Dazu wird XRMP L derelaxiert indem seine Entscheidungsva-
riablen auf ganzzahlige Werte beschrankt werden. Es ergibt sich ein RMP L, dessen
optimale Lésung ganzzahlig und damit eine zuldssige L6sung des MP ist. Da RMP L
gegenuber dem MP reduziert ist, ist sein Losungsraum eine Teilmenge des Ldsungs-
raums des MP. Damit ist sein optimaler Zielfunktionswert z®™*" gine obere Schranke
fur den optimalen Zielfunktionswert z?*. Eine solche obere Schranke ergibt sich auch
fur alle letzten XRMP aller untergeordneten XMPs. Die obere Schranke kann genutzt
werden, um Teilprobleme, die sich aus der Verzweigung ergeben, von der Betrachtung
auszuschlief3en.

Sei XMP(...) ein durch Variablenfixierungen beschranktes XMP, das im Suchbaum von
AlgB3® auftritt. Da die Zielfunktionskoeffizienten und die Entscheidungsvariablen des
MP natirlich sind, ist der Zielfunktionswert des MP immer eine natirliche Zahl und so-
mit ist auch die obere Schranke h° eine natiirliche Zahl. Gilt nun

[ZXMP(...)"] > po 415
gilt auch fur das zu XMP(...) gehdrige MP(...) mit Variablenfixierung
[2MPC-)] = Be. 4.16

D. h. fir das MP existiert unter den gegebenen Variablenfixierungen keine Lésung mit
einem besseren Zielfunktionswert als b°. Damit kénnen sich aus XMPs, die XMP(...)
untergeordnet sind und deren Losungsraume damit Teilmengen des Lésungsraums
von XMP(...) sind, ebenfalls keine Lésungen mit besseren Zielfunktionswerten als b°
ergeben. Verzweigungen von XMP(...) missen damit nicht betrachtet werden. Durch
das Pruning mittels Kriterium 4.16 kdnnen optimale Lésungen des MP effizienter ermit-
telt werden.

4.4.2.2.3 Terminierung

Aus jedem betrachteten XMP ergibt sich durch Uberfilhrung des letzten XRMP in ein
RMP wie oben beschrieben eine obere Schranke b° fiir zM?". Ist diese geringer als die
geringste bisher gefundene obere Schranke h° wird h° entsprechend aktualisiert. Die
Menge der aktiven Monome des RMP, d. h. der Monome, die zu Basisvariablen der
optimalen Lésung gehdren, werden als bester bisher gefundener boolescher Ausdruck
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gespeichert. Sobald alle XMPs des Suchbaums gel6st oder im Zuge des Prunings
von der Betrachtung ausgeschlossen wurden, entspricht der beste gefundene Aus-
druck einem komplexitdtsminimalen Ausdruck, der eine perfekte Trainingsgenauigkeit
fur den Trainingsdatensatz aufweist.

Damit kénnen durch Methode 4 Regeln fir Auswahlbedingungen in LLKMs datenba-
siert erstellt werden. Fir andere Arten von Regeln kann — wie oben erlautert — auf an-
dere ML-Verfahren nach Stand der Forschung zuriickgegriffen werden. Mittels Methode
4 erstellte Regeln ergeben zusammen mit einer mittels Methode 2 erstellten MSTL und
zugehorigen, mittels Methode 3 erstellten MAPLs ein vollstandiges LLKM. Falls nicht
ausreichend viele Datenpunkte — d. h. nicht ausreichend viele Varianten mit zugehdri-
gen VSTLs und VAPLs — zur Verfigung stehen, kann Methode 5 eingesetzt werden,
um weitere Daten systematisch zu generieren.

4.5 Methode 5: Auswahl von reprasentativen Varianten zur Erwei-
terung der Datenbasis

Im Folgenden wird die im Rahmen der vorliegenden Arbeit entwickelte Methode 5 zur
Lésung des Problems 5 — der Auswahl von reprasentativen Varianten zur Erweiterung
der Datenbasis fiir die datenbasierte Erstellung von LLKMs — vorgestellt. Methode 5
behebt das in Kapitel 3.5.3 beschriebene Lésungsdefizit nach Stand der Forschung.
Zulassige Varianten sind durch die Produktmerkmale, deren zuldssige Auspragungen
sowie die Beschrankungen im HLKM beschrieben. Der sich daraus ergebende Konfi-
gurationsraum ist typischerweise zu grof3 um ein poolbasiertes aktives Lernen (AL) ein-
zusetzen. Durch die Auspragung der definierten Produktmerkmale unter Beriicksichti-
gung der Beschrankungen®® des HLKM lassen sich jedoch mittels Membership Query
Synthesis (MQS) Datenpunkte generieren, die zuladssigen Varianten aus dem Konfigu-
rationsraum entsprechen.

Prinzipiell kdnnen die in Kapitel 2.3.2 und 3.5.2 vorgestellten Kriterien des AL verwen-
det werden, um Varianten — beschrieben durch ihre Produktmerkmale — aus dem Kon-
figurationsraum auszuwahlen. Dabei geht jede Variante als Datenpunkt in den Trai-
ningsdatensatz ein, wie in Kapitel 4.1.3 erlautert. Die Varianten werden von einem Ex-
perten mit einer VSTL und VAPLs versehen, wie in Kapitel 4.1.2 beschrieben. Dadurch

55 Sind die Beschrankungen nicht vollstéandig definiert kdnnen diese im Rahmen des in Kapitel 4.1.3 beschriebe-
nen iterativen Prozesses reaktiv vervollstandigt werden, indem gewahlte Varianten, die unzuléssig sind durch
geeignete Beschrankungen ausgeschlossen werden.



Methoden 119

entsteht ein annotierter Datenpunkt im Trainingsdatensatz. Zum Erzeugen mehrerer
zusatzlicher Varianten kann dieses Vorgehen mehrfach wiederholt werden. Auf diese
Weise ist Methode 5 in einen iterativen Prozess eingebettet.

Es wird weiterhin von bindren Features ausgegangen, womit eine Variante als Bi-
narvektor beschrieben werden kann. Aus den im Rahmen von Methode 5 generierten
Daten sollen mittels Methode 2, Methode 3 und Methode 4 neben Regeln auch MSTLs
und MAPLs erstellt werden. Methode 5 beschrankt sich jedoch darauf, Varianten aus-
zuwabhlen, die einen hohen Informationsgewinn fur die Erstellung von Regeln erwarten
lassen. AuRerdem muss das in Kapitel 4.1.1 dargestellte KM fiir die Anwendbarkeit der
Methode eingeschrankt werden. Es wird davon ausgegangen, dass alle Parameter des
LLKM direkt von der Vertriebskonfiguration abhangen. Dies beschrankt die Machtigkeit
des KM insofern nicht, als alle Parameter zwangslaufig indirekt von der Vertriebskonfi-
guration abhangen und somit schlicht indirekte Regeln durch direkte Regeln abgebildet
werden. Im Folgenden entspricht ein Datenpunkt einer Variante. Die Produktmerkmale
— gdf. binar codiert — entsprechen den Features des Datenpunkts und die zu pradizie-
renden Parameter der MSTL und der MAPLs entsprechen seinen Labels. Es liegt somit
ein Multi-Label-Problem vor.

Die in der vorliegenden Arbeit verwendeten Klassifikationsmodelle in Form von boole-
schen Ausdriicken lassen keine Unsicherheit bzgl. Datenpunkten erkennen, werden
nicht mittels gradientenbasierter Verfahren gelernt und induzieren keine Entschei-
dungsgrenze. Deshalb kommen die folgenden in Kapitel 2.3.2 eingeflhrten informati-
onsbasierten Kriterien des AL fiir die Auswahl von Varianten nicht in Frage: Unsicher-
heit des Modells, erwartete Modellveranderung sowie Nahe zur Entscheidungsgrenze.
Als informationsbasiertes Kriterium nach Tharwat & Schenck (2023) verbleibt die Hete-
rogenitat der Vorhersagen eines Komitees nach dem QBC-Ansatz. Der QBC-Ansatz
hat jedoch den Nachteil, dass jedes Klassifikationsmodell des Komitees nur auf einer
Teilmenge des Trainingsdatensatzes trainiert wird. Damit liegen zum einen immer sub-
optimale Modelle vor, da jeweils vorhandene Informationen unberiicksichtigt bleiben.
Zum anderen kann nicht gewahrleistet werden, dass die Modelle eine perfekte Trai-
ningsgenauigkeit aufweisen und damit Giberhaupt fiir die Problemstellung geeignet sind.
Stattdessen wird in Schritt 1 der Methode 5 das bestehende Multi-Label-Problem mit
nl Labels zun&chst nach dem Prinzip der Binary-Relevance in n Probleme mit jeweils
einem Label aufgeteilt. Je Label wird ein Versionenraum (VR) erstellt, der Modelle in
Form von booleschen Ausdrucken enthalt, die jeweils auf allen Trainingsdaten trainiert
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wurden und eine perfekte Trainingsgenauigkeit aufweisen. Die Heterogenitat der Vor-
hersagen der Modelle fiir bestimmte Datenpunkte wird als eines der Auswahlkriterium
verwendet — im Folgenden als Separationskriterium bezeichnet.

In dem Anwendungsfall der vorliegenden Arbeit entspricht die Gesamtheit der mogli-
chen Datenpunkte dem Konfigurationsraum. Wird dieser als Pool im Sinne des AL auf-
gefasst, ist er zu gro3, um Cluster oder Dichten zu bestimmen. Von den reprasentati-
onsbasierten Kriterien nach Tharwat & Schenck (2023) konnen deshalb clusterbasierte
und dichtebasierte Verfahren ausgeschlossen werden. Diversitédt wird hingegen als
Auswabhlkriterium fur die Methode 5 genutzt. Auf Basis der Kriterien Separation und
Diversitat werden in Schritt 2 der Methode 5 Varianten aus dem Konfigurationsraum
ausgewahlt. Dabei werden die Beschrankungen im HLKM berlcksichtigt. Abbildung
4.32 stellt die beiden Schritte der Methode 5 dar.

[ ]
-
TTraining Schritt 1: VRs Schritt 2: Variante VSTL und VAPLs VSTL und VAPLs
aktualisieren auswahlen prognostizieren finalisieren
Features La. VRzuy, Features | Lab. Features | Lab. Features | Lab.
X1 X3 | X1 |X3 |1 |V2 31’1 =X VX3 Xy X X1 X3 V1 |V2 X1 |X2 [X1 |X2 |V1 |V2 Xy |X2 [X1 X2 |V1 [Y2
olojojo]o]o0 Biz = x V (x5 A xy) oloflofofo]o ojojojo|o]O ojlojojolo]oO
oj/1]o0]0]0]1 Big =% v G A x)) ol1]/of1]o]1 ol1]o[1]0]1 ol1/0[1]0]1
VRzuy, ] e ]
B =2 + O(1(0[1]1]1 O(1(0|1[1]|0
21 3
! 0(1(0[1]|?]|?
VAPL = VR = VSTL= Stiickliste

Abbildung 4.32: Uberblick (iber die Schritte der Methode 5

4.5.1 Schritt 1: Versionenraume aktualisieren

Im Folgenden wird mit VR [ der VR bezeichnet, der die Modelle fiir Label [ enthalt. Die
Anzahl zulassiger Modelle fiir einen VR wachst exponentiell mit der Anzahl vorliegen-
der Features. Deshalb werden nur die relevantesten n'® Modelle in einen VR aufge-
nommen. Dabei ist n'? ein Parameter der Methode, der die GroRe der VRs angibt. Wie
in Kapitel 2.3.2 dargelegt, sind Modelle umso relevanter, je geringer ihre Komplexitat
ist. Konkret enthalt somit jeder VR [ die n"® komplexitatsminimalen booleschen Aus-
driicke, die fiir das Label [ eine perfekte Trainingsgenauigkeit aufweisen.
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Wie oben beschrieben, ist Methode 5 in einen iterativen Prozess eingebettet. Fir alle
Iterationen mit Ausnahme der ersten existieren aus vorherigen Iterationen bereits VRs.
Da jedoch der Datensatz beim Abschluss der letzten Iteration um einen Datenpunkt
erweitert wurde, ist zunachst zu Uberprifen, ob die Modelle eines VR den zuletzt hin-
zugefligten Datenpunkt auf das gegebene Label abbilden. Falls nicht, werden sie aus
dem VR entfernt. Nach dem Entfernen unzuldssiger Modelle erfolgt das Wiederauf-
fiillen der VR auf n"® Modelle, indem neue Modelle berechnet werden. Dafur kann
grundsatzlich Methode 4 einmal oder mehrmals angewandt werden. Es muss dabei
gewahrleistet werden, dass bereits im VR enthaltene Modelle nicht erneut erstellt wer-
den. Hierflr werden zunachst alle Monome, die Bestandteil der r bereits im VR enthal-
tenen Modelle sind als Spalten in das initiale RMP und XRMP eingefligt — neben den
Monomen der heuristischen Losung (siehe Kapitel 4.4.1). Es kann ausgeschlossen
werden, dass Modelle, die bereits im VR existieren erneut erzeugt werden, indem die
Wahl der entsprechenden Monome im RMP beschrankt wird. Seien u}°™ =
(wkd™, .., u o) ¥ k € {1,..., 7} diejenigen Losungen des wie beschrieben aufgestell-
ten, initialen XRMP. Diese entsprechen den im VR bereits vorhandenen Modellen.
Dann kénnen diese Lésungen durch folgende Nebenbedingungen im RMP und XRMP
ausgeschlossen werden

> U = ) + (1 =W U = 1 VkE (1,7} a7
me(1,..,nM}

Die linke Seite der Nebenbedingung entspricht der Anzahl von Stellen, in denen u}°™

und u nicht Ubereinstimmen. Damit die beiden Vektoren nicht identisch sind, muss
diese Anzahl gréRer oder gleich 1 sein. Umgeformt in Standardreprasentation fur Ne-
benbedingungen in Minimierungsproblemen ergibt sich

4.18
Zme{l nM}(l = 2u MU > 1= Bty ULV € {1, ..., 7).

D. h. die entsprechenden Zeilen der Koeffizientenmatrix des RMP enthalten einen Ein-
trag -1 fur alle Monome, die bereits Teil eines Ausdrucks im VR sind und 1 fir alle
anderen Monome. Monome, die bereits Teil eines Modells im VR sind, werden auf3er-
dem in die Liste LE¥kiMonome g, sgeschlossener Monome fiir das SP (siehe Kapitel
4.4.2.1.2) aufgenommen, so dass sie nicht erneut in das RMP eingefligt werden. Damit
ist ausgeschlossen, dass Modelle, die bereits Teil des VR sind durch Anwendung von
Methode 4 erneut erstellt werden.
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Zuletzt sind fir die Anwendung von Alg®® noch folgende Details der Umsetzung zu
berlcksichtigen. In Methode 4 entspricht jeder Nebenbedingung eine Variable des DP
und somit eine Variable des SP (siehe Kapitel 4.4.2.1.2). Dies gilt nicht fiir die Neben-
bedingungen 4.18, die im SP nicht beriicksichtigt werden, da sie keinen Datenpunkten
des Trainingsdatensatzes entsprechen. AuRerdem werden die Koeffizienten dieser Ne-
benbedingungen nicht wie in Kapitel 4.4.2.1.4 beschrieben beim Einfligen einer neuen
Spalte in das RMP berechnet. Stattdessen werden sie immer auf 1 gesetzt, da ein neu
in das RMP aufgenommenes Monom, wie zuvor beschrieben, nicht Teil eines Modells
des VR sein kann.

Abbildung 4.33 zeigt einen Trainingsdatensatz (1) fir einen Beispielfall, der in Kapitel
4.5.2 aufgegriffen wird und die zugehdrigen VRs (2). Nach Durchfihrung von Schritt 1
liegt ein vollstandiger VR mit zulassigen Modellen je Label des Trainingsdatensatzes
vor. In Schritt 2 wird auf Basis dessen eine Variante ausgewahlt.

(1) Features Labels (2) VR zuy, VR zuy,
X4 X5 X3 X4 Y1 Yo
0 loJoJ]oJl]o]o By, =x Vs By, = x5
0 1 0 0 0 0 By, = x1 V (x3 A x4) By, = x3 N x4
T |1 o110 Bys = x5V (1 Axy) || Bys = x5 A ~xp
0 0 1 1 1 1 ' ’
0 0 0 1 0 0

VR = Versionenraum

Abbildung 4.33: Trainingsdatensatz flr einen Beispielfall (1) und zugehdrige Versionen-
raume (2)

4.5.2 Schritt 2: Variante auswahlen

Bei der Auswahl von Varianten sind die Beschrankungen des HLKM zu berucksichti-
gen. Unter allen zuldssigen Varianten ist diejenige auszuwahlen, die zu einer hohen
Heterogenitat der Vorhersagen der Modelle des VR fihrt (Separationskriterium) und
einen grof3en Abstand zu bereits zuvor ausgewahlten Varianten, d. h. Datenpunkten im
Trainingsdatensatz, aufweist (Diversitatskriterium). Es kann somit ein multikriterielles
Optimierungsproblem aufgestellt werden, das im Folgenden hergeleitet wird. Zu-
nachst wird die Modellierung des Separationskriteriums erlautert.

4.5.2.1 Modellierung des Separationskriteriums

Um die Heterogenitat der Vorhersagen der Modelle eines VR, bezogen auf eine Vari-
ante mit den Featureauspragungen x, analytisch zu modellieren, wird ein Mal} bendétigt,
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das analytisch beschrieben werden kann. Seien die booleschen Ausdriicke B; ;(x) und
B, (x) die Modelle j und k des VR [. Deren Funktionswerte hangen von der gewéhlten
Variante x ab. Die beiden Ausdrlicke stimmen nicht Gberein, falls ihre Kontravalenz
B, ;(x)®B(x) 4.19

wabhr ist, was

By,;(x) A =By (x) V =By j(x) A By (x) 4.20
entspricht. Der resultierende boolesche Ausdruck (Formel 4.19) wird im Folgenden als
Modellseparationsformel (MSF) B/"’, (x) bezeichnet. Eine MSF B}, gibt an, fir wel-
che Varianten die Vorhersagen der Modelle B, ;(x) und B, (x) nicht Gbereinstimmen,
d. h. die entsprechenden Modelle separiert werden. Sind zwei Modelle durch eine Va-
riante separiert, kann eines der beiden ausgeschlossen werden, sobald die Labels der
Variante bekannt sind. Varianten, die méglichst viele MSF eines VR erfillen sind somit
tendenziell zu bevorzugen.

nVR(nVR-1)

Es existiert in einem VR eine MSF fiir jedes Paar an Modellen, woraus sich .

MSF je VR ergeben. Nicht alle MSF eines VR kénnen zugleich erfillt sein. Die maxi-
male Anzahl von Modellseparationen fiir n"® Modelle tritt auf, wenn die Modelle des VR
eine Variante in moglichst gleich vielen Fallen auf wahr und auf falsch abbilden. Die

- . TIVR TlVR ) . .
Anzahl von Separationen ist dann [TJ [T] Uber alle VRs hinweg ergeben sich so-
. . nVR| [nVR . . . .
mit bei n! Labels n® [TJ IT] mogliche Separationen. Im besten Fall schlieRt eine Va-

. . - . ‘nVR ‘ﬂVR .
riante aufgrund ihrer Labels Uber alle VRs hinweg n” lTJ IT] Modelle aus. Um die

MSF fiir eine Variante moglichst effizient auswerten zu kénnen, werden sie in Konjunk-
tive Normalform (KNF), d. h. konjunktiv verknlpfte Klauseln, tGberfihrt. Wird eine Vari-
ante x von allen Klauseln akzeptiert, d. h. auf wahr abgebildet, ist die MSF erfullt. Ab-
bildung 4.34 zeigt die MSFs fiur den Beispielfall.

BYYS = B1a®B1p = ~x; Axz A~y BYYS = B;1®B,; = x3A~x4
B{W1SI3: = B11®B13 = X A~xz3A~xy BQ”IS{;: = By1®B;3 = x3Ax3
BY3% = By ,®B 3 BYSE = B, ,®B, 5

= ~x4 A(X1 VX3) A (~x1 V ~x3)

X3 A (X3 V ~x4) A (X4 V ~X3)

Abbildung 4.34: Modellseparationsformeln fir den Beispielfall
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nVR«(nVR

Es existieren insgesamt n’ = ~1) MSF von denen, wie oben beschrieben, durch

eine Variante nur ein Teil erfilllt werden kann. Es muss folglich entschieden werden,
welche MSFs erfiillt werden sollen. Hierfiir wird auf Basis der folgenden Uberlegung
eine Gewichtung der MSFs eingeflhrt.

4.5.2.2 Gewichtung von Modellseparationsformeln

Durch die sukzessive Erweiterung des Trainingsdatensatzes werden sukzessive Mo-
delle, die fir einen neuen Datenpunkt nicht gliltig sind, ausgeschlossen und durch neue
zulassige Modelle mit minimaler Komplexitat ersetzt. Die Komplexitat von Modellen, die
in den VR aufgenommen werden, ist deshalb mindestens so gro3 wie die der Modelle,
die zuvor ausgeschlossen wurden. Die Komplexitat der Modelle im VR nimmt damit im
Laufe der Iterationen tendenziell zu. Sobald die Komplexitat der Modelle im VR der
Komplexitat des tatsachlich glltigen Modells entspricht, gelangt das tatsachlich glltige
Modell in den VR. Das tatsachlich glltige Modell verbleibt fiir alle Iterationen im VR.
Die Komplexitat der hinzukommenden Modelle im VR steigt weiterhin. Dadurch unter-
scheidet sich die Komplexitédt des Modells mit der geringsten Komplexitat im VR und
den anderen Modellen im VR zunehmend. Je gréRer diese Differenz, desto wahrschein-
licher ist es, dass es sich bei dem Modell mit der geringsten Komplexitat um das tat-
sachlich gultige Modell handelt. Modelle auszuschlieRen, die bereits eine hohe Kom-
plexitatsdifferenz zum komplexitdtsminimalen Modell im VR aufweisen, ist daher we-
niger relevant als Modelle mit geringer Komplexitatsdifferenz auszuschlieen. MSFs,

die sich auf Modelle mit hoher Komplexitatsdifferenz beziehen, erhalten deshalb ein

Komp
Lj

VR [, d. h. die Differenz von dessen Literalanzahl zur Literalanzahl des komplexitatsmi-
nimalen Modells im VR. Dann erhalt die MSF jk des VR [ das Gewicht

K K
rlA;l'Sk = Z_max(dz,jomp'dl,lfmp) 4.21

geringeres Gewicht. Sei d die absolute Komplexitatsdifferenz eines Modells j aus

falls max(d) "™, d;, ") < d¥°™P und 0 sonst. dX™ stellt eine Grenze dar, ab der MSF

nicht mehr betrachtet werden. Dies verringert die Komplexitat des in Kapitel 4.5.2.5
vorgestellten Optimierungsproblems.
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4.5.2.3 Modellierung des Diversitatskriteriums

Das Kriterium der Diversitat |&sst sich als geringster Abstand einer Variante zu allen n”
im Trainingsdatensatz bereits vorhandenen Datenpunkten, d. h. Varianten, beschrei-
ben. Es gilt fur den Abstand zu den bereits im Datensatz vorhandenen Datenpunkten

dPist = min(dfm, "_’drlz[i)st , 4.22
wobei dPt den Abstand zu einem der n? Datenpunkte bezeichnet. Da, wie zuvor er-
lautert, von bindren Features ausgegangen wird, wird als Maf fiir den Abstand einer
Variante zu einer zuvor gewahlten Variante die Hamming-Distanz verwendet. Diese
gibt an, in wie vielen Stellen sich zwei binare Vektoren unterscheiden. Damit ist dieses
Maf durch die Anzahl nf an Features nach oben beschrankt.

4.5.2.4 Modellierung der Beschriankungen des High-Level-Konfigurationsmodells

Es bleibt sicherzustellen, dass eine Variante den Beschrankungen des HLKM genlgt.
Jede Beschrankung des HLKM lasst sich als boolescher Ausdruck beschreiben. Eine
Variante ist zuldssig, wenn sie alle diese Ausdriicke erfiillt. Sie muss also einen boole-
schen Ausdruck BHL(x) erfillen, der eine konjunktive Verkniipfung dieser Ausdriicke
darstellt und im Folgenden als High-Level-Formel (HLF) bezeichnet wird. Um die HLF
effizient auswerten zu kénnen, wird sie in KNF Gberfihrt. Eine Variante ist somit zulas-
sig, wenn sie alle Klauseln der HLF erfillt.

Vor dem zuvor beschriebenen Hintergrund kann das Optimierungsproblem zur Auswahl
einer Variante aufgestellt werden.

4.5.2.5 Aufstellen des Optimierungsproblems zur Auswabhl einer Variante

Das Optimierungsproblem enthalt die in

Tabelle 4.5 beschriebenen Variablen und Parameter und wird im Folgenden naher er-

lautert.

Tabelle 4.5: Variablen und Parameter des Optimierungsproblems zur Berechnung der
optimalen zu wahlenden Variante

Entscheidungsvariable, die den kleinsten Abstand einer Losung,
dPst e N d. h. Variante, zu allen bereits im Trainingsdatensatz befindlichen
Varianten angibt

Entscheidungsvariable, die angibt, ob sich die Vorhersagen der Mo-
d{fﬂfk € {0,1} |delle j und k des VR des Labels [ fiir eine Lésung, d. h. eine Vari-
ante, unterscheiden (1) oder nicht (0)
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nP eN Anzahl der Datenpunkte im Trainingsdatensatz
nf €N Anzahl der Features des Trainingsdatensatzes
nktAL ¢ N Anzahl der Klauseln in der HLF
n WS €N | Anzahl der Klauseln in der MSF jk eines VR I
nteN Anzahl der Labels im Trainingsdatensatz
n'R e N Definierte GroRe der VR
S Gewichtung der MSF, die den Modellen j und k im VR [ zugeordnet
Lik ist
wMS €[0,1] | Gewichtung des Kriteriums Modellseparation
Parameter, der angibt, ob Klausel m der Modellseparationsformel
w}”;’ﬁ'm € {0,1} | jk des VR des Labels [ das Feature f als positives Literal enthalt
(1) oder nicht (0)
WM Parameter, der angibt, ob Klausel m der Modellseparationsformel
W jsem € 0,1} jk des VR i das Feature f als negatives Literal enthalt (1) oder nicht
(0)
WwPHL ¢ 01} Parameter, der angibt, ob Klausel m der HLF das Feature f als po-
fm ’ sitives Literal enthalt (1) oder nicht (0)
whHL € (0,1} Parameter, der angibt, ob Klausel m der HLF das Feature f als ne-
fm ’ gatives Literal enthalt (1) oder nicht (0)
xr € {0,1} Auspragung von Feature f in einer zu wahlenden Variante
XV € (0,1} Auspragung von Feature f in der bereits im Trainingsdatensatz vor-
bf ’ handenen Variante i

Optimierungsproblem zur Auswahl einer Variante

4.23

1
MS JMS
s VRI VR Tkl
L TJ [T] i€{1,..,nl} jef1,..nVR} kefj+1,..nVR}
max
+(1 _ MS)i dDist
w F
i€{1,..,nP}
s.t.:
vie{l,..,n},
,MS MS vje{1,..,n"k},
Z W;J,z,j,k,mxf + Z W em (1= Xp) > s j e . } )
re{t,..nF} Fe(t,..nF} o vke{j+1,.,n"
vm e {1, n:(]lf:’s}

x/ (L= xp) + Z (A = x{7™M)xg > dPist vi € {1, .., n"}

fef1,..,nf}

)

fe{1,..,nF}
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pHL n,HL
Wf,m Xf + z Wem (1 - Xf) >1 vm € {1’ ...,n’“'HL} (3)
fe(L,..nF} fe(t,...nF}

vie{l,..n"},
di’’ {01} Vj € {1,..,n"R}, (4
vke{j+1,..,n"F}

dDist eN (5)

x; €{0,1} Vf €(1,...,n"} (6)

Der Term Xic(y,. 1) Zjefs,..nVR) Zke(j+1,..nvF) s kGijk der Zielfunktion gibt die gewich-
tete Anzahl von Separationen flr die gewahlte Variante an. Er wird normiert, indem er
durch die Anzahl maximal mdglicher Separationen geteilt wird. Ebenso wird der Ab-
stand d?®t normiert, indem er durch den maximal méglichen Abstand n* geteilt wird.
Durch den Gewichtungsfaktor wS wird eine Gewichtung der beiden Kriterien vorge-
nommen. Dieser Gewichtungsfaktor ist experimentell zu bestimmen. Nebenbedingung
1 stellt sicher, dass d{fk nur auf 1 gesetzt werden darf, wenn tatsachlich MSF jk in VR
[ erflllt ist. Hierfur wird jede Klausel der MSF in eine Dual-Rail-Darstellung Gberfuhrt.
Der Term Zfe{l‘m'np‘} w}?fﬁ'mxf gibt an, an wie vielen Stellen f die Klausel m ein positives
Literal enthélt und x, wahr ist. Gilt dies fur eine der Stellen, akzeptiert die Klausel die
Variante. Dasselbe gilt fir den Term ¥ qc(; r w}ﬁf{’m(l — x¢) und negative Literale.
Damit d{fk auf 1 gesetzt werden kann, missen alle Klauseln der MSF die Variante
akzeptieren. Nebenbedingung 2 beschrankt d”t jeweils durch den Abstand zu den
Datenpunkten im Datensatz, d. h. ds¢ kann nicht groRer gewahlt werden, als der ge-
ringste Abstand der gewahlten Variante zu Datenpunkten im Datensatz. Die Linke Seite
gibt die Anzahl von Stellen an, in denen die gewahlte Variante und eine bestehende
Variante nicht Ubereinstimmen. Nebenbedingung 3 stellt sicher, dass die gewahlte
Variante alle Klauseln der HLF erfullt und nutzt hierfur ebenfalls eine Dual-Rail-Darstel-
lung. Die Nebenbedingungen 4, 5 und 6 ergeben sich aus der Definition der Variablen.
In Anhang A6 wird auf zwei Aspekte der hier gewahlten Modellierung, den Verzicht auf
eine dynamische Gewichtung der Kriterien sowie die zu wahlende Codierung, einge-
gangen.
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Abbildung 4.35 zeigt das Optimierungsproblem zur Auswahl einer Variante fur den Bei-
spielfall sowie die zugehdrige optimale Losung. Dabei wird beispielhaft davon ausge-
gangen, dass im HLKM die Beschrankung —x, V —x; gilt, d. h. x, und x; nicht zugleich
gewahlt werden kénnen. Nach Schritt 2 liegt eine Variante mit potenziell hohem Infor-
mationsgehalt fir die datenbasierte Erstellung von Regeln vor.

11 1 1 1 1 1 Aus HLKM:
MS _ _dMS +_dMS +_dMS +_dMS +_dMS +_dMS .
max w 4 (2 1,1,i 2 1,1,3 2 1,2,3 2 2,1,2 2 2,1,3 2 2,2,3) ~Xp Vv ~X3
+ (1 _ WMS)_ddist
4 . .. .
s.t. 1=x)+(1—-x3) = 1 HLKM Optimale Lésung fur
1-x) = da¥F}, whs = 0,5:
3o = A, BIfS x* = (1,0,1,0)
1—x > dMS "
(1=x) 112 dMS™ = (0,0,0,0,1,1)
X+ X +x3+x, = dPSE Instanzl dDist — o
A5y diRs diBs A3 d50 5 d53s € {013
dDist IS N
HLKM = High-Level-Konfigurationsmodell X1,%2,%3,%, € {01}

Abbildung 4.35: Optimierungsproblem zur Auswahl einer Variante sowie zugehdrige
optimale Lésung

Wie in Kapitel 4.1.3 beschrieben, kann diese Variante — unterstutzt durch das LLKM —
mit einer VSTL und VAPLs versehen und flr das Training eines neuen, genaueren
LLKM genutzt werden. Abbildung 4.36 zeigt schematisch die Erstellung einer VSTL
und eines VAPL als Labels des neuen Datenpunkts (1), das Hinzufligen des neuen,
annotierten Datenpunkts zum Trainingsdatensatz (2) sowie die Aktualisierung der VRs

(1) x»=@010) » g » ;* == ((11"%1'0) ‘ a » y = (1,0)

(2) Features Labels (3) VRzuy, VRzuy,
X4 X2 X3 X4 Y1 Y2 e
0 0 0 0 0 0 By, = x; V x3 By, =x3 A~xy
0 1 0 0 0 0 B/, = x1 V (x3 A x4) By, = x3 A x4
31:3 =23V (X1 A xg)
1t Jo[1JoJ1Jo Bas = x3 NXa A~y

VR = Versionenraum

Abbildung 4.36: Abschluss einer Iteration durch die Erstellung von variantenbezogenen
Stiicklisten und Arbeitsplanen (1) sowie Uberfiihrung in den Datensatz (2) und Beginn
einer neuen lteration mit der Aktualisierung der Versionenrdume (3)
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in der nachsten Iteration (3) fiir den Beispielfall. Wie die Abbildung zeigt, kénnen durch
den neuen Datenpunkt zwei Modelle aus VR 2 ausgeschlossen und durch neue Mo-
delle ersetzt werden.

Methode 5 schlielt die im Rahmen der vorliegenden Arbeit entwickelte Methodik zur
datenbasierten Erstellung von LLKM ab. Die Im folgenden vorgestellte Methode 6 ist
der datenbasierten Uberpriifung von LLKM zuzuordnen.

4.6 Methode 6: Datenbasierte Uberpriifung von Regeln

Im Folgenden wird die im Rahmen der vorliegenden Arbeit entwickelte Methode 6 zur
Lésung des Problems 6 — der datenbasierten Uberpriifung von Regeln — vorgestellt.
Methode 6 behebt das in Kapitel 3.6.3 beschriebene Losungsdefizit nach Stand der
Forschung. Die Methode kann auf bestehende LLKMs angewandt werden, unabhangig
davon, ob diese manuell oder datenbasiert, wie in den vorangegangenen Kapiteln be-
schrieben, erstellt wurden.

Wie in Kapitel 3.6.2 dargestellt, existieren mit der statischen Verifikation und dem em-
pirischen Testen bereits zwei Ansétze zur Uberpriifung von KMs, die auch zur Uber-
prifung von LLKMs eingesetzt werden kdnnen. Methode 6 komplementiert diese An-
satze, indem sie Anomalieerkennung im Sinne des UL nutzt, um Hinweise auf Fehler
in LLKMs zu finden. Wie in Kapitel 3.5.2 begriindet, ist fiir eine ganzheitliche Uberpri-
fung eine Kombination dieser Methode mit den bestehenden Ansatzen sinnvoll. Zu-
nachst sollte eine statische Verifikation durchgefiihrt werden, da diese eine be-
schrankte Anzahl starker Hinweise auf Fehler gibt, die immer vollstédndig Uberprift wer-
den sollten. Sowohl die im Folgenden vorgestellte Methode zur Anomalieerkennung als
auch das empirische Testen sind beliebig skalierbar. Die Frequenz, mit der jeweils Feh-
ler gefunden werden, nimmt mit steigender Anzahl von Uberpriifungen ab. Fiir die Ano-
malieerkennung besteht, wie im Folgenden gezeigt wird, ein Indikator dafir, wann eine
weitere Uberpriifung ineffizient wird. Damit ist es mdglich, eine Anomalieerkennung bis
zu diesem Punkt durchzuflihren und anschlieRend bei Bedarf mit empirischem Testen
fortzufahren.

Die grundlegende Idee der im Folgenden vorgestellten Methode zur Anomalieerken-
nung fiir LLKMs besteht darin, eine Menge S?¢9 von Regeln eines LLKM in einen nicht-
annotierten Datensatz zu Uberfiihren. Dieser kann anschlieBend genutzt werden, um
darin mit Verfahren des UL Anomalien zu ermitteln (siehe Kapitel 2.3.3). Hieraus koén-
nen Rickschlisse auf potenzielle Fehler in den Regeln aus S?¢9 gezogen werden. Es
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wird von Regeln des LLKM in Form von booleschen Ausdriicken ausgegangen, deren
Wahrheitswert den Wahrheitswert einer abhangigen booleschen Variablen bestimmt,
d. h. von Regeln, wie sie fiir Auswahlbedingungen in LLKMs genutzt werden (siehe
Kapitel 2.2.2.4). Fur das UL werden abhangigkeitsbasierte Ansatze der Anomalieerken-
nung (siehe Kapitel 2.3.3) verwendet, um Muster in den Features des Datensatzes zu
erkennen und daraus auf Anomalien zu schlieBen. Abbildung 4.37 gibt einen Uberblick
ber die fiinf Schritte der Methode 6. In Schritt 1 werden die Regeln aus S?¢9 in eine
tabellarische Form gebracht, die als Datensatz fir UL geeignet ist. In Schritt 2 wird
eines der Features des Datensatzes fiir die Uberpriifung ausgewahlt. In Schritt 3 wer-
den SL-Modelle trainiert, um einen Zusammenhang zwischen den anderen Features
des Datensatzes dem ausgewahlten Feature zu ermitteIn®. In Schritt 4 werden auf Ba-
sis der Glte des ermittelten Zusammenhangs Anomalien im Datensatz bewertet und
Alternativvorschlage berechnet. Die Schritte 2 bis 4 werden fiir jedes Feature des Da-
tensatzes wiederholt. In Schritt 5 werden die im Datensatz erkannten Anomalien auf
die Regeln aus S?¢9 abgebildet und dem Anwender fiir eine systematische Uberpriifung
der Regeln zur Verfiigung gestellt. Die Schritte der Methode werden im Folgenden er-

' ' Schritt 4:
Schritt 1: Regeln Schritt 2: Feature Schritt 3: Modelle Ausreilerwerte

transformieren auswahlen trainieren und Alternativ-
vorschl. ermitteln

lautert.

Schritt 5:
Anomaliehinweise
erstellen und
Uberpriifen

SReg

(=xy A X2/ X3) .

V (=x1 Axy) P1[X2|X3(X4] X1{X2(X3(X. Pe| 22 Pesjy| -

=n (+x; AxpAx3) [0]1[1]0] [(~2y Axpnxs) [0[1[1]0 (21 AxpAx3)| |02 v

- (—xq AN X3)  (33,3%)
\(/(ilx/‘\iz;:;fa) (~x1Axg) |0]0]of1 (~x1Axy) |0[0]|0f1 (=%1 AXy) V (oxg Axe)

V (-x1 Ax3) -

=

Abbildung 4.37: Uberblick (iber die Schritte der Methode 6

4.6.1 Schritt 1: Regeln transformieren

Damit die Regeln aus S®¢9 mit Methoden des UL verarbeitet werden kénnen, missen
sie in eine geeignete, tabellarische Form gebracht werden. Regeln in DNF lassen sich

56 Das Problem wird — wie bei abhangigkeitsbasierten Ansétzen des UL Ublich — auf Teilprobleme zurlickgefiihrt,
die dem SL zuzuordnen sind. Auch wenn hierflir Features temporar als Labels interpretiert werden, liegen im
Trainingsdatensatz selbst keine Labels vor. Das Problem ist somit dem UL zuzuordnen (siehe Kapitel 2.3.1).
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in eine Literaltabelle und eine Monomtabelle Uberfiihren, wie in Abbildung 4.38
exemplarisch dargestellt.

Regeln
(—xy AxaAx3) V (2xg Axy) : (X1 AxaAx3) V (X Axy) V (21X Axz) =>
(X AxpAx3) V (X Axg) V (mX3 AXy) = (X3 Axg) V (mxg AX3) :>
Literaltabelle Monomtabelle
X1 Xy | X3 | x4 (—x1 AxpAX3) | (2xg A Xy) (=21 A X3) (=x3 A Xy)
(=X A XA x3) 0 1 1 o 1 1 0 0

(—x1 A xg) 0 o o 1 1 1 1 0

(=X Ax3) 0 o 1 o 1 1 0 1

(—x3 A xy) o o 0 1 0 1 1 0

Abbildung 4.38: Uberfiinrung von Regeln in eine tabellarische Form fiir einen Beispiel-
fall

Die Literaltabelle gibt fir jedes Monom an, ob eine Variable als positives Literal (1),
negatives Literal (0) oder Uiberhaupt nicht (o) auftritt. Die Monomtabelle gibt an, ob
ein Monom in einer Regel auftritt (1) oder nicht (0). Literal- und Monomtabelle enthalten
alle Informationen tiber eine Menge S%¢9 von Regeln. Beide Tabellen lassen sich jeweils
als Datensatze im Sinne des ML interpretieren. Die Zeilen der Tabellen, d. h. die Mo-
nome bzw. Regeln, entsprechen Datenpunkten und die Spalten, d. h. die Variablen
bzw. Monomen, entsprechen Features im Sinne des ML%’. Labels liegen im Datensatz
zunachst nicht vor. Zum Teil nutzen Unternehmen solche oder dhnliche Tabellen, um
Regeln manuell in KMs einzugeben. Diese kdnnen neben Regeln in DNF auch Regeln
in KNF oder in anderen Formen (siehe Anhang A12.1) reprasentieren. Ggf. kdnnen die
bereits existierenden Tabellen unmittelbar verwendet werden. Die folgende Erklarung
beschrankt sich auf Regeln in DNF. Die Anwendung auf andere Darstellungsformen
kann jedoch analog erfolgen.

