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Zum Buch

Konfigurationssysteme ermöglichen Industrieunternehmen die Automatisierung 
und damit Rationalisierung der Arbeitsablaufplanung im Rahmen des 
Auftragsabwicklungsprozesses. Großes Potenzial besteht hierbei insbesondere 
in der automatischen Konfiguration von Stücklisten und Arbeitsplänen, d. h. für 
die Produkt- und Prozesskonfiguration. Bisher werden Konfigurationssysteme 
hierfür nicht umfassend eingesetzt. Wesentliche Hinderungsgründe sind der 
Aufwand für die Erstellung sowie die hohe Fehleranfälligkeit der hinterlegten 
Konfigurationsmodelle, die die Rahmenbedingungen und Regeln der 
Konfiguration festlegen. Diesen Herausforderungen kann mit datenbasierten 
Methoden, wie z. B. Verfahren des maschinellen Lernens, begegnet werden. 
Hiermit können Modelle für die Produkt- und Prozesskonfiguration zum einen auf 
Basis zurückliegender Aufträge erstellt und zum anderen durch Mustererkennung 
überprüft werden. Dadurch kann ein Beitrag zu einem weitergehenden Einsatz 
von Konfigurationssystemen in der Arbeitsablaufplanung und damit zu einer 
höheren Effizienz des Auftragsabwicklungsprozesses in Industrieunternehmen 
geleistet werden. Nach Stand der Forschung sind jedoch datenbasierte Methoden 
im Zusammenhang mit Konfigurationsmodellen nur rudimentär erforscht.
Ziel der vorliegenden Arbeit ist es deshalb, die wissenschaftlichen Grundlagen 
für den Einsatz datenbasierter Methoden zur Erstellung und Überprüfung von 
Modellen für die Produkt- und Prozesskonfiguration zu legen. Es werden die 
Fragen beantwortet, welche Methoden hierfür geeignet sind und wie effektiv 
deren Einsatz ist. Hierfür werden geeignete Methoden entwickelt und im Rahmen 
einer Demonstration aus technischer Sicht bewertet. Dies umfasst die datenbasierte 
Erstellung der Bestandteile von industrieüblichen Modellen der Produkt- 
und Prozesskonfiguration: Maximalstücklisten, Maximalarbeitspläne sowie 
Abhängigkeiten in Form von Regeln zwischen den Variablen der Modelle. Darüber 
hinaus werden die Erweiterung der Datenbasis und die datenbasierte Überprüfung 
von Regeln betrachtet. Die Demonstration der entwickelten Methoden zeigt, dass 
sowohl die datenbasierte Erstellung, als auch die datenbasierte Überprüfung von 
Produkt- und Prozesskonfigurationsmodellen grundsätzlich möglich ist und in 
vielen Fällen zu genauen Ergebnissen führt.
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Vorwort des Herausgebers 

Die schnelle und effiziente Umsetzung innovativer, nachhaltiger und wirtschaftlicher 
Technologien stellt den entscheidenden Wirtschaftsfaktor für produzierende Unterneh-
men dar. Universitäten können als "Wertschöpfungspartner" einen wesentlichen Bei-
trag zur Wettbewerbsfähigkeit der Industrie leisten, indem sie wissenschaftliche Grund-
lagen sowie neue Methoden und Technologien erarbeiten und aktiv den Umsetzungs-
prozess in die praktische Anwendung unterstützen. 

Vor diesem Hintergrund wird im Rahmen dieser Schriftenreihe über aktuelle For-
schungsergebnisse des Instituts für Produktionstechnik (wbk) am Karlsruher Institut für 
Technologie (KIT) berichtet. Unsere Forschungsarbeiten beschäftigen sich mit der Leis-
tungssteigerung von additiven und subtraktiven Fertigungsverfahren, den Produktions-
anlagen und der Prozessautomatisierung sowie mit der ganzheitlichen Betrachtung und 
Optimierung von Produktionssystemen und -netzwerken. Hierbei werden jeweils tech-
nologische wie auch organisatorische Aspekte betrachtet. 
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Abstract 

Configuration systems enable industrial companies to automate and thus rationalize 
production process planning within the orderfulfilment process. Particularly great poten-
tial lies in the automatic configuration of bills of materials and routings, i.e., in product 
and process configuration. To date, configuration systems have not been implemented 
comprehensively for this purpose. The main obstacles are the effort required to create 
the configuration models that define the framework conditions and rules for configura-
tion, as well as the high probability of errors in these models. These challenges can be 
overcome with data-driven methods such as machine learning techniques. These me-
thods can be used to create models for product and process configuration based on 
past orders and to validate them through pattern recognition. This can contribute to the 
wider use of configuration systems in production process planning and thus to greater 
efficiency in order processing in industrial companies. However, according to the cur-
rent state of research, data-driven methods in connection with configuration models 
have only been researched rudimentarily. 

The aim of this thesis is therefore to lay the scientific foundations for the use of data-
driven methods for creating and validating models for product and process configura-
tion. It answers the questions of which methods are suitable for this purpose and how 
effective their use is. To this end, suitable methods are developed and evaluated from 
a technical perspective as part of a demonstration. This includes the data-based crea-
tion of the elements of industry-standard models for product and process configuration: 
super bills of materials, super routings, and dependencies in the form of rules between 
the variables of the models. In addition, the expansion of the data base and the data-
driven validation of rules are considered. The demonstration of the developed methods 
shows that both the data-driven creation and the data-driven validation of product and 
process configuration models are fundamentally possible and in many cases lead to 
accurate results.  



 

 

  



 

 

Kurzzusammenfassung 

Konfigurationssysteme ermöglichen Industrieunternehmen die Automatisierung und 
damit Rationalisierung der Arbeitsablaufplanung im Rahmen des Auftragsabwicklungs-
prozesses. Großes Potenzial besteht hierbei insbesondere in der automatischen Kon-
figuration von Stücklisten und Arbeitsplänen, d. h. für die Produkt- und Prozesskonfigu-
ration. Bisher werden Konfigurationssysteme hierfür nicht umfassend eingesetzt. We-
sentliche Hinderungsgründe sind der Aufwand für die Erstellung sowie die hohe Feh-
leranfälligkeit der hinterlegten Konfigurationsmodelle, die die Rahmenbedingungen und 
Regeln der Konfiguration festlegen. Diesen Herausforderungen kann mit datenbasier-
ten Methoden, wie z. B. Verfahren des maschinellen Lernens, begegnet werden. Hier-
mit können Modelle für die Produkt- und Prozesskonfiguration zum einen auf Basis zu-
rückliegender Aufträge erstellt und zum anderen durch Mustererkennung überprüft wer-
den. Dadurch kann ein Beitrag zu einem weitergehenden Einsatz von Konfigurations-
systemen in der Arbeitsablaufplanung und damit zu einer höheren Effizienz des Auf-
tragsabwicklungsprozesses in Industrieunternehmen geleistet werden. Nach Stand der 
Forschung sind jedoch datenbasierte Methoden im Zusammenhang mit Konfigurations-
modellen nur rudimentär erforscht. 

Ziel der vorliegenden Arbeit ist es deshalb, die wissenschaftlichen Grundlagen für den 
Einsatz datenbasierter Methoden zur Erstellung und Überprüfung von Modellen für die 
Produkt- und Prozesskonfiguration zu legen. Es werden die Fragen beantwortet, wel-
che Methoden hierfür geeignet sind und wie effektiv deren Einsatz ist. Hierfür werden 
geeignete Methoden entwickelt und im Rahmen einer Demonstration aus technischer 
Sicht bewertet. Dies umfasst die datenbasierte Erstellung der Bestandteile von indust-
rieüblichen Modellen der Produkt- und Prozesskonfiguration: Maximalstücklisten, Ma-
ximalarbeitspläne sowie Abhängigkeiten in Form von Regeln zwischen den Variablen 
der Modelle. Darüber hinaus werden die Erweiterung der Datenbasis und die datenba-
sierte Überprüfung von Regeln betrachtet. Die Demonstration der entwickelten Metho-
den zeigt, dass sowohl die datenbasierte Erstellung, als auch die datenbasierte Über-
prüfung von Produkt- und Prozesskonfigurationsmodellen grundsätzlich möglich ist und 
in vielen Fällen zu genauen Ergebnissen führt. 
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eingeht ݌௜,௝௉௔ fallabhängig Allgemeiner Parameter ݆ einer KK ݅  ݌௜௉௢௦ ℕ Position einer KK ݅ in einer MSTL ݌௜ௌ்ை Menge Parameter einer KK ݅ oder einer AVK ݅, der angibt 
für welche STOs diese instanziiert werden kann ݌௜ௌ்ை,ெ஺௉௅ ℕ Gültige STOs des MAPL für eine KK ݅ ݌௉௄ௌ்ை,ெௌ்௅ ℕ Gültige STOs für die Konfiguration einer MSTL ݒ௜,௝ fallabhängig Eine mögliche Ausprägung ݆ des Produktmerkmals ݅ ݒ௜,௝ெ௘ ℕ Eine mögliche Ausprägung ݆ von ݌௜ெ௘ ݒ௜,௝,௞௉௔  fallabhängig Eine mögliche Ausprägung ݇ von ݌௜,௝௉௔ ݔ௜ fallabhängig Ausprägung von Produktmerkmal ݅ 

Kapitel 4.2 und Anhang A3 

Formelzeichen Typ Bedeutung ீܣ௘௉௙ Matrix Eine nullbasiert indizierte Matrix deren Einträge  ܣ௜,௝ீ௘௉௙ den Ergebnissen der Probleme ௜ܲ,௝ீ௘௉௙ ent-
sprechen ܾெ௜௡ ℕ Komplexität der komplexitätsminimalen MSTL unter 
allen bisher gefundenen MSTL in Algorithmus Al-
gMinMSTL ܾை௕ ℕ Obere Schranke für die Komplexität einer resultie-
renden MSTL in einem Knoten eines Suchbaums in 
Algorithmus AlgMinMSTL 
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ܾ௎௡ ℕ Untere Schranke für die Komplexität einer resultie-
renden MSTL in einem Knoten eines Suchbaums in 
Algorithmus AlgMinMSTL ݀ெூ஼஽ [0,1] Mittlere Intraclusterdistanz ݀௜,௝௓௄ [0,1] Normierte Distanz zweier ZKs ݅ und ݆ basierend auf 
ihrer Kontextähnlichkeit ܫ஻௘௭ Menge Menge der Indizes von Bezeichnungen in ܵ஻௘௭ ܫ௟௄஻௘௭ Menge Menge der Indizes von KKs der MSTL, die die Be-
zeichnung ݈ aufweisen ܫ௉௟ Menge Menge der Indizes von STO-Platzhaltern; es gilt  ܫ௉௟ = {1, … , ݊௉௟} ܫ௏ௌ்௅ Menge Menge der Indizes von VSTLs aus ܵ௏ௌ்௅ ܫ௓௄௄ Menge Menge der Indizes von ZKKs in einer Maximal-
stückliste ܫ௞௓௄௄,௏ௌ்௅ Menge Menge der Indizes von ZKKs, die für die Konfigura-
tion der variantenbezogenen Stückliste ݇ aus der 
MSTL aktiv sind ݊஼௟ெ௔௫ ℕ Maximal mögliche Anzahl von Clustern für eine 
Clustering-Aufgabe ݊௜,௝ூௗ௅௔ ℕ Anzahl der übereinstimmenden Labels in zwei Kno-
ten ݅ und ݆ zweier Pfade ݊௟ெ௔௫஻ ℕ Maximale Anzahl von ZKs mit Bezeichnung ݈ in ei-
ner VSTL aus einer Menge von VSTLs ݊ே௜஺௡ ℕ Anzahl der noch nicht annotierten ZKs in einem 
Knoten eines Suchbaums in Algorithmus AlgMinMSTL ݊௜,௞௉௙௅௔ ℕ Anzahl der Vorkommen eines Labels ݇ im Pfad ei-
ner Komponente ݅ zur Wurzel ihrer VSTL ݊௉௟ ℕ Anzahl aktivierbarer STO-Platzhalter ݊௉௥௄௟ ℕ Prognostizierte Anzahl der Klassen in einer MSTL ݊ௌ்௅ீ௥ ℕ Größe einer VSTL nach Anzahl der ZKs, die sie 
enthält ݊௜௄ே஻௘௭ ℕ Anzahl unterschiedlicher KNs, mit denen ZKs mit 
Bezeichnung ݅ in einem Knoten eines Suchbaums 
in Algorithmus AlgMinMSTL annotiert wurden ௜ܲ,௝ீ௘௉௙ Problem Problem zur Bestimmung der Länge des längsten 
gemeinsamen Pfades aus zwei Pfaden wobei je-
weils nur die ersten ݅ bzw. ݆ Knoten betrachtet wer-
den  ܵ஻௘௭ Menge Menge aller Bezeichnungen von ZKs in einer 
Menge von VSTLs ݏ௜,௝ீ௘௉௙ ℕ Länge des längsten gemeinsamen Pfades zweier 
ZKs ݅ und ݆ zu den Wurzeln ihrer jeweiligen VSTL  
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-௜,௝ீ௘௉௙ ℕ Maximal mögliche Länge eines längsten gemeinsaݏ̂
men Pfades zweier ZKs ݅ und ݆ zu den Wurzeln ih-
rer jeweiligen VSTL ܵ௅௔௓௄ Menge Menge aller Labels von ZKs in einer Menge von 
VSTLs ܵ௏ௌ்௅ Menge Menge von VSTLs, die für die datenbasierte Erstel-
lung einer MSTL verwendet werden ݏ௜,௝௓௄ [0,1] Normierte Kontextähnlichkeit zweier ZKs ݅ und ݆ ݑ௝௉௟஺௞ {0,1} Entscheidungsvariable, die angibt, ob ein STO-
Platzhalter ݆ aktiv ist (1) oder nicht (0) ݑ௞,௝௏ௌ்௅,௉௟ {0,1} Entscheidungsvariable, die angibt, ob eine VSTL ݇ 
einem STO-Platzhalter ݆ zugeordnet ist (1) oder 
nicht (0) ݑ௜,௝௓௄௄,௉௟ {0,1} Entscheidungsvariable, die angibt, ob eine ZKK ݅ 
der MSTL einem STO-Platzhalter ݆ zugeordnet ist 
(1) oder nicht (0) 

Kapitel 4.3 

Formelzeichen Typ Bedeutung ݀௜,௝஺௏ை [0,1] Normierte Distanz zweier AVOs ݅ und ݆ basierend 
auf ihrer Kontextähnlichkeit ௜ܵா଴ Menge Menge der nicht vorhandenen Kanten in einem 
VAPL ݅, die jeweils nicht vorhandene Vorrangbezie-
hungen darstellen ௜ܵா଴,௅ Menge Menge der nicht vorhandenen Kanten in einem 
VAPL ݅, die jeweils nicht vorhandene Vorrangbezie-
hungen darstellen, jeweils angegeben als Labels 
der inzidenten Knoten ܵா଴,ெ஺௉௅ Menge Menge der nicht vorhandenen Kanten in einem 
MAPL, die jeweils nicht vorhandene Vorrangbezie-
hungen darstellen ܵா଴,ெ஺௉௅,௅ Menge Menge der nicht vorhandenen Kanten in einem 
MAPL, die jeweils nicht vorhandene Vorrangbezie-
hungen darstellen, jeweils angegeben als Labels 
der inzidenten Knoten ௜ܵாଵ Menge Menge der Kanten in einem VAPL ݅, die jeweils 
Vorrangbeziehungen darstellen ௜ܵாଵ,௅ Menge Menge der Kanten in einem VAPL ݅, die jeweils 
Vorrangbeziehungen darstellen, jeweils angegeben 
als Labels der inzidenten Knoten ܵாଵ,ெ஺௉௅ Menge Menge der Kanten in einem MAPL, die jeweils Vor-
rangbeziehungen darstellen 
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ܵாଵ,ெ஺௉௅,௅ Menge Menge der Kanten in einem MAPL, die jeweils Vor-
rangbeziehungen darstellen, jeweils angegeben als 
Labels der inzidenten Knoten ௜ܵே௔௖௛ Menge Menge der Labels von AVOs, die einem AVO ݅ in 
einem VAPL nachfolgen ௜ܵை஻ Menge Menge der Labels von AVOs, die zu einem AVO ݅ 
in einem VAPL in keiner Beziehung stehen ௜ܵ௏ Menge Menge der Knoten in einem VAPL ݅, die jeweils 
AVOs darstellen ܵ௏஺௉௅ Menge Menge der VAPLs die für die datenbasierte Erstel-
lung eines MAPL verwendet werden ௜ܵ௏௢௥ Menge Menge der Labels von AVOs, die einem AVO ݅ in 
einem VAPL vorausgehen ௜ܵ௏,௅ Menge Menge der Labels von Knoten in einem VAPL ݅, die 
jeweils AVOs darstellen ܵ௏,ெ஺௉௅ Menge Menge der Knoten in einem MAPL, die jeweils 
AVKs darstellen ܵ௏,ெ஺௉௅,௅ Menge Menge der Labels von Knoten in einem MAPL, die 
jeweils AVKs darstellen 

Kapitel 4.4 und Anhang A5 

Formelzeichen Typ Bedeutung ܽ௜,௡ಾାଵ {0, 1} Entscheidungsvariable, die angibt, ob das neu hin-
zuzufügende Monom ݊ெ + 1 den positiven Daten-
punkt ݅ akzeptiert (1) oder nicht (0) ܽ௠,௜ {0, 1} Parameter, der angibt, ob Monom ݉ den positiven 
Datenpunkt ݅ im Trainingsdatensatz akzeptiert (1) 
oder nicht (0) ෠ܾ௢ ℕ Obere Schranke im Algorithmus AlgB&P für die mini-
male Komplexität des zu ermittelnden booleschen 
Ausdrucks ܿ௠ ℕ Anzahl der Literale in Monom ݉. Entspricht dem 
entsprechenden Zielfunktionskoeffizienten des MP ܮா௫௞௟ெ௢௡௢௠௘ Liste Liste von Monomen, die einem RMP nicht hinzuge-
fügt werden dürfen ܮெ௢௡௢௠௘ Liste Liste der Monome in einem RMP ݊௏௭ ℕ Index der Entscheidungsvariable eines RMP in der 
verzweigt wird  ݊஽௡ ℕ Anzahl der negativen Datenpunkte im Trainingsda-
tensatz ݊஽௣ ℕ Anzahl der positiven Datenpunkte im Trainingsda-
tensatz 
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݊ி ℕ Anzahl der Features in einem Trainingsdatensatz ݊ெ ℕ Anzahl der berücksichtigten Monome in einem RMP ܵேீ௔௡௭௓ Menge Menge aller nichtganzzahligen Entscheidungsvari-
ablen in der optimalen Lösung eines XRMP ்ܶ௥௔௜௡௜௡௚ Tabelle Ein Trainingsdatensatz ݑ௠ {0, 1} Entscheidungsvariable des RMP, die festlegt, ob 
Monom ݉ Teil des zu lernenden booleschen Aus-
drucks ist (1) oder nicht (0) ݑ௠௑ெ௉∗ {0, 1} Wert der Entscheidungsvariable ݉ in der optimalen 
Lösung des XMP ݒ௜ ℝ Entscheidungsvariable des DP, welche der Neben-
bedingung ݅ des XRMP zugeordnet ist ݒ௜∗ ℝ Wert einer Entscheidungsvariablen ݒ௜ in der optima-
len Lösung eines DP ݓ௙௡ఓ {0, 1} Stelle ݂ des negativen Anteils eines Monoms ߤ in 
Dual-Rail-Darstellung ݓ௙௡ {0, 1} Entscheidungsvariable, die angibt, ob das neu hin-
zuzufügende Monom die dem Feature ݂ entspre-
chende Variable als negatives Literal enthält (1) o-
der nicht (0)  ݓ௙௣ఓ {0, 1} Stelle ݂ des positiven Anteils eines Monoms ߤ in 
Dual-Rail-Darstellung ݓ௙௣ {0, 1} Entscheidungsvariable, die angibt, ob das neu hin-
zuzufügende Monom die dem Feature ݂ entspre-
chende Variable als positives Literal enthält (1) oder 
nicht (0)  ݔ௜௙௣  {0, 1} Wahrheitswert des ݅-ten positiven Datenpunkts hin-
sichtlich Feature ݂ ݔప௙௣തതതത {0, 1} Negierter Wahrheitswert des ݅-ten positiven Daten-
punkts hinsichtlich Feature ݂ ݔ௜௙௡  {0, 1} Wahrheitswert des ݅-ten negativen Datenpunkts 
hinsichtlich Feature ݂ ݔప௙௡തതതത {0, 1} Negierter Wahrheitswert des ݅-ten negativen Daten-
punkts hinsichtlich Feature ݂ ݖெ௉∗ ℕ Optimaler Zielfunktionswert eines MP ݖோெ௉∗ ℕ Optimaler Zielfunktionswert eines RMP ݖௌ௉∗ ℝ Optimaler Zielfunktionswert eines SP ݖ௑ெ௉∗ ℝ Optimaler Zielfunktionswert eines XMP ݖ௑ோெ௉∗ ℝ Optimaler Zielfunktionswert eines XRMP 
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Kapitel 4.5 

Formelzeichen Typ Bedeutung ܤ௟,௝(࢞) Bool. Ausdr. Boolescher Ausdruck, der dem ݆-ten Modell in VR ݈ 
entspricht ܤு௅(࢞) Bool. Ausdr. Boolescher Ausdruck, der der HLF entspricht ܤ௟,௝,௞ெௌ (࢞) Bool. Ausdr. Boolescher Ausdruck, der der MSF ݆݇ des VR ݈ ent-
spricht ݀஽௜௦௧ ℕ Kleinster Abstand einer Lösung, d. h. Variante, zu 
allen bereits im Trainingsdatensatz befindlichen Va-
rianten ݀௜஽௜௦௧ ℕ Hamming-Abstand einer Lösung von einem bereits 
im Datensatz vorhandenen Datenpunkt ݅ መ݀௄௢௠௣ ℕ Maximale Differenz der Komplexität eines Modells 
zur Komplexität des komplexitätsminimalen Modells 
in einem VR, bei der es noch berücksichtigt wird ݀௟,௝௄௢௠௣  Differenz der Komplexität eines Modells ݆ zur Kom-
plexität des komplexitätsminimalen Modells im VR ݈ ݀௟,௝,௞ெௌ  {0,1} Entscheidungsvariable, die angibt, ob sich die Vor-
hersagen der Modelle ݆ und ݇ des VR des Labels ݈ 
für eine Lösung, d. h. eine Variante, unterscheiden 
(1) oder nicht (0) ܮா௫௞௟ெ௢௡௢௠௘ Liste Liste von Monomen, die einem RMP nicht hinzuge-
fügt werden dürfen ݊஽ ℕ Anzahl der Datenpunkte in einem Trainingsdaten-
satz ݊ி ℕ Anzahl der Features eines Trainingsdatensatzes ݊௄௟,ு௅ ℕ Anzahl der Klauseln in einer HLF ݊௟,௝,௞௄௟,ெௌ ℕ Anzahl der Klauseln in der MSF ݆݇ eines VR ݈  ݊௅ ℕ Anzahl der Labels in einem Trainingsdatensatz ݊ெௐ ℕ Anzahl der Ausprägungen eines Produktmerkmals ݊௏ோ ℕ Definierte Größe der VRs für Methode 5 ݎ௟,௝,௞ெௌ  [0,1] Gewichtung der MSF, die den Modellen ݆ und ݇ im 
VR ݈ zugeordnet ist ݑ௞,௠௏௢௥௛ {0, 1} Parameter, der festlegt, ob Monom ݉ Teil des ݇-ten 
booleschen Ausdrucks in einem Versionenraum ist 
(1) oder nicht (0) ݑ௠ {0, 1} Entscheidungsvariable des RMP, die festlegt, ob 
Monom ݉ Teil des zu lernenden booleschen Aus-
drucks ist (1) oder nicht (0) ݓெௌ [0,1] Gewichtung des Kriteriums Modellseparation 
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 ௙,௠௣,ு௅ {0,1} Parameter, der angibt, ob Klausel ݉ der HLF dasݓ
Feature ݂ als positives Literal enthält (1) oder nicht 
௙,௟,௝,௞,௠௣,ெௌݓ (0)  {0,1} Parameter, der angibt, ob Klausel ݉ der MSF ݆݇ 
des VR des Labels ݈ das Feature ݂ als positives Li-
teral enthält (1) oder nicht (0) ݓ௙,௠௡,ு௅ {0,1} Parameter, der angibt, ob Klausel ݉ der HLF das 
Feature ݂ als negatives Literal enthält (1) oder nicht 
௙,௟,௝,௞,௠௡,ெௌݓ (0)  {0,1} Parameter, der angibt, ob Klausel ݉ der MSF ݆݇ 
des VR ݈ das Feature ݂ als positives Literal enthält 
(1) oder nicht (0) ݔ௙ {0,1} Ausprägung von Feature ݂ in einer zu wählenden 
Variante ݔ௜,௙௏௢௥௛ {0,1} Ausprägung von Feature ݂ in der bereits im Trai-
ningsdatensatz vorhandenen Variante ݅ 

Kapitel 4.6 

Formelzeichen Typ Bedeutung ܵோ௘௚ Menge Menge von Regeln eines LLKM ܶ஺௨௦௥௘௜ß௘௥ Tabelle Tabelle, die für jeden Eintrag einer Literal- oder Mo-
nomtabelle den Ausreißerwert angibt ܶ஺௟௧௘௥௡௔௧௜௩ Tabelle Tabelle, die für jeden Eintrag einer Literal- oder Mo-
nomtabelle den alternativen Eintrag mit der höchs-
ten Vorhersagewahrscheinlichkeit enthält 

Kapitel 5.1 und Anhang A7 

Formelzeichen Typ Bedeutung [0,1] ߜ Parameter des Approximate Model Countings, der 
das Signifikanzniveau des resultierenden Intervalls 
festlegt [0,1] ߝ Parameter des Approximate Model Countings, der 
die Größe des resultierenden Intervalls festlegt 

Kapitel 5.2 und Anhang A8 

Formelzeichen Typ Bedeutung ܾ௠௜௡ {0,1} Variable, die angibt ob für ein Experiment eine mini-
male MSTL erstellt wurde (1) oder nicht (0) ܾ௓஻ଵ {0,1} Variable, die angibt ob für ein Experiment die Zeit-
beschränkung für Schritt 1 der Methode 2 erreicht 
wurde (1) oder nicht (0) 



Formelzeichen XVII 
 

 

ܾ௓஻ଶ {0,1} Variable, die angibt ob für ein Experiment die Zeit-
beschränkung für Schritt 2 der Methode 2 erreicht 
wurde (1) oder nicht (0) ݀ெௌ்௅ [0,1] Normierte Distanz der Ergebnis- und der Referenz-
MSTL መ݀୑ୗ୘୐ ℕ Maximal mögliche Distanz der Ergebnis- und der 
Referenz-MSTL ݀ெௌ்௅,௔௕௦ ℕ Absolute Distanz der Ergebnis- und der Referenz-
MSTL ݀ௌ்ை ℕ Differenz der Anzahlen von STOs in einer Ergebnis- 
und einer Referenz-MSTL ݀௞,௟ௌ்ை ℕ Distanz zweier STOs ݇ und ݈ einer MSTL ݊஺௕௛ ℕ Anzahl der ZKKs in einer Referenz-MSTL, die von 
der gültigen STO abhängen ݊௜,௝஺௡௭௉௔௥௧ ℕ Anzahl möglicher Partitionen einer Zahl ݅ deren 
kleinster Summand größer gleich ݆ ist ݊௜,௝஺௡௭௉௔௥௧,௚௘௡ ℕ Anzahl möglicher Partitionen einer Zahl ݅ deren 
kleinster Summand ݆ ist ݊஻ீ௄ ℕ Anzahl der BGKs in einer Referenz-MSTL ݊஼௟ெ௜௡ ℕ Anzahl der Cluster derjenigen STO mit der gerings-
ten Clusteranzahl in der Ergebnis-MSTL, falls diese 
weniger Cluster aufweist als die Referenz-MSTL, 
ansonsten in der Referenz-MSTL ݊ெ௨௟௧ ℕ Anzahl der Multipositionen je STO einer Referenz-
MSTL ݊ௌ௜௡௚ ℕ Anzahl der Positionen je STO einer Referenz-MSTL 
mit singulären Bezeichnungen ݊ௌ்ை ℕ Anzahl der STOs in einer MSTL ݊ௌ௨௠ ℕ Ein Summand einer Ganzzahlpartition ݊ௌ௨௠ெ௔௫ ℕ Größter Summand einer Ganzzahlpartition ݊௏ௌ்௅ ℕ Anzahl der VSTLs in der Menge ܵ௏ௌ்௅ ݊௓௄௄ ℕ Anzahl der ZKKs, die einer STO einer Referenz-
MSTL zugeordnet sind ݊௓௄௄,ெௌ்௅ ℕ Anzahl von ZKKs in einer Referenz-MSTL ݊௓௨்௘௜௟௘௡ ℕ Natürliche Zahl für die eine Ganzzahlpartition gene-
riert werden soll ݎ஺௕௛ [0,1] Anteil von ZKKs einer MSTL, die von der gültigen 
STO abhängen ݎ஻ீ௄ [0,1] Verhältnis der Anzahl von BGKs zu ZKKs in einer 
Referenz-MSTL 
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 ெ௨௟௧ [0,1] Anteil mehrfach auftretender Bezeichnungen vonݎ
ZKKs, die einer STO einer Referenz-MSTL zuge-
ordnet sind ݎோ௔ௗௌ்ை [0;  0,5) Radius eines Intervalls aus dem die Auftretens-
wahrscheinlichkeiten für STOs gleichmäßig zufällig 
gewählt werden ݎோ௔ௗ௓௄௄ [0;  0,5) Radius eines Intervalls aus dem die Auftretens-
wahrscheinlichkeiten für ZKKs gleichmäßig zufällig 
gewählt werden ܵ௞஼௟ Menge Menge an Clustern zu BGKs in einer MSTL ݇ ܵௌ்ை Menge Menge aller STOs einer Ergebnis- und einer Refe-
renz-MSTL ܵ௏ௌ்௅ Menge Menge von VSTLs, die für die datenbasierte Erstel-
lung einer MSTL verwendet werden [0,1] ߜ Parameter des Uniform Model Samplings, der das 
Signifikanzniveau des Intervalls festlegt, in dem 
eine Gleichverteilung angenähert wird [0,1] ߝ Parameter des Uniform Model Samplings, der das 
Intervall festlegt, in dem eine Gleichverteilung ange-
nähert wird 

Kapitel 5.3 und Anhang A9 

Formelzeichen Typ Bedeutung ܾ௠௜௡ {0,1} Variable, die angibt ob für ein Experiment ein mini-
maler MAPL erstellt wurde (1) oder nicht (0) ܾ௓஻ଵ {0,1} Variable, die angibt ob für ein Experiment die Zeit-
beschränkung für Schritt 1 der Methode 3 erreicht 
wurde (1) oder nicht (0) ܾ௓஻ଶ {0,1} Variable, die angibt ob für ein Experiment die Zeit-
beschränkung für Schritt 2 der Methode 3 erreicht 
wurde (1) oder nicht (0) ݀ெ஺௉௅ ℕ Normierte Distanz des Ergebnis- und des Referenz-
MAPL መ݀ெ஺௉௅ ℕ Maximal mögliche Distanz des Ergebnis- und des 
Referenz-MAPL ݀ெ஺௉௅,௔௕௦ ℕ Absolute Distanz des Ergebnis- und des Referenz-
MAPL ݀ௌ்ை ℕ Differenz der Anzahlen der STOs in einem Ergeb-
nis- und einem Referenz-MAPL ݀௞,௟ௌ்ை ℕ Distanz zweier STOs ݇ und ݈ eines MAPL ݊஺௕௛ ℕ Anzahl der AVKs eines Referenz-MAPL, die von 
der gültigen STO abhängen 
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݊஺௄ ℕ Anzahl der AVKs, die einer STO eines Referenz-
MAPL zugeordnet sind ݊஺௄ெ௜௡ ℕ Anzahl der AVKs je STO eines Referenz-MAPL so-
fern dieser weniger STOs aufweist als ein zugehöri-
ger Ergebnis-MAPL, ansonsten Anzahl der AVKs je 
STO des Ergebnis-MAPL ݊஺௄,ெ஺௉௅ ℕ Anzahl der AVKs in einem Referenz-MAPL ݊ெ௨௟௧ ℕ Anzahl der Multipositionen je STO eines Referenz-
MAPL ݊ௌ௜௡௚ ℕ Anzahl der Positionen je STO eines Referenz-
MAPL mit singulären Bezeichnungen ݊ௌ்ை ℕ Anzahl der STOs in einem Referenz-MAPL ݊௏஺௉௅ ℕ Anzahl der VAPLs in der Menge ܵ௏஺௉௅ ݊௏஻௓ ℕ Anzahl der Vorrangbeziehungen in einem MAPL ݎ஺௕௛ [0,1] Anteil von AVKs eines Referenz-MAPL, die von der 
gültigen STO abhängen ݎெ௨௟௧ [0,1] Anteil mehrfach auftretender Bezeichnungen von 
AVKs, die einer STO eines Referenz-MAPL zuge-
ordnet sind ݎ௏஻௓ [0,1] Anteil von gültigen Vorrangbeziehungen in einem 
MAPL an allen möglichen Vorrangbeziehungen in 
diesem Referenz-MAPL ݎோ௔ௗ஺௄ [0;  0,5) Radius eines Intervalls aus dem die Auftretens-
wahrscheinlichkeiten für AVKs gleichmäßig zufällig 
gewählt werden ݎோ௔ௗௌ்ை [0;  0,5) Radius eines Intervalls aus dem die Auftretens-
wahrscheinlichkeiten für STOs gleichmäßig zufällig 
gewählt werden ܵ௞ாଵ,஻௘௭ Menge Menge der Vorrangbeziehungen in einer STO ݇ ei-
nes Referenz-MAPL bezogen auf die Bezeichnun-
gen der AVOs ܵௌ்ை Menge Menge aller STOs eines Ergebnis- und eines Refe-
renz-MAPL ܵ௏஺௉௅ Menge Menge von VAPLs, die für die datenbasierte Erstel-
lung eines MAPL verwendet werden ݐெଷ,ଵ ℕ Zeitbeschränkung in Sekunden für Schritt 1 der Me-
thode 3 für ein Experiment  ݐெଷ,ଶ ℕ Zeitbeschränkung in Sekunden für Schritt 2 der Me-
thode 3 für ein Experiment  [0,1] ߜ Parameter des Uniform Model Samplings, der das 
Signifikanzniveau des Intervalls festlegt, in dem 
eine Gleichverteilung angenähert wird 
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 Parameter des Uniform Model Samplings, der das [0,1] ߝ
Intervall festlegt, in dem eine Gleichverteilung ange-
nähert wird 

Kapitel 5.4 und Anhang A10 

Formelzeichen Typ Bedeutung ܾ௜,௝௞௢௥௥௅ {0,1} Variable die angibt, ob das ݅-te Label des ݆-ten Da-
tenpunkts eines Testdatensatzes durch ein trainier-
tes Modell korrekt wiedergegeben wird (1) oder 
nicht (0). ܾ௜௞௢௥௥ெ {0,1} Variable die angibt, ob ein auf dem ݅-ten Label ei-
nes Datensatzes trainiertes Modell dem tatsächlich 
gültigen Modell für dieses Label entspricht (1) oder 
nicht (0). ݊௅ ℕ Anzahl der Labels in einem Datensatz ݊ݏ݁ݎݑݐܽ݁ܨ݊݅ܯ ℕ Einstellparameter des Algorithmus DK-XTSD, der 
angibt, ab wie vielen Features in einem Teiltrai-
ningsdatensatz der Algorithmus von Chatterjee 
(2018) eingesetzt wird ݊ܶ݁ݐݏ ℕ Anzahl der Datenpunkte in einem Testdatensatz ݊ܶ݃݊݅݊݅ܽݎ ℕ Anzahl der Datenpunkte in einem Trainingsdaten-
satz ෝ݊ܶ݃݊݅݊݅ܽݎ ℕ Größte Anzahl von Datenpunkten in einem Trai-
ningsdatensatz über alle Trainingsdatensätze einer 
Experimentreihe [0,1] ݔܧ݊݁ܩݎ Mittlere Genauigkeit von datenbasiert erstellten Re-
geln auf einem Testdatensatz ohne Berücksichti-
gung von Standardpositionen [0,1] ݊ܫ݊݁ܩݎ Mittlere Genauigkeit von datenbasiert erstellten Re-
geln auf einem Testdatensatz unter Berücksichti-
gung von Standardpositionen  [0,1] ݔܧ݀݋ܯݎ Anteil der logisch übereinstimmenden Regeln zwi-
schen einem datenbasiert erstellten und einem tat-
sächlichen LLKM ohne Berücksichtigung von Stan-
dardpositionen [0,1] ݊ܫ݀݋ܯݎ Anteil der logisch übereinstimmenden Regeln zwi-
schen einem datenbasiert erstellten und einem tat-
sächlichen LLKM unter Berücksichtigung von Stan-
dardpositionen ܴ݃݁ݐ ℕ Zeitbeschränkung in Sekunden für die datenba-
sierte Erstellung einer Regel im Rahmen eines Ex-
periments 
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Kapitel 5.5 und Anhang A11 

Formelzeichen Typ Bedeutung ݊ܶ݃݊݅݊݅ܽݎ ℕ Anzahl der Datenpunkte in einem Trainingsdaten-
satz ෝ݊ܶ݃݊݅݊݅ܽݎ ℕ Größte Anzahl von Datenpunkten in einem Trai-
ningsdatensatz über alle Trainingsdatensätze einer 
Experimentreihe ݊௏ோ ℕ Größe der VRs für Methode 5 [0,1] ݔܧ݊݁ܩݎ Mittlere Genauigkeit von datenbasiert erstellten Re-
geln auf einem Testdatensatz ohne Berücksichti-
gung von Standardpositionen ݓெௌ [0,1] Gewichtung des Kriteriums Modellseparation angibt 

Kapitel 5.6 und Anhang A12 

Formelzeichen Typ Bedeutung ݇0,5} ݁ݐ݇݊ݑ݌݊݁ݐܽܦ;  1} Verwendetes Verfahren zur Auswahl von Daten-
punkten für den Random-Forest-Algorithmus ݇{ݐݎݍݏ,2݃݋݈} ݏ݁ݎݑݐܽ݁ܨ Verwendetes Verfahren zur Auswahl von Features 
für den Random-Forest-Algorithmus ݊݁ܨℎ݈݁ݎ ℕ Anzahl der eingebrachten Fehler in einem LLKM ݇݁ܨℎ݈݈݁ܿ݅݁ܩ} ݐݎܽݎℎݒ.,… } Art der eingebrachten Fehler in einem LLKM ݇ܿ݅ݓ݁ܩℎ݈݃݁݃ݏݑܣ,ݐݖݐ݁ݏ݁݃.ܰ} ݃݊ݑݐ. } Verwendetes Verfahren zur Gewichtung von Daten-
punkten für den Random-Forest-Algorithmus ݇{ܥ,ܤ,ܣ} ܯܭ Betrachtetes Konfigurationsmodell ݊ܶܦ ℕ Anzahl der verwendeten Entscheidungsbäume für 
den Random-Forest-Algorithmus ݒ௜,௝ fallabhängig ݆-te mögliche Ausprägung eines Produktmerkmals ݅ 
in einem HLKM des Industriepartners ݔ௜ {0,1} Variable zur Darstellung des ݅-ten Produktmerkmals 
in One-Hot-Codierung für boolesche Merkmale ݔ௜,௝ {0,1} ݆-te Variable zur Darstellung des ݅-ten Produktmerk-
mals in One-Hot-Codierung für kategorische und 
mehrwertige Merkmale ݔ௜௜௡௜௧ fallabhängig Produktmerkmal in einem Konfigurationsmodell ݕ௝ {0,1} Ausprägung eines abhängigen Parameters ݅ in ei-
nem Konfigurationsmodell 
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Anhang A1 

Formelzeichen Typ Bedeutung ܽ௜௝ ℝ Koeffizienten der Nebenbedingungen des MP oder 
RMP ܾ௜ ℝ Parameter der rechten Seite des MP oder RMP ܿ௜ ℝ Zielfunktionskoeffizient des MP oder RMP ܯ ℕ Anzahl der Zeilen des RMP ܰ ℕ Anzahl der Spalten des RMP ݑ௜ ℝ Entscheidungsvariable des MP oder RMP ݑ௜௕ ℝ Entscheidungsvariable des RMP ݒ௝ ℝ Entscheidungsvariable des DP ݒ௝∗ ℝ Wert der zugehörigen Entscheidungsvariable für 
eine optimale Lösung des DP 
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1 Einleitung 
Im Folgenden wird zunächst der Forschungsgegenstand der vorliegenden Arbeit moti-
viert und dessen Kontext dargestellt (Kapitel 1.1). Anschließend werden hieraus Prob-
leme und zugehörige Forschungsfragen abgeleitet (Kapitel 1.2). Abschließend wird die 
Methodik zur Beantwortung der Forschungsfragen vorgestellt (Kapitel 1.3). 

1.1 Motivation 
Industrieunternehmen, die auftragsbezogen entwickelte Produkte (engl. Engineer-to-
Order, ETO) anbieten, stehen unter einem hohen Wettbewerbsdruck und sehen sich 
zunehmend mit steigenden Anforderungen hinsichtlich Produktqualität und Lieferzeiten 
konfrontiert (Cannas et al. 2022, S. 974). Die auftragsbezogene Konfiguration (engl. 
Configure-to-Order, CTO) unter Einsatz von Konfigurationssystemen bietet Unterneh-
men die Möglichkeit, diese Anforderungen zu erfüllen. Einerseits können Produkte in 
hoher Variantenanzahl angeboten und damit individuelle Kundenwünsche adressiert 
werden (ElMaraghy et al. 2013, S. 632). Andererseits bestehen gegenüber der auf-
tragsbezogenen Entwicklung deutliche Vorteile hinsichtlich Produktqualität, Lieferzeit 
und Kosten (Haug et al. 2019b, S. 134). Damit gewinnt der Wandel hin zu CTO und 
damit die Einführung von Konfigurationssystemen für ETO-Unternehmen an Bedeutung 
(Cannas et al. 2022, S. 980). 

Konfigurationssysteme unterstützen oder automatisieren dispositive Aufgaben im 
Auftragsabwicklungsprozess, wie insbesondere das Verfassen der Anforderungsspezi-
fikation1 sowie die Erstellung von Stücklisten2 und Arbeitsplänen (Zhang et al. 2015, S. 
58). Die Erstellung von Stücklisten und Arbeitsplänen ist in Industrieunternehmen eine 
zentrale Aufgabe der Arbeitsplanung (Wiendahl 2019, S. 190), welche im Fokus der 
vorliegenden Arbeit steht. Eine Studie von Myrodia et al. (2018) zeigt, dass von 59 
betrachteten Unternehmen, die Konfigurationssysteme einsetzen, 56 % diese aus-
schließlich für den Vertrieb und nicht für technische Aufgaben nutzen. Damit bleibt Po-
tenzial für den Einsatz von Konfigurationssystemen für technische Aufgaben im Rah-
men der Arbeitsplanung wie insbesondere die Erstellung von Stücklisten mittels Pro-
duktkonfiguration und Arbeitsplänen mittels Prozesskonfiguration teilweise 

                                         
1 Siehe hierzu z.B. Bender & Gericke (2021, S. 198–199). 
2 Wie in Kapitel 2.1 ausgeführt wird, existieren in Unternehmen typischerweise verschiedene Arten von Stücklis-
ten. Die vorliegende Arbeit betrachtet jedoch ausschließlich die Konfiguration von Fertigungsstücklisten, weshalb 
im Folgenden sofern nicht anders angegeben mit Stücklisten Fertigungsstücklisten gemeint sind. 
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ungenutzt. Dies ist insbesondere vor dem Hintergrund relevant, dass in einer Studie 
von Prote et al. (2017) 52 % von 91 befragten Unternehmen gerade den Aufwand für 
die Erstellung von Arbeitsplänen als hoch oder zu hoch einschätzten. Somit besteht 
auch für Unternehmen, die bereits konfigurierbare Produkte anbieten, Potenzial für die 
Einführung von Konfigurationssystemen zur Produkt- und Prozesskonfiguration.  

Den Vorteilen der Einführung eines Konfigurationssystems stehen Herausforderun-
gen gegenüber. Typischerweise handelt es sich bei der Einführung eines Konfigurati-
onssystems um ein Projekt, an dem Experten verschiedener Disziplinen beteiligt sind 
(Haug et al. 2012, S. 476), das mehrere Monate dauert (Haug et al. 2019b, S. 139) und 
mehrere tausend Mitarbeiterstunden in Anspruch nimmt (Kristjansdottir et al. 2018a, S. 
66; Shafiee et al. 2020, S. 14). Die Nutzung eines Konfigurationssystems setzt ein kon-
figurierbares Produkt voraus. Dessen Varianten bilden eine Produktfamilie (Tiihonen et 
al. 1998, S. 30–35). Varianten eines Produkts werden im Konfigurationsprozess durch 
Entscheidungen im Rahmen zuvor festgelegter Möglichkeiten spezifiziert (Abbasi et al. 
2013, S. 162). Dadurch ergibt sich im Gegensatz zu einem auftragsbezogen entwickel-
ten Produkt ein definierter und beschränkter Produktraum. Dieser kann jedoch mit typi-
schen Variantenanzahlen von z. B. 1024 im Anlagenbau (Blumöhr et al. 2019, S. 36) 
eine unüberschaubare Größe aufweisen. Diese Komplexität setzt sich in den Konfigu-
rationsmodellen, die die Wissensbasis für eine Konfiguration darstellen, fort: In der Li-
teratur sind Konfigurationsmodelle mit 18.000 hinterlegten Regeln alleine für die Erstel-
lung von Stücklisten beschrieben (Sinz 2004, S. 3). Vor diesem Hintergrund kann erklärt 
werden, warum Wissensbereitstellung und Wissensmodellierung zu den größten Her-
ausforderungen bei der Einführung und Nutzung von Konfigurationssystemen zählen 
(Haug et al. 2019a, S. 121; Kristjansdottir et al. 2018b, S. 203).  

Werden Konfigurationssysteme für eine bestehende Produktlinie eingeführt, sind im 
Unternehmen technische Produktdokumentationen wie insbesondere Stücklisten und 
Arbeitspläne für Produktvarianten aus zurückliegenden Aufträgen vorhanden3. Diese 
sind insofern korrekt, als sie bereits für eine erfolgreiche Auftragsabwicklung verwendet 
wurden. Da diese Dokumente i. d. R. von Domänenexperten erstellt wurden, sind sie 
das Produkt desselben Domänenwissens, das auch der Erstellung von 

                                         
3 Aufgrund des Betrachtungsrahmens der vorliegenden Arbeit sind im Folgenden mit technischer Produktdoku-
mentation (kurz: Dokumentation, auch: Dokumente) sofern nicht anders angegeben Fertigungsstücklisten und 
Arbeitspläne gemeint. Eine technische Produktdokumentation kann in der industriellen Praxis jedoch weitere Do-
kumente umfassen, wie z. B. von Bender & Gericke (2021, S. 905–906) beschrieben. 
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Konfigurationsmodellen zugrunde liegt. Es ist deshalb davon auszugehen, dass hieraus 
mittels datenbasierter Methoden Muster extrahiert werden können, aus denen sich 
ein Konfigurationsmodell erstellen lässt, das das zugrundeliegende Domänenwissen 
repräsentiert. In Fällen in denen eine ausreichende Anzahl von Daten in Form von tech-
nisch dokumentierten Produktvarianten zur Verfügung steht, kann die Erstellung von 
Konfigurationsmodellen potenziell vollständig automatisiert werden. 

Es ist jedoch davon auszugehen, dass nicht in allen Fällen initial genügend Daten zur 
Verfügung stehen, um für eine bestehende Produktlinie ein Konfigurationsmodell mit 
ausreichender Genauigkeit automatisch zu erstellen. Ggf. ist zum einen eine sukzes-
sive datenbasierte Verfeinerung im laufenden Betrieb möglich: Die mittels Konfigurati-
onssystemen erstellten Stücklisten und Arbeitspläne werden manuell überprüft und das 
Konfigurationsmodell wird ggf. angepasst, bis eine ausreichende Genauigkeit vorliegt. 
Eine manuelle Überwachung und Anpassung im Betrieb ist in der Industrie auch für 
manuell erstellte Konfigurationsmodelle üblich. Dadurch kann jedoch bei der Auftrags-
abwicklung zusätzlicher Aufwand anfallen, der zu einer Erhöhung der Lieferzeit führen 
kann. Zum anderen kann die Erweiterung der Datenbasis unabhängig vom Auftrags-
abwicklungsprozess erfolgen. Dafür werden aus dem Raum aller zulässig spezifizier-
baren Produktvarianten diejenigen ausgewählt, die einen hohen Informationsgewinn für 
eine datenbasierte Erstellung des Konfigurationsmodells erwarten lassen. Für diese 
werden Dokumente, d. h. Stücklisten und Arbeitspläne, erstellt, so dass sich zusätzli-
che Daten für eine datenbasierte Erstellung von Konfigurationsmodellen ergeben. Prin-
zipiell ermöglicht ein solches Vorgehen auch Unternehmen mit geringer Expertise in 
der Wissensmodellierung eine Erstellung von Konfigurationsmodellen durch die Vor-
gabe von Beispielen. Die Auswahl geeigneter Varianten4 stellt hierbei jedoch eine 
Herausforderung dar. 