UL-Verfahren zur Anomalieerkennung werden eingesetzt, um anomale Datenpunkte zu
ermitteln (siehe Kapitel 2.3.3). Ein Datenpunkt besteht aus einem Eintrag je Feature.

57 Datensatze die fiir die datenbasierte Uberpriifung von Regeln verwendet werden sind nicht mit Datensétzen zu
verwechseln, die fiir die datenbasierte Erstellung von Konfigurationsmodellen verwendet werden. Diese weisen
einen anderen Aufbau und insbesondere andere Arten von Datenpunkten und Features auf (siehe Kapitel 4.1
und Kapitel 4.4).
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Anomalien bestimmten Eintradgen von Datenpunkten zuzuordnen, ist in vielen Ansatzen
in der Literatur nicht das Ziel. Ohne eine solche Zuordnung zu Eintragen entsteht fur
den vorliegenden Fall jedoch ein hoher Uberpriifungsaufwand, weil Datenpunkte in den
betrachteten Tabellen fiir komplexe KMs Uber viele Eintrage verfligen kénnen. Um den
manuellen Uberpriifungsaufwand gering zu halten, wird deshalb eine Methode der Ano-
malieerkennung bendtigt, durch die Anomalien in Eintragen von Datenpunkten ermittelt
werden kénnen. Hierflr sind prinzipiell Ansatze der abhéngigkeitsbasierten Anoma-
lieerkennung geeignet®®. Dabei wird je Feature ein Modell trainiert, das den Zusam-
menhang zwischen den anderen Features und dem betrachteten Feature im Datensatz
wiedergibt. Eintrage des betrachteten Features werden jeweils mit einem sog. Ausrei-
Rerwert (engl. Outlier Score) versehen, der umso hoher ist, je weniger sie dem ermit-
telten Zusammenhang entsprechen. Die Ausreierwerte werden Uber alle Eintrage ei-
nes Datenpunkts aggregiert. Auf diese Weise wird jedem Datenpunkt ein Ausreiflerwert
zugeordnet. Damit stellt die Ermittlung von anomalen Eintragen ein Zwischenergebnis
dieser Ansatze dar. Bestehende Ansatze sind jedoch entweder fiir Regressionsprob-
leme entwickelt worden (siehe Li & van Leeuwen 2023, Xie et al. 2021, Lu et al. 2020,
Paulheim & Meusel 2015, Wagstaff et al. 2013) oder setzen voraus, dass ein Teil des
Datensatzes als fehlerfrei bekannt ist (siehe Noto et al. 2010). Ersteres entspricht nicht
dem vorliegenden Fall, weil ein Klassifikationsproblem vorliegt. Zweiteres kann fir An-
wendungsfalle in der Industrie im Allgemeinen nicht vorausgesetzt werden®®. Im Fol-
genden wird deshalb eine im Rahmen der vorliegenden Arbeit entwickelte Methode des
UL vorgestellt, die das Vorgehen der genannten Arbeiten mit einem Ansatz von Sluban
etal. (2010) zur Ermittlung von Rauschen in Labels fiir annotierte Datensatze verbindet.

4.6.2 Schritt 2: Feature auswahlen

Wie beschrieben, wird je Feature ein Modell trainiert. Deshalb sind die Features nach-
einander auszuwahlen. Die Reihenfolge, in der die Features betrachtet werden, ist nicht
relevant. Gewahlt wird in jeder lteration ein Feature der betrachteten Tabelle, das zuvor

58 Die vom Autor der vorliegenden Arbeit angeleitete Bachelorarbeit A_Kahn (2023) baut auf Frey et al. (2023)
auf und beschreibt erstmals die Verwendung abhangigkeitsbasierter Verfahren des UL fir diesen Zweck. Die hier
vorgestellte Methode unterscheidet sich jedoch von A_Kahn (2023). Es werden nicht Ausreiler absolut bestimmt,
sondern es wird jedem Eintrag ein AusreilRerwert zugeordnet (siehe Kapitel 4.6.4). Dies bildet die Basis fiir eine
skalierbare Uberpriifung der Regeln (siehe Kapitel 4.6.5). Dieses abweichende Ziel begriindet auch die Verwen-
dung eines anderen Verfahrens des SL (siehe Kapitel 4.6.3), das es ermdglicht Ausreilerwerte zu berechnen.

59 Es kann Falle geben, in denen ein Teil der Regeln als korrekt angenommen werden kann und ein anderer Teil
Uberprift werden soll, z. B. wenn das LLKM nach einiger Zeit erweitert wird. An dieser Stelle wird jedoch nur der
allgemeine Anwendungsfall betrachtet.



Methoden 133

noch nicht betrachtet worden ist. Wurden bereits alle Features betrachtet, wird die Me-
thode mit Schritt 5 fortgesetzt. Die Eintréage des in

Literaltabelle |x,|x, x;’: einer Iteration gewahlten Features werden in dieser
(ox1 AxpAx3) [0 |11 ]0] Iteration als Labels des Datensatzes betrachtet.
(=%1 A xa) 0]°]°f1] Somit liegt ein annotierter Datensatz vor und es
()] 0lof1]o koénnen SL-Modelle trainiert werden, um den Zu-

(—x3 A xy) olo|0|1 .
—1 sammenhang zwischen den anderen Features und

Abbildung 4.39 lterative Aus- dem Label, d. h. dem ausgewahlten Feature darzu-
wahl von Features stellen. Abbildung 4.39 zeigt die iterative Auswahl
von Features fur die Literaltabelle des Beispielfalls.

4.6.3 Schritt 3: Modelle trainieren

Nachdem ein Feature ausgewahlt wurde liegt ein annotierter Datensatz vor, wobei die
Auspragungen des ausgewahlten Feature die Labels der Datenpunkte darstellen. Der
Ansatz von Sluban et al. (2010) kann nun eingesetzt werden um Rauschen in diesen
Labels zu ermitteln. Dadurch kdnnen Anomalien in den Eintragen der initialen Tabelle
ermittelt werden, die zu dem ausgewahlten Feature gehéren®. Um Rauschen in Labels
zu ermitteln, trainieren Sluban et al. (2010) fir das Label des Datensatzes ein Random-
Forest-Modell. Dabei handelt es sich um ein Ensemble von Entscheidungsbaumen,
wobei jeder Entscheidungsbaum von der Realisation einer oder mehrerer Zufallsvari-
ablen abhangt (Breiman 2001, S. 5). Sluban et al. (2010) nutzen die Random-Forest-
Implementierung der Orange Data Mi-
ning-Bibliothek®' (Sluban et al. 2014,
S. 271). Diese erstellt Entscheidungs-
baume nach der von Breiman (2001,
S. 10-11) beschriebenen Methode,
wonach beim Training der Entschei-

dungsbdume zufallige Features zum

Abbildung 4.40: Ensemble von Entscheidungs- Bestimmen eines Splits gleichméalig
baumen fir Feature x, des Beispielfalls verteilt ausgewahlt werden. Rauschen

60 Der Ansatz von Sluban et al. (2010) wurde zuvor in der vom Autor der vorliegenden Arbeit angeleiteten Ba-
chelorarbeit A_Zacateco Herrera (2023) zur Uberpriifung von variantenbezogenen Stiicklisten und Arbeitsplénen
eingesetzt — ein Anwendungsfall, der in der vorliegenden Arbeit nicht betrachtet wird.

61 Siehe: https://orange3.readthedocs.io/projects/orange-visual-programming/en/latest/widgets/model/randomfo-
rest.html (zuletzt Uberprift am 07.06.2025)



134 Methoden

im Label ist nach Sluban et al. (2010, S. 1105) fur diejenigen Datenpunkte zu vermuten,
fur die die Vorhersagen der Entscheidungsbaume heterogen sind, d. h. fiir die eine
hohe Vorhersageunsicherheit besteht und damit kein klares Muster erkennbar ist.
Sluban et al. (2010) zeigen, dass Random-Forest-Modelle fiir Klassifikationsprobleme
besser geeignet sind, um Rauschen in Labels zu identifizieren als andere Ensemble-
Methoden. Deshalb werden sie auch in der vorliegenden Arbeit eingesetzt. Es wird ein
Ensemble von Entscheidungsbdumen trainiert, die das ausgewahlte Feature auf Basis
der anderen Features vorhersagen. Abbildung 4.40 zeigt ein beispielhaftes Ensemble
zur Vorhersage von Feature x, und damit die vierte lteration des Beispielfalls. Auf Basis
des Ensembles konnen fur die Eintrdge des ausgewahlten Features Ausreil’erwerte
und Alternativvorschlage ermittelt werden.

4.6.4 Schritt 4: AusreiRerwerte und Alternativvorschlage ermitteln

Analog zu Sluban et al. (2010) wird je Label, d. h. Eintrag des betrachteten Features,
ein AusreilRerwert bestimmt, der die Vorhersageunsicherheit des Random-Forests fiir
jeden Datenpunkt des Datensatzes angibt. Die Vorhersageunsicherheit fir einen Da-
tenpunkt ergibt sich als Anteil der Entscheidungsbaume, die das falsche Label vorher-
sagen. Die am haufigsten vorhergesagte Klasse, die nicht der tatséchlichen Auspra-
gung des Labels entspricht, stellt den Alternativvorschlag zur Auspragung des Labels
dar. Die Unsicherheit von Datenpunkt (=x; A x3) in Abbildung 4.41 (1) betragt z. B. 33,3
%, weil von drei Entscheidungsbaumen im Random-Forest eine Vorhersage nicht der
tatsachlichen Auspragung des Labels entspricht. Der Alternativvorschlag ist die am
haufigsten vorhergesagte nichtzutreffende Klasse ,1“ (2). Die Unsicherheiten je Eintrag

(1 ) Berechnung Xq Xy X3 Label DT1 DT2 DT3 Uns.
(=% A XA X3) 0 1 1 o o o o 0%
(—2; AXy) 0 o o 1 1 1 1 0%
(—2; AX3) 0 o 1 o <> 1 o o 33,3%
(—3 A xa) o B 0 1 1 1 1 0%
(2) Ausreilterwerte A Alternativvorschlige X4
(=X A XA X3) 0% (=x1 A XA x3)
(21 A xq) 0% (=% Axy)
(=2 AXs) 33,3% (=, Axp) 1
(—23 AXy) 0% (m3 Axg)

Abbildung 4.41: Berechnung von Ausreierwerten und Alternativvorschlagen fur Fea-
ture x, des Beispielfalls. Die Spalten DT (Decision Tree) entsprechen den Vorhersagen
der Entscheidungsbaume des Ensembles.
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sowie die Alternativvorschlage werden uUber alle Features hinweg in einer Tabelle
TAusreifer hzw. einer Tabelle TA%emat gegpeichert. Die beiden Tabellen werden ab-
schlieRend genutzt, um Anomaliehinweise zu erstellen.

4.6.5 Schritt 5: Anomaliehinweise erstellen und liberpriifen

Auf Basis der Tabellen T4usTeiRer ynd TAlternativ werden sukzessive Anomaliehinweise
generiert. Dafiir wird derjenige noch nicht betrachtete Eintrag in T4%¢®er mjit dem
héchsten Wert ausgewahit. Diesem Eintrag steht ein Eintrag der Literaltabelle bzw. Mo-
nomtabelle gegenlber, der wiederum mit einem Literal in einem Monom bzw. einem
Monom in den Regeln korrespondiert. Ein hoher AusreiRerwert ist ein Hinweis auf einen
potenziellen Fehler in diesem Literal bzw. diesem Monom. Wird Uber die Literaltabelle
ein Literal eines bestimmten Monoms als Anomalie identifiziert, sind davon alle Vor-
kommen dieses Monoms in den Regeln betroffen. Wird liber die Monomtabelle ein Mo-
nom einer bestimmten Regel als Anomalie identifiziert, sind davon alle Literale des be-
stimmten Monoms in der bestimmten Regel betroffen. Durch TAermativ it gine poten-
ziell korrekte Formulierung bekannt. Beides kann zusammen, wie in Abbildung 4.42
dargestellt, zur Uberpriifung an einen Domanenexperten gegeben werden.

2. (33,3%) 2. (33,3%) 2. (33,3%)
(X1 A% A X3) V (X1 A Xy) ﬁ (—xy A% Ax3) V (xg Axy) V (X A Xz Axy) ﬁ
(=1 A %A X3) V (mX1 AXg) V (=X A =Xz AXy) = (=1 Axg) V (g Axs A ) =B
2. (33,3%) 1. (66,6%) 2. (33,3%)

Abbildung 4.42: Darstellung von Anomaliehinweisen zur Uberpriifung durch einen Do-
manenexperten

Die Erstellung und Uberpriifung von Hinweisen wird so lange fortgesetzt, bis ein Ab-
bruchkriterium erreicht ist. Wie in Kapitel 5.6.2 gezeigt wird, besteht zunachst ein un-
gefahr linearer Zusammenhang zwischen der Anzahl von Uberpriifungen und der An-
zahl gefundener Fehler. Dieser lineare Zusammenhang geht ab einer gewissen Anzahl
gefundener Fehler in einen exponentiellen Zusammenhang Uber. Sobald also der Nut-
zer bei der Durchfihrung von Schritt 5 eine Abweichung von einem linearen Zusam-
menhang erkennt, wird Schritt 5 abgebrochen. Bei Bedarf wird mit empirischem Testen
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fortgefahren. Neben einer Einschatzung durch den Nutzer kdnnen hierfiir auch statisti-
sche Verfahren eingesetzt werden.
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5 Demonstration

Im Folgenden werden die in Kapitel 4 entwickelten Methoden 1 bis 6 demonstriert. Dies
entspricht dem vierten Schritt des Design Science Research Process (DSRP, siehe
Kapitel 1.3). Es werden Metriken flr die Demonstration eingefiihrt, um die Effektivitat
der Methoden zu quantifizieren. Die Ergebnisse hinsichtlich dieser Metriken dienen als
Grundlage fur eine abschlieRende Bewertung der entwickelten Methoden in Kapitel 6.
Im Folgenden wird zunachst das Vorgehen der Demonstration im Allgemeinen sowie
der hierfiir verwendete Anwendungsfall beschrieben (Kapitel 5.1). In den darauffolgen-
den Unterkapiteln wird das Vorgehen zur Demonstration der Methoden 2 bis 6 genauer
beschrieben und es werden die Ergebnisse der Demonstration prasentiert (Kapitel 5.2
bis 5.6).

Methode 1 integriert die Methoden 2 bis 5 und ist genau dann in der Lage Problem 1
zu lésen, wenn die Methoden 2 bis 5 in der Lage sind, die jeweiligen Probleme 2 bis 5
zu lésen. Die Effektivitat der Methode 1 ergibt sich aus der Effektivitdt der Methoden 2
bis 5. Deshalb wird im Folgenden auf ein separates Unterkapitel zur Demonstration von
Methode 1 verzichtet.

5.1 Anwendungsfall und Vorgehen der Demonstration

Zur Demonstration der im Rahmen der vorliegenden Arbeit entwickelten Methoden 4,
5 und 6 wurden Konfigurationsmodelle (KMs) eines Industriepartners verwendet.
Der Industriepartner ist ein international tatiger Anbieter von Messgeraten fur die Pro-
zessindustrie und setzt bereits seit langem Konfigurationssysteme (KSs) im Rahmen
der Auftragsabwicklung ein. Insbesondere werden diese fur die Erstellung von varian-
tenbezogenen Sticklisten (VSTLs) und variantenbezogenen Arbeitsplanen (VAPLSs)
genutzt. Verwendet werden beschrankungsbasierte High-Level-Konfigurationsmodelle
(HLKMs) und regelbasierte Low-Level-Konfigurationsmodelle (LLKMs) im Rahmen von
SAP LO-VC, wie in Kapitel 2.2.2.4 beschrieben. Das Unternehmen hat fir die vorlie-
gende Arbeit HLKMs und LLKMs zu 7 verschiedenen konfigurierbaren Produkten, d. h.
7 Produktfamilien, zur Verfigung gestellt. Um mit vertretbarem Rechenaufwand eine
umfassende Demonstration durchfiihren zu kénnen, wurden hieraus drei Produkte aus-
gewahlt, welche im Folgenden als Produkte A, B und C bezeichnet werden. Dabei han-
delt es sich um Messgerate zur Absolut- und Differenzdruckmessung. Diese unter-
scheiden sich in ihren physikalischen Messprinzipien und dadurch auch in ihren Stiick-
listen (STLs) und Arbeitsplanen (APLs) maRgeblich, so dass sie ein breites Spektrum
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an Varianten abbilden. Fir die Demonstration im engeren Sinne wurden ausschlief3lich
die Produkte A und B verwendet, wohingegen Produkt C fiir Voruntersuchungen, wie
z. B. Parameterstudien genutzt wurde. Die KMs wurden fiir die Demonstration durch
eigens entwickelte Programme emuliert, so dass sich daraus VSTLs und VAPLs konfi-
gurieren lassen.

Die Produkte verfligen zum einen Uber kategorische Merkmale, wie z. B. Zulassung,
Druckart oder elektrischer Anschluss. Fur diese Merkmale ist genau eine Auspragung
zu wahlen. Ein Spezialfall dieser Merkmale stellen Merkmale dar, fur die dartiber hinaus
auch keiner der Werte gewahlt werden kann, was letztlich als weitere mogliche Auspra-
gung verstanden werden kann. Zum anderen verfligen die Produkte (iber mehrwertige
Merkmale, fir die mehrere Auspragungen gewahlt werden kénnen, wie z. B. Zubehor
oder Kennzeichnungen des Produkts. Diese Merkmale wurden als Menge von boole-
schen Merkmalen interpretiert, die jeweils gewahlt oder nicht gewahlt werden kénnen.
Fir die Demonstration der Methoden 4 und 5 wurden die Produktmerkmale per One-
Hot-Codierung codiert. Fiir die Demonstration der Methode 6 wurde eine in Kapitel 5.6
beschriebene Transformation der KMs durchgefiihrt.

Es gibt in den KMs des Industriepartners keine Unterscheidung zwischen Produktmerk-
malen im HLKM und den Parametern des Endprodukts im LLKM. Das HLKM enthalt
ausschlieBlich paarweise Ausschlussbeziehungen zwischen Auspragungen verschie-
dener Merkmale und keine Einschlussbeziehungen. Die Maximalstiicklisten (MSTLs)
aller betrachteten Produkte sind einstufig, d. h. alle Komponenten gehen unmittelbar
in das Endprodukt ein. Entsprechend liegt auch nur ein Maximalarbeitsplan (MAPL)
vor. Der MAPL ist linear, d. h. enthélt keine Parallelitdten. Das LLKM enthalt eine Regel
fur jede Komponente der MSTL und jeden Arbeitsvorgang (AVO) des MAPL, wobei
jedes der Elemente ausschlieRlich von den Produktmerkmalen abhangig ist. Tabelle
5.1 gibt eine Ubersicht tiber die Kennzahlen der betrachteten KMs. Die Variantenan-
zahlen unter Berlicksichtigung von Beschrankungen wurden im Rahmen der vorliegen-
den Arbeit erstmals fundiert approximiert, worauf Anhang A7.1 eingeht. Es zeigte sich,
dass insbesondere Konfigurationsmodell B mit Giber 10%? Varianten einen Konfigurati-
onsraum aufweist, der nahe an die grof3ten in der Literatur beschriebenen Konfigurati-
onsraume heranreicht (siehe Kapitel 1.1). Es weist darliber hinaus mehr Komponen-
tenklassen (KKs) in der MSTL und mehr Arbeitsvorgangsklassen (AVKs) im MAPL als
die anderen betrachteten Produkte auf. In der MSTL und im MAPL des Industriepart-
ners liegen Standardkomponenten bzw. Standardarbeitsvorgéange vor, die in jeder
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Variante auftreten. Diese sind immer aktiv, d. h. die Regel ihres Aktivitdtszustands ent-
spricht trivial dem Wahrheitswert wahr. Tabelle 5.1 zeigt den Anteil trivialer Regeln fiir
die MSTL und den MAPL. Darlber hinaus zeigt sie die Komplexitat der Regeln je Kon-
figurationsmodell, gemessen an der mittleren Anzahl enthaltener Monome in disjunkti-
ver Normalform (DNF). Insbesondere fir die Produkte B und C existieren einige wenige
Regeln mit herausragender Komplexitat. Zur besseren Einschatzung ist in Tabelle 5.1
deshalb auch die mittlere Komplexitat der Regeln ohne Berlicksichtigung der komple-
xesten 5% der Regeln angegeben. Es kann festgehalten werden, dass die mittleren
Komplexitaten der Regeln fir Produkt B deutlich Gber denen von Produkt A liegen. Fir
alle drei Produkte ist auRerdem die Komplexitat der Regeln der MSTL hdher als die der
Regeln des MAPL. Dies lasst sich u. a. dadurch begriinden, dass es Merkmale gibt, die
keinen Einfluss auf die VSTL, jedoch auf den VAPL haben (siehe hierzu auch Kapitel
2.2.2.3).

Tabelle 5.1: Kennzahlen der betrachteten Konfigurationsmodelle des Industriepartners

Produkt
Kategorie Kennzahl A B (o
HLKM Anzahl boolescher Merkmale 71 82 68
Anzahl kategorischer Merkmale 20 25 16
Anzahl der Varianten ohne Bericksichtigung von Be- 1.0%10% 48*10% 7.4 *10%
schrankungen

Approximierte Anzahl der Varianten unter Berlicksichtigung

* 18 * 22 * 18
von Beschrankungen 1,4*10® 58*102 1,3*10

LLKM, Anzahl der KKs in der MSTL 690 1659 656
MSTL Anteil trivialer Regeln 49,7% 30,6% 41,5%
Mlt_tlere Anzahl der Monome in den Regeln in DNF, ohne 35 64.2 48,0
triviale Regeln
Mittlere Anzahl der Monome in den Regeln in DNF, 29 4.8 6.3
ohne triviale Regeln, ohne obere 5% ’ ! !
LLKM, Anzahl der AVKs im MAPL 162 330 165
MAPL Anteil trivialer Regeln 265% | 233%  24.2%
Mittlerg Anzahl der Monome in den Regeln in DNF, 76 163 4 08,1
ohne triviale Regeln
Mittlere Anzahl der Monome in den Regeln in DNF, 53 207 12,1

ohne triviale Regeln, ohne obere 5%

Die Grenzen des Anwendungsfalls fiir die Demonstration der im Rahmen der vorliegen-
den Arbeit entwickelten Methoden liegen in den einfachen Strukturen der MSTL und
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des MAPL. Dadurch lasst sich am Anwendungsfall nicht umfénglich demonstrieren,
dass mit den entwickelten Methoden 2 und 3 auch allgemeine MSTLs und MAPLs da-
tenbasiert erstellt werden kdnnen. Um Ubertragbare Erkenntnisse zu ermdglichen, wer-
den deshalb zur Demonstration der Methoden 2 und 3 gleichmaRig zufallig erstellte
synthetische MSTLs und MAPLs verwendet. Darauf wird in den entsprechenden Un-
terkapiteln eingegangen.

Die beschriebenen Methoden 2 bis 6 wurden im Rahmen der vorliegenden Arbeit voll-
standig in Programmcode implementiert, welcher die Grundlage der Demonstration
bildet und online verfiigbar ist®2. Damit kénnen alle Ergebnisse, soweit sie nicht auf
vertraulichen Daten basieren, nachvollzogen werden. Alle Experimente fir die im Fol-
genden Rechenzeiten oder Zeitbeschrankungen angegeben werden, wurden auf Re-
chensystemen mit 16 Prozessorkernen, mit einer jeweiligen Taktrate von 2,4 Gigahertz
und mit 32 Gigabyte Arbeitsspeicher durchgefihrt.

5.2 Methode 2: Datenbasierte Erstellung von Maximalstiicklisten

Im Folgenden wird die Demonstration der Methode 2 beschrieben. In Anhang A8.4 fin-
den sich daruber hinaus Zeitstudien, die den Effekt der in Kapitel 4.2.1 vorgestellten
Funktionen zur Erhéhung der Recheneffizienz von Schritt 1 der Methode 2 quantifizie-
ren. Sie zeigen, dass die im Rahmen der vorliegenden Arbeit entwickelten Funktionen
mafRgeblich zur Recheneffizienz von Methode 2 beitragen.

5.2.1 Vorgehen

Die grundlegende Idee der Demonstration besteht darin, eine synthetische MSTL als
Referenz zu erstellen, aus dieser MSTL eine Menge SVt von VSTLs zu konfigurieren
und auf Basis von S"5Tt mittels Methode 2 die Referenz-MSTL zu rekonstruieren. Die
Referenz-MSTL reprasentiert die fir einen praktischen Anwendungsfall zu erstellende,
korrekte MSTL. Die Menge SVSTL reprasentiert die in einem Anwendungsfall vorliegen-
den VSTLs. Durch die Demonstration wird Uberprift, ob Methode 2 grundsatzlich in der
Lage ist, eine geeignete MSTL aus SVSTL zu erstellen und wie effektiv dies in Abhangig-
keit der Kardinalitat n"S™ von SVt mdglich ist. Um die Effektivitat quantifizieren zu
koénnen, wird die relative Abweichung zwischen der durch Methode 2 erstellten Ergeb-
nis-MSTL und der Referenz-MSTL nach der in Kapitel A8.3 definierten, normierten

62 https://github.com/alexmfrey/creation_and_validation_of_configuration_models.git (zuletzt Gberprift am
07.06.2025)
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Metrik d"STt € [0,1] ermittelt. Diese quantifiziert die Unterschiedlichkeit der Baugrup-
pen der Ergebnis- und der Referenz-MSTL.

Es ist davon auszugehen, dass bestimmte Eigenschaften der Referenz-MSTL Auswir-
kungen auf die Effektivitdt der Methode 2 haben. Deshalb muss eine systematische
Verzerrung bei der Erzeugung der Referenz-MSTL vermieden werden. Im Rahmen
der vorliegenden Arbeit wurde deshalb eine Methode zur Erzeugung von MSTLs ent-
wickelt, die MSTLs aus dem Raum aller méglichen MSTLs mit bestimmten Eigenschaf-
ten gleichmagig zufallig auswahlt. Die Methode istin Anhang A8.1 beschrieben. Es wird
ferner davon ausgegangen, dass die Anzahl moglicher Zukaufkomponenten (ZKs) mit
identischer Bezeichnung in einer VSTL unabhangig von der gultigen Struktur ist (siehe
Kapitel 4.2.2.2), d. h. alle Strukturoptionen (STOs) der Referenz-MSTL enthalten die-
selbe Anzahl von Zukaufkomponentenklassen (ZKKs). Auflerdem werden nur MSTLs
betrachtet, deren ZKKs entweder genau einer STO oder allen STOs zugeordnet sind®.

Die Parameter der Erstellung sind

- rP6K das Verhéltnis der Anzahl von Baugruppenklassen (BGKs) zu ZKKs in der
Referenz-MSTL,

- n5T9 die Anzahl der STOs in der Referenz-MSTL,

- n?KX die Anzahl der ZKKs je STO,

- rMut der Anteil mehrfach auftretender ZKK-Bezeichnungen je STO

- und 4" der Anteil von ZKKs der Referenz-MSTL, die von der giiltigen STO
abhangen.

Aus einer Referenz-MSTL kénnen, wie im Folgenden beschrieben, VSTLs konfiguriert
werden. Sind flr die MSTL STOs hinterlegt, wird zunachst die giiltige STO zufallig ge-
wabhlt. Es wird berucksichtigt, dass die STOs nicht dieselben Auftretenswahrscheinlich-
keiten haben muissen. Hierflr wird zunachst jeder STO gleichmaRig zufallig ein Wert
aus dem Intervall 0,5 4 rR4STO mit RadSTO ¢ [0; 0,5) zugewiesen. Diese Werte werden
anschlielend normiert, so dass sich die Wahrscheinlichkeitsmasse zu 1 kumuliert. Je
groRer rRedsTO desto hoher ist somit die Varianz der Auftretenswahrscheinlichkeiten.
Die gliltige STO wird je konfigurierter VSTL entsprechend dieser Wahrscheinlichkeits-
verteilung gewahlt. Re4STO st ein Parameter der Demonstrationsexperimente.

63 Wie in Anhang AA8.1 erlautert, ist diese Einschrankung notwendig um eine gleichmaRig zufallige Auswahl zu
gewahrleisten.
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Nachdem die STO feststeht, wird fur jede ZKK, die unter dieser STO instanziiert werden
kann, zuféllig bestimmt, ob diese instanziiert wird. Auch hier werden unterschiedliche
Auftretenswahrscheinlichkeiten der zugehdrigen ZKKs berlicksichtigt, indem den ZKKs
gleichméRig zufallig Wahrscheinlichkeiten aus dem Intervall 0,5 + rRa4ZKK mit y-RadZKK ¢
[0; 0,5] zugeordnet und normiert werden. rR4ZKK st ebenfalls ein Parameter der De-

monstrationsexperimente. Die Parameter eines Experiments sind damit n”57t, rB6K,

STO ZKK ,.Mult .,.Abh
’

n T RadSTO und .r.RadZKK.

n raht

Das Vorhandensein von Multipositionen und STOs wirkt sich erheblich auf die Rechen-
zeit der Experimente aus und schrankt damit die Anzahl in vertretbarer Zeit durchfiihr-
barer Experimente ein. Es werden deshalb zum einen Experimente fur Referenz-MSTL
ohne Multipositionen und ohne STOs, d. h. mit nS7° =1, rM#t =0, r4Ph =0 und
rRadSTO = ( durchgefiihrt. Dabei wird ein Referenzfall mit einem definierten Anteil von
BGKs von rB¢¥ = 0,5 und einem definierten Radius der Auftretenswahrscheinlichkeiten
der Komponenten von rRedZKK = 0 25 gewéhlt. Die beiden Parameter werden gegen-
Uber diesem Referenzfall variiert, um ihren Einfluss auf dM*T% zu ermitteln. Zum ande-
ren werden flir den ausgewahlten Referenzfall MSTLs mit Multipositionen und STOs
untersucht, um wiederum den Einfluss dieser Aspekte zu bestimmen. Jedes Experi-
ment wird in zehn Durchldaufen wiederholt. Sowohl fiir Schritt 1 als auch fur Schritt 2
der Methode 2 wird eine Zeitbeschrankung von 1800 Sekunden definiert.

5.2.2 Ergebnisse

5.2.2.1 Experimente an Referenz-Maximalstiicklisten ohne Multipositionen und
Strukturoptionen

Abbildung 5.1 zeigt die jeweils tGber 10 Durchlaufe gemittelten Ergebnisse fir dMST*
sowie die Korrelationskoeffizienten ausgewahlter Parameter der Experimente in Pro-
zent. Fiir den Referenzfall (Abbildung 5.1, 2) mit r*¢ = 0,5 und rRZKK = 0,25 erge-
ben sich zunéchst fur nVST = 10 Abweichungen zwischen Ergebnis- und Referenz-
MSTL von bis zu 19,2 %. Bei geringen Datenmengen hangt das Ergebnis in hohem
Male von den zufallig ausgewahlten Datenpunkten ab, weshalb fiir die verschiedenen

ZKK ynsystematische Streuungen auftreten. Bereits ab nVS™t = 40

Auspragungen von n
sind die Abweichungen zwischen Ergebnis- und Referenz-MSTL weitgehend vernach-
lassigbar, d. h. die Referenz-MSTL kann robust rekonstruiert werden. Fir nVS™t = 180

und n”STt = 200 in Verbindung mit nZ¥¥ = 100, d. h. eine groRe Menge an VSTLs aus
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einer groRen Referenz-MSTL, treten allerdings erneut Abweichungen auf. Das ist auf
die vorgegebene Zeitbeschrankung fir die Schritte 1 und 2 der Methode 2 zurlickzu-
flhren. Flr nVSTt = 200 wurde in 6 der 10 Durchlaufe mindestens einer der beiden Zeit-
beschrankungen erreicht. Eine genauere Analyse dieser Falle zeigte, dass aufgrund
des vorzeitigen Abbruchs jeweils eine MSTL mit hoherer Komplexitat als die Referenz-
MSTL erstellt wurde.

Geringere Anzahl an Hohere Anzahl an
U Baugruppenklassen @ Referenzfall &) Baugruppenklassen
0,25 n“« %05 n#® % 0,75 n#
R 025 | 10 [ 20 [ 50 [100] o RedK.025 | 10 [ 20 [ 50 [100] o ReK025 | 10 [ 20 [ 50 J100] o
10 | 24 ®1 62 208 | 26

nvsTL
nvsTL
nvsTL

Ohne Streuung der Hohere Streuung der

@ Auftretensw ahrscheinlichkeiten ® Korrelationen © Auftretensw ahrscheinlichkeiten
TBoK. TBoK.
R T TR § 45
ST 63
n* 15,3
[ 7.7
TRRIZKK 130
b 736
g b* 57.7 g
= b™" -74,5 =
[ [ ]
[ o -98.9 |

Abbildung 5.1: Ergebnisse der Demonstration der Methode 2 an Referenz-Maximal-
stlicklisten ohne Multipositionen und Strukturoptionen; alle Angaben in Prozent

Die Ergebnisse fur geringere (Abbildung 5.1, 1) und héhere (Abbildung 5.1, 3) Anzah-
len von BGKs sind mit denen fiir den Referenzfall vergleichbar. Der Effekt der Zeitbe-
schrankung wirkt sich jedoch aufgrund des weniger komplexen bzw. komplexeren
Problems weniger stark bzw. stéarker aus. Die Ergebnisse fir die Falle ohne und mit
héheren Streuungen der Auftretenswahrscheinlichkeiten von ZKKs (Abbildung
5.1, 4 bzw. 6) unterscheiden sich hingegen maRgeblich von denen fir den Referenzfall.
Fur rRedZKK = 0 liegt die Abweichung dM5Tt bereits fiir n”** = 10 unabhangig von n?kX
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unterhalb von 10 %. Fur rReZKK = 0 45 treten hingegen bis zu n"Tt = 40 noch Abwei-
chungen von mehr als 10 % auf. Bei groRen Streuungen der Auftretenswahrscheinlich-
keiten kann es Komponenten geben, die in den VSTLs aus SVSTL nur gering reprasen-
tiert sind. Dies erschwert es diese Komponenten mittels Methode 2 korrekt in die MSTL
einzuordnen.

In Abbildung 5.1 (5) sind die Korrelationskoeffizienten der Parameter des Experi-
ments sowie der Variablen b?51, %52 und b™" zu sehen. Die Variablen geben an, ob
bei der Durchfiihrung von Schritt 1 oder Schritt 2 der Methode 2 die Zeitbeschrankung
erreicht wurde bzw. ob eine MSTL mit einer minimalen Komplexitat gefunden wurde®*.
Das Auftreten komplexitatsminimaler MSTLs ist stark negativ mit d™S% korreliert, d. h.
die Abweichung zur Referenz-MSTL ist tendenziell fur komplexitdtsminimale MSTLs
geringer als fir nichtkomplexitatsminimale. Dies spricht fiir die Wahl dieses Optimie-
rungskriteriums. Der vorzeitige Abbruch von Schritt 2 ist in allen Fallen eine Konse-
quenz des vorzeitigen Abbruchs von Schritt 1. Liegt keine komplexitatsminimale MSTL
vor, kann das in Schritt 2 aufgestellte Optimierungsproblem sehr gro} werden, was zu
einem Abbruch nach Uberschreitung der Zeitbeschrankung fiihrt. Deshalb ist es plau-
sibel, dass nicht nur b1 und dMST-, sondern auch b%5? und dMST* stark positiv korreliert
sind. Zuletzt bestatigen die Korrelationskoeffizienten den oben beschriebenen Einfluss
von rReaZKK ynd implizieren, dass d™ST- mit zunehmender GroRe n?%X der MSTL zu-
und mit zunehmender Anzahl nVS™ an vorliegenden VSTLs abnimmt.

5.2.2.2 Experimente an Referenz-Maximalstiicklisten mit Multipositionen oder
Strukturoptionen

Abbildung 5.2 zeigt die jeweils Gber 10 Durchldufe gemittelten Ergebnisse fir d¥S™ in
Prozent sowie die Korrelationskoeffizienten ausgewahlter Parameter der Experimente
in Prozent. Liegen ausschlieRlich Multipositionen und keine STOs vor (Abbildung 5.2,
1), kénnen kleine MSTLs mit n?XK = 20 bereits ab n"S™* = 20 genau reproduziert wer-
den. Ab n¥STL = 100 ergeben sich jedoch wieder schlechtere Ergebnisse, was auf den
in Kapitel 5.2.2.1 beschriebenen Effekt der Zeitbeschrankung zuriickzufiihren ist. Mit
zunehmender GroRe der Datenmenge nimmt die Abweichung d™S™t also zunachst auf-
grund abnehmender Varianz im Sinne des maschinellen Lernens (ML) ab. Ab einer

64 Im Falle eines vorzeitigen Abbruchs wird angenommen, dass eine minimale Komplexitat vorliegt, wenn diese
nicht hoher ist als die der Referenz-MSTL.



Demonstration 145

gewissen GrofRe der Datenmenge wird dieser Effekt jedoch durch den vorzeitigen Ab-
bruch der Schritte 1 und 2 der Methode 2 tUberkompensiert. Dadurch ergibt sich ein u-
formiger Verlauf von d"57t in Abhangigkeit von nVSTL. Dieser ist auch fiir nZ%K = 100
und flr die Uber alle n?%K gemittelten Randwerte deutlich zu erkennen. Experimente
mit Multipositionen weisen tendenziell einen héheren Rechenaufwand als Experimente
ohne Multipositionen auf. Dadurch kann erklart werden, dass der Effekt der Zeitbe-
schrankung starker ausgepragt ist als fir die in Kapitel 5.2.2.1 beschriebenen Experi-
mente.

STO ohne Streuung der Multipositionen und STO ohne

U] Muttipositionen @ Auftretensw ahrscheinlichkeiten & Streuung dgr . .
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10 | w7 2 240 333 | 218 10
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2 2 5__0- 69 25 58 | 38 g 50
& & 1 ]
2 2 2
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Abbildung 5.2: Ergebnisse der Demonstration der Methode 2 an Referenz-Maximal-
stlicklisten mit Multipositionen oder Strukturoptionen; alle Angaben in Prozent

Der beschriebene u-formige Verlauf von dSTt pragt aus demselben Grund auch die
Ergebnisse der Experimente ohne Multipositionen, aber mit STOs (Abbildung 5.2, 2
und 5). Wie zu erwarten, ergeben sich flir groRere Streuungen der Auftretenswahr-
scheinlichkeiten der STOs gréf3ere Abweichungen, da in den Daten unterreprasentierte
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STOs auftreten kdnnen. Auch in Fallen mit STOs existieren Fenster fur n”*™t und n?kk,
fur die eine datenbasierte Erstellung von MSTLs mit hoher Zuverlassigkeit mdglich ist.
Diese beschranken sich jedoch im Wesentlichen auf kleine MSTLs mit n?¥K = 10. Die
Experimente an Referenz-MSTLs mit Multipositionen und STOs (Abbildung 5.2, 3 und
6) zeigen, dass solche MSTLs mit den gegebenen Zeitbeschrankungen im Allgemei-
nen nicht zuverlassig datenbasiert erstellt werden kdnnen. Da auch hier jedoch ein u-
formiger Verlauf von d™STt erkennbar ist, ist zu vermuten, dass im Falle langerer Re-
chenzeiten oder héherer Rechenleistung mit ausreichender Datenmenge ebenfalls
MSTLs mit geringen Abweichungen erstellt werden konnen. Dies war jedoch im Rah-
men der vorliegenden Arbeit nicht GUberprufbar.

Die Korrelationstabelle (Abbildung 5.2, 4) bestéatigt den grofen Einfluss der Zeitbe-
schrankung auf die Ergebnisse. b?5! ist stark negativ mit ™" korreliert®>. b™" wiede-
rum ist stark positiv mit STt korreliert. Zu dem Zeitpunkt, an dem die Zeitbeschran-
kung von Schritt 1 erreicht wird, liegt also in vielen Fallen noch keine minimale MSTL
vor. Ist die Ergebnis-MSTL nicht minimal, ist ihre Abweichung von der Referenz-MSTL
tendenziell groR. Die Auswirkung dessen auf die Ergebnisse ist groR, weil in ca. 52 %
der Experimente die Zeitbeschrankung in Schritt 1 erreicht wurde.

5.3 Methode 3: Datenbasierte Erstellung von Maximalarbeitspla-
nen

Im Folgenden wird die Demonstration der Methode 3 beschrieben. In Anhang A9.3 fin-
den sich darliber hinaus Zeitstudien, die den Effekt der in Kapitel 4.3.1 vorgestellten
Funktionen zur Erhéhung der Recheneffizienz von Schritt 1 der Methode 3 quantifizie-
ren. Sie zeigen, dass die im Rahmen der vorliegenden Arbeit entwickelten Funktionen
mafgeblich zur Recheneffizienz von Methode 3 beitragen.

5.3.1 Vorgehen

Der Demonstration der Methode 3 liegt dieselbe Idee zugrunde, wie der Demonstration
der Methode 2. Mithilfe einer Methode, die im Rahmen der vorliegenden Arbeit entwi-
ckelt wurde (siehe Anhang A9.2), werden gleichmaRig zufallig Referenz-MAPL erstellt.
Aus diesen wird eine Menge S"4"L von VAPLs konfiguriert, die als Eingabe fiir die

65 pZ52 = 1 ist i. d. R. eine Folge von b™" = 0, da im Falle nicht minimaler MSTL das in Schritt 2 zu I6sende
Optimierungsproblem sehr groR werden kann. Dies erklart, warum auch b%52 und h™™" stark negativ korreliert
sind.
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Methode 3 zur datenbasierten Erstellung eines Ergebnis-MAPL dient. Zur Bewertung
der Effektivitat von Methode 3 in Abhangigkeit der Kardinalitat nV4P von SVAPL wird die
relative Abweichung zwischen der Ergebnis- und der Referenz-MSTL nach der in An-
hang A9.1 definierten, normierten Metrik d4P* € [0,1] bestimmt. Diese quantifiziert die
Unterschiedlichkeit der Vorrangbeziehungen des Ergebnis- und des Referenz-MAPL.

Es wird analog zur Erstellung von Referenz-MSTLs davon ausgegangen, dass die An-
zahl moglicher AVOs mit identischer Bezeichnung in einem VAPL unabhangig von der
glltigen Struktur ist, d. h. alle STOs des Referenz-MAPL enthalten dieselbe Anzahl von
AVKs. AuRerdem werden keine MAPLs mit AVKs, die mehreren, aber nicht allen STOs
des MAPL zugeordnet sind, betrachtet. Die Parameter der Erstellung sind

- rVBZ_der Anteil der glltigen Vorrangbeziehungen an allen moglichen Vorrang-
beziehungen zwischen den AVOs des Referenz-MAPL,

- n5T9, die Anzahl der méglichen Strukturen der aus dem MAPL konfigurierbaren
VAPL,

- n4K die Anzahl der AVKs je STO des Referenz-MAPL,

- rMult der Anteil mehrfach auftretender AVK-Bezeichnungen je STO

- und r4P" der Anteil von AVKs eines Referenz-MAPL, die von der gliltigen STO
abhangen.

Die zufallige Konfiguration von VAPLs aus dem Referenz-MAPL erfolgt analog zur zu-
falligen Konfiguration von VSTLs aus MSTLs, wie in Kapitel 5.2.1 beschrieben. Dabei
werden ebenfalls ungleiche Auftretenswahrscheinlichkeiten der STOs Uber den Para-
meter 44570 € [0; 0,5] und ungleiche Auftretenswahrscheinlichkeiten der AVKs tber
den Parameter r?a44K € [0; 0,5] berlcksichtigt. Es liegen im VAPL alle Vorrangbezie-
hungen des MAPL vor, die zwischen instanziierten AVKs bestehen. Die Parameter ei-

nes Experiments sind nVAPL, rVBZ, nSTO, nAK, TMult, TAbh'T.RadSTO und TRadAK_

Analog zur Demonstration der Methode 2 werden zum einen Experimente mit Referenz-
MAPL ohne Multipositionen und STOs durchgefiihrt und zum anderen Experimente fir
solche mit Multipositionen oder STOs fiir einen Referenzfall mit V52 = 0,5 und
rRadZKK = 025  Jedes Experiment wird in zehn Durchldufen wiederholt. Sowohl fiir
Schritt 1 als auch fir Schritt 2 der Methode 3 wird eine Zeitbeschrankung von 1800
Sekunden definiert.
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5.3.2 Ergebnisse

5.3.2.1 Experimente an Referenz-Maximalarbeitsplanen ohne Multipositionen und
Strukturoptionen

Abbildung 5.3 zeigt die jeweils liber 10 Durchlaufe gemittelten Ergebnisse fir dMAPL
sowie die Korrelationskoeffizienten ausgewahlter Parameter der Experimente in Pro-
zent. Fir den Referenzfall (Abbildung 5.3, 2) mit rV5% = 0,5 und rRe44K = 0,25 treten
bereits ab n'4PL = 40 unabhangig von der Groke n“X des Referenz-MAPL keine we-
sentlichen Abweichungen zwischen Ergebnis- und Referenz-MAPL auf. Lediglich fir
nV4PL = 200 und n4¥ = 100 zeigt sich der in Kapitel 5.2.2.1 beschriebene Effekt der
Zeitbeschrankung. Mit der Verringerung (Abbildung 5.3, 1) oder Erhéhung (Abbildung
5.3, 3) der Anzahl von Vorrangbeziehungen fallt d¥4PL ab bzw. steigt an, dieser Effekt
ist jedoch gering.

Geringere Anzahl an

1) Vorrangbeziehungen (2 Referenzfall (3)  Hohere Anzahl an Vorrangbeziehungen
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Abbildung 5.3: Ergebnisse der Demonstration der Methode 3 an Referenz-Maximalar-
beitsplanen ohne Multipositionen und Strukturoptionen; alle Angaben in Prozent
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Analog zu den in Kapitel 5.2.2.1 beschriebenen Ergebnissen flir die Demonstration der
Methode 2 hat die Streuung der Auftretenswahrscheinlichkeiten der AVKs eine nen-
nenswerte Auswirkung auf dM4PL (Abbildung 5.3, 4 und 6), was durch die Korrelations-
koeffizienten (Abbildung 5.3, 5) bestatigt wird. Ebenfalls analog zeigt sich dartber hin-
aus eine hohe positive Korrelation zwischen hZ81 und d4PL sowie h?8% und dM4PL und
eine hohe negative Korrelation zwischen b™" und dM4PL,

5.3.2.2 Experimente an Referenz-Maximalarbeitsplanen mit Multipositionen oder
Strukturoptionen

Abbildung 5.4 zeigt die jeweils iber 10 Durchlaufe gemittelten Ergebnisse fiir dM4Pt
sowie die Korrelationskoeffizienten ausgewahlter Parameter der Experimente in Pro-
zent.

Liegen ausschlieRlich Multipositionen und keine STOs vor (Abbildung 5.4, 1), kdnnen
MSTLs unabhangig von ihrer Grole ab n'S™ = 50 mit Abweichungen von weniger als
1 % reproduziert werden. Dasselbe gilt im Wesentlichen auch fiir den Fall, dass STOs
aber keine Multipositionen vorliegen (Abbildung 5.4, 2 und 5). Hierbei hat die Streu-
ung der Auftretenswahrscheinlichkeit nur einen geringfligigen Einfluss.

Insgesamt zeigt sich, dass unabhangig von Multipositionen und STOs gute Ergebnisse
erzielt werden kénnen. Dies steht im Gegensatz zu den entsprechenden in 5.2.2.2 dar-
gestellten Ergebnissen fir Methode 2. Dieser Gegensatz Iasst sich dadurch erklaren,
dass gegenliber Methode 2 die Zeitbeschrankungen fiir Methode 3 einen geringe-
ren Einfluss auf die Ergebnisse haben. Insgesamt wurde Schritt 1 in ca. 51 % der
durchgefiihrten Experimente vorzeitig abgebrochen, was in etwa der entsprechenden
Abbruchrate fur die Demonstration der Methode 2 entspricht. Lediglich in ca. 0,6 % der
durchgefiihrten Experimente wurde allerdings kein komplexitatsminimaler MAPL ermit-
telt. Dies zeigt sich auch in der geringen Korrelation zwischen %' und b™" (Abbildung
5.4, 4)%. Wird Schritt 1 vorzeitig abgebrochen, liegt also i. d. R. bereits eine optimale
Lésung vor. Dies steht in einem Gegensatz zu den in Kapitel 5.2.2.2 gezeigten Ergeb-
nissen fur die Demonstration der Methode 2; fur Methode 2 geht ein Abbruch tenden-
ziell mit suboptimalen MSTLs einher. Schritt 1 der Methode 3 ist also wesentlich

66 Da vorzeitige Abbriiche von Schritt 2 i. d. R. das Resultat sehr komplexer MAPL aus Schritt 1 sind und hier
i. d. R. komplexitatsminimale MAPL gefunden werden, traten auch nur in ca. 0,3 % der Experimente vorzeitige
Abbriiche von Schritt 2 auf. Die zu h%? gehérigen Korrelationskoeffizienten haben deshalb nur eine geringe Aus-
sagekraft, weshalb hierauf nicht eingegangen wird.
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Abbildung 5.4: Ergebnisse der Demonstration der Methode 3 an Referenz-Maximalar-
beitsplanen mit Multipositionen oder Strukturoptionen; alle Angaben in Prozent.

effizienter darin, komplexitatsminimale MAPLs zu finden als Schritt 1 der Methode 2
komplexitatsminimale MSTLs zu finden.

5.4 Methode 4: Datenbasierte Erstellung von Regeln

In diesem Kapitel wird die Demonstration der Methode 4 beschrieben. Uber die De-
monstration hinaus wurden zwei Benchmarkstudien durchgefihrt, auf die an dieser
Stelle kurz eingegangen wird. In der ersten Benchmarkstudie, die in Anhang A10.3
ausfihrlich beschrieben wird, wurde Methode 4 mit der Methode Two Stage von Igna-
tiev et al. (2021, siehe Kapitel 3.4.2) hinsichtlich Recheneffizienz verglichen. Wie in
Kapitel 3.4.2 erlautert, entspricht Two Stage dem Stand der Forschung fiir das Lernen
komplexitatsminimaler boolescher Ausdriicke mit perfekter Trainingsgenauigkeit. Der
Vergleich bestétigt, dass Two Stage im Gegensatz zu Methode 4 nicht ausreichend
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effizient ist um die in der vorliegenden Arbeit betrachteten Probleme zu l6sen (siehe
Kapitel 3.4.2). In der zweiten Benchmarkstudie wurde Methode 4 mit dem Algorithmus
DK-XTSD von Costamagna & Micheli (2023, siehe Kapitel 3.4.2) hinsichtlich Generali-
sierungsfahigkeit verglichen. Wie in Kapitel 3.4.2 erlautert, entspricht DK-XTSD dem
Stand der Forschung fiir das Lernen boolescher Ausdriicke mit perfekter Trainings-
genauigkeit, er garantiert jedoch keine minimale Komplexitat. Der Vergleich zeigt, dass
Methode 4 eine héhere Generalisierungsfahigkeit aufweist als DK-XTSD und damit fiir
die in der vorliegenden Arbeit betrachteten Probleme besser geeignet ist. Die Bench-
markstudie istin Anhang A10.4 ausfiihrlich dargestellt. Im Folgenden wird die Demonst-
ration der Methode 4 an den vom Industriepartner bereitgestellten Daten beschrieben.

5.4.1 Vorgehen

Zunachst wird ein Trainingsdatensatz fiir die Anwendung der Methode 4 erstellt. Ein
Datenpunkt entspricht dabei einer zulassigen Variante des HLKM. Die Features des
Datenpunkts entsprechen den Produktmerkmalen, wobei kategorische Merkmale in
One-Hot-Codierung Uberfuhrt werden. Die Labels des Datenpunkts entsprechen je-
weils einem booleschen Wert, der angibt, ob eine bestimmte Position der MSTL oder
des MAPL fiir diese Variante aktiv ist. Um zu vermeiden, dass die Ergebnisse der De-
monstration durch die Wahl der Varianten verzerrt werden, werden gleichmaRig zufallig
Varianten aus dem HLKM des betrachteten Produkts ausgewahlt. Der Anteil zulassiger
Varianten unter Berlicksichtigung von Beschrankungen an allen kombinatorisch mogli-
chen Varianten ist bei den betrachteten Produkten mit ca. 1 zu 1,43 * 10'7 gering. Eine
naheliegende Auswabhl einer Variante durch gleichmaRig zufallige Festlegung der Merk-
malauspragungen ohne Berticksichtigung der Beschrankungen fiihrt deshalb in fast al-
len Fallen zu einer unzuldssigen Variante. Deshalb wird Uniform Model Sampling
nach Soos et al. (2020) unter Verwendung der Python-Bibliothek pyunigen®” eingesetzt,
um gleichmaRig zufallige Lésungen der High-Level-Formel (HLF) zu bestimmen®8. Auf
diese Weise werden je Durchlauf A77*"n9 = 200 Varianten ausgewahlt. Fir die ausge-
wahlten Varianten werden mithilfe der vorhandenen LLKMs Labels generiert, d. h. es
wird ermittelt, welche Positionen der MSTL und des MAPL aktiv sind. Mit dem Binary-

67 Siehe https://pypi.org/project/pyunigen/ (zuletzt Gberprift am 07.06.2025). Die Einstellparameter des Algorith-
mus werden mit§ = 0,5 und € = 0,5 gewahlt.

68 Um vertretbare Rechenzeiten zu erreichen, miissen die Produktmerkmale fiir die Erstellung der HLF statt per
One-Hot-Codierung per Dualcodierung codiert werden, da ansonsten zu viele Binarvariablen und Klauseln vor-
liegen.



152 Demonstration

Relevance-Ansatz wird daraus ein Trainingsdatensatz je Label erstellt®®. Zunéchst wer-
den je Trainingsdatensatz die ersten n’"*""9 = 10 Datenpunkte ausgewahlt und Me-
thode 4 jeweils auf diese reduzierten Datensatze angewandt. AnschlieRend wird das
Experiment sukzessive fiir n”"*""9 = 20, 50, 100 und 200 wiederholt, um den Einfluss
der Anzahl von Datenpunkten zu ermitteln. Aus jedem Experiment ergibt sich eine Re-
gel, d. h. ein boolescher Ausdruck, je Label. Fur die Bewertung der datenbasiert erstell-
ten Regeln werden zum einen die Metriken %™ und r%"E* verwendet, welche der
Genauigkeit der Regeln auf einem Testdatensatz mit oder ohne Beriicksichtigung tri-
vialer Regeln (siehe Kapitel 5.1) entsprechen. Zum anderen werden die Metriken rModn
und rMe9Ex yerwendet, die den Anteil vollstandig korrekter Modelle mit bzw. ohne Be-
rucksichtigung trivialer Regeln angeben. Die Metriken werden in Anhang A10.1 aus-
fuhrlich erlautert.

Da die Methode 4 rechenintensiv ist und im Rahmen der Demonstration vielfach ange-
wandt wird, wird je zu erstellender Regel eine Zeitbeschrankung von 100 Sekunden
festgelegt. Es werden 10 Durchlaufe durchgefiihrt und die Ergebnisse liber die Durch-
laufe gemittelt.

5.4.2 Ergebnisse

Im Folgenden werden die Ergebnisse fir Produkt B vorgestellt, dessen KM eine hdhere
Komplexitat als das von Produkt A aufweist. Die Ergebnisse fur Produkt A finden sich
in Anhang A10.2. Soweit die Betrachtung der Ergebnisse von Produkt A zusatzliche
Erkenntnisse ermdglicht, wird darauf im Folgenden eingegangen.

Abbildung 5.5 und Abbildung 5.6 zeigen r¢m™m und rém"Ex pzw. rMedin ynd rModEx jn
Abhangigkeit von n'm4"9 fiir das Produkt B. Alle Kurven verlaufen monoton steigend,
d. h. mehr Trainingsdaten flihren zu genaueren Modellen und zu héheren Wahrschein-
lichkeiten die tatsachlichen Regeln exakt abzubilden. Wie aufgrund der Definition der
beiden Metriken zu erwarten, verlauft die Kurve von r"E* unterhalb der Kurven von
réenin ynd die Kurve von r°4Ex ynterhalb der Kurve von r°4" |m Vergleich von r@enEx
mit rMedEX zeigt sich, dass bereits fiir n77""9 = 10 Regeln mit einer Genauigkeit von

69 Fir Produkt A bzw. Produkt B liegen insgesamt 852 bzw. 1.982 Positionen in der MSTL und im MAPL vor. Da
sich die Labels der Trainingsdatensatze dariiber hinaus aus Regeln sehr unterschiedlicher Komplexitat ergeben,
decken die Trainingsdatensatze ein breites Spektrum an moglichen Anwendungsféllen ab. Deshalb ermdglichen
die KM des Industriepartners eine umfassende Demonstration, so dass auf die Verwendung synthetischer Daten
verzichtet wird.
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Uber 94 % erstellt werden kdnnen, auch wenn nur weniger als 7 % der nicht trivialen
Regeln korrekt abgebildet werden. Entsprechend des Vorgehens der Methode 4 wer-
den fiir nreining = 10 Regeln mit geringer Komplexitat erstellt. Der niedrige Wert fir
rModEx zeigt, dass deren Komplexitat zu gering ist, um die tatsachlichen Regeln der
KMs korrekt wiederzugeben. Der hohe Wert fiir r¢"£* zeigt hingegen, dass tatséchliche
Regeln des KM, auch wenn sie komplex sind, durch einfache Regeln gut angenahert
werden konnen. Dabei bleiben allerdings zwangslaufig seltene Falle, die durch lange
Monome in der Regel ausgedriickt werden, unbertcksichtigt. Fir eine zunehmende
Datenmenge zeigen sowohl r¢¢"E* als auch r°4E* gin asymptotisches Verhalten. Es
sind somit immer grofere Datenmengen erforderlich, um Testgenauigkeit und Modell-
tibereinstimmung weiter zu steigern. Auch fiir n7r%"ing = 200 verbleiben zahlreiche Re-
geln, die nicht vollstandig korrekt erkannt werden. Die Auswirkung dessen auf die
Testgenauigkeit, d. h. die Genauigkeit der Vorhersage von VSTLs und VAPLs, die
selbst fir nichttriviale Regeln tiber 99 % betragt, ist jedoch gering.
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Abbildung 5.5: Ergebnisse der Demonstration der Methode 4 an Produkt B hinsichtlich
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Abbildung 5.6: Ergebnisse der Demonstration der Methode 4 an Produkt B hinsichtlich
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Der Verlauf der Kurven fir Produkt A ist grundsatzlich mit denen von Produkt B ver-
gleichbar, wobei jedoch die Kurve fiir ¥M°45* deutlich oberhalb der entsprechenden
Kurve flr Produkt B verlauft. Fir nr4ming = 200 kénnen flr Produkt A ca. 53 % der
Regeln korrekt abgebildet werden ggu. ca. 21 % fir Produkt B. Dies ist zu erwarten,
weil die Regeln fir Produkt B komplexer sind und damit von Methode 4 erst spater
gefunden werden. Wie der Vergleich der Ergebnisse fiir Produkt A und B zeigt, gilt dies
jedoch nicht zwangslaufig fur die Generalisierungsfahigkeit, die fir Produkt A geringer
ist als fur Produkt B. Die Komplexitat einer Regel legt damit nicht zwingend fest, wie
gut diese durch Regeln geringerer Komplexitat angenahert werden kann.

5.5 Methode 5: Auswahl von reprasentativen Varianten zur Erwei-
terung der Datenbasis

In diesem Kapitel wird die Demonstration der Methode 5 beschrieben.

5.5.1 Vorgehen

Zunachst wird ein Trainingsdatensatz mit n’""9 = 10 Datenpunkten zu zufallig aus-
gewahlten Varianten und einem Label je Position der MSTL und des MAPL erstellt, wie
in Kapitel 5.4.1 beschrieben. Damit wird berticksichtigt, dass im Unternehmen i. d. R.
bereits VSTLs und VAPLs flr Varianten existieren, die nicht systematisch ausgewahlt
wurden. Dieser initiale Trainingsdatensatz wird zunachst nicht nach dem Binary-Rele-
vance-Ansatz geteilt. Ausgehend vom initialen Trainingsdatensatz erfolgt eine Simula-
tion des iterativen Prozesseses in den Methode 5 eingebettet ist (siehe Kapitel 4.1.3).
In jeder Iteration wird Methode 5 angewandt, um eine Variante aus dem HLKM auszu-
wahlen. Zu Beginn der Iteration wird, wie in Kapitel 4.5.1 beschrieben, ein Versionen-
raum (VR) pro Label erstellt. Das Komplexitatsminimale Modell je VR entspricht nach
Annahme der genauesten, zu diesem Zeitpunkt bekannten Regel. Es wird mit den in
Kapitel 5.4.1 genannten Metriken bewertet’®.

Fir die ausgewabhlte Variante werden mit Hilfe des LLKM Labels erstellt, d. h. bestimmt,
welche Positionen der MSTL und des MAPL aktiv sind. Dieser Schritt simuliert die Er-
stellung von VSTLs und VAPLs durch einen Experten. Zum Abschluss der Iteration liegt
ein zusatzlicher annotierter Datenpunkt vor, der dem Trainingsdatensatz hinzugefligt

0 Liegen mehrere komplexitatsminimale Modelle im VR vor, wird willkiirlich dasjenige verwendet, das zuerst in
den VR aufgenommen wurde.
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wird. Anschlieend wird Methode 5 erneut angewandt, indem die VRs aktualisiert wer-
den, wie in Kapitel 4.5.1 beschrieben, und eine weitere Variante ausgewahlt wird. Der
iterative Prozess wird fortgesetzt, bis #7749 Datenpunkte im Trainingsdatensatz vor-
liegen. Da Methode 5 rechenintensiv ist, wird fiir die Demonstration A77*""9 = 100 ge-
wabhlt, um die Experimente in vertretbarer Zeit durchfihren zu kdnnen. Dariber hinaus
wird zugunsten einer vertretbaren Rechenzeit der Parameter n"® (siehe Kapitel 4.5.1)
auf 3 gesetzt, d. h. es liegen immer 3 Modelle je VR vor. Der Parameter w (siehe
Kapitel 4.5.2.5) wird entsprechend der Ergebnisse der Parameterstudie in Anhang
A11.1 mit 0,5 gewahlt. Fir die Demonstration werden kategorische Merkmale in One-
Hot-Codierung codiert (siehe Anhang A6.2)"".

5.5.2 Ergebnisse

Im Folgenden werden die Ergebnisse fir Produkt B vorgestellt, dessen KM eine hdhere
Komplexitat als das von Produkt A aufweist. Die Ergebnisse fiir Produkt A finden sich
in Anhang A12.3. Soweit die Betrachtung der Ergebnisse von Produkt A zusatzliche
Erkenntnisse ermoglicht, wird darauf im Folgenden eingegangen.

Abbildung 5.7 und Abbildung 5.8 zeigen r¢™m und r@"Ex pzw. rMedn ynd rModEx jn
Abhangigkeit von nT™min9 fiir das Produkt B. Zum Vergleich sind die entsprechenden
Ergebnisse aus der Demonstration der Methode 4 hinterlegt. Ebenso wie die Kurven
fir Methode 4 verlaufen die Kurven fir Methode 5 monoton steigend, d. h. mehr
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o M4, rGenEx 97,00%

’ 96,00%

M5, rGenIn 95’00% d..’

------- M5, rGenEx 94,00%

10 30 50 70 90

nTraining

Abbildung 5.7: Ergebnisse der Demonstration der Methode 5 an Produkt B hinsichtlich
Testgenauigkeit

71 Die gleichzeitige Auswahl verschiedener boolescher Variablen die zum selben kategorischen Merkmal gehéren
wird verhindert, indem Nebenbedingungen in das in Kapitel 4.5.2.5 beschriebene Optimierungsproblem einge-
fihrt werden, die die Summe der Variablen auf kleiner gleich 1 beschranken.



156 Demonstration

50,00%
40,00% L 2 J

® M4, rGenin 30,00%
o M4, reenEx 20,00%
MS, réenin - 10.00% ®

....... M5, rGenEx 0’00%
10 20 30 40 50 60 70 80 90 100

nTra\ning

Abbildung 5.8: Ergebnisse der Demonstration der Methode 5 an Produkt B hinsichtlich
Modellibereinstimmung

Trainingsdaten fUhren zu hoheren Testgenauigkeiten und héheren Modelliibereinstim-
mungen. Die Kurven fir Methode 5 verlaufen stets oberhalb der Referenzpunkte fiir
Methode 4.

Tabelle 5.2 zeigt den Vergleich im Detail sowie den p-Wert eines zweiseitigen Welch-
Tests flir die Nullhypothese einer identischen Verteilung.

Tabelle 5.2: Ergebnisse der Demonstrationen der Methode 4 und Methode 5 an Produkt
B im Detailvergleich

[ Training Training
rGenEx ModEx
10 20 50 100 10 20 50 100
Methode 4 94,66 % 96,46 % 98,70 % 99,21 % | Methode 4 6,24 % 10,15 % 16,11 % 18,99 %
Methode 5 94,79 % 97,42 % 98,86 % 99,27 % | Methode 5 6,40 % 11,99 % 16,90 % 19,13 %
p-Wert 38,36 % 0,00 % 0,15 % 525 % p-Wert 36,60 % 0,00 % 0,17 % 59,02 %

Nur fir n7ening = 20 und n’m¢"n9 = 50 kann die Nullhypothese zum Signifikanzniveau
5 % verworfen werden, d. h. nur fir diese Falle ist die Differenz der Ergebnisse fir
Methode 4 und Methode 5 statistisch signifikant. Dass die Differenz fiir n7%ni"9 = 10
nicht statistisch signifikant ist, ist dadurch bedingt, dass die ersten 10 Datenpunkte so-
wohl fur die Demonstration von Methode 4 als auch fir die Demonstration von Methode
5 zufallig gewahlt wurden. Dass der Vorteil der Methode 5 gegenuber einer zufalligen
Auswabhl von Varianten mit groReren Datenmengen abnimmt, kann verschiedene Ur-
sachen haben. Erstens kénnen fir kleine Datenmengen stochastisch bedingte unsys-
tematische Verzerrungen auftreten, d. h. bestimmte Bereiche des Variantenraums kon-
nen Uberproportional reprasentiert sein. Fir grofRere Datenmengen |6st sich diese Ver-
zerrung nach dem Gesetz der groRen Zahl auf. Zweitens profitiert Methode 5 mit zu-
nehmender Datenmenge immer weniger vom Diversitatskriterium bei der Auswahl von
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Varianten, da die mdglichen Abstande zu bereits betrachteten Varianten immer gerin-
ger werden. Zuletzt ist davon auszugehen, dass es Regeln gibt, die grundsatzlich mit
datenbasierten Methoden auf Basis praxisrelevanter Datenmengen nicht zuverlassig
vorhergesagt werden koénnen. Dies ist besonders vor dem Hintergrund der in Kapitel
5.4.2 vorgestellten Ergebnisse naheliegend. Verbleiben nur noch diese Regeln, wird es
u. U. irrelevant, welche Datenpunkte im Trainingsdatensatz vorliegen.

Die Ergebnisse fiir Produkt A unterscheiden sich nicht prinzipiell von denen von Pro-
dukt B. Ebenso wie bei der Demonstration der Methode 4 kdnnen allerdings insbeson-
dere hdéhere Modelllibereinstimmungen erreicht werden, wie z. B. vM°%E* = 54,92 %, fiir
nTraining — 100. Der Vorteil von Methode 5 gegeniiber einer zufilligen Auswahl von
Varianten ist insbesondere hinsichtlich der Modelliibereinstimmung fiir Produkt A deut-
lich starker ausgepragt als fir Produkt B. Dieser Vorteil besteht auch fiir n7rening =
100. Der Vergleich der Ergebnisse von Produkt A und B legt nahe, dass vor allem kom-
plexe Regeln — wie sie in Produkt B vorliegen — den Nutzen von Methode 5 begrenzen.

5.6 Methode 6: Datenbasierte Uberpriifung von Regeln

In diesem Kapitel wird die Demonstration der Methode 6 beschrieben.

5.6.1 Vorgehen

In den KMs des Industriepartners sind die Positionen der MSTL und des MAPL unmit-
telbar von den Produktmerkmalen abhangig. Diese Produktmerkmale kénnen katego-
risch oder mehrwertig sein, wie in Kapitel 5.1 erlautert. Eine Regel besteht aus einem
oder mehreren Termen, die disjunktiv verknUlpft sind. Ist im Falle mehrerer Terme einer
der Terme wahr, ist die Position aktiv. Jeder Term besteht aus einer Verkniipfung von
Aussagen hinsichtlich eines Produktmerkmals. Ware z. B. Merkmal 1 mehrwertig und
waren z. B. Merkmale 2 und 3 kategorisch, kdnnte ein Term wie folgt aussehen:

Xt = (U1,1: _'U1,z) AxPit g {Vz,p vz,z} Axt e {v31, v32}, 5.1
wobei x™¢ Produktmerkmale und v;; Merkmalauspréagungen des Merkmals i darstel-
len. Werden kategorische Merkmale per One-Hot-Codierung codiert ergibt sich daraus

z. B. der boolesche Ausdruck

(11 A =22) A (220 A —125) A (251 V x35). 5.2
Jede boolesche Variable des so transformierten Terms lasst sich somit entweder einem
Merkmal oder einer Merkmalauspragung des eigentlichen Terms zuordnen. Im
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Allgemeinen sind die Terme in den KMs des Industriepartners nach Transformation in
boolesche Ausdriicke keine Monome — ebenso wie der Term in Formel 5.2. Deshalb
ergibt sich durch die disjunktive Verknlpfung der Terme im Allgemeinen keine DNF.
Anstatt der im Beispiel in Kapitel 4.6.1 verwendeten Literal- und Monomtabelle wurde
deshalb zur tabellarischen Codierung der Regeln eine fallspezifische tabellarische
Darstellung gewahlt. Anhang A12.1 geht auf diese Darstellung und ihre Vorteile im
Anwendungsfall ein. In dieser Darstellung sind die Ausdrlicke durch ihre Terme in einer
Termtabelle codiert und die Terme durch ihre Literale in einer Literaltabelle. Nachdem
die Term- und die Literaltabelle vorliegen, werden in diese Tabellen wie in Anhang
A12.1 beschrieben, Fehler eingebracht.

Fehler, die in die Literaltabelle eingebracht werden, betreffen einzelne boolesche Vari-
ablen des transformierten Terms und damit einzelne Merkmale oder Merkmalauspra-
gungen im eigentlichen Term. Betrachtet werden die folgenden Fehlerarten (siehe Bei-
spiel in Anhang A12.1):

- Negationsfehler: Gegenuber der tatsachlichen Regel liegt eine boolesche Vari-
able im transformierten Term negiert anstatt positiv vor oder umgekehrt.

- Zusatzliche Variable: Gegenuber der tatsachlichen Regel liegt eine zusatzliche
boolesche Variable im transformierten Term vor. Berucksichtigt werden dabei nur
solche Variablen, die an der entsprechenden Stelle tatsachlich auftreten kénnen.

- Fehlende Variable: Gegenuber der tatsachlichen Regel fehlt eine boolesche Va-
riable im transformierten Term.

Alle booleschen Variablen im transformierten Term, die demselben kategorischen
Merkmal zugeordnet sind, treten entweder alle negiert oder alle positiv auf. Deshalb ist
davon auszugehen, dass Negationsfehler in einzelnen Variablen bereits durch eine
syntaktische Prifung der Regeln durch das KS gefunden wiirden. Daher wird auf Ne-
gationsfehler in solchen Variablen verzichtet, um die Ergebnisse der Demonstration
nicht positiv zu verfalschen. Damit kdnnen Negationsfehler ausschlieRlich boolesche
Variablen im transformierten Term betreffen, die aus mehrwertigen oder booleschen
Merkmalen hervorgegangen sind. Dadurch sind diese Variablen beim Einbringen zufal-
liger Fehler tendenziell 6fter betroffen. Dies wird, wie unten beschrieben, bei der Be-
wertung beriicksichtigt. Fehler, die in die Termtabelle eingebracht werden, entsprechen
Fehlern, die einen gesamten Term einer Regel betreffen. Es werden die Fehler zusatz-
licher Term und fehlender Term betrachtet, die einem zuséatzlichen bzw. fehlenden
Term in einer Regel entsprechen.
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In jedem Durchlauf der Demonstration werden entweder Fehler in die Literaltabelle oder
in die Termtabelle eingebracht. Jede durch Methode 6 vorgeschlagene Uberpriifung
betrifft genau ein Feld der Literal- oder der Termtabelle. Die Hinweise lassen sich un-
mittelbar auf die Terme in ihrer initialen Form Ubertragen. Fir die Uberpriifung eines
Hinweises in der Literaltabelle ist ein Produktmerkmal oder eine Produktmerkmalaus-
pragung flr einen bestimmten Term in den Regeln zu Uberprifen. Tritt dieser Term
mehrfach in Regeln auf, ist jeweils eine Uberpriifung durchzufiihren. Fiir die Uberpri-
fung eines Hinweises in der Termtabelle ist genau ein Term in den Regeln auf korrektes
Vorhandensein oder Nichtvorhandensein zu tberpriifen. Je Hinweis liegt ein Korrektur-
vorschlag vor (siehe Kapitel 4.6.5). Damit sind die Hinweise sehr spezifisch, weshalb
davon auszugehen ist, dass diese von einem Experten schnell Uberprift werden kdn-
nen.

Es werden je Durchlauf nfé"¢" wie in Anhang A12.1 beschrieben gleichmaRig zufallig
eingebracht. Variiert werden fiir die Experimente

- das Konfigurationsmodell (k™ = A oder k¥ = B), um eine gewisse Gene-
ralisierbarkeit der Erkenntnisse zu gewahrleisten,

- die Verteilung kFe™erart der Fehlerarten — entweder ausschlieRlich eine Feh-
lerart oder gleichverteilt Uber alle Fehlerarten — um zu ermitteln, welche Art
von Fehlern besonders gut oder besonders schlecht gefunden werden

- und die Anzahl nFé"e" der eingebrachten Fehler, um zu untersuchen, inwie-
fern Fehler in Modellen mit vielen Fehlern effizienter oder weniger effizient
gefunden werden kénnen.

Zunéchst wird von nféMeT = 100 ausgegangen. Um die Ergebnisse abzusichern, wer-
den jedoch auch Experimente mit deutlich weniger Fehlern (n"¢"¢" = 10) und deutlich
mehr Fehlern (nfé™e” = 1000) durchgefiihrt.

Die Einstellparameter der Methode 6 entsprechen den Einstellparametern des Ran-
dom-Forest-Algorithmus den sie nutzt. Bei der informationstechnischen Implementie-
rung der Methode 6 im Rahmen der vorliegenden Arbeit wird der Random-Forest-Algo-
rithmus der Software-Bibliothek scikit-learn” verwendet. Grundsatzlich werden die
Standardeinstellungen der Bibliothek genutzt. Fir vier Parameter, bei denen von einer

72 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html (zuletzt tiber-
pruft am 02.09.2024)
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groRen Auswirkung auf die Ergebnisse ausgegangen wird, wird jedoch eine Parame-
terstudie durchgefuhrt. Anhang A12.2 zeigt die Parameterstudie und die fur die De-
monstration gewahlten Parameterauspragungen, die sich daraus ergeben.

Um zu Uberprifen, ob Methode 6 grundsatzlich geeignet ist, um Problem 6 zu I6sen,
wird eine Benchmark-Methode betrachtet, die zufdllige Eintrage der Literal- bzw.
Termtabelle auswahlt und zur Uberpriifung vorschlagt. Durch das zufillige Einbringen
von Fehlern sind im Falle gleichverteilter Fehlerarten, wie oben beschrieben, nicht alle
Produktmerkmale gleich oft von Fehlern betroffen. Damit kdnnte Methode 6 implizit zu
einer Strategie flihren, die schlicht diejenigen Eintrage haufiger auswahlt, die mit einer
héheren Wahrscheinlichkeit Fehler enthalten. Deshalb wird eine weitere Benchmark-
Methode betrachtet, die zusatzliche Informationen dariiber nutzt, wie viele Fehler
jeweils pro Merkmaltyp vorliegen. Die Methode wahlt zufallig Eintrage der Literal- bzw.
Termtabelle aus, die zu Merkmaltypen mit einem héherem Fehleranteil gehéren. Sie
nutzt damit mehr Informationen, als in der praktischen Anwendung verfligbar waren.
Falls Methode 6 ausschlieRlich Hinweise auf Basis von Merkmaltypen treffen wiirde,
konnte sie keine besseren Ergebnisse als diese Benchmark-Methode erzielen. Ent-
scheidend fur den wirtschaftlichen Einsatz der Methode 6 ist die Anzahl generierter
Hinweise, die Uberpriift werden missen, um einen gewissen Anteil von Fehlern in den
Regeln eines LLKM zu finden. Dies entspricht der Metrik der Demonstration.

5.6.2 Ergebnisse

Im Folgenden werden die Ergebnisse fur Produkt B vorgestellt, dessen KM eine hdéhere
Komplexitat als das von Produkt A aufweist. Die Ergebnisse fur Produkt A finden sich
in Anhang A12.3. Soweit die Betrachtung der Ergebnisse von Produkt A zuséatzliche
Erkenntnisse ermdglicht, wird im Folgenden darauf eingegangen.

Abbildung 5.9 zeigt die Ergebnisse der Experimente fiir den Referenzfall mit nFehler =
100 in der Literaltabelle und einer Gleichverteilung der Fehler (iber alle drei Fehlerar-
ten”® in einer Gesamt- und einer Detailansicht fir Produkt B. Fur eine zufallige Auswahl
werden Fehler immer mit in etwa gleicher Wahrscheinlichkeit gefunden. Deshalb ver-
lauft die entsprechende Kurve in etwa linear. Die Kurve fur die zufallige Auswahl unter
zusatzlicher Information (z. I.) verlauft in zwei Abschnitten linear. Zunachst werden alle

73 Um exakt 100 Fehler zu betrachten existiert ein zusatzlicher Negationsfehler, d. h. es liegen 34 Negationsfehler,
33 zusatzliche Variablen und 33 fehlende Variablen vor.
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Felder der Literaltabelle mit hoher Fehlerwahrscheinlichkeit durchsucht und anschlie-
Rend alle Felder mit niedriger Fehlerwahrscheinlichkeit. Deshalb verlauft die Kurve im
ersten Abschnitt flacher als im zweiten. Die Kurve der Methode 6 verlauft bis ca. 84 %
der gefundenen Fehler in etwa linear und zeigt anschlieRend ein lberlineares Verhal-
ten’™ (siehe Abbildung 5.9, rechts). Im Datensatz liegen also zum einen Fehler vor, die
durch Anomalieerkennung schnell identifiziert werden kénnen und zum anderen Fehler,
deren Ausreil’erwerte weniger stark ausgepragt sind. Die Kurve fur Methode 6 verlauft
durchgehend unterhalb der beiden anderen Kurven. Damit zeigt sich, dass es mit Me-
thode 6 moglich ist, Negationsfehler, zusatzliche Variablen und fehlende Variablen
durch Anomalieerkennung effizient zu ermitteln. Um z. B. 84 % der Fehler zu finden,
sind im Mittel selbst bei zusatzlicher Information Uber die Verteilung der Fehlerhaufig-
keiten ca. 220-mal so viele Uberpriifungen’® notwendig, wenn eine zuféllige Uberprii-
fung der Regeln durchgefiihrt wird. Sobald die Kurve fir Methode 6 nach der Ermittlung
von 84 % der Fehler mit ca. 1.255 Uberpriifungen den linearen Abschnitt verldsst,
nimmt die Effizienz der Methode ab. Wie in Kapitel 4.6.5 beschrieben, ist dies ein ge-
eignetes Abbruchkriterium. AnschlieRend kann bei Bedarf mit empirischem Testen
fortgefahren werden. Da die Hinweise zur Uberpriifung wie zuvor beschrieben, sehr
spezifisch sind und damit schnell Uberprift werden kdnnen, erscheint die Durchfiihrung
von 1.255 Uberpriifungen praxisrelevant. Damit kdnnen mit Methode 6 im betrachteten
Fall mindestens 84 % der Fehler effizient gefunden werden. Der Abstand zu den
Kurven der zuféalligen Methoden vergrofRert sich jedoch auch darliber hinaus noch

3.000

< 500.000 —e—Zufall c
) 8, 2.500
S 400.000 ——Zufall, z. I S
5 6 5 2.000
s — s
5 300.000 S 1.500
5 200.000 =
= ’ = 1.000
N 100.000 g 500
< <

0 0

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
Anteil gefundener Fehler Anteil gefundener Fehler

Abbildung 5.9: Ergebnisse der Demonstration der Methode 6 fir die Literaltabelle von
Produkt B mit nfé"e™ = 100 und kFeherart = Gleichverteilt in Gesamtansicht (links) und
Detailansicht (rechts)

74 Zur Ermittlung des Ubergangspunkts wird die in Anhang AA12.3 beschriebene Methode verwendet.
75 276.532,1 Uberpriifungen ggii. 1.254,8 Uberprifungen
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weiter. Somit kénnen auch weitere Fehler systematisch gefunden werden, wenn auch
weniger effizient. Wie die Ergebnisse fir Produkt A (siehe Anhang A12.3) zeigen, re-
duziert sich fiir weniger komplexe KMs der Uberpriifungsaufwand. So sind z. B. ledig-
lich 889,9 Uberpriifungen notwendig, um 84 % der Fehler zu finden. Der prinzipielle
Verlauf der Kurve ist fur Produkt A jedoch identisch.