Aufgrund ihrer Komplexität sind Konfigurationsmodelle nicht nur aufwändig zu erstellen, 
sondern auch fehleranfällig (Voronov 2013, S. 4). Fehler können bei der Pflege der 
Modelle oder bereits bei deren Erstellung auftreten (Shafiee et al. 2020, S. 14). Die 
Überführung von Domänenwissen in ein Modell erfolgt i. d. R. nicht durch Domänenex-
perten selbst, sondern durch Experten für Wissensrepräsentation (engl. Knowledge Re-
presentation Experts) in Abstimmung mit den Domänenexperten (Haug et al. 2012, S. 
475–478). Diese Arbeitsteilung geht mit typischen Schnittstellenproblemen, wie 

                                         
4 Hier und im Folgenden wird der Begriff Variante als Kurzform für Produktvariante verwendet. 
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insbesondere Missverständnissen oder einer unzureichenden Wissensweitergabe, ein-
her, aus denen Fehler resultieren können (Haug et al. 2012, S. 478; Shafiee et al. 2017, 
S. 987–988). Darüber hinaus zeigen Felfernig et al. (2015) in einer Studie mit zehn 
erfahrenen Experten für Wissensrepräsentation, dass auch diesen in nicht unerhebli-
chem Maße Fehler bei der Formalisierung von Wissen unterlaufen. Fehler in Konfigu-
rationsmodellen können jedoch auch bei einer datenbasierten Erstellung und darüber 
hinaus durch manuelle Änderungen des Konfigurationsmodells im Betrieb entstehen. 
Werden mit Hilfe von Konfigurationssystemen im Rahmen der Arbeitsplanung Stücklis-
ten und Arbeitspläne erstellt, haben diese Fehler einen unmittelbaren Einfluss auf die 
Produktionsdurchführung. In Folge kann es zu schwerwiegenden Unterbrechungen des 
Materialflusses, zu Mängeln in der Produktqualität oder sogar zu Mängeln in der Pro-
duktsicherheit kommen (Küchlin 2020, S. 9). Der Überprüfung von Konfigurationsmo-
dellen kommt damit eine herausragende praktische Bedeutung zu. In der Literatur zu 
maschinellem Lernen werden Methoden der Anomalieerkennung erfolgreich einge-
setzt, um Hinweise auf Fehler in Datensätzen zu erhalten (Aggarwal 2017, S. 399–422). 
Konfigurationsmodelle können zu einem gewissen Teil in Daten umgewandelt werden, 
die sich für eine solche Anomalieerkennung eignen5. Auch für die Überprüfung von 
Konfigurationsmodellen erscheint daher der Einsatz von datenbasierten Methoden 
vielversprechend6.  

Es lässt sich festhalten, dass in der Industrie Potenzial für die Einführung und weiter-
gehende Verwendung von Konfigurationssystemen, insbesondere für die Produkt- und 
Prozesskonfiguration, besteht. Diesem Potenzial stehen jedoch Herausforderungen ge-
genüber, wie insbesondere ein hoher Erstellungsaufwand und eine hohe Fehleranfäl-
ligkeit von Konfigurationsmodellen. Datenbasierte Methoden bieten Möglichkeiten, die-
sen Herausforderungen zu begegnen, sind aber – wie in Kapitel 3 dargelegt wird – noch 
nicht ausreichend erforscht, um in der industriellen Praxis eingesetzt werden zu kön-
nen. Deshalb befasst sich die vorliegende Arbeit mit der datenbasierten Erstellung und 

                                         
5 Diese Daten sind formalisierte Repräsentationen eines Konfigurationsmodells und damit insbesondere nicht mit 
Daten in Form von spezifizierten Produktvarianten zu verwechseln, die für die Erstellung von Konfigurationsmo-
dellen verwendet werden können. 
6 Auch für die Überprüfung von Stücklisten und Arbeitsplänen, die als Eingangsdaten für die Erstellung von Kon-
figurationsmodellen dienen kann prinzipiell Anomalieerkennung eingesetzt werden. Dies liegt jedoch nicht im Be-
trachtungsrahmen der vorliegenden Arbeit, auch wenn sich die in Kapitel 4.6 dargestellte Methode prinzipiell auf 
diesen Anwendungsfall übertragen lässt.  
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Überprüfung von Modellen zur Produkt- und Prozesskonfiguration. Abbildung 1.1 ver-
anschaulicht das entsprechende Konzept schematisch.

1.2 Probleme und Forschungsfragen
Um die industrielle Relevanz der vorliegenden Arbeit zu gewährleisten, wird von Konfi-
gurationssystemen und zugehörigen Konfigurationsmodellen ausgegangen, wie sie ge-
genwärtig in der Industrie eingesetzt werden. Diese bestehen aus

- Maximalstücklisten, die die potenziellen Komponenten des konfigurierbaren 
Produkts enthalten, 

- Maximalarbeitsplänen, die die potenziellen Arbeitsvorgänge seines Herstellpro-
zesses enthalten sowie 

- Regeln, die die Elemente der Maximalstückliste bzw. des Maximalarbeitsplans 
und deren Ausprägungen auf Basis der Anforderungsspezifikation festlegen,

wie in Kapitel 2.2.2.4 ausgeführt wird. Um Maximalstücklisten und Maximalarbeitspläne 
von den individuell für jede Variante erstellten Stücklisten und Arbeitsplänen abzugren-
zen, werden letztere im Folgenden als variantenbezogene Stücklisten bzw. Arbeits-
pläne bezeichnet. Die datenbasierte Erstellung von Produkt- und Prozesskonfigurati-
onsmodellen basiert auf der Prämisse, dass im Unternehmen bereits entwickelte und 
vertriebene Varianten eines Produkts vorliegen und die konfigurierbaren Merkmale des 
Produkts bereits definiert sind. Der Fokus der vorliegenden Arbeit liegt auf

Abbildung 1.1: Konzept der datenbasierten Erstellung und Überprüfung von Modellen 
zur Produkt- und Prozesskonfiguration
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0 0 1 1 0 1 0 0 1 0
1 0 0 0 1 1 1 0 1 0
1 1 1 0 1 0 1 0 1 1
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Anwendungsfällen, in denen das Unternehmen bereits ein Konfigurationssystem für 
den Vertrieb einsetzt, aber nicht für die Arbeitsablaufplanung7. Die entwickelten Metho-
den können auf Anwendungsfälle übertragen werden, in denen das Unternehmen zwar 
kein Konfigurationssystem für den Vertrieb einsetzt, aber dennoch eine Anforderungs-
spezifikation auf Basis definierter Produktmerkmale erstellt. Da das Produkt bereits ver-
trieben wird, wird davon ausgegangen, dass im Unternehmen bereits technisch doku-
mentierte Varianten – d. h. durch Merkmale spezifizierte Varianten mit zugehörigen va-
riantenbezogenen Stücklisten und variantenbezogenen Arbeitsplänen – vorliegen. De-
ren Anzahl kann ausreichend groß sein, um ein hinreichend genaues Konfigurations-
modell zu erstellen oder zu gering, so dass eine Erweiterung der Datenbasis notwendig 
ist.  

Unter diesen Prämissen und vor dem Hintergrund des in Kapitel 1.1 gegebenen Kon-
textes lassen sich die folgenden Probleme als Gegenstand der vorliegenden Arbeit 
identifizieren. 

- Die datenbasierte Erstellung von Modellen zur Produkt- und Prozesskonfigura-
tion (Problem 1), 

- die datenbasierte Erstellung von Maximalstücklisten (Problem 2), 
- die datenbasierte Erstellung von Maximalarbeitsplänen (Problem 3), 
- die datenbasierte Erstellung von Regeln (Problem 4), 
- die Auswahl von repräsentativen Varianten zur Erweiterung der Datenba-

sis (Problem 5), 
- und die datenbasierte Überprüfung von Regeln (Problem 6). 

Die Probleme 1 und 6 ergeben sich unmittelbar aus den in Kapitel 1.1 beschriebenen 
Herausforderungen in der industriellen Praxis. Die Probleme 2, 3 und 4 ergeben sich 
für die in der industriellen Praxis überwiegend eingesetzten und zuvor beschriebenen 
Konfigurationsmodelle als Teilprobleme von Problem 1. Problem 5 ist ein Teilproblem 
von Problem 1 für Anwendungsfälle mit unzureichender Datenbasis. Es wird betrachtet, 
um die industrielle Relevanz der vorliegenden Arbeit für eine große Anzahl von Anwen-
dungsfällen zu gewährleisten. Durch Problem 6 wird die Überprüfung von Konfigurati-
onsmodellen im Rahmen der vorliegenden Arbeit auf die Überprüfung von Regeln 

                                         
7 Dieser Fall wird u. a. von Haug et al. (2019a, S. 126) und Bredahl Rasmussen et al. (2021, S. 8) für verschiedene 
Industrieunternehmen beschrieben. Seine Einordnung gegenüber den Idealtypen ETO und CTO wird in Kapitel 
2.2.1 thematisiert. 
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beschränkt. Insbesondere diese werden in der Literatur als fehleranfällig angesehen 
(z. B. von Küchlin 2020, S. 1).  

Die Probleme 1 bis 6 werden im Rahmen der vorliegenden Arbeit gelöst. Dadurch ist 
es abschließend möglich, die folgenden Forschungsfragen zu beantworten: 

- Wie und wie zuverlässig können Produkt- und Prozesskonfigurationsmodelle da-
tenbasiert erstellt werden? (Forschungsfrage 1) 

- Wie und wie zuverlässig können Maximalstücklisten datenbasiert erstellt 
werden? (Forschungsfrage 2) 

- Wie und wie zuverlässig können Maximalarbeitspläne datenbasiert erstellt 
werden? (Forschungsfrage 3) 

- Wie und wie zuverlässig können Regeln datenbasiert erstellt werden? 
(Forschungsfrage 4) 

- Wie und wie effektiv kann die Datenbasis für die datenbasierte Erstellung 
von Regeln erweitert werden? (Forschungsfrage 5) 

- Wie und wie zuverlässig können Regeln in Produkt- und Prozesskonfigurations-
modellen datenbasiert überprüft werden? (Forschungsfrage 6) 

1.3 Methodik und Aufbau der Arbeit 
Die vorliegende Arbeit lässt sich den Technikwissenschaften im Sinne der Deutschen 
Akademie der Technikwissenschaften (acatech) zuordnen. „Technikwissenschaften 
schaffen kognitive Voraussetzungen für Innovation in der Technik und Anwendung 
technischen Wissens und legen die Grundlagen für die Reflexion ihrer Implikationen 
und Folgen“ (acatech (Hrsg.) 2013, S. 18). Das übergeordnete Ziel der vorliegenden 
Arbeit entspricht dem übergeordneten Ziel der Technikwissenschaften „erweiterte[ ] 
Möglichkeitsräume[ ] für das technische Handeln“ zu schaffen (acatech (Hrsg.) 2013, 
S. 19). Dabei folgt diese Arbeit dem Paradigma des Design Science Research. „[Design 
Science Research] seeks to enhance technology and science knowledge bases via the 
creation of innovative artifacts that solve problems and improve the environment in 
which they are instantiated” (vom Brocke et al. 2020, S. 1). Konkret entspricht die vor-
liegende Arbeit dem Design Science Research Process nach Peffers et al. (2007), 
der in Abbildung 1.2 (1) dargestellt ist. 
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Auch der Aufbau der vorliegenden Arbeit entspricht dem Design Science Research 
Process, wie in Abbildung 1.2 (2) veranschaulicht. In Kapitel 1 wurden die in der vorlie-
genden Arbeit betrachteten Probleme 1 bis 6 und zugehörige Forschungsfragen aus 
der industriellen Praxis abgeleitet. In Kapitel 2 werden die für diese Arbeit relevanten 
Grundlagen vermittelt. Damit wird einerseits im Sinne des Design Science Research 
Process der Kontext der definierten Probleme beschrieben. Andererseits wird das not-
wendige Vorwissen zum Verständnis der im Rahmen der Arbeit entwickelten Artefakte
vermittelt. In Kapitel 3 werden die Probleme 1 bis 6 konkretisiert indem Anforderungen 
an die zu deren Lösung erforderlichen Artefakte aus der übergeordneten Problemstel-
lung abgeleitet werden. Außerdem wird untersucht, inwieweit bestehende Ansätze 
nach Stand der Forschung diese Anforderungen bereits erfüllen (entsprechend Peffers 
et al. 2007, S. 90). Aus der Differenz ergibt sich ein Lösungsdefizit, das durch die Ent-
wicklung geeigneter Artefakte geschlossen wird. In Kapitel 4 werden die im Rahmen 
der vorliegenden Arbeit entwickelten Methoden 1 bis 6 zur Lösung der Probleme 1 bis 

Abbildung 1.2: Methode und Aufbau der Arbeit (Methode nach Peffers et al. 2007, S. 
93)
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6, d. h. Artefakte im Sinne der obigen Definition, vorgestellt. In Kapitel 5 werden die 
Methoden auf industrienahe Anwendungsfälle angewandt. Hierdurch wird ihre grund-
sätzliche Anwendbarkeit demonstriert und ihre Effektivität quantifiziert. In Kapitel 6 wer-
den diese Ergebnisse diskutiert und auf Basis dessen die Forschungsfragen 1 bis 6 
beantwortet. Darüber hinaus wird ein Ausblick auf den weiteren Entwicklungsbedarf 
gegeben, der im Sinne des Design Science Research Process als Grundlage für wei-
tere Entwicklungszyklen dient. Abschließend wird die Arbeit in Kapitel 7 zusammenge-
fasst. Die Kommunikation der aus der Arbeit hervorgegangenen Erkenntnisse im Sinne 
des Design Science Research Process erfolgte bereits durch Veröffentlichung eines 
ersten Ansatzes (Frey et al. 2023) und wird durch die vorliegende Arbeit, welche öffent-
lich zugänglich ist, komplementiert. 
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2 Grundlagen
Wie zuvor motiviert, wird durch die vorliegende Arbeit ein Beitrag zur Unterstützung der 
Arbeitsplanung durch die datenbasierte Erstellung und Überprüfung von Modellen zur
Produkt- und Prozesskonfiguration geleistet. Zu diesem Zweck werden u.a. Verfahren
des Maschinellen Lernens (ML) eingesetzt. Dementsprechend werden im Folgenden 
die wichtigsten Grundlagen der Arbeitsplanung (Kapitel 2.1), der Konfiguration (Kapitel 
2.2) und des ML (Kapitel 2.3) dargestellt.

2.1 Arbeitsplanung
Die Arbeitsplanung in Industrieunternehmen hat die Aufgabe, „die erforderlichen Ver-
fahren, Betriebsmittel und Abläufe [festzulegen], um ein Erzeugnis zu fertigen oder eine 
Dienstleistung auszuführen“ (Wiendahl 2019, S. 189). Sie stellt neben der Arbeitssteu-
erung, die die planmäßige Durchführung der Produktion sicherstellt, eine Teilaufgabe
der Arbeitsvorbereitung dar (Eversheim 2002, S. 1–7). Die Arbeitsplanung kann wie-
derum in die Arbeitssystemplanung und die Arbeitsablaufplanung unterteilt werden
(Westkämper 2006, S. 155). Abbildung 2.1 zeigt die Gliederung der relevanten Begriffe.

Die Aufgaben der Arbeitsplanung lassen sich darüber hinaus nach ihrer Fristigkeit in 
kurz-, mittel- und langfristig einteilen (Wiendahl 2019, S. 189–190). Die kurzfristigen 
Aufgaben der Arbeitsplanung können weitgehend der Arbeitsablaufplanung zugeordnet 
werden. Sie umfassen die Arbeitsplanerstellung, die Erstellung von Fertigungsstücklis-
ten (sog. Stücklistenverarbeitung), die NC-Programmierung sowie die Fertigungshilfs-
mittelplanung (Wiendahl 2019, S. 190). Der Einsatz von Konfigurationssystemen im 
Rahmen der Arbeitsplanung ist im Wesentlichen für die Erstellung von Stücklisten 

Abbildung 2.1: Aufgaben der Arbeitsvorbereitung (Eigene Darstellung nach Wiendahl
2019, S. 189, Westkämper 2006, S. 155 und Eversheim 2002, S. 1–7) 
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(STLs) und Arbeitsplänen (APLs) und damit in der Arbeitsablaufplanung relevant. Es 
kann somit präzisiert werden, dass die vorliegende Arbeit sich mit Modellen zur Pro-
dukt- und Prozesskonfiguration im Rahmen der Arbeitsablaufplanung befasst. Die 
beiden hierfür zentralen Begriffe STL und APL werden im Folgenden näher erläutert.

STLs enthalten die eindeutig identifizierten Komponenten einer Baugruppe oder eines 
montierbaren Produkts mit Menge und Einheit (ISO 7573:2008-11, S. 2–4). In der vor-
liegenden Arbeit werden sowohl Einzelteile, als auch montierte Gruppen von Einzeltei-
len zusammenfassend als Komponenten bezeichnet. Komponenten, die das betrach-
tete Unternehmen zukauft, werden als Zukaufkomponenten (ZKs) bezeichnet. Wird ex-
plizit der Begriff Baugruppe verwendet, ist damit eine Baugruppe gemeint, die im Un-
ternehmen montiert wird und damit keine ZK ist. Neben ZKs und Baugruppen, die keine 
bzw. mehrere untergeordnete Komponenten in der STL aufweisen, können in der Pra-
xis auch Komponenten mit genau einer untergeordneten Komponente in STLs auftre-
ten. Dies kann z. B. der Fall sein, wenn eine bestimmte Komponente in verschiedenen 
Zuständen, wie z. B. vor und nach einer Wärmebehandlung, in der Stückliste erfasst 
wird. Dieser Fall wird jedoch in der vorliegenden Arbeit nicht betrachtet. STLs können 
mehrstufige Hierarchien aufweisen. Gängige Formate für STLs sind, wie in Abbildung 
2.2 dargestellt, Mengenübersichtsstücklisten, Strukturstücklisten und Baukastenstück-
listen (Wiendahl 2019, S. 159–164). Hinsichtlich ihrer Funktion sind u. a. Konstruktions-
stücklisten, die im Rahmen der Produktentwicklung erstellt werden und Fertigungs-
stücklisten, die als Grundlage für die Produktionsdurchführung geeignet sind, zu unter-
scheiden (Eversheim 2002, S. 23). Aufgrund ihrer unterschiedlichen Funktion können 
sich Konstruktionsstücklisten und Fertigungsstücklisten u. a. in ihrer Struktur unter-
scheiden, d. h. in der Weise wie ZKs zu Baugruppen zusammengefasst werden 

Produkt

Komponente 1 Komponente 2

Komponente 2 Komponente 3

1 Stk. 2 Stk.

2 Stk. 1 Stk.

Produkt

Komponente 1 Komponente 2

Komponente 1

Komponente 2 Komponente 3

1 Stk. 2 Stk.

2 Stk. 1 Stk.

Produkt

Komponente 1

Komponente 2

Komponente 3

1 Stk.

4 Stk.

1 Stk.

Strukturstückliste Baukastenstückliste Mengenübersichts-
stückliste

Abbildung 2.2: Gängige Formate für Stücklisten nach Wiendahl (2019, S. 159–164)
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(Wiendahl 2019, S. 194). Baugruppen in Konstruktionsstücklisten fassen i. d. R. ZKs 
zusammen, die gemeinsam eine Produktfunktion abbilden wohingegen Fertigungs-
stücklisten Baugruppen definieren, die als Zwischenzustände in der Montage auftreten 
(Wiendahl 2019, S. 194). Bei den in der vorliegenden Arbeit betrachteten variantenbe-
zogenen Stücklisten (VSTLs) handelt es sich um Fertigungsstücklisten. 

Der APL ist das Ergebnis der Arbeitsplanerstellung und beschreibt „die Vorgangsfolge 
zur Herstellung eines Teils, einer Baugruppe oder eines Erzeugnisses“ (Wiendahl 
2019, S. 191). Ein APL besteht i. d. R. aus mehreren Arbeitsvorgängen (AVOs), für die 
jeweils mindestens das verwendete Material, der Arbeitsplatz, die Betriebsmittel und 
die Vorgabezeiten hinterlegt sind (Wiendahl 2019, S. 191). Ein AVO ist i. d. R. einem 
Arbeitsplatz zugeordnet und umfasst alle Arbeitsinhalte, die für einen Auftrag an diesem 
Arbeitsplatz ausgeführt werden (Eversheim 2002, S. 24). Da Arbeitsplätze in der in-
dustriellen Praxis mehr oder weniger umfassend abgegrenzt werden, können AVOs in 
der Industrie mehr oder weniger großen Teilen des gesamten Herstellprozesses ent-
sprechen. Die Arbeitsinhalte eines AVOs können weiter in Operationen unterteilt wer-
den, wodurch der APL verfeinert wird (Wiendahl 2019, S. 195). Der Detaillierungsgrad 
der Arbeitsplanung ist das Ergebnis einer Aufwand-Nutzen-Abwägung und kann von 
Fall zu Fall unterschiedlich sein (Eversheim 2002, S. 1). In der vorliegenden Arbeit wird 
nicht zwischen AVOs und Operationen unterschieden, sondern jeweils der Begriff AVO 
verwendet. Je nach Anwendungsfall kann ein AVO somit mehr oder weniger Arbeitsin-
halt umfassen. 

2.2 Konfiguration 
Im Folgenden werden zunächst die zentralen Begriffe zu Konfiguration im industriellen 
Kontext, die für die vorliegende Arbeit relevant sind, eingeführt (Kapitel 2.2.1). Anschlie-
ßend wird auf Systeme und Modelle der Vertriebs-, Produkt- und Prozesskonfiguration 
sowie auf integrierte Konfigurationsmodelle näher eingegangen (Kapitel 2.2.2). Zuletzt 
wird entsprechend des Rahmens der vorliegenden Arbeit die Erstellung und Überprü-
fung dieser Modelle thematisiert (Kapitel 2.2.3). 

2.2.1 Zentrale Begriffe der Konfiguration 

Wie Oddsson & Ladeby (2014, S. 419–422) zeigen, gibt es in der Literatur ähnliche, 
wenn auch z .T. nicht übereinstimmende, Definitionen der zentralen Begriffe Konfigu-
ration, Konfigurationsmodell (KM) und Konfigurationssystem (KS). Auf Basis einer 
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umfassenden Literaturanalyse erarbeiten sie Begriffsdefinitionen, an denen sich die 
vorliegende Arbeit orientiert. Der Begriff Konfiguration meint zum einen den Prozess 
des Konfigurierens und zum anderen das Ergebnis dieses Prozesses (Felfernig et al. 
2014, S. 6). In der vorliegenden Arbeit werden dementsprechend überall dort die Be-
griffe Konfigurationsprozess und Konfigurationsergebnis verwendet, wo dies für das 
Verständnis erforderlich ist.  

Der Konfigurationsprozess löst die Konfigurationsaufgabe. Darunter verstehen Odds-
son & Ladeby (2014, S. 420) die Kombination vordefinierter Elemente sowie das Fest-
legen von deren Eigenschaften unter Berücksichtigung von Beschränkungen und zu-
lässigen Schnittstellen, sodass gegebene Anforderungen erfüllt werden. Wie Oddsson 
& Ladeby (2014, S. 420) ausführen, kann das Ergebnis des Konfigurationsprozesses 
auch Beziehungen zwischen den Elementen enthalten. Je nach betrachteter Konfigu-
rationsaufgabe können Elemente im Sinne der Definition z. B. Komponenten und Be-
ziehungen z. B. meronymische Beziehungen, d. h. Ist-Bestandteil-von-Beziehungen, 
sein. Die Eigenschaften der vordefinierten Elemente, im Folgenden auch als Parameter 
bezeichnet, und deren Definitionsbereiche sind i. d. R. ebenfalls vordefiniert (siehe Bei-
spiel von Felfernig et al. 2014, S. 56). In der vorliegenden Arbeit wird auch das Vorhan-
densein oder Nichtvorhandensein eines Elements in einer Kombination ebenfalls als 
Parameter des Elements verstanden. Beschränkungen bestehen somit immer zwi-
schen Parametern, können jedoch auch ausdrücken, dass sich das Vorhandensein ver-
schiedener Elemente gegenseitig bedingt oder ausschließt (angelehnt an Hvam et al. 
2008, S. 214–215). Abweichend von Oddsson & Ladeby (2014) wird in der Literatur 
nicht nur der Begriff Beschränkungen verwendet, sondern zwischen Beschränkungen 
und Regeln unterschieden (beispielsweise von Hvam et al. 2008, S. 211–215)8. Eine 
Regel legt die Ausprägung eines Parameters auf Basis der Ausprägung eines bestimm-
ten anderen Parameters fest und ist somit unidirektional (Hvam et al. 2008, S. 211–
214). Regeln besitzen für die vorliegende Arbeit eine herausragende Bedeutung. Im 
Folgenden wird deshalb ebenfalls zwischen bidirektionalen Beschränkungen und 
unidirektionalen Regeln unterschieden und übergeordnet der Begriff Abhängigkeiten 
verwendet. Vor dem gegebenen Hintergrund ist der Konfigurationsprozess in der vor-
liegenden Arbeit auf Basis der Definition einer Konfigurationsaufgabe nach Oddsson & 

                                         
8 Kapitel 2.2.2.2 geht auf diese Begriffe im Zusammenhang mit Produktkonfiguration genauer ein. 
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Ladeby (2014) wie folgt definiert: Die Konfiguration im Sinne des Konfigurationspro-
zesses umfasst

- die Auswahl von Elementen aus einer vordefinierten Menge von Elementen,
- die Festlegung der Ausprägungen der vordefinierten Parameter dieser Elemente 

im Rahmen vordefinierter Definitionsbereiche,
- und die Festlegung der Beziehungen zwischen den Elementen aus einer vorde-

finierten Menge möglicher Beziehungen

unter Berücksichtigung von Abhängigkeiten, sodass gegebene Anforderungen erfüllt 
werden. Entsprechend der üblichen Begriffsverwendung in der Literatur (beispielsweise
Zhang et al. 2010, S. 213) wird in der vorliegenden Arbeit davon gesprochen, dass 
durch den Konfigurationsprozess der betrachtete Gegenstand wie insbesondere ein
Produkt oder ein Prozess konfiguriert wird. Die Konfiguration im Sinne des Konfigu-
rationsergebnisses besteht aus ausgewählten Elementen mit festgelegten Parame-
terausprägungen, die zueinander in festgelegten Beziehungen9 stehen. 

                                        
9 Beziehungen sind damit in der vorliegenden Arbeit von Abhängigkeiten zu unterscheiden, auch wenn die beiden 
Begriffe in der Literatur nicht scharf voneinander abgegrenzt sind. Beziehungen zwischen Elementen des 
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Abbildung 2.3: Schematische Darstellung der relevanten Begriffe im Kontext industriel-
ler Konfigurationssysteme
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Angelehnt an die Definition von Produktkonfigurationsmodellen nach Oddsson & La-
deby (2014, S. 420) enthält ein Konfigurationsmodell eine Menge vordefinierter Ele-
mente mit vordefinierten Parametern mit vordefinierten Definitionsbereichen. Darüber 
hinaus enthält es die möglichen Beziehungen zwischen den Elementen sowie die gül-
tigen Abhängigkeiten zwischen deren Parametern. Angelehnt an die Definition von Pro-
duktkonfigurationssystemen nach Oddsson & Ladeby (2014, S. 422) werden in der vor-
liegenden Arbeit software-basierte Systeme, die den Nutzer dabei unterstützen auf Ba-
sis eines hinterlegten KM eine Konfiguration vorzunehmen als Konfigurationssys-
teme bezeichnet. Der Begriff Konfigurator wird synonym hierfür verwendet. Abbildung 
2.3 stellt die eingeführten Begriffe anhand eines abstrahierten KM dar10. Auf die kon-
krete Ausgestaltung von KMs wird in den folgenden Kapiteln eingegangen. 

Nach Hvam et al. (2008, S. 15–27) sind in Industrieunternehmen u. a. Spezifikationen 
von Angeboten, Produkten und Produktionsprozessen zu erstellen. Unternehmen, die 
dem Prinzip der auftragsbezogenen Entwicklung (Engineer-to-Order, ETO) folgen, er-
stellen diese Spezifikationen nach Auftragseingang (Hvam et al. 2008, S. 28–30). Un-
ternehmen, die dem Prinzip der auftragsbezogenen Konfiguration (Configure-to-Or-
der, CTO) folgen, erstellen hingegen auftragsunabhängige Spezifikationen, die als Ba-
sis für die Erstellung von auftragsbezogenen Spezifikationen mittels Konfiguration die-
nen (Hvam et al. 2008, S. 28–30). Die auftragsunabhängig erstellten Spezifikationen 
entsprechen hierbei den oben beschriebenen Elementen und Abhängigkeiten des Kon-
figurationsmodells. Im Gegensatz zur ETO existiert damit für die CTO ein definierter 
und geschlossener Lösungsraum (Kourtis et al. 2024, S. 154). Zwischen den Idealtypen 
ETO und CTO findet sich in der Praxis ein Kontinuum für den Grad der auftragsunab-
hängig erstellten Spezifikationen (Hvam et al. 2008, S. 28–30). Beispiele hierfür sind 
Unternehmen, die, wie in Kapitel 1.1 und 1.2 beschrieben, Konfigurationssysteme aus-
schließlich im Vertrieb nutzen. 

2.2.2 Typen von Konfigurationssystemen und -modellen 

KSs können nach ihrem Einsatzzweck in Vertriebs-, Produkt-, Prozess- und Instand-
haltungskonfigurationssysteme eingeteilt werden (Zhang et al. 2020, S. 1–3). 

                                         

Konfigurationsmodells werden teilweise oder vollständig in das Konfigurationsergebnis übernommen. Abhängig-
keiten hingegen schränken die Möglichkeiten im Konfigurationsprozess ein und liegen im abschließenden Konfi-
gurationsergebnis nicht vor. 
10 Die Größen ݀, ݁, ݎ ,݌ und ݒ stehen als Platzhalter für bestimmte Abhängigkeiten (݀), Elemente (݁), Parameter 
 .(ݒ) bzw. Parameterausprägungen (ݎ) Beziehungen ,(݌)
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Instandhaltungskonfigurationssysteme sind nicht Gegenstand der vorliegenden Arbeit. 
Vertriebs-, Produkt- und Prozesskonfigurationssysteme werden im Folgenden erläutert, 
wobei der Fokus auf den zugehörigen KMs liegt. 

2.2.2.1 Vertriebskonfigurationssysteme und -modelle 

Vertriebskonfigurationssysteme werden häufiger als Vertriebskonfiguratoren (engl. 
sales configurator oder commercial configurator) bezeichnet. Sie unterstützen einen 
Kunden oder einen Vertriebsmitarbeiter, der mit dem Kunden interagiert, dabei ein Pro-
dukt vollständig und korrekt mittels Konfiguration zu spezifizieren, d. h. zu konfigurieren 
(Trentin et al. 2014, S. 694). Die Konfiguration erfolgt i. d. R. durch das Ausprägen von 
Produktmerkmalen11, wobei unzulässige Kombinationen von Merkmalausprägungen 
durch hinterlegte Beschränkungen ausgeschlossen sind (Abbasi et al. 2013, S. 166–
170). Insbesondere bei der Gestaltung von Vertriebskonfiguratoren für die direkte In-
teraktion mit dem Kunden ist darauf zu achten, dass die abgefragten Merkmale dem 
Nutzer ermöglichen, seine Anforderungen zu artikulieren (Salvador & Forza 2007, 
117ff). Die Vertriebskonfiguration stellt damit nicht zwingend eine technische Spezi-
fikation des Produkts dar, sondern erfolgt u. U. auf Ebene der Kundenanforderungen 
oder der Produktfunktionen (Salvador & Forza 2007, S. 117–119). Für eine konfigu-
rierbare Pumpe kann z. B. aus Sicht des Kunden ein Produktmerkmal sinnvoll sein, das 
das geförderte Medium beschreibt. Dieses Produktmerkmal kann sich in vielfältiger 
Weise auf die technische Spezifikation des Produkts – wie z. B. auf die Auswahl der 
verwendeten Werkstoffe für verschiedene Komponenten – niederschlagen. Die Über-
setzung einer Vertriebskonfiguration in eine technische Spezifikation ist insbesondere 
in diesen Fällen nicht trivial (siehe auch Anwendungsfall von Salvador & Forza 2007, 
S. 125). Durch die definierten Merkmale und deren Definitionsbereiche sowie die hin-
terlegten Beschränkungen, definiert das in Vertriebskonfiguratoren hinterlegte Ver-
triebskonfigurationsmodell einen Konfigurationsraum. Jede mögliche Vertriebskonfi-
guration aus dem Konfigurationsraum entspricht einer möglichen Variante des konfigu-
rierbaren Produkts. Die Vertriebskonfiguration ist die Basis für den in der vorliegenden 
Arbeit betrachteten Produkt- und Prozesskonfigurationsprozess. In manchen Fällen 
schließt die Vertriebskonfiguration in der Praxis auch bereits die Beschreibung von 

                                         
11 Im Folgenden bezeichnen Produktmerkmale (kurz: Merkmale) Eigenschaften des Produkts aus Sicht des Kun-
den und sind Teil der Angebotsspezifikation. Mit Parametern werden demgegenüber im Folgenden Eigenschaften 
des Produkts oder seiner Komponenten bezeichnet, die im Rahmen der technischen Spezifikation festgelegt wer-
den (siehe Kapitel 2.2.1). 
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Komponenten des Produktes ein, wodurch sich eine Vertriebsstückliste ergibt (Brinkop 
et al. 2012, S. 10). Somit kann ein fließender Übergang zur Produktkonfiguration be-
stehen. Vertriebskonfiguratoren verfügen i. d. R. über zusätzliche Funktionen, die den 
Vertrieb unterstützen, wie insbesondere die Ermittlung von Preisen und Lieferkonditio-
nen sowie eine Angebotserstellung (Trentin et al. 2012b, S. 47). Diese sind jedoch für 
die vorliegende Arbeit nicht relevant. 

2.2.2.2 Produktkonfigurationssysteme und -modelle 

Der Begriff Produktkonfiguration wird in der Literatur in einem engen und einem weiten 
Sinne verwendet. Autoren wie z. B. Trentin et al. (2012a) nutzen den Begriff Produkt-
konfiguration in einem weiten Sinne für Konfigurationsaufgaben in verschiedenen Be-
reichen von Industrieunternehmen einschließlich Vertrieb und Produktion. In der vorlie-
genden Arbeit wird jedoch in einem engen Sinne in Anlehnung an Zhang et al. (2013, 
S. 465–466) unter Produktkonfiguration die Konfiguration eines Produkts aus techni-
scher Sicht und damit insbesondere die Auswahl und Parametrierung seiner Kompo-
nenten verstanden12. Damit ist die Produktkonfiguration von der Vertriebskonfiguration 
und der Prozesskonfiguration zu unterscheiden.  

Gängige Produktkonfigurationsmodelle in der Literatur sind objektorientiert13 und las-
sen sich als Verbindung einer Strukturdarstellung und einer zugehörigen Semantik be-
schreiben. Für die Strukturdarstellung werden insbesondere Klassendiagramme in Uni-
fied Modelling Language (UML), Produktvarianten-Master und Featuremodelle (Felfer-
nig et al. 2014, S. 52–59; Haug et al. 2010, S. 410–412) verwendet. Abbildung 2.4 zeigt 
beispielhaft eine Strukturdarstellung eines Produktmodells in Form eines UML-Klassen-
diagramms (1) und eines Produktvarianten-Masters (2). Für Featuremodelle sei auf Fel-
fernig et al. (2014, S. 52–54) verwiesen. Die Semantik kann sich einerseits aus der 
Strukturdarstellung selbst ergeben. Die Darstellung in Abbildung 2.4 impliziert z. B., 
dass sich Scheiben- und Felgenbremsen als Instanzen derselben Klasse gegenseitig 
ausschließen. Andererseits kann sie in Form von Abhängigkeiten beschrieben werden 
(siehe Kapitel 2.2.1 und Beispiel von Felfernig et al. 2014, S. 52–59).  

                                         
12 In der vorliegenden Arbeit ist die Produktkonfiguration auf die Konfiguration von Stücklisten beschränkt. Die 
Konfiguration weiterer technischer Dokumente, wie insbesondere technischer Zeichnungen, wird nicht betrachtet. 
13 Auch wenn Objektorientierung in kommerziellen KS oftmals nicht vollständig umgesetzt ist, lässt sich ein ob-
jektorientiertes Modell darin weitgehend realisieren (siehe Rasmussen et al. 2020), weshalb der Fokus an dieser 
Stelle auf objektorientierten Modellen liegt. 
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Eine Abhängigkeit in Form einer Regel könnte z. B. 

und eine Abhängigkeit in Form einer Beschränkung z. B. (ܽܨℎ݌ݕܶ.݀ܽݎݎ = (݀ܽݎܴ݊݊݁ ∨ ݃݊ݑݎüℎ݂ݏݑܣ.݀ܽݎݎℎܽܨ) = ↔(݉ݑ݅݉݁ݎܲ (ܴܽℎ݉݁݊.݈ܽ݅ݎ݁ݐܽܯ = (݊݋ܾݎܽܥ 2.2

lauten. Im ersten Fall müssten zwingend zunächst die Parameter Typ und Ausführung
festgelegt werden. Anschließend würde ein Rahmen aus Carbon gewählt werden, so-
fern ein Rennrad oder ein Fahrrad in Premiumausführung gewählt wurden. Andernfalls 
wäre das Rahmenmaterial nach Standardwert Stahl. Im zweiten Fall können die Para-
meter Typ, Ausführung und Rahmenmaterial in beliebiger Reihenfolge beliebig gewählt 
werden. Es muss nur gewährleistet sein, dass abschließend die Beschränkung einge-
halten wird. Regelbasierte Modelle werden in der Literatur zum Teil kritisch gesehen 
(beispielsweise von Mailharro 1998, S. 384). Sie sind aber in der Praxis gebräuchlich,
wie in Kapitel 2.2.2.4 ausgeführt wird. Deshalb werden sie in der vorliegenden Arbeit 
betrachtet. Abhängigkeiten, die im Konfigurationsmodell hinterlegt sind, können in die 
Strukturdarstellung des Konfigurationsmodells aufgenommen (siehe Beispiel von Fel-
fernig et al. 2014, S. 52–59) oder in separaten Dateien, wie z. B. Class-Responsibility-

                                        
14 Hier und im Folgenden bezeichnet die Schreibweise [Klasse/Objekt].[Attribut] eine Referenz auf das Attribut 
einer Klasse oder eines Objekts wie in der objektorientierten Programmierung üblich.

൫ܽܨℎ14݌ݕܶ.݀ܽݎݎ = ൯݀ܽݎܴ݊݊݁ ∨ ݃݊ݑݎüℎ݂ݏݑܣ.݀ܽݎݎℎܽܨ) = ⇒(݉ݑ݅݉݁ݎܲ (ܴܽℎ݉݁݊.݈ܽ݅ݎ݁ݐܽܯ = (݊݋ܾݎܽܥ 2.1

Abbildung 2.4: Beispielhafte Strukturdarstellung eines Produktkonfigurationsmodells 
als UML-Klassendiagramm (1) und Produktvarianten-Master (2)

Fahrrad
Beschreibung: …
Typ: (Trekkingrad, Rennrad)
Ausführung : (Standard, Premium)

Bremse
Beschreibung: …

Rahmen
Beschreibung: …
Material : (Stahl, Carbon), Standardwert: Stahl

[2]

[1]

Scheibenbremse

Felgenbremse

(1) (2)Fahrrad
Typ: {Trekkingrad, Rennrad}
Ausführung: {Standard, Premium}

Bremse

Keine Parameter

Rahmen
Material: {Stahl, 
Carbon} = Stahl

Scheibenbremse
Keine Parameter

Felgenbremse
Keine Parameter

21
11

Meronymie Aggregation 
(Generalisierung)

Meronymie Aggregation 
(Generalisierung)
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Collaboration-Karten15, abgebildet werden.  

Modelle zur Konfiguration von VSTLs folgen in ihrer Strukturdarstellung i. d. R. dem 
Aufbau einer STL. Es existieren verschiedene Strukturdarstellungen in Form von Stück-
listen wie z. B. modulare Stücklisten, Variantenstücklisten, generische Stücklisten und 
Maximalstücklisten für deren vollständige Erläuterung auf Jiao et al. (2000, S. 299–300) 
verwiesen sei. Nach Jiao et al. (2000, S. 299–300) enthalten generische Stücklisten 
ausschließlich Generalisierungen – d. h. Aggregationen von Komponentenklassen 
(KKs) wie die Klasse Bremse im Beispielfall – und meronymische Beziehungen. Dem-
gegenüber enthalten Maximalstücklisten (MSTLs) nach Jiao et al. (2000, S. 299–300) 
mit Verweis auf Kneppelt (1984) bestimmte Komponenten, die in den VSTLs auftreten 
können. Diesen wird je nach gewählter Variante eine Liste mit hinzuzufügenden oder 
zu entfernenden Komponenten beigefügt. Abweichend hiervon folgt die vorliegende Ar-
beit für MSTLs dem Verständnis16 von Ram Babu et al. (2014, S. 96) wonach eine 
Maximalstückliste alle Komponenten enthält, die über alle Varianten hinweg auftreten 
können. In der vorliegenden Arbeit werden Maximalstücklisten objektorientiert be-
schrieben. Sie bestehen aus einer Klasse je Komponente, die in einer möglichen Vari-
ante auftreten kann, sowie einer Klasse, die das Produkt selbst repräsentiert. Eine 
Klasse wird im Rahmen des Konfigurationsprozesses als Objekt instanziiert, falls sie 
für eine bestimmte Variante benötigt wird; andernfalls wird sie nicht instanziiert (ange-
lehnt an Felfernig et al. 2014, S. 55–59). KKs definieren somit, welche Komponenten – 
und damit welche Elemente im Sinne der in Kapitel 2.2.1 gegebenen Definition – in 
einer VSTL auftreten können. Generalisierungen sind möglich und werden jeweils 
durch eine ihrer aggregierten Klassen instanziiert. Die in Abbildung 2.4 gezeigte Struk-
turdarstellung entspricht einer Maximalstückliste. In diesem Beispiel könnte ein Fahrrad 
konfiguriert werden, indem ein Produkt der Klasse Fahrrad mit Typ Rennrad und Aus-
führung Premium, eine Komponente der Klasse Rahmen mit Material Carbon und eine 
Komponente der Klasse Scheibenbremse instanziiert würden. Ihre Instanzen werden 
Teil der VSTL. In diesem Fall könnte die Klasse Felgenbremse nicht instanziiert wer-
den, da sie derselben Superklasse wie die Klasse Scheibenbremse zugeordnet ist. Wie 
in Kapitel 4.1.1 ausgeführt wird, besteht ein Produktkonfigurationsmodell in der 

                                         
15 Für Class-Responsibility-Collaboration-Karten sei auf Hvam et al. (2008, S. 186–195) verwiesen. 
16 Dieses Verständnis liegt auch den Konfigurationssystemen der SAP SE zu Grunde. Siehe 
https://help.sap.com/docs/SAP_S4HANA_ON-
PREMISE/a73402f511734e6eac56063e631bf24e/c162b6531de6b64ce10000000a174cb4.html (zuletzt über-
prüft am 07.06.2025) 
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vorliegenden Arbeit aus einer MSTL sowie aus Regeln, die die Elemente der VSTL und 
deren Ausprägungen festlegen.

Meronymische Beziehungen zwischen Klassen der MSTL spiegeln sich in Komponen-
ten der VSTLs wider (siehe Beispiel von Felfernig et al. 2014, S. 55–59), d. h. durch 
das Produktkonfigurationsmodell sind die Baugruppen und damit die Fügereihenfolge 
festgelegt. Die Fügereihenfolge eines Produkts kann jedoch innerhalb eines Unterneh-
mens von Fall zu Fall unterschiedlich sein (Romanowski & Nagi 2004, S. 317–318). 
Unterschiede können sich z. B. für verschiedene Produktionssysteme aufgrund unter-
schiedlicher Fügemittel, für verschiedene Varianten aufgrund unterschiedlicher Zu-
gänglichkeit der Fügestelle (Jiménez 2013, S. 240–242) und zu verschiedenen Zeit-
punkten aufgrund von Änderungen ergeben. Dementsprechend können VSTLs für das 
gleiche Produkt von unterschiedlichen Fügereihenfolgen ausgehen und somit alterna-
tive Strukturen aufweisen, wie in Abbildung 2.5 veranschaulicht. VSTL 1 und VSTL 2 
unterscheiden sich in den benötigten ZKs, weisen jedoch keine Widersprüche in der 
Fügereihenfolge auf. VSTL 3 hingegen weist eine andere Struktur auf, da die ZKs B 
und C vor den ZKs A und B gefügt werden. In der vorliegenden Arbeit wird in einem 
solchen Fall der Begriff Strukturalternative (STA) verwendet. VSTL 1 und 2 entspre-
chen somit einer anderen STA des Produkts als VSTL 3. VSTLs die verschiedenen 
STAs entsprechen, können sich in mehreren meronymischen Beziehungen zugleich
unterscheiden. Entsprechend der oben genannten Ursachen können zwei STAs in 
VSTLs einerseits technisch begründet sein, womit beide zugleich gültig sind. Anderer-
seits können sie durch inkonsistente Planungsstände oder schlicht menschliche Fehler 

CA B D
VSTL 1 VSTL 2 VSTL 3

Strukturalternative 1 Strukturalternative 2

CA B CA B

VSTL = Variantenbezogene Stückliste

Abbildung 2.5: Strukturalternativen in variantenbezogenen Stücklisten
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begründet sein, womit evtl. nur eine oder keine der beiden aktuell gültig ist. Werden 
VSTLs für die datenbasierte Erstellung von Produktkonfigurationsmodellen verwendet, 
müssen STAs in VSTLs erkannt und, falls sie technisch begründet sind, im KM abge-
bildet werden. 

2.2.2.3 Prozesskonfigurationssysteme und -modelle 

Die Entwicklung von Systemen für die Produktkonfiguration reicht bis in die 1970er 
Jahre zurück (Hotz et al. 2014, S. 9). Demgegenüber wurde das Konzept der Prozess-
konfiguration in der Literatur erst Anfang der 2000er Jahre durch Schierholt (2001) um-
fassend beschrieben17. Als Grund hierfür sieht Schierholt, dass lange Zeit bei der Pro-
duktkonfiguration von Montageprodukten ausgegangen worden sei, bei denen die Mon-
tageprozesse durch die STL determiniert seien (Schierholt 2001, S. 412). Er weist da-
rauf hin, dass dies bei der Teilefertigung nicht der Fall sei und betrachtet beispielhaft 
die Fertigung von Blechen und Coils (Schierholt 2001, S. 412–423). Die durchzufüh-
renden Teilprozesse hängen in diesem Anwendungsfall u. a. von der Breite des zu fer-
tigenden Blechs sowie von dessen Werkstoff ab, d. h. es wird eine Prozesskonfigura-
tion auf Basis der Merkmale des Endprodukts durchgeführt. Es sei an dieser Stelle an-
gemerkt, dass sich auch für Montageprodukte die Prozesskonfiguration nicht zwangs-
läufig trivial aus der Produktkonfiguration ergibt. Auch wenn durch eine Baugruppe der 
VSTL i. d. R. festgelegt ist, dass ein Fügevorgang für die Komponenten der Baugruppe 
erforderlich ist, ist damit noch nicht das Fügeverfahren18 determiniert. Darüber hinaus 
können im Rahmen der Montage weitere Verfahren erforderlich sein, die sich nicht aus 
den Komponenten der Baugruppen ergeben. Beispiele hierfür sind das Füllen, Be-
schichten, Justieren, Prüfen (DIN 8580:2022-12, S. 13) oder Aufspielen von Software. 
Zuletzt können auch Fälle auftreten, in denen auch die Durchführung eines Fügevor-
gangs nicht durch die Baugruppe alleine determiniert ist. Beispielsweise kann die Ver-
triebskonfiguration vorsehen, dass auf Wunsch des Kunden ein bestimmtes Bauteil in 
der Montage der Baugruppe nur beigelegt, aber nicht gefügt wird, weil der Kunde selbst 
eine entsprechende Montage vornimmt. In der vorliegenden Arbeit wird deshalb sowohl 
die Produkt- als auch die Prozesskonfiguration für Produkte der Teilefertigung und der 

                                         
17 Die Möglichkeit Arbeitspläne in Abhängigkeit der gewählten Variante zu konfigurieren wird jedoch bereits einige 
Jahre zuvor von Haag (1998, S. 78) als Funktion von SAP R/3 erwähnt. 
18 Für Fügeverfahren sei auf Deutsches Institut für Normung e.V. (2022, S. 13) verwiesen 
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Montage betrachtet. Die beiden Fälle werden im Folgenden nur insoweit explizit unter-
schieden, als dies notwendig ist.

Ausgehend von der Arbeit von Schierholt (2001) werden in der Literatur Prozesskonfi-
gurationsmodelle analog zu bestehenden Produktkonfigurationsmodellen beschrieben. 
Die Elemente dieser Modelle entsprechen den Teilprozessen des Produktionsprozes-
ses. Sie sind entweder Fertigungstechnologien wie im Falle von Schierholt (2001, S. 
412) oder AVOs wie in Kapitel 2.1 beschrieben (beispielsweise auch bei Wang et al. 
2017). Entsprechend sind die Ergebnisse der Prozesskonfiguration Technologieket-
ten bzw. variantenbezogene Arbeitspläne (VAPLs). Die vorliegende Arbeit beschränkt 
sich auf Prozesskonfiguration im Rahmen der Arbeitsablaufplanung zur Erstellung von 
VAPLs. Prozesskonfigurationsmodelle können analog zu Produktkonfigurationsmodel-
len als Verbindung einer objektorientierten Strukturdarstellung und einer Semantik be-
schrieben werden. Abbildung 2.6 zeigt ein einfaches Beispiel für ein Prozesskonfigura-
tionsmodell. Für ein umfassendes Prozesskonfigurationsmodell nach Stand der For-
schung sei auf Wang et al. (2017, S. 957) verwiesen. 