Wie Abbildung 5.10 (links) zeigt, ist der Aufwand zum Finden von Fehlern je nach Feh-
lerart unterschiedlich groR. Zusatzliche Variablen kénnen mit weniger Uberpriifungen
gefunden werden als fehlende Variablen und Negationsfehler. Dass es weniger auf-
wandig ist, zusatzliche Variablen zu finden als fehlende Variablen oder Negationsfehler,
ist naheliegend. Es gibti. d. R. sehr viele Mdglichkeiten, zusatzliche Variablen in einen
Term einzufigen und dies fuhrt in vielen Fallen zu Kombinationen von Variablen, die
im Datensatz ansonsten nicht auftreten. Das Finden von fehlenden Variablen ist zu-
nachst in etwa ebenso effizient moglich wie das Finden von Negationsfehlern. Ab ca.
84 % der gefundenen Fehler steigt jedoch der Uberpriifungsaufwand fiir das Finden
weiterer Fehler fir fehlende Variablen steiler an als fir Negationsfehler. Im Allgemeinen
koénnen also fehlende Variablen und Negationsfehler mit identischer Effizienz gefunden
werden, jedoch existieren bestimmte fehlende Variablen, die nur mit groem Aufwand
gefunden werden kénnen. Dies ist begriindbar, da es Falle geben kann in denen be-
stimmte Merkmale oder Merkmalauspragungen nur in bestimmten Fallen relevant sind.
Es existieren somit dhnliche Terme mit und ohne ein bestimmtes Merkmal oder eine
bestimmte Merkmalauspragung. Daraus ergeben sich Fehler, die schwer zu finden
sind. Die Kurven fiir alle drei Fehlerarten weisen einen Ubergang von einem linearen in
einen Uberlinearen Abschnitt auf. Fur alle drei Fehlerarten existieren also Fehler, die
mit Methode 6 effizient erkannt werden kénnen und Fehler, die mit Methode 6 nicht
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Abbildung 5.10: Ergebnisse der Demonstration der Methode 6 fiir die Literaltabelle von
Produkt B mit variierten Fehlerarten (links) und variierten Fehleranzahlen (rechts)
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effizient erkannt werden kénnen. Der Verlauf der Kurve aus Abbildung 5.9 lasst sich als
Konsequenz daraus verstehen. Die Ergebnisse fiir Produkt A sind prinzipiell mit denen
fur Produkt B vergleichbar, nur dass die Differenzierung zwischen fehlenden Variablen
und Negationsfehlern friiher einsetzt.

Abbildung 5.10 (rechts) zeigt auBerdem, dass die Anzahl benétigter Uberpriifungen,
um einen bestimmten Anteil aller Fehler zu finden von der Anzahl bestehender Fehler
abhangt. Wie zu erwarten, sind mehr Uberpriifungen notwendig, um z. B. 50 % der
Fehler zu finden, wenn dieser Anteil 500 Fehlern entspricht, als wenn dieser Anteil 5
Fehlern entspricht. Dies ist in der Abbildung erkennbar. Ebenso ist allerdings zu erwar-
ten, dass die Anzahl benétigter Uberpriifungen nicht linear mit der Anzahl vorliegender
Fehler steigt. Mit einer héheren Fehleranzahl nimmt auch die Fehlerwahrscheinlichkeit
je Eintrag der Literaltabelle zu. Damit werden mit einer hoheren Wahrscheinlichkeit
Fehler gefunden. Die Kurve fiir n"¢"¢" = 10 weist Stufen auf, weil jeder Schritt von 10
Prozentpunkten genau einem gefundenen Fehler entspricht. Abgesehen davon ist der
grundsatzliche Verlauf der Kurven vergleichbar.

Abbildung 5.11 zeigt die Ergebnisse der Experimente fiir den Referenzfall fiir nfehler =
100 in der Termtabelle und einer Gleichverteilung der Fehler tUber die beiden Fehler-
arten zusatzlicher Term und fehlender Term fir Produkt B. Da die Fehlerhaufigkeit fiir
alle Eintrage der Termtabelle gleich ist, wird keine zuféllige Auswahl mit zusatzlicher
Information betrachtet. Die Kurve der zufalligen Auswahl verlauft erneut linear. Die
Kurve fur Methode 6 weist vier Abschnitte auf. Zunachst steigt sie bis 2 % Anteil der
Fehler steil an, verlauft anschlieBend in etwa linear bis ca. 50 % der Fehler, steigt
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Abbildung 5.11: Ergebnisse der Demonstration der Methode 6 fiir die Termtabelle von
Produkt B mit nfeer = 100 und kFererart = Gleichverteilt in Gesamtansicht (links) und
Detailansicht (rechts)
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anschlielend erneut steil an bis ca. 54 % der Fehler und verlauft abschlielRend in etwa
linear oberhalb der Kurve der zufalligen Auswahl.

Dieser Kurvenverlauf lasst sich durch die Betrachtung der Kurven in Abhangigkeit der
Fehlerart, wie in Abbildung 5.12 (links) dargestellt, erklaren. Liegen ausschlieRlich zu-
satzliche Terme vor, zeigt die Kurve zunachst den aus der Betrachtung der Literalta-
belle bekannten Verlauf. Liegen hingegen ausschlieRlich fehlende Terme vor, steigt die
Anzahl notwendiger Uberpriifungen bereits fiir das Finden von 3 Fehlern sprunghaft an.
Mit Methode 6 kénnen somit fehlende Terme grundsétzlich nicht effizient identifi-
ziert werden. Abbildung 5.12 legt nahe, dass in dem in Abbildung 5.11 betrachteten
Fall zunachst Fehlerhinweise generiert werden, die auf fehlende Terme schlief3en las-
sen und nur eine geringe Spezifizitat aufweisen. Anschliel3end werden effizient Fehler-
hinweise generiert, die auf zusatzliche Terme hinweisen. Sind nahezu alle zusatzlichen
Terme gefunden, verbleiben lediglich fehlende Terme sowie einige wenige, schwer zu
identifizierende zusétzliche Terme, womit keine effiziente Uberpriifung mehr maglich
ist. Alle weiteren korrekten Hinweise sind im Wesentlichen Zufall.
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Abbildung 5.12: Ergebnisse der Demonstration der Methode 6 fiir die Termtabelle von
Produkt B mit variierten Fehlerarten (links) und variierten Fehleranzahlen (rechts)

Abbildung 5.12 (rechts) zeigt auRerdem, dass sich auch fir die Termtabelle die Anzahl
von Fehlern im Datensatz auf den Uberpriifungsaufwand auswirkt. Im Falle von 10
Fehlern in der Termtabelle sind allerdings mehr Uberpriifungen notwendig, um einen
bestimmten Anteil von Fehlern zu finden, als im Falle von 100 Fehlern. Dies steht im
Gegensatz zu den Ergebnissen fir die Literaltabelle. Dies kann daran liegen, dass die
Halfte der Fehler fehlenden Termen entspricht und nicht systematisch gefunden wer-
den kann. Es verbleiben also fiir 10 Fehler nur 5 Fehler, die Gberhaupt systematisch
gefunden werden kénnen, womit die Wahrscheinlichkeit, einen Fehler zu finden zu Un-
gunsten der geringeren Fehleranzahl ausféllt. Je weniger Fehler im Fall n"é"e" = 100
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verbleiben, desto naher liegt deren Auffindwahrscheinlichkeit bei der des Falls nFeer =
10.

Die Ergebnisse fur Produkt A sind auch hinsichtlich der Termtabelle mit denen von
Produkt B vergleichbar. Auch hier sind jedoch tendenziell weniger Uberpriifungen not-
wendig um einen gewissen Anteil von Fehlern zu finden, als fiir Produkt B.
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6 Diskussion, Fazit und Ausblick

Im Folgenden werden die entwickelten Methoden 1 bis 6 diskutiert und bewertet. Dies
entspricht dem funften Schritt des Design Science Research Process (DSRP, siehe
Kapitel 1.3). Auf Basis dessen werden die Forschungsfragen 1 bis 6 beantwortet und
ein Ausblick auf den zukilinftigen Forschungsbedarf gegeben. Die folgenden Unterka-
pitel sind den Forschungsfragen und zugehdrigen Methoden 1 bis 6 zugeordnet.

6.1 Forschungsfrage 1: Datenbasierte Erstellung von Konfigurati-
onsmodellen

6.1.1 Diskussion

Die Demonstrationen der Methoden 2 bis 5 zeigen, dass diese insgesamt grundsatzlich
in der Lage sind, Maximalsticklisten (MSTLs), Maximalarbeitsplane (MAPLs) und Re-
geln datenbasiert zu erstellen. Damit ist Methode 1 grundsatzlich in der Lage Low-Le-
vel-Konfigurationsmodelle (LLKMs) nach Stand der Technik datenbasiert zu erstellen.
Aus den Einschrénkungen der Methoden 2 bis 5 ergeben sich jedoch Einschréankungen
fur Methode 1. Bei der Erstellung von MSTLs besteht gegenwartig noch ein Problem
mit der Recheneffizienz fir komplexe MSTLs, was in Kapitel 6.2.1 genauer beleuchtet
wird. Methode 4 ist in der Lage flr relevante Anwendungsfalle Regeln mit hoher Ge-
nauigkeit zu erstellen, was in Kapitel 6.4.1 ausgefihrt wird. Jedoch kdnnen, auch unter
Anwendung von Methode 5, i. d. R. keine vollstandig korrekten Regeln erstellt werden.
Damit kann Methode 1 fiir die in Kapitel 4.1.2 herausgegriffenen Szenarien DMM, DDD,
DOM, DOD und 00D eingesetzt werden, sofern MSTLs mit geringer Komplexitat vorlie-
gen. Fur die Szenarien D00, ODO oder DDO, bei denen nach einer datenbasierten Er-
stellung der LLKMs auf eine Uberwachung und Korrektur im Betrieb verzichtet wird, ist
sie hingegen nicht geeignet. Regeln, die nicht vollstandig korrekt sind, kdnnten sich in
diesen Szenarien in vereinzelten falschen Positionen der variantenbezogenen Stlick-
listen (VSTLs) und variantenbezogenen Arbeitspléanen (VAPLSs) niederschlagen.

6.1.2 Fazit

Forschungsfrage 1 lasst sich auf Basis der vorliegenden Arbeit wie folgt beantworten.
LLKMs lassen sich, mit der im Rahmen der vorliegenden Arbeit entwickelten Methode
1, datenbasiert erstellen. Die Zuverlassigkeit, mit der diese erstellt werden, ist im Rah-
men des Betrachtungsumfangs hoch, sodass ein wirtschaftlicher Nutzen zu erwarten
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ist. Sie ist jedoch nicht ausreichend hoch fir einen uniiberwachten Betrieb des Low-
Level-Konfigurationssystems (LLKS).

6.1.3 Ausblick

Methode 1 wiirde von der Weiterentwicklung ihrer untergeordneten Methoden, wie in
den folgenden Kapiteln beschrieben, profitieren. AuRerdem wéare eine weitergehende
Erprobung sinnvoll. Im Rahmen der vorliegenden Arbeit wurde Methode 1 entwickelt
und kann durch die Demonstration ihrer untergeordneten Methoden aus technischer
Sicht beurteilt werden. Die Ergebnisse der Demonstration lassen darlber hinaus eine
erste Einschatzung uber den wirtschaftlichen Nutzen der Methode zu. Um die datenba-
sierte Erstellung von LLKMs abschlieRend beurteilen zu kdnnen, ware jedoch dariber
hinaus eine Studie der Wirtschaftlichkeit und der Akzeptanz in Industrieunternehmen
auf Basis verschiedener Anwendungsszenarien notwendig.

6.2 Forschungsfrage 2: Datenbasierte Erstellung von Maximal-
stucklisten

6.2.1 Diskussion

Die Demonstration der Methode 2 zeigt, dass MSTLs mit bis zu 100 Zukaufkomponen-
tenklassen (ZKKs) ohne Multipositionen und ohne Strukturoptionen (STOs) mit einer
zweistelligen Anzahl von Datenpunkten zuverlassig datenbasiert erstellt werden kon-
nen. Ob dies auch fur MSTLs mit Multipositionen oder mit STOs gilt, konnte auf Basis
der durchgefiihrten Experimente nicht abschlieBend beurteilt werden, da in der durch-
gefuhrten Experimentreihe der Rechenaufwand den begrenzenden Faktor darstellte.
Dieser Rechenaufwand kann ein Hindernis fur einen Einsatz der Methode 2 in der In-
dustrie darstellen. Dabei ist jedoch zu bertcksichtigen, dass flr die einmalige Erstellung
einer MSTL langere Rechenzeiten akzeptabel sind als fiir eine umfassende Experi-
mentreihe. Der Rechenaufwand ist damit evtl. nur fur sehr groRe MSTLs mit STOs oder
Multipositionen tatsachlich kritisch.

6.2.2 Fazit

Forschungsfrage 2 lasst sich auf Basis der vorliegenden Arbeit wie folgt beantworten.
MSTLs lassen sich, mit der im Rahmen der vorliegenden Arbeit entwickelten Methode
2, datenbasiert erstellen. Die Zuverlassigkeit, mit der diese erstellt werden, ist im Rah-
men des Betrachtungsumfangs fliir MSTLs ohne STOs und Multipositionen hoch. Fur
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MSTLs mit Multipositionen oder STOs kann keine abschlielende Aussage getroffen
werden.

6.2.3 Ausblick

Die Demonstration der Methode 3, welche demselben Prinzip wie Methode 2 folgt,
zeigt, dass die grundsatzliche Vorgehensweise der Methode nicht die Ursache fiir die
geringe Recheneffizienz von Methode 2 ist. Die Griinde liegen viel mehr in den Unter-
schieden der beiden Methoden: AlgMST™t benétigt mehr Zeit zur Erstellung oder Uber-
prifung einer MSTL als AlgM*Pt zur Erstellung oder Uberpriifung eines MAPL. Dariiber
hinaus nutzen beide Methoden jeweils ein eigenes Distanzmal fiir die Priorisierung der
Verzweigung im Suchbaum. Inwieweit das fur Methode 2 verwendete Mal} weniger
aussagekraftig ist als das fiur Methode 3 verwendete MaRl wurde in der vorliegenden
Arbeit nicht systematisch untersucht. Durch Optimierung von AlgMS™ sowie eine genau-
ere Betrachtung des Distanzmales kann u. U. die Recheneffizienz von Methode 2 er-
hoht werden, wodurch u. U. Rechenzeit als kritischer Faktor eliminiert werden kann.

6.3 Forschungsfrage 3: Datenbasierte Erstellung von Maximalar-
beitsplanen

6.3.1 Diskussion

Die Demonstration der Methode 3 zeigt, dass MAPLs mit bis zu 100 Arbeitsvorgangs-
klassen (AVKs) auch mit Multipositionen und STOs mit einer zweistelligen Anzahl von
Datenpunkten zuverlassig datenbasiert erstellt werden kénnen. Fiir industrielle Anwen-
dungsfalle, die die Pramisse erfiillen, dass identische Arbeitsvorgéange (AVOs) identifi-
zierbar sind (siehe Kapitel 4.3) ist die Methode damit nutzbringend anwendbar. Neben
der Erstellung von MAPLs fiir LLKMs kann die Methode auch zur Ermittlung von Pro-
zessvorranggraphen unter Berilcksichtigung von Multipositionen und STOs eingesetzt
werden und kann damit z. B. auch einen Beitrag zur Austaktung und Steuerung varian-
tenreicher Montagesysteme leisten.

6.3.2 Fazit

Forschungsfrage 3 Iasst sich auf Basis der vorliegenden Arbeit wie folgt beantworten.
MAPLs lassen sich, mit der im Rahmen der vorliegenden Arbeit entwickelten Methode
3, datenbasiert erstellen. Die Zuverlassigkeit, mit der diese erstellt werden, ist im
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Rahmen des Betrachtungsumfangs sowohl flir MAPLs mit STOs und Multipositionen
als auch fur MAPLs ohne STOs und Multipositionen hoch.

6.3.3 Ausblick

Aufgrund der hohen Reife von Methode 3 bestehen Weiterentwicklungsmaoglichkeiten
weniger in der Methode selbst als viel mehr in deren Schnittstellen. Zum einen kénnten
die Voraussetzungen fiir die Anwendbarkeit reduziert werden, indem geeignete Metho-
den zur Generalisierung von AVOs entwickelt wiirden. Diese mussten dergestalt mit
Methode 3 integriert sein, dass bei der Generalisierung von AVOs die Anzahl von STOs
im MAPL minimiert wird. Zum anderen kénnte der Nutzen von Methode 3 fiir die Ar-
beitsplanung erhéht werden, indem erforscht wiirde, wie Multipositionen und STOs fir
die Austaktung und Steuerung von Montagesystemen verwendet werden kdnnen.

6.4 Forschungsfrage 4: Datenbasierte Erstellung von Regeln

6.4.1 Diskussion

Die Demonstration der Methode 4 zeigt, dass sich bereits auf Basis von 10 Datenpunk-
ten, d. h. 10 Varianten mit zugehdérigen VSTLs und VAPLs, Regeln mit einer Testgenau-
igkeit von Uber 90 % und fir 100 Datenpunkte von tber 99 % erstellen lassen. Die so
erstellten Regeln sind somit geeignet, um Positionen der VSTL und der VAPLs mit ho-
her Genauigkeit korrekt zu bestimmen. Dabei werden tatsachlich giiltige Regeln in vie-
len Fallen gut angendhert, jedoch nicht zwangslaufig vollstandig korrekt erkannt. Me-
thode 4 ist somit geeignet um auf Basis von unsystematisch ausgewahlten Varianten
automatisch gute, wenn auch nicht vollstandig korrekte, Regeln zu erstellen. Auch wenn
diese manuell finalisiert werden missen, um eine Genauigkeit von nahezu 100 % zu
erreichen, ist somit eine Verringerung des manuellen Aufwands méglich. Daruber hin-
aus ist eine Reduktion von Fehlern in Regeln zu erwarten, da die vollstandig korrekt
ermittelten Regeln — bis zu ca. 53 % in den betrachteten Fallen — manuelle Fehler aus-
schlief3en.

6.4.2 Fazit

Forschungsfrage 4 |asst sich auf Basis der vorliegenden Arbeit wie folgt beantworten.
Regeln in LLKMs lassen sich, mit der im Rahmen der vorliegenden Arbeit entwickelten
Methode 4, datenbasiert erstellen. Die Zuverlassigkeit, mit der diese erstellt werden ist
im Rahmen des Betrachtungsumfangs hoch, sodass ein wirtschaftlicher Nutzen zu



170 Diskussion, Fazit und Ausblick

erwarten ist. Sie ist jedoch nicht ausreichend hoch, um das zugehérige LLKS uniber-
wacht zu betreiben.

6.4.3 Ausblick

Methode 4 verfolgt konsequent das Paradigma komplexitatsminimaler Modelle unter
Gewahrleistung einer perfekten Trainingsgenauigkeit. Dadurch erzielt sie im Anwen-
dungsfall bessere Ergebnisse als vergleichbare Methoden nach Stand der Forschung.
Es ist deshalb nicht davon auszugehen, dass auf Basis derselben Datenmengen Mo-
delle mit héherer Genauigkeit erstellt werden konnen. Ein Nachteil der Methode ist je-
doch ihr hoher Rechenaufwand. Dieser kdnnte voraussichtlich reduziert werden, indem
der Stand der Forschung hinsichtlich Spaltengenerierung ausgeschopft wiirde, wie in
Kapitel 4.4.2.2.1 erwahnt. Dadurch kénnten Effizienzprobleme, die fiir groRe Konfigu-
rationsmodelle (KMs) auftreten konnen, geldst werden. Auch fir andere Anwendungs-
falle des maschinellen Lernens (ML), die Modelle in Form boolescher Ausdriicke mit
perfekter Trainingsgenauigkeit erfordern, wére eine solche Weiterentwicklung u. U. ge-
winnbringend.

6.5 Forschungsfrage 5: Auswahl von reprasentativen Varianten
zur Erweiterung der Datenbasis

6.5.1 Diskussion

Die Demonstration der Methode 5 zeigt, dass eine datenbasierte Erstellung von Regeln
auf Basis systematisch ausgewahlter Datenpunkte einer datenbasierten Erstellung von
Regeln auf Basis zufallig ausgewahlter Datenpunkte Uberlegen ist. Damit ist die An-
wendung von Methode 5 zur Erweiterung der Datenbasis fir eine datenbasierte Erstel-
lung von Regeln effizient. Die Effektivitat der Methode 5 ist hingegen dadurch begrenzt,
dass es Regeln geben kann, die grundsatzlich mit einer relevanten Menge an Daten
nicht vollstéandig korrekt datenbasiert abgebildet werden kénnen. Eine rein datenba-
sierte Erstellung von vollstandig korrekten Regeln ist somit mit wirtschaftlich vertretba-
rem Aufwand nicht méglich. Dennoch kann Methode 5 genutzt werden, um Regeln mit
einer hohen Genauigkeit zu erstellen und somit den Korrekturaufwand im Rahmen des
Auftragsabwicklungsprozesses gering zu halten. Dies kann z. B. in Fallen, in denen die
Lieferzeit kritisch und nur wenig Wissen tber KMs im Unternehmen vorhanden ist, re-
levant sein. Ein grundsétzliches Problem der Methode 5 ist gegenwaértig noch ihr hoher
Rechenaufwand. Die Rechenzeit steigt mit der Anzahl vorliegender Varianten und
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betrug in den Experimenten z. B. fur 100 Datenpunkte bereits weit Uber eine Stunde.
Das schrankt den in Kapitel 4.1.3 beschriebenen iterativen Prozess insofern ein, als der
Nutzer u. U. auf die Ausgabe des Programms warten muss.

6.5.2 Fazit

Forschungsfrage 5 lasst sich auf Basis der vorliegenden Arbeit wie folgt beantworten.
Die Datenbasis fur die datenbasierte Erstellung von LLKMs lasst sich durch die Aus-
wahl von reprasentativen Varianten mittels der im Rahmen der vorliegenden Arbeit ent-
wickelten Methode 5 effizient erweitern. Durch die systematische Auswahl wird die Zu-
verlassigkeit der datenbasiert erstellten Regeln in vielen Fallen signifikant erhéht. Auch
wenn eine vollstandig datenbasierte Erstellung von Regeln nicht wirtschaftlich ist, ist
dennoch ein wirtschaftlicher Nutzen fir die Erstellung ausreichend genauer Regeln in
bestimmten Anwendungsfallen zu erwarten.

6.5.3 Ausblick

Zunachst wirde die praktische Anwendung von Methode 5 durch eine Verringerung
des Rechenaufwands profitieren, sodass eine Interaktion mit dem entsprechenden Pro-
gramm in Echtzeit moglich wird. Hierzu kénnte z. B. der Einsatz von Metaheuristiken
zur Loésung des in Kapitel 4.5.2.5 beschriebenen Optimierungsproblems untersucht
werden. Des Weiteren kdnnten grundsatzliche Alternativen zur Erweiterung der Daten-
basis betrachtet werden, wie z. B. die Ubertragung von VSTLs und VAPLs verwandter
Produkte durch eine Zuordnung auf Basis von Syntaktik und Semantik von Produkt-
merkmalen und Positionen. Hierbei ist zwar ein manueller Korrekturaufwand zu erwar-
ten, u. U. kénnte dies jedoch in Fallen, in denen geeignete Daten verfligbar sind eine
sinnvolle Erganzung zu Methode 5 darstellen.

6.6 Forschungsfrage 6: Datenbasierte Uberpriifung von Regeln

6.6.1 Diskussion

Der Vergleich der Ergebnisse fir Methode 6 mit zufallsbasierten Benchmarks zeigt,
dass Methode 6 in der Lage ist, systematisch Fehler in Regeln in LLKMs zu ermitteln,
mit Ausnahme fehlender Terme. Ein Term entspricht hier einem Fall innerhalb einer
Regel, der zur Aktivierung einer bestimmten Position der MSTL oder des MAPL fihrt.
Ein fehlender Term entspricht somit einem nichtbericksichtigten Fall. Es ist davon aus-
zugehen, dass fehlende Félle in Regeln groRen Einfluss auf die resultierenden VSTLs
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und VAPLs haben, sodass sie effizient mit empirischem Testen gefunden werden kdn-
nen. Im Anwendungsfall konnten jeweils mehr als die Halfte der in den Regeln vorhan-
denen Fehler bzgl. Variablen bzw. Monomen mit weniger als 400 zu Uberprifenden
Tabelleneintragen gefunden werden. Damit besteht ein klarer Vorteil der Methode 6
gegenlber einer unsystematischen Inspektion.

6.6.2 Fazit

Forschungsfrage 6 lasst sich auf Basis der vorliegenden Arbeit wie folgt beantworten.
Regeln in LLKMs lassen sich, durch die im Rahmen der vorliegenden Arbeit entwickelte
Methode 6, datenbasiert berprifen. Die Methode ist nicht effektiv beim Finden fehlen-
der Terme in Regeln. Fir alle anderen untersuchten Fehlerarten kann sie effektiv und
effizient eingesetzt werden, um einen gewissen Anteil der Fehler zu identifizieren. Fir
eine wirtschaftliche Identifikation aller oder zumindest nahezu aller Fehler in den Re-
geln eines LLKM muss sie mit anderen Methoden zur Uberpriifung von Regeln kombi-
niert werden.

6.6.3 Ausblick

Die Einbindung der Methode 6 in betriebliche Ablaufe bringt Anforderungen mit sich,
die im Rahmen der vorliegenden Arbeit nicht berlcksichtigt wurden. I. d. R. erfolgt eine
Uberpriifung eines LLKM nicht einmalig, sondern regelméRig oder anlésslich groRer
Anderungen. Bei jeder Uberpriifung iiber die erste hinaus ist bekannt, welche Bestand-
teile der Regeln zuvor bereits Uberprift, fur korrekt befunden und seither nicht geandert
wurden. Diese Information kann zum einen trivial in Methode 6 einflieen, indem die
entsprechenden Bestandteile nicht mehr als Hinweise vorgeschlagen werden. Zum an-
deren kann sie jedoch auch flr die Ermittlung der AusreiRerwerte genutzt werden, in-
dem korrekte Felder der Literal- und Monomtabelle héher gewichtet werden. Eine sol-
che Weiterentwicklung der Methode 6 kann auf lange Sicht zu ihrem wirtschaftlichen
Einsatz im Unternehmen beitragen.
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7 Zusammenfassung

Konfigurationssysteme sind ein wichtiges Werkzeug fiir Industrieunternehmen zur Au-
tomatisierung und damit Rationalisierung der Arbeitsablaufplanung im Rahmen des
Auftragsabwicklungsprozesses. GroRRes Potenzial besteht insbesondere in der automa-
tischen Konfiguration von variantenbezogenen Stiicklisten und Arbeitsplénen, d. h. in
der Produkt- und Prozesskonfiguration. Bisher werden Konfigurationssysteme in die-
sem Bereich dennoch nicht umfassend eingesetzt. Wesentliche Hinderungsgriinde sind
der Aufwand fir die Erstellung sowie die hohe Fehleranfélligkeit der hinterlegten Konfi-
gurationsmodelle, welche die Rahmenbedingungen und Regeln der Konfiguration fest-
legen. Diese Herausforderungen kénnen durch datenbasierte Methoden, wie z. B. Ver-
fahren des maschinellen Lernens, adressiert werden. Hierdurch konnen Modelle fiir die
Produkt- und Prozesskonfiguration zum einen effizient erstellt und zum anderen effi-
zient Uberpriift werden. Nach Stand der Forschung sind jedoch datenbasierte Metho-
den im Zusammenhang mit Konfigurationsmodellen nur rudimentar erforscht.

Ziel der vorliegenden Arbeit war es deshalb, die wissenschaftlichen Grundlagen fir den
Einsatz datenbasierter Methoden zur Erstellung und Uberpriifung von Modellen fiir die
Produkt- und Prozesskonfiguration zu erarbeiten. Hierfir wurden sechs Methoden ent-
wickelt. Methode 1 dient der datenbasierten Erstellung von Produkt- und Prozesskonfi-
gurationsmodellen. Es wurde ein Schema fiir derartige Konfigurationsmodelle entwi-
ckelt. Dieses ermdglicht GUber den Stand der Forschung hinaus alternative Strukturen
fur Stucklisten und Arbeitsplane, z. B. in Abhangigkeit der vom Kunden gewahlten Va-
riante, zu berlcksichtigen. Die Anwendungsfalle fir eine datenbasierte Erstellung von
Produkt- und Prozesskonfigurationsmodellen in der Industrie wurden in systematisch
hergeleiteten Anwendungsszenarien zusammengefasst. Die herausgearbeiteten An-
wendungsszenarien werden durch Methode 1 adressiert, indem die untergeordneten
Methoden 2 bis 5 integriert werden.

Die Methoden 2 und 3 dienen der datenbasierten Erstellung von Maximalstlcklisten
bzw. Maximalarbeitsplanen. Kern der beiden Methoden ist jeweils die Ermittlung mini-
maler Maximalstiicklisten bzw. Maximalarbeitspldnen sowie einer minimalen Anzahl
von Strukturoptionen um die zugrundeliegenden variantenbezogenen Stiicklisten bzw.
Arbeitsplane korrekt daraus konfigurieren zu kdnnen. Hierfliir werden jeweils eine heu-
ristische Tiefensuche und eine ganzzahlige lineare Optimierung eingesetzt. Die entwi-
ckelte Methode 4 dient der datenbasierten Erstellung von Regeln. Sie fokussiert Regeln
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von bindren Parametern. Entsprechend ist die Methode ein Verfahren des maschinellen
Lernens flr Datenséatze mit bindren Labels. Die Methode nutzt ganzzahlig lineare Opti-
mierung mittels Spaltengenerierung, um Modelle in Form minimaler boolescher Aus-
drucke zu lernen. Die entwickelte Methode 5 dient der Erweiterung der Datenbasis
durch gezielte Auswahl von reprasentativen Varianten aus dem Konfigurationsraum.
Varianten werden so ausgewahlt, dass mit wenigen zusatzlichen Daten mdglichst ge-
naue Konfigurationsmodelle erstellt werden kdnnen. Die Methode nutzt multikriterielle
ganzzahlige Optimierung, um zulassige und optimale Varianten auszuwahlen, wobei
Diversitat und die Verkleinerung des Versionenraums als Kriterien bericksichtigt wer-
den. Methode 6 komplementiert Methode 1 durch die datenbasierte Uberpriifung von
Regeln in Konfigurationsmodellen. Hierfiir werden die Regeln zunachst in eine tabella-
rische Darstellung transformiert. AnschlieRend wird ein Verfahren des uniiberwachten
maschinellen Lernens mittels eines Random-Forest-Algorithmus angewandt, das im
Rahmen der vorliegenden Arbeit entwickelt wurde. Hiermit kénnen Hinweise auf Ano-
malien in den tabellarischen Daten und damit den Regeln generiert werden.

Die Methoden 1 bis 6 stellen jeweils Fortschritte gegeniiber dem Stand der Forschung
dar und ermdglichen insgesamt eine ganzheitliche datenbasierte Erstellung und Uber-
prifung von Modellen zur Produkt- und Prozesskonfiguration. Um die Anwendbarkeit
der Methoden zu Uberprifen und deren Effektivitat zu beurteilen, wurden diese jeweils
als Computerprogramme implementiert und fur reale oder synthetische Daten demons-
triert. FUr die Demonstration an synthetischen Daten wurde im Rahmen der vorliegen-
den Arbeit je eine Methode zur Erzeugung gleichmaRig zufalliger Maximalstiicklisten
und Maximalarbeitsplanen entwickelt. Dadurch wurde eine Demonstration der Metho-
den 2 und 3 flr allgemeine Falle ermdglicht. Die Demonstrationen haben gezeigt, dass
alle entwickelten Methoden grundséatzlich funktionsfahig sind und geeignet sind, die
entsprechenden Probleme der datenbasierten Erstellung und Uberpriifung von Konfi-
gurationsmodellen zu I6sen. Mittels Methode 2 kénnen Maximalstuicklisten ohne mehr-
fach auftretende Zukaufkomponentenklassen und ohne Strukturoptionen mit einer
GroRe von bis zu 100 Zukaufkomponentenklassen bereits mit einer mittleren zweistel-
ligen Anzahl von Datenpunkten zuverlassig erstellt werden. Damit kann Methode 2 fiir
entsprechende Anwendungsfélle in der Praxis eingesetzt werden. Flr Methode 3 konn-
ten sogar flr alle Auspragungen von Maximalarbeitsplanen mit bis zu 100 Arbeitsvor-
gangsklassen gute Ergebnisse mit einer mittleren zweistelligen Anzahl von Datenpunk-
ten erzielt werden. Damit ist auch diese Methode fiir entsprechende Anwendungsfalle
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in der Praxis geeignet. Es konnte gezeigt werden, dass Methode 4 fir die datenbasierte
Erstellung von Regeln den existierenden Methoden nach Stand der Forschung tberle-
gen ist. Fur die Produkte eines Industriepartners konnten Regeln auf Basis von ca. 100
Datenpunkten mit einer Genauigkeit von Uber 99 % erstellt werden. Die Ergebnisse
implizieren, dass die datenbasierte Erstellung vollstdndig korrekter Regeln nicht mit
praxisrelevanten Datenmengen maoglich ist. Dennoch kann diese Methode in einigen
der herausgearbeiteten Anwendungsszenarien gewinnbringend eingesetzt werden.
Werden keine Daten zufélliger Varianten betrachtet, sondern Varianten mit der hierfir
entwickelten Methode 5 ausgewabhlt, bleibt diese Aussage gliltig, es kann jedoch eine
deutliche Effizienzsteigerung erreicht werden. Die Demonstrationen der Methoden 2 bis
5 zeigen, dass Methode 1 zur datenbasierten Erstellung von Low-Level-Konfigurations-
modellen in vielen praktischen Anwendungsszenarien sinnvoll eingesetzt werden kann.
Firr die datenbasierte Uberpriifung von Regeln mit Methode 6 hat sich ergeben, dass
ein fallabhéangiger Anteil von mehr als 50 % der eingebrachten Fehler effizient gefunden
werden konnte. Damit stellt die Methode eine sinnvolle Erganzung bestehender Metho-
den zur Uberpriifung von Konfigurationsmodellen dar.

Alles in allem kann festgehalten werden, dass die im Rahmen der vorliegenden Arbeit
entwickelten Methoden die datenbasierte Erstellung und Uberpriifung von Modellen zur
Produkt- und Prozesskonfiguration ermdéglichen. Zum einen leistet die Arbeit damit ei-
nen Beitrag zum weitergehenden Einsatz von Konfigurationssystemen in der Arbeits-
ablaufplanung und damit zur Effizienzsteigerung in Industrieunternehmen. Zum ande-
ren legt sie einen Grundstein firr eine weitergehende Forschung an datenbasierten Me-
thoden fiir die Erstellung und Uberpriifung von Modellen zur Produkt- und Prozesskon-
figuration.
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Erklarung zum Einsatz von generativer kiinstlicher Intelli-
genz

Nach den ,Living guidelines on the responsible use of generative ai in research” (Marz
2024) der europaischen Kommission ist der Einsatz generativer kunstlicher Intelligenz
durch Wissenschaftler transparent darzustellen (European Commission 2024, S. 6). Im
Folgenden werden deshalb Werkzeuge, die auf generativer kiinstlicher Intelligenz ba-
sieren und fur die Erstellung der vorliegenden Arbeit verwendet wurden, vollstandig
aufgefihrt. Dabei wird erklart in welcher Weise und welchem Umfang sie eingesetzt
wurden. Die mittels generativer kinstlicher Intelligenz erstellten Inhalte wurden vom
Autor der vorliegenden Arbeit stets Uberprift und nur insoweit verwendet, als sie fir
korrekt befunden wurden. Die Verantwortung fiir die Inhalte der vorliegenden Arbeit
liegt somit entsprechend European Commission (2024, S. 6) ausschlieRlich beim Autor.
Die folgenden Werkzeuge wurden verwendet:

DeepL Translator

Link: https://www.deepl.com/de/translator (zuletzt tberprift am 07.06.2025)
Funktion: Ubersetzung

Einsatz: Das Werkzeug wurde genutzt um die Kurzzusammenfassung der vorliegen-
den Arbeit ins Englische zu (ibersetzen. Die vorgeschlagene Ubersetzung wurde an
mehreren Stellen korrigiert.

DeepL Write und LanguageTool Premium

Link: https://www.deepl.com/de/write (zuletzt Gberprift am 07.06.2025)

Funktion: Lektorat

Einsatz: Die Werkzeuge wurden genutzt um grof3e Teile der vorliegenden Arbeit auf
Rechtschreibung, Grammatik und Stil zu Gberprifen und Korrekturvorschlage zu er-
halten. Hinweise zu Rechtschreibung und Grammatik wurden in vielen Fallen Gber-
nommen. Hinweise zu stilistischen Verbesserungen des Textes wurden in wenigen
Fallen Gbernommen.

Elicit, Scispace und scite Assistant

Links: https://elicit.com/ (zuletzt Uberprift am 07.06.2025), https://scispace.com/ (zu-
letzt Gberpriift am 07.06.2025) bzw. https://scite.ai/assistant (zuletzt Gberprift am
07.06.2025)

Funktion: Zusammenfassende Beschreibung des Stands der Forschung
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Einsatz: Die Werkzeuge wurden genutzt um auf Basis einer textlichen Eingabe (z. B.
einer Frage) eine Beschreibung des entsprechenden Stands der Forschung zu erstel-
len. Auf Basis dessen wurde potenziell relevante Literatur ausgewahlt. Die Werk-
zeuge wurden insbesondere nicht genutzt um Inhalte fur die vorliegende Arbeit zu er-
stellen. Ein kleiner Teil der in der vorliegenden Arbeit verwendeten Literatur wurde auf
diese Weise gefunden.

GitHub Copilot und OpenAl ChatGPT

Links: https://github.com/features/copilot (zuletzt Gberprift am 07.06.2025) bzw.
https://chatgpt.com/ (zuletzt Gberprift am 07.06.2025)

Funktion: Generierung, Korrektur und Dokumentation von Programmcode

Einsatz: Die Werkzeuge wurden genutzt um die im Rahmen der vorliegenden Arbeit
entwickelten Algorithmen effizient in Programmcode zu implementieren. Fiir einen
kleinen Teil des Programmcodes, insbesondere einfache Teilfunktionen, wurde mit
diesen Werkzeugen ein erster Entwurf auf Basis einer textlichen Beschreibung er-
stellt. Dieser wurde i. d. R. anschlielend Uberarbeitet. Vereinzelt wurden mit diesen
Werkzeugen Ursachen fiir Fehler im Programmcode ermittelt. Fiir einen grof3en Teil
des Programmcodes wurden diese Werkzeuge genutzt um einen Entwurf fir Doku-
mentationen (Beschreibung von Funktionen, Parametern und Ausgaben) zu erstellen.
Dieser wurde i. d. R. anschlieRend Uberarbeitet.
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Anhang
A1 Anhang zu Kapitel 2.3

A1.1 Spaltengenerierung

Spaltengenerierung (CG) ist ein Prinzip, um Probleme der linearen Optimierung (LP)
mit einer grolRen Anzahl von Variablen effizient zu 16sen. Die konkrete Ausgestaltung
entsprechender Ansatze ist vom Anwendungsfall abhangig. Im Folgenden wird auf ei-
nen Typ von CG naher eingegangen, der von Wilhelm (2001) als Typ Il bezeichnet wird.
Fir die vorliegende Arbeit ist ausschlieRlich dieser Typ von CG relevant, weshalb in der
vorliegenden Arbeit mit CG ausschliel3lich CG Typ Il gemeint ist. Die Erklarung von CG
im vorliegenden Kapitel basiert auf Wilhelm (2001).

Ein allgemeines LP-Problem l&sst sich wie folgt darstellen:
MP min €1 U+ .. +cy uy A1A1

s.t. a U+ ..o tayuy = by

ayaUy + ... +ayyuy = by
Ug, e, Uy =20 .

Dabei bezeichnen ¢ = (¢4, ..., ¢y) die Zielfunktionskoeffizienten, u = (uy, ..., uy) die Va-
A1 0 Agn
riablen, A =

] die Koeffizienten der Nebenbedingungen und b =
ama 0 AmN

(by, ..., by) die rechten Seiten der Nebenbedingungen. Im Kontext der CG wird dieses
Problem als Master-Problem (MP) bezeichnet. Die Koeffizienten der Nebenbedingun-
gen bilden eine Matrix A mit M Zeilen und N Spalten, wobei jeder Zeile einer Nebenbe-
dingung und jeder Spalte einer Variablen zugeordnet werden kann. Das Problem kann
kompakt wie folgt dargestellt werden:

MP min  cu’ A1.2

s.t: AuT > bT

u’ >0 .
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Die Berechnungsdauer fiir die Losung des MP steigt mit der Anzahl von Variablen,
weshalb LP-Probleme mit einer groRen Anzahl von Variablen nicht in vertretbarer Zeit
gelost werden konnen. Es wird angenommen, dass eine zulassige, i. d. R. nicht opti-
male, Lésung des MP bekannt ist. Diese kann z. B. durch eine problemspezifische Heu-
ristik generiert werden. Seien u? die Basisvariablen dieser Lsung, d. h. es gilt u? # 0
und fir alle anderen Variablen u}”’ = 0. Nun kann ein neues, reduziertes Master-Prob-
lem (RMP) aufgestellt werden, das nur die Basisvariablen enthalt:

RMP min cut’ A1.3
S.t.: AbubT > b7
ubT >0 .