Analog zu MSTLs liegt der vorliegenden Arbeit das Verständnis von Maximalarbeits-
plänen (MAPLs) nach Ram Babu et al. (2014, S. 96) zugrunde, wonach MAPLs alle 
AVOs, die für eine zulässige Variante auftreten können, enthalten. Im Sinne der Objek-
torientierung werden in der vorliegenden Arbeit AVOs in MAPLs als Klassen – im Fol-
genden Arbeitsvorgangsklassen (AVKs) genannt – beschrieben. Diese werden im Zuge 
der Konfiguration in Abhängigkeit der Variante ggf. instanziiert. Durch die Klassen sind 
die AVOs und deren Parameter als wählbare Elemente im Sinne der Definition aus 
Kapitel 2.2.1 vorgegeben. Zwischen AVKs können Vorrangbeziehungen bestehen, wel-
che sich in den VAPLs widerspiegeln und parallele Ausführungen von AVOs – wie in 
Abbildung 2.6 zu sehen –zulassen können. Wie in Kapitel 4.1.1 ausgeführt wird, besteht 

Abbildung 2.6: Beispielhafte Darstellung eines Prozesskonfigurationsmodells

Bremsen einstellen

Endmontage

Anschlüsse prüfen

Funktionsprüfung
Prüfstation: 
{Station 1, Station 2}

Vorrangbeziehung
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ein Prozesskonfigurationsmodell in der vorliegenden Arbeit aus einem MAPL sowie aus
Regeln, die die Elemente des VAPL und deren Ausprägungen festlegen.

Ebenso wie in VSTLs können auch in VAPLs STAs auftreten und müssen bei der da-
tenbasierten Erstellung von Prozesskonfigurationsmodellen berücksichtigt werden. 
Beispielsweise unterscheiden sich die VAPLs 1 und 2 in Abbildung 2.7 in den benötig-
ten AVOs, weisen jedoch keine Widersprüche in ihrer Struktur auf. VAPL 3 hingegen 
sieht vor, dass B zwingend vor C ausgeführt werden muss und entspricht damit einer 
anderen STA.

2.2.2.4 Integrierte Vertriebs-, Produkt- und Prozesskonfigurationssysteme und -
modelle

In der Praxis können die vorgestellten Vertriebs-, Produkt- und Prozesskonfigurations-
modelle als integrierte Modelle auftreten, auf die im Folgenden eingegangen wird. Auf-
bauend auf bestehenden KMs entwickeln Zhang et al. (2013; 2020) integrierte Ver-
triebs-, Produkt- und Prozesskonfigurationsmodelle. In den Modellen existieren u. U. 
Beschränkungen innerhalb des Vertriebskonfigurationsmodells, d. h. bestimmte Aus-
prägungen der Produktmerkmale lassen sich nicht miteinander kombinieren. Je Klasse 
des Produktkonfigurationsmodells existiert ein Prozesskonfigurationsmodell, das die 
Montage und Bearbeitung des Produkts oder der entsprechenden Komponente be-
schreibt. Die Ausprägungen der Produktmerkmale beschränken das Produkt- und Pro-
zesskonfigurationsmodell. Im Rahmen dieser Beschränkungen werden im Anschluss 
an den Vertriebskonfigurationsprozess automatisch mittels mathematischer Optimie-
rung ein herstellkostenoptimales Produkt und herstellkostenoptimale Prozesse konfigu-
riert. Es findet somit keine vollständig integrierte Vertriebs-, Produkt- und Prozesskon-
figuration statt, sondern zunächst eine Vertriebskonfiguration und anschließend eine 

Abbildung 2.7: Strukturalternativen in variantenbezogenen Arbeitsplänen

Strukturalternative 1 Strukturalternative 2
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C
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D E A B C D

VAPL1 VAPL2 VAPL3

VAPL = Variantenbezogener Arbeitsplan
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integrierte Produkt- und Prozesskonfiguration. Diese sequenzielle Trennung findet 
sich auch in kommerziell verfügbaren Systemen für die Vertriebs-, Produkt- und Pro-
zesskonfiguration. Derjenige Teil des KS, der die Funktionen des Vertriebskonfigura-
tors (siehe Kapitel 2.2.2.1) bereitstellt wird in diesem Kontext als High-Level-Konfigu-
rationssystem (HLKS) bezeichnet (Haag 1998, S. 78). Derjenige Teil des KS, der die 
Funktionen eines integrierten Produkt- und Prozesskonfigurationssystems bereitstellt, 
wird demgegenüber als Low-Level-Konfigurationssystem (LLKS) bezeichnet (Haag 
1998, S. 78). Außerdem werden in der vorliegenden Arbeit für die entsprechenden KMs 
die Begriffe High-Level-Konfigurationsmodell (HLKM) und Low-Level-Konfigurati-
onsmodell (LLKM) verwendet.  

Für LLKMs besteht ein Unterschied zwischen Stand der Forschung und Stand der 
Technik. Dies wird im Folgenden anhand der kommerziell verfügbaren Konfigurations-
systeme LO-VC und AVC19 der SAP SE (SAP) erläutert. In diesen Systemen werden 
für die Klasse des Produkts im HLKM und ggf. auch für bestimmte KKs sog. Konfigura-
tionsprofile angelegt, die Abhängigkeiten, i. d. R. Beschränkungen, zwischen den Klas-
senmerkmalen enthalten. Auf Basis der Konfigurationsprofile kann die High-Level-Kon-
figuration vorgenommen werden, welche als Ausgangspunkt für die Low-Level-Konfi-
guration dient. Das LLKM ist durch eine MSTL sowie einen APL je Komponente defi-
niert. Der APL je Komponente beschreibt den Herstellprozess dieser Komponente, ggf. 
aus ihren Subkomponenten. Er kann ein MAPL sein, sofern der Herstellprozess der 
Komponente von der gewählten Produktvariante abhängt. Die Elemente der MSTL und 
der MAPLs können von der High-Level-Konfiguration oder von anderen Elementen der 
MSTL und der MAPLs abhängen. Als Abhängigkeiten können jedoch im LLKM keine 
Beschränkungen auftreten, sondern ausschließlich Regeln. Diese treten entweder in 
Form von Auswahlbedingungen oder in Form von Prozeduren auf. Auswahlbedingun-
gen werden genutzt, um direkt oder indirekt in Abhängigkeit von der High-Level-Konfi-
guration zu entscheiden, ob eine Komponente oder ein Arbeitsvorgang Teil einer be-
stimmten VSTL bzw. eines bestimmten VAPL ist. Prozeduren werden genutzt, um 
Merkmale von Elementen auszuprägen. (Blumöhr et al. 2019, S. 153–259)20 

                                         
19 LO-VC (Logistik-Variant Configuration) ist ein Konfigurationssystem im Rahmen des SAP ERP; AVC (Advan-
ced Variant Configuration) ist dessen Nachfolgeprodukt. Die Ausführungen gelten für beide Systeme. (zu SAP 
LO-VC siehe https://help.sap.com/docs/SAP_S4HANA_ON-PREMISE/a73402f511734e6eac56063e631bf24e/ 
1a40b953495bb44ce10000000a174cb4.html?locale=de-DE (zuletzt überprüft am 07.06.2025) 
20 Steht in der vorliegenden Arbeit eine Quellenangabe hinter dem Satzzeichen wird der gesamte Absatz bis zu 
dieser Stelle nach dieser Quelle indirekt zitiert. 
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Damit entspricht das LLKM der SAP-Systeme nicht den von Zhang et al. (2020) be-
schriebenen Produkt- und Prozesskonfigurationsmodellen, welche beschränkungsba-
siert sind und eine Konfiguration durch Optimierung vornehmen. Durch in der Literatur 
beschriebene Anwendungsfälle (siehe Anwendungsfälle von Braun 2021, S. 83–92 und 
Chatras et al. 2016, S. 5641) sowie online verfügbare Produktinformationen21 kann be-
stätigt werden, dass dies auch für andere kommerziell verfügbare, integrierte KSs gilt. 
Gegenwärtig ist nicht bekannt, ob kommerziell verfügbare KSs zukünftig beschrän-
kungsbasierte LLKMs, wie von Zhang et al. (2013; 2020) beschrieben, bereitstellen 
werden. Dazu wäre u. a. die Implementierung eines optimierungsbasierten Low-Level-
Konfigurationsprozesses notwendig. Die vorliegende Arbeit orientiert sich deshalb an 
den gegenwärtig in der Praxis eingesetzten KSs mit beschränkungsbasierten HLKMs 
und regelbasierten LLKMs. Das datenbasiert zu erstellende KM ist damit in der vor-
liegenden Arbeit konkret ein LLKM nach Stand der Technik. Der Fokus hinsichtlich der 
datenbasierten Erstellung von Regeln liegt auf Auswahlbedingungen und nicht auf Pro-
zeduren. Ein HLKM mit definierten Produktmerkmalen und Definitionsbereichen wird 
vorausgesetzt (siehe Kapitel 1.2). 

2.2.3 Erstellung und Überprüfung von Konfigurationsmodellen 

2.2.3.1 Erstellung von Konfigurationsmodellen 

Die Erstellung von KMs ist von der Entwicklung von KSs abzugrenzen. Letzteres ist 
nicht Gegenstand der vorliegenden Arbeit. Es wird jedoch nicht ausgeschlossen, dass 
die Erstellung eines KM parallel zur Entwicklung eines KS erfolgt. Dies kann der Fall 
sein, wenn als KS keine Standardsoftware eingesetzt wird. Soll ein KS gemeinsam mit 
einer neuentwickelten Produktfamilie eingeführt werden, kann die Entwicklung der Pro-
duktfamilie und des KM integriert erfolgen. Für eine Beschreibung eines Entwicklungs-
prozesses für Produktfamilien, der das KM berücksichtigt sei auf Gauss et al. (2021) 
verwiesen. Darüber hinaus zeigen Hanna et al. (2023), wie Modelle, die für die modell-
basierte Produktentwicklung eingesetzt werden, auch für die Produktkonfiguration ge-
nutzt werden können. In der vorliegenden Arbeit, ebenso wie in den existierenden 

                                         
21 Siehe z. B. Oracle CPQ (ehemals BigMachines): https://help.bigmachines.com/BMIHelp/Content/BOM_Map-
ping/BOM_Overview.htm?TocPath=Configuration%7CBOM%20Mapping%7C_____0 (zuletzt überprüft am 
07.06.2025) 
Configit Ace: https://configit.com/learn/tech-talks/bom-validation-delivering-on-the-configuration-promise/ (zuletzt 
überprüft am 07.06.2025) 
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Vorgehensmodellen zur Erstellung von KMs (siehe Shafiee et al. 2017, S. 988), wird 
die Erstellung von KMs jedoch unabhängig von einer Produktentwicklung betrachtet.

Auf Basis der existierenden Vorgehensmodelle zur Erstellung von KMs teilen Shafiee 
et al. (2017, S. 990–995) den Erstellungsprozess in vier Schritte ein (Abbildung 2.8, 1): 
die Festlegung des Umfangs des KM, die Erfassung von Wissen, die Modellierung und 
Validierung von Wissen sowie die Dokumentation und Instandhaltung. Der Umfang des 
KM wird hinsichtlich der zu erfüllenden Funktionen, der Funktionsweise und der einzu-
schließenden Produkte mittels Stakeholderanalyse festgelegt (Shafiee et al. 2017, S. 
992–993). Für die Wissenserfassung wird das benötigte Wissen kategorisiert und es 
werden die relevanten Quellen und Ressourcen ermittelt (Shafiee et al. 2017, S. 991). 
Für die Wissensmodellierung schlagen Shafiee et al. (2017) die Verwendung von Pro-
duktvarianten-Mastern in Verbindung mit Class Responsibility-Collaboration-Karten zur 
standardisierten Beschreibung von Abhängigkeiten vor. Hvam et al. (2008, S. 34) be-
schreiben den Vorgang der Wissensmodellierung in Anlehnung an Duffy & Andreasen
(1995, S. 30–31) ausführlicher als mehrstufigen Prozess (Abbildung 2.8, 2). In diesem 
Prozess wird, ausgehend von der realen Welt, zunächst ein Phänomenmodell in Form 
eines Produktvarianten-Masters erstellt, das die relevanten Aspekte des zu modellie-
renden Produkts enthält (Hvam et al. 2008, S. 34). Das Phänomenmodell muss zu-
nächst keiner strengen Form genügen und kann damit so gestaltet werden, dass es für 
Domänenexperten leicht verständlich ist (Hvam et al. 2019, S. 4436). Für den Fall eines 
bestehenden und historisch gewachsenen Produktprogramms, von dem Hvam et al.
(2008) ausgehen, wird das Phänomenmodell als Beschreibung des bestehenden Pro-
duktprogramms erstellt (Hvam et al. 2008, S. 139–170). Als nächstes wird das Phäno-
menmodell formalisiert, woraus ein Informationsmodell (Hvam et al. 2008, S. 34) als
verfeinerter Produktvarianten-Master oder als UML-Diagramm resultiert (Hvam et al. 
2008, S. 54). Abschließend wird das Informationsmodell in einem Computermodell
umgesetzt (Hvam et al. 2008, S. 34), so dass ein ausführbares KS entsteht. Wie von 

Abbildung 2.8: Vorgehensmodell zur Erstellung von Konfigurationsmodellen nach Sha-
fiee et al. (2017, S. 990–995) und Duffy und Andreasen (1995, S. 30–31)

Festlegung des 
Umfangs des 
Konfigurationsmodells

Erfassung von Wissen Modellierung und 
Validierung von Wissen

Dokumentation und 
Instandhaltung

Reale Welt Phänomenmodell Informationsmodell Computermodell

(1)

(2)
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Shafiee et al. (2017, S. 991) beschrieben, kann im Zuge der Modellierung eine Über-
prüfung des Modells stattfinden (siehe Kapitel 2.2.3.2). Die im Rahmen des Erstellungs-
prozess entstehenden Modelle dienen abschließend als Grundlage für die Dokumenta-
tion des KM sowie seine Instandhaltung im Betrieb (Shafiee et al. 2017, S. 995).  

Die vorliegende Arbeit stellt eine datenbasierte Alternative zu dem in der Literatur be-
schriebenen manuellen Prozess dar. Das zu erstellenden KM in Form einer MSTL, ei-
nes MAPL und der zugehörigen Regeln ist ein objektorientiertes Informationsmodell, 
das eine unmittelbare Umsetzung in ein Computermodell ermöglicht. Im Gegensatz 
zum klassischen Vorgehen wird jedoch nicht von Wissen über ein reales System, son-
dern von Beobachtungen in Form von Daten des realen Systems ausgegangen.  

2.2.3.2 Überprüfung von Konfigurationsmodellen 

Die Ansätze zur Überprüfung von KMs können in Verifikation und Validierung einge-
teilt werden. Die Zuordnung bestehender Ansätze zur Überprüfung von KMs ist jedoch 
in der Literatur nicht eindeutig. Z. B. nutzen sowohl Voronov (2013, S. 185) als auch 
Braun (2021, S. 58–59) formale Prüfverfahren um automatisch zu überprüfen, ob es in 
einem KM Komponenten gibt, die überhaupt nicht ausgewählt werden können. Voronov 
(2013) ordnet dies der Verifikation und Braun (2021) der Validierung zu. Die vorliegende 
Arbeit verwendet ein Unterscheidungskriterium für Ansätze zur Überprüfung von KMs, 
das sich an Sinz (2004, S. 108–109) anlehnt: Wenn ein Ansatz Domänenwissen erfor-
dert ist er der Validierung zuzuordnen, ansonsten der Verifikation. In diesem Sinne ist 
die im Rahmen der vorliegenden Arbeit entwickelte Methode zur Überprüfung von KMs 
(siehe Kapitel 4.6) der Validierung zuzuordnen. Neben der Einteilung in Verifikation und 
Validierung existiert eine Einteilung für die Ansätze zur Überprüfung von wissensba-
sierten Systemen nach Meseguer & Preece (1995, S. 337–339). Diese unterscheidet: 

- Inspektion: Manuelle Überprüfung des Systems durch einen Experten 
- Statische Verifikation: Automatische Überprüfung des Systems auf logische 

Widersprüche 
- Empirisches Testen: Überprüfung des Systems durch Anwendung auf ausge-

wählte Beispiele und manuelle Überprüfung der Ergebnisse 
- Evaluation: Untersuchung inwiefern das System die Anforderungen der Nutzer 

im Betrieb erfüllt 

Diese Einteilung dient als Grundlage für die Einordnung des Stands der Forschung in 
Kapitel 3.6.2. In diesem Sinne ist die im Rahmen der vorliegenden Arbeit entwickelte 
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Methode zur Überprüfung von KMs (siehe Kapitel 4.6) als Methode zur Unterstützung 
der Inspektion einzuordnen.  

2.3 Maschinelles Lernen 
Im Folgenden werden zunächst die zentralen Begriffe des maschinellen Lernens ein-
geführt, die für die vorliegende Arbeit relevant sind (Kapitel 2.3.1). Auf Basis dessen 
werden die beiden Problemstellungen des überwachten (Kapitel 2.3.2) und unüber-
wachten Lernens (Kapitel 2.3.3) erläutert, die für die vorliegende Arbeit relevant sind. 

2.3.1 Zentrale Begriffe des maschinellen Lernens 

Nach DIN EN ISO/IEC 22989:2023-04 bezeichnet maschinelles Lernen einen „Pro-
zess der Optimierung von Modellparametern durch computergestützte Verfahren, so 
dass das Verhalten des Modells den Daten oder Erfahrungen entspricht“ (DIN EN 
ISO/IEC 22989:2023-04, S. 16). Dieser Prozess wird auch als Training eines Modells 
bezeichnet und die hierfür verwendeten Daten als Trainingsdaten (DIN EN ISO/IEC 
22989:2023-04, S. 17). Nach Definition setzt das maschinelle Lernen voraus, dass ein 
Modelltyp und damit die bestehenden Anpassungsmöglichkeiten definiert sind, dass 
eine Metrik – in der Literatur u. a. als Evaluations- oder Verlustfunktion bezeichnet – 
existiert, nach der optimiert werden kann und dass ein Vorgehen für die Optimierung 
festgelegt ist (Domingos 2012, S. 79). Bestehende Verfahren des ML unterscheiden 
sich im Wesentlichen in diesen drei Aspekten (Domingos 2012, S. 79). Für eine umfas-
sende Übersicht über Verfahren des ML sei auf Li (2024) verwiesen. Für Optimierungs-
verfahren im Zusammenhang mit ML sei im Allgemeinen auf Aggarwal (2020) verwie-
sen. In der vorliegenden Arbeit wird für die Optimierung im Speziellen Spaltengenerie-
rung (engl. Column Generation, CG) genutzt, ein Prinzip, um lineare Optimierungsprob-
leme mit einer großen Anzahl von Variablen effizient zu lösen. Hierauf wird in Anhang 
A1 eingegangen. 

Die für das ML verwendeten Daten liegen als Datenpunkte mit identischem Format 
vor, die zu einem Datensatz zusammengefasst werden (DIN EN ISO/IEC 22989:2023-
04, S. 14; Jung 2022, S. 19–20). Datenpunkte stellen atomare Datenelemente dar, die 
von ML-Algorithmen in großer Anzahl verarbeitet werden (DIN EN ISO/IEC 
22989:2023-04, S. 15). Was bei einer gegebenen Problemstellung konkret als Daten-
punkt betrachtet wird, muss vom Modellierer in Abhängigkeit des Anwendungsfalls ent-
schieden werden (Jung 2022, S. 19–20). Bei der Erstellung von LLKMs ist ein 
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Datenpunkt eine Variante. Eigenschaften von Datenpunkten, die aus den Datenpunk-
ten automatisch abgeleitet werden können, werden als Features bezeichnet (Jung 
2022, S. 204). Für eine Variante, die bereits durch Produktmerkmale beschrieben ist, 
liegt es z. B. nahe, die Produktmerkmale selbst als Feature des Datenpunkts zu be-
trachten22. Datenpunkte in einem Datensatz sind i. d. R. mit denselben Features be-
schrieben (Mahalle 2022, S. 17). Jedes Feature hat einen definierten Definitionsbe-
reich. Dieser kann numerisch sein – d. h. ein Zahlenbereich wie z. B. für eine Abmes-
sung eines Produkts – oder kategorisch – d. h. eine Menge definierter Symbole wie 
z. B. für die Farbe eines Produkts (Qamar & Raza 2020, S. 64). Bei binären Features 
handelt es sich um einen speziellen Fall kategorischer Features, die lediglich zwei ver-
schiedene Werte annehmen können (Mahalle 2022, S. 16), wie z. B. die Eigenschaft 
einer Variante einer bestimmten Norm zu genügen. Neben Features können Daten-
punkte weitere Eigenschaften besitzen, die sich nicht automatisch aus dem Datenpunkt 
selbst ergeben. Diese Eigenschaften werden den Datenpunkten durch Annotation zu-
geordnet und als Labels bezeichnet (Jung 2022, S. 26). Bei der datenbasierten Erstel-
lung von LLKMs kann ein Label für eine Variante z. B. angeben, ob zur Herstellung der 
Variante ein bestimmter AVO benötigt wird. Labels können ebenso wie Features nu-
merisch oder kategorisch und im Speziellen binär sein (Jung 2022, S. 26). Ob für einen 
verwendeten Datensatz Labels vorhanden sind oder nicht, ist ein entscheidendes Kri-
terium für die Einteilung von Problemstellungen des maschinellen Lernens: Wenn La-
bels vorhanden sind, liegt überwachtes Lernen (engl. Supervised Learning, SL) vor, 
andernfalls unüberwachtes Lernen (engl. Unsupervised Learning, UL)23 (Jung 2022, 
S. 12–15). 

2.3.2 Überwachtes Lernen 

SL dient dazu, auf Basis des Datensatzes ein Modell zu erstellen, das den tatsächlich 
bestehenden Zusammenhang zwischen Features und Labels möglichst genau wieder-
gibt (Qamar & Raza 2020, S. 45). Sowohl prädiktive Modelle des SL als auch LLKMs, 
wie sie in der Industrie eingesetzt werden, stellen eine Beziehung zwischen Eingangs-
daten in Form von Datenpunkten bzw. Produktmerkmalen und Ausgangsdaten in Form 
                                         
22 Der Begriff Feature wird in der vorliegenden Arbeit ausschließlich im Sinne des ML verwendet und nicht als 
Synonym für Produktfeature im Sinne der Produktentwicklung, auch wenn Features in weiten Teilen der vorlie-
genden Arbeit Produktmerkmalen entsprechen. 
23 Darüber hinaus existiert mit dem bestärkenden Lernen (engl. Reinforcement Learning) eine weitere Kategorie, 
die für die vorliegende Arbeit jedoch nicht relevant ist; für eine umfassende Darstellung des bestärkenden Lernens 
sei auf Ris-Ala (2023) verwiesen. 
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von Labels bzw. VSTLs und VAPLs her. Aufgrund dieser Analogie ist das SL von Be-
deutung für die datenbasierte Erstellung von LLKMs.

Die Probleme des SL können in Klassifikation und Regression unterteilt werden. Eine 
Klassifikation liegt vor, falls die betrachteten Labels kategorisch sind und eine Re-
gression, falls sie numerisch sind (Jung 2022, S. 26). Bei einem Klassifikationsproblem 
werden die Ausprägungen, die das kategorische Label annehmen kann als Klassen24

bezeichnet (Jung 2022, S. 26). Klassifikationsprobleme können weiter unterteilt werden 
in binäre Probleme bei denen es zwei Klassen gibt, d. h. binäre Labels, und Multiklas-
sen-Probleme mit mehr als zwei Klassen (Jung 2022, S. 26–27). Darüber hinaus kön-
nen Probleme des SL vorliegen, bei denen einem Datenpunkt mehrere Labels zuge-
ordnet sind. Diese Probleme werden als Multi-Label-Probleme bezeichnet (Jung 
2022, S. 27). Abbildung 2.9 veranschaulicht die zentralen Begriffe des SL an einem 
Beispiel. Im Beispiel liegt mehr als ein Label und für zwei der Labels jeweils mehr als 
eine Klasse vor. Deshalb handelt es sich dabei um ein Multi-Label- und Multiklassen-
Problem. Multi-Label-Probleme sind für die vorliegende Arbeit relevant, da VSTLs und 
VAPLs i. d. R. durch mehr als eine numerische oder kategorische Eigenschaft be-
schrieben werden. Ein Multi-Label-Problem mit ݊ Labels kann in ݊ Singlelabel-Prob-
leme zerlegt werden, die jeweils in ihren Features übereinstimmen. Dieses Vorgehen 
wird als Binary-Relevance-Ansatz25 bezeichnet (Tidake & Sane 2018, S. 1046–1047).

                                        
24 Diese sind nicht zu verwechseln mit Klassen in objektorientierten Modellen wie in Kapitel 2.2.2 vorgestellt.
25 Es existieren weitere Ansätze bei denen z. B. mehrere Labels zu einem Label zusammengefasst werden Tidake 
& Sane (2018, S. 1046–1049). Die resultierenden Modelle sind jedoch nicht in Regeln überführbar, wie sie in 
LLKM vorliegen und damit für die vorliegende Arbeit nicht relevant.

Multilabel-Problem

Feature 1 Feature 2 … Label 1 Label 2

Datenpunkt 1 Kategorie α 0,1 Klasse A Klasse Z

Datenpunkt 2 Kategorie β 7,8 Klasse C Klasse Y

Datenpunkt 3 Kategorie α 3,5 Klasse B Klasse X

…

Kategorisches Feature Numerisches Feature Multiklassen-Problem

Abbildung 2.9: Beispielhafte Darstellung von Begriffen des überwachten Lernens (Ei-
gene Darstellung auf Basis von Jung 2022, S. 26–27)
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Der Trainingsdatensatz, auf Basis dessen das Modell optimiert wird, enthält i. d. R. nur 
einen Teil aller grundsätzlich möglichen Datenpunkte. Die Herausforderung besteht 
deshalb darin, ein Modell zu trainieren, das dennoch korrekte Vorhersagen über die 
Ausprägungen der Labels von allgemeinen Datenpunkten treffen kann. Diese Fähigkeit 
wird als Generalisierungsfähigkeit bezeichnet (Jung 2022, S. 129). Die Generalisie-
rungsfähigkeit eines SL-Modells wird i. d. R. überprüft, indem Vorhersagen des Modells 
für Datenpunkte außerhalb des Trainingsdatensatzes betrachtet werden. Diese werden 
mit den tatsächlichen Labelausprägungen für diese Datenpunkte verglichen (DIN EN 
ISO/IEC 22989:2023-04, S. 32). Dieses Vorgehen wird als Testen bezeichnet und die 
dafür verwendeten Daten als Testdaten (DIN EN ISO/IEC 22989:2023-04, S. 32). Von 
den Testdaten sind die Validierungsdaten zu unterscheiden. Diese werden zur Aus-
wahl eines Modelltyps oder zur Einstellung von Hyperparametern eines Modells ver-
wendet (DIN EN ISO/IEC 22989:2023-04, S. 32). 

Für eine Diskrepanz zwischen den Modellvorhersagen und den tatsächlichen Ausprä-
gungen der Labels beim Testen kann es drei Ursachen geben: Verzerrung, Varianz und 
Rauschen (Aggarwal 2021, S. 442–443). Verzerrung (engl. Bias) beschreibt den Teil 
der Abweichung, der darauf zurückzuführen ist, dass das verwendete Modell vereinfa-
chende und unzutreffende Annahmen über bestehende Zusammenhänge impliziert 
(Aggarwal 2021, S. 442–443). Wenn z. B. ein lineares Regressionsmodell zur Model-
lierung eines Datensatzes angewandt wird, dem ein nichtlinearer Zusammenhang zwi-
schen Features und Labels zugrunde liegt, bleibt ein Vorhersagefehler bestehen, der 
unabhängig von der Größe des Trainingsdatensatzes ist. Varianz (engl. Variance) be-
zeichnet den Anteil der Abweichung, der darauf zurückzuführen ist, dass das gelernte 
Modell nicht statistisch robust bzgl. der verwendeten Datenpunkte ist (Aggarwal 2021, 
S. 443). Je kleiner der Trainingsdatensatz ist, desto stärker hängt das gelernte Modell 
davon ab, welche der möglichen Datenpunkte für das Training verwendet werden, d. h. 
die Varianz kann durch eine Vergrößerung des Trainingsdatensatzes reduziert werden. 
Rauschen (engl. Noise) bezeichnet den Anteil der Abweichung, der auf Fehler in den 
Daten zurückzuführen ist, wie z. B. Messfehler bei der Datenerhebung (Aggarwal 2021, 
S. 443). Selbst für ein Modell, das die Gesetzmäßigkeit hinter den betrachteten Daten 
vollständig korrekt abbildet, verbleibt diese Abweichung, da sie sich unsystematisch in 
den Trainings- und Testdaten widerspiegelt. Varianz und Verzerrung sind abhängig von 
der Komplexität des verwendeten Modells (Jung 2022, S. 129) wobei unter Modell-
komplexität die Anzahl einstellbarer Modellparameter verstanden wird (Spiegelhalter 
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et al. 2002, S. 584). Modelle mit hoher Komplexität können im Zuge der Optimierung 
eng an den Trainingsdatensatz angepasst werden (Jung 2022, S. 126–130). Deshalb 
wird im Allgemeinen davon ausgegangen, dass die Generalisierungsfähigkeit von Mo-
dellen bei steigender Modellkomplexität zunächst aufgrund abnehmender Verzerrung 
zunimmt und anschließend aufgrund zunehmender Varianz abnimmt (Jung 2022, S. 
130). Dazwischen liegt im Allgemeinen eine optimale Modellkomplexität (siehe Abbil-
dung 2.10)26. Für Modelle in Form von booleschen Ausdrücken, auf die in Kapitel 3.4
näher eingegangen wird, ist eine Beschränkung der Modellkomplexität wichtig, um eine 
hohe Generalisierungsfähigkeit zu erreichen (Liu et al. 2016, S. 134–143). Verzerrung 
und Varianz hängen eng mit den Effekten Unteranpassung (engl. Underfitting) und 
Überanpassung (engl. Overfitting) zusammen, bei denen eine zu geringe bzw. zu hohe
Modellkomplexität zu schlechter Generalisierungsfähigkeit führt (Emmert-Streib & Deh-
mer 2019, S. 533–534). Unteranpassung geht mit hoher Verzerrung und geringer Vari-
anz einher, Überanpassung mit geringer Verzerrung und hoher Varianz (Rocks & Mehta 
2022, S. 1).

Insbesondere in Anwendungsfällen in denen die Vorhersagen eines Modells weitrei-
chende Konsequenzen haben können, besteht neben der Anforderung einer hohen Ge-
neralisierungsfähigkeit häufig auch die Anforderung der Interpretierbarkeit. Hierunter 
versteht man, dass der Prozess zum Schlussfolgern einer Vorhersage für Menschen 
verständlich ist (Rudin et al. 2022, S. 11). Dies trifft auf viele prädiktive Modelle des ML,
wie z. B. gängige Tiefe Neuronale Netze (engl. Deep Neural Networks, DNN), nicht zu 

                                        
26 Tiefe neuronale Netze (engl. Deep Neural Networks) können Ausnahmen von diesem Verhalten zeigen (Jung 
(2022, S. 130)), werden jedoch in der vorliegenden Arbeit nicht betrachtet.

Vorhersagefehler

ModellkomplexitätOptimale Modellkomplexität

Unteranpassung Überanpassung

Abbildung 2.10: Schema der optimalen Modellkomplexität in Anlehnung an Jung (2022,
S. 129)
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(Rudin 2019, S. 206). In der Industrie eingesetzte LLKMs müssen im Allgemeinen in-
terpretierbar sein, da sie manuell gepflegt werden. Methoden zum ML interpretierbarer 
Modelle sind deshalb für die vorliegende Arbeit besonders relevant. Interpretierbarkeit 
unterscheidet sich von Erklärbarkeit. Unter Erklärbarkeit wird verstanden, dass die 
Vorhersagen eines nichtinterpretierbaren Modells post-hoc durch ein anderes Modell 
erklärt werden können (Rudin 2019, S. 206). Z. B. werden Vorhersagen von DNNs zur 
Bilderkennung durch die Relevanz von Pixeln für eine bestimmte Vorhersage erklärt, 
wobei jedoch die Modelle selbst nicht interpretierbar sind (Rudin 2019, S. 208). Auf-
grund der Interpretierbarkeit von LLKMs die in der Industrie genutzt werden, ist Er-
klärbarkeit für diese Modelle nicht relevant. 

Wie in Kapitel 1.2 erläutert, werden in der vorliegenden Arbeit Anwendungsfälle berück-
sichtigt, bei denen für eine datenbasierte Erstellung von LLKMs nicht genügend anno-
tierte Datenpunkte – d. h. Varianten mit zugehörigen VSTLs und VAPLs – zur Verfü-
gung stehen. In diesen Fällen soll der bestehende Datensatz erweitert werden. Dieses 
Vorgehen entspricht im Kontext des ML dem aktiven Lernen (engl. Active Learning, 
AL). Beim AL liegen initial einige annotierte Datenpunkte vor und die Anfrage von La-
bels für weitere Datenpunkte geht mit Kosten einher. Abbildung 2.11 stellt das Konzept 
des AL schematisch dar. Auf Basis der annotierten Datenpunkte wird ein Modell trai-
niert. Anschließend werden bei einem sog. Orakel, wie z. B. einem Domänenexperten, 
ein oder mehrere Labels für einen oder mehrere weitere Datenpunkte angefragt. Nach 
Erhalt der Labels wird das Modell erneut trainiert, wobei aufgrund abnehmender Vari-
anz eine höhere Generalisierungsfähigkeit zu erwarten ist. Dieser Vorgang wird so 
lange wiederholt bis ein Budget aufgebraucht, eine festgelegte Generalisierungsfähig-
keit erzielt oder ein anderes Abbruchkriterium erreicht ist. (Tharwat & Schenck 2023, S. 
820–840) 

Die Herausforderung des AL besteht darin, mit der Anfrage weniger Labels eine mög-
lichst große Steigerung der Generalisierungsfähigkeit zu erreichen. Hierfür existieren 
verschiedene Strategien. Informationsbasierte Anfragestrategien ermitteln den In-
formationsgewinn eines Labels auf Basis bereits trainierter Modelle. Es werden z. B. 
Labels für Datenpunkte angefragt, für die eine hohe Vorhersageunsicherheit besteht 
oder die einen großen erwarteten Einfluss auf das zuletzt trainierte Modell oder dessen 
Vorhersagen erwarten lassen. Alternativ hierzu werden beim Query by Committee 
(QBC) mehrere Modelle trainiert und anschließend Datenpunkte ausgewählt, für die die 
Vorhersagen des Komitees heterogen sind. Bei repräsentationsbasierten 
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Anfragestrategien ist die Anfrage hingegen von der Verteilung der Datenpunkte im 
Feature-raum abhängig. Der Featureraum ist derjenige – i. d. R. mehrdimensionale –
Raum, der durch die Wertebereiche der Features aufgespannt wird. Es werden entwe-
der Datenpunkte gewählt, die weit entfernt von anderen Datenpunkten, in Bereichen 
mit hoher Dichte oder im Zentrum von Clustern liegen. (Tharwat & Schenck 2023, S. 
828–836)

Grundsätzlich können drei verschiedene Anwendungsszenarien des AL unterschieden 
werden. Beim poolbasierten AL liegt die Gesamtheit der möglichen Datenpunkte als 
endliche diskrete Menge vor. Für eine Labelanfrage wird aus diesem Pool ein nichtan-
notierter Datenpunkt ausgewählt. Beim streambasierten AL werden die möglichen Da-
tenpunkte nacheinander betrachtet und es wird jeweils entschieden, ob für den betrach-
teten Datenpunkt ein Label angefragt werden soll. Bei der Membership Query Syn-
thesis (MQS) werden Datenpunkte nicht aus einer endlichen Menge von Datenpunkten 
ausgewählt, sondern unter Berücksichtigung bestimmter Bedingungen generiert. Pool-
basiertes AL ist das in der Literatur überwiegend betrachtete Szenario. MQS wird für 
viele Anwendungsfälle als ungeeignet angesehen, weil nicht sichergestellt werden 
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Abbildung 2.11: Schema des aktiven Lernens (Eigene Darstellung auf Basis von Thar-
wat und Schenck 2023, S. 820–840)
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kann, dass die generierten Datenpunkte vom Orakel sinnvoll annotiert werden können. 
(Tharwat & Schenck 2023, S. 826–827) Wie in Kapitel 4.5 ausgeführt wird, ist MQS für 
den Anwendungsfall der vorliegenden Arbeit jedoch geeignet und vorteilhaft. 

2.3.3 Unüberwachtes Lernen 

UL dient dazu, Muster zu erkennen, die jeweils die Datenpunkte untereinander oder die 
Features untereinander in Beziehung setzen (Aggarwal 2021, S. 299). UL wird zum 
Clustern von Datenpunkten, zum Aggregieren von Features und zur Reduktion der Di-
mension des Datensatzes eingesetzt (Aggarwal 2021, S. 299). Darüber hinaus wird UL 
zum Erkennen von Ausreißern in Datensätzen verwendet. Nach einer vielzitierten De-
finition von Hawkins (1980, S. 1) handelt es sich bei Ausreißern um Beobachtungen, 
die so sehr von anderen Beobachtungen abweichen, dass der Verdacht naheliegt, dass 
sie durch einen anderen Mechanismus generiert wurden. Der Begriff Anomalie wird in 
der vorliegenden Arbeit, wie auch in der Literatur (Aggarwal 2017, S. 1), synonym 
hierzu verwendet. In der Literatur finden sich zahlreiche Arbeiten die Anomalieerken-
nung nutzen um Hinweise auf Fehler zu erhalten. Dabei kann es sich um technische, 
aber auch menschenverursachte Fehler handeln, wie z. B. um Fehler in der industriel-
len Montage (Rijayanti et al. 2023), bei der Steuerung von Flugzeugen (Igenewari et al. 
2019) oder bei der Erstellung von medizinischen Behandlungsplänen (Sipes et al. 
2014). Der Einsatz von Anomalieerkennung für das Ermitteln von Fehlern in LLKMs 
erscheint deshalb aussichtsreich. 

Existierende Ansätze zur Anomalieerkennung auf Datensätzen ohne Labels lassen sich 
in vier Kategorien einteilen: dichte-, distanz-, wahrscheinlichkeits- und abhängigkeits-
basierte Ansätze (Li & van Leeuwen 2023, S. 2518–2519). Bei dichte- und distanzba-
sierten Ansätzen werden Datenpunkte als Anomalien identifiziert, wenn sie sich in ei-
nem Bereich des Featureraums mit geringer Dichte befinden bzw. einen großen Ab-
stand zu anderen Datenpunkten aufweisen (Li & van Leeuwen 2023, S. 2518). In wahr-
scheinlichkeitsbasierten Ansätzen wird die plausibelste Wahrscheinlichkeitsvertei-
lung für das Zustandekommen der Datenpunkte ermittelt. Es werden diejenigen Daten-
punkte als Anomalien identifiziert, die nach dieser Verteilung eine geringe Auftretens-
wahrscheinlichkeit aufweisen (Li & van Leeuwen 2023, S. 2518). 



36 Grundlagen 
 

 

Abhängigkeitsbasierte Ansätze nutzen Methoden des SL um Abhängigkeiten27 zwi-
schen Features zu ermitteln und damit Muster im Datensatz zu erkennen. Datenpunkte 
werden als Anomalien identifiziert, wenn sie dem ermittelten Muster nicht entsprechen 
(Li & van Leeuwen 2023, S. 2519–2520). Wie in Kapitel 4.6 ausgeführt wird, sind für 
die vorliegende Arbeit abhängigkeitsbasierte Ansätze relevant. 

 

                                         
27 Bei Abhängigkeiten im Sinne abhängigkeitsbasierter Ansätze des UL handelt es sich um Muster in Daten. Sie 
sind nicht zu verwechseln mit Abhängigkeiten die in einem KM definiert sind und in Kapitel 2.2.1 erläutert werden. 
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3 Stand der Forschung 
Im Folgenden werden für jedes der in Kapitel 1.2 definierten Probleme 1 bis 6 die An-
forderungen an die entsprechenden Methoden 1 bis 6 zur Lösung dieses Problems 
präzisiert. Dies entspricht dem zweiten Schritt des Design Science Research Process 
(DSRP, siehe Kapitel 1.3). Die folgenden Unterkapitel entsprechen den Problemen 1 
bis 6. Je Problem werden zunächst auf Basis des in Kapitel 1.1 beschriebenen Kontex-
tes und der Motivation der vorliegenden Arbeit Anforderungen (A) an die zugehörige 
Methode abgeleitet. Anschließend wird jeweils untersucht, inwieweit Methoden nach 
Stand der Forschung diese Anforderungen erfüllen. Schließlich wird je Problem das 
bestehende Lösungsdefizit ermittelt, das durch die Entwicklung eigener Methoden be-
hoben werden soll.  

3.1 Problem 1: Datenbasierte Erstellung von Konfigurationsmo-
dellen 

3.1.1 Anforderungen 

Wie in Kapitel 1.1 beschrieben, liegt das Potenzial von Konfigurationssystemen (KSs) 
für die Arbeitsablaufplanung in der automatischen Erstellung von variantenbezogenen 
Stücklisten (VSTLs) und variantenbezogenen Arbeitsplänen (VAPLs). Entsprechend 
der Definition einer Konfiguration in Kapitel 2.2.1 beinhaltet dies jeweils die Festlegung 
der Elemente und ihrer Parameterausprägungen sowie der Struktur der VSTL bzw. des 
VAPL. Die datenbasiert erstellten Low-Level-Konfigurationsmodelle (LLKMs) müssen 
daher in der Lage sein, die Komponenten der VSTL auszuwählen (Anforderung A1a: 
Auswahl von Komponenten), die Ausprägungen derer Parameter zu definieren (An-
forderung A1b: Ausprägung der Komponentenparameter) und die Struktur der 
VSTL festzulegen (Anforderung A1c: Festlegung der Stücklistenstruktur). Hinsicht-
lich des Arbeitsplans (APL) müssen sie in der Lage sein, die Arbeitsvorgänge (AVOs) 
des VAPL auszuwählen (Anforderung A1d: Auswahl von Arbeitsvorgängen), die 
Ausprägungen derer Parameter zu definieren (Anforderung A1e: Ausprägung der 
Arbeitsvorgangsparameter) und die Struktur des VAPL festzulegen (Anforderung 
A1f: Festlegung der Arbeitsplanstruktur). Damit diese Modelle nach ihrer Erstellung 
von Experten gepflegt werden können, müssen sie – ebenso wie LLKMs, die derzeit in 
der Industrie verwendet werden – interpretierbar sein (Anforderung A1g: Interpretier-
bares Modell). Zuletzt werden auch Fälle berücksichtigt, in denen die Anzahl der 
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verfügbaren Datenpunkte zu gering ist, um ein ausreichend genaues LLKM datenba-
siert zu erstellen (siehe Kapitel 1.1). Dazu muss es möglich sein, den Datensatz mög-
lichst effizient zu erweitern (Anforderung A1h: Erweiterung der Datenbasis). 

3.1.2 Relevante Arbeiten 

Für die manuelle Erstellung von Konfigurationsmodellen (KMs) existieren Vorgehens-
modelle wie in Kapitel 2.2.3.1 beschrieben und von Shafiee et al. (2017) zusammen-
fassend dargestellt. Diese sind grundsätzlich geeignet, um vollständige Modelle für die 
Produkt- und Prozesskonfiguration zu erstellen. Allerdings sind diese Vorgehensmo-
delle nicht datenbasiert und weisen deshalb die in Kapitel 1.1 beschriebenen Nachteile 
auf. Im Folgenden werden Ansätze zur datenbasierten Erstellung von KMs sowie wei-
terer Modelle betrachtet, die eine Konfiguration von VSTLs oder VAPLs ermöglichen. 
Entsprechend der herausragenden Bedeutung der Produktkonfiguration in der Literatur 
beschränken sich bestehende Ansätze zur datenbasierten Erstellung auf die Produkt-
konfiguration. Im Kontext der Arbeitsablaufplanung existieren jedoch darüber hinaus 
Ansätze, die der Erstellung von Modellen dienen, mit denen VAPLs in einem weiten 
Sinne generiert werden können. Auch wenn diese Modelle keine KMs im Sinne der 
vorliegenden Arbeit sind, werde diese Arbeiten aufgrund ihrer ähnlichen Funktion im 
Folgenden ebenfalls betrachtet.  

Datenbasierte Erstellung von Konfigurationsmodellen 

Es existieren drei verwandte Ansätze von Wang et al. (2023), He et al. (2021) und Shao 
et al. (2006), die sich mit der datenbasierten Erstellung von Produktkonfigurationsmo-
dellen befassen28. Ansätze, die sich explizit mit der datenbasierten Erstellung von Pro-
zesskonfigurationsmodellen befassen existieren hingegen nicht. Die Ansätze von 
Wang et al. (2023) und Shao et al. (2006) gehen davon aus, dass bereits eine generi-
sche Stückliste definiert ist. Für jede generische Klasse existieren verschiedene mögli-
che Instanzen, die in Abhängigkeit der Produktmerkmale oder der Parameter überge-
ordneter Klassen ausgewählt werden. Der Ansatz von He et al. (2021) geht ebenfalls 
von generischen Klassen aus, berücksichtigt jedoch keine meronymischen Beziehun-
gen zwischen den Klassen. Wang et al. (2023) ordnen den generischen Klassen 

                                         
28 Darüber hinaus existiert eine Arbeit von Chen & Wang (2009), die sich mit der datenbasierten Erstellung eines 
Modells befasst, dass als Teil eines Produktkonfigurationssystems beschrieben wird. Dieses dient jedoch der 
Übertragung von Produktmerkmalen auf Designparameter des Produkts und nicht der Erstellung von Stücklisten. 
Deshalb wird es an dieser Stelle nicht näher betrachtet. 
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Parameter zu. Diese hängen allerdings nicht unmittelbar von den Produktmerkmalen 
ab, sondern werden durch die Auswahl einer Instanz ausgeprägt. Dies beschränkt die 
Mächtigkeit des KM. Die beiden anderen Ansätze berücksichtigen keine Parameter der 
Komponenten. Der Fokus der drei Arbeiten ist die datenbasierte Erstellung der Abhän-
gigkeiten über die die Instanzen der generischen Klassen ausgewählt werden. Dafür 
werden automatische Featureselection und heuristische Entscheidungsbaumklassifika-
tion (Wang et al. 2023) bzw. Association Rule Mining (He et al. 2021; Shao et al. 2006) 
eingesetzt. Die datenbasierte Erstellung der verwendeten generischen Klassen oder 
deren Beziehungen ist nicht Gegenstand der existierenden Arbeiten. 

Datenbasierte Erstellung prädiktiver Modelle für die Arbeitsablaufplanung 

Die existierenden Ansätze zur datenbasierten Erstellung von prädiktiven Modellen stel-
len Alternativen zu klassischen Ansätzen des Computer Aided Process Plannings 
(CAPP) dar. Bei den klassischen Ansätzen werden typischerweise APLs auf Basis von 
Regeln, die durch Experten definiert werden, erstellt (Hussong et al. 2021, S. 648; 
Schenk 2014, S. 754). Die entsprechenden Arbeiten von Hussong et al. (2021), Na-
tarajan & Gokulachandran (2020), Schuh et al. (2019), Schuh et al. (2017) und Amaitik 
(2012) gehen, wie das klassische CAPP, von Bauteilen aus, die durch Fertigungsfea-
ture29 beschrieben sind. Abweichend davon verwendet der Ansatz von Hashimoto & 
Nakamoto (2021) eine Voxel-Darstellung eines CAD-Modells als Ausgangsbasis und 
der Ansatz von Joo et al. (2001) Metadaten, die das CAD-Modell beschreiben. Die An-
sätze nutzen historische Daten, um tiefe neuronale Netze (DNNs) – oder im Fall von 
Schuh et al. (2019) und Schuh et al. (2017) Entscheidungsbäume – zu trainieren, um 
AVOs und z. T. auch zugehörige Maschinen, Werkzeuge und Prozessparameteraus-
prägungen vorherzusagen. Hussong et al. (2021), Schuh et al. (2019) und Schuh et al. 
(2017) schlagen darüber hinaus vor, Methoden des maschinellen Lernens (ML) auch 
für die Bestimmung der Reihenfolge von AVOs einzusetzen, wobei Hussong et al. 
(2021) hierfür konkret auf DNNs mit einer Long Short Term Memory-Architektur30 ver-
weist. Die entsprechenden Vorschläge werden jedoch nicht weiter ausgeführt und es 
bleibt offen, wie mit einem solchen Ansatz allgemeine APLs – d. h. auch solche mit 
nichtlinearer Struktur – berücksichtigt werden können.  

                                         
29 Fertigungsfeature entsprechen geometrischen Elementen mit zugehöriger Semantik (Hussong et al. 2021, S. 
649). 
30 Für eine Erläuterung eines solchen Ansatzes sei auf Aggarwal (2021, S. 290–294) verwiesen. 
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3.1.3 Lösungsdefizit 

Tabelle 3.1: Stand der Forschung zur datenbasierten Erstellung von Konfigurationsmo-
dellen 

Tabelle 3.1 gibt einen Überblick über Ansätze zur datenbasierten Erstellung von KMs 
nach Stand der Forschung sowie deren Anforderungserfüllung. Derzeit existieren nur 
wenige Ansätze, die explizit für die datenbasierte Erstellung von KMs entwickelt wur-
den. Diese beschränken sich auf die Produktkonfiguration und vernachlässigen die da-
tenbasierte Erstellung von Strukturen der MSTL und des MAPL. Im thematisch angren-
zenden Umfeld des CAPP existieren Ansätze zum Lernen prädiktiver Modelle für die 
Inferenz von APLs. Die gelernten prädiktiven Modelle sind typische Modelle des ML 
und nicht mit industrieüblichen KMs vergleichbar, die aus Maximalstücklisten (MSTLs), 
Maximalarbeitsplänen (MAPLs) und Regeln bestehen. Darüber hinaus bleibt die Struk-
tur von APLs weitgehend unberücksichtigt. Zusammenfassend lässt sich festhalten, 
dass die datenbasierte Erstellung industrieller KMs nur rudimentär erforscht ist. Insbe-
sondere besteht kein integrierter Ansatz zur datenbasierten Erstellung von LLKMs. Die 
zu entwickelnde Methode 1 soll in der Lage sein, LLKMs datenbasiert zu erstellen und 
dabei die Anforderungen A1a bis A1h berücksichtigen. Auf die Anforderungen A1b und 
A1e wird in der vorliegenden Arbeit dabei nur am Rande eingegangen, weil der Fokus 
auf der Auswahl von Elementen liegt (siehe Kapitel 2.2.2.4). In den folgenden Kapiteln 
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Datenbasierte Erstellung von Konfigurationsmodellen 
Wang et al. 2023 ● ◐ ◐ ○ ○ ○ ● ○ 
He et al. 2021 ● ○ ○ ○ ○ ○ ● ○ 
Shao et al. 2006 ● ○ ◐ ○ ○ ○ ● ○ 
Datenbasierte Erstellung prädiktiver Modelle für die Arbeitsablaufplanung 
Hashimoto & Nakamoto 2021 ○ ○ ○ ● ● ○ ○ ○ 
Hussong et al. 2021 ○ ○ ○ ● ○ ◐ ○ ○ 
Natarajan & Gokulachandran 2020 ○ ○ ○ ● ○ ○ ○ ○ 
Schuh et al. 2019, Schuh et al. 2017 ○ ○ ○ ● ● ◐ ● ○ 
Amaitik 2012 ○ ○ ○ ● ● ○ ○ ○ 
Joo et al. 2001 ○ ○ ○ ● ● ○ ○ ○ 
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wird untersucht, inwieweit in der Literatur Ansätze zur Adressierung der Teilprobleme 
von Problem 1 existieren. 

3.2 Problem 2: Datenbasierte Erstellung von Maximalstücklisten 

3.2.1 Anforderungen 

Bei der datenbasierten Erstellung von MSTLs sollen keine Informationen die in den 
Daten – d. h. den verwendeten VSTLs – vorhanden sind verloren gehen. Damit muss 
es möglich sein, jede zur Erstellung verwendete VSTL aus der resultierenden MSTL zu 
konfigurieren (Anforderung A2a: Informationserhaltung). Die Menge an verfügbaren 
Daten kann von Fall zu Fall unterschiedlich sein und auch Fälle mit hoher Datenverfüg-
barkeit sollen berücksichtigt werden können (Anforderung A2b: Skalierbarkeit). Wie 
in Kapitel 2.2.2.2 erläutert, können Strukturalternativen (STAs) in VSTLs auftreten. 
Diese können technisch begründet sein oder Inkonsistenzen im Datensatz darstellen. 
Sind sie technisch begründet, müssen die entsprechenden alternativen Strukturen als 
Optionen im KM abgebildet werden. Wenn sie Inkonsistenzen im Datensatz darstellen, 
ist es wichtig, dass sie in einer datenbasiert erstellten MSTL sichtbar sind, damit sie 
von einem Domänenexperten als solche erkannt werden können. Eine Methode zur 
datenbasierten Erstellung von MSTLs muss daher in der Lage sein, STAs in den ein-
gehenden VSTLs zu erkennen und in der MSTL darzustellen (Anforderung A2c: 
Strukturalternativen). Zuletzt soll vermieden werden, dass die Methoden Aspekte in-
dustrieüblicher Stücklisten nicht berücksichtigen und damit nicht praktisch anwendbar 
sind. VSTLs mit mehreren identisch bezeichneten Komponenten an verschiedenen Po-
sitionen der VSTL, im Folgenden Multikomponenten genannt, sind im Sinne der Gleich-
teilverwendung in der Industrie üblich. Liegen Multikomponenten in VSTLs vor und wer-
den nicht explizit berücksichtigt, können sie fälschlicherweise als STA erkannt werden. 
Wenn z. B. eine Komponente an zwei verschiedenen Positionen in der Stückliste auf-
treten kann und zwei VSTLs jeweils eine der beiden Positionen enthalten existieren 
vermeintlich zwei mögliche Strukturen für die MSTL. Deshalb müssen Multikomponen-
ten in den VSTLs erkannt und bei der Erstellung der MSTL berücksichtigt werden (An-
forderung A2d: Multikomponenten). Es muss außerdem berücksichtigt werden, dass 
Baugruppen in der Praxis beliebig viele und insbesondere mehr als zwei Subkompo-
nenten aufweisen können (Anforderungen A2e: Vielelementigkeit). Dadurch sind be-
stimmte in der Literatur beschriebene Ansätze prinzipiell ausgeschlossen.  
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3.2.2 Relevante Arbeiten 

Im Folgenden werden entsprechend der Problemstellung Ansätze zur Erstellung von 
MSTLs auf Basis von VSTLs betrachtet. Für die vorliegende Arbeit ist die Kernidee der 
unten vorgestellten Arbeit von Moussa & ElMaraghy (2018) von herausragender Be-
deutung. Die Arbeit nutzt einen Ansatz um phylogenetische Bäume, welche evolutio-
näre Beziehungen zwischen Lebewesen darstellen, zusammenzuführen. Dabei handelt 
es sich um eine Problemstellung aus dem Fachgebiet der Phylogenetik, die mit dem 
Zusammenführen von VSTLs in einer MSTL vergleichbar ist. Da diese Problemstellung 
in der Phylogenetik bereits umfassend erforscht ist, besteht großes Potenzial in einem 
Transfer bestehender Ansätze. Deshalb werden im Folgenden auch zwei ausgewählte 
Ansätze der Phylogenetik näher betrachtet, welche für die vorliegende Arbeit relevant 
sind. Anhang A2.1 geht auf die relevanten Begriffe der Phylogenetik ein und zeigt die 
Grenzen der Übertragbarkeit bestehender Ansätze der Phylogenetik.  

Datenbasierte Erstellung von Maximalstücklisten und vergleichbarer Strukturen 

Moussa & ElMaraghy (2019) und Kashkoush & ElMaraghy (2014) entwickeln aufeinan-
der aufbauende Ansätze zur Ableitung sog. Master Assembly Networks aus sog. As-
sembly Sequence Trees. Assembly Sequence Trees und Master Assembly Networks 
sind Graphen, deren Knoten Zukaufkomponenten (ZKs) darstellen, die im Rahmen der 
Montage zu einer Baugruppe gefügt werden. Sie entsprechen in ihrer Funktion und 
ihrem Aufbau VSTL bzw. MSTL, weshalb sie im vorliegenden Kapitel betrachtet wer-
den. Die Autoren codieren Master Assembly Networks als Binärmatrizen. Diese Codie-
rung setzt voraus, dass das Master Assembly Network ein Binärbaum ist. Mittels Me-
taheuristiken werden Lösungen in Form von Binärmatrizen erstellt. Hierbei wird die Ro-
binson-Foulds-Distanz zwischen dem zugehörigen Master Assembly Network und den 
eingehenden Assembly Sequence Trees als zu minimierende Fitnessfunktion verwen-
det. Bei dieser Distanz handelt es sich um eine in der Phylogenetik gebräuchliche Met-
rik für die Unähnlichkeit zweier Bäume. Das Verfahren stellt nicht sicher, dass alle ein-
gehenden Assembly Sequence Trees aus dem Master Assembly Network konfiguriert 
werden können. Insbesondere können Fälle auftreten in denen die Fitnessfunktion op-
timal wird, wenn bestimmte Assembly Sequence Trees im Master Assembly Network 
nicht berücksichtigt werden. Dies ist vor allem dann der Fall, wenn deren Struktur von 
der Mehrheit der Assembly Sequence Trees abweicht. Multikomponenten werden nicht 
betrachtet. 
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Moussa & ElMaraghy (2018) entwickeln ebenfalls einen Ansatz zur Ableitung von Mas-
ter Assembly Networks aus Assembly Sequence Trees. Die Autoren nutzen einen Al-
gorithmus aus der Phylogenetik um sog. Galled Networks zu erstellen. Dabei handelt 
es sich um Graphen mit beschränkter Abweichung von einer Baumstruktur. Wie An-
hang A2.1 ausführt, stellt der Ansatz nicht sicher, dass alle eingehenden Assembly Se-
quence Trees aus dem resultierenden Master Assembly Network konfiguriert werden 
können. Darüber hinaus kann der Ansatz keine Multikomponenten berücksichtigen, da 
hierfür keine Analogie in der Phylogenetik existiert. 

Kashkoush & ElMaraghy (2015) und Kashkoush & ElMaraghy (2016) entwickeln einen 
Ansatz um Produktfamilien bzw. Master Assembly Sequences in Baumstruktur aus 
VSTLs bzw. Assembly Sequence Trees abzuleiten. Hierfür codieren sie sowohl die ein-
gehenden Bäume als auch den resultierenden Baum jeweils als Matrix. Sie nutzen ma-
thematische Optimierung, um eine möglichst hohe Ähnlichkeit der Matrix des resultie-
renden Baums mit den Matrizen der eingehenden Bäume zu erzielen. Das von ihnen 
aufgestellte Optimierungsproblem geht jedoch davon aus, dass alle Bäume Binär-
bäume sind und keine Multikomponenten vorliegen. STAs werden nicht berücksichtigt. 
Treten in den eingehenden Bäumen STAs auf, bildet der resultierende Baum genau 
eine davon ab, sodass Bäume mit anderen Strukturen nicht abgeleitet werden können. 
Multikomponenten werden nicht berücksichtigt. 

Romanowski & Nagi (2004) entwickeln eine Methode, um aus VSTLs eine generische 
STL zu erstellen. Ein wiederkehrendes Prinzip der entwickelten Methode ist das Clus-
tering auf Basis von Ähnlichkeitsmaßen. Zunächst werden ZKs durch Clustering gene-
ralisiert wobei ein aggregiertes Ähnlichkeitsmaß verwendet wird, das u. a. syntaktische 
und semantische Ähnlichkeit der Bezeichnungen berücksichtigt. Als nächstes werden 
die VSTLs auf Basis der Ähnlichkeit ihrer Baugruppen geclustert. Dabei ergibt sich die 
Ähnlichkeit der Baugruppen jeweils aus der Ähnlichkeit der untergeordneten Kompo-
nenten und somit letztlich aus der Ähnlichkeit der enthaltenen ZKs. Zuletzt werden je 
Cluster die Baugruppen aller enthaltenen VSTLs geclustert, so dass jeweils eine gene-
rische MSTL mit einer Baugruppenklasse je Baugruppencluster entsteht. Der Ansatz 
von Romanowski & Nagi (2004) berücksichtigt explizit STAs, allerdings bestehen bei 
deren Ermittlung folgende Defizite. Es ist a priori nicht bekannt, wie viele STAs in den 
VSTLs vorliegen und damit wie viele Cluster von VSTLs zu bilden sind. Heuristische 
Vorgehen wie insbesondere das eingesetzte Silhouette-Verfahren können nicht garan-
tieren, dass die ermittelte Anzahl von STAs tatsächlich vorliegt. Darüber hinaus lässt 
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das verwendete Distanzmaß für VSTLs nicht zwingend auf STAs schließen. VSTLs, die 
nur in wenigen Baugruppen übereinstimmen, können sehr unterschiedliche ZKs enthal-
ten und müssen sich nicht zwingend in ihrer Struktur widersprechen. Außerdem gehen 
innerhalb eines Clusters von VSTLs Informationen über STAs verloren, wenn Baugrup-
pen auf Basis ihrer Ähnlichkeit zusammengefasst werden. Zuletzt kann nicht ausge-
schlossen werden, dass durch die Zusammenfassung von ZKs im Rahmen der Gene-
ralisierung STAs entstehen, die tatsächlich in den VSTLs nicht vorliegen. Dieser Fall 
kann auftreten, wenn die ZKs eigentlich verschiedenen Positionen der MSTL entspre-
chen. Multikomponenten können im beschriebenen Ansatz nicht berücksichtigt werden, 
da diese zwangsläufig zusammengefasst würden und damit zu STAs führen würden, 
die in den VSTLs nicht vorliegen.  

Algorithmen aus der Phylogenetik 

Wie zuvor erläutert, lässt sich eine Analogie zwischen phylogenetischen Bäumen und 
STLs herstellen, die auch von Moussa & ElMaraghy (2018) genutzt wird. Damit ist es 
naheliegend, Ansätze zur Synthese phylogenetischer Bäume bzw. Netzwerke auf die 
Anwendbarkeit für die Erstellung von MSTLs zu untersuchen. Die Literatur zur Syn-
these phylogenetischer Bäume bzw. Netzwerke ist umfangreich, weshalb im Folgenden 
nur zwei ausgewählte, besonders relevante Arbeiten vorgestellt werden.  

Deng & Fernández-Baca (2018) stellen einen Algorithmus vor, der die Synthese eines 
Baums ermöglicht, der eine Menge gegebener Bäume darstellen kann. Existiert kein 
solcher Baum gibt der Algorithmus eine entsprechende Ausgabe zurück. Damit kann 
zwar erkannt werden, dass STAs vorliegen, jedoch nicht welche. Außerdem lassen sich 
aus dem synthetisierten Baum die eingehenden Bäume nicht in dem für die vorliegende 
Arbeit relevanten Sinne ableiten (siehe Problematik der Darstellbarkeit in Anhang 
A2.1). 

Nach Huson & Linz (2018) gab es zum Zeitpunkt der Veröffentlichung keine Algorith-
men, die in der Lage waren, aus Bäumen mit beliebiger Topologie, Netzwerke zu syn-
thetisieren, die alle Bäume darstellen können. Sie präsentieren einen solchen Algorith-
mus, der jedoch nur für genau zwei eingehende Bäume angewandt werden kann. Es 
existieren neuere Arbeiten, die jedoch erhebliche Einschränkungen bzgl. der Topologie 
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der eingehenden Bäume aufweisen, weshalb sie für die vorliegende Arbeit nicht rele-
vant sind 31. 

3.2.3 Lösungsdefizit 

Tabelle 3.2: Stand der Forschung zur datenbasierten Erstellung von MSTLs 

Tabelle 3.2 gibt einen Überblick über die Ansätze zur datenbasierten Erstellung von 
MSTLs nach Stand der Forschung sowie deren Anforderungserfüllung. Es lässt sich 
festhalten, dass die Anforderungen A2a und A2d trotz ihrer praktischen Relevanz bis-
her nicht berücksichtigt werden. Die zu entwickelnde Methode 2 soll diese Lücke schlie-
ßen. Sie soll in der Lage sein, MSTLs auf Basis von VSTLs zu erstellen und dabei alle 
Anforderungen A2a bis A2e erfüllen. 

3.3 Problem 3: Datenbasierte Erstellung von Maximalarbeitsplä-
nen 

3.3.1 Anforderungen 

Analog zu den Anforderungen an Methoden zur datenbasierten Erstellung von MSTLs 
(Problem 2) gelten für die datenbasierte Erstellung von MAPLs (Problem 3) die folgen-
den Anforderungen: Alle eingegangenen VAPLs müssen sich aus dem MAPL konfigu-
rieren lassen (Anforderung A3a: Informationserhaltung), auch große Anzahlen von 
VAPLs müssen verarbeitet werden können (Anforderung A3b: Skalierbarkeit) und 

                                         
31 Beispielhaft sei hier auf den Ansatz von Schaller et al. (2021) verwiesen der voraussetzt, dass die Bäume alle 
auf derselben Menge an Taxa definiert sind. 

 A2a A2b A2c A2d A2e 
● = Vollständig erfüllt ◐ = Teilweise erfüllt 

○ = Nicht erfüllt 

Informa-
tionserhal-
tung 

Skalierbar-
keit 

Struktural-
ternativen 

Multikompo-
nenten 

Vielelemen-
tigkeit 

Datenbasierte Erstellung von Maximalstücklisten und vergleichbarer Strukturen 
Moussa & ElMaraghy 2019; Kash-
koush & ElMaraghy 2014 ○ ● ● ○ ○ 

Moussa & ElMaraghy 2018 ○ ● ● ○ ● 
Kashkoush & ElMaraghy 2016, 2015 ○ ● ○ ○ ○ 
Romanowski & Nagi 2004 ○ ● ◐ ○ ● 
Algorithmen aus der Phylogenetik 
Deng & Fernández-Baca 2018 ○ ● ◐ ○ ● 
Huson & Linz 2018 ○ ○ ● ○ ● 
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STAs müssen erkannt und dargestellt werden können (Anforderung A3c: Struktural-
ternativen). Analog zu Multikomponenten in VSTLs können in VAPLs Multivorgänge 
vorliegen, d. h. mehrfach auftretende identisch bezeichnete AVOs, was berücksichtigt 
werden muss (Anforderung A3d: Multivorgänge). Zuletzt sollen auch bezüglich der 
verarbeitbaren VAPLs Einschränkungen in der Struktur vermieden werden. Es sollen 
deshalb nicht nur lineare VAPLs, sondern auch solche mit Parallelitäten berücksichtigt 
werden können (Anforderung A3e: Parallelitäten). 

3.3.2 Relevante Arbeiten 

Im Folgenden werden entsprechend der Problemstellung Ansätze zur Erstellung von 
MAPLs auf Basis von VAPLs betrachtet. Darüber hinaus werden Arbeiten betrachtet, 
die sich mit verwandten Problemstellungen befassen. Hierzu zählen die datenbasierte 
Erstellung von Vorranggraphen sowie das Process Discovery, d. h. die Ermittlung von 
Geschäftsprozessmodellen aus Ereignisdaten. 

Datenbasierte Erstellung von Maximalarbeitsplänen 

Es liegen ähnliche Ansätze von Zhang (2012), Zhang & Rodrigues (2009), Zhang et al. 
(2008) sowie Jiao et al. (2007) zur Erstellung von Strukturen vor, die als Generic Pro-
cesses, Process Platforms oder Generic Routings bezeichnet werden. In Ihrer Funktion 
entsprechen diese Strukturen einem MAPL. Allerdings gehen die Autoren von APLs der 
Montage aus und nehmen an, dass diese aufgrund der konvergenten Struktur der Mon-
tage als Bäume dargestellt werden können. Jedem AVO sind Komponenten der STL 
und ggf. Eigenschaften wie Ressource oder Bearbeitungszeit zugeordnet. Jiao et al. 
(2007) und Zhang et al. (2008) clustern die eingehenden VAPLs auf Basis ihrer Ähn-
lichkeit. Dabei wird die strukturelle Ähnlichkeit mittels Tree Edit Distance und die Ähn-
lichkeit der enthaltenen AVOs u. a. durch syntaktische und semantische Ähnlichkeit er-
mittelt. Für jedes Cluster wird ein sog. Basisbaum erstellt, der das Cluster repräsentiert, 
wobei auf diesen Schritt in keiner der Arbeiten im Detail eingegangen wird. Die einzel-
nen Basisbäume werden zu einem MAPL zusammengefasst indem schrittweise solche 
Kanten aus der Vereinigungsmenge aller Kanten hinzugefügt werden, die die Baum-
struktur des MAPL nicht verletzen. Im Gegensatz zu Jiao et al. (2007) und Zhang et al. 
(2008) nehmen Zhang & Rodrigues (2009) und Zhang (2012) eine explizite Generali-
sierung der AVOs in den eingehenden VAPLs vor. Daraus entstehen generalisierte Ar-
beitsvorgangsklassen (AVKs). Sie fassen VAPLs zu Basisbäumen zusammen, wenn 
diese die gleichen AVKs sowie die gleichen sequentiellen Beziehungen enthalten. Das 
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weitere Vorgehen ist i. W. analog zu dem von Jiao et al. (2007) und Zhang et al. (2008). 
Grundsätzlich können die erstellten Basisbäume als STAs aufgefasst werden. Letztlich 
sind diese im resultierenden MAPL jedoch nicht mehr erkennbar. Bei der Erstellung des 
MAPL aus den Basisbäumen und evtl. bereits bei der Erstellung der Basisbäume selbst 
ist nicht garantiert, dass Vorgängerbeziehungen zwischen AVOs vollständig erhalten 
bleiben. Deshalb lassen sich nicht zwingend alle eingehenden VAPLs aus dem MAPL 
konfigurieren. Die Ansätze sind darüber hinaus nur anwendbar, wenn sich die betrach-
teten VAPLs als Bäume darstellen lassen, was u. a. bedeutet, dass für eine Kompo-
nente keine parallelen AVOs ausgeführt werden können.  

Mit der Arbeit von Navaei & ElMaraghy (2018) existiert ein auf mathematischer Opti-
mierung basierender Ansatz zur Erstellung von MAPLs aus VAPLs. Die Autoren codie-
ren die VAPLs als Adjazenzmatrizen und bestimmen mittels Optimierung eine Ad-
janzenzmatrix für einen MAPL, die die geringste euklidische Distanz zu allen Adjazenz-
matrizen der VAPLs aufweist. STAs in den VAPLs werden im MAPL nicht abgebildet 
und Multivorgänge werden nicht berücksichtigt. Eine Informationserhaltung ist auch bei 
optimaler Ähnlichkeit nicht sichergestellt. 

Datenbasierte Erstellung von Vorranggraphen 

Vorranggraphen besitzen eine große Bedeutung für die Montageplanung. Sie schrän-
ken den Raum aller Montagereihenfolgen auf technisch mögliche Montagereihenfolgen 
einschließlich Parallelitäten ein und definieren damit den Lösungsraum für eine Opti-
mierung von Montagereihenfolgen (Altemeier et al. 2009, S. 73). Da die manuelle Er-
stellung von Vorranggraphen aufwändig ist, existieren in der Literatur Ansätze zur da-
tenbasierten Erstellung von Vorranggraphen. Da zu jedem APL genau ein Vorrang-
graph existiert, der nur diesen APL zulässt, können VAPLs und MAPLs als Vorranggra-
phen dargestellt werden. Die datenbasierte Erstellung von Vorranggraphen ist deshalb 
für die Problemstellung der vorliegenden Arbeit relevant.  

Wird ein Vorranggraph auf Basis von APLs erstellt, wird zunächst für jedes Paar von 
AVOs ermittelt, in welcher Abfolge diese in den APLs auftreten. Ist diese Abfolge immer 
gleich, wird davon ausgegangen, dass eine entsprechende Vorrangbeziehung besteht. 
Ist diese Abfolge nicht für alle APLs gleich, gibt es zwei alternative Vorgehensweisen. 
Die erste Vorgehensweise sieht vor, dass in diesem Fall keine Vorrangbeziehung zwi-
schen den beiden AVOs existiert, da beide Abfolgen in gültigen APLs auftreten. Dieser 
Ansatz wird von Altemeier et al. (2009) eingeführt. Klindworth et al. (2012) integrieren 
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diesen Ansatz in eine Methode zur Linienaustaktung. Otto & Otto (2014) ergänzen die 
Methode von Klindworth et al. (2012) in dem sie aufzeigen, wie Vorrangbeziehungen 
auf Basis von Experteninterviews und im Unternehmen vorhandenen Daten ermittelt 
werden können. Guiza et al. (2022) entwickeln die Methode von Altemeier et al. (2009) 
weiter, indem sie auch APLs anderer Produkte berücksichtigen. Dazu ermitteln sie mit 
Hilfe von Ähnlichkeitsanalysen, welche AVOs aus verschiedenen APLs einander ent-
sprechen. Alle diese Ansätze berücksichtigen keine STAs. Wenn für verschiedene Va-
rianten entgegengesetzte Vorrangbeziehungen existieren, führt dies dazu, dass im re-
sultierenden Vorranggraph keine entsprechenden Vorrangbeziehungen enthalten sind. 
Damit gehen bestimmte Vorrangbeziehungen in den eingehenden APLs verloren. Mul-
tivorgänge werden in keiner der Arbeiten berücksichtigt. 

Die zweite Vorgehensweise berücksichtigt demgegenüber STAs. Im Ansatz von Henri-
oud et al. (2002) wird eine Vorrangbeziehung zwischen zwei Vorgängen ݅ und ݆ nur 
dann verworfen, wenn eine Folge ߚ݆݅ߙ und eine Folge ߚ݆݅ߙ vorliegen, d. h. wenn die 
alternative Reihenfolge im selben Kontext auftritt. Treten alternative Reihenfolgen in 
unterschiedlichen Kontexten auf, sehen die Autoren im resultierenden Vorranggraphen 
bedingte Vorrangbeziehung vor. Auf Basis des Wissens über bedingte Vorrangbezie-
hungen im Vorranggraphen ist ersichtlich, welche Vorrangbeziehungen von STAs be-
troffen sind, jedoch nicht welche in sich konsistenten STAs in den VAPLs auftreten. 
Aufgrund der hohen Generalität des resultierenden Vorranggraphen lassen sich alle 
eingehenden VSTLs daraus konfigurieren. Der Ansatz von Henrioud et al. (2002) ist 
allerdings auf lineare VAPLs beschränkt und berücksichtigt keine Multivorgänge.  

Mit den Arbeiten von Mînzu & Bratcu (1999) sowie Bratcu et al. (1999) existiert ein 
Ansatz, der widersprüchliche Reihenfolgen von AVOs auf alternative Vorranggraphen 
zurückführt. Die Autoren zeigen, wie die Menge der APLs so partitioniert werden kann, 
dass für jede Klasse ein widerspruchsfreier Vorranggraph erstellt werden kann. Dies 
entspricht der Ermittlung optionaler Strukturen in MAPLs. Allerdings berücksichtigt der 
von Mînzu & Bratcu (1999) entwickelte Algorithmus nur lineare APLs, die darüber hin-
aus jeweils alle existierenden AVOs enthalten müssen. Multivorgänge werden nicht be-
trachtet. 

Process Discovery 

Process Discovery ist ein Teilgebiet des Process Minings, das sich mit der Erstellung 
von Prozessmodellen auf Basis von Ereignisdaten befasst. Ein Prozessmodell stellt die 
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Aktivitäten eines Prozesses und deren Beziehungen zueinander dar. Ereignisdaten als 
Eingangsdaten des Process Discoverys geben an, welche Aktivitäten in einem betrach-
teten System für welche Prozessinstanz zu welchem Zeitpunkt ausgeführt wurden. Da-
raus lassen sich für jede Prozessinstanz lineare Abfolgen von Aktivitäten, sog. Traces, 
ableiten. (van der Aalst 2022) 

Ein Prozessmodell kann als eine Darstellungsform eines MAPL interpretiert werden, 
weshalb die automatische Erstellung von Prozessmodellen prinzipiell für die vorlie-
gende Arbeit relevant ist. Ein wesentlicher Unterschied zur datenbasierten Erstellung 
von MAPLs besteht jedoch in den Eingangsdaten: Traces sind lineare Abfolgen von 
Aktivitäten wohingegen APLs auch Parallelitäten aufweisen können.  

Es existieren Methoden des Process Discoverys nach Stand der Forschung, die STAs 
teilweise berücksichtigen können: Sofern in einem Trace eine Aktivität A vor einer Ak-
tivität B und in einem anderen Trace B vor A ausgeführt wird, kann dies durch Algorith-
men nach Stand der Forschung erkannt und dargestellt werden (siehe beispielsweise 
Augusto et al. 2022). Es entsteht ein Zyklus im Prozessmodell, der zwar auf das Vor-
handensein von STAs hinweist, aber nicht erkennen lässt, welche in sich konsistenten 
STAs vorliegen. 

3.3.3 Lösungsdefizit 

Tabelle 3.3: Stand der Forschung zur datenbasierten Erstellung von Maximalarbeits-
plänen 

 A3a A3b A3c A3d A3e 

● = Vollständig erfüllt ◐ = Teilweise erfüllt 
○ = Nicht erfüllt 

Informa-
tionserhal-
tung 

Skalierbar-
keit 

Struktural-
ternativen 

Multivor-
gänge 

Paralleli-
täten 

Datenbasierte Erstellung von Maximalarbeitsplänen 
Zhang 2012; Zhang & Rodrigues 2009; Zhang 
et al. 2008; Jiao et al. 2007 ○ ● ◐ ○ ○ 

Navaei & ElMaraghy 2018 ○ ● ○ ○ ● 
Datenbasierte Erstellung von Vorranggraphen 
Guiza et al. 2022; Otto & Otto 2014; Klind-
worth et al. 2012; Altemeier et al. 2009 ○ ● ○ ○ ● 

Henrioud et al. 2002 ○ ● ◐ ○ ○ 
Bratcu et al. 1999; Mînzu & Bratcu 1999 ● ● ● ○ ○ 
Process Discovery 
Process Discovery nach van der Aalst (2022) 
und Augusto et al. (2022) ● ● ◐ ● ○ 
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Tabelle 3.3 gibt einen Überblick über den Stand der Forschung zur datenbasierten Er-
stellung von MAPLs. Die einschlägigen Ansätze beschränkten sich auf APLs mit Baum-
struktur und zeigen keine STAs im MAPL. In der Literatur zum Lernen von Vorranggra-
phen werden STAs überwiegend nicht berücksichtigt. Lediglich die Arbeit von Mînzu & 
Bratcu (1999) adressiert diesen Aspekt vollumfänglich. Deren Einschränkung auf line-
are VAPLs, die jeweils alle existierenden AVOs enthalten limitiert die praktische An-
wendbarkeit jedoch stark. Die zu entwickelnde Methode 3 soll die Vorteile der existie-
renden Methoden kombinieren um die Anforderungen A3a bis A3e vollständig zu erfül-
len. 

3.4 Problem 4: Datenbasierte Erstellung von Regeln 

3.4.1 Anforderungen 

Die Regeln eines LLKM entsprechen einem prädiktiven Multi-Label-Modell des über-
wachten Lernens (SL), wobei jeder abhängige Parameter einem Label entspricht (siehe 
auch Kapitel 2.3.2). Ebenso, wie ein Multi-Label-Modell nach dem Binary-Relevance-
Ansatz in mehrere Single-Label-Modelle zerlegt werden kann, lassen sich die Regeln 
eines LLKM unabhängig voneinander betrachten. Werden Regeln in Form von Aus-
wahlbedingungen (siehe Kapitel 2.2.2.4) betrachtet, entspricht die datenbasierte Erstel-
lung dieser Regeln mehreren binären Klassifikationsproblemen mit jeweils einem Label. 
Hierfür existieren verschiedene Verfahren des SL. Für die vorliegende Problemstellung 
können jedoch nur Verfahren des SL verwendet werden, die interpretierbare Klassifi-
kationsmodelle erstellen (Anforderung A4a: Interpretierbarkeit). Ansonsten wären 
die resultierenden Regeln und damit das LLKM nicht interpretierbar. 

Um eine allgemeine Anwendbarkeit der Methode zu gewährleisten, müssen darüber 
hinaus alle prinzipiell möglichen logischen Regeln zwischen binären Variablen erkannt 
werden können (Anforderung A4b: Logikagnostik). Analog zu den Anforderungen 
der Informationserhaltung in den Kapiteln 3.2.1 und 3.3.1 muss das Modell in der Lage 
sein, die verwendeten Daten zu reproduzieren. Wird also eine Variante ausgewählt, die 
in den Trainingsdaten vorhanden ist, müssen die resultierende VSTL und der resultie-
rende VAPL dieselben sein wie in den Trainingsdaten. Das entspricht einer maximalen 
Vorhersagegenauigkeit auf den Trainingsdaten, die in der Literatur auch als perfekte 
Trainingsgenauigkeit bezeichnet wird (Anforderung A4c: Perfekte Trainingsgenau-
igkeit). 
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Wie in Kapitel 2.3.2 beschrieben, muss bei der Erstellung eines Modells mittels SL
i. d. R. ein Kompromiss zwischen hoher Trainingsgenauigkeit und geringer Komplexität 
gefunden werden. Aufgrund der vorliegenden Problemstellung wird eine perfekte Trai-
ningsgenauigkeit vorausgesetzt. Im Sinne einer guten Generalisierbarkeit ist somit eine 
minimale Komplexität des Modells anzustreben (Anforderung A4d: Minimale Kom-
plexität). Diese Anforderung trägt auch zur Interpretierbarkeit der gelernten Regeln bei.
Zuletzt soll die Methode für allgemeine Fälle und damit auch für Problemstellungen mit 
vielen Features und großen Datensätzen anwendbar sein. Deshalb sollen Algorithmen 
für das Training verwendet werden, die hinsichtlich ihrer Recheneffizienz zumindest 
nicht hinter anderen Arbeiten aus dem Stand der Forschung zurückstehen (Anforde-
rung A4e: Recheneffizienz).

3.4.2 Relevante Arbeiten

Relevant sind, wie oben erläutert, nur Arbeiten, die sich mit binären Singlelabel-Klassi-
fikationsproblemen befassen. Darüber hinaus müssen die gelernten Modelle interpre-
tierbar sein. In der Literatur finden sich drei Arten von interpretierbaren Modellen, die 
Regeln darstellen oder in Regeln überführt werden können: Entscheidungsbäume, Re-
gellisten (engl. Decision Lists) und Regelmengen (engl. Decision Sets). Regellisten und 
Regelmengen enthalten Regeln, die jeweils aus einer Bedingung und einer Folgerung 
bestehen. Die Bedingungen entsprechen jeweils einem Monom, d. h. konjunktiv ver-

knüpften Literalen32. Bei der binären Klas-
sifikation entspricht die Folgerung der Zu-
ordnung des Datenpunkts zu einer positi-
ven oder negativen Klasse. Im Folgenden 
werden die Regeln entsprechend als posi-
tiv oder negativ bezeichnet. Bei einer Re-
gelliste ist im Gegensatz zu einer Regel-
menge die Reihenfolge der Regeln von Be-
deutung. Die Inferenz erfolgt durch die Zu-
ordnung eines Datenpunkts zu einer 
Klasse gemäß der ersten Regel, deren Be-
dingung sie erfüllt. Regelmengen im Sinne

                                        
32 Literale bezeichnen boolesche Variablen oder deren Negation

Abbildung 3.1: Interpretierbare Modelle
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von Rudin et al. (2022) enthalten ausschließlich positive Regeln. Eine Zuordnung zur 
negativen Klasse erfolgt, falls keine der Regeln zutrifft. Eine Regelmenge entspricht 
somit einem booleschen Ausdruck in disjunktiver Normalform (DNF). Dabei handelt es 
sich um eine disjunktive Verknüpfung von Monomen. (Rudin et al. 2022, S. 11–16) 

Abbildung 3.1 veranschaulicht die Modelle anhand derselben booleschen Funktion. Es 
sei angemerkt, dass Regellisten und Regelmengen nicht nur von binären Labels, son-
dern auch von binären Features ausgehen, die sich als boolesche Variablen darstellen 
lassen. Dies stellt allerdings keine Beschränkung des Anwendungsfalls dar, da sich 
numerische Features in diskrete Features und diskrete Features in binäre Features um-
wandeln lassen (Kotsiantis & Kanellopoulos 2006, S. 47–56, Potdar et al. 2017, S. 7–
8). 

Abweichend hiervon werden in der Logical Analysis of Data – einem Teilgebiet des 
Operations Research – Regelmengen mit gewichteten positiven und negativen Regeln 
verwendet (Ouyang & Chou 2020, S. 1). Bei der Inferenz wird das kumulierte Gewicht 
der erfüllten positiven und negativen Regeln verglichen und ein Datenpunkt derjenigen 
Klasse mit dem höherem kumulierten Gewicht zugeordnet (Ouyang & Chou 2020, S. 
1). Da bei der Interpretation solcher Regelmengen konkurrierende Regeln und Ge-
wichte zu berücksichtigen sind, ist davon auszugehen, dass sie schwer zu interpretie-
ren sind. Sie sind deshalb für die Problemstellung der vorliegenden Arbeit weniger ge-
eignet als Regelmengen im Sinne von Rudin et al. (2022) und werden nicht weiter be-
trachtet. Im Folgenden liegt deshalb das Verständnis von Regelmengen nach Rudin et 
al. (2022) zu Grunde, d. h. Regelmengen enthalten ausschließlich positive Regeln. 

Sowohl Entscheidungsbäume als auch Regellisten und Regelmengen lassen sich in 
eine Abfolge von Wenn-Dann-Abfragen überführen und sind damit grundsätzlich in KSs 
nach Stand der Technik implementierbar. Regelmengen gelten jedoch als besonders 
einfach zu interpretieren und insbesondere einfacher als Entscheidungsbäume und Re-
gellisten (Lakkaraju et al. 2016, S. 1675). Aufgrund der besseren Interpretierbarkeit be-
fasst sich die vorliegende Arbeit mit Abhängigkeiten in Form von Regelmengen, d. h. 
booleschen Ausdrücken in DNF. Im Folgenden werden deshalb Ansätze des SL be-
trachtet, die in der Lage sind, solche Modelle zu lernen.  

Heuristiken zur Optimierung der Komplexität von Regelmengen 

Viele Ansätze zum Lernen von Regelmengen nutzen Heuristiken, um Regelmengen mit 
geringer Komplexität zu lernen. An dieser Stelle sei auf Yang et al. (2021) verwiesen, 
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die einen Überblick über den diesbezüglichen Stand der Forschung geben und eine 
Heuristik zur datenbasierten Erstellung von Regelmengen entwickeln. Iterativ werden 
mittels lokaler Suche Regeln aufgestellt, die das gewichtete Mittel aus der Anzahl falsch 
klassifizierter negativer Datenpunkte, falsch klassifizierter positiver Datenpunkte, der 
Überlappung positiver Regeln und der Anzahl von Regeln bestmöglich verbessert. Im 
Allgemeinen können heuristische Verfahren weder eine minimale Komplexität noch 
eine perfekte Trainingsgenauigkeit garantieren. Eine Ausnahme hiervon bildet die Heu-
ristik „One Clause a Time“ von Triantaphyllou (2006). Sie erstellt boolesche Ausdrücke 
in Konjunktiver Normalform (KNF) mit möglichst wenigen Klauseln. Eine Erzeugung von 
Ausdrücken in DNF ist nach demselben Prinzip möglich. Dem Ausdruck wird schritt-
weise diejenige Klausel minimaler Länge hinzugefügt, die möglichst viele negative Da-
tenpunkte ablehnt, d. h. auf falsch abbildet, und zugleich alle positiven Datenpunkte 
akzeptiert, d. h. auf wahr abbildet. Der Algorithmus terminiert, sobald alle negativen 
Datenpunkte durch den Ausdruck abgelehnt werden. Damit wird eine perfekte Trai-
ningsgenauigkeit garantiert. Aufgrund der heuristischen Vorgehensweise kann jedoch 
ebenfalls keine minimale Komplexität des resultierenden Ausdrucks garantiert werden. 

Logikminimierung 

Logikminimierung bezeichnet die Minimierung der Komplexität boolescher Ausdrücke 
(Sasao 2023, S. 12). Um die entsprechenden Methoden für eine Klassifikation zu nut-
zen, wird der Trainingsdatensatz als Wahrheitstabelle interpretiert, wobei alle nicht vor-
handenen Einträge als sog. Don’t Care-Einträge aufgefasst werden. Im Zuge der Lo-
gikminimierung werden die Don’t Care-Einträge so gewählt, dass sich möglichst einfa-
che Ausdrücke ergeben. Klassische Verfahren der Logikminimierung, wie insbeson-
dere das Verfahren nach Quine und McCluskey, sind jedoch für große Datenmengen 
und große Anzahlen von Don’t Care-Einträgen aus Gründen der Recheneffizienz nicht 
geeignet (Safaei & Beigy 2007, S. 405). Safaei & Beigy (2007) entwickeln eine heuris-
tische Adaption des Quine-McCluskey-Verfahrens mit höherer Recheneffizienz. Sasao 
(2023) nutzt denselben Ansatz mit neueren Algorithmen der Logikminimierung, kann 
damit jedoch trotzdem nur kleine Probleme mit weniger als 20 Features lösen. 

Exakte Optimierung mittels Ganzzahliger Linearer Optimierung 

Dash et al. (2018) und Lawless et al. (2023) entwickeln zwei eng verwandte Ansätze, 
die mittels ganzzahliger linearer Optimierung (engl. Integer Linear Programming, ILP) 
eine Regelmenge ermitteln, die den Vorhersagefehler auf den Trainingsdaten 
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minimiert. Dabei wird die Komplexität – definiert als Anzahl der Literale über alle Regeln 
– auf eine vorgegebene Höhe beschränkt. Die bei der Optimierung berücksichtigten 
Regeln werden iterativ mittels Spaltengenerierung erstellt. Dadurch wird sicherge-
stellt, dass jede hinzugefügte Regel zur Reduzierung des Zielfunktionswerts beiträgt 
und dass eine optimale Lösung vorliegt, sobald keine weitere solche Regel mehr ge-
funden werden kann. Da die Komplexität selbst nicht optimiert wird, weisen die resul-
tierenden Regelmengen im Allgemeinen keine minimale Komplexität auf. Eine perfekte 
Trainingsgenauigkeit wird nur erreicht, wenn die Komplexität ausreichend hoch be-
schränkt wird. 

Su et al. (2016) nutzen ILP um einen booleschen Ausdruck in KNF zu erstellen, der die 
gewichtete Summe aus der Gesamtzahl an Literalen und der Trainingsgenauigkeit op-
timiert. Dabei werden jedoch nur positive Literale berücksichtigt, was die darstellbaren 
Modelle stark einschränkt. Zudem muss die Anzahl der Klauseln a priori festgelegt wer-
den. 

Exakte Optimierung mittels Satisfiability-Solvern 

Satisfiability-Solver (SAT-Solver) sind Programme zur Überprüfung der Erfüllbarkeit 
von booleschen Ausdrücken. Hiermit kann überprüft werden, ob ein boolescher Aus-
druck existiert, der bestimmte Anforderungen, wie insbesondere eine bestimmte Kom-
plexität oder eine bestimmte Genauigkeit auf den Trainingsdaten, erfüllt. Zum einen 
existieren Ansätze von Júnior et al. (2023), Ghosh et al. (2022), Cao et al. (2020), 
Ghosh & Meel (2019) und Malioutov & Meel (2018), die die beiden genannten Zielkri-
terien gewichtet optimieren. Prinzipiell ist es möglich, ein Gewicht für die Trainings-
genauigkeit zu ermitteln, das dazu führt, dass die optimale Lösung eine perfekte Trai-
ningsgenauigkeit aufweist. Mit den Ansätzen von Ignatiev et al. (2021), Yu et al. (2020) 
und Ignatiev et al. (2018) existieren jedoch Verfahren, die speziell für eine Optimierung 
der Komplexität unter Gewährleistung einer perfekten Trainingsgenauigkeit entwickelt 
wurden. Es ist deshalb davon auszugehen, dass sie für diese Problemstellung rechen-
effizienter sind.  

Für die vorliegende Arbeit ist der Ansatz von Ignatiev et al. (2021) am relevantesten, 
da er boolesche Ausdrücke in DNF mit einer minimalen Anzahl von Literalen und einer 
perfekten Trainingsgenauigkeit bestimmt. Dabei werden zunächst mittels SAT-Solvern 
alle Monome bestimmt, die alle negativen Datenpunkte ausschließen und nach ausge-
schlossenen positiven Datenpunkten nicht von anderen Monomen dominiert werden. 
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Anschließend wird mittels ILP die komplexitätsminimale Menge von Monomen be-
stimmt, die alle positiven Datenpunkte akzeptiert. Die Autoren zeigen, dass ihr Ansatz 
recheneffizienter ist als die unten vorgestellten Ansätze von Yu et al. (2020) und Igna-
tiev et al. (2018). Der Ansatz ist dennoch nicht in der Lage, mit Rechnern nach Stand 
der Technik Probleme mit mehr als 800 Datenpunkten in vertretbarer Zeit zu lösen. Der 
Ansatz sieht vor, dass ein ILP-Problem aufgestellt und gelöst wird, dessen Matrix eine 
Spalte für jedes nach Problemstellung zulässige Monom enthält. Die optimale Auswahl 
von Monomen entspricht einem Set-Partitioning-Problem (siehe hierzu Rönnberg & 
Larsson 2014, S. 532). Nach Stand der Forschung existiert mit Spaltengenerierung 
(CG) ein effizientes Lösungsverfahren für Set-Partitioning-Probleme, das ohne die Er-
zeugung aller Spalten auskommt (Rönnberg & Larsson 2014, S. 529). Das Effizienz-
problem des Ansatzes lässt sich also auch dadurch erklären, dass Optimierungsver-
fahren nach Stand der Forschung nicht genutzt werden. Hierfür wäre eine andere Mo-
dellierung notwendig.  

Nach Ansatz von Yu et al. (2020) werden sowohl positive als auch negative Regeln 
ermittelt, deren Bedingungen disjunkt sind. Dabei wird die Anzahl der Literale über alle 
Regeln minimiert. Werden die negativen Regeln vernachlässigt, ergibt sich ein Aus-
druck in DNF. Allerdings ist dessen Anzahl von Literalen damit nicht unmittelbar Ge-
genstand der Optimierung.  

Nach dem Ansatz von Ignatiev et al. (2018) wird ein boolescher Ausdruck in DNF er-
mittelt, der aus einer vorgegebenen Anzahl von Monomen besteht. Diese Anzahl kann 
iterativ angepasst werden, um einen Ausdruck mit einer minimalen Anzahl von Mono-
men zu finden. Der resultierende Ausdruck ist damit optimal in Bezug auf die Anzahl 
der Monome, garantiert aber keine optimale Lösung in Bezug auf die Anzahl der Lite-
rale, d. h. die resultierenden Monome selbst können beliebig komplex sein. 

Approximative Logiksynthese  

Approximative Logiksynthese (engl. Approximate Logic Synthesis, ALS) ist ein Teilge-
biet der Informatik, das sich mit dem Entwurf möglichst kostengünstiger logischer 
Schaltungen befasst, die eine boolesche Funktion möglichst genau abbilden. Wird der 
Trainingsdatensatz als unvollständige Wahrheitstabelle der zu approximierenden boo-
leschen Funktion aufgefasst, können existierende Verfahren der ALS für die vorlie-
gende Problemstellung verwendet werden. Die entsprechenden Ansätze verfolgen in 
der Regel nicht das Ziel, Trainingsdaten vollständig korrekt vorherzusagen (siehe z. B. 
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Ansatz von Boroumand et al. 2021). Costamagna & Micheli (2023) stellen jedoch meh-
rere ALS-Ansätze vor, die dies ermöglichen und auf schrittweiser Dekomposition ba-
sieren. Auch wenn die durch ALS erstellten Ausdrücke i. d. R. gute Ergebnisse hinsicht-
lich der Komplexität aufweisen, erfolgt keine Optimierung der Komplexität womit insbe-
sondere keine minimale Komplexität garantiert wird. 

3.4.3 Lösungsdefizit 

Tabelle 3.4: Stand der Forschung zur datenbasierten Erstellung von Regeln 

Wie Tabelle 3.4 zeigt, kann der Ansatz von Ignatiev et al. (2021) prinzipiell für die da-
tenbasierte Erstellung von Regeln in LLKMs genutzt werden. Er weist jedoch eine 
Schwäche hinsichtlich seiner Recheneffizienz auf und ist damit für große Probleme nur 
bedingt geeignet. Mit den Arbeiten von Lawless et al. (2023) und Dash et al. (2018), die 
ein ähnliches Optimierungsproblem mittels CG lösen, existiert ein Ansatz, der ein Opti-
mierungsverfahren nach Stand der Forschung nutzt. Dieser ist somit effizient, garantiert 
jedoch keine perfekte Trainingsgenauigkeit. Die zu entwickelnde Methode 4 soll beide 
Ansätze kombinieren um die Anforderungen A4a bis A3e vollständig zu erfüllen. 

 A4a A4b A4c A4d A4e 

● = Vollständig erfüllt ◐ = Teilweise erfüllt 
○ = Nicht erfüllt 

Interpre-
tierbarkeit 

Logik- 
agnostik 

Perfekte 
Trainings-
genauig-
keit 

Minimale 
Komplexi-
tät 

Rechenef-
fizienz 

Heuristische Optimierung der Komplexität  
Yang et al. 2021 ● ● ○ ○ ● 
Triantaphyllou 2006 ● ● ● ○ ● 
Logikminimierung 
Sasao 2023, Safaei & Beigy 2007 ● ● ● ● ○ 
Exakte Optimierung der Komplexität  
Dash et al. 2018; Lawless et al. 2023 ● ● ◐ ○ ● 
Su et al. 2016 ● ○ ● ● ● 
SAT-Solver 
Cao et al. 2020; Ghosh et al. 2022; Ghosh & 
Meel 2019; Júnior et al. 2023; Malioutov & 
Meel 2018 

● ● ● ● ◐ 

Ignatiev et al. 2021 ● ● ● ● ◐ 
Ignatiev et al. 2018; Yu et al. 2020 ● ● ● ◐ ◐ 
Approximative Logiksynthese 
Costamagna & Micheli 2023 ● ● ● ○ ● 
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3.5 Problem 5: Auswahl von repräsentativen Varianten zur Erwei-
terung der Datenbasis 

Wie in Kapitel 3.1.3 dargestellt, berücksichtigen weder die bestehenden Ansätze zur 
datenbasierten Erstellung von Konfigurationsmodellen, noch die bestehenden Ansätze 
zur datenbasierten Erstellung prädiktiver Modelle für die Arbeitsablaufplanung den Fall, 
dass keine ausreichend große Datenbasis vorliegt. Wie in Kapitel 1.1 beschrieben, ist 
es grundsätzlich möglich, die Datenbasis vor der Erstellung des KM zu erweitern. Dafür 
müssen jedoch aus dem Konfigurationsraum systematisch Varianten ausgewählt33 wer-
den, die einen hohen Informationsgewinn für eine datenbasierte Erstellung der Regeln 
des Konfigurationsmodells erwarten lassen. Dieses Vorgehen ist für die datenbasierte 
Erstellung von Regeln in der Literatur noch nicht erforscht34. Es weist jedoch eine große 
Ähnlichkeit mit dem Aktiven Lernen (AL, siehe Kapitel 2.3.2) im Kontext des ML auf. Im 
Folgenden sollen deshalb ausgewählte Arbeiten des AL betrachtet werden und es soll 
untersucht werden, inwieweit sich diese für die Anwendung auf die vorliegende Prob-
lemstellung eignen. 

3.5.1 Anforderungen 

Wie in Kapitel 3.4.1 beschrieben, können die Regeln eines LLKM als Multi-Label-Modell 
im Sinne des SL interpretiert werden. Bei der Auswahl der Variante muss somit der 
Informationsgehalt dieser Variante für alle Regeln berücksichtigt werden. Dies ent-
spricht einem Multi-Label-AL (Anforderung A5a: Multi-Label-AL).  