Im Folgenden wird zur einfachen Lesbarkeit auf das Superskript b verzichtet, wenn er-
sichtlich ist, dass ein RMP vorliegt. Da flr jede Lésung des RMP implizit angenommen
wird, dass alle initialen Nicht-Basisvariablen 0 sind, ist der Losungsraum gegenilber
dem MP eingeschrankt. Eine optimale Losung des RMP entspricht damit nicht zwin-
gend einer optimalen Lésung des MP. Die Idee hinter CG ist es, dem RMP schrittweise
noch nicht berlicksichtigte Variablen und damit der Matrix A Spalten hinzuzufiigen. Mit
jeder hinzugefligten Variablen wird der Losungsraum erweitert und es kdnnen evtl. bes-
sere Losungen gefunden werden. Um das Verfahren effizient zu gestalten, werden nur
solche Spalten hinzugefligt, die bessere Losungen ermdglichen. Die Methode termi-
niert, sobald keine solche Spalte mehr existiert. Um Spalten zu ermitteln, die eine bes-
sere Losung des RMP ermoglichen, wird ein Subproblem (SP), oft als Pricing-Problem
bezeichnet, aufgestellt. Hierflr wird zunachst das zum RMP gehdérende Dualproblem
(DP) aufgestellt. Es lautet:

DP max bv” A14
s.te ATvT > cT
v'>0 .

Dabei bezeichnen v = (v,, ..., v,) die Variablen des DP. Entsprechend der Dualitatsei-
genschaft linearer Optimierungsprobleme ist jeder Variable im RMP eine Nebenbedin-
gung im DP zugeordnet und jeder Nebenbedingung im RMP eine Variable im DP. Fur
das DP wird eine optimale Lésung v* berechnet. Die Auspragungen der Dualvariablen
v'=(vj,..,vy) in der optimalen Losung stellen Opportunitatskosten der
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Nebenbedingungen im primalen Problem dar. Fir eine Nebenbedingung i im RMP gibt
v an, um wie viel sich der optimale Zielfunktionswert des RMP verringern wirde, wenn
b; um 1 verringert werden und damit der Lésungsraum von RMP vergréRert werden
wirde. Diese Verbesserung kann so weit ausgeschopft werden, bis die Nebenbedin-
gung i nicht mehr aktiv ist. Wird nun dem RMP eine neue Spalte N + 1 hinzugefiigt und
hat diese fiir eine Nebenbedingung i einen Koeffizienten a; y.,, ergibt sich die neue
Nebenbedingung i als

apuy + -+ uyQy + Uy Qe = by, A1.5
was

apuy + -+ uyQiy = by — Uyy1 iy A1.6
entspricht. Die neue Spalte entspricht flr a; y,; = 0 also einer Verringerung von b; um
Uy+1a;n+1 UNd ermoglicht damit eine Verbesserung des optimalen Zielfunktionswerts
des RMP um uy.,qa; y.+1v;. Dieser Verbesserung des Zielfunktionswerts steht eine Ver-
schlechterung des Zielfunktionswerts durch die Wahl von uy,; > 0 aufgrund des Ziel-
funktionskoeffizienten cy,, von uy,, gegentber. Um also dem RMP Spalten hinzuzu-
figen, die eine moglichst grolRe Verbesserung des optimalen Zielfunktionswerts des
RMP ermdglichen, ist ein Subproblem mit der folgenden Zielfunktion zu I6sen.

. . A1.7
) max ~ Mincy(@ne1) — Z i N1V
ie(T M)
S.t.: aiN+1 >0 Vi e {1,,M}

Ist das MP vollstandig explizit formuliert, sind die Kosten ¢y, fur jede mdgliche Spalte
bekannt. AuBerdem ist bekannt, welche Spalten, d. h. welche ay,; = (a3 y4+1, - Ay n+1)
gewahlt werden kdnnen. Entsprechend sind die Nebenbedingungen des SP zu formu-
lieren. In vielen Fallen, in denen CG zum Einsatz kommt, ist jedoch die Anzahl von
Variablen und damit Spalten des MP so grof3, dass es zu aufwendig ware, sie explizit
zu formulieren. Wenn diese Spalten und deren Kosten jedoch gewissen Regeln folgen,
koénnen die Nebenbedingungen des SP und die Kosten in Abhangigkeit der gewahlten
Spalte entsprechend formuliert werden. Dadurch missen nicht alle méglichen Spalten
vorab bekannt sein — eine Starke der CG.

Zuletzt sei darauf hingewiesen, dass die hier vorgestellte Form der CG nur flr stetige
LP und nicht fir ganzzahlige lineare Optimierung (ILP) gilt, weil fir ILP-Probleme zum
RMP kein DP aufgestellt werden kann. Um CG auf ILP-Probleme anwenden zu kénnen,
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miissen das MP und das RMP auf stetige LP-Probleme relaxiert werden. Uber das re-
laxierte reduzierte Master-Problem (XRMP) kann eine optimale Lésung des relaxierten
Master-Problems (XMP) berechnet werden. Diese ist jedoch nicht zwingend ganzzah-
lig. Ggf. mlssen zusatzlich Metaverfahren zur Lésung von ILP-Problemen — wie z. B.
Branch and Bound — angewandt werden.

A2 Anhang zu Kapitel 3.2.2

A2.1 Phylogenetik

Die Phylogenetik ist ein Fachgebiet, das sich mit den evolutionaren Beziehungen zwi-
schen Lebewesen befasst (Abaza 2020, S. 68). Abstammungsbeziehungen zwischen
Lebewesen werden in der Phylogenetik u. a. als Baume dargestellt. Es existieren zahl-
reiche Ansatze, um die Abstammungsbeziehungen aus mehreren phylogenetischen
Baumen zusammenzufihren. Diese Problemstellung ist mit der Erstellung einer Maxi-
malstiickliste (MSTL) auf Basis variantenbezogener Stlicklisten (VSTLs) vergleichbar.
Deshalb sind zugehorige Ansatze der Phylogenetik auch fiir die vorliegende Arbeit re-
levant. Im Folgenden wird auf die relevanten Begriffe der Phylogenetik und die Uber-
tragbarkeit bestehender Anséatze eingegangen.

Die Blatter phylogenetischer Baume stellen Taxa, d. h. Gruppen genetisch ahnlicher
Organismen, dar, die jeweils durch ein Label”® annotiert sind (Abaza 2020, S. 68). In-
nere Knoten stellen Verzweigungspunkte in der Evolutiondren Entwicklung dar (Abaza
2020, S. 68). Wenn die Baume als VSTLs interpretiert werden, stellen die Taxa Zukauf-
komponenten (ZKs) dar, welche z. B. mit ihrer Bezeichnung als Label versehen sind.
Die inneren Knoten entsprechen Baugruppen. Abstammungsbeziehungen zwischen
Lebewesen kdnnen sog. Retikulationen aufweisen, d. h. Falle in den ein Organismus
von mehr als einem anderen Organismus abstammt (Bastide et al. 2018, S. 800). Damit
kénnen verschiedene phylogenetische Baume verschiedene Abstammungen fiir den-
selben Organismus enthalten. Werden somit Abstammungsbdume zusammengefihrt
resultiert deshalb u.U. kein Baum, sondern ein allgemeiner Graph. Dieser wird auch als
Netzwerk bezeichnet (Huson & Linz 2018, S. 398). Moussa & EIMaraghy (2018), die
einen Ansatz der Phylogenetik auf die industrielle Montage (bertragen, interpretieren

76 Der Begriff Label wird hier im Sinne der Phylogenetik verwendet und ist nicht zu verwechseln mit dem Begriff
Label im Kontext des maschinellen Lernens (siehe Kapitel 2.3.1).
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Retikulationen als alternative Fligereihenfolgen. Sie nutzen deshalb ebenfalls Netz-
werke um Flgereihenfolgen darzustellen.

Abbildung A2.1 zeigt das von Moussa & EIMaraghy (2018) verwendete Beispiel fir die
Synthese eines Master Assembly Networks aus sieben Assembly Sequence Trees (T1
bis T7). In ihrer Funktion sind Master Assembly Networks mit MSTLs und Assembly
Sequence Trees mit VSTLs vergleichbar. Aus dem Master Assembly Network kénnen
Assembly Sequence Trees konfiguriert werden indem ausgewahlte Retikulationskanten
(in der Abbildung farbig hervorgehoben) sowie ausgewahlte Blatter entfernt werden. Es
ist ersichtlich, dass z. B. der Baum T6 nicht aus dem Netzwerk konfiguriert werden
kann, obwohl er verwendet wurde um das Netzwerk zu erstellen. Dabei handelt es sich
um ein grundsétzliches Problem bei der Ubertragung von Anséatzen der Phylogenetik
auf die industrielle Montage. In der Phylogenetik existiert die Anforderung, dass ein

Assembly Sequence Trees

AA\A

T5 T6 T7

Master Assembly Network

Abbildung A2.1: Beispiel von Moussa & EIMaraghy (2018) fiir die Synthese eines Mas-
ter Assembly Networks aus Assembly Sequence Trees (eigene Darstellung auf Basis
von Moussa & EIMaraghy (2018, S. 795))
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synthetisierter Baum oder ein synthetisiertes Netzwerk in der Lage sein muss die zu
seiner Synthese verwendeten Baume darzustellen (engl. display). Im Folgenden wird
gezeigt, dass dies nicht identisch mit der Anforderung, dass aus einer MSTL, alle zu
ihrer Erstellung verwendeten VSTLs konfiguriert werden kdnnen, ist. Damit garantieren
Verfahren der Phylogenetik nicht die in Kapitel 3.2.1 geforderte Informationserhaltung.

Sei ein Cluster L(N) eines Knotens N definiert als Menge aller Labels, die dem Knoten

direkt oder indirekt untergeordnet sind”’. Beispielsweise entspricht die Wurzel von
Baum 1 in Abbildung A2.2 dem Cluster {4, B, C}.

Baum 1 Baum 2 Baum 3
(VSTL 1) (VSTL 2) (VSTL 3)

ABCDY] - -------------===m=mmmmmmmmmooos

LA BT c] [ A]lTBIJCcID] I [LATB]]

T~ I 1- 1 I SR
LA B ] C | D]
Synthetisierter Baum (MSTL)

MSTL = Maximalstiickliste, VSTL = Variantenbezogene Stiickliste

Abbildung A2.2: Darstellbarkeit im Sinne der Phylogenetik

Sei L(T) fur einen Baum T definiert als das Cluster seiner Wurzel, d. h. als alle Labels,
die in ihm auftreten. Sei CI(T) die Menge aller Cluster in einem Baum T. Es gilt damit
z.B. Cl(Baum 1) = {{A, B, C},{A, B}, {A},{B},{C}}. Sei CI(T|L) die Menge aller nichtlee-
ren Cluster in CI(T) jeweils projiziert auf eine Menge L an Labels. Im Beispielfall gilt
damit

Cl(Synt. Baum|L(Baum 1)) = Cl(Synt. Baum|{4, B, C})) A2.1
={{4,B,C},{4,B},{4},{B},{C}}

77 Die hier und im Folgenden verwendete Notation entspricht der von Deng & Fernandez-Baca (2018).
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Damit gilt also im Beispielfall CI(Baum 1) = Cl(Synt. Baum|L(Baum 1)). Generell gilt,
dass ein Baum T einen Baum T’ darstellt, falls
CIU(T") < CU(T|L(T") A2.2
gilt (Deng & Fernandez-Baca 2018, S. 2455). GemaR dieser Definition stellt also der
synthetisierte Baum den Baum 1 dar. Fur Baum 2 gilt
Cl(Baum 2) = {{4,B,C,D},{A},{B},{C},{D}} A2.3
< {{4,B,¢,D},{A, B}, {A},{B},{C},{D}} = Cl(Synt. Baum|L(Baum 2)
und fir Baum 3
Cl(Baum 3) = {{4, B}, {4}, {B}} < {{4, B}, {4},{B}} A2.4
= Cl(Synt. Baum|L(Baum 3).
D. h. der synthetisierte Baum stellt auch die Baume 2 und 3 dar. Damit existiert ein
Baum, der die Baume 1, 2 und 3 darstellen kann. Damit gelten die Baume 1, 2 und 3
im Sinne der Phylogenetik als kompatibel. Werden die Badume jedoch als VSTLs bzw.
MSTLs aufgefasst, ist es nicht moglich, VSTL 2 aus der MSTL zu konfigurieren. Wird
die Komponente AB der MSTL nicht instanziiert, kdnnen auch A und B nicht instanziiert
werden. Wird Komponente AB hingegen instanziiert, ergibt sich eine VSTL, die eine
Baugruppe AB enthalt und somit nicht VSTL 2 entspricht. Die Darstellbarkeit im Sinne
der Phylogenetik ist damit zwar eine notwendige, aber keine hinreichende Bedingung
dafiir, dass eine VSTL aus einer MSTL konfiguriert werden kann. Damit eine VSTL aus
einer MSTL konfiguriert werden kann, muss stattdessen
CIU(T") = CI(T|L(T")) A2.5
gelten. Deshalb sind Ansatze der Phylogenetik zur Synthese von Netzwerken aus Bau-
men nicht unmittelbar geeignet um MSTLs aus VSTLs datenbasiert zu erstellen.

Es sei angemerkt, dass die Definition der Konfigurierbarkeit nicht impliziert, dass die
Anzahl der Komponenten in der MSTL identisch zur Anzahl der Komponenten in der
VSTL sein muss. Zum einen gibt es Komponenten in der MSTL, deren Cluster durch
die Projektion auf L(T") zu leeren Mengen und damit nicht berticksichtigt werden, wie
z. B. die Komponente C fur CI(MSTL|L(VSTL 3)). Zum anderen gibt es Komponenten
in der MSTL, deren Cluster auf dieselben Mengen projiziert und im Sinne der klassi-
schen Mengenlehre nicht mehrfach betrachtet werden, wie z. B. die Komponenten
ABCD und AB fir CI(MSTL|L(VSTL 3)). Da es in Baum 3 weder eine ZK C noch eine
ZK D gibt, werden sowohl das Cluster von ABCD als auch das von AB auf das Cluster
{4, B} projiziert. Zwei Komponenten der MSTL steht somit eine Komponente der VSTL
3 gegeniber. Wenn VSTL 3 aus der MSTL konfiguriert wird, ist nicht eindeutig, aus
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welcher Klasse der MSTL die Komponente AB in VSTL 3 instanziiert wird. Generell
koénnen Falle auftreten, in denen einer Baugruppe einer VSTL mehrere Komponenten-
klassen (KKs) der MSTL zugeordnet werden kénnen. Dieser Sachverhalt ist fir den im
Rahmen der vorliegenden Arbeit entwickelten Algorithmus AlgMS™ (siehe Kapitel A3.1)
relevant.

Zuletzt sei angemerkt, dass VSTL 1 und VSTL 2 unterschiedliche Angaben Uber die
Flgereihenfolge der ZKs A, B und C machen. Nach VSTL 1 werden zunachst A und B
gefugt und anschlieRend die resultierende Baugruppe AB mit C. In VSTL 2 werden A,
B und C zugleich gefiigt. Es liegen somit Strukturalternativen (STAs) in den VSTLs vor.
Deshalb kann es keine MSTL mit Baumstruktur geben, die jeweils einmal die ZK A, B
und C enthalt und die Konfiguration von VSTL 1 und VSTL 2 zulasst. Kapitel 4.1.1 geht
auf die Berlicksichtigung von STAs in MSTLs ein.

A3 Anhang zu Kapitel 4.2

A3.1 Beschreibung und Pseudocode zu Algorithmus AlgVs™

AlgMSTt basiert auf dem Algorithmus BuildST von Deng & Fernandez-Baca (2018).
BuildST berlcksichtigt die Darstellbarkeit der eingehenden Baume bei der Synthese
eines Netzwerks im Sinne der Phylogenetik. Demgegeniiber beriicksichtigt AlgMST™ die
Konfigurierbarkeit von variantenbezogenen Stiicklisten (VSTLs) aus einer Maximal-
stlickliste (MSTL) (siehe Anhang A2). Der Algorithmus wird anhand des Beispiels in
Abbildung A3.1 (1) erlautert und findet sich am Ende des Kapitels in Pseudocode.

Zu Beginn liegt eine Menge SVSTt an VSTLs ohne Multikomponenten vor. Der Produkt-
klasse der zu erstellenden MSTL muss direkt oder indirekt je eine Zukaufkomponen-
tenklasse (ZKK) je Zukaufkomponente (ZK) in allen VSTLs aus SYSTt untergeordnet
sein. Damit entspricht ihr Cluster immer der Vereinigung aller Cluster der Wurzeln aller
VSTLs aus S"STE. Aus einer solchen Produktklasse lassen sich immer alle Wurzeln der
VSTLs instanziieren. Es wird deshalb zu Beginn eine entsprechende Produktklasse in
die MSTL eingefligt und die Wurzeln der VSTLs dieser Produktklasse zugeordnet und
markiert (1). Die Cluster der KKs der ndchsten Ebene missen eine Partition des Clus-
ters der Produktklasse darstellen, d. h. im Beispielfall paarweise disjunkte Teilmengen
der Menge {4,B,C,D,E}. Die Erstellung der MSTL folgt dem Prinzip, die Cluster der
Komponentenklassen (KKs) sukzessive zu partitionieren, um so die MSTL von oben
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VSTL1 VSTL2 MSTL
) ABCD ABCE
ABC D ACE B ABCDE
[AB] [cC] LA JLc I E
LA lB]
ABCE D
r ] r ]
2 [ D]
VSTL 1 VSTL 2 VSTL 1
L Zwei Cluster aus einer VSTL
-> Substitution durch libergeordnete Komponente
ABCE D
r ] r ]
3) [ABC] [ABCE] [ D]
L o ) )

L
VSTLA1 VSTL 2 VSTL 1

ABCE
Kl
ABCE ABCDE
(4) [ B ] ABCE
ABCE
‘ )
(5) [(AB [ C] [ACE][B ]

Triviale Partition - Abbruch: Keine Lésung

D

MSTL = Gickli: VSTL = Variar

Abbildung A3.1: Beispielhafte Ausfiihrung von AlgMST

nach unten aufzubauen. Partitionen kdnnen Cluster von Komponenten zerteilen. In die-
sem Fall kann diese Komponente weder durch eine aus der Partitionierung entstehende
KK noch durch eine KK einer untergeordneten Ebene instanziiert werden. Das Cluster
einer Komponente darf durch eine Partitionierung nur dann zerteilt werden, wenn diese
Komponente bereits einer KK der MSTL zugeordnet ist und somit instanziiert werden
kann. Es ware also im Beispielfall nicht mdglich, das Cluster {4, B, C,D, E} der Klasse
ABCDE als {{4, B},{C, D, E}} zu partitionieren, da in diesem Fall u. a. die Komponente
ABC, welche noch keiner KK zugeordnet ist, nicht mehr instanziiert werden kénnte.

Um eine zulassige Partition unterhalb der zuletzt eingefiigten Klasse zu bestimmen,
werden die Cluster der Komponenten der nachsten Ebene betrachtet. Es werden Inseln
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von Uberlappenden Clustern gebildet (Abbildung A3.1, 2). Jede Insel entspricht einer
neu hinzuzufigenden KK der MSTL. Die Inseln bilden eine zuléssige Partition, da bei
der Inselbildung keine Cluster von nicht zugeordneten Komponenten geteilt werden
kénnen. GréRere Partitionen, d. h. solche mit mehr Inseln, sind nicht méglich. Eine klei-
nere Partition, wie sie z. B. entstehen wirde, wenn alle betrachteten Komponenten in
einer Insel zusammengefasst wiirden, erscheint zunachst mdéglich. Allerdings wiirde
eine solche Partition zu KKs in der MSTL fiihren, die keine Entsprechungen in den
VSTLs aufweisen. Dies wirde der Definition der Konfigurierbarkeit in Anhang A2 wider-
sprechen. Damit ist die so gebildete Partition — im Beispielfall {{4, B, C, E},{D}} — zwin-
gend. Es sei angemerkt, dass das Cluster der Komponente ABCD durch diese Partition
geteilt wird. Damit kann die Komponente aus keiner der resultierenden KKs und keiner
untergeordneten KK instanziiert werden. Dies ist jedoch kein Hindernis, da ABCD be-
reits der Produktklasse ABCDE zugeordnet ist und somit aus dieser instanziiert werden
kann.

Bevor je Insel eine KK in der MSTL erstellt wird, wird zunachst tberprift, welche Kom-
ponenten der Inseln den entsprechenden KKs zugeordnet, d. h. aus diesen instanziiert,
werden kénnen. Komponenten, die alleinige Reprasentanten ihrer VSTL in einer Insel
sind, wie ABC und D im Beispielfall, kdnnen unmittelbar den entsprechenden KKs zu-
geordnet werden. Liegen in einer Insel jedoch mehrere Komponenten derselben VSTL
vor, kénnen diese nicht der entsprechenden KK zugeordnet werden, da nicht mehrere
Komponenten einer VSTL aus derselben KK instanziiert werden kénnen’®. Im Beispiel-
fall liegen mit den Clustern ACE und B zwei Cluster aus VSTL 2 in der Insel ABCE vor.
Damit kdnnen weder ACE noch B einer KK ABCE in der MSTL zugeordnet werden.
Eine KK ABCE hatte somit zunachst keine ihr zugeordnete Komponente in VSTL 2. Ist
lediglich eine Darstellbarkeit der VSTL durch die MSTL gefordert, ist dies nicht relevant.
Ist jedoch eine Konfigurierbarkeit aller VSTLs aus der MSTL gefordert, darf nach Defi-
nition der Konfigurierbarkeit in Anhang A2 keine KK in der MSTL existieren, die fur eine
VSTL aus SVSTt keine Instanziierung zuléasst. Wie in Anhang A2 erlautert, ist es jedoch
maoglich, dass bestimmte Komponenten aus mehreren KKs der MSTL instanziiert wer-
den kénnen. Es ist also u. U. mdéglich, der neu zu erstellenden KK die Gbergeordnete
Komponente in der entsprechenden VSTL zuzuordnen. Deshalb wird statt der

78 Lediglich eine dieser Komponenten zuzuordnen ist ebenfalls nicht mdglich, da dadurch ihre Klasse in der MSTL
der Klasse der anderen Komponenten tbergeordnet wéare, wodurch sich die Struktur der VSTL nicht mehr aus
der MSTL ergeben wiirde.
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Komponenten der betroffenen VSTLs ihre Ubergeordnete Komponente betrachtet und
die Inselbildung erneut durchgefihrt. Dieser Vorgang wird so lange wiederholt, bis in
jeder Insel jeweils hochstens eine Komponente je VSTL vorhanden ist (Abbildung A3.1,
3). Nachdem im Beispielfall die Komponenten ACE und B durch ihre Ubergeordnete
Komponente ABCE ersetzt wurden, ist eine vollstandige Zuordnung von Komponenten
zu den zu erstellenden KKs mdglich. Die Komponenten ABC und ABCE kdnnen einer
KK ABCE und die Komponente D einer KK D in der MSTL zugeordnet werden. Im Er-
setzen der Komponenten und dem erneuten Berechnen der Inseln besteht der wesent-
liche Unterschied zum Algorithmus BuildST von Deng & Fernandez-Baca (2018).

Nach dem erfolgreichen Bilden der Inseln verzweigt sich der Algorithmus und wird je-
weils fUr jede Insel mit den Teilbdumen je Komponente der Insel rekursiv fortgesetzt
(Abbildung A3.1, 4). Zu Beginn einer Rekursion wird, wie oben beschrieben, eine KK in
der MSTL erstellt und die Wurzeln der Teilbdume dieser KK zugeordnet. Aufgrund der
oben vorgenommenen Betrachtung sind diese Zuordnungen immer zuldssig. Ein Ast
des Algorithmus wird nicht weiter betrachtet, sobald die Teilbdume des Astes insgesamt
nur noch ein oder zwei verschiedene Labels aufweisen. In diesem Fall sind die resul-
tierenden KKs der MSTL trivial gegeben. Sobald alle Aste erfolgreich berechnet wur-
den, wird die erstellte MSTL zurlickgegeben.

Es kann jedoch der Fall auftreten, dass sich bei der Inselbildung nur eine Insel, d. h.
eine triviale Partition, ergibt (Abbildung A3.1, 5). Durch das Ersetzen von Komponenten
durch ihre Gbergeordneten Komponenten und erneute Inselbildung kann die Anzahl der
Inseln in keinem Fall vergrofRert werden. Damit lasst sich auf diese Weise keine nicht-
triviale Partition bilden. Die Umsetzung der trivialen Partition wiirde dazu flihren, dass
eine KK in der MSTL entsteht, die keine Entsprechung in den VSTLs besitzt. Die Um-
setzung einer anderen Partition wiirde dazu fiihren, dass mindestens eine der noch
nicht zugeordneten Komponenten nicht aus einer KK der MSTL instanziiert werden
konnte. Im Beispielfall wiirde z. B. die Partition {{4, B},{C, E}} dazu fihren, dass die
Komponente ACE nicht instanziiert werden kdnnte. Die zuletzt hinzugefligte KK kann
somit nicht weiter partitioniert werden. Da wie oben beschrieben alle Partitionierungen
zwingend sind, lasst sich dieser Zustand auch nicht durch die Vornahme anderer Par-
titionierungen in Ubergeordneten Ebenen vermeiden. Damit lasst sich insgesamt durch
Partitionierung keine MSTL erstellen, aus der alle VSTL aus SVt konfiguriert werden
koénnen. Der Algorithmus terminiert mit einer entsprechenden Ausgabe. Fir den Bei-
spielfall liegt dies offensichtlich daran, dass VSTL 1 und VSTL 2 unterschiedliche
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Angaben Uber die Flgereihenfolge der ZKs A, B und C machen, d. h. es liegen Struk-
turalternativen (STAs) vor.

Im Folgenden ist der Pseudocode von AlgMSTt dargestellt. Aus jedem Aufruf des rekur-
siven Algorithmus ergibt sich eine weitere KK KK"¢" der MSTL. Der rekursive Algorith-
mus wird mit der Menge S™a7kert der Wurzeln der betrachteten VSTLs oder den Wur-
zeln der betrachteten Teilbdume aufgerufen. Fur alle Aufrufe aulRer dem ersten wird
darlber hinaus diejenige KK KK%¢" (ibergeben, die der zu erstellenden KK libergeord-
net ist. In Abbildung A3.1 (4) wiirde also die KK ABCDE (ibergeben werden. Es wird
davon ausgegangen, dass alle Komponenten Uber Referenzen auf ihre Vorganger und
Nachfolger in ihrer VSTL verfligen. Gibt der Algorithmus None zurlick, existiert keine
Lésung.

Alg¥sT-: Algorithmus zur Erzeugung einer Maximalstiickliste aus einer Menge von variantenbezogenen
Stiicklisten ohne Multikomponenten und Strukturalternativen

Input: Smurkiert KKﬂber

Output: KK"" oder None

1:  #KKerstellen

2: SOWNeu =, cgmarkiere get_cluster(k)

3:  KK™“:= new KK(S¢Wew)

4:  verbinde_mit_gerichteter_Kante(K K "¢, KK"e)

5:

6: # Positive Abbruchkriterien priifen

7:  if |SCINeu| == 1 then

8: return KK™*

9: if |SCWer| == 2 then

10: KKmewsubl:= new KK(pop(S©iver))

11: verbinde_mit_gerichteter_Kante(KK ™" , KK ewsubt)
12: KKnewsub2:= new KK(pop(SCEiher))

13: verbinde_mit_gerichteter_Kante(KK ™" , KK ewsub2)
14: return KK™*

15:

16: # Partition bestimmen

17: sbetrachtet .= (J, cmarkiere get_nachfolger(k)

18: while True do

19: sinseln .= hestimme_Uiberlappende_komponenten(sPetrachtet)
20: if |5l | == 1 then

21: return None

22: SVSTLZuErsetzen ‘= new Set()

23: for §/msel jn s/msein do

24: SVSTLZuErsetzen .= GVSTLZuErsetzen | mehrfache_VSTL(S’"S“)
25: if |SVSTLZuErsetzen| ==0 then

26: break

27: SKampZuErsetzen ‘= new Set()

28: for k in smarkiert do

29: if get_VSTL(k) in SVSTLZursetzen then
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30: SKDmpZuErsetzen = SKompZuErsetzen U (k}
31: for k in SKompZuErsetzen qq

32: Sbetrachtet = Sbetrachtet \{k}

33: Sbetrachtet = Sbetrachtet U {get_vorgaenger(k)}
34:

35: # Nachste Ebene aufrufen
36: for Sms¢l jn sinsein do

37: if AlgMSTL(smsel | K met) == None then
38: return None
39:

40: # KK zurlickgeben
41: return KK

Der Pseudocode geht von den folgenden Funktionen sowie von Standardfunktionen
objektorientierter Programmiersprachen aus:

- verbinde_mit_gerichteter_Kante: Verbindet zwei Knoten in einem Graph mit ei-
ner gerichteten Kante

- bestimme_liberlappende_komponenten: Gibt fiir eine Menge an Komponenten
eine Menge von Listen von Komponenten zurlck. Jede Liste entspricht einer In-
sel von Komponenten, deren Cluster sich lberlappen.”

- mehrfache_VSTL: Gibt fir eine Menge von Komponenten diejenigen VSTLs zu-
riick, auf die mehr als eine der Komponenten referenziert

Der Pseudocode geht darlber hinaus von der Klasse KK aus, die KKs der MSTL dar-
stellt (siehe Kapitel 4.1.1).

A3.2 Beschreibung und Pseudocode zu Algorithmus Alg®emPfad

Zwei Pfade sind als Liste von Knoten gegeben, wobei jeder Knoten i einer Menge SX™
von Labels entspricht. Im Folgenden werden die Pfade Lff = ({B2},{B3, B4}) und L’,}f =
({B3},{B2,B3,B4}) aus Abbildung 4.10 in Kapitel 4.2.1.1.2 als Beispiel verwendet.
Seien im Aligemeinen n!’"und n}'" die Langen der beiden Pfade. Wie in Kapitel
4.2.1.1.2 erwahnt, ahnelt das Problem einem Longest-Common-Subsequence-Prob-
lem. Analog zu diesem missen Knoten der beiden Pfade einander zugeordnet werden,
um den gemeinsamen Pfad mit der gréRten Ubereinstimmung zu erhalten. Aus dem
Beispiel in Kapitel 4.2.1 ist bekannt, dass der gemeinsame Pfad mit der groRten

0 Diese Funktion kann z. B. effizient tiber Union-Find-Strukturen (siehe hierfir Knebl 2021, S. 256-264) realisiert
werden.
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Ubereinstimmung ({B3,B4}) ist. Um diesen zu erhalten, miissen die Knoten
{B2,B3, B4} und {B3, B4} einander zugeordnet werden. Der gemeinsame Pfad ergibt
sich, indem alle zugeordneten Knoten paarweise aufeinander projiziert und die resul-
tierenden Knoten in die Reihenfolge gebracht werden, in der sie in den Pfaden auftre-
ten. Eine Zuordnung von Knoten Uber Kreuz ist nicht zulassig, d. h. die Reihenfolge der
resultierenden Knoten in den beiden Pfaden muss identisch sein, da ansonsten der
gemeinsame Pfad nicht in beiden Pfaden enthalten sein kann. Z. B. wére eine Zuord-
nung des ersten Knotens aus L zum zweiten Knoten aus L und des zweiten Knotens
aus L‘,’f zum ersten Knoten aus L’;fnicht zulassig. Das Problem l&sst sich ebenso wie
das Longest-Common-Subsequence-Problem in Teilprobleme zerlegen. Sei Piiepf das-

jenige Teilproblem des betrachteten Problems P%¢Ff bei dem nur die ersten i Knoten

des ersten Pfads und die ersten j Knoten des zweiten Pfads betrachtet werden. Damit

GePf

entspricht P%; ., gerade PG/  Sei s¢/ die Lange des langsten gemeinsamen
1 M2

n

Pfads.

Es werden nacheinander je ein Knoten Sf™ aus dem ersten Pfad, Li’f, und ein Knoten
K" aus dem zweiten Pfad, L;’, betrachtet. Sei n/4'% die Anzahl libereinstimmender
Labels in zwei Knoten i und j. Die Betrachtung beginnt mit dem jeweils letzten Knoten
Sr’f,?ﬂ in Pfad 1 und S:,’ff,_ in Pfad 2. Im Beispielfall wéren dies {B3, B4} und {B2, B3, B4}.
1 2
Fir die Zuordnung der Knoten zu Knoten des jeweils anderen Pfads existieren folgende
Méglichkeiten:
1. Knoten S/ wird Knoten 5™ zugeordnet. In diesem Fall gilt

GePfy\ _ GePf IdL.
sGePf(Pi,j )= sGePf(Pi—l,j—l) + 5 A3.1

weil die Gesamtlbereinstimmung gegeniiber dem Problem ohne S¥™ und Sj"" um
die Ubereinstimmung von Sf™ und S/™ erhoht wird.

2. SK™ wird einem Knoten in Pfad 2 vor S]-"” zugeordnet. In diesem Fall gilt, dass
Knoten Sj’(" nicht zugeordnet werden kann, weil ansonsten eine Zuordnung tber
Kreuz vorliegen wiirde. Da also Sj"“ nicht zugeordnet wird, gilt

SGePf(Pi'GjEPf) _ SGePf(Pi'GjiPlf ) A3.2

3. Sj’(” wird einem Knoten in Pfad 1 vor S zugeordnet. In diesem Fall gilt analog
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GePf(PGEPf) _ GePf(PGEPf A3.3

4. Weder Kn; noch Kn; werden (iberhaupt zugeordnet. In diesem Fall gilt
GePf(PGePf — GePf(PGePf Gepf(PGePf A3.4

Da sich die optimale Lésung des Problems nach dem Bellmannschen Optimalitatsprin-
zip aus optimalen Teilldsungen zusammensetzt, wird jeweils diejenige Mdglichkeit ge-

wahlt, die den Wert des Teilproblems s/ (R%"") maximiert. Damit gilt:

SOUP (BT ) = ma s (b1 ) 5o (BEEY), 501 (1)), R3S

77" und ™" Teilprobleme bei denen einer der beiden Pfade leer ist, dann gilt

SGePf(POC'?]?Pf) — Pi%ePf =0. A3.6

Seien P

Davon ausgehend l&sst sich die Lésung von P eflf % durch sukzessives Lésen der un-

tergeordneten Probleme l6sen. Die Eintrage Aﬁjpf der null-basiert indizierten Matrix
AGePf enthalten jeweils die optimalen Zielfunktionswerte der Probleme Pi_(’;.epf. Im Fol-

genden ist der Algorithmus als Pseudocode dargestellt.

Alg®emPfad; Algorithmus zur Berechnung der Ubereinstimmung zweier Pfade
Input: 177, 15/

Output: [6¢Pf
PfL ._ \yP.
s - |L1f|
L. /P
=y
acerr= oni” x gni”
for i=1to n}’" do
for =1 to n}* do
Affpf — max(s“epf(PGiPil) +nldLa aepf(PGePf) SGePf(PGEPf))
GePf
return Anl”ﬂ,n”ﬂ

N oaRrwN =2

A3.3 Pseudocode zu Algorithmus AlgMi"MsSTL

Der Algorithmus geht von einer Menge SVS™- von variantenbezogenen Stiicklisten
(VSTLs) aus, die Multikomponenten und Strukturalternativen (STAs) enthalten kénnen.
Er gibt ein Dictionary zuriick, das einen Eintrag je Komponentenklasse (KK) der Maxi-
malstiickliste (MSTL) enthalt — identifiziert durch eine Bezeichnung und eine Klassen-
nummer (KN) — und diesem die zugehdrigen Zukaufkomponenten (ZKs) der VSTLs aus
SYSTL zuordnet. Umgekehrt ordnet das Dictionary damit jeder ZK ihre Klasse zu.
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AlgMnMSTL: Algorithmus zur Erzeugung einer Maximalstiickliste aus einer Menge von variantenbezoge-
nen Stiicklisten mit mehrfach auftretenden Zukaufkomponenten und Strukturalternativen
Input: SVSTL

Output: DEestezuordnung

1:  #1. Initialisierung

2:  #Initialisiere Variablen

3:  [#MeZK = pestimme_alle_ZK(SV5Tt)

4:  [elleBez = pestimme_alle_bezeichnungen(L¢?K)

5: DZKJeBez .= pestimme_alle_ZK_je_bezeichnung(La!eBez, [alleZK)

6: pmaxanzzKjeBez .= hestimme_max_anz_zk_je_bez(L!eBez, gVSTL)

7: DAnzLajebez .= new Dict()

8:  for strPe% in L4eEez do

9: DAnzLa]eBez[strbez] =0

10: DKompJelabel .= new Dict()

11: [Pfed = new Zustand(None, None, None, new Set())

12: bU" =0

13:

14: # Bestimme Betrachtungsreihenfolge

15: for str?eZ in L2eBez do

16: [ZKMitBez .= DZK]eBez[Sthez]

17: ADiSt = 0|LZKMitBeZ| % 0|LZKMitBez‘

18: for i = 0 to |LZKMitBez| do

19: Komp! := [ZKMitBez )

20: forj =i + 1 to |L#KMitBez| do

21: Komp? = [ZKMitBez ]

22: Skompxomp? ‘= bestimme_relative_aehnlichkeit(Komp', Komp?)

23: ADist=1 - sfumplmmpz

24: nfret gMIeh = kneedle(APt)

25: for k in DZKJeBez[styrbe?] do

26: set_erw_anz_clusters(k, n"mo9¢t)

27: set_mittl_intra_cluster_distanz(k, d™!?)