Eine Herausforderung der vorliegenden Problemstellung ist der typischerweise große 
Konfigurationsraum mit u. U. 1024 zulässigen Varianten (siehe Kapitel 1.1), der einem 
großen diskreten Featureraum im Sinne des SL entspricht. Da diese Featureräume auf-
grund ihrer Größe nicht vollständig enumeriert werden können, müssen mögliche 

                                         
33 Die Auswahl einer Variante aus dem Konfigurationsraum entspricht einer zulässigen Kombination von Ausprä-
gungen der Produktmerkmale (siehe Kapitel 2.2.2.1). Auch wenn der Konfigurationsraum nicht zwangsläufig eine 
diskrete Menge ist, wird in der vorliegenden Arbeit davon gesprochen, dass Varianten aus dem Konfigurations-
raum ausgewählt werden.  
34 Der in Kapitel 3.3.2 vorgestellte Ansatz von Guiza et al. (2022) zur Erstellung von Montagevorranggraphen 
adressiert das Problem einer zu kleinen Datenbasis, indem vorliegende Daten zu verwandten Produkten genutzt 
werden. Inwieweit diese Idee auf die datenbasierte Erstellung von Regeln übertragen werden kann, bleibt zu 
untersuchen. In der vorliegenden Arbeit wird dieser Ansatz nicht verfolgt, da er voraussetzen würde, dass im 
Unternehmen mehrere konfigurierbare Produkte mit ähnlichen Regeln existieren, was den Anwendungsbereich 
stark einschränkt. 
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Methoden des AL von nichtenumerierbaren Featureräumen ausgehen (Anforderung 
A5b: Nichtenumerierbarer Featureraum). Der Konfigurationsraum und damit der 
Featureraum ist darüber hinaus i. d. R. nicht konvex und kann durch das High-Level-
Konfigurationsmodell (HLKM) beliebig beschränkt sein. Dementsprechend müssen 
mögliche Methoden des Multi-Label-AL mit nichtkonvexen Featureräumen umgehen 
können (Anforderung A5c: Nichtkonvexer Featureraum) und Beschränkungen des 
Featureraums berücksichtigen (Anforderung A5d: Beschränkter Featureraum). 

Wie in Kapitel 3.4.1 beschrieben, sind Modelle in Form boolescher Ausdrücke in DNF 
für die vorliegende Problemstellung besonders geeignet. Sie unterscheiden sich von 
vielen Klassifikationsmodellen darin, dass aus ihnen keine Unsicherheit für eine Klas-
sifikationsentscheidung ermittelt werden kann. Geeignete Ansätze dürfen deshalb sol-
che Funktionen nicht voraussetzen (Anforderung A5e: Boolesche Ausdrücke). 

3.5.2 Relevante Arbeiten 

Die Methoden des Multi-Label-AL nach Stand der Forschung sind sämtlich poolbasiert 
(siehe Kapitel 2.3.2), d. h. gehen von enumerierbaren Featureräumen aus und sind da-
mit für die vorliegende Problemstellung nicht geeignet. Sie werden deshalb nur der 
Vollständigkeit halber kurz beleuchtet. Darüber hinaus werden Ansätze zum Single-
Label-AL betrachtet, die Membership Query Synthesis (MQS) einsetzen und damit 
keine vollständige Enumeration des Featureraums voraussetzen. Schließlich wird auf 
spezielle Methoden des AL, eingegangen, die einen Versionenraum (engl. Version 
Space, VS) alternativer Modelle nutzen. Diese sind zwar ebenfalls nicht unmittelbar auf 
die vorliegende Problemstellung anwendbar, das Konzept ist jedoch übertragbar (siehe 
Kapitel 4.5). 

Poolbasiertes Multi-Label-AL 

Wu et al. (2020) geben einen umfassende Überblick über Ansätze des Multi-Label-AL. 
Diese werden vor allem zur Klassifikation von Bildern eingesetzt. In aktuellen Ansätzen 
werden dabei Datenpunkte multikriteriell nach repräsentationsbasierten und informati-
onsbasierten Kriterien ausgewählt. Bei informationsbasierten Kriterien erfolgt eine Ag-
gregation über alle Labels indem entweder die Ausprägungen der Kriterien aggregiert 
– z. B. gemittelt – werden oder die Datenpunkte je Label in eine Rangfolge gebracht 
und die Ränge aggregiert werden (zu letzterem siehe Dwork et al. 2001). Es existieren 
keine Arbeiten zu Multi-Label-AL, die von einem beschränkten Featureraum ausgehen 
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oder boolesche Ausdrücke als Modelle verwenden. Da außerdem durchgehend pool-
basiertes AL vorliegt, wird ein enumerierbarer Featureraum vorausgesetzt. 

AL mit MQS 

Ansätze des MQS können nach dem betrachteten Featureraum unterschieden werden: 
stetig oder diskret. Für stetige Featureräume existieren einerseits Ansätze, die von ei-
nem Klassifikator ausgehen, der eine Klassengrenze im Featureraum induziert, wie 
z. B. eine Support-Vector-Machine oder eine begrenzende Hyperebene eines Hal-
braums (siehe Englhardt & Böhm 2020, Chen & Fuge 2018, Chen et al. 2017 und Alab-
dulmohsin et al. 2015). In diesem Fall können Datenpunkte nahe der Klassengrenze 
gewählt werden. Darüber hinaus existieren Ansätze, die von einer impliziten Klassen-
grenze ausgehen und Datenpunkte zwischen annotierten Datenpunkten verschiedener 
Klassen auswählen (Wang et al. 2015 und Xuelei Hu et al. 2012). Beides ist nur für 
konvexe Featureräume möglich. Beschränkungen des Featureraums oder boolesche 
Ausdrücke als Modelle werden nicht betrachtet. 

Zur Anwendung von MQS auf diskreten Featureräumen existiert nur die Arbeit von Ling 
& Du (2008). Die Autoren nutzen den Bergsteigeralgorithmus, eine einfache Metaheu-
ristik, um den Featureraum nach dem Datenpunkt mit der höchsten Vorhersageunsi-
cherheit zu durchsuchen. Der Featureraum ist hierbei, abgesehen von den Definitions-
bereichen der Feature, nicht beschränkt. Das verwendete Prädiktionsmodell ist ein Ent-
scheidungsbaum.  

AL unter Berücksichtigung des Versionenraums 

Grundsätzlich kann das Ziel des AL als Verkleinerung eines Versionenraums (VR) al-
ternativer möglicher Modelle verstanden werden. Dieser Ansatz wird beim QBC implizit 
verfolgt, da die einzelnen Modelle des Komitees als VR aufgefasst werden können. Um 
das Komitee zu erzeugen, werden beim QBC i. d. R. identische Algorithmen auf ver-
schiedene Teilmengen des Trainingsdatensatzes angewandt (Kumar & Gupta 2020, S. 
918). Prinzipiell kann der VR aber auch auf andere Weise aufgestellt werden. Ein für 
die vorliegende Arbeit relevanter Ansatz stammt von Mitchell (1977), der den VR aus 
der Menge aller Regeln mit minimaler oder maximaler Spezifität erstellt. Die Spezifität 
einer Regel ergibt sich aus der Anzahl der annotierten und nichtannotierten Daten-
punkte für die sie gilt. Eine Regel ist hierbei ein einziges Monom im Sinne der Aussa-
genlogik, was die Mächtigkeit der resultierenden Modelle einschränkt. Außerdem geht 
der Autor nur am Rande darauf ein, wie Anfragen auf Basis des VR generiert werden 
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können. Der betrachtete Featureraum ist nicht beschränkt und wird für das poolbasierte 
Sampling als enumerierbar angenommen.  

3.5.3 Lösungsdefizit 

Tabelle 3.5: Stand der Forschung zur Auswahl von repräsentativen Varianten zur Er-
weiterung der Datenbasis 

Es existiert in der Literatur keine Methode zur Auswahl von repräsentativen Varianten 
um LLKMs datenbasiert zu erstellen. Wie Tabelle 3.5 zeigt existiert auch in der Literatur 
zu AL keine hierfür geeignete Methode und auch keine Methode, die durch nahelie-
gende Anpassung geeignet werden würde. Daher soll mit Methode 5 eine neue, prob-
lemspezifische AL-Methode entwickelt werden, die die Anforderungen A5a bis A5e er-
füllt. 

3.6 Problem 6: Datenbasierte Überprüfung von Regeln 

3.6.1 Anforderungen 

Inkonsistenzen in Regeln wie z. B. die Möglichkeit, zwei sich gegenseitig ausschlie-
ßende Elemente der MSTL zu wählen, stellen offensichtlich starke Hinweise auf Fehler 
dar. Sie sollen bei der Überprüfung eines LLKM berücksichtigt werden (Anforderung 

 A5a A5b A5c A5d A5e 

● = Vollständig erfüllt ◐ = Teilweise erfüllt 
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Poolbasiertes Multi-Label-AL 
Poolbasiertes Multi-Label-AL (nach Wu et al. 2020) ● ○ ● ○ ○ 
AL mit MQS 
Alabdulmohsin et al. 2015; Chen & Fuge 2018; Englhardt & Böhm 
2020; Wang et al. 2015; Xuelei Hu et al. 2012 ○ ● ○ ○ ○ 

Ling & Du 2008 ○ ● ● ○ ○ 
AL unter Berücksichtigung des Versionenraums 
Mitchell 1977 ○ ○ ● ○ ◐ 
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A6a: Berücksichtigung logischer Inkonsistenzen)35. Wie in Kapitel 2.3.3 beschrie-
ben, wird darüber hinaus in vielen Anwendungsfällen anderer Disziplinen Anomalieer-
kennung eingesetzt, um Fehler zu entdecken. Diese Fehler entsprechen nicht zwin-
gend logischen Widersprüchen in einem Modell. Werden die Regeln eines LLKM als 
Datenpunkte interpretiert, können einzelne Regeln gegenüber der Gesamtheit an Re-
geln Anomalien aufweisen. Damit liegen Hinweise auf Fehler vor, die über Konsistenz-
fehler hinausgehen und deshalb ebenfalls bei der Überprüfung des Modells verwendet 
werden sollten (Anforderung A6b: Berücksichtigung von Anomalien). Es kann dar-
über hinaus Fehler im LLKM geben, die sich weder in logischen Inkonsistenzen nieder-
schlagen noch in Anomalien. In Fällen, in denen eine hohe Genauigkeit gefordert ist, 
muss es möglich sein, mit zusätzlichem Aufwand die Genauigkeit des Modells weiter 
zu erhöhen, d. h. die Überprüfung muss skalierbar sein (Anforderung A6c: Skalier-
barkeit).  

3.6.2 Relevante Arbeiten 

Entsprechend der in Kapitel 2.2.3.2 eingeführten Einteilung nach Meseguer & Preece 
(1995, S. 337–339) kann die Literatur zur Überprüfung von KSs und KMs in Inspektion, 
statische Verifikation, empirisches Testen und Evaluation unterteilt werden. Da die Eva-
luation die Nutzung des KS und nicht primär das KM betrifft, wird sie im Folgenden nicht 
betrachtet. Auf bestehende Ansätze zur Inspektion und statischen Verifikation sowie 
zum empirischem Testen wird im Folgenden eingegangen. 

Inspektion 

Es existieren Methoden und Darstellungsweisen, die Experten dabei unterstützen, sich 
in KMs zurecht zu finden, wodurch wiederum die Inspektion unterstützt wird. Felfernig 
et al. (2013) entwickeln z. B. ein Recommender System für Beschränkungen in be-
schränkungsbasierten KMs: Benutzern, die sich eine Beschränkung angesehen haben, 
werden ähnliche Beschränkungen vorgeschlagen. Daneben existieren Möglichkeiten 
der Visualisierung von Regeln für allgemeine Expertensysteme. Beispielhaft sei auf 
Baumeister & Freiberg (2011) verwiesen, die Möglichkeiten zur graphischen Darstel-
lung von Abhängigkeiten vorstellen. Darüber hinaus existieren Ansätze, um durch das 
Lösen von Erfüllbarkeitsproblemen dem Experten Informationen über ein KM 

                                         
35 In der Literatur werden logische Inkonsistenzen auch als Anomalien bezeichnet. In der vorliegenden Arbeit ist 
mit Anomalie jedoch immer Anomalie im Sinne des unüberwachten Lernens gemeint. 
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bereitzustellen, die für eine Inspektion relevant sein können. Sinz (2004) nennt hierfür 
folgende Informationen: Gruppen von Produktmerkmalausprägungen, die für jede zu-
lässige Variante gewählt werden müssen und Produktmerkmalausprägungen, die kei-
nen Einfluss auf die Zulässigkeit einer Variante haben. Tidstam et al. (2016) nennen 
darüber hinaus Komponenten, die immer oder nie gemeinsam auftreten und Produkt-
merkmalausprägungen, die nach High-Level-Beschränkungen immer gemeinsam auf-
treten. Diese Informationen dienen dem Verständnis des KM und sind nicht notwendi-
gerweise Hinweise auf Fehler. Grundsätzlich können alle Fehler in einem KM durch 
eine vollständige und akribische Inspektion gefunden werden, weshalb das Vorgehen 
skalierbar ist, auch wenn der Aufwand u. U. nicht wirtschaftlich ist. 

Statische Verifikation 

Sinz (2004) beschreibt folgende Hinweise auf Fehler, die durch das Lösen von Erfüll-
barkeitsproblemen ermittelt werden können: Nichtwählbare Produktmerkmalausprä-
gungen nach High-Level-Beschränkungen, Reihenfolgenabhängigkeit der Regelaus-
führung, nichtwählbare Komponenten in der MSTL und das Vorkommen von sich ge-
genseitig ersetzenden Komponenten in derselben VSTL. Darüber hinaus sieht er das 
Vorhandensein von nichtwählbaren Produktmerkmalausprägungen als Information für 
die Inspektion, was jedoch von Tidstam et al. (2016) als Hinweis auf einen Fehler im 
Sinne der statischen Verifikation angesehen wird. Tidstam et al. (2016) ergänzen au-
ßerdem Produktmerkmale für die nur eine Ausprägung gewählt werden kann, verschie-
dene Produktmerkmalausprägungen, die nur gemeinsam auftreten und Regeln, die be-
reits von anderen Regeln impliziert werden. Es existieren Arbeiten weiterer Autoren, 
die dieselben Fehlerhinweise für eine statische Verifikation verwenden, wie z. B. Voro-
nov (2013) und Braun (2021). Die statische Verifikation hat den Vorteil, dass sie tat-
sächliche Fehler im KM identifizieren kann. Sie ermöglicht jedoch keine vollständige 
Überprüfung eines KM, da sich nicht alle Fehler in logischen Inkonsistenzen nieder-
schlagen. 

Empirisches Testen 

Die Herausforderung beim empirischen Testen liegt in der Auswahl der zu konfigurie-
renden und zu überprüfenden Varianten. Die Arbeit von Glos et al. (2023) behandelt 
das Testen eines konfigurierbaren Fahrzeugs durch den Bau von Vorserienfahrzeugen. 
Die Autoren gehen davon aus, dass bestimmte Testfälle definiert sind, wie z. B. be-
stimmte Komponenten, die neu eingeführt wurden und getestet werden sollen. Mittels 
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mathematischer Optimierung ermitteln sie die kleinste Anzahl zu produzierender Vari-
anten, die zusammen alle Testfälle abdecken. Einen ähnlichen Fall betrachten Walter 
et al. (2016), die diejenigen Fahrzeugvarianten ermitteln, die zusammen alle Produkt-
merkmalausprägungen mindestens einmal realisieren. Die Literatur zum Testen von 
industriellen KMs ist damit sehr begrenzt. Für die Auswahl von Tests für konfigurierbare 
Software existieren jedoch zahlreiche Ansätze. Hier sind t-way Teststrategien vorherr-
schend, die eine minimale Anzahl von Konfigurationen auswählen, so dass jede Kom-
bination der Ausprägungen von ݐ Produktmerkmalen mindestens einmal vorkommt. 
Dadurch können Fehler ermittelt werden, die aus der Interaktion von Produktmerkma-
len resultieren. Medeiros et al. (2016) zeigen eine Übersicht und einen empirischen 
Vergleich dieser und weiterer gängiger Teststrategien. Wie Medeiros et al. (2016) zei-
gen, steigt der Aufwand zum Finden von Fehlern beim empirischen Testen exponentiell 
an, d. h. einige Fehler werden mit wenigen Tests gefunden, das Finden der letzten ver-
bleibenden Fehler erfordert jedoch einen hohen Aufwand. Liegen, wie bei industriellen 
KMs üblich, Beschränkungen hinsichtlich der wählbaren Konfigurationen vor, müssen 
diese bei der Zusammenstellung der Tests gemäß der Teststrategie berücksichtigt wer-
den. Für eine Übersicht über entsprechende Verfahren sei auf Wu et al. (2019) verwie-
sen. 

3.6.3 Lösungsdefizit 

Tabelle 3.6: Stand der Forschung zur datenbasierten Überprüfung von Konfigurations-
modellen 

 A6a A6b A6c 

● = Vollständig erfüllt ◐ = Teilweise erfüllt 
○ = Nicht erfüllt 

Berücksichti-
gung von logi-
schen Inkon-
sistenzen 

Berücksichti-
gung von Ano-
malien 

Skalierbarkeit 

Inspektion 
Felfernig et al. 2013 ○ ○ ● 
Tidstam et al. 2016, Inspektion nach Sinz (2004) ○ ○ ● 
Visualisierung nach Baumeister & Freiberg (2011) u. a.  ○ ○ ● 
Statische Verifikation 
Braun 2021, Tidstam et al. 2016, Voronov 2013, Statische 
Verifikation nach Sinz (2004) ● ○ ○ 
Empirisches Testen 
Glos et al. 2023, Walter et al. 2016 ○ ○ ○ 
Kombinatorisches Testen von konfigurierbarer Software 
nach Medeiros et al. (2016) und Wu et al. (2019) ○ ○ ● 
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Wie Tabelle 3.6 zeigt, stehen mit der Inspektion und dem empirischen Testen zwei 
Möglichkeiten zur Verfügung, um KMs prinzipiell vollständig auf Fehler überprüfen zu 
können. Die Inspektion kann durch Methoden aus der Literatur unterstützt werden. Eine 
vollständige Überprüfung durch Inspektion stößt jedoch für große KMs an ihre Grenzen. 
Das empirische Testen geht mit exponentiellem Aufwand für das Finden von Fehlern 
einher. Durch die Berücksichtigung von Hinweisen aus der statischen Verifikation kön-
nen Fehler, die sich in logischen Inkonsistenzen niederschlagen, unmittelbar gefunden 
werden, wodurch die Überprüfung von KMs effizienter wird. Durch eine Anomalieerken-
nung könnten zusätzliche relevante Hinweise für die Überprüfung gewonnen werden. 
Ein solcher Baustein zur Überprüfung von KMs existiert jedoch nach Stand der For-
schung nicht. Daher soll Methode 6 diese Möglichkeit bereitstellen und damit beste-
hende Methoden zur Überprüfung von KMs komplementieren. 
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4 Methoden
Im Folgenden werden die Methoden 1 bis 6 zur Lösung der Probleme 1 bis 6, welche 
in Kapitel 1.2 eingeführt und in Kapitel 3 konkretisiert wurden, vorgestellt (Abbildung 
4.1). Dies entspricht dem dritten Schritt des Design Science Research Process (DSRP, 
siehe Kapitel 1.3). Ebenso wie Problem 1 den Problemen 2 bis 5 übergeordnet ist, greift 
die Methode 1 auf die ihr untergeordneten Methoden 2 bis 5 zurück (siehe Kapitel 1.3). 
Sie beschreibt, wie die Methoden 2 bis 5 in Abhängigkeit des Anwendungsfalls integriert 
werden können, um Konfigurationsmodelle datenbasiert zu erstellen. Demgegenüber 
beschreibt Methode 6 zur Lösung von Problem 6, wie Konfigurationsmodelle (KMs) da-
tenbasiert überprüft werden können. Im Folgenden werden die Methoden 1 bis 6 vor-
gestellt36.

4.1 Methode 1: Datenbasierte Erstellung von Konfigurationsmo-
dellen

Im Folgenden wird zunächst das Schema der datenbasiert zu erstellenden Low-Level-
Konfigurationsmodelle (LLKMs) eingeführt (Kapitel 4.1.1). Anschließend werden auf 
Basis des industriellen Kontextes der vorliegenden Arbeit (siehe Kapitel 1.1) Anwen-
dungsszenarien für die datenbasierte Erstellung von LLKMs herausgearbeitet (Kapitel 
4.1.2). Abschließend wird dargelegt, wie diese Anwendungsszenarien auf die dem
Problem 1 untergeordneten Probleme 2 bis 5 zurückgeführt werden können und wie 

                                        
36 Vom Autor der vorliegenden Arbeit wurde bereits ein erster Ansatz veröffentlicht, um Low-Level-Konfigurati-
onsmodelle datenbasiert zu erstellen und zu überprüfen (Frey et al. 2023). Die darin skizzierten Ideen für geeig-
nete Methoden werden z. T. durch die Methoden 1 bis 6 aufgegriffen, ausgearbeitet und weiterentwickelt. Die 
Methoden 1 bis 6 selbst sind bisher jeweils nicht veröffentlicht und nicht zur Veröffentlichung eingereicht.

Abbildung 4.1: Übersicht über die Methoden 1 bis 6

Methode 1: Datenbasierte Erstellung von Konfigurationsmodellen
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die in den folgenden Kapiteln vorgestellten Methoden zur Lösung dieser Probleme 
durch Methode 1 integriert werden, um LLKMs datenbasiert zu erstellen (Kapitel 4.1.3).

4.1.1 Schema der betrachteten Low-Level-Konfigurationsmodelle

Im Folgenden werden industrieübliche integrierte KMs betrachtet, wie sie in Kapitel 
2.2.2.4 beschrieben sind. Diese lassen sich in ein High-Level-Konfigurationsmodell 
(HLKM) und ein LLKM gliedern. Das LLKM besteht aus einer Maximalstückliste (MSTL), 
einem oder mehreren Maximalarbeitsplänen (MAPLs) sowie Abhängigkeiten in Form 
von Regeln. Abbildung 4.2 (2) zeigt exemplarisch das im Rahmen der vorliegenden 

Abbildung 4.2: Schema der Maximalstückliste und deren Abhängigkeiten in der vorlie-
genden Arbeit
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Arbeit entwickelte Schema einer MSTL in Form eines UML-Klassendiagramms sowie 
mögliche zugehörige Abhängigkeiten als Teil des LLKM. Die Klasse Vertriebskonfigu-
ration in Abbildung 4.2 (1) stellt das HLKM dar und wird im Rahmen des Vertriebskon-
figurationsprozesses als Beschreibung einer Variante aus Kundensicht instanziiert. 
Zwischen den Merkmalen des Produkts im HLKM können Abhängigkeiten in Form von 
Beschränkungen bestehen.  

Die MSTL besteht aus einer Klasse ܲܭ, aus der das Produkt instanziiert wird sowie 
Komponentenklassen (KKs), aus denen Komponenten instanziiert werden. Ebenso wie 
Komponenten in Baugruppen und Zukaufkomponenten (ZKs) eingeteilt werden kön-
nen, kann eine MSTL Baugruppenklassen (BGKs) und Zukaufkomponentenklassen 
(ZKKs) enthalten. Die Produktklasse ܲܭ, aus der das Endprodukt instanziiert wird, ver-
fügt über Parameter ݌௉௔, die das Endprodukt aus technischer Sicht beschreiben sowie 
weitere Parameter, die später eingeführt werden. Im Gegensatz zur Produktklasse ܲܭ 
sind KKs nicht zwingend aktiv, d. h. werden nicht zwingend bei der Konfiguration einer 
variantenbezogenen Stückliste (VSTL) instanziiert. Sie verfügen deshalb über einen 
Parameter ݌஺௞௓௨, der den Aktivitätszustand der KK angibt und im Rahmen des Konfi-
gurationsprozesses gesetzt wird. Aktive KKs werden zum Abschluss des Konfigurati-
onsprozesses instanziiert. Für aktive KKs gibt der Parameter ݌ெ௘ an, in welcher Menge 
die zugehörige Komponente in der VSTL in ihre übergeordnete Komponente eingeht. 
ZKKs verfügen darüber hinaus über eine Bezeichnung (݌஻௘௭) und, sofern ZKKs mit 
identischer Bezeichnung an verschiedenen Positionen der MSTL auftreten, über eine 
Positionsnummer (݌௉௢௦). Ebenso wie die Produktklasse ܲܭ können BGKs und ZKKs 
über Parameter ݌௉௔ verfügen, die die Komponenten aus technischer Sicht beschreiben, 
wie z. B. deren Dimensionen oder Werkstoffe. Parameter von BGKs und ZKKs können, 
über Wenn-Dann-Regeln, von den Parametern übergeordneter KKs abhängen. Ebenso 
können die Parameter der Produktklasse ܲܭ von den Produktmerkmalen abhängen. 
Die Produktkonfiguration erfolgt von oben nach unten in der Hierarchie der MSTL. 
Nachdem die Vertriebskonfiguration vorliegt und somit das Produkt nach dem HLKM 
konfiguriert ist, wird zunächst die Produktklasse ܲܭ entsprechend der zugehörigen Re-
geln instanziiert, wobei ihre Parameter ausgeprägt werden. Anschließend werden die 
Komponenten der darunterliegenden Ebene auf Basis ihrer Abhängigkeiten von der 
Vertriebskonfiguration und der Produktklasse ܲܭ instanziiert usw. Baugruppen ohne 
instanziierte Zukaufkomponenten sind leer und werden aus der resultierenden VSTL 
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entfernt. Ebenso werden Komponenten entfernt, die nur über genau eine Subkompo-
nente verfügen (siehe Kapitel 2.1).

Das verwendete Schema sieht die Möglichkeit vor, Strukturalternativen der VSTLs in 
der MSTL abzubilden, was einen wesentlichen Unterschied zu ähnlichen Schemata 
nach Stand der Forschung darstellt. Aus der MSTL können VSTLs mit unterschiedli-
chen Strukturen, d. h. unterschiedlichen Fügereihenfolgen der ZKs, konfiguriert wer-
den. Diese alternativen, in der MSTL vorgesehenen Strukturen werden im Folgenden 
als Strukturoptionen (STOs) bezeichnet. Im gezeigten Beispiel existieren zwei STOs, 
die sich in der Position der Komponente mit Bezeichnung (Parameter ݌஻௘௭) „Z1“ unter-
scheiden – in der Abbildung in grün und grau dargestellt. Der Parameter ݌ௌ்ை einer ZKK 
legt fest, für welche STOs diese ZKK instanziiert werden kann: ZKK ܭܭଵ,ଵ௓ kann nur für 
STO 1 instanziiert werden und ܭܭଵ,ଵ௓ nur für STO 237. Für STO 1 wird also die Kompo-
nente Z1 zunächst mit der Komponente Z2 gefügt bevor die resultierende Baugruppe 
in das Endprodukt eingeht. Für STO 2 geht Z1 unmittelbar in das Endprodukt ein. Es 
besteht offensichtlich ein enger Zusammenhang zwischen STOs in der MSTL und 
Strukturalternativen (STAs) in den VSTLs die aus der MSTL konfiguriert werden. Wer-
den zwei VSTLs aus derselben MSTL mit unterschiedlichen STOs konfiguriert, können 
die beiden VSTLs STAs enthalten. Abbildung 4.3 zeigt für den Beispielfall, dass das 
jedoch nicht zwingend der Fall sein muss. Würden im Beispielfall zwei VSTLs konfigu-
riert, die beide Zukaufkomponente Z1 nicht enthalten, würden diese keine STAs

                                        
37 Eine ZKK wird somit im Konfigurationsprozess genau dann instanziiert, wenn ihr Aktivitätszustand dies vorsieht 
஺௞௓௨݌) = (ݎℎܽݓ und wenn die gültige STO ihre Instanziierung zulässt.

Abbildung 4.3: Konfiguration variantenbezogener Stücklisten mit und ohne Struktural-
ternativen für den Beispielfall in Abhängigkeit der gültigen Strukturoption
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aufweisen, auch wenn jeweils von einer anderen STO ausgegangen würde. Verschie-
dene STOs schlagen sich somit nicht immer in STAs konfigurierter VSTLs nieder. Bei 
der datenbasierten Erstellung von MSTL entspricht jede STO der MSTL einer STA in 
den eingegangenen VSTLs. Sind die STAs in den VSTLs technisch begründet (siehe 
Kapitel 2.2.2.2) können die zugehörigen STOs in der MSTL für die Konfiguration ge-
nutzt werden. Die für einen Konfigurationsprozess gültige STO (Parameter ݌ௌ்ை,ெௌ்௅ 
der Produktklasse ܲܭ) kann entweder von der Vertriebskonfiguration abhängen oder 
von Parametern, die nicht Teil des KM sind, wie z. B. dem produzierenden Werk.  

Zwei STOs können sich nicht nur, wie im Beispielfall, in der Position einer Komponente, 
sondern in den Positionen beliebig vieler Komponenten unterscheiden. Auch STOs, die 
die Positionen ganzer Baugruppen betreffen können abgebildet werden. Dazu werden 
BGKs mit identisch bezeichneten Zukaufkomponenten definiert und die ZKKs je BGK 
jeweils derselben STO zugeordnet. Identisch bezeichnete ZKKs an verschiedenen Po-
sitionen der MSTL, im Folgenden Multipositionen genannt, müssen im beschriebenen 
Schema nicht zwingend verschiedenen STOs zugeordnet sein. Sind sie identischen 
STOs zugeordnet, können sie zugleich instanziiert werden, wodurch Multikomponenten 
in den aus der MSTL konfigurierten VSTLs auftreten können. In dem im Rahmen der 
vorliegenden Arbeit verwendeten Schema können STOs nicht nur in MSTLs, sondern 
auch in MAPLs vorliegen, wie unten ausgeführt wird. Ebenso wie der Parameter ݌ௌ்ை,ெௌ்௅ der Produktklasse ܲܭ die gültige STO für die Konfiguration der VSTL angibt, 
geben die Parameter ݌ௌ்ை,ெ஺௉௅ einer Produkt- oder Komponentenklasse die gültige 
STO für die Konfiguration des zugehörigen variantenbezogenen Arbeitsplans (VAPL) 
an.  

Abbildung 4.4 zeigt exemplarisch das in der vorliegenden Arbeit verwendete Schema 
eines MAPL mit den möglichen Abhängigkeiten zur MSTL in Form von Regeln für die 
Baugruppe B1 der in Abbildung 4.2 dargestellten MSTL. Jede Arbeitsvorgangsklasse 
(AVK) verfügt über einen Parameter ݌஺௞௓௨, der angibt, ob der Arbeitsvorgang (AVO) für 
eine bestimmte Variante aktiv ist, d. h. instanziiert wird. Ggf. verfügt sie über weitere 
Parameter ݌௉௔, die z. B. den Arbeitsplatz, an dem der AVO ausgeführt wird, das ver-
wendete Werkzeug oder Einstellparameter einer verwendeten Maschine angeben. Die 
Parameter der AVK können – wie dargestellt – grundsätzlich von den Parametern der 
zugehörigen Komponentenklasse (KK), sowie deren über- und untergeordneten KKs, 
der Produktklasse und der Vertriebskonfiguration abhängen. STOs in MAPLs können 
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analog zur Darstellung von STOs in MSTLs durch Duplizierung von AVKs dargestellt
werden, wie z. B. im Fall der AVK von AVO A2. In Abhängigkeit der gültigen STO38 ist 
in diesem Fall eine parallele Ausführung von A2 und A3 möglich oder nicht. Der MAPL 
wird als Vorranggraph aufgefasst. Die Beziehungen zwischen seinen AVKs sind Vor-
rangbeziehungen, d. h. bestimmte AVOs müssen abgeschlossen sein, bevor ein 

                                        
38 STO 1 und 2 in Abbildung 4.4 sind STO eines MAPL und entsprechen damit nicht den STO der MSTL in 
Abbildung 4.2.

Abbildung 4.4: Schema des Maximalarbeitsplans und dessen Abhängigkeiten in der 
vorliegenden Arbeit
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anderer bestimmter AVO begonnen werden kann. Vorrangbeziehungen sind transitiv, 
d. h. da A1 vor A2 auf Position 1 und A2 auf Position 1 vor A4 durchgeführt werden 
muss, muss auch A1 vor A4 durchgeführt werden. Auf die Darstellung von Vorrangbe-
ziehungen, die durch andere Vorrangbeziehungen impliziert werden, kann jedoch nicht 
verzichtet werden, da diese im Rahmen der Konfiguration verloren gehen können. Wür-
den z. B. die AVOs A2 und A3 im Konfigurationsprozess nicht instanziiert werden, 
würde im VAPL keine Vorrangbeziehung zwischen A1 und A4 bestehen und beide 
AVOs könnten parallel durchgeführt werden. 

Da die AVKs von den Parametern der MSTL abhängig sind, erfolgt die Prozesskonfi-
guration nach der Produktkonfiguration. Da keine Abhängigkeiten zwischen den 
AVKs des MAPL bestehen, kann die Instanziierung der AVKs im Rahmen der Prozess-
konfiguration in beliebiger Reihenfolge erfolgen. Dabei werden auch die Parameter der 
AVOs ausgeprägt. Entspricht ein VAPL nach der Konfiguration einem Graphen ohne 
Quelle oder ohne Senke, wird ein fiktiver Start- bzw. Endarbeitsvorgang eingefügt, der 
allen Quellen vorausgeht bzw. allen Senken nachfolgt. VAPLs sind damit immer gerich-
tete, zyklenfreie Graphen mit einer Quelle und einer Senke. 

Für die datenbasierte Erstellung von LLKMs wird in der vorliegenden Arbeit von einem 
LLKM ausgegangen, das durch eine MSTL, MAPLs und Regeln, wie zuvor beschrie-
ben, definiert ist. 

4.1.2 Konkretisierung der Anwendungsszenarien 

Im Folgenden werden, wie Abbildung 4.5 zeigt, drei Phasen der Erstellung von LLKMs 
unterschieden. Die Phasen können jeweils datenbasiert oder manuell durchgeführt 
oder übersprungen werden. Die Erstellung des LLKM vor Inbetriebnahme des zugehö-
rigen Low-Level-Konfigurationssystems (LLKS) wird in die Phasen Initialisierung und 
Finalisierung eingeteilt. Bei der Initialisierung wird auf Basis bestehender Daten oder 
manuell ein LLKM erstellt, das grundsätzlich die Konfiguration von VSTLs und VAPLs 
ermöglicht. Bei der Finalisierung wird dieses Modell durch die Generierung zusätzli-
cher Daten oder manuell verfeinert, sodass die geforderte Genauigkeit der erstellten 
VSTLs und VAPLs erreicht wird. I. d. R. wird ein LLKM nach Implementierung in einem 
LLKS noch für einige Zeit begleitet, indem VSTLs und VAPLs, die vom LLKS generiert 
werden, von Experten überprüft werden. Bei Bedarf werden Änderungen am LLKM vor-
genommen. Die Anpassung kann dabei, wie heute üblich, manuell erfolgen oder eben-
falls datenbasiert. Bei der datenbasierten Anpassung nehmen Experten zunächst 
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Korrekturen an der VSTL oder den VAPLs vor. Diese neuen Daten werden anschlie-
ßend zusammen mit den bestehenden Daten für eine erneute automatische Erstellung 
des LLKM genutzt. Einzelne Phasen können ausgelassen werden. Z. B. kann auf die
Finalisierung vor dem Betrieb des LLKS verzichtet und das LLKM im Betrieb abschlie-
ßend verfeinert werden. Aus den in Abbildung 4.5 gezeigten Möglichkeiten ergeben 
sich kombinatorisch 27 verschiedene Anwendungsszenarien für die Erstellung von 
LLKMs, wobei jedoch nicht alle sinnvoll sind. Im Folgenden wird auf die sinnvollen und 
für die vorliegende Arbeit relevanten Anwendungsszenarien eingegangen. Die Szena-
rien werden mit den Abkürzungen aus Abbildung 4.5 bezeichnet.

Im Szenario DMM (datenbasierte Initialisierung, manuelle Finalisierung und manuelle 
Anpassung) werden bestehende Daten genutzt, um ein initiales LLKM zu erstellen. 
Dadurch kann der Aufwand gegenüber einer rein manuellen Erstellung reduziert wer-
den. Aspekte des LLKM, die von der datenbasierten Methode korrekt erfasst werden, 
müssen von den Experten nicht mehr eingegeben und können insbesondere nicht über-
sehen werden. Dieses Szenario ist damit auch für Unternehmen relevant, die über Ex-
pertise in der Erstellung von KMs verfügen. Im Szenario DDD wird das LLKM vollstän-
dig datenbasiert erstellt, sodass prinzipiell keine Expertise hinsichtlich LLKMs benötigt 
wird. Dieses Szenario ist für Unternehmen relevant, die über wenig Expertise hinsicht-
lich KMs verfügen oder Schnittstellenprobleme zwischen Domänenexperten und Ex-
perten für die Wissensrepräsentation (siehe Kapitel 1.1) ausschließen möchten. In Sze-
nario D0M wird das LLKM initial auf Basis bestehender Daten erstellt und im Betrieb 
manuell angepasst. Auf eine Finalisierung vor Inbetriebnahme des LLKS wird 

Abbildung 4.5: Möglichkeiten der datenbasierten Erstellung von Low-Level-Konfigurati-
onsmodellen je Phase der Modellerstellung
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verzichtet. Dieses Szenario ist u. a. relevant, wenn initial viele Daten zur Verfügung 
stehen, sodass von einer ausreichend hohen Genauigkeit des automatisch erstellten 
LLKM auszugehen ist und nur wenige manuelle Anpassungen im Betrieb zu erwarten
sind. Szenario D0D stellt eine effiziente Alternative zur vollständig manuellen Erstel-
lung von VSTLs und VAPLs auf Basis von Vertriebskonfigurationen dar. Es ist damit für 
Unternehmen relevant, die bisher ausschließlich einen Vertriebskonfigurator nutzen. 
Das LLKM wird auf Basis bestehender Daten automatisch erstellt und schlägt VSTLs
und VAPLs vor, die durch automatische Anpassung des Modells auf Basis zusätzlicher 
Daten immer genauer werden. Damit kann ohne Aufwand für die Erstellung eines LLKM 
der Aufwand für die manuelle Erstellung von VSTLs und VAPLs reduziert werden. Im 
folgenden Kapitel wird erläutert, wie die Methoden 2 bis 5 eingesetzt werden können,
um die datenbasierte Erstellung von LLKMs in den verschiedenen Phasen zu ermögli-
chen.

4.1.3 Integration der entwickelten Methoden

Abbildung 4.6 stellt das Vorgehen für die drei Phasen der datenbasierten Erstellung
eines LLKM bei bestehendem HLKM dar. Bei der Initialisierung eines LLKM auf Basis 
von bestehenden Daten – in Blau dargestellt – wird die Erstellung der MSTL, der

Abbildung 4.6: Vorgehen je Phase der datenbasierten Erstellung von Low-Level-Konfi-
gurationsmodellen 
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MAPLs und der zugehörigen Regeln jeweils einmal durchlaufen. Diesen Schritten lie-
gen die in Kapitel 1.3 beschriebenen Probleme 2, 3 und 4 zugrunde.  

Im Rahmen einer datenbasierten Finalisierung – in Abbildung 4.6 in Grün dargestellt 
– wird der zur Verfügung stehende Datensatz erweitert. Dafür werden VSTLs und VA-
PLs für Varianten erstellt, die systematisch mittels Methode 5 ausgewählt werden. Die-
ser Prozess verläuft iterativ. Zunächst wird eine Variante ausgewählt, die im Sinne des 
aktiven Lernens (AL) einen hohen Informationsgewinn verspricht (siehe Kapitel 2.3.2). 
Dies entspricht dem in der vorliegenden Arbeit betrachteten Problem 5. Das zuvor auf 
Basis der anfänglich vorhandenen Daten erstellte LLKM ermöglicht bereits eine Konfi-
guration einer zugehörigen VSTL sowie von VAPLs, wenn auch nicht mit ausreichend 
hoher Genauigkeit. Die durch das LLKM generierte VSTL und die generierten VAPLs 
werden von einem Domänenexperten überprüft und bei Bedarf korrigiert. Die überprüf-
ten VSTLs und VAPLs gehen zusammen mit der durch ihre Vertriebskonfiguration be-
schriebenen Variante in den Pool der verfügbaren Daten ein. Mit diesen zusätzlichen 
Daten kann das LLKM neu erstellt werden, wobei eine höhere Genauigkeit zu erwarten 
ist. Es wird eine weitere Variante ausgewählt und der Prozess fortgesetzt, bis ein be-
stimmtes vom Unternehmen festzulegendes Abbruchkriterium erreicht ist. Je höher die 
Anzahl der Iterationen, desto höher die Genauigkeit des LLKM, desto höher jedoch 
auch der Aufwand. Die in Kapitel 5.4.2 vorgestellten Ergebnisse der im Rahmen der 
vorliegenden Arbeit durchgeführten Experimente können für eine Einschätzung der be-
nötigten Datenmenge genutzt werden. Außerdem können je nach Anwendungsfall ver-
gleichbare Experimente an verwandten LLKMs durchgeführt werden, um eine geeig-
nete Datenmenge zu ermitteln. In diesem Prozess müssen VSTLs und VAPLs durch 
die Domänenexperten nicht neu erstellt, sondern nur überprüft und evtl. korrigiert wer-
den. Damit ist der Aufwand für die Bereitstellung einer bestimmten Menge von Doku-
menten nicht mit dem Aufwand für die Erstellung dieser Menge von Dokumenten gleich-
zusetzen. Darüber hinaus nimmt der Aufwand für die Korrektur der VSTLs und VAPLs 
mit jedem Durchlauf ab, da die durch das LLKM erstellten Dokumente immer genauer 
werden.  

Die datenbasierte Anpassung des LLKM im Betrieb – in Abbildung 4.6 in Grau darge-
stellt – verläuft analog zur datenbasierten Finalisierung. Dabei werden jedoch Varianten 
nicht systematisch ausgewählt, sondern ergeben sich aus Kundenaufträgen. 
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Bei allen drei Schritten werden die Methoden 2, 3 und 4 nacheinander durchgeführt. 
Abbildung 4.7 zeigt, wie diese aufeinander aufbauen39. Zunächst liegt je Variante eine 
Vertriebskonfiguration, d. h. eine Ausprägung der Produktmerkmale, sowie eine VSTL 
und je Eigenfertigungskomponente dieser Variante ein VAPL vor (1). Die Gesamtheit 
der VSTLs dient als Basis für die datenbasierte Erstellung der MSTL mittels Methode 2
(2). Im Zuge der Erstellung der MSTL werden Komponenten der VSTLs, die dieselbe 
Funktion erfüllen, zusammengefasst, wie z. B. die Baugruppen 3ܤ ,1ܤ und 5ܤ. Die VA-
PLs zusammengefasster Komponenten bilden einen Datenpool für die Erstellung von 
MAPLs für diese Komponenten mittels Methode 3. Die Erstellung von MAPLs erfolgt 

                                        
39 Abbildung 4.7 nutzt gegenüber der Darstellung in Kapitel 4.1.1 eine vereinfachte Darstellung, die Komponenten 
lediglich mit ihrer Position und Bezeichnung und KK lediglich mit ihrem Namen darstellt. Dies bedeutet nicht, dass 
die Objekte bzw. Klassen keine weiteren Parameter aufweisen können.

Abbildung 4.7: Integration der Methoden 2, 3 und 4
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somit für das Produkt und jede Eigenfertigungskomponente, wobei die Reihenfolge der 
Betrachtung beliebig ist. Die resultierenden MAPLs werden den entsprechenden Kom-
ponenten der MSTL zugeordnet (3). Liegen die MSTL und die MAPLs vollständig vor, 
sind alle Elemente des LLKM sowie deren Parameter bekannt und es können Abhän-
gigkeiten, in Form von Regeln zwischen diesen, datenbasiert erstellt werden (4). Dafür 
werden die Parameter des KM, d. h. des HLKM, der MSTL und der MAPLs, in einer 
Tabelle zusammengefasst, wie in Abbildung 4.7 (4) beispielhaft zu sehen. Für jeden 
Parameter wird eine Regel40 erstellt, die angibt, wie der Parameter von den Produkt-
merkmalen oder den anderen Parametern des KM abhängt. Im Sinne des überwachten 
Lernens (SL) (siehe Kapitel 2.3.2) stellt der zu prädizierende Parameter ein Label dar. 
Die Merkmale oder Parameter, von denen er abhängt, entsprechen Features, d. h. beim 
Lernen von Regeln liegt ein Single-Label-Problem vor. 

In den folgenden Kapiteln werden die hier eingeordneten Methoden 2 bis 5 zur Umset-
zung von Methode 1 erläutert. 

4.2 Methode 2: Datenbasierte Erstellung von Maximalstücklisten 
Im Folgenden wird die im Rahmen der vorliegenden Arbeit entwickelte Methode 2 zur 
Lösung des Problems 2 – der datenbasierten Erstellung von MSTLs – vorgestellt. Me-
thode 2 behebt das in Kapitel 3.2.3 beschriebene Lösungsdefizit nach Stand der For-
schung. Ausgehend von einer Menge ܵ௏ௌ்௅ von VSTLs (siehe Kapitel 4.1.3, Abbildung 
4.7) wird eine MSTL erstellt. Es wird davon ausgegangen, dass jede ZK einer VSTL 
eine Bezeichnung aufweist, wie z. B. eine Materialnummer in einem Enterprise-Re-
source-Planning-System (ERP-System), die ihren Typ wie z. B. „Halterung 123“ ein-
deutig festlegt. Abbildung 4.8 gibt einen Überblick über die 5 Schritte der Methode 2. In 
Schritt 1 wird eine MSTL erstellt, indem Komponenten zu KKs zusammengefasst wer-
den – zunächst ohne Berücksichtigung der Parameter der KKs. Die MSTL wird so er-
stellt, dass sie hinsichtlich der Anzahl ihrer ZKKs minimal ist. In Schritt 2 wird ermittelt, 
welche STOs in der MSTL vorzusehen sind, um die STAs der VSTLs aus ܵ௏ௌ்௅ abzu-
bilden. In Schritt 3 wird durch einen Experten überprüft, ob die ermittelten STOs Hin-
weise auf Inkonsistenzen im Datensatz darstellen oder tatsächlich im Konfigurations-
prozess zu berücksichtigen sind. In Schritt 4 werden die Parameter der KKs und deren 

                                         
40 Eine solche Regel muss nicht genau einem Monom entsprechen, wie die Regeln einer Regelmenge im Sinne 
von Rudin et al. (2022, siehe Kapitel 3.4.2). Sie kann z. B. auch eine Disjunktion mehrerer Monome sein und 
damit einer Regelmenge entsprechen. 
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mögliche Ausprägungen aus den Parametern ihrer originären Komponenten und deren 
Ausprägungen abgeleitet. In Schritt 5 werden ähnliche ZKKs durch eine Superklasse 
generalisiert. Die Schritte werden nacheinander durchlaufen, wobei die Schritte 3 und 
5 optional sind. Abschließend liegt eine MSTL, wie in Kapitel 4.1.1 beschrieben, vor, 
aus der alle VSTLs aus ܵ௏ௌ்௅ konfiguriert werden können. Die fünf Schritte werden im 
Folgenden erläutert.

4.2.1 Schritt 1: Minimale Maximalstückliste erstellen

Schritt 1 greift auf den im Rahmen der vorliegenden Arbeit entwickelten und in Anhang 
3.1 beschriebenen Algorithmus AlgMSTL zurück. Dieser ist in der Lage, aus einer Menge 
von VSTLs ohne Multikomponenten und ohne STAs eine MSTL zu erstellen, aus der 
alle eingehenden VSTLs konfiguriert werden können. Für VSTLs mit Multikomponenten 
ist AlgMSTL nicht anwendbar. Für VSTLs mit STAs gibt AlgMSTL keine Lösung zurück, 
wodurch AlgMSTL auch genutzt werden kann, um zu überprüfen, ob STAs in einer Menge 
von VSTLs vorliegen. Aufgrund seiner Einschränkungen kann er jedoch nicht unmittel-
bar genutzt werden, um aus einer Menge von VSTLs mit Multikomponenten oder STAs
eine MSTL zu erstellen.

Die Idee hinter dem ersten Schritt der Methode ist deshalb, die gegebenen VSTLs aus ܵ௏ௌ்௅ so zu adaptieren, dass sie keine Multikomponenten und keine STAs mehr auf-
weisen und anschließend daraus mittels AlgMSTL eine MSTL zu erstellen. Abbildung 4.9
veranschaulicht diese Idee. Die ZKs der initial vorliegenden VSTLs 1, 2 und 3 sind zur 
Referenz römisch nummeriert. Die VSTLs in Abbildung 4.9 (1), weisen Multikomponen-
ten auf, wie z. B. ZK ܼ3 in VSTL 2. Außerdem tritt die Komponente ܼ2 in VSTL 2 und 
VSTL 3 an verschiedenen Positionen auf. Somit entsprechen VSTL 2 und VSTL 3 ent-
weder verschiedenen STAs oder es können bis zu zwei Positionen ܼ2 im Endprodukt 

Abbildung 4.8: Überblick über die Schritte der Methode 2
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existieren, wobei je eine andere bei VSTL 2 und VSTL 3 aktiv ist. AlgMSTL ist für den 
Beispielfall nicht unmittelbar anwendbar. 

Ex ante ist nicht bekannt, welche ZKs der VSTLs Instanzen derselben Klasse der zu 
erstellenden MSTL sind. Dies kann jedoch – wie im Folgenden erläutert – prognostiziert 
werden. Auf Basis dieser Prognose können ZKs über ihre Bezeichnung hinaus mit einer 
Nummer annotiert werden, die der Position ihrer Klasse in der MSTL entspricht. Diese 
Nummer wird im Folgenden Klassennummer (KN) genannt. Durch die Klassennum-
mern werden identisch bezeichnete ZKs unterscheidbar, wodurch Multikomponenten 
und STAs aufgelöst werden können. Die Subskripte der Zukaufkomponentenbezeich-
nungen in Abbildung 4.9 (2) entsprechen den KNs der ZKs. Die Verbindung aus Be-
zeichnung und KN einer ZK wird im Folgenden als Label dieser ZK bezeichnet. Verfügt
eine ZK noch über keine KN entspricht ihr Label ihrer Bezeichnung. Nach vollständiger 
Annotation wären alle ZKs einer VSTL durch ihre Labels unterscheidbar, sodass keine 
Multikomponenten mehr vorlägen. Da außerdem ZKs derselben Klasse immer an der-
selben Position über alle VSTLs hinweg aufträten, lägen auch keine STAs mehr vor. 
Um also mittels AlgMSTL eine MSTL erstellen zu können, ist eine Annotation der ZKs mit 
KNs zu bestimmen, sodass keine Multikomponenten und keine STAs vorliegen. Eine 
solche Annotation wird im Folgenden als zulässige Lösung bezeichnet. Jedes in den 
annotierten VSTLs auftretende Label entspricht abschließend einer ZKK der zu erstel-
lenden MSTL. 

Abbildung 4.9: Umwandlung von variantenbezogenen Stücklisten mit Multikomponen-
ten und Strukturalternativen (1) in variantenbezogene Stücklisten ohne Multikomponen-
ten und ohne Strukturalternativen (2)
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Es existiert immer eine triviale zulässige Lösung, in der alle ZKs über alle VSTLs hinweg 
mit unterschiedlichen KNs annotiert sind. Aus dieser resultiert jedoch eine große Anzahl 
verschiedener Labels und damit eine große Anzahl von ZKKs in der MSTL. Darüber 
hinaus könnten aus dieser MSTL ausschließlich die gegebenen VSTLs sowie Teilgra-
phen davon abgeleitet werden. Im Sinne des maschinellen Lernens (ML) weist diese 
Lösung eine Überanpassung an die gegebenen Daten auf. Nach dem in Kapitel 2.3.2 
eingeführten Prinzip wird deshalb das komplexitätsminimale Modell, das die Daten 
abbildet, d .h. diejenige MSTL mit der geringsten Anzahl von ZKKs, aus der alle gege-
benen VSTLs konfiguriert werden können, gesucht. Die in Abbildung 4.9 (2) dargestellte 
Lösung ist zulässig und geht von sechs ZKKs aus – je eine ZKK ܼ1 und ܼ4 und je zwei 
ZKK ܼ2 und ܼ3. Eine zulässige Lösung mit weniger als sechs ZKKs existiert in diesem 
Fall nicht, weshalb die dargestellte Lösung optimal ist. Es ist prinzipiell möglich, eine 
optimale Lösung durch vollständige Enumeration zu ermitteln. Dabei würde für alle 
möglichen Lösungen überprüft, ob diese zulässig sind und abschließend diejenige Lö-
sung mit der geringsten Anzahl unterschiedlicher Labels ausgewählt. Die Anzahl mög-
licher KNs je Bezeichnung ist nur durch die Anzahl von ZKs41 mit dieser Bezeichnung 
über alle gegebenen VSTLs hinweg begrenzt ist. Dadurch wächst die Menge zu über-
prüfender Lösungen exponentiell mit der Anzahl der ZKs in den gegebenen VSTLs. 
Eine solche triviale Methode scheitert deshalb für relevante Problemstellungen an der 
Recheneffizienz. Schritt 1 der Methode nutzt deshalb den effizienten Algorithmus Al-
gMinMSTL zur optimalen Annotation von ZKs. Nach der Anwendung von AlgMinMSTL wird 
mittels AlgMSTL eine MSTL erstellt, aus der alle VSTLs aus ܵ௏ௌ்௅ konfiguriert werden 
können. AlgMinMSTL findet sich in Anhang A3.3 als Pseudocode. Er besteht aus einer 
Initialisierung sowie Iterationen, was in den folgenden Kapiteln erläutert wird. 

4.2.1.1 Initialisierung von Algorithmus AlgMinMSTL 

AlgMinMSTL beginnt mit einer Initialisierung, in der die Reihenfolge festgelegt wird, in der 
die ZKs aus den VSTLs annotiert werden. 

                                         
41 Wenn hier und im Folgenden von der Anzahl von Komponenten gesprochen wird, ist damit immer die Anzahl 
der entsprechenden Objekte in der STL gemeint. Die Menge, in der die Komponenten je Position in ihre überge-
ordneten Komponenten eingehen, ist – wie in Kapitel 4.1.1 beschrieben – ein Attribut des Objekts und wird dabei 
nicht berücksichtigt. 
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4.2.1.1.1 Problematik der Betrachtungsreihenfolge 

Die Entscheidung über die Annotation von ZKs kann sequenziell getroffen werden. Da-
mit ergibt sich ein Suchbaum, in dessen Knoten – im Folgenden Entscheidungsknoten 
genannt – jeweils über die Annotation einer ZK entschieden wird. Da eine ZK durch die 
Annotation ein neues Label erhält, kann jede Entscheidung auch als Entscheidung über 
das neue Label der ZK verstanden werden. In der Wurzel des Suchbaums wurden 
noch keine, in den anderen inneren Knoten einige und in den Blättern alle ZKs in VSTLs 
aus ܵ௏ௌ்௅ annotiert. Jedes Blatt des Suchbaums entspricht somit einer Lösung. Den 
Suchbaum vollständig zu traversieren entspricht der oben beschriebenen vollständigen 
Enumeration und ist nicht effizient. Die vorliegende Methode nutzt deshalb zum einen 
eine heuristische Tiefensuche, um schnell gute Lösungen zu finden. Zum anderen 
nutzt sie Pruning, um Teilbäume des Suchbaums von der Betrachtung auszuschlie-
ßen, die keine besseren Lösungen als die beste bereits bekannte Lösung enthalten 
können. 

Welche KN der betrachteten ZK in einem Entscheidungsknoten zugeordnet wird ent-
scheidet darüber mit welchem untergeordneten Entscheidungsknoten die Suche fort-
gesetzt wird. Jeder untergeordnete Entscheidungsknoten entspricht der Wurzel eines 
Teilbaums des gesamten Suchbaums. Nach dem Prinzip der Tiefensuche, das in der 
Methode angewandt wird, wird zunächst dieser Teilbaum vollständig durchsucht. Falls 
auf einer hohen Ebene des Suchbaums eine ungünstige Annotation vorgenommen 
wird, führt das dazu, dass viel Rechenkapazität dafür aufgewandt wird, Teilbäume des 
Suchbaums zu durchsuchen, die keine guten Lösungen enthalten. Deshalb ist die Be-
trachtungsreihenfolge der ZKs, die im Rahmen der Initialisierung festgelegt wird, ent-
scheidend für die Effizienz des Algorithmus. Um Fehlentscheidungen auf hohen Ebe-
nen zu vermeiden, ist es sinnvoll, zunächst über diejenigen Annotationen zu entschei-
den, für die die Wahrscheinlichkeit falscher Entscheidungen gering ist. Insbesondere 
lassen sich ZKs mit Bezeichnungen, für die nur eine oder wenige Klassen in der zu 
erstellenden MSTL existieren, mit höherer Sicherheit korrekt annotieren als solche, für 
die viele Klassen existieren. Die Anzahl der Klassen je Bezeichnung in der MSTL ist 
jedoch ex ante nicht bekannt, da die zu erstellende MSTL nicht bekannt ist. Im zuvor 
eingeführten Beispiel ist z. B. bekannt, dass es mindestens zwei Klassen mit Bezeich-
nung ܼ3 in der MSTL geben muss, da z. B. die beiden Komponenten ܼ 3 in VSTL 2 nicht 
aus derselben Klasse instanziiert worden sein können. Da die Bezeichnung ܼ3 insge-
samt fünfmal auftritt, können jedoch auch bis zu fünf Klassen ܼ3 in der MSTL vorliegen. 
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Analog gilt z. B., dass die Klassenanzahl für ܼ2 in der MSTL zwischen 1 und 3 liegen 
muss. Um im Rahmen der Initialisierung von AlgMinMSTL eine effiziente Betrachtungsrei-
henfolge festlegen zu können, wird deshalb zunächst je Bezeichnung ݈ die Anzahl ݊௟௉௥௄௟
an ZKKs mit dieser Bezeichnung in der MSTL prognostiziert. Dafür wird ein Distanz-
maß zwischen ZKs derselben Bezeichnung verwendet, um einschätzen zu können, 
welche ZKs wahrscheinlich aus derselben ZKK der letztlichen MSTL instanziiert wer-
den. Dieses wird im Folgenden vorgestellt.

4.2.1.1.2 Distanzen von Zukaufkomponenten

Das entwickelte Distanzmaß basiert auf der Kontextähnlichkeit von ZKs. Abbildung 
4.10 zeigt die Distanzen für den Beispielfall und eine beispielhafte Berechnung. Da 
VSTLs eine Baumstruktur aufweisen, verfügt jedes Blatt, d. h. jede ZK, über genau ei-
nen Pfad zur Wurzel, d. h. zum Produkt. Ausgehend von der ZK selbst, wird die ZK in
jedem Knoten ihres Pfads mit anderen ZKs gefügt. Z. B. wird ZK I mit Bezeichnung ܼ1
zunächst im Knoten der der Baugruppe 1ܤ entspricht mit der ZK II (ܼ2) gefügt und 
anschließend im Knoten der dem Produkt entspricht mit den ZKs III (ܼ3) und IV (ܼ4). 

Abbildung 4.10: Berechnung der Distanzen zwischen Zukaufkomponenten auf Basis 
ihrer Kontextähnlichkeiten im Rahmen von AlgMinMSTL für den Beispielfall

III VI VIII XII XIII

III 0 0,5 1 0 0,5

VI 0,5 0 0,67 0,33 0,67

VIII 1 0,67 0 0,67 0,33

XII 0 0,33 0,67 0 0,67

XIII 0,5 0,67 0,33 0,67 0

I V X

I 0 0,5* 0

V 0,5 0 0,33

X 0 0,33 0

*Beispiel: Berechnung der Distanz von I und V:

Pfad I: Pfad V: Übereinstimmender Pfad:

Potentielle Übereinstimmung

Anz. Anz. Anz. 
I 1 1 1
V 1 2 1

Min 1 1 1

Relative Ähnlichkeit:

Distanz:

II VII XI

II 0 0,5 0

VII 0,5 0 0,67

XI 0 0,67 0

IV IX XIV

IV 0 0,5 0

IX 0,5 0 0,33

XIV 0 0,33 0
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Um die Distanz zweier ZKs ݅ und ݆ zu ermitteln, wird der Grad ݏ௜,௝ீ௘௉௙ der Übereinstim-

mung zwischen ihren Pfaden ermittelt, d. h. die Übereinstimmung ihrer Fügereihen-
folge. Es werden dafür aus den Knoten beider Pfade so wenig Labels wie möglich ent-

fernt, um beide Pfade identisch werden zu lassen. ݏ௜,௝ீ௘௉௙ entspricht der Anzahl der La-

bels im resultierenden gemeinsamen Pfad. Die Pfade I und V stimmen beispielsweise 
überein, wenn aus dem Pfad der ZK I (Pfad I) der Knoten 1ܤ und aus dem Pfad der ZK 
V (Pfad V) der Knoten 3ܤ sowie aus dem Knoten P das Label ܼ2 entfernt wird. Beide 
Pfade enthalten nun einen Knoten, der wiederum zwei Labels – ܼ3 und ܼ4 – enthält. 

Damit ergibt sich ݏூ,௏ீ௘௉௙  = 2. 

Die Berechnung des gemeinsamen Pfads mit der größten Übereinstimmung weist Ähn-
lichkeit zu einem Longest Common Subsequence-Problem42 auf. Es kann ebenso 
wie das Longest Common Subsequence-Problem mittels dynamischer Optimierung 
effizient gelöst werden. Eine Erläuterung sowie der Pseudocode des entsprechenden, 
im Rahmen der vorliegenden Arbeit entwickelten Algorithmus, AlgGemPfad, findet sich in 
Anhang A3.2. Der Grad der Übereinstimmung wird normalisiert, indem er durch den 
Grad der maximal möglichen Übereinstimmung ̂ீݏ௘௉௙ dividiert wird. Der gemeinsame 
Pfad kann nicht mehr ZKs eines Labels enthalten als die geringere Anzahl von ZKs mit 
diesem Label in den beiden Pfaden. Es gilt also für die Pfade zweier ZKs ݅ und ݆ im 
Allgemeinen 
௜,௝ீ௘௉௙ݏ̂   = ෍ min (݊௜,௞௉௙௅௔ , ௝݊,௞௉௙௅௔)௞∈ௌಽೌೋ಼  , 

4.1 

wobei ܵ௅௔௓௄ der Menge aller Labels von ZKs in den VSTLs in ܵ௏ௌ்௅ entspricht und ݊௜,௞௉௙௅௔ 

einen Parameter darstellt, der angibt, wie oft ein Label ݇ in einem Pfad ݅ auftritt. Enthält 
der gemeinsame Pfad genau ein Label, liegt keine Übereinstimmung im Sinne einer 

identischen Abfolge von Labels vor. Um das zu berücksichtigen, werden ݏ௜,௝ீ௘௉௙ und sein 

Normierungsdivisor ̂ݏ௜,௝ீ௘௉௙ um 1 korrigiert. Für ̂ݏ௜,௝ீ௘௉௙ > 1 ergibt sich damit folgendes nor-

miertes Maß ݏ௜,௝௓௄ für die Ähnlichkeit zweier ZKs ݅ und ݆: 
௜,௝௓௄ݏ  = max (0, ௜,௝ீ௘௉௙ݏ − ௜,௝ீ௘௉௙ݏ̂ (1 − 1 . 4.2 

                                         
42 Für Longest Common Subsequence-Probleme sei auf Bergroth et al. (2000, S. 39–40) verwiesen. 
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Für ̂ݏ௜,௝ீ௘௉௙ ≤ 1, d. h. falls beide Pfade zu wenige gemeinsame Labels enthalten um eine 

Aussage über ihre Ähnlichkeit treffen zu können, wird ݏ௜,௝௓௄ = 1 angenommen. Da ݏ௜,௝௓௄ 

normiert ist, kann durch  
 ݀௜,௝௓௄ = 1 −  ௜,௝௓௄ 4.3ݏ

eine normierte Distanz zweier ZKs ݅ und ݆ bestimmt werden. Das so berechnete Dis-
tanzmaß lässt eine Aussage über die Unähnlichkeit des Kontextes, in denen Kom-
ponenten in ihren VSTLs auftreten, zu. Es wird eher davon ausgegangen, dass zwei 
ZKs nicht aus derselben ZKK der MSTL instanziiert werden, wenn sie in unterschiedli-
chen Reihenfolgen mit anderen ZKs gefügt werden. Eine Herausforderung bei der Er-
mittlung der Ähnlichkeiten von Pfaden in VSTLs ist, dass zu Beginn alle Labels der ZKs 
den Bezeichnungen der ZKs entsprechen. Es ist somit nicht klar, ob identische Labels 
in den Pfaden auch dieselben KKs in der MSTL referenzieren, d. h. die Referenzen des 
Maßes sind verzerrt. Je größer der Datensatz, desto geringer ist der Einfluss von un-
systematischer Nichtübereinstimmung und desto genauer ist das Maß. Außerdem 
steigt die Güte des Maßes, je mehr Annotationen vorliegen.  

Sind für eine bestimmte Bezeichnung die Distanzen der zugehörigen ZK bekannt, kann 
die Anzahl von ZKKs je Bezeichnung prognostiziert werden.  

4.2.1.1.3 Prognose der Anzahl von Zukaufkomponentenklassen je Bezeich-
nung 

Elemente auf Basis ihrer Distanzen zu gruppieren ist als Clustering eine zentrale Prob-
lemstellung des unüberwachten Lernens (UL, siehe 2.3.3). Die Prognose der Anzahl 
von Klassen je Bezeichnung kann damit auf die Ermittlung einer optimalen Clusteran-
zahl im Rahmen des UL zurückgeführt werden. Die maximale Anzahl von Clustern, ݊஼௟ெ௔௫, ist trivial durch die Anzahl zu clusternder ZKs gegeben. Entsprechend des in 
der Literatur gebräuchlichen Vorgehens (siehe z. B. Xu et al. 2016, S. 1493) wird für 
jede Clusteranzahl zwischen 1 und ݊஼௟ெ௔௫ ein Clustering vorgenommen und die Güte 
der resultierenden Clusterings verglichen. Das Clustering erfolgt in Methode 2 agglo-
merativ hierarchisch nach dem Average-Linkage-Kriterium43. Als Maß für die Güte wird ݀ெூ஼஽, die mittlere Intraclusterdistanz, d. h. die mittleren Distanzen der ZKs eines 
Clusters gemittelt über alle Cluster, verwendet. Diese nimmt mit zunehmender Cluster-
anzahl tendenziell ab (siehe Abbildung 4.11). Bei einer bestimmten Clusteranzahl bildet 

                                         
43 Für eine Erläuterung dieses Verfahrens sei auf Miyamoto (2022, S. 19–24) verwiesen. 
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sich jedoch ein sog. Elbow, auch Knee genannt, aus, d. h. ein Punkt, ab dem die weitere 
Erhöhung der Clusteranzahl die Intraclusterdistanz nur noch geringfügig reduziert. Die-
ser kann für diskrete Funktion nach Satopaa et al. (2011) als Punkt mit größtem ortho-
gonalem Abstand zu einer Diagonalen bestimmt werden (sog. Kneedle-Verfahren). In 
der vorliegenden Arbeit wird die Diagonale als Verbindung der Punkte (0, 1) sowie 
(݊஼௟ெ௔௫, 0) definiert. Für das vorliegende Beispiel ergibt sich für Bezeichnung ܼ2 eine 
optimale Clusteranzahl von 2, indem die ZKs II und XI zu einem Cluster und VII zu 
einem anderen Cluster zusammengefasst werden. Die mittlere Intraclusterdistanz ist 0,
d. h. eine Erhöhung der Clusteranzahl würde das Clustering nicht weiter verbessern. 

Es ist somit im Rahmen der Unsicherheit des Distanzmaßes, wie oben beschrieben, 
davon auszugehen, dass in der MSTL tatsächlich zwei Klassen mit Bezeichnung ܼ2
vorliegen. Auf Basis der prognostizierten Klassenanzahl sowie der Bewertung ݀ெூ஼஽
des optimalen Clusterings kann die Betrachtungsreihenfolge festgelegt werden.

4.2.1.1.4 Festlegung der Betrachtungsreihenfolge

Wie in Kapitel 4.2.1.1.1 erläutert, ergibt sich die Betrachtungsreihenfolge primär aus 
der prognostizierten Klassenanzahl. Sekundär wird die Intraclusterdistanz ݀ெூ஼஽
herangezogen. Falls also zwei ZKs in der Anzahl prognostizierter Klassen ihrer Be-
zeichnung übereinstimmen, werden zunächst ZKs mit geringem ݀ெூ஼஽ betrachtet, da 
deren Neigung zu einer höheren Klassenanzahl geringer ist. Liegt auch hier eine Über-
einstimmung vor, werden ZKs die aus größeren VSTLs stammen vor solchen aus klei-
neren VSTLs betrachtet. Dafür wird jeder ZK ein Wert ݊ௌ்௅ீ௥ zugeordnet, der die An-
zahl von ZKs in derselben VSTL angibt. Werden ZKs aus großen VSTLs falsch 

Abbildung 4.11: Ermittlung der prognostizierten Klassenanzahl mittels Kneedle-Verfah-
ren im Rahmen von AlgMinMSTL für den Beispielfall
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zugeordnet, hat dies tendenziell einen großen Einfluss auf die Zulässigkeit der Zuord-
nung. Ein solcher Fehler kann deshalb schnell automatisch entdeckt werden (siehe Ka-
pitel 4.2.1.2.3). Liegt auch für ݊ௌ்௅ீ௥ eine Übereinstimmung vor, wird willkürlich nach 
kleinerem Index entschieden. Für den Beispielfall ergibt sich somit die in Abbildung 4.12
gezeigte Betrachtungsreihenfolge. Auf Basis der Betrachtungsreihenfolge kann der 
Suchbaum in aufeinanderfolgenden Iterationen traversiert werden.

4.2.1.2 Iteration von Algorithmus AlgMinMSTL

Eine Iteration entspricht einer Entscheidung im Suchbaum. Im Folgenden wird der Ab-
lauf einer Iteration erläutert.

4.2.1.2.1 Ablauf einer Iteration

Die Baumsuche folgt der in der Initialisierung festgelegten Betrachtungsreihenfolge. Im 
Beispielfall wird also zuerst über die Annotation der ZK V entschieden. Im Folgenden
wird eine Iteration von AlgMinMSTL am Beispiel der Iteration 10 des Beispielfalls erläutert, 

Abbildung 4.12: Festlegung der Betrachtungsreihenfolge der Zukaufkomponenten im
Rahmen von AlgMinMSTL für den Beispielfall

V IX X XIV I IV VII XI II VI VIII XII XIII III
Priorität 1: 1 1 1 1 1 1 2 2 2 2 2 2 2 2
Priorität 2: 0,28 0,28 0,28 0,28 0,28 0,28 0 0 0 0,31 0,31 0,31 0,31 0,31
Priorität 3: 5 5 5 5 4 4 5 5 4 5 5 5 5 4

Abbildung 4.13: Vorgenommene Annotationen und Zustand des Entscheidungsbaums 
im Rahmen von AlgMinMSTL für den Beispielfall zu Beginn von Iteration 10
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da sich diese gut eignet, um das Vorgehen zu veranschaulichen. In Iteration 8 wurde 
die ZK XI mit 1 annotiert. Diese Entscheidung wurde anschließend verworfen und ZK 
XI in Iteration 9 mit 2 annotiert. Es ergibt sich der in Abbildung 4.13 gezeigte Zustand 
der VSTLs und der gezeigte Suchbaum als Ausgangslage für Iteration 10. In Iteration 
10 wird entsprechend der Betrachtungsreihenfolge über die Annotation der ZK II mit 
Bezeichnung Z2 entschieden. 

4.2.1.2.2 Ermittlung der zulässigen Aktionen und Auswahl einer Aktion 

Zunächst werden die zulässigen Aktionen im gegebenen Entscheidungsknoten be-
stimmt und bewertet. Eine Aktion entspricht dem Annotieren der betrachteten ZK mit 
einer bestimmten KN, d. h. dem Zuordnen eines bestimmten Labels. Wird eine KN ge-
wählt, mit der bisher noch keine ZK derselben Bezeichnung annotiert wurde, entsteht 
ein neues Label und damit eine neue ZKK in der letztendlichen MSTL. Um zuerst Teil-
bäume zu durchsuchen, die eine geringe Komplexität der MSTL erwarten lassen, wird 
nur dann ein neues Label eingeführt, wenn der ZK kein bestehendes Label zugeordnet 
werden kann. Dabei sind verbotene Aktionen des Entscheidungsknotens zu berück-
sichtigen. Hierbei handelt es sich um Aktionen, die in diesem Entscheidungsknoten be-
reits zuvor ausgeführt und verworfen wurden. Außerdem ist es grundsätzlich unzuläs-
sig, eine ZK mit einer KN zu annotieren, mit der bereits eine ZK mit derselben Bezeich-
nung in derselben VSTL annotiert wurde. Durch diese Regel wird berücksichtigt, dass 
zwei ZK derselben VSTL nicht aus derselben ZKK der MSTL instanziiert werden kön-
nen.  

Existieren mehrere Labels, die der ZK zugeordnet werden können, ist eine optimale 
Aktion zu bestimmen. Für jedes der Labels, existiert eine Gruppe von ZKs in den 
VSTLs aus ܵ௏ௌ்௅, denen dieses Label bereits zugeordnet wurde. Für alle ZKs einer 
solchen Gruppe wird angenommen, dass sie aus derselben ZKK der MSTL instanziiert 
werden. Um also eine optimale Aktion zu ermitteln, ist zu untersuchen, zu welcher 
Gruppe von ZKs die betrachtete ZK die geringste Distanz aufweist. Hierfür wird das in 
Kapitel 4.2.1.1.2 erläuterte Distanzmaß verwendet und je möglichem Label, d. h. je 
Gruppe, die mittlere Distanz zu den zugehörigen ZKs berechnet. Im Beispielfall (siehe 
Abbildung 4.14) liegen für die Bezeichnung der betrachteten Komponente, Z2, bereits 
zwei verschiedene KNs vor (1 und 2). Außerdem existieren im Entscheidungsknoten 
keine verbotenen Aktionen. Damit darf kein neues Label eingeführt werden, sondern 
es muss entweder das Label Z2;1 oder das Label Z2;2 zugeordnet werden. Die 



Methoden 87

betrachtete ZK weist zu der ZK mit Label Z2;2 die geringste Distanz auf, woraus sich 
eine Annotation mit KN 2 als optimale Aktion ergibt.

Nachdem die optimale Aktion bestimmt ist, wird die ZK entsprechend annotiert. Exis-
tieren für einen Entscheidungsknoten keine zulässigen Aktionen, d. h. sowohl die Zu-
ordnung von bestehenden Labels als auch die Einführung eines neuen Labels wurden 
bereits durchgeführt und verworfen, findet ein Backtracking statt. In diesem Fall wird
die zuletzt gewählte Aktion rückgängig gemacht, der vorherige Entscheidungsknoten 
ausgewählt und die zuletzt gewählte Aktion als verbotene Aktion des Entscheidungs-
knotens gespeichert. Die bisher beschriebene Vorgehensweise ermöglicht prinzipiell 
das Ermitteln einer optimalen Lösung durch vollständige Traversierung des Such-
baums. Die Effizienz der Suche kann jedoch, wie im Folgenden erläutert wird, durch 
Pruning weiter erhöht werden.

4.2.1.2.3 Pruning

Es existieren in AlgMinMSTL zwei Kriterien, auf Basis derer ein Entscheidungsknoten von 
der weiteren Betrachtung ausgeschlossen werden kann. Das erste basiert auf der un-
teren Schranke ܾ௎௡ für die Komplexität der Lösungen, die aus dem Zustand im Ent-
scheidungsknoten hervorgehen können. Die Anzahl der ZKKs je Bezeichnung ݈ in der 
MSTL kann nicht geringer sein als die maximale Anzahl ݊௟ெ௔௫஻ an Positionen von ZKs
mit dieser Bezeichnung über alle VSTLs aus ܵ௏ௌ்௅ hinweg, da nicht mehrere ZKs einer 
VSTL aus derselben Klasse instanziiert werden können. Sie kann für die finale Lösung 
außerdem nicht geringer sein als die Anzahl ݊௟௄ே஻௘௭ der KNs zu dieser Bezeichnung ݈, 
die im aktuellen Zustand bereits vorliegen. Damit gilt für die untere Schranke in einem 
Entscheidungsknoten ܾ௎௡ = ෍ max(݊௟ெ௔௫஻ ,݊௟௄ே஻௘௭)௟∈ௌಳ೐೥ ,

4.4

Abbildung 4.14: Vorgehen zur Ermittlung einer Aktion in einem Knoten des Suchbaums 
im Rahmen von AlgMinMSTL für den Beispielfall

Verbotene Aktionen für diese Entscheidung: keineZulässige Aktionen bestimmen: {1,2}

Zulässige Aktionen 
Bewerten:

KN: 1 2
Zugehörig: VII XI

Distanz: 0,5 0∅: 0,5 0

Zukauf-
komponente 
annotieren: KN 2
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wobei ܵ஻௘௭ der Menge aller Bezeichnungen von ZKs in VSTLs in ܵ௏ௌ்௅ entspricht. Falls ܾ௎௡ größer als die Komplexität ܾெ௜௡ der besten bisher gefundenen Lösung ist, kann
ausgehend vom aktuellen Knoten des Suchbaums keine Lösung mit einer geringeren 
Komplexität als die beste bisher gefundene Lösung erzielt werden. Der Knoten muss 
nicht weiter betrachtet werden und es wird ein Backtracking durchgeführt. Wird somit 
schnell eine gute Lösung gefunden, muss ein großer Teil des Suchbaums nicht be-
trachtet werden, was zur Effizienz des Algorithmus beiträgt. Abbildung 4.15 zeigt das 
Vorgehen für den Beispielfall wobei sich aus den vorherigen Iterationen bereits eine 
Lösung mit Komplexität 11 – d. h. eine MSTL mit 11 ZKKs – ergeben hat.

Das zweite für das Pruning genutzte Kriterium ist die Zulässigkeit des Zustands im 
Entscheidungsknoten. Damit eine Lösung relevant ist, muss sie zulässig sein. Im Such-
baum können Knoten auftreten, aus denen sich durch weitere Annotationen von ZKs
keine zulässigen Lösungen mehr ergeben können. In diesen Fällen müssen die unter-
geordneten Knoten im Suchbaum nicht betrachtet werden. Um diese Fälle zu ermitteln,
wird AlgMSTL auf die VSTLs in ܵ௏ௌ்௅ angewandt, wobei die VSTLs auf die bereits anno-
tierten ZKs reduziert werden. Eine solche Reduktion erfolgt, indem alle noch nicht 

Abbildung 4.15: Pruning auf Basis einer unteren Schranke im Rahmen von AlgMinMSTL
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?
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Abbildung 4.16: Zulässigkeitsprüfung im Rahmen von AlgMinMSTL für den Beispielfall
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annotierten ZKs aus den VSTLs temporär entfernt werden und anschließend alle Bau-
gruppen ohne untergeordnete ZKs ebenfalls temporär entfernt werden (siehe Abbil-
dung 4.16). Alle annotierten Komponenten werden durch ihre Labels, d. h. ihre Bezeich-
nungen und KNs, identifiziert. Wie in Kapitel 4.2.1.2.2 beschrieben, können im Rahmen 
von AlgMinMSTL keine zwei identisch bezeichneten Komponenten einer VSTL mit dersel-
ben KN annotiert werden. Damit liegen für die reduzierten VSTLs keine Multikompo-
nenten vor und AlgMSTL ist anwendbar. Durch Anwendung von AlgMSTL kann ermittelt 
werden, ob die reduzierten VSTLs STAs enthalten. Ggf. kann unterhalb des betrachte-
ten Knotens keine zulässige Lösung existieren, weil STAs durch das Hinzufügen wei-
terer Annotationen nicht aufgelöst werden können. In diesem Fall erfolgt ein Backtra-
cking.

4.2.1.2.4 Abschluss einer Iteration

Zum Abschluss einer Iteration wird überprüft, ob die in der Iteration erfolgte Annotation
eine neue beste Lösung impliziert. Die höchste Komplexität der Lösung, die ausgehend 
von einem Knoten des Suchbaums noch erreicht werden kann, die obere Schranke ܾ ை௕,
wird realisiert, wenn alle noch nicht annotierten ZKs jeweils mit unterschiedlichen KNs
annotiert werden. Entsprechend kann aus jedem Zustand trivial eine Lösung generiert
werden. Sei ݊ே௜஺௡ die Anzahl noch nicht annotierter ZKs, dann giltܾை௕ = ݊ே௜஺௡ + ෍ ݊௟௄ே஻௘௭௟∈ௌಳ೐೥ .

4.5

Ist ܾை௕ kleiner als die Komplexität ܾெ௜௡ der besten bisher gefundenen Lösung wird der 
Wert von ܾெ௜௡ durch den Wert von ܾை௕ ersetzt und die aus dem Knoten abgeleitete 
Lösung als neue beste Lösung gespeichert. Wurden im betrachteten Knoten bereits 
alle ZKs zugeordnet, d. h. ist der Knoten ein Blatt des Suchbaums, kann die Suche von 
diesem Knoten aus nicht fortgesetzt werden und es erfolgt ein Backtracking. Abbildung 
4.17 zeigt das Vorgehen für den Beispielfall.

Abbildung 4.17: Abschluss einer Iteration von AlgMinMSTL für den Beispielfall
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4.2.1.2.5 Terminierung von Algorithmus AlgMinMSTL

Der Algorithmus AlgMinMSTL terminiert, sobald der Suchbaum, exklusive der ausge-
schlossenen Teilbäume, vollständig durchsucht wurde. Dies ist genau dann der Fall, 
wenn ein Backtracking zur Wurzel des Suchbaums erfolgt ist und hier keine zulässigen 
Aktionen mehr existieren. Da außerdem AlgMinMSTL in der Lage ist zu jedem Zeitpunkt 
die beste bisher gefundene Lösung zurückzugeben, können weitere übliche Abbruch-
kriterien für Baumsuchen verwendet werden, wie z. B. eine bestimmte Laufzeit, Anzahl 
Iterationen, Zeit ohne Verbesserung von ܾெ௜௡ oder Anzahl Iterationen ohne Verbesse-
rung von ܾெ௜௡. Nach Abschluss von AlgMinMSTL liegt eine optimale Annotation der ZKs
vor. Mittels AlgMSTL kann somit eine MSTL mit geringstmöglicher Anzahl von ZKKs er-
stellt werden. Für den Beispielfall terminiert AlgMinMSTL nach 37 Iterationen und es ergibt 

sich die in Abbildung 4.18 gezeigte 
MSTL wobei die Subskripte der 
Klassen Multipositionen abbilden.
Diese MSTL gibt noch keinen Auf-
schluss darüber, ob die zugrunde-
liegenden VSTLs STAs enthalten
und ggf. welche.

4.2.2 Schritt 2: Strukturoptionen bestimmen

In Schritt 2 werden die STAs der VSTLs aus ܵ௏ௌ்௅ ermittelt und in der MSTL als STOs
abgebildet.

4.2.2.1 Problematik der Ermittlung von Strukturoptionen in einer Maximalstück-
liste

Bei den Klassen ܼ2ଵ und ܼ2ଶ in der beispielhaften MSTL (siehe Abbildung 4.18) kann 
es sich sowohl um STAs als auch um Multipositionen in der MSTL handeln. Entweder 
kann also ZK ܼ2 an verschiedenen Positionen in einer VSTL auftreten oder eine VSTL
kann bis zu zwei ZKs ܼ2 enthalten. Welcher Fall vorliegt, kann aus den Daten nicht mit 
Sicherheit geschlossen werden. Deshalb wird folgende Annahme getroffen, die im Fol-
genden als Maximalitätsannahme bezeichnet wird: Eine ZK mit einer bestimmten Be-
zeichnung kann in einer VSTL, die aus der MSTL konfiguriert werden kann, nicht öfter 

Abbildung 4.18: Resultierende Maximalstückliste 
nach Schritt 1 der Methode 2 für den Beispielfall
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auftreten, als in einer der gegebenen VSTLs44. Je größer der vorhandene Datensatz 
ist, desto größer ist die Wahrscheinlichkeit, dass darin eine VSTL existiert, die die ma-
ximal mögliche Anzahl von Positionen für eine Bezeichnung enthält. Damit ermöglicht 
die Maximalitätsannahme, dass das vorhergesagte Modell bei zunehmender Daten-
menge gegen das tatsächliche Modell konvergiert. Aufgrund der Maximalitätsannahme 
ist es bei einer kleinen Datenmenge möglich, dass dem Nutzer zu prüfende STOs an-
gezeigt werden, die sich mit zusätzlichen Daten auflösen würden. Diese STOs sind ggf. 
vom Nutzer zu verwerfen. 

Unter der Maximalitätsannahme lässt sich eindeutig entscheiden, ob STAs vorliegen, 
jedoch nicht, wie viele STAs vorliegen und welche VSTLs eine gemeinsame Struktur 
aufweisen. AlgMSTL führt z. B. für die VSTLs ߚ ,ߙ und ߛ in Abbildung 4.19 zu keiner 
Lösung, d. h. die VSTLs enthalten STAs. Wird VSTL ߙ entfernt, ergibt sich hingegen 
eine Lösung. Daraus könnte geschlossen werden, dass VSTL ߚ und VSTL ߛ einer STA
entsprechen und VSTL ߙ einer anderen. Derselbe Effekt tritt jedoch auf, wenn VSTL ߚ
oder VSTL ߛ entfernt werden. Welche VSTLs eine gemeinsame Struktur aufweisen und 
somit einer STA entsprechen, ist somit nicht eindeutig. Auch der Schluss, dass jede der 
VSTLs einer eigenen STA entspricht und damit also drei verschiedene Montagereihen-
folgen für das Produkt in den Daten existieren, ist zunächst zulässig. Um systematisch 
über vorliegende STAs entscheiden zu können, wird die folgende Annahme getroffen, 
die im Folgenden als Minimalitätsannahme bezeichnet wird: Es liegen in den gegebe-
nen VSTLs nicht mehr STAs vor, als notwendig sind, um den Datensatz vollständig zu 
erklären. Diese Annahme folgt dem Prinzip eines Modells geringer Komplexität. Für 

den Fall in Abbildung 4.19 ist so-
mit jeder genannte Schluss zuläs-
sig, der von zwei STAs ausgeht;
z. B. könnte die Struktur von 
VSTL ߙ und VSTL ߚ als eine STA 
angesehen werden und die von 
VSTL ߛ als eine andere. Je STA 
in den betrachteten VSTLs liegt 

                                        
44 Eine alternative plausible Annahme wäre, dass grundsätzlich in den VSTL keine STAs vorliegen und Multipo-
sitionen in der MSTL immer mit mehrfach auftretenden Komponenten im Produkt einhergehen, auch wenn dieser 
Fall in den VSTL nicht vorliegt. Das würde allerdings dazu führen, dass relevante Hinweise auf Fehler unberück-
sichtigt bleiben. Aufgrund der in Kapitel 1.1 beschriebenen Auswirkungen von Fehlern in KM ist die gewählte 
Annahme somit geeigneter.

Abbildung 4.19: Beispielhafte variantenbezogene 
Stücklisten mit Strukturalternativen

VSTL VSTL VSTL 
VSTL = Variantenbezogene Stückliste
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eine STO in der datenbasiert erstellten MSTL vor. Im Sinne der Minimalitätsannahme 
ist also eine MSTL mit einer minimalen Anzahl von STOs zu ermitteln, aus der sich alle 
VSTLs aus ܵ௏ௌ்௅ konfigurieren lassen. 

4.2.2.2 Optimierungsproblem zur Ermittlung von Strukturoptionen in einer Maxi-
malstückliste 

Die STOs, die in der zu erstellenden MSTL abschließend vorliegen, sind ex ante nicht 
bekannt. Deshalb wird für das im Folgenden hergeleitete Optimierungsproblem eine 
ausreichend große Anzahl ݊௉௟ an STO-Platzhaltern eingeführt. STO-Platzhalter kön-
nen aktiv oder inaktiv sein. Jeder STO-Platzhalter, der im Zuge der Optimierung akti-
viert wird, ergibt abschließend eine STO in der MSTL. Nach Minimalitätsannahme sind 
also so wenige STO-Platzhalter zu aktivieren wie nötig, d. h. primäres Optimierungs-
kriterium ist die Anzahl aktiver STO-Platzhalter. 

Jede ZKK der MSTL aus Schritt 1 muss abschließend denjenigen STOs zugeordnet 
sein, für die sie instanziiert werden kann (siehe Kapitel 4.1.1). Es muss sichergestellt 
werden, dass es für jede VSTL aus ܵ௏ௌ்௅ mindestens eine STO in der MSTL gibt, die 
alle ZKKs enthält, die notwendig sind um alle ZKs dieser VSTL zu instanziieren. Das 
im Folgenden hergeleitete Optimierungsproblem hat deshalb zwei Aspekte. Einerseits 
werden die ZKKs der MSTL den STO-Platzhaltern zugeordnet, andererseits werden 
die VSTLs aus ܵ௏ௌ்௅ den STO-Platzhaltern zugeordnet. Ein STO-Platzhalter ist aktiv, 
wenn ihm mindestens eine ZKK oder eine VSTL zugeordnet ist. Die beiden oben ge-
nannten Aspekte lassen sich nicht unabhängig voneinander betrachten: Falls eine be-
stimmte VSTL einer bestimmten STO zugeordnet ist, müssen auch alle ZKKs, die not-
wendig sind, um diese VSTL zu konfigurieren, dieser STO zugeordnet sein. 

Die Struktur aller VSTLs, die im Zuge der Optimierung demselben STO-Platzhalter zu-
geordnet werden, kann als eine STA betrachtet werden. Es kann vorkommen, dass 
keine der VSTLs, die gemeinsam eine STA bilden ZKs mit einer bestimmten Bezeich-
nung enthalten. Damit könnte unter den oben genannten Bedingungen nicht ausge-
schlossen werden, dass nach Abschluss der Optimierung STO-Platzhalter existieren, 
denen keine ZKKs mit entsprechender Bezeichnung zugeordnet sind. Damit wäre es 
möglich, dass abschließend STOs in der MSTL existieren, die nicht zulassen, dass 
Komponenten mit dieser Bezeichnung überhaupt instanziiert werden können. Dadurch 
würden STOs einen Zusammenhang zwischen der Struktur konfigurierbarer VSTLs und 
den darin vorkommenden Typen von Komponenten herstellen. Dies würde die Menge 
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an konfigurierbaren VSTLs unbegründet einschränken und würde auch nicht dem ei-
gentlichen Zweck von STOs entsprechen. Um dies zu vermeiden, wird im Folgenden 
das sekundäre Optimierungskriterium verwendet, dass so viele ZKKs wie möglich 
einem STO-Platzhalter zugeordnet werden sollen. Damit wird außerdem sichergestellt, 
dass abschließend einer STO der MSTL mindestens eine ZKK je Bezeichnung zuge-
ordnet ist. 

Das Optimierungsproblem lässt sich wie folgt mit den Variablen aus Tabelle 4.1 be-
schreiben. Sein prinzipieller Aufbau entspricht einem Graph-Coloring-Problem45, bei 
dem Knoten eines Graphen unter gewissen Restriktionen Farben zugeordnet werden. 

Tabelle 4.1: Variablen und Parameter des Optimierungsproblems zur Ermittlung von 
Strukturoptionen in einer Maximalstückliste 

Optimierungsproblem zur Ermittlung von Strukturoptionen 4.6 

|௓௄௄ܫ|) ݊݅݉  ∗ |௉௟ܫ| + 1)෍ ௝௉௟஺௞௝∈ூು೗ݑ  −෍ ෍ ௜,௝௓௄௄,௉௟௝∈ூು೗௜∈ூೋ಼಼ݑ     

.ݏ  |௓௄௄ܫ| :.ݐ ∗ ௝௉௟஺௞ ≥ ෍ݑ ௜,௝௓௄௄,௉௟௜∈ூೋ಼಼ݑ  ∀݆ ∈   ௉௟ (1)ܫ

                                         
45 Für Graph-Coloring-Probleme sei auf Méndez-Díaz & Zabala (2006, S. 826–827) verwiesen. 

 ݈ ௟௄஻௘௭ Menge der Indizes von Klassen der MSTL, die die Bezeichnungܫ ஻௘௭ Menge der Indizes von Bezeichnungen in ܵ஻௘௭ܫ
tragen; aus Schritt 1 bekannt ܫ௉௟ Menge der Indizes von STO-Platzhaltern; es gilt ܫ௉௟ = {1, … ,݊௉௟} ܫ௏ௌ்௅ Menge der Indizes von VSTLs aus ܵ௏ௌ்௅ ܫ௓௄௄ Menge der Indizes von ZKKs in der MSTL ܫ௞௓௄௄,௏ௌ்௅ Menge der Indizes von ZKKs, die für die Konfiguration der VSTL ݇ 
aus der MSTL benötigt werden; aus Schritt 1 bekannt ݊௟ெ௔௫஻ Parameter, der angibt, wie oft eine Bezeichnung mit Index ݈ maximal 
in einer VSTL aus ܵ௏ௌ்௅ auftritt ݑ௝௉௟஺௞ ∈ {0,1} Variable, die angibt, ob STO-Platzhalter ݆ aktiv ist (1) oder nicht (0) ݑ௞,௝௏ௌ்௅,௉௟ ∈ {0,1} Variable, die angibt, ob VSTL ݇ dem STO-Platzhalter ݆ zugeordnet 
ist (1) oder nicht (0) ݑ௜,௝௓௄௄,௉௟ ∈ {0,1} Variable, die angibt, ob die ZKK ݅ der MSTL dem STO-Platzhalter ݆ 
zugeordnet ist (1) oder nicht (0) 
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݆∀ ௝௉௟஺௞ݑ ≤ ௝ିଵ௉௟஺௞ݑ   ∈   ௉௟/{1} (2)ܫ

  ݊௟ெ௔௫஻ ≥ ෍ ௜,௝௓௄௄,௉௟௜∈ூ೗಼ݑ ಳ೐೥  ∀݆ ∈ ௉௟ܫ ,∀ ݈ ∈   ஻௘௭ (3)ܫ

  ෍ ௞,௝௏ௌ்௅,௉௟௝∈ூು೗ݑ  ≥ 1 ∀݇ ∈   ௏ௌ்௅ (4)ܫ

  ෍ ௜,௝௓௄௄,௉௟௜∈ூೖೋ಼಼,ೇೄ೅ಽݑ |௞௓௄௄,௏ௌ்௅ܫ| ≤  ∗ ݇∀ ௞,௝௏ௌ்௅,௉௟ݑ ∈ ௏ௌ்௅ܫ ,∀݆ ∈   ௉௟ (5)ܫ

Da stets 
 ෍ ෍ ௜,௝௓௄௄,௉௟௝∈ூು೗௜∈ூೋ಼಼ݑ  < |௓௄௄ܫ| ∗ |௉௟ܫ| + 1 4.7 

gilt wird die Minimierung der Anzahl aktiver STO-Platzhalter als primäres Ziel und die 
Zuordnung von ZKKs zu STOs als sekundäres Ziel behandelt. Nebenbedingung 1 
stellt sicher, dass ein STO-Platzhalter als aktiv gilt und im Zielfunktionswert berücksich-
tigt wird, sobald ihm eine ZKK zugeordnet wurde46. Nebenbedingung 2 besagt, dass 
ein STO-Platzhalter nur aktiv sein kann, wenn der STO-Platzhalter mit um 1 geringerem 
Index aktiv ist. Damit wird die Reihenfolge festgelegt, in der die Platzhalter aktiviert 
werden, wodurch der Lösungsraum eingeschränkt wird. Derartige Nebenbedingungen 
zum Brechen der Symmetrie des Lösungsraums werden auch für Graph-Coloring-Prob-
leme eingesetzt (Méndez-Díaz & Zabala 2006, S. 828). Nebenbedingung 3 setzt die 
Maximalitätsannahme um. Nebenbedingung 4 stellt sicher, dass jede VSTL mindes-
tens einem STO-Platzhalter und damit mindestens einer STO der letztlichen MSTL zu-
geordnet ist. Andernfalls könnten MSTLs entstehen, aus denen bestimmte VSTLs aus ܵ௏ௌ்௅ für keine der möglichen STOs abgeleitet werden können. Nebenbedingung 5 

stellt sicher, dass die Variable ݑ௞,௝௏ௌ்௅,௉௟ nur dann auf 1 gesetzt werden darf, wenn tat-

sächlich alle für ݇ benötigten ZKKs dem STO-Platzhalter ݆ zugeordnet sind. Nebenbe-
dingung 5 komplementiert somit Nebenbedingung 4. Aus der optimalen Lösung des 
aufgestellten Optimierungsproblems ergibt sich zum einen, wie viele STOs in der MSTL 
vorliegen und zum anderen, welche VSTLs und welche ZKKs jeweils welcher STO zu-
geordnet sind.  ݊௉௟ kann mit ݊ ௉௟  = |ܵ௏ௌ்௅| trivial gewählt werden. Anhang A3.4 erläutert, wie heuristisch 
ein kleineres ݊௉௟ ermittelt werden kann, das dennoch die Lösbarkeit des 
                                         
46 Damit ist ein STO-Platzhalter insbesondere aktiv, wenn ihm eine VSTL und damit alle ZKKs dieser VSTL zu-
geordnet sind, so dass auf eine entsprechende Nebenbedingung für die Zuordnung von VSTLs verzichtet werden 
kann. 
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Optimierungsproblems 4.6 sicherstellt. Dadurch kann das Optimierungsproblem effizi-
enter gelöst werden.

4.2.2.3 Abschluss von Schritt 2

Existiert nach der Lösung des Optimierungsproblems mehr als ein aktiver STO-Platz-
halter liegen in der MSTL STOs vor. Welche ZKKs für welche STOs instanziiert werden 
können, ist durch ݑ௞,௝௏ௌ்௅,௉௟ in der optimalen Lösung gegeben. Klassen, die jeder Gruppe 

zugeordnet sind, d. h. für jede STO instanziiert werden können, sind unabhängig von 
der geltenden STO. Für die entsprechenden ZKs können keine alternativen Positionen 
in der Fügereihenfolge existieren. Für den Beispielfall ergibt sich nach Lösung des Op-
timierungsproblems die in Abbildung 4.20 gezeigte MSTL mit zwei STOs. Die STOs,
denen die ZKKs jeweils zugeordnet sind, sind mit Superskript notiert. Bei ZKKs, die 
unabhängig von der STO sind wird auf das Superskript verzichtet. In STO 1 wird ܼ2
zunächst mit ܼ1 und ܼ3 gefügt und die daraus resultierende Baugruppe mit einer Bau-
gruppe, die aus ܼ3 und ܼ4 besteht. In STO 2 wird ܼ2 zunächst mit ܼ3 und ܼ4 gefügt 
und anschließend mit einer Baugruppe, die aus ܼ1 und ܼ3 besteht. Nach Abschluss

von Schritt 2 liegt eine MSTL vor, 
deren ZKKs STOs zugeordnet 
sind. Weitere Parameter der KKs
sind noch offen. Auf Basis der Er-
gebnisse aus Schritt 2 kann geprüft 
werden, ob die ermittelten STOs
Hinweise auf Inkonsistenzen in den 
Daten darstellen. 

4.2.3 Schritt 3: Strukturoptionen prüfen

Das Überprüfen der STOs ist optional und der einzige manuelle Schritt der Methode. In 
der MSTL sind nach Schritt 2 STOs erkennbar, welche den STAs in den VSTLs aus ܵ௏ௌ்௅ entsprechen. Ein Domänenexperte kann nun die STOs und zugehörigen STAs
daraufhin überprüfen, ob sie Inkonsistenzen in den Daten oder begründete alternative 
Montagereihenfolgen darstellen. Ist ersteres der Fall, können die Ursache für die In-
konsistenz ermittelt und unzutreffende STOs aus der MSTL gelöscht werden. Ist letz-
teres der Fall, kann der Experte entscheiden, ob die jeweils gültige STO von der ge-
wählten Variante abhängt oder von sonstigen Einflussgrößen. Hängt sie von der 

Abbildung 4.20: Resultierende Maximalstückliste 
nach Schritt 2 von Methode 2 für den Beispielfall
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gewählten Variante, d. h. den Ausprägungen der Produktmerkmale ab, kann die Ab-
hängigkeit der gültigen STO (siehe Kapitel 4.1.1, Parameter ݌ௌ்ை,ெௌ்௅) von den Pro-
duktmerkmalen mittels Methode 4 (siehe Kapitel 4.4) datenbasiert ermittelt werden. 
Hängt die gültige STO von anderen Einflussgrößen, wie z. B. dem ausführenden Werk 
ab, ist dies im KM zu hinterlegen. Wird keine Prüfung durchgeführt, wird davon ausge-
gangen, dass alle STOs gültig und von der gewählten Variante abhängig sind.