28: set_VSTL_groesse(k, get_groesse(get_vstl(k))

29: [AleZK .= gortiere_nach(L*¢?K, get_num_clusters(), get_clustering_bewertung(), -get_VSTL_groesse())

30: Lverbleibend = copy(LalleZK )

31:

32: #2. lteration

33: while True do

34: # Initialisiere temporéare Variablen

35: Zustand**tuel ;= get_letztes_element(LP/¢)

36: KompPe'" := get_erstes_element(Lverbieibend)

37: strBe? := get_bezeichnung(Komp?®" )

38:

39: # Bestimme mdgliche Aktionen

40: gmoeglAkt .= {0' . |DAnzLa]eBez[strBez] |}

41: for i in SMoeslAkt do

22: if i in get_verbotene_aktionen(Zustand**t““!) or komponente_aus_vstl_enthal-
ten(DKompJetabel[(srBez )] get_vstl(KompP®t")) then

43: entferne_element(Smoegtakt )

44:

IS
o

# Wahle eine Aktion aus und flihre sie aus
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46: if |S™oeglakt| > 0 then

47; if |Smoestakt | == 1 then

48: nAkt .= get_erstes_element(Smoeglakt)

49: DAnzLa/eBez [Strsez] = DAnzLa]eEez [StTBez] +1

50: DKamp/eLabel[(strBezy nAkt )] = {Kompbetr}

51: boolNevestabel .= Trye

52: else

53: SmneglAkt = SmoeglAk[\{lDAnzLa/eBez[Strﬂez]|}

54: DPisJedkt ;= new Dict()

55: for i in S™oeglakt do

56: SKompZuLabel = DKamp]eLabel[(StrEez' L)]

57: smittel .= Q

58: for Komp? in sKempZulabel g

59: gmittel .= gmittel l’szfiﬁs;":;:::ﬁ?rpz)
60: DDiS]eAkt[i] .= gmittel

61: nAkt .= arg_min(DPis/eakt)

62: DKomp]eLabel[(strBezl nAkt)] = DKomp]eLabel[(StTBez‘ nAkt)] U {Kompbetr}
63: boolMeuestabel ;= False

64: else #Falls keine zulassige Aktion existiert

65: if |Lverbleibend| == |LalleZK| then

66: break

67: else

68: backtracking(DAnzLajeBez pKompjeLabel ' verbleibend LPfad)
69: entferne_erstes_element(Lverbieibend)

70: fuege_element_hinzu(L"/%¢, new Zustand(Komp?®t", n4kt, poolVeuestabel new Set()))
71:

72: # Beurteile den neuen Zustand und entscheide (iber das weitere Vorgehen
73: bUn := bestimme_untere_schranke(D™ma¥AnzzKjeBez | [yAnzlajeBez)

74: b9 := bestimme_obere_schranke(|Lverbleibend | pAnzlajebez)

75: SVSTLRed .= reduziere_s_vstl(SVSTL, pKompiela)

76: swurzeln .= hestimme_alle_wurzeln(SVSTERed)

77: boolzustandistZulasessig -= pog[Neueslabel qp (A|gMSTL(SWurzeln ,None) 1= None)
78: boolzustandlstvallstaendig = size(Lverbleibend) =0

79: boalzustand!stUeberlegen:: boz; < bMin

80: boolzustandlstvnterlegen = bUn > bMin

81: if hool7ustandistZulasessig then

82: if boolzustandlstueberlegen then

83: pMin .= pob

84: DBesteZuardnung = kopieren(DKomp]eLabel)

85: if boalzustandlst‘/allstaendig or boolzustundlstunterLegen then

86: backtracking(DAnzLa]eBezY DKompjeLabel’ Lverbleibend’ LPfad)
87: else

88: backtracking(DAnzLa]eBez’ DKomp]eLubel’ Lverbleibend! LPfad)

89: return DBesteZuardnung

Der Pseudocode geht von den folgenden Funktionen sowie von Standardfunktionen
objektorientierter Programmiersprachen aus:

- bestimme_alle_ZK: Gibt eine Liste mit Referenzen auf alle ZKs von SV5Tt zuriick
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bestimme_alle_bezeichnungen: Gibt eine Liste mit allen Bezeichnungen von ZKs
in SaeZK zuriick

bestimme_alle_ZK_je bezeichnung: Gibt ein Dictionary zuriick, das jeder Be-
zeichnung aus L%¢5¢Z die Menge zugehdriger ZKs aus L*¢?K zuordnet
bestimme_max_anz_zk_je_bez: Gibt ein Dictionary zurlick, das jeder Bezeich-
nung aus L*E¢Z die maximale Anzahl von ZKs mit dieser Bezeichnung in einer
VSTL aus S"STt zuordnet

kneedle: Gibt flur eine Distanzmatrix die optimale Anzahl von Clustern nach dem
Kneedle-Verfahren (siehe Kapitel 4.2.1.1.3) sowie die mittlere Intraclusterdistanz
zuruick

bestimme_relative_aehnlichkeit: Ermittelt die relative kontextuelle Ahnlichkeit
zweier Komponenten, wie in Kapitel 4.2.1.1.2 beschrieben

sortiere_nach: Sortiert die Elemente einer Liste aufsteigend lexikographisch nach
gegebenen Merkmalen

komponente_aus_vstl_enthalten: Gibt an ob eine Menge von Komponenten eine
Komponente aus einer bestimmten VSTL enthalt

backtracking: Fuhrt ein Backtracking aus, wie in Kapitel 4.2.1.2 beschrieben, und
aktualisiert dabei die als Argumente Ubergebenen Objekte
bestimme_untere_schranke: Bestimmt die untere Schranke flr einen Zustand,
wie in Kapitel 4.2.1.2.3 beschrieben

bestimme_obere schranke: Bestimmt die obere Schranke flir einen Zustand, wie
in Kapitel 4.2.1.2.3 beschrieben

reduziere_s_vstl: Leitet aus einer Menge von VSTLs die zugehdrige Menge der
reduzierten VSTLs ab

bestimme_alle_wurzeln: Gibt die Wurzeln einer Menge von VSTLs zuriick

Der Pseudocode geht darliber hinaus von der Klasse Zustand aus, die einen Zustand
der Baumsuche und damit einen Knoten im Entscheidungsbaum darstellt. Objekte die-

ser Klasse speichern alle Informationen, um die Aktion, durch die ein Zustand erreicht
wurde, im Zuge des Backtrackings riickgangig zu machen: die zuletzt getroffene Ent-
scheidung, die Menge der in diesem Zustand verbotenen Aktionen sowie eine boole-
sche Variable, die angibt, ob zuletzt eine neue KK erstellt wurde.
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A3.4 Heuristik zur Ermittlung der Anzahl von Platzhaltern fiir Schritt 2 der
Methode 2

Analog zum Graph-Coloring-Problem hat die Anzahl n?! der Strukturoptionen-Platzhal-
ter (STO-Platzhalter) einen groRen Einfluss auf die Lésbarkeit und die Recheneffizienz
des Optimierungsproblems 4.6 in Kapitel 4.2.2.2. Wird n"* zu klein gewahlt, ist das
Problem unlésbar. Wird n®* zu groR gewahlt, steigt die Rechenzeit der Optimierung,
weil die Anzahl der Variablen des Problems von n”* abhangt. n”* kann mit n?* = |SVSTL|
trivial gewahlt werden. Um die Effizienz der Optimierung zu steigern, kann jedoch, wie
im Folgenden skizziert, heuristisch ein geringeres n”! bestimmt werden, das die Los-
barkeit des Problems garantiert. Um die Anzahl bendtigter STO-Platzhalter zu bestim-
men, kann zunachst die Zuordnung von Komponenten zu STO-Platzhaltern vernach-
l&ssigt und nur die Zuordnung von variantenbezogenen Stucklisten (VSTLs) zu STO-
Platzhaltern bericksichtigt werden. Aus Schritt 1 der Methode 2 sind die KNs der ZKs
der VSTLs bekannt. Die VSTLs aus S'S™: werden in eine beliebige Reihenfolge ge-
bracht. Zunachst wird ein STO-Platzhalter aktiviert und die erste VSTL diesem zuge-
ordnet. Die zweite VSTL wird demselben Platzhalter zugeordnet, sofern dadurch in bei-
den VSTLs zusammen fiir keine Bezeichnung [ mehr als n}**8 verschiedene Klassen-
nummern (KNs) vorliegen wiirden. Andernfalls wird ein weiterer Platzhalter eréffnet und
die zweite VSTL diesem zugeordnet. Jede weitere VSTL wird stets dem ersten Platz-
halter zugeordnet, fir den ihre Zuordnung zu keiner Uberschreitung von n}'%*E fiihrt.
Falls es keinen solchen Platzhalter gibt, wird ein neuer Platzhalter eingefihrt. Ordnet
man nun alle Zukaufkomponenten (ZKs) je VSTL genau dem Platzhalter zu, dem die
VSTL zugeordnet ist, ergibt sich eine zulassige Lésung des Optimierungsproblems 4.6
in Kapitel 4.2.2.2. Diese ist nicht zwangslaufig optimal. Da jedoch eine Losung mit der
entsprechenden Anzahl von Platzhaltern existiert, kdnnen firr die optimale Losung nicht
mehr Platzhalter bendtigt werden. Aus der Anzahl der in der Heuristik verwendeten
Platzhalter ergibt sich somit eine obere Abschatzung fur die benétigte Anzahl von Platz-
haltern im Optimierungsproblem 4.6 und n”* kann entsprechend gewéahit werden.

A4 Anhang zu Kapitel 4.3

A4.1 Beschreibung und Pseudocode zu Algorithmus AlgVAP-

AlgMAPL erstellt fur eine Menge SVAPL von variantenbezogenen Arbeitspléanen (VAPLs)
ohne Multivorgange einen Maximalarbeitsplan (MAPL), aus dem alle VAPLs aus SV4P%
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konfiguriert werden kénnen, falls die VAPLs keine Strukturalternativen (STAs) enthal-
ten. Andernfalls gibt er einen Hinweis zurlick, dass keine Lésung gefunden werden
kann. Der Algorithmus wird im Folgenden zunachst hergeleitet. Es wird das Beispiel
aus Abbildung 4.22 in Kapitel 4.3 zur Veranschaulichung verwendet. Dabei wird davon
ausgegangen, dass die Arbeitsvorgange (AVOs) mit Klassennummern (KNs) annotiert
wurden, sodass sie eindeutig Uber ihre Labels identifiziert werden kénnen (siehe Abbil-
dung A4.1 (1)).

VAPL 1 VAPL 2 VAPL 3
(1) Lo f—faz o v ' A2, | v vill - a2, | X
Il . A4y |V Vil [ A1, X - A4y | X
(2)
MAPL
MAPL = Maxi beitsplan, VAPL = Var er Arbei @1 a A4

Abbildung A4.1: Variantenbezogene Arbeitsplane mit annotierten Arbeitsvorgdngen
und zugehodrigem Maximalarbeitsplan fiir den Beispielfall

Ein VAPL i ist als eine Menge S} von Knoten und eine Menge SF* € S} x S} von Kanten
definiert, die jeweils AVOs bzw. Vorrangbeziehungen darstellen. Existiert fir zwei AVOs
j und k eine Kante (AVO j,AVO k) in SF* bedeutet das, dass AVO j vor AVO k ausge-
fuhrt werden muss. AuRerdem sei eine zu SF' komplementére Menge SE° c sV x sV
von gerichteten Kanten definiert, die angibt, welche Vorrangbeziehungen im Vorrang-
graphen nicht existieren. Existiert fur AVO j und AVO k ein Element (AVO j,AVO k) in
SE® bedeutet dies, dass AVO j nicht vor AVO k durchgefiihrt werden muss. Fir VAPL
1in Abbildung A4.1 (1) gilt z. B.

SY = {I1I,111,1V}, A4 .1
SEV = (1, 1D, (I, 1D, (1, IV), (UL, 11D, (1, IV), (111, IV)}, A4.2
SEO = {11, D, (11, D), (111, 1D, AV, D), (IV, 1D, AV, 111} A4.3

Fir einen zulassigen Vorranggraphen gilt immer

SEOnsft =g. Ad .4
AuBlerdem ist ein zulassiger Vorranggraph immer zyklenfrei.
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Aus dem resultierenden MAPL mussen alle VAPLs aus SV4P* in einem Konfigurations-
prozess wie in Kapitel 4.1.1 beschrieben konfiguriert werden kénnen. Damit ein VAPL
i sich aus dem MAPL konfigurieren lasst muss Folgendes gelten: Es existiert eine in-
jektive Abbildung zwischen den AVOs aus VAPL i und den Arbeitsvorgangsklassen
(AVKs) des MAPL, sodass zwischen den AVOs in VAPL i und ihren Bildern im MAPL
die gleichen Vorrangbeziehungen bestehen.
Sei 5" die Menge der Labels zu den in einem VAPL i vorhandenen AVOs. Seien
SFOt e s7t x s/t bzw. SPM < s/t x s7** die Vorrangbeziehungen in VAPL i bezogen
auf dessen Labels. Fur VAPL 1 gilt damit beispielsweise
Syt = {A1,,A2,,A3,,A4,}, A4.5
SPY = {(A1,,42,), (A1, 43,), (A1, A4y), (A24,43,), (A2, A4y), (43, A4,)}, A48
5P = {(A2,,A1,),(A3,,A1,), (A31,A2,), (A4, ALy), (A4, A2,), (A4, A3,)). A4T

Sei SVMAPLL die Menge der Labels der im MAPL vorhandenen AVKs. Seien SEOMAPLL ¢
SVMAPLL 5 SVMAPLL hyzy, SELMAPLL ¢ gVIMAPLL » gV.MAPLL dig im MAPL geltenden Vor-
rangbeziehungen bezogen auf die Labels von dessen AVKs. Dann muss
SiEO’L C SEOMAPLL SiEl.L C SELMAPLL A4.8

gelten, damit ein VAPL i aus einem MAPL konfiguriert werden kann. Das bedeutet,
dass alle Vorrangbeziehungen, die im VAPL vorliegen, auch im MAPL vorliegen mus-
sen und alle Vorrangbeziehungen, die im VAPL nicht vorliegen, auch im MAPL nicht
vorliegen dirfen. Es kann nachvollzogen werden, dass dies fir den MAPL und die VA-
PLs in Abbildung A4.1 gilt.

Fir Probleme ohne Multivorgdnge, wie z. B. das in Abbildung A4.1 (1) dargestellte
Problem, I&sst sich bestimmen, ob ein zulassiger MAPL existiert, indem die VAPLs aus
SVAPL wie folgt zu einem MAPL aggregiert werden:

SyMAPLL = UiE{l.---.ISVApLI)SiV'Lv A4.9
SEO,MAPL,L — UiE{l,...,IstpLI) SiEO'L, A410

SELMAPLL — |J A4.11

i€Ctlsvaph SE
Da es eine bijektive Beziehung zwischen Labels und AVKs des MAPL gibt, ergeben
sich hieraus SV"MAPL  SEOMAPL ynd SELMAPL Der resultierende MAPL ist nicht zuldssig,
wenn SEOMAPL n GELMAPL = g gilt. In diesem Fall liegen in den VAPLs widerspriichliche
Informationen dariiber vor, ob bestimmte Vorrangbeziehungen gelten oder nicht. Der
resultierende MAPL ist auferdem nicht zuldssig, wenn er einen Zyklus enthélt, da ggf.
die VAPLs Informationen enthalten, die die Transitivitdt von Vorrangbeziehungen
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verletzen. Ob in einem MAPL ein Zyklus vorliegt, kann z. B. mittels Tiefensuche® (iber-
pruft werden. In beiden Fallen kann aufgrund der Inkonsistenz der Vorrangbeziehungen
in den zugrundeliegenden VAPLs kein zulassiger MAPL existieren, aus dem die VAPLs
aus SVAPL konfiguriert werden kénnen.

AlgMAPL bildet somit zunachst die Mengen SV/MAPLL  GEOMAPLL ng SELMAPLL ynd priift
dann, ob SEOMAPL  GELMAPL @ gilt oder der resultierende Graph einen Zyklus enthalt.
Je nachdem gibt er den Graphen, der sich aus SV"MAPLL GEOMAPLL yng gELMAPLL grgiht,
oder den Hinweis, dass keine LOsung existiert, zurlck. Ist letzteres der Fall kann daraus
geschlossen werden, dass die VAPLs aus S"4PL STAs enthalten. Im Folgenden findet
sich der Algorithmus in Pseudocode.

AlgVST: Algorithmus zur Erzeugung eines Maximalarbeitsplans aus einer Menge von variantenbezoge-
nen Arbeitspldnen ohne Multivorgédnge und ohne Strukturalternativen

Input: SVAPL

Output: GM4PL oder None

VL
SV.MAPLL ,— S;
i€{1,...ISvapLI}

1:

EO,L
SEOMAPLL, — s

i€{1,...ISyapLl}
E1L
SELMAPLL, — s

i€{1,...|SyapLl}
if SEU,MAPL n SEI,MAPL + Q) then
return None
GMAPL ‘= new MAPL(SV’MAPL’L, SEO,MAPL,L‘ SELMAPL,L)
if enthaelt_zyklus(G"4"*) then
return None
return GMAPL

oCNIaR W

Der Pseudocode geht von folgender Funktion sowie von Standardfunktionen objektori-
entierter Programmiersprachen aus:

- enthaelt_zyklus: Gibt wahr zurlck, falls der gerichtete Graph, der als Argument
Ubergeben wird, einen Zyklus enthalt

Auflerdem geht der Pseudocode davon aus, dass eine Klasse MAPL definiert ist, die
einen MAPL in Form eines gerichteten Graphen darstellt, der durch die Mengen
SVMAPLL " GEO.MAPLL ng SELMAPLL ingtanziiert wird.

80 Fiir die Ermittlung von Zyklen in Graphen mittels Tiefensuche sei auf Tarjan (1973) verwiesen
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A5 Anhang zu Kapitel 4.4

A5.1 Pseudocode zu Algorithmus Alg"tRMP

AlgMtRMP akzeptiert eine Tabelle von Datenpunkten. Deren Spalten, mit Ausnahme der
letzten, entsprechen den Features der Datenpunkte. Die letzte Spalte entspricht den
Labels der Datenpunkte. Die Riickgabe ist ein relaxiertes reduziertes Master-Problem
(XRMP).

AIg'""RMP: Algorithmus zur Initialisierung eines RMP
Input: TTraining
Output: p¥RMP

1:  #lInitialisiere Variablen und den Stapel

2:  [Monome .= new List()

3:  LAkePosinst .= new List()

4:  LStarel = new List()

5. NF:= get_anz_spalten(TT74ming) -1

6:  LFetrTerm .= (0y2*N" # Dyal-Rail-Darstellung

7 anfuegen(LStapel (TTraining LBetrTerm))

8:

9:  #Bearbeite den Stapel

10:  while |LSt%¢| > 0 do

11: TTrainingTemp |BetrMonom .= pop(LStapel)

12: if alle_labels_gleich_eins(T7m@iningTemp) then

13: #Das betrachtete Monom schlief3t alle negativen Datenpunkte aus
14: Monome .— anfuegen(LM"""’"E, LEetTmem)

15: JAkzPosinst .= anfuegen(LAkzPoslnsty get—a"e_datenpunkte(TTrainingTemp))
16: else

17: #Ermittle den besten Split

18: Limilndices = herechne_gini_index_fuer_jeden_split(T7@ningTemp)
19: nbestesFeature = argmin(Lginilndices)

20: #Flhre den Split aus

21: TTrainingTemp,O -= reduziere datensatZ(TTTainingTemp’ nbestesF&ature' O)
22: TTrainingTemp,l -= reduziere datensatz(TTrainingTemp nbestesFeuture 1)
23: LBetrMonom,(] = Copy(LEetrMonom)

24 LBetrMonom,U[nbestesFeature] =0

25: [BetrMonom,1 .= gopy(]BetrMonom

26: LBetrMonom,l[nbestesl-'eature] =1

27: Lstapel = anfuegen(LStapel (TTrainingTemp,O LEetrMonom,O))

28: LStapel = anfuegen(LS[apel (TTrainingTemp,l LBetrManom,l))

29: end if

30: end while

31:

32 #Erstelle das XRMP
33: PRMP .= erstelle RMP(LMDane, LAkzPoslnsr)
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34:
35:

PXRMP = relaxiere_ RMP(PRMF)
return PXRMP LManame

Der Pseudocode geht von den folgenden Funktionen sowie von Standardfunktionen

objektorientierter Programmiersprachen aus:

alle_labels_gleich_eins: Gibt wahr zurlick, falls alle Labels einer Tabelle gleich 1
sind, ansonsten falsch

berechne_gini_index_fuer_jeden_split: Gibt eine Liste zurlck, die fur jedes der
Features den Gini-Index bei Split in diesem Feature enthalt
reduziere_datensatz: Reduziert eine Tabelle, indem alle Zeilen geldscht werden,
fur die das angegebene Feature nicht den angegebenen Wert aufweist
erstelle_RMP: Gibt ein reduziertes Master-Problem (RMP) zuriick. Dessen Ziel-
funktionskoeffizienten entsprechen der Anzahl der Literale in den gegebenen
Monomen und dessen Spalten geben wieder, welche der positiven Datenpunkte
ein Monom akzeptiert.

relaxiere_ RMP: Relaxiert ein RMP, indem es die Ganzzahligkeitsbedingungen
des RMP aufhebt

A5.2 Pseudocode zu Algorithmus Alg®®

Der Algorithmus geht von einem bereits existierenden relaxierten reduzierten Master-

Problem (XRMP), einer Liste der darin berticksichtigten Monome, einer Liste der hierfiir

ausgeschlossenen Monome und einem Trainingsdatensatz aus. AulRerdem geht er von

vier Matrizen aus, die angeben, welche Literale welche positiven bzw. negativen Da-

tenpunkte ausschlieBen bzw. einschlieRen.

AlgCC: Algorithmus zur Optimierung eines reduzierten Master-Problems mittels Spaltengenerierung
Input: PXRMP‘ LManame‘ LExleerme’ TTrainingy AExkvas‘ AlnklPas‘ AExklNeg‘ AInklNeg

. « * «
Output: PXRMP’ LMonume’ ZRMP ,uRMP ,ZXRMP ‘uXRMP

1:

© o N hh DN

# Lose das Pricing-Problem
baalVerbesserungMoeglich = True
while boolVeTbesserungMoeglich == True do
PPP = dualisiere(PXRMP)
v*:= optimiere(PP?)
LMonomszP‘ = A|gPmcingHeurishk(LExklManame’ ‘U*, AExklPosy AlnklPos’ AExklNeg, AlnklNeg)
if z57" > 0 then
PSP := erstelle_pricing_problem(v*, TTreining [ExkiMonome)

[Monome ,SP* .= optimiere (PSP)
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10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

if 257" > 0 then
boalVeTbesserungMaeglich:: False
end if
end if

# Aktualisiere das relaxierte reduzierte Master-Problem
if baolVerbesserungMoeglich then

[Monome .= anfuegen(LManameY LMoan)
PXRMP .= gpalte_einfuegen(pXRMP  [Monom)
end if
end while
# Lose das reduzierte Master-Problem

XRMP* XRMP*

z u := optimiere(P¥RMP)

if ist_ganzzahlig (u**?") then

ZRMP" .= , XRMP*
WRMP® .= | XRMP"
else
PRMP .= derelaxiere(P**MP)
ZRMP"  RMP":= optimiere(PRMP)
end if

return PXRMP, LTermev ZRMP !uRMP ’ZXRMP ,uXRMP

Der Pseudocode geht von den folgenden Funktionen sowie von Standardfunktionen

objektorientierter Programmiersprachen aus:

dualisiere: Gibt ein zu einem eingegebenen XRMP duales Problem zuriick
optimiere: Ermittelt den optimalen Zielfunktionswert und die optimale Lésung ei-
nes Optimierungsproblems

erstelle_pricing_problem: Gibt ein Subproblem (SP) zuriick

spalte_einfuegen: Fugt eine Spalte in ein XRMP ein

ist_ganzzahlig: Gibt wahr zurlick, falls jeder Eintrag eines Vektors ganzzahlig ist,
ansonsten falsch

derelaxiere: Derelaxiert ein Optimierungsproblem, indem alle Entscheidungsva-
riablen ganzzahlig beschrankt werden

A5.3 Beschreibung und Pseudocode zu Algorithmus AlgPricingHeuristik

Zur Lésung des Subproblems (SP) wird in der vorliegenden Arbeit die folgende Heuris-

tik verwendet. Diese lasst sich zu grof3en Teilen auf Matrix-Vektor-Multiplikation und

das Berechnen von Skalarprodukten zurtickflihren; Operationen, die nach Stand der

Technik effizient ausgefiihrt werden kénnen.
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Die optimale Lésung v* des DP gibt an, in welchem Mafle ein Monom, das bestimmte
positive Datenpunkte akzeptiert, zur Verbesserung des optimalen Zielfunktionswerts
z¥RMP” des relaxierten reduzierten Master-Problems (XRMP) beitragt. Sie gewichtet da-
mit die positiven Datenpunkte des Trainingsdatensatzes. Jedes zulassige Monom
schlielt alle negativen Datenpunkte aus, d. h. enthalt fir jeden negativen Datenpunkt
mindestens ein Literal, das diesen ausschliel3t. Die Eigenschaft eines Monoms, Daten-
punkte ein oder auszuschlielen, kann auf seine Literale heruntergebrochen werden.
Enthalt das Monom ein bestimmtes Feature als positives Literal, schlieRt es alle Daten-
punkte des Datensatzes, die fir dieses Feature einen Eintrag falsch aufweisen, aus.
Das gleiche gilt fir negative Literale und Eintrage wahr. Umgekehrt betrachtet schlie3t
ein positives Literal ohne Berlcksichtigung weiterer Literale des Monoms einen ent-
sprechenden Eintrag wahr ein und ein negatives Literal einen Eintrag falsch. Ein Mo-
nom, das flr das Beispiel in Abbildung 4.28 (1) in Kapitel 4.4.2.1.1 das Literal x; enthalt,
schlielt z. B. die negativen Datenpunkte 1, 2 und 3 sowie den positiven Datenpunkt 2
aus. Demgegeniber schlielt ein Monom, das das Literal x, enthalt ohne Beriicksichti-
gung weiterer Literale des Monoms den positiven Datenpunkt 1 ein.

Die Heuristik folgt der folgenden Uberlegung. Ein gutes zuldssiges Monom schliet alle
negativen Datenpunkte aus, akzeptiert positive Datenpunkte mit einem mdoglichst ho-
hen kumulierten Gewicht und verfiigt Uber moéglichst wenige Literale, da diese sich
nachteilig auf z*¥®"P" auswirken. Das Monom als Lésung des Pricing-Problems wird
Literal fur Literal aufgebaut. Die Heuristik folgt einer Greedy-Strategie. In jeder Iteration
wird dasjenige Literal hinzugefligt, das méglichst viele der verbleibenden negativen Da-
tenpunkte ausschlief3t (Gewinn) und dabei mdglichst wenige verbleibende positive Da-
tenpunkte nach Gewicht ausschlie3t (Verlust). Fir jedes infrage kommende Literal wird
der Quotient aus Gewinn und Verlust berechnet. Es wird dasjenige Literal hinzugefugt,
dass den hdchsten Quotienten aufweist. Um eine Division durch 0 zu vermeiden und
der Tatsache Rechnung zu tragen, dass jedes hinzugefiigte Literal zX®MP* um 1 ver-
schlechtert, wird zuvor der Verlust jeweils um 1 erhoéht. Es werden so lange Literale
hinzugefligt, bis alle negativen Datenpunkte ausgeschlossen sind und das Monom da-
mit zulassig ist. Die Heuristik I8sst sich recheneffizient umsetzen, indem fir einen Trai-
ningsdatensatz nur einmalig die Matrizen AF¥kiPos — plnkiPos = pExkiNeg ynd AlmkiNeg pe-
rechnet werden, die angeben, ob ein Literal einen bestimmten positiven bzw. negativen
Datenpunkt ausschlieRt bzw. akzeptiert. Jede der Matrizen verfiigt Gber 2n” Spalten,
wobei jede Spalte einem moglichen Literal entspricht und tber n? bzw. nP" Zeilen,
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wobei jede Zeile einem positiven bzw. negativen Datenpunkt entspricht. Die Gewinne

und Verluste je Literal lassen sich damit durch Matrix-Vektor-Multiplikation berechnen.
Der Pseudocode des Algorithmus AlgPricingHeuristik - der im Folgenden gezeigt wird, gibt

die

Vorgehensweise der Berechnung wieder.

Alg®C: Algorithmus zur heuristischen Lésung des Pricing-Problems
Input: LExklManam v* AExklPDs AlnklPas AExklNeg AlnklNeg nln nF

Output: [ bestesMonom , Z5P"

LA

L ® N

11:

F .
LbestesMonom .= g2n" #Dya| Rail-Darstellung
[ NeginstVerbleibend .= qn'™
LPosInstVerbleibendGew =yt

# Vermeide, dass ausgeschlossene Terme eingefligt werden, indem sie wie negative Datenpunkte be-
handelt werden
while |LExklManome| >0do

LBetrMonom = pop(LExklMonome)
AExklNeg = zeiIe_einfuegen(AEx"l”ey, LBetrMonam)
AlmkiNeg .= zeile_einfuegen(A™*INed  invertiere_eintraege(LF¢trMonomy)

end while

12:

13:
14:

15:
16:

17:
18:
19:
20:
21:

22:
23:

24:

#lteration
while summe(LNeglnstVerbleibend) >0do

#Berechne bestes Literal
LGewinn = AExklNeg . LNeglnstVerbleibend

Verlust .= gExklPos . | PosinstVerbleibendGew 4 q2n”

rouotient .= glementweise_division(LFeVinn, [Vertust)

rQuotient .= elementweise_multiplikation(ruotent invertiere_eintraege(LbestesMonom y)
nBestermdsx = argmax(rouatient)

] bestesMonom [nEesterlndex] =1

#Aktualisiere verbleibende Datenpunkte
[ NegInstverbleibend -= glementweise multiplikation(LNeglnstVerbleibend AlnklNeg[. nBesterlndexl)

LPosInstVerbleibendGew:: e|ementweise_mu|tip"kation(LPosInstVerbleibendGew‘ AInklPas[:’ nBesterlndex])
end while

ZSP‘ = summe(LbestesMonom) _ Summe(LPosInstVerbleibendGew)

return [bestesMonom , ZSP‘

Der Pseudocode geht von den folgenden Funktionen sowie von Standardfunktionen
objektorientierter Programmiersprachen aus:

- invertiere_eintraege: Ersetzt jeden Eintrag 0 in einer Liste mit 1 und umgekehrt
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A5.4 Ergénzung von nichtlésbaren relaxierten reduzierten Master-Proble-
men

Relaxierte reduzierte Master-Probleme (XRMP), fiir die mindestens eine Variable auf 0
fixiert wurde, besitzen u. U. keine Losung, da mit den verbleibenden wahlbaren Mono-
men u. U. nicht mehr alle positiven Datenpunkte eingeschlossen werden konnen. Es ist
ein Monom zu ermitteln, dass dem XRMP hinzugefugt werden kann um eine zulassige
Lésung zu ermdglichen. Hierfir kann ein modifiziertes Subproblem (SP) verwendet
werden. Grundsatzlich ist das SP in der Lage, dem XRMP Spalten fiir zulassige Mo-
nome hinzuzufiigen und bevorzugt dabei solche Monome, die positive Datenpunkte mit
groRen absoluten v; einschlieRen. Es wird deshalb ein v* definiert, das jeweils einen
hohen Wert fiir positive Datenpunkte aufweist, die im XRMP nicht eingeschlossen wer-
den kénnen und ansonsten 0 ist. Damit kann ein adaptiertes SP aufgestellt werden.
Dieses SP fiihrt zu einem Monom, das mdglichst viele positive Datenpunkte akzeptiert,
die zuvor von keinem Monom akzeptiert wurden. Auf diese Weise kann das XRMP
schnell in ein lI6sbares XRMP (berflihrt werden. Es ist dafiir notwendig, zu ermitteln,
welche positiven Datenpunkte im XRMP nicht eingeschlossen werden kénnen, d. h.
welche Nebenbedingungen unerfiillbar sind. Solver nach Stand der Technik verfligen
Uber Funktionen, um die minimale Menge an unerflllbaren Nebenbedingungen (Irredu-
cible Inconsistent Subsystem) zu berechnen. Damit kénnen die entsprechenden Da-
tenpunkte ermittelt werden.

A5.5 Pseudocode zu Algorithmus Alg®3?

Der Algorithmus geht von einem Trainingsdatensatz aus. Optional kénnen ein relaxier-
tes reduziertes Master-Problem (XRMP) sowie dessen berlcksichtigte und ausge-
schlossene Monome Ubergeben werden. Er gibt einen komplexitatsminimalen boole-
schen Ausdruck zurtick, der auf dem Trainingsdatensatz eine perfekte Trainingsgenau-
igkeit aufweist.

AlgB%P: Algorithmus zum Lernen eines komplexititsminimalen booleschen Ausdrucks mit perfekter
Trainingsgenauigkeit mittels Branch and Price

Input: TTraining optional: PXRMP  [Monome | ExkiMonome

Output: BoP*

1:  #lnitialisiere Variablen
if not existiert(PX*M”) or not existiert(L°"°™¢) then

PXRMFY [ Monome .— A|g|nitRMP(TTruining)

end if

2
3:
4
5. if not existiert(LF¥kMonome) then
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LExklMonome = new LISt()
end if
B°Pt := None
9:  b*:=None
10:  LSterel := new List()
11: Lstapel = anfuegen(LStapel (PXRMP [ Monome LExklMonome))

12:  ABxkiPos  plnklPos - pExkiNeg = plnkiNeg .= herechne_inkl_exkl_matrizen(T7maining)

o ND

13: #lterationen
14:  while |L5t%P¢!| > 0 do

15: #LOse nachstes Problem auf dem Stapel
161 PXRMP,Knaten’ LMonome,Knoten’ LExklMonome,Knoten = pop(LStapel)
PpXRMP Knoten  jTermeKnoten ,RMP*  RMP' XRMP*  XRMP® .- A|gcc(PXRMP [ Monome Knoten
17 LExklemme,Knnten TTraining AExklPos AlnklPas AExklNeg AlnklNeg)
18: #Priife ob neue beste Loésung gefunden wurde
19: if BPt == None or zfMP" <p* then
20: BPt = erstelle_booleschen_ausdruck(LTermeKnoten 4 RMP"y
21: b = ZRMP"
22: end if
23: #Verzweige
24: if [z¥RMP*] < b* then
25: nV% := niedrigster_index_nicht_ganzzahlig(u**"?")
26: pXRMP.Knoten,0 .= fixjere_variable(PXRMPKnoten vz Q)
27 LExklMonome,Knoten,U = anfuegen(LExklMonome,Knoten,O’ LMonome,Knoten[an ]
28: PpXRMP Knoten1 .= fixiere_variable_auf_wert(PXRMP.Knoten vz 1)
29: LStapel = anfuegen(LStapel (PXRMP,Knoten,U LMonome,Knnten LExklMonome,Knoten,O))
30: LStapel = anfuegen(LStupel (PXRMP,Knoten,l LMonome,Knoten LExkannume,Knaten))
31: end if
32:  end while

32: return BoPt

Der Pseudocode geht von den folgenden Funktionen sowie von Standardfunktionen
objektorientierter Programmiersprachen aus:

- berechne_inkl_exkl_matrizen: Gibt fir einen Trainingsdatensatz vier Matrizen,
zurick, die angeben, welche Literale welche positiven bzw. negativen Daten-
punkte ein- bzw. ausschlieRen

- erstelle_booleschen_ausdruck: Erzeugt einen booleschen Ausdruck, der aus ei-
ner Liste von Monomen alle Monome enthalt, deren zugehdriger Eintrag in einem
beigefligten Vektor 1 ist

- niedrigster_index_nicht_ganzzahlig: Gibt fir einen Vektor den Index des ersten
nichtganzzahligen Eintrags zurtick
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- fixiere_variable_auf_wert: Fixiert in einem Optimierungsproblem eine Variable
mit einem bestimmten Index auf einen bestimmten Wert

A6 Anhang zu Kapitel 4.5

Im Folgenden wird néher auf zwei Aspekte der in Kapitel 4.5.2.5 beschriebenen Model-
lierung eingegangen.

A6.1 Verzicht auf dynamische Gewichtung der Auswabhlkriterien bei der
Variantenauswahl

Das Kriterium der Diversitat steht in keiner unmittelbaren Beziehung zum AusschlieRen
von Modellen aus den Versionenraumen (VRs). Gerade fur wenige Daten kdnnen je-
doch Falle auftreten, in denen bestimmte Labels durchgehend denselben Wahrheits-
wert annehmen. In diesen Fallen kann keine bessere Vorhersage als dieser Wahrheits-
wert getroffen werden, d. h. alle Modelle des entsprechenden VR sind identisch und
koénnen nicht separiert werden. Damit kann das Separationskriterium nicht angewandt
werden. Um mindestens eine Variante mit einem anderen Wahrheitswert im Konfigura-
tionsraum zu finden, eignet sich die Diversitat. Die Diversitat ist somit insbesondere
beim Vorliegen weniger annotierter Datenpunkte relevant. Damit erscheint es zunachst
sinnvoll, wM$ mit zunehmender Datenmenge zu erhéhen und damit die Gewichtung der
Diversitat zu reduzieren. Ein solcher Effekt ist jedoch in dem in Kapitel 4.5.2.5 beschrie-
benen Modell implizit angelegt. Fir wenige Daten existieren zum einen viele triviale
VRs, die nicht geteilt werden kdnnen. Zum anderen ist es moglich, Varianten weit weg
von zuvor gewahlten Varianten zu wahlen, d. h. das Separationskriterium nimmt ten-
denziell geringe Werte an und das Diversitatskriterium tendenziell hohe Werte. Mit zu-
nehmender Datenmenge verandert sich dieser Umstand zugunsten des Separations-
kriteriums. Um diesen Effekt zu nutzen, ist es sinnvoll, die beiden Kriterien Uiber alle
Iterationen hinweg mit demselben Maximalwert zu normieren und nicht mit dem fur die
jeweilige Iteration gultigen Maximalwert. Aufgrund dieses Effekts wird in der vorliegen-
den Arbeit auf eine dynamische Anpassung von w™S in Abhangigkeit der Datenmenge
verzichtet.

A6.2 Codierung kategorischer Merkmale fiir die Variantenauswahl

Liegen im High-Level-Konfigurationsmodell (HLKM) kategorische Produktmerkmale
vor, kdnnen diese fir das Optimierungsproblem zum einen mittels One-Hot-Codierung
in binare Features Uberflhrt werden. Zum anderen kdnnen den Merkmalauspragungen
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zunéchst fortlaufende natirliche Zahlen zugeordnet und diese in das Dualsystem Uber-
flihrt werden®'. Letzteres wird im Folgenden als Dualcodierung bezeichnet. Da die Mo-
delle in den Versionenrdumen (VR) in One-Hot-Codierung erstellt werden, muss beim
Aufstellen des Optimierungsproblems in Dualcodierung eine Transformation vorgenom-
men werden. Je nachdem, in welcher Form die Trainingsdaten vorliegen, missen diese
ebenfalls transformiert werden. Der Vorteil der Dualcodierung ist, dass sie weniger Va-
riablen bendtigt und weniger Kombinationen von Featureauspragungen ausgeschlos-
sen werden missen. Das ermdglich die Verwendung von weniger Nebenbedingungen
3 in dem in Kapitel 4.5.2.5 beschriebenen Optimierungsproblem 4.23. Es ist dabei je-
doch zu beachten, dass sich je nach Darstellungsform das Kriterium der Diversitat ver-
andert. Stimmen zwei Varianten in einem kategorischen Merkmal nicht Uberein, bedeu-
tet dies immer einen Abstand von 2 in One-Hot-Codierung. In einer Dualcodierung kann
der Abstand zwischen 1 und [log, n""] betragen, wobei n™" die Anzahl der méglichen
Auspragungen des Merkmals darstellt. Es liegt somit eine unbekannte Gewichtung von
Abstanden vor, die das Ergebnis auf nicht triviale Weise beeinflussen kann. Fur Prob-
lemstellungen einer bestimmten GréRRe kann der Einsatz einer Dualcodierung aufgrund
der Rechenzeit jedoch notwendig sein.

A7 Anhang zu Kapitel 5.1

A7.1 Approximation der wahlbaren Varianten in den Konfigurationsmodel-
len des Industriepartners

Die Anzahl der wahlbaren Varianten ohne Berlicksichtigung der Beschrankungen des
High-Level-Konfigurationsmodells (HLKM) ergibt sich durch Multiplikation der Anzahlen
von zulassigen Auspragungen je Merkmal. Die Anzahl der wahlbaren Varianten unter
Berucksichtigung der Beschrankungen wurde im Rahmen der vorliegenden Arbeit erst-
mals fundiert approximiert. Die paarweisen Ausschlussbeziehungen des HLKM lassen
sich als High-Level-Formel (HLF), d. h. als ein boolescher Ausdruck formulieren, wie in
Kapitel 4.5.2.4 beschrieben. Die Anzahl zulassiger Varianten entspricht damit der An-
zahl der Variablenbelegungen, fur die dieser Ausdruck den Wert wahr annimmt, d. h.
der Anzahl der Modelle im Sinne der Aussagenlogik. Diese Anzahl zu bestimmen ent-
spricht dem #SAT-Problem, das #P-vollstandig® ist (Creignou & Hermann 1996, S. 1)

81 Eine solche Darstellung kategorischer Merkmale wird z.B. von Potdar et al. (2017, S. 7-8) beschrieben.
82 #PONP
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und deshalb fiir grole Probleme nicht in relevanter Zeit geldst werden kann. Es wurde
deshalb Approximate Model Counting nach Soos et al. (2020) unter Verwendung der
Python-Bibliothek pyapproxmc®® eingesetzt, um die Anzahl der Varianten approximativ
zu bestimmen. Es gilt

P(lsflJEFg)l) <c < @+9lsol(F)]) =21-6 A7.1

mite = 0,05und § = 0,05 wobei sol(F) die Menge der Modelle des zuvor erwahnten
booleschen Ausdrucks darstellt (Soos et al. 2020, S. 465). Das bedeutet, dass mit einer
Wahrscheinlichkeit von gréfier gleich 95 % die tatsachliche Anzahl zuldssiger Varianten

zwischen (ﬁ) * ¢ und 1,05 * c liegt, wobei ¢ dem in Tabelle 5.1 in Kapitel 5.1 ange-

gebenen Wert entspricht.

A8 Anhang zu Kapitel 5.2

A8.1 GleichméRig zuféllige Generierung von synthetischen Maximalstiick-
listen

Im Folgenden wird erlautert, wie unter Berlcksichtigung der in Kapitel 5.2.1 eingefthr-
ten Parameter gleichmaRig zufallig Maximalstiicklisten (MSTLs) erstellt werden. Es
werden die folgenden von den Parametern abgeleiteten GrofRen bendtigt:

MUt = ryunden(n?KK « rMuit) die Anzahl von Multipositionen je Strukturoption
(STO),

- nSing = nZKK _ nMult die Anzahl von singuléren Positionen je STO,

- nZKEMSTL — pZKK 4 nZKK o (nSTO — 1), die Anzahl von Zukaufkomponentenklas-
sen (ZKKs) in der MSTL,

- nBK = runden(n?KKMSTL 4 BGKY die Anzahl von Baugruppenklassen (BGKs) in
der MSTL

- und nAbh = pAbh « nZKK - die Anzahl von ZKKs einer STO, die von der giiltigen
STO abhéangen.