4.2.4 Schritt 4: Parameter der Komponentenklassen definieren

Wie oben beschrieben, sind für die Produktklasse und die Komponentenklassen der 
MSTL, abgesehen von ihrer STO-Zuordnung, noch keine Parameter definiert. Dies ge-
schieht in Schritt 4. Aus Schritt 1 ist bekannt, aus welchen Komponenten eine Klasse
der MSTL jeweils hervorgegangen ist. Die Parameter der Klassen ergeben sich aus 
den Parametern ihrer originären Komponenten. Die Bezeichnungen von ZKKs ergeben 
sich aus den Bezeichnungen ihrer originären Komponenten, ihre Positionen aus ihren
KNs und ihre zugehörigen STOs aus Schritt 2. Der Aktivitätszustand aller KKs ist vom 
Typ Boolean. Die möglichen STOs des zugehörigen MAPL bleiben bis zur Durchfüh-
rung von Methode 3 offen. Die Definitionsbereiche aller weiteren Parameter ergeben 
sich durch Vereinigung der Definitionsbereiche der ursprünglichen Komponenten, wie 

Abbildung 4.21: Bildung einer Komponentenklasse für den Beispielfall

Komponente V
Bezeichnung ( ) = „B1“

Position ( ) = N/A

Aktiv ( ) = True

Menge ( ) = 

Zugehörige STOs ( ) = {1,2}

STO des MAPL ( ) = tbd

Parameter = 

…

Komponente I
Bezeichnung ( ) = „B1“

Position ( ) = N/A

Aktiv ( ) = True

Menge ( ) = 

Zugehörige STOs ( ) = {1,2}

STO des MAPL ( ) = tbd

Parameter = 

…

Komponente X
Bezeichnung ( ) = „B1“

Position ( ) = N/A

Aktiv ( ) = True

Menge ( ) = 

Zugehörige STOs ( ) = {1,2}

STO des MAPL ( ) = tbd

Parameter = 

…

Komponentenklasse 
Bezeichnung ( ) = „B1“

Position ( ) = N/A

Aktiv ( ): bool

Menge ( ): , }

Zugehörige STOs ( = {1,2}

STO des MAPL ( ): tbd

Parameter : , }

…

MAPL = Maximalarbeitsplan, STO = Strukturoption
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für den Beispielfall in Abbildung 4.21 zu sehen. Die nach Schritt 4 vorliegende MSTL 
ist vollständig und kann für die Produktkonfiguration, wie in Kapitel 4.1.1 beschrieben, 
eingesetzt werden. Damit liegt der erste Baustein des zu erstellenden LLKM vor. Um 
jedoch die Verständlichkeit der MSTL zu erhöhen, können ZKKs mit ähnlicher Funktion 
in Superklassen aggregiert, d. h. generalisiert, werden. 

4.2.5 Schritt 5: Zukaufkomponentenklassen generalisieren 

Zwei ZKKs sind Kandidaten für eine Generalisierung, wenn sie an derselben Position 
in der MSTL – d. h. als meronymisch untergeordnete Elemente derselben Klasse – auf-
treten, wenn sie denselben STOs zugeordnet sind und wenn keine VSTL in ܵ௏ௌ்௅ exis-
tiert, in der beide ZKKs zugleich auftreten. Mit den von Romanowski & Nagi (2004) 
entwickelten Ähnlichkeitsmaßen (siehe Kapitel 3.2.2) kann ermittelt werden, ob es 
sinnvoll ist, ZKKs, die Kandidaten für eine Generalisierung sind, tatsächlich zu genera-
lisieren. Ggf. wird eine Superklasse in die MSTL eingefügt und die entsprechenden 
ZKKs dieser untergeordnet. Im Gegensatz zum Ansatz von Romanowski & Nagi (2004) 
findet die Generalisierung damit statt nachdem die STAs in den VSTLs aus ܵ௏ௌ்௅ in der 
MSTL als STOs erfasst wurden, sodass keine STAs in den VSTLs durch die Generali-
sierung entstehen können. 

4.3 Methode 3: Datenbasierte Erstellung von Maximalarbeitsplä-
nen 

Im Folgenden wird die im Rahmen der vorliegenden Arbeit entwickelte Methode 3 zur 
Lösung des Problems 3 – der datenbasierten Erstellung von MAPLs – vorgestellt. Me-
thode 3 behebt das in Kapitel 3.3.3 beschriebene Lösungsdefizit nach Stand der For-
schung. Ausgehend von einer Menge ܵ௏஺௉௅ von VAPLs (siehe Kapitel 4.1.3, Abbildung 
4.7) wird ein MAPL erstellt. Es wird davon ausgegangen, dass jeder AVO in VAPLs aus ܵ௏஺௉௅ mit einer Bezeichnung versehen ist, die seinen Typ eindeutig bestimmt, wie z. B. 
durch eine genormte Bezeichnung gemäß DIN-Norm 8580 (DIN 8580:2022-12). Ist 
dies nicht der Fall, kann vorab eine Generalisierung vorgenommen werden, indem 
AVOs mit ähnlichen Bezeichnungen und Parametern zusammengefasst werden. Die 
Ähnlichkeit kann dabei in Anlehnung an das von Romanowski & Nagi (2004, S. 322) 
entwickelte Ähnlichkeitsmaß für ZKs berechnet werden. STAs, die aus der Generalisie-
rung herrühren, müssen bei der manuellen Prüfung korrigiert werden. AVOs desselben 
Typs können an mehreren Positionen in einem VAPL zugleich auftreten, d. h. die 
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VAPLs aus ܵ௏஺௉௅ können Multivorgänge enthalten. VAPLs aus ܵ௏஺௉௅ können darüber 
hinaus STAs aufweisen. Entsprechend kann der resultierende MAPL Multipositionen
und ausgewiesene STOs, wie in Kapitel 4.1.1 beschrieben, enthalten. 

In der vorliegenden Arbeit wird von VAPLs in Form von Vorranggraphen ausgegan-
gen. Liegen VAPLs in Form von Ablaufdiagrammen vor, können diese unter der An-
nahme, dass alle indirekten Vorrangbeziehungen gelten, in Vorranggraphen überführt 
werden. Umgekehrt lassen sich Vorranggraphen durch transitive Reduktion47 in Ablauf-
diagramme überführen. Abbildung 4.22 zeigt die im Folgenden als Beispiel verwende-
ten VAPLs aus ܵ௏஺௉௅ jeweils in Form von Ablaufdiagrammen (1) und in Form von Vor-
ranggraphen (2). Die AVOs sind mit „A“ und einer fortlaufenden Nummer bezeichnet,
wobei identisch bezeichnete AVOs auftreten können. Zur Referenz sind die AVOs rö-
misch nummeriert48. Analog zu dem in Methode 2 eingesetzten Algorithmus AlgMSTL

(siehe Anhang A3.1) wurde im Rahmen der vorliegenden Arbeit ein Algorithmus Alg-
MAPL entwickelt. Dieser ist in der Lage für eine Menge ܵ௏஺௉௅ von VAPLs in Form von
Vorranggraphen ohne Multivorgänge und ohne STAs einen MAPL zu erstellen, aus 
dem alle VAPLs aus ܵ௏஺௉௅, wie in Kapitel 4.1.1 beschrieben, konfiguriert werden kön-
nen. Enthalten die VAPLs aus ܵ௏஺௉௅ STAs gibt AlgMAPL zurück, dass keine Lösung er-
mittelt werden kann. AlgMAPL wird in Anhang A4.1 erläutert und als Pseudocode darge-
stellt.

                                        
47 Für transitive Reduktion sei auf Skiena (2020, S. 559–562) verwiesen
48 Diese Nummerierung hat keinen Bezug zu der in Kapitel 4.2.1 verwendeten Nummerierung von Zukaufkompo-
nenten.

Abbildung 4.22: Beispielhafte variantenbezogene Arbeitspläne in Ablaufdiagramm- und
Vorranggraphdarstellung
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AlgMAPL kann eingesetzt werden, um einen MAPL aus VAPLs mit Multivorgängen und 
STAs zu erstellen. Dies erfolgt analog zu der in Kapitel 4.2.1 vorgestellten Erstellung 
von MSTLs aus VSTLs mit Multikomponenten und STAs durch AlgMSTL. Die in Kapitel 
4.2 dargestellten fünf Schritte von Methode 2 zur Erstellung einer MSTL aus einer 
Menge ܵ௏ௌ்௅ von VSTLs können somit auf die Erstellung eines MAPL aus einer Menge ܵ௏஺௉௅ von VAPLs übertragen werden. In den folgenden Kapiteln wird deshalb aus-
schließlich auf die notwendigen Anpassungen eingegangen. Abbildung 4.23 zeigt die 
fünf Schritte der Methode 3 im Überblick.

4.3.1 Schritt 1: Minimalen Maximalarbeitsplan erstellen

Schritt 1 der Methode 3 nutzt einen Algorithmus AlgMinMAPL, der weitgehend dem in 
Kapitel 4.2.1 vorgestellten Algorithmus AlgMinMSTL entspricht. Auf eine separate Darstel-
lung als Pseudocode wird deshalb verzichtet. Die Grundidee ist ebenfalls, die AVOs
der VAPLs aus ܵ௏஺௉௅ mit Klassennummern (KNs) zu versehen um somit VAPLs ohne 
STAs und Multivorgänge zu erhalten. Die Verbindung einer Bezeichnung und einer 
KN wird auch für AVOs als Label bezeichnet (siehe Kapitel 4.2.1).

Zunächst findet eine Initialisierung statt, in der die Betrachtungsreihenfolge der AVOs
in den VAPLs aus ܵ௏஺௉௅ festgelegt wird. Dies erfolgt analog nach prognostizierter
Klassenanzahl je Bezeichnung, Intraclusterdistanz des Clusterings sowie der Anzahl 
von AVOs im zugehörigen VAPL. Für das Clustering wird analog zum Distanzmaß für 
ZKs in VSTLs ein Distanzmaß für AVOs in VAPLs benötigt. Hierfür wird das Maß ݀௜,௝஺௏ை
für die Distanz zweier AVOs ݅ und ݆ eingeführt, das ebenfalls auf dem Konzept der
Kontextähnlichkeit basiert. Für jeden der beiden AVOs werden jeweils die folgenden 
drei Mengen an Labels bestimmt: ࢜࢏ࡿ ࢘࢕ enthält die Labels der vorausgehenden AVOs
im zugehörigen VAPL, ࢎࢉࢇࡺ࢏ࡿ enthält die Labels der nachfolgenden AVOs im 

Abbildung 4.23: Überblick über die Schritte der Methode 3
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zugehörigen VAPL und ࡮ࡻ࢏ࡿ enthält die Labels von AVOs, die in keiner Beziehung zu 
dem betrachteten AVO stehen. Für AVO III in VAPL 1 im Beispielfall aus Abbildung 
4.22 gilt z. B. ூܵூூ௏௢௥ = ூܵூூே௔௖௛ ,{2ܣ,1ܣ} = {4ܣ} und ூܵூூை஻ = ∅. Für AVO X gilt ܵ௑௏௢௥ = ௑ே௔௖௛ܵ ,{1ܣ} = {4ܣ} und ܵ௑ை஻ = Für jede der drei Beziehungsarten .{2ܣ} wird die Kardinalität 
der Schnittmengen bestimmt. Für den Beispielfall gilt | ூܵூூ௏௢௥ ∩ ܵ௑௏௢௥| = |{1ܣ}| = 1, ห ூܵூூே௔௖௛ ∩ ܵ௑ே௔௖௛ห = |{4ܣ}| = 1 und | ூܵூூை஻ ∩ ܵ௑ை஻| = |∅| = 0. Die Übereinstimmung ent-
spricht der Summe der Kardinalitäten, d. h. 2 im Beispielfall. Um diese zu normieren 
wird die maximal mögliche Übereinstimmung als Kardinalität der Schnittmenge ௜ܵ௏,௅ ∩
௝ܵ௏,௅ bestimmt wobei ௜ܵ௏,௅ die Menge aller Labels in dem zu AVO ݅ gehörigen VAPL

bezeichnet. Im Beispielfall gilt ห ூܵூூ௏,௅ ∩ ܵ௑௏,௅ห = |{4ܣ,3ܣ,2ܣ,1ܣ}| = 4. Damit ergibt sich 

eine normierte Übereinstimmung ூூூ,௑஺௏ைݏ von ଶସ = 0,5 und damit eine Distanz ݀ூூூ,௑஺௏ை von 1 −0,5 = 0,5 für die beiden AVOs III und X. Allgemein gilt

௜,௝஺௏ைݏ = ห ௜ܵ௏௢௥ ∩ ௝ܵ௏௢௥ห + ห ௜ܵே௔௖௛ ∩ ௝ܵே௔௖௛ห + ห ௜ܵை஻ ∩ ௝ܵை஻หห ௜ܵ௏,௅ ∩ ௝ܵ௏,௅ห ,
4.8

falls ห ௜ܵ௏,௅ ∩ ௝ܵ௏,௅ห > 0 und ansonsten ݏ௜,௝஺௏ை = 1. Damit ergibt sich ݀௜,௝஺௏ை als݀௜,௝஺௏ை = 1 − .௜,௝஺௏ைݏ 4.9

Die Iterationen von AlgMinMAPL erfolgen wie in Kapitel 4.2.1.2 beschrieben. Dabei wird
für die Überprüfung der Zulässigkeit anstelle von AlgMSTL der zuvor eingeführte Algo-
rithmus AlgMAPL verwendet. Analog zur Überprüfung von teilweise annotierten VSTLs,
wie in Kapitel 4.2.1.2.3 beschrieben, werden bei der Überprüfung der VAPLs in einem 
bestimmten Knoten des Suchbaums jeweils nur die bereits annotierten AVOs berück-
sichtigt. Analog zu der in Kapitel 4.2.1.2.3 beschriebenen Reduktion von VSTLs auf 
annotierte ZKs können VAPLs auf ihre annotierten AVOs reduziert werden. Hierbei wer-

den alle nicht annotierten AVOs und alle zu die-
sen AVOs inzidenten Kanten entfernt. AlgMinMAPL

nutzt dieselben Abbruchkriterien wie AlgMinMSTL. 
Nach dem Abbruch lässt sich auf Basis der ge-
gebenen VAPLs mit annotierten AVOs mittels 
AlgMAPL ein MAPL erstellen, aus dem alle VAPLs
konfiguriert werden können. In diesem sind 
noch keine STOs hinterlegt, was im folgenden 
Schritt erfolgt. Für den Beispielfall ergibt sich 

Abbildung 4.24: Maximalarbeitsplan 
nach Schritt 1 für den Beispielfall
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der in Abbildung 4.24 dargestellte MAPL, wobei Indizes die Positionen der AVKs ange-
ben.

4.3.2 Schritt 2: Strukturoptionen bestimmen

Die Ermittlung der STOs in dem zuvor erstellten MAPL erfolgt analog zu Schritt 2 der
Methode 2 (siehe Kapitel 4.2.2) durch mathematische Optimierung. Es wird das gleiche
Optimierungsproblem aufgestellt, wobei AVOs und VAPLs STO-Platzhaltern zugeord-
net werden, sodass ebenfalls nicht mehr AVOs mit derselben Bezeichnung einem 
Platzhalter zugeordnet werden, als diese Bezeichnung maximal in einem der VAPLs
aus ܵ௏஺௉௅ auftritt. Im Beispielfall ergeben sich die in Abbildung 4.25 (1) mit Superskrip-
ten dargestellten STO 1 und STO 2. Diese betreffen jeweils die mit 3ܣ bezeichneten 
AVOs. Der MAPL in Vorranggraphdarstellung (1) kann mittels transitiver Reduktion in 
einen MAPL in Ablaufdiagrammdarstellung (2) umgewandelt werden. Die ermittelten 
STOs sind daraufhin zu überprüfen, ob sie Fehlerhinweise darstellen.

4.3.3 Schritt 3: Strukturoptionen prüfen

Die Prüfung der STOs erfolgt analog zu Schritt 3 der Methode 2 (siehe Kapitel 4.2.3). 
Es ist dabei zu berücksichtigen, dass STOs wie zuvor erläutert auch die Konsequenz 
einer unzulässigen Generalisierung sein können. Die Überführung des MAPL in eine 
Ablaufdiagrammdarstellung mittels transitiver Reduktion erleichtert die Überprüfung 
durch Domänenexperten.

4.3.4 Schritt 4: Parameter der Arbeitsvorgangsklassen definieren

Die Parameter einer AVK des MAPL ergeben sich analog zu Schritt 4 der Methode 2
(siehe Kapitel 4.2.4) aus deren originären AVOs. Wie in Kapitel 4.2.4 beschrieben, 
ergibt sich die Gesamtheit der Parameter einer AVK als Komposition der Parameter
ihrer AVOs. Deren Definitionsbereiche ergeben sich als Vereinigung der entsprechen-
den Ausprägungen in den AVOs. Der resultierende MAPL ist vollständig und kann für 

Abbildung 4.25: Resultierender Maximalarbeitsplan mit Strukturoptionen für den Bei-
spielfall

(1) (2)



102 Methoden 
 

 

einen Konfigurationsprozess verwendet werden. Um die Verständlichkeit des MAPL zu 
erhöhen, können auch für AVKs Generalisierungen vorgenommen werden. 

4.3.5 Schritt 5: Generalisierung von Arbeitsvorgangsklassen 

Zwei oder mehreren AVKs des MAPL kann prinzipiell eine Superklasse zugeordnet 
werden, wenn sie in keinem eingehenden VAPL gemeinsam instanziiert werden und 
wenn sie an derselben Position des MAPL auftreten, d. h. dieselben Mengen ௜ܵ௏௢௥, ௜ܵே௔௖௛ und ௜ܵை஻ aufweisen. Bei dieser Betrachtung sind die Labels der beiden Vorgänge 
selbst zu vernachlässigen. Um zu entscheiden, welche AVKs letztlich zusammenge-
fasst werden sollen, kann ebenfalls ein Ähnlichkeitsmaß für AVKs auf Basis ihrer 
Bezeichnung und Parameter verwendet werden. Dies ist jedoch nicht Gegenstand der 
vorliegenden Arbeit. 

Nach Anwendung von Methode 3 liegt ein MAPL vor, aus dem alle VAPLs aus ܵ௏஺௉௅ 
konfiguriert werden können. Im Rahmen von Methode 1 (siehe Kapitel 4.1.3) wird Me-
thode 3 einmal für jede Klasse der MSTL angewandt, die dem Produkt oder einer ei-
gengefertigten Komponente entspricht. Dabei werden jeweils alle VAPLs betrachtet, 
die zu Objekten gehören, die aus dieser Klasse instanziiert werden. Für jede dieser 
Klassen in der MSTL liegt somit abschließend ein MAPL vor. Um ein vollständiges 
LLKM zu erhalten, sind zuletzt die Regeln der Parameter der MSTL und der MAPLs zu 
ermitteln. 

4.4 Methode 4: Datenbasierte Erstellung von Regeln 
Im Folgenden wird die im Rahmen der vorliegenden Arbeit entwickelte Methode 4 zur 
Lösung des Problems 4 – der datenbasierten Erstellung von Regeln – vorgestellt. Me-
thode 4 behebt das in Kapitel 3.4.3 beschriebene Lösungsdefizit nach Stand der For-
schung.  

Je nach abhängigem Parameter (siehe Kapitel 4.1.3) liegt bei der datenbasierten Er-
stellung von Regeln entweder eine Regression oder eine Klassifikation im Sinne des 
ML vor. Handelt es sich bei der zu erstellenden Regel um eine Auswahlbedingung, ist 
der abhängige Parameter binär. Er gibt an, ob die entsprechende Klasse der MSTL 
oder des MAPL für die gewählte Variante instanziiert wird oder nicht. Es liegt somit ein 
binäres Klassifikationsproblem vor. Hierauf liegt der Schwerpunkt der vorliegenden 
Arbeit (siehe Kapitel 2.2.2.4). Für andere Fälle von Regeln sei auf interpretierbare Mo-
delle des ML in der Literatur verwiesen, wie z. B. von Rudin et al. 2022 
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zusammenfassend dargestellt. Im Folgenden wird von binären Features ausgegangen. 
Wie in Kapitel 3.4.2 beschrieben, stellt dies jedoch keine Einschränkung des Anwen-
dungsfalls dar. Ggf. sind nichtbinäre Produktmerkmale oder Parameter des KM zu-
nächst in ein oder mehrere binäre Features umzuwandeln. Ein Feature entspricht da-
mit im Folgenden nicht zwingend genau einem Produktmerkmal oder einem Parameter 
des KM. Der Trainingsdatensatz ergibt sich wie in Kapitel 4.1.3 beschrieben. Dabei 
entspricht ein Datenpunkt einer Variante und es wird jeweils nur das Label betrachtet, 
das dem vorherzusagenden Parameter entspricht. Somit liegt ein Trainingsdatensatz ்ܶ௥௔௜௡௜௡௚ mit binären Features und genau einem binären Label vor. Auf Basis dessen 
ist ein boolescher Ausdruck in disjunktiver Normalform (DNF) mit minimaler Kom-
plexität, d. h. minimaler Anzahl Literale, zu bestimmen, der eine perfekte Trainings-
genauigkeit aufweist. Dieser Ausdruck entspricht der Regel49, durch die der abhängige 
Parameter, wie z. B. das Vorhandensein einer Komponente in der Maximalstückliste, 
im LLKM festgelegt wird. 

Ein boolescher Ausdruck in DNF besteht aus konjunktiv verknüpften Monomen, wie 
z. B. der Ausdruck (ݔଵ ∧ (ସݔ ∨ ଵഥݔ) ∧ ଷݔ ∧ ଵݔ) ସ) eine Konjunktion der Monomeݔ ∧ ଵഥݔ) ସ) undݔ ∧ ଷݔ ∧ -ସ) darstellt. Damit der Ausdruck zulässig ist, muss er alle negativen Datenݔ
punkte des Trainingsdatensatzes ablehnen, d. h. auf falsch abbilden, und alle positiven 
Datenpunkte akzeptieren, d. h. auf wahr abbilden. Diese Anforderung lässt sich auf die 
Monome des Ausdrucks herunterbrechen. Jedes der Monome muss insofern zulässig 
sein, als es alle negativen Datenpunkte ablehnt. Außerdem muss für jeden positiven 
Datenpunkt mindestens ein Monom existieren, das diesen akzeptiert. Für einen Daten-
satz können prinzipiell alle zulässigen Monome ermittelt werden. Somit kann prinzipiell 
das folgende Master-Problem (MP) mit den in Tabelle 4.2 eingeführten Variablen und 
Parametern aufgestellt werden.  

Tabelle 4.2: Variablen und Parameter des Master-Problems 

ܽ௠,௜ ∈ {0, 1} Parameter, der angibt, ob Monom ݉ den positiven Datenpunkt ݅ im 
Trainingsdatensatz akzeptiert (1) oder nicht (0) ܿ௠ ∈ ℕ Anzahl der Literale in Monom ݉. Entspricht dem entsprechenden 
Zielfunktionskoeffizienten des MP ݊஽௣ ∈ ℕ Anzahl der positiven Datenpunkte im Trainingsdatensatz 

                                         
49 Eine solche Regel ist eine Disjunktion von Monomen und entspricht damit einer Regelmenge im Sinne von 
Rudin et al. (2022). 
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݊ெ ∈ ℕ  Anzahl der berücksichtigten Monome in einem RMP ݑ௠ ∈ {0, 1} Entscheidungsvariable des RMP, die festlegt, ob Monom ݉ Teil des 
zu lernenden booleschen Ausdrucks ist (1) oder nicht (0) 

Master-Problem 4.10 

  ݉݅݊ ܿଵ ݑଵ + … + ܿ௡ಾ       ௡ಾݑ 

.ݏ   ଵݑ ଵ,ଵܽ :.ݐ + … + ܽଵ,௡ಾ  ௡ಾ ≥ 1 (1)ݑ 

  

   ⋮ ⋱ ⋮  ⋮   

   ܽ௡ವ೛,ଵݑଵ + … + ܽ௡ವ೛,௡ಾݑ௡ಾ ≥ 1   

,ଵݑ      … ,    ௡ಾ ≥ 0 (2)ݑ

,ଵݑ      … ,   . ௡ಾ ∈ ℤ (3)ݑ

Zu jedem MP existiert eine Liste ܮெ௢௡௢௠௘, die jeder Spalte das zugehörige Monom zu-
ordnet. Die Zielfunktion entspricht der kumulierten Anzahl der Literale in allen ausge-
wählten Monomen. Die Nebenbedingungen 1 stellen sicher, dass für jeden positiven 
Datenpunkt mindestens ein Monom gewählt wird, das diesen Datenpunkt akzeptiert. 
Somit wird jeder positive Datenpunkt des Trainingsdatensatzes durch den resultieren-
den booleschen Ausdruck akzeptiert. Da außerdem jedes der wählbaren Monome alle 
negativen Datenpunkte ablehnt, ist für jede zulässige Lösung des MP sichergestellt, 
dass der resultierende boolesche Ausdruck jeden negativen Datenpunkt ablehnt. Aus 
der Definition von ݑ௠ ergibt sich neben Nebenbedingung 2 auch ݑଵ, … ௡ಾݑ, ≤ 1. Auf 
entsprechende Nebenbedingungen im MP kann jedoch verzichtet werden, da aufgrund 
der positiven Zielfunktionskoeffizienten keine optimale Lösung mit ݑ௠ > 1 für ein ݐ ∈{1, … ,݊ெ} existiert. 

Die Anzahl der Variablen des MP entspricht der Anzahl zulässiger Monome für den 
Trainingsdatensatz und kann damit sehr groß werden. Außerdem besteht ein erhebli-
cher Rechenaufwand darin, diese Monome vollständig zu bestimmen. Deshalb wird in 
der vorliegenden Methode 4 das MP weder explizit aufgestellt noch direkt gelöst, son-
dern das Prinzip der Spaltengenerierung (CG) angewandt (siehe Anhang A1.1). Ab-
bildung 4.26 gibt einen Überblick über die Schritte der Methode. In Schritt 1 wird zu-
nächst eine heuristische Lösung des MP ermittelt. Auf Basis dessen werden ein redu-
ziertes Master-Problem (RMP) und das zugehörige relaxierte reduzierte Master-
Problem (XRMP) aufgestellt. Dem initialen XRMP werden in Schritt 2 solange Spalten 
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hinzugefügt, bis sich eine Lösung des relaxierten Master-Problems (XMP) ergibt. Ist 
diese nichtganzzahlig und somit keine zulässige Lösung des MP, findet eine ggf. mehr-
fache, Verzweigung statt, sodass abschließend eine optimale Lösung des MP vorliegt. 
Die optimale Lösung des MP gibt an, welche Monome Teil des komplexitätsminimalen 
booleschen Ausdrucks sind. 

4.4.1 Schritt 1: Initialisierung des relaxierten reduzierten Master-Problems

Um ein lösbares RMP aufstellen zu können, müssen zulässige Monome bekannt sein, 
die zusammen genommen alle positiven Datenpunkte des Trainingsdatensatzes ak-
zeptieren. Dies entspricht einem booleschen Ausdruck mit perfekter Trainingsgenauig-
keit, welcher jedoch nicht zwingend komplexitätsminimal sein muss. Zur Ermittlung ei-
nes solchen booleschen Ausdrucks kann grundsätzlich jede Heuristik zur datenbasier-
ten Erstellung von booleschen Ausdrücken eingesetzt werden, die eine perfekte Trai-
ningsgenauigkeit gewährleistet. Wie in Kapitel 3.4.2 beschrieben, trifft dies auf mehrere
der von Costamagna & Micheli (2023) vorgestellten Verfahren zu. Darüber hinaus gilt 
dies auch für Heuristiken zur Erstellung von Entscheidungsbäumen, die kein Pruning
einsetzen. An dieser Stelle ist eine geringe Rechenzeit wichtiger als ein resultierender 
Ausdruck mit möglichst geringer Komplexität, da die Lösung lediglich als Ausgangsba-
sis für eine Optimierung dient. Außerdem kann selbst für gute Lösungen nicht zwingend 
davon ausgegangen werden, dass ihre Monome für die optimale Lösung relevant sind. 
Deshalb wird auf Heuristiken zur Erstellung von Entscheidungsbäumen zurückgegrif-
fen, welche sehr recheneffizient sind (Osisanwo et al. 2017, S. 133–134). Gängige Ver-
fahren wie z. B. C5.0 oder CART gehen von einem Wurzelknoten aus und fügen schritt-
weise untergeordnete Knoten hinzu, wobei jeder Knoten eine Partition des Datensatzes 
anhand eines Features darstellt (Patil et al. 2012, S. 2). Für die Auswahl des Features 

Abbildung 4.26: Überblick über die Schritte der Methode 4

Schritt 1: Initialisierung des XRMP Schritt 2: Lösung des MP

Features Lab.
…

0 0 … 0
0 1 … 0
… … … …

Monome , , ,

0, 0, 1, 1, …

MP = Master-Problem, XRMP = Relaxiertes reduziertes Master-Problem
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existieren verschiedene sog. Splitting-Kriterien. Tangirala (2020) vergleicht die beiden 
gängigen Splitting-Kriterien Gini-Index und Informationsgewinn basierend auf Entropie 
miteinander. Der Vergleich ergibt, dass sich die jeweils resultierenden Entscheidungs-
bäume hinsichtlich ihrer Generalisierungsfähigkeit nicht signifikant unterscheiden. Für 
die vorliegende Arbeit wird der Gini-Index als Splitting-Kriterium verwendet50. Auf 
Pruning wird verzichtet, um eine initiale Lösung mit perfekter Trainingsgenauigkeit zu 
erhalten. Jeder Pfad des Baumes, der von der Wurzel zu einem Blatt führt, das der 
positiven Klasse zugeordnet ist, entspricht einem Monom des booleschen Ausdrucks, 
mit dem das RMP initialisiert wird. Aus den Datenpunkten die in seinen Blättern verblei-
ben ergibt sich, welche der positiven Datenpunkte das Monom akzeptiert. Damit kann 
ein zulässiger boolescher Ausdruck ermittelt und somit können die initialen Monome 
des RMP bestimmt werden.  

Abbildung 4.27 (2) veranschaulicht die heuristische Initialisierung eines RMP anhand 
des beispielhaften Datensatzes, der in Abbildung 4.27 (1) dargestellt ist. Für die Erstel-
lung des Entscheidungsbaums sind je Knoten die verbleibenden Datenpunkte sowie 
der Gini-Index der möglichen Splits dargestellt. Bei uneindeutigem minimalem Gini-In-
dex wird der Split willkürlich in dem zuerst gelisteten Feature durchgeführt. Features, 
die keine Information über eine Klassenaufteilung enthalten, weil sie nur eine Ausprä-
gung aufweisen, werden nicht berücksichtigt. Es ergeben sich zwei Monome, die als 
Basis für die Formulierung des initialen RMP dienen, was in Abbildung 4.27 (3) darge-
stellt ist. Je Monom enthält das RMP eine Spalte. Die Zielfunktionskoeffizienten des 
RMP entsprechen der Anzahl der Literale von Monom 1 bzw. Monom 2. Dessen Ne-
benbedingungskoeffizienten geben wieder, dass Monom 1 den positiven Datenpunkt 1 
akzeptiert und Monom 2 den positiven Datenpunkt 2.  

Das ermittelte RMP entspricht dem MP aus Formel 4.10, berücksichtig jedoch nur die 
Monome aus ܮெ௢௡௢௠௘ und die entsprechenden Spalten der Koeffizientenmatrix. Auf 
eine explizite allgemeine Darstellung des RMP wird deshalb an dieser Stelle verzichtet. 
Aus dem initialen RMP wird ein initiales XRMP abgeleitet, im Folgenden als XRMP 1 
bezeichnet, indem Nebenbedingung 3 in Optimierungsproblem 4.10 durch Nebenbe-
dingung 3.1 ersetzt wird: 

                                         
50 Für die binäre Klassifikation mit binären Features ergibt sich der Gini-Index eines Features als  ݎ଴ ∗ (1 − ଴଴ଶݎ − ଴ଵଶݎ ) + ଵݎ ∗ (1 − ଵ଴ଶݎ − ଵଵଶݎ ) wobei ݎ௜ den Anteil der Datenpunkte darstellt, für die das Feature den Wert ݅ annimmt und ݎ௜௝ den Anteil der Datenpunkte, für die das Feature den Wert ݅ annimmt und deren Label ݆ ist 
(hergeleitet aus Aggarwal 2021, S. 195). 
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,ଵݑ … ௡ಾݑ, ∈ ℝ (3.1). 4.11
Das XRMP 1 dient als Ausgangspunkt für die Lösung des MP. Für den Beispielfall 
ergibt sich als XRMP 1 das in Abbildung 4.27 gezeigte Optimierungsproblem, jedoch 
mit ݑଵ,ݑଶ ∈ ℝ.

4.4.2 Schritt 2: Lösung des Master-Problems

Das XMP wird mittels AlgCG gelöst, indem XRMP 1 solange Spalten hinzugefügt wer-
den, bis sich durch das Hinzufügen weiterer Spalten keine Verbesserung des optimalen 
Zielfunktionswerts ݖ௑ெ௉∗ mehr erzielen lässt (siehe Kapitel 4.4.2.1). Für jede Spalte, die 
dem XRMP hinzugefügt wird, wird das zugehörige Monom in ܮெ௢௡௢௠௘ gespeichert.
Nachdem dem XRMP die letzte Spalte hinzugefügt wurde, liegt ein abschließendes 
XRMP vor, das im Folgenden als XRMP L bezeichnet wird. Die optimale Lösung des 
XRMP L entspricht der optimalen Lösung des XMP. Aufgrund der Relaxierung ist die 
optimale Lösung des XMP potenziell nicht ganzzahlig und damit nicht zwangsläufig 
eine zulässige Lösung des MP. Um eine ganzzahlige optimale Lösung zu erhalten, kön-
nen nichtganzzahlige optimale Lösungen sukzessive ausgeschlossen und neue XMPs
aufgestellt werden, welche wiederum mittels AlgCG gelöst werden können. Auf diese 

Abbildung 4.27: Initialisierung des reduzierten Master-Problems für den Beispielfall

x1 x2 x3 x4 y
0 0 0 0 0
0 1 0 0 0
1 1 0 1 1
0 0 1 1 1
0 0 0 1 0

x4
Split x1 x2 x3 x4
Gini 0,3 0,47 0,3 0,27

x1

x3

0

1

0 1

0 1

0 1

0 1

x1 x2 x3 y
1 1 0 1
0 0 1 1
0 0 0 0

Split x1 x2 x3
Gini 0,33 0,33 0,33
willkürliche Auswahlx2 x3 y

0 1 1
0 0 0

Split x2 x3
Gini N/A 0
Split x2 besitzt 
keine Aussage

(1)

Monom 1 Monom 2

Instanz Features Label
x1 x2 x3 x4 y

Neg. 1 0 0 0 0 0
Neg. 2 0 1 0 0 0
Pos. 1 1 1 0 1 1
Pos. 2 0 0 1 1 1
Neg. 3 0 0 0 1 0

(2)

(3)

Pos. 1
Pos. 2

Initiales RMP

RMP = Reduziertes Master-Problem
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Weise ist AlgCG in einen übergeordneten Algorithmus AlgB&P eingebettet. AlgB&P verbin-
det CG basierend auf Pricing-Modellen mit einem Branching-Ansatz und ist deshalb der 
Klasse der sog. Branch-and-Price-Verfahren51 zuzuordnen. 

Aus didaktischen Gründen wird im Folgenden zunächst der Algorithmus AlgCG und im 
darauffolgenden Kapitel 4.4.2.2 dessen Einbettung in den übergeordneten Algorithmus 
AlgB&P erläutert.  

4.4.2.1 Optimierung eines reduzierten Master-Problems mittels Spaltengenerie-
rung (AlgCG) 

AlgCG löst ein XMP, ausgehend von einem initialen XRMP. Anhang A5.2 zeigt den Al-
gorithmus in Pseudocode. Zunächst handelt es sich bei diesem XRMP um das in Schritt 
1 ermittelte XRMP 1. Als erstes wird das XRMP in ein Dualproblem (DP) überführt um 
die Opportunitätskosten seiner Nebenbedingungen zu berechnen.  

4.4.2.1.1 Aufstellen und Lösen des Dualproblems 

Das DP des XRMP lässt sich mit den in Tabelle 4.3 beschriebenen Variablen sowie 
den in Kapitel 4.4 eingeführten Variablen und Parametern des MP – die auch im XRMP 
vorliegen – beschreiben. 

Tabelle 4.3: Variablen des Dualproblems 

                                         
51 Für Branch-and-Price-Verfahren sei auf Wilhelm (2001, S. 177) verwiesen 

௜ݒ ∈ ℝ Entscheidungsvariable des DP, die der Nebenbedingung ݅ des XRMP 
zugeordnet ist 

Dualproblem 4.12 

 
 

෍ ݔܽ݉  ௜௜∈{ଵ,…௡ವ೛}ݒ             
  

.ݏ   ෍ :.ݐ ܽ௧,௜ݒ௜௜∈{ଵ,…௡ವ೛}  ≤ ܿ௠ ∀݉ ∈ {1, … ,݊ெ} (1)   

݅∀ ௜ ≥ 0ݒ    ∈ {1, … ,݊஽௣} (2)   

݅∀ ௜ ∈ ℝݒ    ∈ {1, … ,݊஽௣} (3)   



Methoden 109

Die Zielfunktionskoeffizienten des DP sind entsprechend der rechten Seite des XRMP 
durchgehend 1. Nebenbedingung 1 ergibt sich aus der Dualisierung. Da ݑଵ, … , ௡ಾݑ ≥ 0 gilt, muss nach der Dualisierung ݒଵ, … , ௡ವ೛ݒ ≥ 0 gelten (Nebenbedin-
gung 2). Das DP kann mittels Solvern für lineare Optimierung (engl. Linear Program-
ming, LP) gelöst werden. Die optimale Lösung ࢜∗ = ,∗ଵݒ) … , ∗௡ವ೛ݒ ) des DP entspricht den 

Opportunitätskosten der Nebenbedingungen des XRMP. ∗௜ݒ gibt an, um wie viel sich 
der optimale Zielfunktionswert des XRMP verringern, d. h. verbessern, würde, wenn die 
rechte Seite der entsprechenden Nebenbedingung des XRMP um 1 verringert werden 
würde. Wird ein Eintrag der rechten Seite des XRMP um 1 verringert wird die entspre-
chende Nebenbedingung ݅ inaktiv. Damit kann ݒ௜∗ im vorliegenden Fall wie folgt inter-
pretiert werden: ݒ௜∗ entspricht der Verbesserung des Zielfunktionswertes des XRMP,
falls ein Monom in das XRMP aufgenommen und ausgewählt würde, das den positiven
Datenpunkt ݅ akzeptiert. Daraus ergibt sich eine Gewichtung der positiven Daten-
punkte. Die Verbesserung des optimalen Zielfunktionswerts des XRMP entsteht konk-
ret dadurch, dass durch das neue Monom, das den Datenpunkt ݅ akzeptiert, andere 
zuvor ausgewählte Monome, die den Datenpunkt ݅ akzeptieren, nicht mehr benötigt 
werden. Dieser Verbesserung steht jedoch eine Verschlechterung des Zielfunktions-
werts gegenüber, die sich daraus ergibt, dass das neue Monom in den booleschen 
Ausdruck aufgenommen wird. Auf Basis dessen lässt sich ein Pricing-Problem (auch 
Subproblem, SP) aufstellen. Dieses dient dazu ein zulässiges Monom zu ermitteln, das
positive Datenpunkte mit einem möglichst hohen kumulierten Gewicht akzeptiert und 
dabei möglichst wenige Literale enthält.

Abbildung 4.28 (1) zeigt das initiale XRMP 1, das sich für den in Kapitel 4.4.1 einge-
führten Beispielfall aus dem initialen RMP ergibt. Abbildung 4.28 (2) zeigt darüber hin-
aus das zugehörige DP und dessen optimale Lösung. Gemäß ࢜∗ hat ein zusätzliches 
Monom, das den positiven Datenpunkt 2 akzeptiert ein höheres Gewicht, als eines, das

Abbildung 4.28: Relaxiertes reduziertes Master-Problem und zugehöriges Dualproblem 
für den Beispielfall

Dualproblem 1(2)(1) XRMP 1

XRMP = Relaxiertes reduziertes Master-Problem
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den Positiven Datenpunkt 1 akzeptiert. Das ist dadurch begründet, dass im ersten Fall 
das Monom (ݔଵ ∧ ଵഥݔ) ସ) mit 2 Literalen und in letzten Fall das Monomݔ ∧ ଷݔ ∧  ସ) mit 3ݔ
Literalen im initialen booleschen Ausdruck ersetzt werden kann.  

4.4.2.1.2 Aufstellen des Subproblems 

Mit der optimalen Lösung ࢜∗ = ,∗ଵݒ) … , ∗௡ವ೛ݒ ) des DP lässt sich das SP wie folgt mit den 
zusätzlichen in Tabelle 4.4 eingeführten Größen aufstellen. 

Tabelle 4.4: Variablen und Parameter des Subproblems 

Subproblem 4.13 

݉݅݊ ෍ ௙௣ݓ + ௙௡௙∈{ଵ,…,௡ಷ}ݓ − ෍ ௜∗ܽ௜,௡ಾାଵ௜∈{ଵ,…,௡ವ೛}ݒ      

.ݏ ෍ :.ݐ ௙௣൫1ݓ) − ௜௙௣ݔ ൯ + ௜௙௣௙∈൛ଵ,…,௡ಷൟݔ௙௡ݓ ) + ݊ிܽ௜,௡ಾାଵ ≤ ݊ி ∀݅ ∈ {1, … , ݊஽௣} (1) 

 ෍ ௙௣(1ݓ − ௜௙௡ݔ ) + ௜௙௡௙∈{ଵ,…,௡ಷ}ݔ௙௡ݓ  ≥  1 ∀݅ ∈ {1, … , ݊஽௡} (2) 

݅∀ ௙௣ ∈ {0,1}ݓ  ∈ {1, … , ݊ி} (3) 

݅∀ ௙௡ ∈ {0,1}ݓ  ∈ {1, … , ݊ி} (4) 

 ܽ௜,௡ಾାଵ ∈ {0,1} ∀݅ ∈ {1, … , ݊஽௣} (5) 

ܽ௜,௡ಾାଵ ∈ {0, 1} Entscheidungsvariable, die angibt, ob das neu hinzuzufügende Mo-
nom ݊ெ + 1 den positiven Datenpunkt ݅ akzeptiert (1) oder nicht (0) ݊ி ∈ ℕ Anzahl der Features im Trainingsdatensatz ݊஽௡ ∈ ℕ Anzahl der negativen Datenpunkte im Trainingsdatensatz ݒ௜∗ ∈ ℕ Wert einer Entscheidungsvariablen ݒ௜ in der optimalen Lösung des 
DP ݓ௙௡ ∈ {0, 1} Entscheidungsvariable, die angibt, ob das neu hinzuzufügende Mo-
nom die dem Feature ݂ entsprechende Variable als negatives Lite-
ral enthält (1) oder nicht (0)  ݓ௙௣ ∈ {0, 1} Entscheidungsvariable, die angibt, ob das neu hinzuzufügende Mo-
nom die dem Feature ݂ entsprechende Variable als positives Literal 
enthält (1) oder nicht (0)  ݔ௜௙௡ ∈ {0, 1} Wahrheitswert des ݅-ten negativen Datenpunkts hinsichtlich Fea-
ture ݂ ݔ௜௙௣ ∈ {0, 1} Wahrheitswert des ݅-ten positiven Datenpunkts hinsichtlich Feature ݂ 
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Durch die Variablen ݓ௙௣ und ݓ௙௡ ist das neu hinzuzufügende Monom definiert. Diese 

Darstellung eines Monoms wird auch als Dual-Rail-Darstellung bezeichnet (Ignatiev 
et al. 2021, S. 3809). Die Summe ∑ ௙௣ݓ + ௙௡௙∈{ଵ,…,௡ಷ}ݓ  in der Zielfunktion berücksichtigt 

die Erhöhung, d. h. Verschlechterung, des optimalen Zielfunktionswertes des XRMP 
durch Hinzufügen des neuen Monoms aufgrund der in ihm enthaltenen positiven und 
negativen Literale. Die Summe ∑ ௜∗ܽ௜,௡ಾାଵ௜∈{ଵ,…,௡ವ೛}ݒ  entspricht der Verringerung – d. h. 

Verbesserung – des optimalen Zielfunktionswerts des XRMP, die sich dadurch ergibt, 
dass das neue Monom hinzugefügt wird (siehe Kapitel 4.4.2.1.1). Sie berücksichtigt 
damit die Verringerung der Opportunitätskosten. Nebenbedingung 1 sorgt dafür, dass ܽ௜,௡ವାଵ den Wert 0 annimmt, wenn der positive Datenpunkt ݅ des Trainingsdatensatzes 

durch das neue Monom nicht akzeptiert wird. Dabei gibt die Summe ∑ ௙௣(1ݓ −௙∈൛ଵ,…,௡ಷൟݔ௜௙௣ ) + ௜௙௣ݔ௙௡ݓ  an, in wie vielen Variablen das neue Monom und Datenpunkt ݅ nicht über-

einstimmen. Eine Nichtübereinstimmung liegt vor, wenn im neuen Monom eine Variable 
als positives bzw. negatives Literal enthalten ist, aber Datenpunkt ݅ für diese Variable 
den Wert 0 bzw. 1 aufweist. Nur wenn die Summe den Wert 0 annimmt, kann ܽ௜,௡ಾାଵ 
den Wert 1 annehmen. Nebenbedingung 2 stellt sicher, dass das neue Monom keinen 
negativen Datenpunkt des Trainingsdatensatzes akzeptiert, d. h., dass für jeden sol-
chen Datenpunkt mindestens in einer Variablen eine Nichtübereinstimmung vorliegt. 
Auf Nebenbedingungen ݓ௙௣ + ௙௡ݓ ≤ 1 zur Sicherstellung der Komplementarität von ݓ௙௣ 

und ݓ௙௡ für ݂ ∈ {1, … ,݊ி} kann verzichtet werden, weil durch einen Verstoß gegen eine 

solche Nebenbedingung der Zielfunktionswert verschlechtert würde, ohne damit eine 
zusätzliche Nebenbedingung 1 oder 2 zu erfüllen. Es existiert deshalb keine optimale 
Lösung für die ݓ௙௣ + ௙௡ݓ = 2 für ein ݂ ∈ {1, … ,݊ி} gilt. Abbildung 4.29 (1) zeigt das erste 

SP für den Beispielfall. Beispielsweise gibt der Zielfunktionskoeffizient von ܽଵ,ଷ an, dass 
eine Verbesserung des optimalen Zielfunktionswerts des XRMP 1 um bis zu 2 möglich 
wäre, falls das neu hinzuzufügende Monom den positiven Datenpunkt 1 akzeptiert. Da-
mit das neu hinzuzufügende Monom den positiven Datenpunkt 1 akzeptiert, darf es 
jedoch keines der Literale ݔଷ, ̅ݔଵ, ̅ݔଶ oder ̅ݔସ enthalten, was durch Nebenbedingung 
Pos.1 sichergestellt wird. Damit das neu hinzuzufügende Monom darüber hinaus zu-
lässig ist, muss es alle negativen Datenpunkte ausschließen, was durch die Nebenbe-
dingungen Neg. 1, Neg. 2 und Neg. 3 gewährleistet wird. 
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4.4.2.1.3 Lösen des Subproblems

Das SP kann mittels ILP-Solvern gelöst werden. Die Anzahl der Variablen im SP ent-
spricht 2݊ி + ݊஽௣ und die Anzahl der Nebenbedingungen entspricht ݊஽௣ + ݊஽௡. Für 
Trainingsdatensätze mit vielen Literalen und Datenpunkten kann das SP damit groß 
und rechenintensiv werden. Das hat eine große Auswirkung auf die Rechenzeit, weil 
das SP im Zuge des AlgCG i. d. R. mehrfach gelöst werden muss. Dies ist eine generelle 
Herausforderung der CG, weshalb Wilhelm (2001) den Einsatz problemspezifischer 
Heuristiken zur Lösung des SP empfiehlt. Im Rahmen der vorliegenden Arbeit wurde
mit AlgPricingHeuristik eine solche problemspezifische Heuristik entwickelt, die sich in An-
hang A5.3 findet. Für die heuristischen Lösungen des SP können zwei Fälle auftreten. 
Erstens kann sich ݖௌ௉∗ < 0 ergeben. In diesem Fall wurde heuristisch eine Spalte ge-
funden, die dem XRMP hinzugefügt werden kann um eine Verbesserung des optimalen 
Zielfunktionswerts ݖ௑ோெ௉∗ zu ermöglichen. Die CG kann fortgesetzt werden, ohne das 
SP exakt lösen zu müssen. Zweitens kann sich ݖௌ௉∗ ≥ 0 ergeben. In diesem Fall wurde 
heuristisch keine Spalte gefunden, die dem XRMP hinzugefügt werden kann um eine 
Verbesserung des optimalen Zielfunktionswerts ݖ௑ோெ௉∗ zu ermöglichen. Da die heuris-
tische Lösung keine Optimalität garantiert, kann nicht ausgeschlossen werden, dass 
eine Lösung des SP mit ݖௌ௉∗ < 0 existiert. Um eine optimale Lösung des XRMP zu 
garantieren, muss in diesem Fall das SP exakt gelöst werden. Eine Heuristik zur Lö-
sung des SP kann das exakte Lösen des SP somit nicht grundsätzlich ersetzen. Sie 
kann aber die Anzahl der Fälle reduzieren, in denen das SP exakt gelöst werden muss. 
Ergibt sich nach heuristischer oder optimaler Lösung des SP ݖௌ௉∗ < 0 wird das XRMP 
aktualisiert, indem die entsprechende Spalte hinzugefügt wird. Für den Beispielfall 

Abbildung 4.29: Erstes Subproblem für den Beispielfall

Subproblem 1

Monom 3: , Optimaler Zielfunktionswert: Monom hinzufügen

(1)

(2)
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ergibt sich die in Abbildung 4.29 (2) gezeigte optimale Lösung des SP, die dem Monom ݔଷ entspricht52. Der optimale Zielfunktionswert des DP, -2, ist kleiner als 0, weshalb dem 
XRMP eine entsprechende Spalte hinzugefügt wird.  