Die Erzeugung der Struktur der MSTL lasst sich auf die gleichmaRig zufallige Erzeu-
gung von Wurzelbaumen mit n?KKMSTL Blattern und n®K inneren Knoten zurlickfiihren.
Es existiert ein generisches Verfahren von Alonso et al. (1997) zur gleichmalig

83 https://github.com/meelgroup/approxmc (zuletzt tiberprift am 07.06.2025)
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zufélligen Erzeugung von Wurzelbdumen, die bestimmte Muster von Knoten und Kan-
ten enthalten. Wird dieses Verfahren genutzt, um Baume zu erstellen, die n?X<MSTL.
mal das Muster Knoten ohne Kanten zu untergeordneten Knoten und nf¢%-mal das
Muster Knoten mit einer oder mehreren Kanten zu untergeordneten Knoten enthalten,
entstehen gleichmaRig zufallige Baume mit n?KKMSTL Blattern und nf¢K inneren Knoten,
wobei die Wurzel selbst in nB¢K enthalten ist. Das Verfahren wurde auf Basis der Arbeit
von Alonso et al. (1997) im Rahmen der vorliegenden Arbeit in Python implementiert.

Liegt die Struktur vor werden den Blattern des Baums Bezeichnungen und Positions-
nummern zugeordnet. Es werden zunéchst n"9 Blatter gleichmaRig zufallig ausge-
wahlt und jeweils mit einer eindeutigen Bezeichnung versehen. Es verbleiben n™“¢ zy
bezeichnende Blatter, denen dergestalt Bezeichnungen zuzuordnen sind, dass jede
Bezeichnung mindestens zweimal auftritt. Dieses Problem kann in ein erweitertes Ran-
dom-Integer-Partitioning-Problem tberfiihrt werden: Es ist eine Zerlegung von nM* in
Summanden gréRer gleich zwei zufallig auszuwahlen, sodass jede Zerlegung die glei-
che Wahrscheinlichkeit besitzt ausgewahlt zu werden. Ist diese Zerlegung bekannt,
kann je Summand n“™ eine einzigartige Bezeichnung ausgewahlt und gleichmanig
zufallig n¥™ Blattern ohne Bezeichnung zugeordnet werden. Bereits fiir kleine nM¢
kann das erweiterte Random-Integer-Partitioning-Problem nicht mehr durch vollstan-
dige Enumeration aller méglichen Zerlegungen gelést werden. Im Rahmen der vorlie-
genden Arbeit wurde deshalb ein Algorithmus entwickelt, um dieses Problem mittels
dynamischer Programmierung effizient zu |6sen. Dieser ist in Anhang A8.2 beschrie-
ben.

Es sind nun nM¥ ZKKs mit Bezeichnungen versehen. Hiervon werden gleichmaRig
zuféllig n4P" ausgewahlt und deren Bezeichnungen nS7° — 1 mal kopiert und zufalligen
ZKKs ohne Bezeichnungen zugeordnet. Die daraus resultierenden n’7° bezeichneten
ZKKs werden jeweils einer STO zugeordnet. Damit ist jede ZKK der MSTL entweder
genau einer oder allen STOs zugeordnet. ZKKs, die mehreren, aber nicht allen STOs
zugeordnet sind, werden nicht betrachtet. Wirden MSTLs zugelassen, fir die be-
stimmte ZKKs mehreren, aber nicht allen STOs zugeordnet sind, erscheint es zunachst
moglich, die von STOs betroffenen ZKKs zuféllig ausgewahlten STOs zuzuordnen.
Dadurch kénnten jedoch STOs mit einer geringeren Anzahl von ZKKs einer Bezeich-
nung entstehen, was der in Kapitel 4.2.2.2 getroffenen Annahme widersprechen wirde.
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Die vorgestellte Methode lieRRe sich somit in diesem Fall nicht anwenden um gleichma-
Rig zufallig MSTLs aus der Gesamtheit aller moglichen MSTLs auszuwahlen.

In der vorgestellten Methode zur Erzeugung synthetischer MSTLs beeinflusst jede der
vorgenommenen zufalligen Auswahlen die Anzahl der Moglichkeiten fir die darauffol-
gende zufallige Auswahl nicht. Damit besitzt jede mdgliche MSTL die gleiche Auswahl-
wahrscheinlichkeit. Nach Durchfihrung der beschriebenen Methode liegt somit eine
gleichmaRig zufallig ausgewahlte synthetische MSTL vor, die zur Konfiguration von va-
riantenbezogenen Stlicklisten (VSTLs) genutzt werden kann.

A8.2 GleichmaRBig zufallige Generierung von Ganzzahlpartitionen mit
Summanden groBer gleich 2

Die gleichmaRig zufallige Auswahl von Partitionen einer naturlichen Zahl, d. h. einer
Menge von Summanden, die in Summe diese Zahl ergeben, ist ein in der Literatur be-
kanntes Problem, das rekursiv mittels dynamischer Programmierung geldst werden
kann. Zunachst wird berechnet, wie viele Ganzzahlpartitionen der natlrlichen Zahl
nZuTeilen gxistieren, deren gréfter Summand genau einem bestimmten nSw¥mMax <
nZuTellen gntspricht. AnschlieRend wird der grote Summand der Partition mit einer
Wahrscheinlichkeit ausgewahlt, die dieser Anzahl entspricht. Die Berechnung der An-
zahl von Partitionen von n?#T¢ien ynd einem bestimmten groRten Summanden nS¥mMax
I&sst sich auf untergeordnete Probleme desselben Typs zuriickfiihren und somit rekur-
siv durchfuihren. (Nijenhuis & Wilf 1975, S. 70)

Der im Rahmen der vorliegenden Arbeit entwickelte und im Folgenden vorgestellte Al-
gorithmus stellt eine Adaption des zuvor erlauterten Algorithmus von Nijenhuis & Wilf
(1975, S. 70) dar und ist in der Lage, gleichmaRig zufallig Partitionen einer natirlichen
Zahl auszuwahlen, deren Summanden gréer gleich 2 sind. Auch hier ist die effiziente
Berechnung der Anzahl bestimmter Partitionen von natirlichen Zahlen wesentlich. Sei
nf1#Part die Anzahl von Partitionen von i, deren kleinster Summand groRer gleich j ist.
Beispielsweise entspricht n;#"%" fiir i = 8 und j = 2 der Anzahl von Partitionen von 8
mit einem kleinsten Summanden von groéRer gleich 2. Fir solche Partitionen kénnen
die folgenden Falle unterschieden werden. Erstens kann der kleinste Summand der
Partition genau j sein. Dann verbleibt neben dem kleinsten Summanden ein Rest von
i — j, der auf die anderen Summanden aufzuteilen ist. Im Beispielfall wirde die Partition
somit den Wert 2 enthalten und es verbliebe ein Rest von 6, der auf die anderen
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Summanden zu verteilen ist. Die Anzahl von Partitionen von 8 mit einem kleinsten Sum-
manden von genau 2 entspricht nf3“P™. Zweitens kann der kleinste Summand j + 1
sein. Dann verbleibt neben dem kleinsten Summanden ein Rest von i — (j + 1), der auf
die anderen Summanden aufzuteilen ist. Die Anzahl von Partitionen fir den Beispielfall
mit Summand 3 entspricht nf%#P*"* usw. Allgemein gilt

AnzPart AnzPart
ny =yi_ = T, A8.1

sowie 1" = 1 und nf1#P*"* = 0 v (j > i), womit eine rekursive Berechnung mittels
dynamischer Programmierung mdglich ist. Damit kann insbesondere die Anzahl von
Partitionen einer natirlichen Zahl berechnet werden, deren kleinster Summand grofRer
gleich 2 ist. Fir den Beispielfall gilt n§3%?%"* = 7. Dies entspricht den 7 Partitionen
(2,2,2,2), (3,3,2), (4,2,2), (4,4), (5,3), (6,2) und (8). Die Anzahl von Partitionen, fur die
der kleinste Summand genau j ist, kann durch

AnzPart.,gen _  AnzPart _ . AnzPart
u = niner A8.2

Berechnet werden. Fur 8 existieren z. B. 4 Partitionen, deren kleinster Summand genau
2 ist. Um eine gleichmaRig zuféllige Partition von 8 zu bestimmen ist somit der kleinste

Summand mit einer Wahrscheinlichkeit von ; als 2 zu wahlen und mit je einer Wahr-
scheinlichkeit von % als 3, 4 oder 8. Allgemein betragt die Wahrscheinlichkeit, dass ein

bestimmter kleinster Summand j gewahlt wird

pAnzPart,gen
o A8.3
j npAnzPart -

L
Wourde ein kleinster Summand ausgewahlt, wird die Partitionierung flir den verbleiben-
den Rest fortgesetzt. Dabei darf kein Summand mehr gewahlt werden, der kleiner als
ein bereits gewahlter Summand ist. Im Folgenden finden sich der Algorithmus AlgZufae
ligePartiion 7 ,r Auswahl einer gleichmaBig zufalligen Partition einer natirlichen Zahl mit
Summanden groBer gleich 2 sowie der untergeordnete Algorithmus AlgZaehiePartitionen 7,
Bestimmung von n{}}”"“” als Pseudocode. Der Algorithmus nutzt Caching, um die

mehrfache Berechnung identischer Probleminstanzen zu vermeiden.

Alg?ufaeligePartition:  Algorithmus zur gleichmaBig zufélligen Auswahl einer Partition einer natiirlichen Zahl
mit Summanden groRBer gleich 2

Input: pZuTeilen

Output: [7ufPartition

1:  DCache .= new Dictionary()
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LZufPartitiun ‘= new LISt()
nRest:: nZuTeilen

nLetzterGewaehlterSummand =2

while n®¢t > 0 do
nPartGes:= A|gZaehleF’am(ionen(nReslY nLetzterGewaehlterSummand’ DCache)

pWkeitjesummand .= new Dictionary()

fork e {nLetzterGewaehlterSummand’ e nRest} do
DWkeit]eSummand[k] = (A|gZaeh\ePanitionen(nRest’ k, DCache) - AngaehIePamtionen(nResty k+1,
Cachey) * 1
DERN) " araes
end for

piNeuersummand .= zyfalllsauswahl_mit_wkeiten(DWkeit/esummand )

LZufPartltLon = anfuegen(LZufPur[mon’ nNeuerSummmld)
.nRest:= nRest - nNeuerSummand
nLetzterGewaeh er and = nNeum and

end while

return LZufPartitizm

Der Pseudocode geht von den folgenden Funktionen sowie von Standardfunktionen

objektorientierter Programmiersprachen aus:

- zufallsauswahl_mit_wkeiten: Die Funktion akzeptiert ein Dictionary, das auszu-
wahlende Objekte und zugehodrige Wahrscheinlichkeiten enthalt und wahlt zufal-
lig eines der Objekte entsprechend den Wahrscheinlichkeiten aus.

Alg?aehlePartitionen: Algorithmus zur Bestimmung der Anzahl von Partitionen fiir eine Zahl i, deren Summan-

den mindestens die GréRe j aufweisen
Input: i, j, DCache

Ou

tput: n/17Pt

1
2
3
4:
5:
6
7
8

9
10:
11:
12:

if i == 0 then
return 1
end if
if j > i then
return 0
end if
if (i, j) in D" then
return DChe[(i j)]
end if
n{}]'_llf’ﬂff = 2;'(=j(A|QZaen|ePamtionen (i - k,k, DEachey)
DCache [(l,])] = nf}lzPart

AnzPart
return n{;
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A8.3 Metrik fiir die Demonstration der Methode 2

Um bewerten zu kénnen, wie effektiv Methode 2 fiir die Losung von Problem 2 ist, wird
im Folgenden eine Metrik definiert. Diese quantifiziert die Abweichung einer Ergebnis-
Maximalstuckliste (Ergebnis-MSTL), die mittels Methode 2 erstellt wurde, von einer Re-
ferenz-Maximalsttickliste (Referenz-MSTL). Die Herausforderung beim Vergleich einer
Ergebnis-MSTL mit Strukturoptionen (STOs) und einer Referenz-MSTL mit STOs be-
steht darin, dass die Bezeichnungen der STOs willkirlich sind. Beispielsweise kdnnte
im Falle zweier STOs je MSTL davon ausgegangen werden, dass die erste bzw. zweite
STO der einen MSTL der ersten bzw. zweiten STO der anderen MSTL entspricht.
Dadurch konnte eine groRRe Differenz der beiden MSTLs schlicht daraus folgen, dass
diese Zuordnung nicht korrekt ist. Es ist deshalb eine paarweise Zuordnung von STOs
der beiden MSTLs zu ermitteln, die dafiir sorgt, dass die Abweichung zwischen den
MSTLs minimal wird. Eine STO einer MSTL kann als Subgraph der MSTL dargestellt
werden, der nur diejenigen Komponentenklassen (KKs) enthalt, die der STO zugeord-
net sind (siehe Kapitel 4.2.2.1). Damit entsprechen STOs in ihrer Datenstruktur varian-
tenbezogenen Stucklisten (VSTLs), d. h. Baumen mit identifizierbaren Blattknoten. Fir
binare blattannotierte Baume (engl. Leave Labeled Trees) existieren in der Literatur
Abstandsmalie, allerdings sind die betrachteten STOs nicht zwingend bindre Baume.
Die Berechnung von Tree-Edit-Distanzen fir allgemeine ungeordnete, annotierte
Baume gehort zur Klasse der maximal streng NP-schweren Probleme (sog. MaxSNP-
Probleme; Akutsu et al. 2011). Es hat sich im Rahmen der Arbeit bestatigt, dass keine
ausreichend effiziente Umsetzung flr die in Kapitel 5.2.1 beschriebene, umfassende
Experimentreihe moglich ist. Es wird deshalb ein eigenes Maf} entwickelt, um die Dif-
ferenz zweier STOs zu quantifizieren.

Dem Mabl liegt die Idee zugrunde, die Unahnlichkeit zweier Stlicklisten danach zu be-
urteilen, wie viele nichtlibereinstimmende Baugruppen sie aufweisen. Zwei Baugrup-
pen stimmen nicht Gberein, wenn sie nicht dieselben Zukaufkomponenten enthalten.
Da STOs keine instanziierten Baugruppen, sondern Baugruppenklassen enthalten,
wird diese |dee auf Baugruppenklassen (BGKs) tibertragen. Sei eine BGK beschrieben
durch die Menge ihrer untergeordneten Zukaufkomponentenklassen (ZKKs), identifi-
ziert durch deren Bezeichnung. Dies entspricht dem Cluster der BGK nach der Begriffs-
verwendung in Anhang A2.1. Da mehrere ZKKs mit derselben Bezeichnung in einer
STO existieren konnen, sind die Cluster im Allgemeinen Multimengen. Liegen in beiden
STOs dieselben Cluster vor, sind sie identisch. Um den Abstand d;}° zweier STOs k
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und [ zu bestimmen, werden deren identische Cluster einander zugeordnet und die
Anzahl der nichtzuordenbaren Cluster bestimmt. Sei S¢¢ bzw. Sf* die Menge aller Clus-
terin STO k bzw. [, dann gilt

din® = |S¢| + |86 = 2158 0 SE, A84
wobei das Symbol n in diesem Fall den Schnittmengenoperator fir Multimengen be-
zeichnet. Damit konnen die Abstande aller STOs der Ergebnis-MSTL zu allen STOs
der Referenz-MSTL berechnet werden. AnschlieRend werden die STOs der Ergebnis-
MSTL den STOs der Referenz-MSTL zugeordnet, so dass die Summe der Absténde
einander zugeordneter STOs minimal wird. Dabei muss jede STO der Ergebnis-MSTL
mindestens einer STO der Referenz-MSTL zugeordnet werden und umgekehrt. Dies
entspricht einem Zuordnungsproblem des Operations Research (engl. Matching Prob-
lem, siehe hierzu Ren et al. 2021, S. 332-335), das mittels mathematischer Optimie-
rung geldst werden kann.

Sei dMSThabs der optimale Zielfunktionswert dieses Zuordnungsproblems. Um die Er-
gebnisse verschiedener Experimente vergleichbar zu machen, muss dieser Wert nor-
miert werden, indem er durch einen Maximalwert d™57- dividiert wird. Grundsétzlich
lasst sich dMSTL als Summe (ber alle Kardinalitdten |SS'| aller STOs beider MSTLs
(5579) berechnen, da im schlechtesten Fall alle Cluster aller STOs keine Entsprechung
finden. Es ist jedoch zu berlicksichtigen, dass die Anzahl der STOs in der Ergebnis-
MSTL und der Referenz-MSTL nicht Gbereinstimmen muss. Ggf. muss eine STO einer
MSTL mehreren STOs der anderen MSTL zugeordnet werden, wodurch dMST- gréRer
werden kann. Da von einer Minimierung der Distanz ausgegangen wird, wird im Falle,
dass iiberhaupt keine Ubereinstimmung zwischen STOs vorliegt, die STO mit der ge-
ringsten Anzahl von Clustern mehrfach zugeordnet. Sei d7° die Differenz der Anzahlen
von STOs in den beiden MSTLs. In der MSTL mit weniger STOs existiert eine STO, die
mehrfach zugeordnet wird, weil sie die geringste Anzahl von Clustern besitzt. Sei n¢*in
deren Clusteranzahl. Dann gilt:

AMSTL = ¥, osto|SEL| + dSTO + pCiMin, A8.5

Damit ergibt sich abschlieRend die normierte Distanz einer Ergebnis- und einer Refe-
renz-MSTL als

dMSTL _ dMSTL,abs A86
GMSTL
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Da die Baugruppen einer MSTL die Struktur der MSTL definieren, ist diese Metrik ge-
eignet, um die strukturellen Unterschiede der Ergebnis- und der Referenz-MSTL zu
quantifizieren. AuRerdem wird die Ubereinstimmung der jeweils enthaltenen ZKKs indi-
rekt berlcksichtigt: Stimmen bestimmte ZKKs nicht iberein, stimmen auch zwangslau-
fig deren Ubergeordnete BGKSs nicht Uberein.

dMSTL ist eine konservative Metrik fir die Abweichung zweier MSTLs, da zwei BGKs als
nichtiibereinstimmend angesehen werden, auch wenn sie sich z. B. lediglich in genau
einer untergeordneten ZKK unterscheiden. Sie hat jedoch den Vorteil, dass sie effizient
berechnet werden kann und damit fiir die im Rahmen der Demonstration durchgefihrte
Experimentreihe auf synthetischen MSTLs geeignet ist.

A8.4 Zeitstudien zu Schritt 1 der Methode 2

Schritt 1 der Methode 2 basiert auf einer Baumsuche, die fiir groe Problemstellungen
sehr umfangreich und damit rechenintensiv sein kann (siehe auch Kapitel 5.2.2.2). Im
Rahmen der vorliegenden Arbeit wurden verschiedene Funktionen entwickelt um die
Recheneffizienz der Baumsuche zu steigern. Dadurch soll der Einsatz von Methode 2
fir moglichst viele Anwendungsfalle ermdglicht werden. Durch die im Folgenden vor-
gestellten Zeitstudie wird quantifiziert, in welchem Umfang diese Funktionen zu einer
Verringerung der Rechenzeit fiir Schritt 1 der Methode 2 beitragen. Die entwickelten
Funktionen sind:

- die Festlegung einer Betrachtungsreihenfolge der Zukaufkomponenten (ZK,
siehe Kapitel 4.2.1.1.4),

- die systematische Auswahl von Aktionen in den Entscheidungsknoten (siehe Ka-
pitel 4.2.1.2.2),

- Pruning auf Basis einer unteren Schranke (siehe Kapitel 4.2.1.2.3),

- und Pruning auf Basis der Zulassigkeit von Teilldsungen (siehe Kapitel 4.2.1.2.3).

Alle vier Funktionen folgen dem Prinzip, moglichst nur wenige Losungen des Losungs-
raums betrachten zu mussen.

Um den Einfluss dieser Funktionen auf die Rechenzeit zu quantifizieren, wird Schritt 1
der Methode 2 mehrfach fiir eine der in Kapitel 5.2.1 beschriebenen Experimentreihen
angewandt und dabei jeweils eine der Funktionen deaktiviert. Die Funktion der syste-
matischen Betrachtungsreihenfolge wird deaktiviert indem eine gleichmafig zufallige
Betrachtungsreihenfolge gewahlt wird. Die Funktion der systematischen Auswahl von
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Aktionen wird deaktiviert indem gleichmaRig zuféallig zuldssige Aktionen ausgewahit
werden. Eine neue Klassennummer wird jedoch weiterhin nur dann hinzugefiigt, wenn
keine Zuordnung zu einer bestehenden Klassennummer moglich ist. Funktionen des
Prunings werden deaktiviert, indem das entsprechende Pruning schlicht nicht durchge-
fuhrt wird, d. h. die entsprechenden Teilbaume werden nicht von der Betrachtung aus-
geschlossen.

Die beispielhafte Experimentreihe besteht aus 10 Wiederholungen mit den Parameter-
auspragungen rZkMult — o pAPRZKK = 01 nSTO = 2 und rRe4STO = 0. n?KK wird inner-
halb von {10, 20,50, 100} und n"S™ innerhalb von {10, 20,50, 100, 200} variiert (zu den
Parametern siehe Kapitel 5.2.1). Wie die Ergebnisse in Kapitel 5.2.2.2 bestéatigen, wei-
sen Falle mit Strukturoptionen (STO) einen hohen Rechenaufwand auf. Deshalb wurde
eine Experimentreihe mit STO gewahlt. Im Gegensatz zu der in Kapitel 5.2.1 beschrie-
benen Experimentreihe wird die Rechenzeit auf 600 Sekunden je Experiment be-
schrankt. AuBerdem werden die Berechnungen in Schritt 1 abgebrochen, sobald eine
Maximalstiickliste (MSTL) gefunden wurde, die nicht mehr Zukaufkomponentenklassen
(ZKK) enthalt, als die Referenz-MSTL. Damit ergibt sich, wie viel Rechenzeit jeweils
bendotigt wurde um eine solche MSTL zu ermitteln.

Abbildung A8.1 zeigt die Rechenzeiten flir Schritt 1, jeweils gemittelt Gber alle Experi-
mente und alle Wiederholungen der Experimentreihe. Es zeigt sich, dass die systema-
tische Betrachtungsreihenfolge und das Pruning auf Basis von Zulassigkeitspriifungen
mit Abstand den gréRten Einfluss auf die Rechenzeit haben. Wenn eine der beiden

Methode 2 -
Methode 2 ohne systematische Betrachtungsreihenfolge - _ +168,3%
Methode 2 ohne systematische Auswahl von Aktionen - . +17,4%
Methode 2 ohne Pruning durch eine untere Schranke - -1,4%
Methode 2 ohne Pruning durch Zuléssigkeitspriifungen - _ +170,6%
0 100 200 300 400 500 600

Mittlere Rechenzeit [s]

Abbildung A8.1: Ergebnisse der Zeitstudien zu Schritt 1 der Methode 2
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Funktionen deaktiviert wird, wird ein Grofteil der Experimente durch die Zeitbeschran-
kung von 600 Sekunden beendet. Die systematische Auswahl von Aktionen verringert
die Rechenzeit ebenfalls, dieser Einfluss ist jedoch gering. Pruning auf Basis einer un-
teren Schranke hat keinen statistisch signifikanten Einfluss auf die Rechenzeit. M6g-
licherweise ist dies auch darauf zurtickzufiihren, dass die systematische Auswahl von
Aktionen nur einen geringen Effekt hat. Somit ist es nicht moglich schnell gute Lésun-
gen zu finden. Ein Pruning auf Basis einer unteren Schranke ist damit nur begrenzt
maglich.

Insgesamt zeigt sich, dass es moglich ist, durch die im Rahmen der vorliegenden Arbeit
entwickelten Funktionen, die Rechenzeit fiir die datenbasierte Erstellung von Maximal-
stlcklisten zu reduzieren. Eine genauere Analyse der Effekte kdnnte zukulnftig dazu
beitragen, die Recheneffizienz von Methode 2 weiter zu erhéhen und damit ihren Ein-
satz fiir weitere Anwendungsfalle zu ermdglichen (siehe auch Ausblick in Kapitel 6.2.3).

A9 Anhang zu Kapitel 5.3

A9.1 Metrik fiir die Demonstration von Methode 3

Um bewerten zu kdnnen, wie effektiv Methode 3 fiir die Losung von Problem 3 ist, wird
im Folgenden eine Metrik definiert. Diese quantifiziert die Abweichung eines Ergebnis-
Maximalarbeitsplans (Ergebnis-MAPL), der mittels Methode 3 erstellt wurde, von einem
Referenz-Maximalarbeitsplan (Referenz-MAPL). Fir den Vergleich von MAPLs besteht
hinsichtlich Strukturoptionen (STOs) dieselbe Herausforderung wie fiir den Vergleich
von MSTLs: Sowohl der Ergebnis-MAPL als auch der Referenz-MAPL kdénnen STOs
aufweisen, deren Bezeichnungen beliebig sind (siehe Anhang A8.3). Ebenso wie in
Anhang A8.3 beschrieben, werden die beiden MAPLs in ihre STOs zerlegt. Diese wer-
den einander dergestalt paarweise zugeordnet, dass die Summe der Abweichungen
zwischen einander zugeordneten STOs minimal wird. Es verbleibt die Definition eines
Males fiir die Distanz zweier STOs in MAPLs. Dies entspricht einem Mal fir die Dis-
tanz zweier gerichteter Graphen, wobei die Arbeitsvorgangsklassen (AVKs) jeweils
durch ihre Bezeichnung identifiziert werden. Hierfur wird in Anlehnung an Malmi et al.
(2015) das folgende Mal} verwendet, das dem Anteil Uibereinstimmender Vorrangbe-
ziehungen der beiden STOs entspricht®. Sei S$/""*” die Menge der

84 Die Bestimmung der Graph-Edit-Distanz auf allgemeinen annotierten Graphen ist ein NP-vollstandiges Problem
Bougleux et al. (2017, S. 38). Im Rahmen der vorliegenden Arbeit hat sich gezeigt, dass es nicht ausreichend
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Vorrangbeziehungen (AVOF”,AVOJBGZ) jeweils bezogen auf die Bezeichnungen zweier
AVOs in einer STO k. Da in einer STO aufgrund von Multipositionen mehrere AVOs mit

E1,Bez
Sk

derselben Bezeichnung vorliegen kénnen, sind im Allgemeinen Multimengen.

Fir die Distanz zweier STOs gilt
di:ll"o - S}fl,Bez| + |Sll€‘1,Bez| _ 2|SII(;'1,Bez n SlELBez A91

wobei das Symbol n in diesem Fall den Schnittmengenoperator fir Multimengen be-

)

zeichnet.

Sei 5579 die Menge aller STOs Uber beide MAPLs, d57° die absolute Differenz der An-
zahl von STOs in den beiden MAPLs und n4¥™" die minimale Anzahl von AVKs in einer
STO derjenigen Seite mit der geringeren Anzahl von STOs (siehe Anhang A8.3). Dann
gilt fir die maximal mogliche kumulierte Distanz zwischen den paarweise zugeordneten
STOs analog

d“MApL — Zkessmlsfl,z?ezl 4+ qSTO 4 pAKMin A9.2
Sei analog dM4PL%Ps die Summe Uber die Distanzen der einander zugeordneten STOs,
dann gilt fir die relative Distanz der beiden MAPLs

,abs
s _ A A9.3
qMAPL *
Die Distanz dM4PL berlcksichtigt unmittelbar nur die Abweichungen in den Strukturen
der beiden MAPLs. Abweichungen in den AVKs werden jedoch mittelbar bertcksichtigt,

da Vorrangbeziehungen nur zwischen existierenden AVKs bestehen kénnen.

A9.2 GleichmafBig zufillige Generierung von synthetischen Maximalar-
beitsplanen

Im Folgenden wird erlautert, wie unter Berticksichtigung der in Kapitel 5.3.1 eingeflhr-
ten Parameter gleichmaRig zuféllige Maximalarbeitsplane (MAPLSs) erstellt werden. Es
werden die folgenden von den Parametern abgeleiteten Grofken bendtigt:

nMit = rynden(nX » rMut), die Anzahl von Multipositionen je Strukturoption
(STO)
- nSing = pAK _ pMultdie Anzahl von singularen Positionen je STO

effizient gelost werden kann um die Graph-Edit-Distanz fir die in Kapitel 5.2.1 beschriebene Experimentreihe
anzuwenden. Approximationen der Graph-Edit-Distanzen wie z. B. diejenige von Bougleux et al. (2017) lassen
die Genauigkeit der Approximation nicht erkennen.
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- pAKMAPL = nAK 4 pAK 4« (nSTO — 1), die Anzahl von Arbeitsvorgangsklassen
(AVKs) im MAPL

- nV8%Z = runden(nA®MAPL « yVBZ) die Anzahl von Vorrangbeziehungen im MAPL

- und n4b" = runden(n?¥ + r4%"), die Anzahl von AVKs einer STO, die von der

glltigen STO abhangen.

MAPLs sind gerichtete azyklische Graphen. Die Knoten gerichteter azyklischer Gra-
phen kénnen topologisch sortiert werden (Jungnickel 2013, S. 49-50) weshalb sich ihre
Adjazenzmatrix als obere Dreiecksmatrix darstellen lasst. Die Struktur eines MAPL
kann somit bestimmt werden, indem eine obere Dreiecksmatrix der GroRe nAKMAPL
festgelegt wird. Dabei kommen nur solche Matrizen infrage, die fir genau n"2% Eintrage
den Wert 1 aufweisen. Um die Struktur des MAPL gleichmaRig zufallig zu erstellen,
kénnen somit aus allen nAXMAPL  (nAKMAPL _ 1 Eintragen der oberen Dreiecksmatrix,
die den Wert 1 aufweisen kénnen, n"8% gleichmaRig zufallig ausgewahlt und auf 1 ge-
setzt werden. Alle anderen Eintrage werden auf O gesetzt. Damit liegt ein gleichmaRig
zuféllig ausgewahlter gerichteter azyklischer Graph vor. Die Zuordnung von Bezeich-
nungen und STOs zu Knoten erfolgt analog zu Anhang A8.1. Zunéchst werden nSn9
der Knoten zufallige Bezeichnungen zugeordnet. AnschlieRend wird nM“¢ zufallig par-
titioniert und es werden den verbleibenden unbezeichneten Knoten mehrfach auftre-
tende Bezeichnungen entsprechend der Summanden der Partition zugeordnet. Zuletzt
werden n4?" AVKs zuféllig ausgewéhlt, kopiert und jede Kopie einer STO zugeordnet.
Auch hier werden MAPLSs, fir die einzelne AVKs mehr als einer, aber nicht allen STOs
zugeordnet sind, von der Betrachtung ausgeschlossen.

A9.3 Zeitstudien zu Schritt 1 der Methode 3

Die Zeitstudien fiir Schritt 1 der Methode 3 verfolgen denselben Zweck und folgen dem-
selben Vorgehen wie die Zeitstudien fir Schritt 1 der Methode 2 (siehe Anhang A8.4).
Es werden dieselben vier Funktionen zur Verringerung des Rechenaufwands betrach-
tet. Die gewahlte Experimentreihe weist die Parametrierung r4kMult = (, pA4bhaK —
0,1, n5T% = 2 und rRedST0 = 0 auf. n#%¥ wird innerhalb von {10, 20,50, 100} und n"5T*
innerhalb von {10, 20, 50, 100, 200} variiert (zu den Parametern siehe Kapitel 5.3.2).

Abbildung A9.1 zeigt die Rechenzeiten fiir Schritt 1, jeweils gemittelt ber alle Experi-
mente und alle Wiederholungen der Experimentreihe. Es zeigt sich, dass auch fir Me-
thode 3 die systematische Betrachtungsreihenfolge und das Pruning auf Basis von Zu-
I&ssigkeitsprifungen den grofdten Einfluss auf die Rechenzeit haben. Die Effekte der
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systematischen Auswahl von Aktionen und des Prunings durch eine untere Schranke
sind deutlich geringer. Sie sind dennoch jeweils starker ausgepragt als fiir Methode 2.

Methode 3 -

Methode 3 ohne systematische Betrachtungsreihenfolge - _ +1843,7%

Methode 3 ohne systematische Auswahl von Aktionen - I +67,0%

Methode 3 ohne Pruning durch eine untere Schranke - - +280,8%

Methode 3 ohne Pruning durch Zuléssigkeitspriifungen - _ +1405,0%
160 260 360 460 560 660
Mittlere Rechenzeit [s]

o-

Abbildung A9.1: Ergebnisse der Zeitstudien zu Schritt 1 der Methode 3

Evil. lassen sich die zu beobachtbaren Effekte zum Teil dadurch erkléren, dass die
Durchsuchung des Suchbaums fiir Methode 3 tendenziell zielgerichteter erfolgt als fir
Methode 2. Dadurch treten zum einen evtl. unzulassige Teilldsungen tendenziell erst
auf tiefen Ebenen des Suchbaums auf. Dadurch schlief3t das Pruning durch Zulassig-
keitsprifungen evtl. weniger folgende Entscheidungsknoten aus als fir Methode 2.
Zum anderen sind dadurch tendenziell nach weniger lterationen bereits gute untere
Schranken bekannt, so dass ein Pruning auf Basis einer unteren Schranke effektiver
eingesetzt werden kann. Wenn jedoch das Durchsuchen des Suchbaums zielgerichte-
ter erfolgt als fUr Methode 2 ist das nicht alleine auf eine bessere Auswahl von Aktionen
zurtckzufuhren. Ansonsten musste der Effekt der systematischen Auswahl von Aktio-
nen starker ausgepragt sein.

Auch wenn Methode 3 fir viele Anwendungsfalle bereits ausreichend recheneffizient
ist (siehe Kapitel 5.3.2.2), kénnen evtl. durch eine zuklinftige genauere Analyse der
Effekte Hinweise auf eine Erh6hung der Recheneffizienz fir Methode 2 gewonnen wer-
den.
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A10 Anhang zu Kapitel 5.4

A10.1 Metriken fiir die Demonstration von Methode 4

Problem 4 entspricht einem Problem des Uberwachten Lernens (SL), weshalb einer-
seits die Genauigkeit auf einem Testdatensatz, als gangige Metrik des SL, zur Bewer-
tung verwendet wird. Daflir wird zu Beginn jedes Durchlaufs ein Testdatensatz mit
Grolke nT¢t = 100 in gleicher Weise wie der Trainingsdatensatz erstellt und mittels des
Binary-Relevance-Ansatzes in einen Testdatensatz je Label aufgeteilt. Die Genauigkeit
einer durch Methode 4 erstellten Regel entspricht dem Anteil der Datenpunkte des zu-
gehdrigen Testdatensatzes, deren Label durch das erstellte Modell korrekt wiederge-
geben wird. Gemittelt tber alle Labels ergibt sich die Metrik r%¢™" mit

Zie{l,...,nL} ZjE{l,...,nTESt} b{f](‘)TTL A10.1
nLnTeSt

Genln —

T

wobei b{?""" angibt, ob das i-te Label des j-ten Datenpunkts des Testdatensatzes kor-

rekt wiedergegeben wird und n* der Anzahl von Labels im Testdatensatz entspricht.

Fir Standardpositionen mit trivialen Regeln (siehe Kapitel 5.1) nehmen die Labels aller
Datenpunkte immer den Wert wahr an. Auf Basis dessen wird sich durch Anwendung
von Methode 4 immer ein Modell ergeben, das dem Wahrheitswert wahr entspricht und
damit diese Positionen mit einer Genauigkeit von 100% korrekt vorhersagt. Je mehr
Standardpositionen vorliegen, desto genauer sind die mit Methode 4 erstellten Regeln
im Durchschnitt. Um dies zu berticksichtigen, wird eine weitere Metrik, r5¢"E* einge-
fihrt, die sich ebenso wie r%¢™™ perechnet, jedoch Genauigkeiten fiir triviale Regeln
nicht berticksichtigt. r¢¢"E* ermdglicht damit die Betrachtung eines Worst-Case-Szena-
rios, in dem keine Standardpositionen in der Maximalstuckliste und den Maximalarbeits-
plénen des betrachteten Produkts vorliegen.

Da im Gegensatz zu typischen Problemen des SL die tatsachlichen Regeln, d. h. Mo-
delle, je Position bekannt sind, besteht zum anderen die Mdglichkeit, vorhergesagte
Modelle mit den tatsachlichen Modellen zu vergleichen. "™ gibt den Anteil der durch
Methode 4 erstellten Modelle Uber alle Labels und alle Durchldufe hinweg an, die mit
den tatsachlichen Modellen logisch Gbereinstimmen, d. h. derselben booleschen Funk-
tion entsprechen.

Es gilt
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Zie{l,...,nL} blkorTM A10.2
e
wobei bf°"™ angibt, ob das zum i-ten Label gehérige Modell korrekt erkannt wurde und

rModln —

n* der Anzahl von Labels im Testdatensatz entspricht. Fir r°4E* werden im Gegensatz
zu rMedin die oben genannten Standardpositionen nicht berlicksichtigt. Die MaRe rMod4m
und rMe4Ex ynterschatzen die Generalisierungsfahigkeiten der mittels Methode 4 er-
stellten Modelle tendenziell, da Unterschiede zu den tatsachlichen Modellen nicht
zwangslaufig Fehlern im Konfigurationsmodell entsprechen. Die Modelle werden mit
Datenpunkten trainiert, die zulassigen Varianten entsprechen. lhre Vorhersagen fir un-
zulassige Varianten sind somit nicht Gegenstand ihrer Optimierung. Ebenso berlick-
sichtigen die tatsachlichen Regeln keine unzuldssigen Varianten. Es ist somit mdglich,
dass eine Nichtlibereinstimmung zwischen datenbasiert erstellter und tatsachlicher Re-
gel nur unzuldssige Varianten betrifft. Die Mafle r"°4™ und rM°4E* dienen deshalb zur
unteren Abschatzung der Effektivitat der Methode 4.

A10.2 Ergebnisse der Demonstration der Methode 4 an Produkt A
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Abbildung A10.1: Ergebnisse der Demonstration an Produkt A hinsichtlich Testgenau-
igkeit
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Abbildung A10.2: Ergebnisse der Demonstration an Produkt A hinsichtlich Modelltiber-
einstimmung
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A10.3 Benchmarking: Vergleich von Methode 4 mit Algorithmus Two
Stage nach Ignatiev et al. (2021) hinsichtlich Recheneffizienz

Wie in Kapitel 3.4.2 beschrieben, verfolgt der Ansatz von Ignatiev et al. (2021) dasselbe
Ziel wie Methode 4 der vorliegenden Arbeit: die Erstellung eines komplexitatsminimalen
booleschen Ausdrucks, der eine perfekte Trainingsgenauigkeit fir einen binaren Trai-
ningsdatensatz mit einem Label gewahrleistet. Der Ansatz von Ignatiev et al. (2021)
sieht ebenfalls eine mathematische Optimierung zur Auswahl der Monome des Aus-
drucks vor. Im Gegensatz zur Methode 4 werden jedoch alle infrage kommenden Mo-
nome vorab berechnet, d. h. das Optimierungsproblem wird vollstéandig explizit aufge-
stellt. Dies lasst gegenuber der Methode 4, die die Monome nach Bedarf auf Basis von
Spaltengenerierung (CG) erstellt, einen Nachteil hinsichtlich der Recheneffizienz erwar-
ten. Dieser Nachteil wird im Folgenden quantifiziert, indem die als Two Stage bezeich-
nete Methode von Ignatiev et al. (2021) mit der Methode 4 hinsichtlich Recheneffizienz
verglichen wird.

Metrik

Als Metrik fir das Benchmarking wird die Rechenzeit verwendet, die fiir die Erstellung
von booleschen Ausdriicken fir gegebene Trainingsdatensatze bendétigt wird. Um die
Dauer des Benchmarkings in einem vertretbaren Rahmen zu halten, wird die Berech-
nung nach 300 Sekunden abgebrochen und die Rechenzeit auf 300 Sekunden festge-
legt. Da die Verfahren beide eine minimale Komplexitat und eine perfekte Trainings-
genauigkeit der erstellten booleschen Ausdriicke garantieren, werden Metriken hin-
sichtlich ihrer Generalisierungsfahigkeit nicht betrachtet; Unterschiede diesbeziiglich
waren zwangslaufig zuféllig.

Experimentbeschreibung

Je Durchlauf werden Trainingsdatensatze aus dem Konfigurationsmodell des Produkts
C generiert. Dafiir werden gleichméRig zuféllig Varianten und somit Datenpunkte aus
dem Konfigurationsraum ausgewahlt. Diese werden Uber das Low-Level-Konfigurati-
onsmodell (LLKM) mit Labels versehen. Der daraus resultierende annotierte Datensatz
wird nach dem Binary-Relevance-Ansatz in Single-Lable-Datenséatze aufgeteilt. Da die
Methode Two Stage sehr lange Rechenzeiten aufweist werden je Durchlauf lediglich
10 gleichmaRig zufallig ausgewahlte Labels betrachtet, wobei Labels von Standardpo-
sitionen nicht berlicksichtigt werden. Der Algorithmus Two Stage wurde durch die von
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Ignatiev et al. (2021) verwendete Bibliothek minds®® implementiert um einen unver-
falschten Vergleich der Rechenzeiten zu ermdglichen.

Ergebnisse

Abbildung A10.3 zeigt die Rechenzeiten fiir 10 zufallig ausgewahlte Labels gemittelt
tiber jeweils 10 Durchlaufe fiir unterschiedliche GréRen von n'm"ing Sowohl fiir die
Methode 4 als auch fir Two Stage nehmen die Rechenzeiten mit zunehmender GréRe
des Trainingsdatensatzes zu. Die Zunahme ist jedoch fir Two Stage deutlich starker
ausgepragt als fir Methode 4. Ab einer GroRe des Trainingsdatensatzes von 50 aullert
sich dies merklich. Die Rechenzeit betragt hier ca. 76 Sekunden fir Two Stage und ca.
3 Sekunden fiir Methode 4. Fiir n’7ning = 150 liegt mit ca. 866 Sekunden gegeniiber
ca. 66 Sekunden ein Faktor von ca. 13 vor. Dabei miissen 28 % der Berechnungen fiir
Two Stage vorzeitig abgebrochen werden, hingegen nur 1 % der Berechnungen fir
Methode 4. Auf Grund dieser deutlichen Diskrepanz werden keine weiteren Auspragun-
gen flr n’m@ning petrachtet. Es kann somit festgehalten werden, dass sich der in Kapitel
3.4.2 beschriebene Nachteil von Two Stage hinsichtlich der Recheneffizienz im Expe-
riment bestéatigt hat. Da sich dieser Nachteil bereits fur praxisrelevante Problemstellun-
gen mit n"Tening = 50 guswirkt, ist Two Stage fiir die datenbasierte Erstellung von
LLKMs nicht geeignet. Die im Rahmen der vorliegenden Arbeit entwickelte Methode 4
zeigt hingegen keinen vergleichbaren Nachteil hinsichtlich der Rechenzeit und kann
deshalb fir die datenbasierte Erstellung von LLKMs verwendet werden.

1000,0
800,0
600,0
400,0
200,0

—O0—Two Stage
—o—M4

Rechenzeit [s]

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

nTraining

Abbildung A10.3: Bendtigte Rechenzeit fiir die Erzeugung von 10 Modellen fiir die Me-
thoden Two Stage und Methode 4 in Abhangigkeit der GréRe des Trainingsdatensat-
zes, gemittelt Uber jeweils 10 Durchldufe

85 https://github.com/alexeyignatiev/minds (zuletzt Uberprift am 04.09.2024)
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A10.4 Benchmarking: Vergleich von Methode 4 mit Algorithmus DK-
XTSD nach Costamagna & Micheli (2023) hinsichtlich Generalisierungsfa-
higkeit

DK-XTSD ist ein Algorithmus von Costamagna & Micheli (2023) zur Bestimmung von
booleschen Ausdriicken auf Basis eines annotierten Trainingsdatensatzes. Der Algo-
rithmus erstellt gegenliber Algorithmen nach Stand der Forschung Ausdriicke mit Gber-
legener Generalisierungsfahigkeit (Costamagna & Micheli 2023, S. 257-258). Er ga-
rantiert eine perfekte Trainingsgenauigkeit der Ausdriicke, jedoch im Gegensatz zur
Methode 4 keine minimale Komplexitat. Es wird untersucht, wie sich die Generalisie-
rungsfahigkeit der durch Methode 4 erstellten Ausdriicke zu den durch DK-XTSD er-
stellten Ausdriicken verhalt. Damit wird auch untersucht, ob komplexitatsminimale boo-
lesche Ausdriicke Uber ihre gute Interpretierbarkeit hinaus auch Vorteile hinsichtlich
Generalisierungsfahigkeit bieten. Dies ist fur das Erzeugen von variantenbezogenen
Stucklisten (VSTLs) und variantenbezogenen Arbeitsplanen (VAPLs) zu Varianten, die
nicht Teil des Trainingsdatensatzes sind, relevant.

Metrik

Sowohl DK-XTSD als auch Methode 4 sind Methoden des lberwachten Lernens (SL)
auf Datensatzen mit einem Label. Die Generalisierungsfahigkeit dieser Methoden wird
mit der in Kapitel 5.4.1 vorgestellten Metrik r%¢"E* bewertet. Es wird ebenso wie fir die
Demonstration der Methode 4 ein Testdatensatz der Grofke n"®t = 100 verwendet.

Experimentbeschreibung

Das Experiment entspricht der in Kapitel 5.4.1 beschriebenen Demonstration. Es wer-
den Trainings- und Testdaten generiert wie in Kapitel 5.4.1 beschrieben und die Ge-
nauigkeit der beiden zu vergleichenden Methoden auf den Testdaten ermittelt. Der Al-
gorithmus DK-XTSD erstellt boolesche Ausdriicke, indem er den Trainingsdatensatz
schrittweise in ausgewahlten Features teilt®®. Die durch die Teilung entstehenden un-
tergeordneten Trainingsdatensatze enthalten weniger Features als ihre Ubergeordne-
ten Trainingsdatensatze. Unterschreitet die Anzahl von Features einen gewissen
Grenzwert nMinfeatures wird der Datensatz nicht weiter geteilt, sondern mit dem von
Chatterjee (2018) vorgestellten Algorithmus in einen booleschen Ausdruck Uberflhrt.

86 Siehe Vorgehen zur Erstellung eines Entscheidungsbaums in Kapitel 4.4.1. Fir eine vollstédndige Beschreibung
des Algorithmus sei auf Costamagna & Micheli (2023) verwiesen.
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Der finale boolesche Ausdruck ergibt sich als Komposition der booleschen Ausdriicke
der Teiltrainingsdatensatze. Der Algorithmus von Chatterjee (2018) bildet den Trai-
ningsdatensatz durch Wahrheitstabellen ab, wobei nur zuféllig ausgewahlte Features
betrachtet werden. Die so erstellten Wahrheitstabellen werden Verknipft und erneut
durch Wahrheitstabellen abgebildet, sodass sich mehrere Ebenen von Wahrheitstabel-
len ergeben. Die Einstellparameter des Algorithmus sind die Anzahl der Wahrheitsta-
bellen je Ebene und die Anzahl der Ebenen. Diese Parameter werden auf Basis der
Ergebnisse von Chatterjee (2018) mit 1024 bzw. 6 gewahlt. Der Parameter nMinFeatures
wird durch die im Folgenden vorgestellte Parameterstudie ermittelt.

Fir die Algorithmen von und Chatterjee (2018) und Costamagna & Micheli (2023) exis-
tiert kein offentlich zuganglicher bzw. kein ausreichend dokumentierter, offentlich zu-
ganglicher Quelltext. Deshalb wurden beide Algorithmen im Rahmen der vorliegenden
Arbeit auf Basis ihrer Darstellung in den Arbeiten der Autoren implementiert. Fir die
Parameterstudie und das Benchmarking wird die Rechenzeit fiir die Erstellung einer
Regel auf tR¢9 = 100 Sekunden begrenzt. Diese Zeit wurde jedoch von DK-XTSD in
keinem Experiment erreicht, weshalb sie keinen Einfluss auf die Ergebnisse von DK-
XTSD hat.

Parameterstudie

Die Parameterstudie folgt dem in Kapitel 5.4.1 beschriebenen Vorgehen, wobei jedoch
ausschlieBlich der Algorithmus DK-XTSD mit unterschiedlichen Auspragungen fir
nMinFeatures antsprechend einer Rastersuche eingesetzt wird. n""9 wird mit 10, 20,
50, 100 und 200 gewahlt und es werden jeweils 10 Durchlaufe durchgefiihrt. Um eine
Verzerrung der Ergebnisse des folgenden Benchmarkings zu vermeiden, wird die Pa-
rameterstudie nicht fir die Konfigurationsmodelle (KMs) der Produkte A oder B,

100,00%
’ 94,28% 94,56% 94,64% 94,65% 94,68% 94,74% 94,75% 94,73% 94,73%
95,00% 92,38%

90,00%
8500% 83:33%
80,00% I
75,00%
0 1 2 3 4 5 6 7 8 9 10

nMinFeatures

rGenEx

Abbildung A10.4: Ergebnisse fiir die Parameterstudie zu nMnFeatures des Algorithmus
DK-XTSD
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sondern fiir das KM des Produkts C durchgefiihrt. Abbildung A10.4 zeigt die Ergebnisse
als r@nEx gemittelt Gber alle Werte fiir n77*n9 ynd alle Durchléufe. Auf Basis der Pa-
rameterstudie wird fiir das Benchmarking nMinfeatures = g gewahit.

Ergebnisse des Benchmarkings

Tabelle A10.1 zeigt die Ergebnisse des Benchmarkings von Methode 4 und DK-XTSD
nach der Metrik r"5* jeweils gemittelt (iber 10 Durchlaufe. Fir alle n’"n"9 > 20
ergab sich aus den Experimenten ein héheres r"E* fiir Methode 4 gegeniiber DK-
XTSD. Wie der angegebene p-Wert eines zweiseitigen Welch-Tests zeigt, kann jedoch
nur fiir Produkt A und n"m¢n9 > 50 die Nullhypothese einer identischen Verteilung zum
Signifikanzniveau 5 % verworfen werden. Nur in diesem Fallen kann mit ausreichender
statistischer Signifikanz davon ausgegangen werden, dass die durch Methode 4 erstell-
ten Modelle eine hdhere Generalisierungsfahigkeit aufweisen als die durch DK-XTSD
erstellten. Fir alle anderen Falle kann keine verlassliche Aussage dariiber getroffen
werden, welche der beiden Methoden Modelle mit einer hdheren Generalisierungsfa-
higkeit erstellt. Insgesamt kann somit geschlossen werden, dass die Methode 4 hin-
sichtlich der Generalisierungsfahigkeit ihrer erstellten Modelle mit Algorithmen nach
Stand der Technik vergleichbar ist und in einigen Fallen sogar zu besseren Ergebnissen
fihrt. Darlber hinaus garantiert Methode 4 im Gegensatz zu DK-XTSD minimale boo-
lesche Ausdriicke und stellt damit eine gute Interpretierbarkeit sicher. Damit kann die
Methode als iberlegene Methode fiir die datenbasierte Erstellung von Regeln fiir Low-
Level-Konfigurationsmodelle (LLKMs) angesehen werden.

Tabelle A10.1: Ergebnisse des Benchmarkings von Methode 4 und DK-XTSD nach der
Metrik rGenex,

nTraining
rGenEx
10 20 50 100 200
Methode 4 88,84 % 93,29 % 97,00 % 98,40 % 99,09 %
Produkt A | DK-XTSD 88,95 % 93,18 % 96,79 % 98,15 % 98,92 %
p-Wert 47,51 % 33,10 % 1,97 % 0,00 % 1,89 %
Methode 4 94,66 % 96,46 % 98,70 % 99,21 % 99,45 %
Produkt B | DK-XTSD 94,69 % 96,44 % 98,47 % 99,02 % 99,18 %
p-Wert 92,01 % 94,37 % 19,33 % 11,87 % 6,27 %
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A11 Anhang zu Kapitel 5.5

A11.1 Parameterstudie zu Parameter w"5 der Methode 5

Parameter w"S gibt die Gewichtung des Separationskriteriums bei der Auswahl einer
Variante durch Methode 5 an. Die Gewichtung des Diversitatskriteriums ergibt sich da-
raus als 1 —w™S. Fir die Parameterstudie wird eine Rastersuche mit Schrittweite 0,1
verwendet. Je Parameterauspragung wird dasselbe Vorgehen gewahlt wie flir die in
Kapitel 5.5.1 beschriebene Demonstration mit A77%"in9 = 30 und jeweils 10 Durchl&u-
fen. Die Rechenzeit je zu erstellender Regel wird auf t?¢9 = 10 Sekunden begrenzt. Fir
die Auswahl der besten Parameterauspragung wird die in Kapitel 5.4.1 beschriebene
Metrik r¢e™™ verwendet. Um die Ergebnisse der Demonstration nicht zu verfalschen,
wird die Parameterstudie auf dem Konfigurationsmodell (KM) des Produkts C durchge-
fuhrt.

Abbildung A11.1 zeigt die Ergebnisse der Parameterstudie unter Verwendung von 30
Datenpunkten, wobei r%"" je Parameterauspragung Uber 10 Durchlaufe gemittelt
wurde. Es zeigt sich, dass mit der Gewichtung des Separationskriteriums die Generali-
sierungsfahigkeit der gelernten Modelle zunachst zunimmt und fir Werte groRRer als 0,5
abnimmt. Aus dem Vergleich der beiden Extrempunkte w"S = 0 und w™ = 1 zeigt sich,
dass fur den unikriteriellen Fall das Separationskriterium dem Diversitatskriterium ge-
ringfugig uberlegen ist. Der Verlauf Gber alle Parameterauspragungen hinweg und das
Optimum far wM$ = 0,5 zeigen jedoch, dass eine Komposition der beiden Kriterien einer
unikriteriellen Bewertung vorzuziehen ist. Fir die in Kapitel 5.5.1 beschriebene De-
monstration wird w"S = 0,5 gewahilt.

98,00% orgte o782 97:88% 9%

97,82% 97,83%
97,80% 97,67% 97,71% 97,71%
g 97,60% 97.41% 97,48%
< 97,40%
97,20% I
97,00%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
wMs

Abbildung A11.1: Ergebnisse der Parameterstudie fir Parameter w™S der Methode 5



Anhang L

A11.2 Ergebnisse der Demonstration der Methode 5 an Produkt A

Im Folgenden sind die Ergebnisse der Demonstration der Methode 5 an Produkt A dar-
gestellt. Diese werden in Kapitel 5.5.2 referenziert.

100,00%

98,00% g ST —e -
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® |4, rGenn 94,00%
0 M4, rGenEx 92.00%
M5’ rGenIn 90100%
....... M5, rGenEx 88,00%
10 20 30 40 50 60 70 80 90 100
nTraining

Abbildung A11.2: Ergebnisse der Demonstration der Methode 5 an Produkt A hinsicht-
lich Testgenauigkeit
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Abbildung A11.3: Ergebnisse der Demonstration der Methode 5 an Produkt A hinsicht-
lich Modellibereinstimmung

Tabelle A11.1: Ergebnisse der Demonstration der Methode 4 und Methode 5 an Pro-
dukt A im Detailvergleich

[ Training [ Training
pGenEx ModEx
10 20 50 100 10 20 50 100
Methode 4 88,84 % 93,29 % 97,00 % 98,40 % | Methode 4 17,96 % 26,27 % 38,02 % 45,58 %
Methode 5 88,73 % 94,17 % 97,38 % 98,63 % | Methode 5 16,94 % 29,38 % 40,91 % 54,92 %
p-Wert 80,89 % 3,96 % 0,03 % 0,11 % p-Wert 9,42 % 0,00 % 0,00 % 0,00 %
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A12 Anhang zu Kapitel 5.6

A12.1 Erzeugung der Literal- und Termtabelle sowie Einbringung von
Fehlern in diese Tabellen fiir die Demonstration der Methode 6

Im Folgenden wird erlautert, wie die Tabellen, die der Industriepartner verwendet um
Regeln in seinen Konfigurationsmodellen (KMs) zu pflegen — im Folgenden als Regel-
tabellen bezeichnet — in Literal- und Termtabellen Uberfiihrt werden. Darlber hinaus
wird gezeigt, wie zum Zweck der Demonstration Fehler in diese Tabellen eingebracht
werden.

Wie in Kapitel 5.1 beschrieben, sind die abhangigen Parameter die Aktivitatsparameter
der Zukaufkomponentenklassen (ZKKs) und Arbeitsvorgangsklassen (AVKs) in der Ma-
ximalstckliste (MSTL) bzw. im Maximalarbeitsplan (MAPL). Diese héngen jeweils di-
rekt von den Produktmerkmalen ab. Abbildung A12.1 zeigt schematisch den Aufbau
einer Regeltabelle. Je abhangigem Parameter y liegen eine oder mehrere Zeilen in der
Regeltabelle vor. Jede Zeile beschreibt einen Term. Ein abhangiger Parameter ergibt
sich als disjunktive Verknipfung seiner Terme. Jeder Term stellt eine konjunktive Ver-
knlpfung von Aussagen bzgl. der Produktmerkmale dar, wie in Abbildung A12.1 unten
beispielhaft dargestellt. Einige der kategorischen Merkmale sind positiv definiert, d. h.,
damit der zugehodrige Term wahr ist, muss eine der angegebenen Auspragungen an-
genommen werden. Einige der kategorischen Merkmale sind hingegen negativ defi-
niert, d. h., damit der zugehdrige Term wabhr ist, darf keine der angegebenen Auspra-
gungen angenommen werden.

Initiale Produktmerkmale
Abhidngige Term # Merkmal 1 Merkp:lal 2 Merkmal 3
Parameter (xirit) (x50 (x50
Mehrwertig Kategorisch Kategorisch
Y1 1.1 V1,1, V12 V21, W22 V31, V32
V1 1.2 V1,1, V1,3 2,1, V23 V3,2
Va 2.1
Bedeutung von Term 1.1: xi™¢ = (vy 1, -y ) A xS @ {v,1, 025} A xS € (Vg 1, vy} A

Abbildung A12.1: Schematische Abbildung einer Regeltabelle des Industriepartners
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Um diese Tabelle mit Methode 6 verarbeiten zu kénnen, wird sie in eine Literal- und
eine Termtabelle Uberflhrt, wie in Abbildung A12.2 zu sehen. Jede Zeile der Literalta-
belle — d. h. jeder Datenpunkt — entspricht einem Term der Regeltabelle, wobei identi-
sche Terme nur einmal auftreten und die Terme Uber alle Terme hinweg fortlaufend
nummeriert werden. Die Spalten — d. h. Features — der Literaltabelle entsprechen boo-
leschen Variablen, die die Produktmerkmale in One-Hot-Codierung darstellen. Die Ein-
trage der Tabelle geben an, ob die entsprechende Variable in dem entsprechenden
Term positiv (1), negiert (0) oder Gberhaupt nicht (o) auftritt. Boolesche Variablen, die
demselben kategorischen Merkmal zugeordnet sind, treten entweder alle positiv oder
alle negiert auf. Jeder Datenpunkt der Termtabelle entspricht einem abhangigen Para-
meter, d. h. einer Position der MSTL oder des MAPL. Die Features der Termtabelle
geben an, welche Terme der Literaltabelle in der Regel des zugehodrigen abhangigen
Parameters auftreten. Grundséatzlich ist es moglich, dass verschiedene abhangige Pa-
rameter von denselben Termen abhangen und damit dieselben Auspragungen der Fea-
tures aufweisen. Diese werden in einer Zeile zusammengefasst.

Literaltabelle

Transformierte Produktmerkmale (Features)
Term
# X1,1 | X1,2 X13 X2,1 X2,.2 | X2,3 X3,1 | X3,2
Mehrwertig Kategorisch Kategorisch

1 1 0 o 0 0 o 1 1 S
2 1 o 1 0 o 0 o 1
3
4

Bedeutung von Term 1: (x11 A =x12) A (x40 Ay \N(\ 1 Vx32) A

Termtabelle
Abhangige Term #
Parameter 1 2 3 4
Y1 1 1 © o ¢

Y2

Bedeutung der Abhangigkeit von y;: Term 1vTerm 2V - -y, ———
Abbildung A12.2: Schematische Darstellung der Literal- und Termtabelle

Durch Einsetzen des booleschen Ausdrucks aus der Literaltabelle fur die Terme der
Termtabelle ergibt sich ein boolescher Ausdruck je abhangigem Parameter. Dieser
stellt dieselbe Information wie die Beschreibung der Regel in der Regeltabelle dar. Im
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Gegensatz zu dem in Kapitel 4.6 verwendeten Beispiel, entspricht der boolesche Aus-
druck keiner Normalform. Dies stellt jedoch kein Hindernis fiir die Anwendung der Me-
thode 6 dar. Grundsatzlich ist es moglich, die Literal- und die Termtabelle dergestalt zu
transformieren, dass sich Ausdriicke in Normalformen ergeben. Dabei wiirde jedoch
die Beziehung zwischen den Eintrdgen der Tabellen und der Regeltabelle verloren ge-
hen. Damit kdnnten Fehlerhinweise aus der Literal- oder der Termtabelle nicht unmit-
telbar Eintrdgen der Regeltabelle zugeordnet werden. Das wirde die Auswertung flr
einen Experten erschweren. Um somit die Praxisrelevanz der Demonstration zu ge-
wahrleisten werden die Literal- und Termtabellen verwendet, die sich unmittelbar aus
der Regeltabelle ergeben. Aulerdem kdnnen auf diese Weise Fehler in die Literal- und
die Termtabelle eingebracht werden, die unmittelbar Fehlern in der Regeltabelle ent-
sprechen.

Fur die Demonstration werden Fehler in die Literal- und die Termtabelle eingebracht.
Fir die Literaltabelle werden die Fehlerarten Negationsfehler, zuséatzliche Variablen
und fehlende Variablen betrachtet, wie in Kapitel 5.6.1 beschrieben (siehe Abbildung
A12.6). Zum Einfligen von Negationsfehlern in die Literaltabelle wird ein gleichmafig
zuféllig ausgewahlter Eintrag 0 oder 1 fur ein mehrwertiges oder boolesches Merkmal
in 1 bzw. 0 geandert. Dies entspricht einem falschen Vorzeichen fiir ein Merkmal oder
eine Merkmalauspragung in der Regeltabelle. Negationsfehler fur kategorische Merk-
male werden nicht betrachtet. Zusatzliche Variablen werden generiert, indem ein zufal-
liger Eintrag o zuféllig auf O oder 1 gesetzt wird. Dies entspricht einem unzutreffenden
Merkmal oder einer unzutreffenden Merkmalauspragung in der Regeltabelle. Fehlende
Variablen werden generiert, indem ein zufalliger Eintrag 0 oder 1 in der Literaltabelle
auf o gesetzt wird. Dies entspricht einem fehlenden Merkmal oder einer fehlenden

Transformierte Produktmerkmale (Features)
Term
# X11 | X122 | X13 X2,1 | X222 | X2,3 X3,1 | X3,2
Mehrwertig Kategorisch Kategorisch
1 1 21 o 0 0 o 1 Xo
2 1 D 1 0 AL 0 o 1
3 &
4
Negationsfehler Zusatzliche Variable — Fehlende Variable

Abbildung A12.3: Einfligen von Fehlern in die Literaltabelle
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Merkmalauspragung in der Regeltabelle. In der Termtabelle kénnen fehlende und zu-
satzliche Monome auftreten. Diese werden analog zu fehlenden und zusétzlichen Va-
riablen in der Literaltabelle generiert. Sie entsprechen fehlenden bzw. falschlicherweise
eingefiigten Termen in der Regeltabelle.

A12.2 Parameterstudie zu dem in Methode 6 verwendeten Random-
Forest-Algorithmus

In Methode 6 wird ein Random-Forest-Algorithmus eingesetzt, um Anomalien in der
Literal- und der Termtabelle zu ermitteln. Ziel der Parameterstudie ist es, die Auspra-
gungen der Parameter des Random-Forest-Algorithmus zu ermitteln, die zu den besten
Ergebnissen flhren. Dabei wird die in Kapitel 5.6.1 eingefiihrte Metrik zugrunde gelegt.
Die Studie erfolgt fiir die Literaltabelle und die Termtabelle separat.

Fir die folgenden vier Parameter wird von einer grofen Auswirkung auf die Ergebnisse
ausgegangen. Sie werden deshalb fiir die Parameterstudie berticksichtigt.

- Anzahl nPT der Entscheidungsbdume: Dieser Parameter hat einen Einfluss da-
rauf, wie genau der Random-Forest die Daten des gegebenen Datensatzes ab-
bildet. Bildet er die Daten zu genau ab, sind die Abweichungen gegenuber dem
Modell, aus denen auf Anomalien geschlossen werden kann, gering und damit
u. U. nicht ausreichend differenziert. Bildet er die Daten zu ungenau ab, lasst sich
aus Abweichungen vom Modell nicht auf relevante Anomalien schlieen. Ent-
sprechend Sluban et al. (2014) wird n®T = 100 betrachtet. Aulerdem wird fir die
Parameterstudie eine deutlich gréRere Anzahl nPT = 200 und eine deutlich klei-
nere Anzahl nPT = 50 betrachtet.

- Auswahlstrategie k"¢*“es fiir Feature: Um Heterogenitat bei der Erstellung von
Entscheidungsbdumen zu gewéhrleisten, werden zur Erstellung eines Entschei-
dungsbaums nur eine gewisse Anzahl zufallig ausgewahlter Features berlick-
sichtigt. Diese Anzahl ist typischerweise die Wurzel (kFe®ture = sqrt) oder der
duale Logarithmus (kFéat#res = |og2) der Anzahl aller Features. kFeatures = [gg2
wahlt i. d. R. weniger Features aus als kfeat%res = sqrt und sorgt damit fir eine
hohere Heterogenitat der Entscheidungsbaume. Das kann analog zur Anzahl n”
fur den vorliegenden Zweck vor- oder nachteilhaft sein.

- Auswabhlstrategie kPatemrunkte f(ir Datenpunkte: Um Heterogenitat bei der Erstel-
lung von Entscheidungsbdumen zu gewahrleisten, werden zur Erstellung eines
Entscheidungsbaums u. U. nur eine gewisse Anzahl zufillig ausgewahlter
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Datenpunkte beriicksichtigt. Dies kann jedoch den Nachteil haben, dass Muster
im Datensatz verloren gehen. Es wird deshalb der Fall untersucht, dass die An-
zahl verwendeter Datenpunkte der Anzahl aller Datenpunkte (kPatenvunkte — 1)87
oder der Halfte dieser Anzah| (kPatenpunkte — () 5) entspricht.

- Strategie kwichtung fiir die Gewichtung der Klassen: Die Eintrage 0, 1 und o,
entsprechen in Schritt 3 der Methode 6 Klassen im Sinne des tUberwachten Ler-
nens (SL). Sie treten nicht mit derselben Haufigkeit auf. Im Sinne des SL liegen
somit unausgewogene Klassen vor. Um auch Minderheitsklassen beim Erstellen
der Entscheidungsb&aume ausreichend zu bertcksichtigen, kénnen Datenpunkte
dieser Klassen mit hoherer Wahrscheinlichkeit gewahlt werden. Inwieweit dies
fur den vorliegenden Zweck sinnvoll ist, ist zu untersuchen. Es wird einerseits die
Strategie k@ewichtung = Nicht gesetzt betrachtet, bei der keine Gewichtung vor-
genommen wird, d. h. Mehrheitsklassen bei der Erstellung der Entscheidungs-
baume auch starker reprasentiert sind. Andererseits wird die Strategie
[Gewichtung — Aysgeglichen betrachtet, bei der Datenpunkte aus Minderheits-
klassen héheres Gewicht erhalten und damit ebenso stark reprasentiert sind wie
Datenpunkte der Mehrheitsklasse.

Fur die Parameterstudie wird eine Rastersuche mit den oben beschriebenen Auspra-
gungen der Einstellparameter verwendet. Je Kombination der Parameterauspragungen
werden 10 Experimente durchgefihrt, d. h. 10 manipulierte Tabellen erstellt und Fehler
ermittelt. Um eine Verzerrung der Ergebnisse der spateren Demonstration zu vermei-
den, wird die Parameterstudie nicht auf den Konfigurationsmodellen der Produkte A
und B, sondern auf dem Konfigurationsmodell des Produkts C durchgefiihrt. Um einen
vertretbaren Rechenaufwand zu gewahrleisten, wird ausschlieRlich ein reprasentativer
Fehlerfall mit nfé™e™ = 100 und kFeherart = Gleichverteilt, d. h. eine Gleichverteilung
Uber alle moglichen Fehlerarten, betrachtet. Tabelle A12.1 und Tabelle A12.2 zeigen
die Anzahlen der benétigten Uberpriifungen zum Finden eines gewissen Anteils an
Fehlern, gemittelt Gber 10 Durchlaufe fir die Literal- bzw. die Termtabelle. Fir die Lite-
raltabelle zeigt sich eine gro3e Spannweite der Ergebnisse in Abhangigkeit der Para-
meterauspragungen. Fur die Anteile 10 % bis einschlieRlich 90 % ist ein Muster in den
Ergebnissen erkennbar. Beim Finden von 100 % der eingebrachten Fehler wird dieses

87 Einzelne Datenpunkte kdnnen zufallsbedingt mehrfach ausgewahlt werden, so dass nicht notwendigerweise
alle Datenpunkte verwendet werden. Damit bleibt die Stochastik zur Erzeugung von heterogenen Entscheidungs-
baumen erhalten.



Anhang LIX

Muster jedoch unterbrochen und es ist eine unverhaltnismaRig grofe Anzahl von Uber-
prufungen notwendig®. Damit sind die Ergebnisse fir den Anteil 100 % ohne praktische
Relevanz und werden fiir den Vergleich der Parameterauspragungen nicht berticksich-
tigt. Je Anteil gefundener Fehler wird der Rang jeder Kombination an Parameteraus-
préagungen berechnet, wobei Rang 1 der geringsten Anzahl von benétigten Uberprii-
fungen entspricht. Die Range der Parameterauspragungen werden Uber alle Anteile
gefundener Fehler gemittelt. Es zeigt sich, dass die Strategie kPatenpunkte = o 5 gine

Tabelle A12.1: Ergebnisse der Parameterstudie fir den in Methode 6 eingesetzten Ran-
dom-Forest-Algorithmus fir das Finden von Fehlern in der Literaltabelle

Parameterauspragungen Bendtigte Uberpriifungen fiir Anteil gefundener Fehler Mittlerer
nPT |gFeatures| Datenp. | pGewichtung | 10 % | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90 % | 100 % Rang
100 | sqrt 0,5 |Ausgeglichen 69.644
200 | sqrt 0,5 |Ausgeglichen 79.131
200 | sqrt 0,5 | Nicht gesetzt | 191 234 65.809
100 | sqrt 0,5 Nicht gesetzt | 167 220 72.181
200 | log2 0,5 |Ausgeglichen 789 | 1.750 | 85.513
100 | log2 0,5 |Ausgeglichen 691 78.669

50 | sqrt 0,5 |Ausgeglichen 591 850 | 2.014 | 76.837 7,0
50 | sqrt 0,5 |Nichtgesetzt| 157 | 221 82.079 7.7
50 | log2 0,5 |Ausgeglichen 478 | 559 | 825 | 2.070 | 71.156 7.8
200 | log2 0,5 |Nichtgesetzt| 200 | 244 | 287 73.465 8,0
100 | log2 0,5 Nicht gesetzt | 178 234 288 73.437 9,0
50 | log2 0,5 |Nichtgesetzt| 177 | 235 | 287 | 337 | 399 | 475 | 546 80.364 10,2
200 | sqrt 1 Nicht gesetzt | 369 | 413 | 448 | 485 | 536 | 608 | 699 | 811 83.179 13,2
50 | sqrt 1 Nicht gesetzt | 314 382 | 436 | 483 | 548 | 649 | 763 | 978 | 1.926 14,1
100 | log2 1 Nicht gesetzt | 343 | 411 475 | 521 570 | 649 | 753 | 962 | 2275 | 76.424 15,3
100 | sqrt 1 Nicht gesetzt 519 | 562 | 612 | 673 | 730 | 880 | 1.665 16,0
200 | log2 1 Nicht gesetzt 445 488 522 575 650 41 911 | 2.708 | 85.897 16,3
50 | log2 1 Nicht gesetzt | 326 401 479 541 620 709 869 | 1.215 | 3.296 16,8
200 | log2 1 Ausgeglichen 706 799 | 1.035 79.443

200 | sqrt 1 Ausgeglichen 720 | 790 | 900 | 2.682 72.410

100 | log2 1 Ausgeglichen 771 | 1.107 | 1.928

100 | sqrt 1 Ausgeglichen 810 | 1.007 | 1.315 | 3.839 70.326

50 [ sqrt 1 Ausgeglichen

50 | log2 1 Ausgeglichen 76.046

88 Dieses Phanomen wird in Kapitel 5.6.2 naher betrachtet.
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Tabelle A12.2: Ergebnisse der Parameterstudie fir den in Methode 6 eingesetzten Ran-
dom-Forest-Algorithmus fir das Finden von Fehlern in der Termtabelle

Parameterauspragungen Benétigte Uberpriifungen fiir Anteil gefundener Fehler Mittlerer
T |Features| batenp. | ewichaung | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |100% | Rang
50 | log2 0,5 |Nicht gesetzt| 295 107.166 145.216(160.279
100 | sqrt 0,5 |Nicht gesetzt | 299 109.725 134.018(147.162|159.668,
100 | log2 0,5 |Nicht gesetzt| 307 109.326(121.172|132.341 159.831
200 | log2 0,5 Nicht gesetzt | 311 133.901|145.244|159.844
50 | sqrt 0,5 |Nicht gesetzt| 301 110.373(122.062|132.260|146.354|160.037
200 | sqrt 0,5 Nicht gesetzt | 312 109.113 146.246 6,6
200 | log2 1 Nicht gesetzt | 323 | 373 109.399(121.686(133.618 159.654 9
50 | sqrt 1 Nicht gesetzt | 322 | 368 109.840 133.838 9.4
100 | log2 1 Nicht gesetzt | 328 | 376 107.298(121.672|132.863|145.911|159.673 11,2
100 | sqrt 1 Nicht gesetzt | 337 | 377 109.144/120.344|132.265 160.130 11,2
50 | log2 1 Nicht gesetzt | 323 | 375 146.903(160.283 11,4
200 | sqrt 0,5 |Ausgeglichen 434 | 1.133 | 3.714 | 8.960 122.036|133.624|146.305(159.623 11,6
200 | log2 0,5 |Ausgeglichen 505 | 1.479 | 3.907 | 8.716 |108.893 132.179(146.382|159.888, 11,8
200 | sqrt 1 Nicht gesetzt | 345 | 387 108.393(121.189 147.156|160.079 12
100 | log2 0,5 |Ausgeglichen 493 | 1.528 | 3.993 |15.040|107.885 159.775 12,8
100 | sqrt 0,5 |Ausgeglichen| 277 | 494 |[1.903 | 4.475 |13.251|107.163(120.015|133.842|145.829|159.976 13,6
50 | log2 0,5 |Ausgeglichen 599 | 2.356 | 5.453 |21.408|109.182|121.370|132.902|145.759 14,4
50 | sqrt 0,5 |Ausgeglichen 671 | 2.381 | 5.344 |22.799(109.557|120.939|133.838|146.017|160.095 14,4
200 | log2 1 Ausgeglichen 9.517 107.907|121.286|132.381 159.746
200 | sqrt 1 Ausgeglichen 9.022 107.329 144.974
100 | log2 1 Ausgeglichen 11.111 108.420 132.087|145.682|159.525
100 | sqrt 1 Ausgeglichen 133.029(146.947|160.154,
50 | sqrt 1 Ausgeglichen 131.978(144.913|160.140,
50 | log2 1 Ausgeglichen 108.367(121.726|133.336 160.155

Uberlegene Strategie ist und einen grofRen Einfluss auf die Ergebnisse hat. Das lasst
darauf schlieRen, dass fir den Random-Forest, angewandt auf die Literaltabelle, eine
Gefahr von Uberanpassung besteht. Es scheint also Muster zu geben, die im Falle zu
vieler berlcksichtigter Datenpunkte von allen Entscheidungsbaumen abgebildet wer-
den. Aufgrund der im Produkt vorliegenden technisch bedingten GesetzmaRigkeiten
erscheint das plausibel. AuBerdem ist kFe®4res = sqrt und kGeWichtund = Aysgeglichen
zu bevorzugen. Dass mit kFeatires = sqrt eher mehr Features verwendet werden, kann
darauf zurtickzufuihren sein, dass die Muster im Datensatz sich Giber mehrere Features
erstrecken. Das ist ebenfalls naheliegend, da z. T. bestimmte abhangige Parameter
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von vielen Auspragungen bestimmter kategorischer Produktmerkmale abhangen. Der
Unterschied zwischen 100 und 200 Entscheidungsbaumen ist gering. Lediglich weniger
Entscheidungsbaume scheinen zu schlechteren Ergebnissen zu flihren. Fir die De-
monstration  werden die  Parameterauspragungen nPT =100, kFeatures =
sqrt, kPatenpunkte — (5 nd kGewichtung = Aysgeglichen gewahlt.

Fir die Termtabelle zeigt sich bereits fiir das Finden von 60 % der Fehler gegenliber
50 % der Fehler ein sprunghafter Anstieg®®. Deshalb sind nur die Fehleranteile bis ein-
schlief3lich 50 % von praktischer Bedeutung und werden flr die Rangbildung bertiick-
sichtigt. Fir die Termtabelle ergeben sich andere liberlegene Parameterauspragungen
als fiir die Literaltabelle. Insbesondere ist die Strategie k¢¢Vi€hund = Nicht gesetzt der
Strategie kevichtund = Aysgeglichen lberlegen. Da in vielen Féllen eine weitgehend
exklusive Beziehung zwischen abhangigen Parametern und Monomen in der Regelta-
belle besteht, enthalt die Termtabelle Gberwiegen die Eintrage 0. Die Unausgeglichen-
heit der Klassen im Datensatz ist deutlich starker ausgepragt als fur die Literaltabelle.
Diese Unausgeglichenheit der Daten durch eine ausgeglichene Gewichtung auszuglei-
chen sorgt u. U. firr eine zu starke Verzerrung der im Datensatz vorliegenden Muster,
so dass relevante Abweichungen schlechter erkannt werden kénnen. Auffallig ist au-
Rerdem, dass fiir die hdchstrangige Kombination an Parameterauspragungen nur we-
nige Features und Datenpunkte genutzt werden und nur wenige Entscheidungsbaume
trainiert werden. Sie weist somit einen gro3en Einfluss von Stochastik auf und neigt
damit eher zu Unter- als zu Uberanpassung. Das deutet darauf hin, dass die Heraus-
forderung fur die Termtabelle darin besteht, heterogene Entscheidungsbaume zu er-
stellen und damit Uberhaupt ausgepragte Anomaliehinweise zu erhalten. Dass jedoch
die Kombinationen der folgenden Range sich in ihren Ergebnissen nur unwesentlich
von der Kombination mit dem héchsten Rang unterscheiden und mehr Entscheidungs-
baume und z. T. auch mehr Features nutzen, relativiert die Bedeutung dieses Phano-
mens jedoch. Fir die Demonstration werden die Parameterauspragungen n°” = 50,

fFeatures = g g2, fPatenpunkte — (5 ynd kGewichtung = Nicht gesetzt gewahlit.

89 Dieses Phanomen wird in Kapitel 5.6.2 naher betrachtet.
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A12.3 Ergebnisse der Demonstration der Methode 6 an Produkt A
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Abbildung A12.4: Demonstration der Methode 6 fur die Literaltabelle von Produkt A mit
nFehler = 100 und kFerterart = Gleichverteilt; Gesamtansicht
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Abbildung A12.5: Demonstration der Methode 6 fiir die Literaltabelle von Produkt A mit
nFehler — 100 und kFetterart = Gleichverteilt; Detailansicht
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Abbildung A12.6: Demonstration der Methode 6 fiir die Literaltabelle von Produkt A mit
nferler = 100 und variierten Fehlerarten
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Abbildung A12.7: Demonstration der Methode 6 fir die Literaltabelle von Produkt A mit
Fenterart — Gleichverteilt und variierten Fehleranzahlen
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Abbildung A12.8: Demonstration der Methode 6 fiir die Termtabelle von Produkt A mit
nFehler = 100 und kFerterart = Gleichverteilt; Gesamtansicht
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Abbildung A12.9: Demonstration der Methode 6 fiir die Termtabelle von Produkt A mit
nFerler = 100 und kFerterart = Gleichverteilt; Detailansicht
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Abbildung A12.10: Demonstration der Methode 6 fur die Termtabelle von Produkt A mit
nfehler = 100 und variierten Fehlerarten
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Abbildung A12.11: Demonstration der Methode 6 fiir die Termtabelle von Produkt A mit
kFehlerart — Glejchverteilt und variierten Fehleranzahlen

1000 Fehler werden in Abbildung A12.11 nicht betrachtet, da nicht ausreichend viele
Terme in der Termtabelle vorliegen um 500 Fehler der Art fehlender Term einzubringen.

A12.4 Methode zur Ermittlung des Ubergangs von einem linearen in
einen nicht-linearen Abschnitt einer Kurve

Der Wert fir den eine Kurve von einem linearen in einen nicht-linearen Verlauf Gibergeht
wird in der vorliegenden Arbeit wie folgt ermittelt. Es wird die Nullhypothese aufgestellt,
dass die Steigung zwischen zwei aufeinanderfolgenden Punkten derselben Normalver-
teilung entstammt wie vorangegangene Steigungen. Dabei werden die Mittelwerte vo-
rangegangener Steigungen und deren Stichprobenstandardabweichungen als Schéat-
zer verwendet. Betragt die Konfidenz der Nullhypothese flr zwei aufeinanderfolgende
Steigungen weniger als 1 % wird davon ausgegangen, dass kein lineares Verhalten
mehr vorliegt. Dieses Verfahren kann auch als Abbruchkriterium fiir den Einsatz von
Methode 6 in der Praxis genutzt werden.
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