4.4.2.1.4 Aktualisierung des relaxierten reduzierten Master-Problems 

Die Ausprägungen der Variablen ݓ௙௣ und ݓ௙௡ für ݂ ∈ {1, … ,݊ி} in der optimalen Lösung 

des SP ergeben das neu hinzuzufügende Monom in Dual-Rail-Darstellung. Prinzipiell 
entsprechen die Ausprägungen der Variablen ܽ௜,௡ಾାଵ für ݅ ∈ {1, … , ݊஽௣} den Koeffizien-

ten der neu hinzuzufügenden Spalte des XRMP. Allerdings werden diese für alle ݅, mit ݒ௜∗ = 0 im Zuge der Optimierung willkürlich gewählt, da sie keinen Einfluss auf den Ziel-
funktionswert haben. Um die Koeffizienten der neuen Spalte zu ermitteln, d. h. um zu 
ermitteln, welche positiven Datenpunkte das neue Monom akzeptiert, kann für jeden 
positiven Datenpunkt ݅ die Bedingung ∑ ௙௣(1ݓ − ௜௙௣ݔ ) + ௜௙௣௙∈൛ଵ,…,௡ಷൟݔ௙௡ݓ ≥ 1 ausgewertet 

werden. Der Zielfunktionskoeffizient des neuen Monoms im RMP ergibt sich als An-
zahl der in ihm enthaltenen positiven und negativen Literale aus ∑ ௙௣ݓ + ௙௡௙∈{ଵ,…,௡ಷ}ݓ . 

Damit kann dem XRMP eine neue Variable ݑ௡ಾାଵ mit Zielfunktionskoeffizient ܿ௡ಾାଵund 
Nebenbedingungskoeffizienten ܽ௜,௡ಾାଵ hinzugefügt werden. Aus dem aktualisierten 

XRMP kann durch Dualisierung ein neues DP abgeleitet werden53 usw. 

4.4.2.1.5 Terminierung 

Der Algorithmus terminiert, sobald sich aus dem SP ergibt, dass durch Hinzufügen ei-
nes weiteren Monoms keine Verbesserung des optimalen Zielfunktionswerts mehr 
möglich ist. Die optimale Lösung des letzten XRMP entspricht der optimalen Lösung 
des XMP, wobei alle Variablen des XMP, die nicht im letzten XRMP enthalten sind, auf 
0 gesetzt werden. Abbildung 4.30 (1) zeigt das aktualisierte XRMP und das aktualisierte 
DP für den Beispielfall. Im Beispielfall würde ein weiteres SP aufgestellt werden, aus 
dem sich das Monom ݔଵ ergibt. Nach der Lösung eines weiteren dualen Problems ergibt 
sich für das daraus folgende SP eine optimale Lösung mit Zielfunktionswert 0. Nach 
abschließender Lösung des XRMP ergibt sich eine ganzzahlige optimale Lösung und 
damit eine optimale Lösung des MP. Diese entspricht dem in Abbildung 4.30 (2) 

                                         
52 Neben der angegebenen optimalen Lösung besitzt das Problem in diesem Fall noch eine zweite optimale Lö-
sung, die dem Monom ݔଵ entspricht, das später hinzugefügt wird. Die Wahl der optimalen Lösung hat keinen 
Einfluss auf die Komplexität des resultierenden booleschen Ausdrucks. 
53 Beim Einsatz von Solvern nach Stand der Technik, die das primale und duale Problem zugleich lösen, kann 
auf die explizite Formulierung des DP verzichtet werden. 
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gezeigten optimalen booleschen Ausdruck, der gegenüber der initialen Lösung 2 statt 
5 Literale enthält. Eine Verzweigung ist in diesem Beispiel nicht notwendig. Ist die Lö-
sung des XMP hingegen nichtganzzahlig ist diese Lösung durch zusätzliche Nebenbe-
dingungen auszuschließen und es sind entsprechend neue XMPs aufzustellen. Dies 
geschieht im Rahmen des übergeordneten Algorithmus AlgB&P.

4.4.2.2 Ermittlung eines optimalen booleschen Ausdrucks mittels Branch and 
Price (AlgB&P)

Abbildung 4.31 stellt das Vorgehen des Algorithmus AlgB&P schematisch dar. Zunächst 
wird mittels AlgCG, wie oben beschrieben, eine optimale Lösung des XMP bestimmt, 
wobei das in Schritt 1 ermittelte XRMP 1 als Ausgangsproblem dient. Ist die optimale 
Lösung des XMP nichtganzzahlig, wird sie ausgeschlossen und es werden neue, un-
tergeordnete XMPs aufgestellt, woraus sich eine Verzweigung ergibt. Die optimalen 
Lösungen der neuen XMPs können erneut nichtganzzahlig sein, so dass weitere Ver-
zweigungen entstehen können. Durch den auf diese Weise nach und nach entstehen-
den Baum kann das MP gelöst werden. Dabei wird Pruning mit Hilfe einer oberen 
Schranke ෠ܾ௢ durchgeführt, um die Recheneffizienz zu erhöhen. Das Vorgehen wird im 
Folgenden erläutert.

4.4.2.2.1 Verzweigung

Um nichtganzzahlige Lösungen auszuschließen, können bekannte Verfahren der ILP
eingesetzt werden, wie z. B. Schnittebenenverfahren oder Branch-and-Bound-Verfah-
ren. Die vorliegende Arbeit nutzt ein Branch-and-Bound-Verfahren. Sei ࢛௑ெ௉∗ ∗ଵݑ)= , … , ∗௡ಾݑ ) die optimale Lösung des XMP, die, wie in Kapitel 4.4.2 beschrieben, der

optimalen Lösung von XRMP L entspricht. Sei ܵேீ௔௡௭௓ = {݆ ∈ {1, … ,݊ெ}:ݑ௝ ∉ {0,1}} die 

Abbildung 4.30: Zweites relaxiertes reduziertes Master-Problem und zugehöriges Du-
alproblem sowie finale Lösung des Master-Problems für den Beispielfall 

(1) XRMP 2 Dualproblem 2

(2) Optimaler boolescher Ausdruck: 

…

XRMP = Relaxiertes reduziertes Master-Problem
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Menge aller Indizes nichtganzzahliger Entscheidungsvariablen in ࢛௑ெ௉∗. Es wird der 
erste Index ݊௏௭ = ݉݅݊({݅ ∈ ܵேீ௔௡௭௓}) ausgewählt, für den die zugehörige Variable in 
der optimalen Lösung nichtganzzahlig ist. In diesem Index wird das XMP verzweigt 
(engl. to branch), indem jeweils ein XMP(ݑ௡ೇ೥ = 0) und ein XMP(ݑ௡ೇ೥ = 1) mit den zu-
sätzlichen Nebenbedingungen ݑ௡ೇ೥ = 0 bzw. ݑ௡ೇ೥ = 1 erstellt werden54. Diese unterge-
ordneten XMPs werden analog zum initialen XMP mittels AlgCG gelöst. Hierfür kann 
XRMP L als initiales XRMP verwendet werden, wobei die Variable ݑ௡ೇ೥ entsprechend 
fixiert wird.

                                        
54 Bzgl. der hier vorgestellten Methode 4 besteht der Fokus der vorliegenden Arbeit darin, CG im Rahmen von 
Branch & Price für die datenbasierte Erstellung von Regeln in LLKM grundsätzlich nutzbar zu machen. Es ist nicht 
der Anspruch der vorliegenden Arbeit, das Potenzial, das Branch & Price für die effiziente Lösung entsprechender 
Optimierungsprobleme bietet, auszuschöpfen. Um die Recheneffizienz weiter zu erhöhen, besteht Potenzial für 
den Einsatz anspruchsvollerer Meta-Verfahren, wie z. B. Branch & Cut, anspruchsvollerer Modellierungen wie 
z. B. Dantzig-Wolfe-Reformulierungen und anspruchsvollere Verzweigungsstrategien wie z. B. eine Verzweigung 
mit Vorausschau. Eine Herausforderung besteht jeweils darin, diese Ansätze im SP zu berücksichtigen.

Abbildung 4.31: Schematischer Ablauf des Algorithmus AlgB&P
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Für XRMPs mit Variablen, die auf 0 fixiert sind, sind die zugehörigen SPs zusätzlich zu 
beschränken. Es dürfen keine Spalten in das XRMP aufgenommen werden, die iden-
tisch zu Spalten sind, deren zugehörige Variablen im Zuge der Verzweigung auf 0 fixiert 
wurden – andernfalls würden Endlosschleifen entstehen. Es muss deshalb eine Liste 
mit ausgeschlossenen Monomen (ܮா௫௞௟ெ௢௡௢௠௘) geführt werden, die beim Aufstellen 
des SP durch Nebenbedingungen ausgeschlossen werden. Sei ߤ ∈ -ா௫௞௟ெ௢௡௢௠௘ ein zuܮ
vor ausgeschlossenes Monom und (࢝௣ఓ ,࢝௡ఓ) = ଵ௣ఓݓ) , … ௡ಷ௣ఓݓ, ଵ௡ఓݓ, , …  ௡ಷ௡ఓ) dessenݓ,

Dual-Rail-Darstellung. Dann müssen dem SP folgende Nebenbedingungen hinzugefügt 
werden: 
 ෍ ௙௣௙∈൛ଵ,…௡ಷൟݓ௙௣ఓݓ + ෍ ൫1 − ௙௣ఓ൯൫1ݓ − +௙௣൯௙∈൛ଵ,…௡ಷൟݓ ෍ ௙௡௙∈൛ଵ,…௡ಷൟݓ௙௡ఓݓ + ෍ ൫1 − ௙௡ఓ൯൫1ݓ − ௙௡൯௙∈൛ଵ,…௡ಷൟݓ  

≤ 
2݊ி − ߤ∀  1 ∈ ா௫௞௟ெ௢௡௢௠௘ܮ  . 

4.14 

Die Terme ∑ ௙௣௙∈൛ଵ,…,௡ಷൟݓ௙௣ఓݓ  und ∑ ௙௡௙∈൛ଵ,…,௡ಷൟݓ௙௡ఓݓ  entsprechen den Anzahlen von Lite-

ralen, die sowohl für das ausgeschlossene Monom als auch für die Lösung in positiver 
bzw. negativer Form auftreten. Die Terme ∑ ൫1 − ௙௣ఓ൯൫1ݓ − ௙௣൯௙∈൛ଵ,…,௡ಷൟݓ  und ∑ ൫1 − ௙௡ఓ൯൫1ݓ − ௙௡൯௙∈൛ଵ,…,௡ಷൟݓ  entsprechen den Anzahlen von Literalen, die weder für 

das ausgeschlossene Monom noch für die Lösung in positiver Form auftreten. Insge-
samt entspricht die linke Seite der Nebenbedingungen somit der Anzahl von Stellen, in 
denen die Lösung und das ausgeschlossene Monom übereinstimmen. Diese Überein-
stimmung muss kleiner als 2݊ி – die Anzahl aller Stellen – sein.  

Bei der Fixierung von Variablen eines XRMP auf 0 können Fälle eintreten, für die das 
XRMP keine Lösung mehr besitzt. Ggf. sind Monome in das XRMP aufzunehmen, um 
die Lösbarkeit wiederherzustellen. Auf diese Fälle geht Anhang A5.4 ein.  

Mit der vorgestellten, ggf. mehrfachen, Verzweigung kann eine ganzzahlige optimale 
Lösung des XMP und damit eine optimale Lösung des MP gefunden werden. Allerdings 
kann die Effizienz des Vorgehens erhöht werden, indem nicht alle Teilbäume des re-
sultierenden Suchbaums vollständig betrachtet werden. Es wird deshalb – wie für 
Branch-and-Bound-Verfahren üblich – Pruning durchgeführt, indem die möglichen Ziel-
funktionswerte eines Teilbaums mit einer oberen Schranke (engl. bound) verglichen 
werden. 
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4.4.2.2.2 Pruning 

XRMP L kann nicht nur als initiales XRMP für untergeordnete XMPs verwendet werden, 
sondern auch um eine obere Schranke ෠ܾ௢ für ݖெ௉∗ – den optimalen Zielfunktionswert 
des MP – zu berechnen. Dazu wird XRMP L derelaxiert indem seine Entscheidungsva-
riablen auf ganzzahlige Werte beschränkt werden. Es ergibt sich ein RMP L, dessen 
optimale Lösung ganzzahlig und damit eine zulässige Lösung des MP ist. Da RMP L 
gegenüber dem MP reduziert ist, ist sein Lösungsraum eine Teilmenge des Lösungs-
raums des MP. Damit ist sein optimaler Zielfunktionswert ݖோெ௉∗ eine obere Schranke 
für den optimalen Zielfunktionswert ݖெ௉∗. Eine solche obere Schranke ergibt sich auch 
für alle letzten XRMP aller untergeordneten XMPs. Die obere Schranke kann genutzt 
werden, um Teilprobleme, die sich aus der Verzweigung ergeben, von der Betrachtung 
auszuschließen.  

Sei XMP(…) ein durch Variablenfixierungen beschränktes XMP, das im Suchbaum von 
AlgB&P auftritt. Da die Zielfunktionskoeffizienten und die Entscheidungsvariablen des 
MP natürlich sind, ist der Zielfunktionswert des MP immer eine natürliche Zahl und so-
mit ist auch die obere Schranke ෠ܾ௢ eine natürliche Zahl. Gilt nun 
 ඃݖ௑ெ௉(… )∗ඇ ≥ ෠ܾ௢ 4.15 

gilt auch für das zu XMP(…) gehörige MP(…) mit Variablenfixierung 
 ඃݖெ௉(… )∗ඇ ≥ ෠ܾ௢. 4.16 

D. h. für das MP existiert unter den gegebenen Variablenfixierungen keine Lösung mit 
einem besseren Zielfunktionswert als ෠ܾ௢. Damit können sich aus XMPs, die XMP(…) 
untergeordnet sind und deren Lösungsräume damit Teilmengen des Lösungsraums 
von XMP(…) sind, ebenfalls keine Lösungen mit besseren Zielfunktionswerten als ෠ܾ௢ 
ergeben. Verzweigungen von XMP(…) müssen damit nicht betrachtet werden. Durch 
das Pruning mittels Kriterium 4.16 können optimale Lösungen des MP effizienter ermit-
telt werden.  

4.4.2.2.3 Terminierung 

Aus jedem betrachteten XMP ergibt sich durch Überführung des letzten XRMP in ein 
RMP wie oben beschrieben eine obere Schranke ෠ܾ௢ für ݖெ௉∗. Ist diese geringer als die 
geringste bisher gefundene obere Schranke ෠ܾ௢ wird ෠ܾ௢ entsprechend aktualisiert. Die 
Menge der aktiven Monome des RMP, d. h. der Monome, die zu Basisvariablen der 
optimalen Lösung gehören, werden als bester bisher gefundener boolescher Ausdruck 
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gespeichert. Sobald alle XMPs des Suchbaums gelöst oder im Zuge des Prunings 
von der Betrachtung ausgeschlossen wurden, entspricht der beste gefundene Aus-
druck einem komplexitätsminimalen Ausdruck, der eine perfekte Trainingsgenauigkeit 
für den Trainingsdatensatz aufweist.  

Damit können durch Methode 4 Regeln für Auswahlbedingungen in LLKMs datenba-
siert erstellt werden. Für andere Arten von Regeln kann – wie oben erläutert – auf an-
dere ML-Verfahren nach Stand der Forschung zurückgegriffen werden. Mittels Methode 
4 erstellte Regeln ergeben zusammen mit einer mittels Methode 2 erstellten MSTL und 
zugehörigen, mittels Methode 3 erstellten MAPLs ein vollständiges LLKM. Falls nicht 
ausreichend viele Datenpunkte – d. h. nicht ausreichend viele Varianten mit zugehöri-
gen VSTLs und VAPLs – zur Verfügung stehen, kann Methode 5 eingesetzt werden, 
um weitere Daten systematisch zu generieren. 

4.5 Methode 5: Auswahl von repräsentativen Varianten zur Erwei-
terung der Datenbasis 

Im Folgenden wird die im Rahmen der vorliegenden Arbeit entwickelte Methode 5 zur 
Lösung des Problems 5 – der Auswahl von repräsentativen Varianten zur Erweiterung 
der Datenbasis für die datenbasierte Erstellung von LLKMs – vorgestellt. Methode 5 
behebt das in Kapitel 3.5.3 beschriebene Lösungsdefizit nach Stand der Forschung. 
Zulässige Varianten sind durch die Produktmerkmale, deren zulässige Ausprägungen 
sowie die Beschränkungen im HLKM beschrieben. Der sich daraus ergebende Konfi-
gurationsraum ist typischerweise zu groß um ein poolbasiertes aktives Lernen (AL) ein-
zusetzen. Durch die Ausprägung der definierten Produktmerkmale unter Berücksichti-
gung der Beschränkungen55 des HLKM lassen sich jedoch mittels Membership Query 
Synthesis (MQS) Datenpunkte generieren, die zulässigen Varianten aus dem Konfigu-
rationsraum entsprechen.  

Prinzipiell können die in Kapitel 2.3.2 und 3.5.2 vorgestellten Kriterien des AL verwen-
det werden, um Varianten – beschrieben durch ihre Produktmerkmale – aus dem Kon-
figurationsraum auszuwählen. Dabei geht jede Variante als Datenpunkt in den Trai-
ningsdatensatz ein, wie in Kapitel 4.1.3 erläutert. Die Varianten werden von einem Ex-
perten mit einer VSTL und VAPLs versehen, wie in Kapitel 4.1.2 beschrieben. Dadurch 
                                         
55 Sind die Beschränkungen nicht vollständig definiert können diese im Rahmen des in Kapitel 4.1.3 beschriebe-
nen iterativen Prozesses reaktiv vervollständigt werden, indem gewählte Varianten, die unzulässig sind durch 
geeignete Beschränkungen ausgeschlossen werden. 
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entsteht ein annotierter Datenpunkt im Trainingsdatensatz. Zum Erzeugen mehrerer 
zusätzlicher Varianten kann dieses Vorgehen mehrfach wiederholt werden. Auf diese 
Weise ist Methode 5 in einen iterativen Prozess eingebettet. 

Es wird weiterhin von binären Features ausgegangen, womit eine Variante als Bi-
närvektor beschrieben werden kann. Aus den im Rahmen von Methode 5 generierten 
Daten sollen mittels Methode 2, Methode 3 und Methode 4 neben Regeln auch MSTLs 
und MAPLs erstellt werden. Methode 5 beschränkt sich jedoch darauf, Varianten aus-
zuwählen, die einen hohen Informationsgewinn für die Erstellung von Regeln erwarten 
lassen. Außerdem muss das in Kapitel 4.1.1 dargestellte KM für die Anwendbarkeit der 
Methode eingeschränkt werden. Es wird davon ausgegangen, dass alle Parameter des 
LLKM direkt von der Vertriebskonfiguration abhängen. Dies beschränkt die Mächtigkeit 
des KM insofern nicht, als alle Parameter zwangsläufig indirekt von der Vertriebskonfi-
guration abhängen und somit schlicht indirekte Regeln durch direkte Regeln abgebildet 
werden. Im Folgenden entspricht ein Datenpunkt einer Variante. Die Produktmerkmale 
– ggf. binär codiert – entsprechen den Features des Datenpunkts und die zu prädizie-
renden Parameter der MSTL und der MAPLs entsprechen seinen Labels. Es liegt somit 
ein Multi-Label-Problem vor.  

Die in der vorliegenden Arbeit verwendeten Klassifikationsmodelle in Form von boole-
schen Ausdrücken lassen keine Unsicherheit bzgl. Datenpunkten erkennen, werden 
nicht mittels gradientenbasierter Verfahren gelernt und induzieren keine Entschei-
dungsgrenze. Deshalb kommen die folgenden in Kapitel 2.3.2 eingeführten informati-
onsbasierten Kriterien des AL für die Auswahl von Varianten nicht in Frage: Unsicher-
heit des Modells, erwartete Modellveränderung sowie Nähe zur Entscheidungsgrenze. 
Als informationsbasiertes Kriterium nach Tharwat & Schenck (2023) verbleibt die Hete-
rogenität der Vorhersagen eines Komitees nach dem QBC-Ansatz. Der QBC-Ansatz 
hat jedoch den Nachteil, dass jedes Klassifikationsmodell des Komitees nur auf einer 
Teilmenge des Trainingsdatensatzes trainiert wird. Damit liegen zum einen immer sub-
optimale Modelle vor, da jeweils vorhandene Informationen unberücksichtigt bleiben. 
Zum anderen kann nicht gewährleistet werden, dass die Modelle eine perfekte Trai-
ningsgenauigkeit aufweisen und damit überhaupt für die Problemstellung geeignet sind. 
Stattdessen wird in Schritt 1 der Methode 5 das bestehende Multi-Label-Problem mit ݊௅ Labels zunächst nach dem Prinzip der Binary-Relevance in ݊௅ Probleme mit jeweils 
einem Label aufgeteilt. Je Label wird ein Versionenraum (VR) erstellt, der Modelle in 
Form von booleschen Ausdrücken enthält, die jeweils auf allen Trainingsdaten trainiert 
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wurden und eine perfekte Trainingsgenauigkeit aufweisen. Die Heterogenität der Vor-
hersagen der Modelle für bestimmte Datenpunkte wird als eines der Auswahlkriterium 
verwendet – im Folgenden als Separationskriterium bezeichnet.

In dem Anwendungsfall der vorliegenden Arbeit entspricht die Gesamtheit der mögli-
chen Datenpunkte dem Konfigurationsraum. Wird dieser als Pool im Sinne des AL auf-
gefasst, ist er zu groß, um Cluster oder Dichten zu bestimmen. Von den repräsentati-
onsbasierten Kriterien nach Tharwat & Schenck (2023) können deshalb clusterbasierte 
und dichtebasierte Verfahren ausgeschlossen werden. Diversität wird hingegen als 
Auswahlkriterium für die Methode 5 genutzt. Auf Basis der Kriterien Separation und 
Diversität werden in Schritt 2 der Methode 5 Varianten aus dem Konfigurationsraum
ausgewählt. Dabei werden die Beschränkungen im HLKM berücksichtigt. Abbildung 
4.32 stellt die beiden Schritte der Methode 5 dar.

4.5.1 Schritt 1: Versionenräume aktualisieren

Im Folgenden wird mit VR ݈ der VR bezeichnet, der die Modelle für Label ݈ enthält. Die 
Anzahl zulässiger Modelle für einen VR wächst exponentiell mit der Anzahl vorliegen-
der Features. Deshalb werden nur die relevantesten ݊௏ோ Modelle in einen VR aufge-
nommen. Dabei ist ݊௏ோ ein Parameter der Methode, der die Größe der VRs angibt. Wie 
in Kapitel 2.3.2 dargelegt, sind Modelle umso relevanter, je geringer ihre Komplexität 
ist. Konkret enthält somit jeder VR ݈ die ݊ ௏ோ komplexitätsminimalen booleschen Aus-
drücke, die für das Label ݈ eine perfekte Trainingsgenauigkeit aufweisen. 

Abbildung 4.32: Überblick über die Schritte der Methode 5
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Wie oben beschrieben, ist Methode 5 in einen iterativen Prozess eingebettet. Für alle 
Iterationen mit Ausnahme der ersten existieren aus vorherigen Iterationen bereits VRs. 
Da jedoch der Datensatz beim Abschluss der letzten Iteration um einen Datenpunkt 
erweitert wurde, ist zunächst zu überprüfen, ob die Modelle eines VR den zuletzt hin-
zugefügten Datenpunkt auf das gegebene Label abbilden. Falls nicht, werden sie aus 
dem VR entfernt. Nach dem Entfernen unzulässiger Modelle erfolgt das Wiederauf-
füllen der VR auf ݊௏ோ Modelle, indem neue Modelle berechnet werden. Dafür kann 
grundsätzlich Methode 4 einmal oder mehrmals angewandt werden. Es muss dabei 
gewährleistet werden, dass bereits im VR enthaltene Modelle nicht erneut erstellt wer-
den. Hierfür werden zunächst alle Monome, die Bestandteil der ݎ bereits im VR enthal-
tenen Modelle sind als Spalten in das initiale RMP und XRMP eingefügt – neben den 
Monomen der heuristischen Lösung (siehe Kapitel 4.4.1). Es kann ausgeschlossen 
werden, dass Modelle, die bereits im VR existieren erneut erzeugt werden, indem die 
Wahl der entsprechenden Monome im RMP beschränkt wird. Seien ࢛ࢎ࢘࢕ࢂ࢑ =൫ݑ௞,ଵ௏௢௥௛, … ݇ ∀ ௞,௡ಾ௏௢௥௛൯ݑ, ∈ {1, … , -diejenigen Lösungen des wie beschrieben aufgestell {ݎ

ten, initialen XRMP. Diese entsprechen den im VR bereits vorhandenen Modellen. 
Dann können diese Lösungen durch folgende Nebenbedingungen im RMP und XRMP 
ausgeschlossen werden 
 ෍ ௞,௠௏௢௥௛(1ݑ − ௠)௠∈{ଵ,…,௡ಾ}ݑ + (1 − ݇∀    ௠ ≥ 1ݑ(௞,௠௏௢௥௛ݑ ∈ {1, … ,  4.17 .{ݎ

Die linke Seite der Nebenbedingung entspricht der Anzahl von Stellen, in denen ࢛ࢎ࢘࢕ࢂ࢑ 
und ࢛ nicht übereinstimmen. Damit die beiden Vektoren nicht identisch sind, muss 
diese Anzahl größer oder gleich 1 sein. Umgeformt in Standardrepräsentation für Ne-
benbedingungen in Minimierungsproblemen ergibt sich 
 ෍ (1 − ௠௠∈{ଵ,…,௡ಾ}ݑ(௞,௠௏௢௥௛ݑ2  ≥ 1 − ∑ ௞,௠௏௢௥௛௠∈{ଵ,…௡ಾ}ݑ ∀݇ ∈ {1, … ,  4.18 .{ݎ

D. h. die entsprechenden Zeilen der Koeffizientenmatrix des RMP enthalten einen Ein-
trag -1 für alle Monome, die bereits Teil eines Ausdrucks im VR sind und 1 für alle 
anderen Monome. Monome, die bereits Teil eines Modells im VR sind, werden außer-
dem in die Liste ܮா௫௞௟ெ௢௡௢௠௘ ausgeschlossener Monome für das SP (siehe Kapitel 
4.4.2.1.2) aufgenommen, so dass sie nicht erneut in das RMP eingefügt werden. Damit 
ist ausgeschlossen, dass Modelle, die bereits Teil des VR sind durch Anwendung von 
Methode 4 erneut erstellt werden.  
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Zuletzt sind für die Anwendung von AlgCG noch folgende Details der Umsetzung zu 
berücksichtigen. In Methode 4 entspricht jeder Nebenbedingung eine Variable des DP 
und somit eine Variable des SP (siehe Kapitel 4.4.2.1.2). Dies gilt nicht für die Neben-
bedingungen 4.18, die im SP nicht berücksichtigt werden, da sie keinen Datenpunkten 
des Trainingsdatensatzes entsprechen. Außerdem werden die Koeffizienten dieser Ne-
benbedingungen nicht wie in Kapitel 4.4.2.1.4 beschrieben beim Einfügen einer neuen 
Spalte in das RMP berechnet. Stattdessen werden sie immer auf 1 gesetzt, da ein neu 
in das RMP aufgenommenes Monom, wie zuvor beschrieben, nicht Teil eines Modells 
des VR sein kann. 

Abbildung 4.33 zeigt einen Trainingsdatensatz (1) für einen Beispielfall, der in Kapitel 
4.5.2 aufgegriffen wird und die zugehörigen VRs (2). Nach Durchführung von Schritt 1 
liegt ein vollständiger VR mit zulässigen Modellen je Label des Trainingsdatensatzes 
vor. In Schritt 2 wird auf Basis dessen eine Variante ausgewählt.

4.5.2 Schritt 2: Variante auswählen

Bei der Auswahl von Varianten sind die Beschränkungen des HLKM zu berücksichti-
gen. Unter allen zulässigen Varianten ist diejenige auszuwählen, die zu einer hohen 
Heterogenität der Vorhersagen der Modelle des VR führt (Separationskriterium) und 
einen großen Abstand zu bereits zuvor ausgewählten Varianten, d. h. Datenpunkten im 
Trainingsdatensatz, aufweist (Diversitätskriterium). Es kann somit ein multikriterielles 
Optimierungsproblem aufgestellt werden, das im Folgenden hergeleitet wird. Zu-
nächst wird die Modellierung des Separationskriteriums erläutert.

4.5.2.1 Modellierung des Separationskriteriums

Um die Heterogenität der Vorhersagen der Modelle eines VR, bezogen auf eine Vari-
ante mit den Featureausprägungen ࢞, analytisch zu modellieren, wird ein Maß benötigt, 

Abbildung 4.33: Trainingsdatensatz für einen Beispielfall (1) und zugehörige Versionen-
räume (2)

Features Labels
x1 x2 x3 x4 y1 y2
0 0 0 0 0 0
0 1 0 0 0 0
1 1 0 1 1 0
0 0 1 1 1 1
0 0 0 1 0 0

(1) (2) VR zu y1 VR zu y2

VR = Versionenraum
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das analytisch beschrieben werden kann. Seien die booleschen Ausdrücke ܤ௟,௝(࢞) und ܤ௟,௞(࢞) die Modelle ݆ und ݇ des VR ݈. Deren Funktionswerte hängen von der gewählten 
Variante ࢞ ab. Die beiden Ausdrücke stimmen nicht überein, falls ihre Kontravalenzܤ௟,௝(࢞)⨁ܤ௟,௞(࢞) 4.19
wahr ist, was (࢞)௟,௝ܤ ∧ (࢞)௟,௞ܤ¬ ∨ (࢞)௟,௝ܤ¬ ∧ (࢞)௟,௞ܤ 4.20
entspricht. Der resultierende boolesche Ausdruck (Formel 4.19) wird im Folgenden als 
Modellseparationsformel (MSF) ܤ௟,௝,௞ெௌ (࢞) bezeichnet. Eine MSF ܤ௟,௝,௞ெௌ gibt an, für wel-

che Varianten die Vorhersagen der Modelle ܤ௟,௝(࢞) und ܤ௟,௞(࢞) nicht übereinstimmen, 
d. h. die entsprechenden Modelle separiert werden. Sind zwei Modelle durch eine Va-
riante separiert, kann eines der beiden ausgeschlossen werden, sobald die Labels der 
Variante bekannt sind. Varianten, die möglichst viele MSF eines VR erfüllen sind somit 
tendenziell zu bevorzugen.

Es existiert in einem VR eine MSF für jedes Paar an Modellen, woraus sich ௡ೇೃ∗൫௡ೇೃିଵ൯ଶ
MSF je VR ergeben. Nicht alle MSF eines VR können zugleich erfüllt sein. Die maxi-
male Anzahl von Modellseparationen für ݊௏ோ Modelle tritt auf, wenn die Modelle des VR 
eine Variante in möglichst gleich vielen Fällen auf wahr und auf falsch abbilden. Die 

Anzahl von Separationen ist dann ቔ௡ೇೃଶ ቕ ቒ௡ೇೃଶ ቓ. Über alle VRs hinweg ergeben sich so-

mit bei ݊௅ Labels ݊௅ ቔ௡ೇೃଶ ቕ ቒ௡ೇೃଶ ቓ mögliche Separationen. Im besten Fall schließt eine Va-

riante aufgrund ihrer Labels über alle VRs hinweg ݊ி ቔ௡ೇೃଶ ቕ ቒ௡ೇೃଶ ቓ Modelle aus. Um die 

MSF für eine Variante möglichst effizient auswerten zu können, werden sie in Konjunk-
tive Normalform (KNF), d. h. konjunktiv verknüpfte Klauseln, überführt. Wird eine Vari-
ante ࢞ von allen Klauseln akzeptiert, d. h. auf wahr abgebildet, ist die MSF erfüllt. Ab-
bildung 4.34 zeigt die MSFs für den Beispielfall.

Abbildung 4.34: Modellseparationsformeln für den Beispielfall
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Es existieren insgesamt ݊௅ ∗ ௡ೇೃ∗൫௡ೇೃିଵ൯ଶ  MSF von denen, wie oben beschrieben, durch 

eine Variante nur ein Teil erfüllt werden kann. Es muss folglich entschieden werden, 
welche MSFs erfüllt werden sollen. Hierfür wird auf Basis der folgenden Überlegung 
eine Gewichtung der MSFs eingeführt. 

4.5.2.2 Gewichtung von Modellseparationsformeln 

Durch die sukzessive Erweiterung des Trainingsdatensatzes werden sukzessive Mo-
delle, die für einen neuen Datenpunkt nicht gültig sind, ausgeschlossen und durch neue 
zulässige Modelle mit minimaler Komplexität ersetzt. Die Komplexität von Modellen, die 
in den VR aufgenommen werden, ist deshalb mindestens so groß wie die der Modelle, 
die zuvor ausgeschlossen wurden. Die Komplexität der Modelle im VR nimmt damit im 
Laufe der Iterationen tendenziell zu. Sobald die Komplexität der Modelle im VR der 
Komplexität des tatsächlich gültigen Modells entspricht, gelangt das tatsächlich gültige 
Modell in den VR. Das tatsächlich gültige Modell verbleibt für alle Iterationen im VR. 
Die Komplexität der hinzukommenden Modelle im VR steigt weiterhin. Dadurch unter-
scheidet sich die Komplexität des Modells mit der geringsten Komplexität im VR und 
den anderen Modellen im VR zunehmend. Je größer diese Differenz, desto wahrschein-
licher ist es, dass es sich bei dem Modell mit der geringsten Komplexität um das tat-
sächlich gültige Modell handelt. Modelle auszuschließen, die bereits eine hohe Kom-
plexitätsdifferenz zum komplexitätsminimalen Modell im VR aufweisen, ist daher we-
niger relevant als Modelle mit geringer Komplexitätsdifferenz auszuschließen. MSFs, 
die sich auf Modelle mit hoher Komplexitätsdifferenz beziehen, erhalten deshalb ein 

geringeres Gewicht. Sei ݀௟,௝௄௢௠௣ die absolute Komplexitätsdifferenz eines Modells ݆ aus 

VR ݈, d. h. die Differenz von dessen Literalanzahl zur Literalanzahl des komplexitätsmi-
nimalen Modells im VR. Dann erhält die MSF ݆݇ des VR ݈ das Gewicht 
௟,௝,௞ெௌݎ   = 2ି୫ୟ୶ (ௗ೗,ೕ಼೚೘೛,ௗ೗,ೖ಼೚೘೛)   4.21 

falls max൫݀௟,௝௄௢௠௣,݀௟,௞௄௢௠௣൯ ≤ መ݀௄௢௠௣ und 0 sonst. መ݀௄௢௠௣ stellt eine Grenze dar, ab der MSF 

nicht mehr betrachtet werden. Dies verringert die Komplexität des in Kapitel 4.5.2.5 
vorgestellten Optimierungsproblems. 
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4.5.2.3 Modellierung des Diversitätskriteriums 

Das Kriterium der Diversität lässt sich als geringster Abstand einer Variante zu allen ݊஽ 
im Trainingsdatensatz bereits vorhandenen Datenpunkten, d. h. Varianten, beschrei-
ben. Es gilt für den Abstand zu den bereits im Datensatz vorhandenen Datenpunkten 
  ݀஽௜௦௧ = min (݀ଵ஽௜௦௧ , … ,݀௡ವ஽௜௦௧) ,  4.22 

wobei ݀௜஽௜௦௧ den Abstand zu einem der ݊஽ Datenpunkte bezeichnet. Da, wie zuvor er-
läutert, von binären Features ausgegangen wird, wird als Maß für den Abstand einer 
Variante zu einer zuvor gewählten Variante die Hamming-Distanz verwendet. Diese 
gibt an, in wie vielen Stellen sich zwei binäre Vektoren unterscheiden. Damit ist dieses 
Maß durch die Anzahl ݊ி an Features nach oben beschränkt. 

4.5.2.4 Modellierung der Beschränkungen des High-Level-Konfigurationsmodells 

Es bleibt sicherzustellen, dass eine Variante den Beschränkungen des HLKM genügt. 
Jede Beschränkung des HLKM lässt sich als boolescher Ausdruck beschreiben. Eine 
Variante ist zulässig, wenn sie alle diese Ausdrücke erfüllt. Sie muss also einen boole-
schen Ausdruck ܤு௅(࢞) erfüllen, der eine konjunktive Verknüpfung dieser Ausdrücke 
darstellt und im Folgenden als High-Level-Formel (HLF) bezeichnet wird. Um die HLF 
effizient auswerten zu können, wird sie in KNF überführt. Eine Variante ist somit zuläs-
sig, wenn sie alle Klauseln der HLF erfüllt.  

Vor dem zuvor beschriebenen Hintergrund kann das Optimierungsproblem zur Auswahl 
einer Variante aufgestellt werden. 

4.5.2.5 Aufstellen des Optimierungsproblems zur Auswahl einer Variante 

Das Optimierungsproblem enthält die in  

Tabelle 4.5 beschriebenen Variablen und Parameter und wird im Folgenden näher er-
läutert. 

Tabelle 4.5: Variablen und Parameter des Optimierungsproblems zur Berechnung der 
optimalen zu wählenden Variante 

݀஽௜௦௧ ∈ ℕ 
Entscheidungsvariable, die den kleinsten Abstand einer Lösung, 
d. h. Variante, zu allen bereits im Trainingsdatensatz befindlichen 
Varianten angibt ݀௟,௝,௞ெௌ ∈ {0,1} Entscheidungsvariable, die angibt, ob sich die Vorhersagen der Mo-
delle ݆ und ݇ des VR des Labels ݈ für eine Lösung, d. h. eine Vari-
ante, unterscheiden (1) oder nicht (0) 
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݊஽ ∈ ℕ Anzahl der Datenpunkte im Trainingsdatensatz ݊ி ∈ ℕ Anzahl der Features des Trainingsdatensatzes ݊௄௟,ு௅ ∈ ℕ Anzahl der Klauseln in der HLF ݊௟,௝,௞௄௟,ெௌ ∈ ℕ Anzahl der Klauseln in der MSF ݆݇ eines VR ݈  ݊௅ ∈ ℕ Anzahl der Labels im Trainingsdatensatz ݊௏ோ ∈ ℕ Definierte Größe der VR ݎ௟,௝,௞ெௌ  Gewichtung der MSF, die den Modellen ݆ und ݇ im VR ݈ zugeordnet 
ist ݓெௌ ∈ [0,1] Gewichtung des Kriteriums Modellseparation 

௙,௟,௝,௞,௠௣,ெௌݓ ∈ {0,1} Parameter, der angibt, ob Klausel ݉ der Modellseparationsformel ݆݇ des VR des Labels ݈ das Feature ݂ als positives Literal enthält 
(1) oder nicht (0) ݓ௙,௟,௝,௞,௠௡,ெௌ ∈ {0,1} Parameter, der angibt, ob Klausel ݉ der Modellseparationsformel ݆݇ des VR ݅ das Feature ݂  als negatives Literal enthält (1) oder nicht 
௙,௠௣,ு௅ݓ (0) ∈ {0,1} Parameter, der angibt, ob Klausel ݉ der HLF das Feature ݂ als po-
sitives Literal enthält (1) oder nicht (0)  ݓ௙,௠௡,ு௅ ∈ {0,1} Parameter, der angibt, ob Klausel ݉ der HLF das Feature ݂ als ne-
gatives Literal enthält (1) oder nicht (0)  ݔ௙ ∈ {0,1} Ausprägung von Feature ݂ in einer zu wählenden Variante ݔ௜,௙௏௢௥௛ ∈ {0,1} Ausprägung von Feature ݂ in der bereits im Trainingsdatensatz vor-
handenen Variante ݅ 

Optimierungsproblem zur Auswahl einer Variante 4.23 

 ݔܽ݉

ெௌݓ 1݊௅ ඌ݊௏ோ2 ඐ ඄݊௏ோ2 ඈ  ෍ ෍ ෍ ௟,௝,௞ெௌݎ ݀௟,௝,௞ெௌ௞∈൛௝ାଵ,…,௡ೇೃൟ௝∈൛ଵ,…,௡ೇೃൟ௜∈൛ଵ,…,௡ಽൟ  
+(1 − (ெௌݓ 1݊ி ෍ ݀஽௜௦௧௜∈{ଵ,…,௡ವ}  

 

.ݏ  :.ݐ
 ෍ ௙,௟,௝,௞,௠௣,ெௌݓ ௙௙∈൛ଵ,…,௡ಷൟݔ + ෍ ௙,௟,௝,௞,௠௡,ெௌݓ (1 − ௙)௙∈{ଵ,…,௡ಷ}ݔ  ≥ ௝݀,௞,௟ெௌ  

∀݈ ∈ {1, … ,݊௅}, ∀݆ ∈ {1, … , ݊௏ோ}, ∀݇ ∈ {݆ + 1, … , ݊௏ோ}, ∀݉ ∈ {1, … ,݊௟,௝,௞௄௟,ெௌ} (1) 

 ෍ ௜,௙௏௢௥௛(1ݔ − ௙)௙∈{ଵ,…,௡ಷ}ݔ + ෍ (1 − ௙௙∈{ଵ,…,௡ಷ}ݔ(௜,௙௏௢௥௛ݔ  ≥ ݀ ஽௜௦௧ ∀݅ ∈ {1, … , ݊஽} (2) 



Methoden 127 
 

 

 ෍ ௙௙∈{ଵ,…,௡ಷ}ݔ௙,௠௣,ு௅ݓ + ෍ ௙,௠௡,ு௅(1ݓ − ௙)௙∈{ଵ,…,௡ಷ}ݔ  ≥ 1 ∀݉ ∈ {1, … ,݊௄௟,ு௅} (3) 

 ݀௟,௝,௞ெௌ  ∈ {0,1} ∀݈ ∈ {1, … ,݊௅}, ∀݆ ∈ {1, … , ݊௏ோ}, ∀݇ ∈ {݆ + 1, … , ݊௏ோ} (4) 

 ݀஽௜௦௧ ∈ ℕ  (5) 

݂∀ ௙ ∈ {0,1}ݔ  ∈ {1, … ,݊ி} (6) 

Der Term ∑ ∑ ∑ ௟,௝,௞ெௌݎ ݀௟,௝,௞ெௌ௞∈൛௝ାଵ,…,௡ೇೃൟ௝∈൛ଵ,…,௡ೇೃൟ௜∈൛ଵ,…,௡ಽൟ  der Zielfunktion gibt die gewich-

tete Anzahl von Separationen für die gewählte Variante an. Er wird normiert, indem er 
durch die Anzahl maximal möglicher Separationen geteilt wird. Ebenso wird der Ab-
stand ݀஽௜௦௧ normiert, indem er durch den maximal möglichen Abstand ݊ி geteilt wird. 
Durch den Gewichtungsfaktor ݓெௌ wird eine Gewichtung der beiden Kriterien vorge-
nommen. Dieser Gewichtungsfaktor ist experimentell zu bestimmen. Nebenbedingung 
1 stellt sicher, dass ݀௟,௝,௞ெௌ  nur auf 1 gesetzt werden darf, wenn tatsächlich MSF ݆݇ in VR ݈ erfüllt ist. Hierfür wird jede Klausel der MSF in eine Dual-Rail-Darstellung überführt. 

Der Term ∑ ௙,௟,௝,௞,௠௣,ெௌݓ ௙௙∈൛ଵ,…,௡ಷൟݔ  gibt an, an wie vielen Stellen ݂  die Klausel ݉  ein positives 

Literal enthält und ݔ௙ wahr ist. Gilt dies für eine der Stellen, akzeptiert die Klausel die 

Variante. Dasselbe gilt für den Term ∑ ௙,௟,௝,௞,௠௡,ெௌݓ (1 − ௙)௙∈{ଵ,…,௡ಷ}ݔ  und negative Literale. 

Damit ݀௟,௝,௞ெௌ  auf 1 gesetzt werden kann, müssen alle Klauseln der MSF die Variante 

akzeptieren. Nebenbedingung 2 beschränkt ݀஽௜௦௧ jeweils durch den Abstand zu den 
Datenpunkten im Datensatz, d. h. ݀஽௜௦௧ kann nicht größer gewählt werden, als der ge-
ringste Abstand der gewählten Variante zu Datenpunkten im Datensatz. Die Linke Seite 
gibt die Anzahl von Stellen an, in denen die gewählte Variante und eine bestehende 
Variante nicht übereinstimmen. Nebenbedingung 3 stellt sicher, dass die gewählte 
Variante alle Klauseln der HLF erfüllt und nutzt hierfür ebenfalls eine Dual-Rail-Darstel-
lung. Die Nebenbedingungen 4, 5 und 6 ergeben sich aus der Definition der Variablen. 
In Anhang A6 wird auf zwei Aspekte der hier gewählten Modellierung, den Verzicht auf 
eine dynamische Gewichtung der Kriterien sowie die zu wählende Codierung, einge-
gangen. 
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Abbildung 4.35 zeigt das Optimierungsproblem zur Auswahl einer Variante für den Bei-
spielfall sowie die zugehörige optimale Lösung. Dabei wird beispielhaft davon ausge-
gangen, dass im HLKM die Beschränkung ¬ݔଶ ∨ ଷݔ¬ gilt, d. h. ݔଶ und ݔଷ nicht zugleich 
gewählt werden können. Nach Schritt 2 liegt eine Variante mit potenziell hohem Infor-
mationsgehalt für die datenbasierte Erstellung von Regeln vor. 

Wie in Kapitel 4.1.3 beschrieben, kann diese Variante – unterstützt durch das LLKM –
mit einer VSTL und VAPLs versehen und für das Training eines neuen, genaueren 
LLKM genutzt werden. Abbildung 4.36 zeigt schematisch die Erstellung einer VSTL 
und eines VAPL als Labels des neuen Datenpunkts (1), das Hinzufügen des neuen, 
annotierten Datenpunkts zum Trainingsdatensatz (2) sowie die Aktualisierung der VRs

Abbildung 4.35: Optimierungsproblem zur Auswahl einer Variante sowie zugehörige 
optimale Lösung

Aus HLKM:

HLKM

… …
Instanz 1

… …

Optimale Lösung für 
:

HLKM = High-Level-Konfigurationsmodell

Abbildung 4.36: Abschluss einer Iteration durch die Erstellung von variantenbezogenen 
Stücklisten und Arbeitsplänen (1) sowie Überführung in den Datensatz (2) und Beginn 
einer neuen Iteration mit der Aktualisierung der Versionenräume (3)

(1)

(2) VR zu y1 VR zu y2
Features Labels

x1 x2 x3 x4 y1 y2

0 0 0 0 0 0
0 1 0 0 0 0

…
1 0 1 0 1 0

(3)

VR = Versionenraum
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in der nächsten Iteration (3) für den Beispielfall. Wie die Abbildung zeigt, können durch 
den neuen Datenpunkt zwei Modelle aus VR 2 ausgeschlossen und durch neue Mo-
delle ersetzt werden.  

Methode 5 schließt die im Rahmen der vorliegenden Arbeit entwickelte Methodik zur 
datenbasierten Erstellung von LLKM ab. Die Im folgenden vorgestellte Methode 6 ist 
der datenbasierten Überprüfung von LLKM zuzuordnen. 

4.6 Methode 6: Datenbasierte Überprüfung von Regeln 
Im Folgenden wird die im Rahmen der vorliegenden Arbeit entwickelte Methode 6 zur 
Lösung des Problems 6 – der datenbasierten Überprüfung von Regeln – vorgestellt. 
Methode 6 behebt das in Kapitel 3.6.3 beschriebene Lösungsdefizit nach Stand der 
Forschung. Die Methode kann auf bestehende LLKMs angewandt werden, unabhängig 
davon, ob diese manuell oder datenbasiert, wie in den vorangegangenen Kapiteln be-
schrieben, erstellt wurden.  

Wie in Kapitel 3.6.2 dargestellt, existieren mit der statischen Verifikation und dem em-
pirischen Testen bereits zwei Ansätze zur Überprüfung von KMs, die auch zur Über-
prüfung von LLKMs eingesetzt werden können. Methode 6 komplementiert diese An-
sätze, indem sie Anomalieerkennung im Sinne des UL nutzt, um Hinweise auf Fehler 
in LLKMs zu finden. Wie in Kapitel 3.5.2 begründet, ist für eine ganzheitliche Überprü-
fung eine Kombination dieser Methode mit den bestehenden Ansätzen sinnvoll. Zu-
nächst sollte eine statische Verifikation durchgeführt werden, da diese eine be-
schränkte Anzahl starker Hinweise auf Fehler gibt, die immer vollständig überprüft wer-
den sollten. Sowohl die im Folgenden vorgestellte Methode zur Anomalieerkennung als 
auch das empirische Testen sind beliebig skalierbar. Die Frequenz, mit der jeweils Feh-
ler gefunden werden, nimmt mit steigender Anzahl von Überprüfungen ab. Für die Ano-
malieerkennung besteht, wie im Folgenden gezeigt wird, ein Indikator dafür, wann eine 
weitere Überprüfung ineffizient wird. Damit ist es möglich, eine Anomalieerkennung bis 
zu diesem Punkt durchzuführen und anschließend bei Bedarf mit empirischem Testen 
fortzufahren. 

Die grundlegende Idee der im Folgenden vorgestellten Methode zur Anomalieerken-
nung für LLKMs besteht darin, eine Menge ܵோ௘௚ von Regeln eines LLKM in einen nicht-
annotierten Datensatz zu überführen. Dieser kann anschließend genutzt werden, um 
darin mit Verfahren des UL Anomalien zu ermitteln (siehe Kapitel 2.3.3). Hieraus kön-
nen Rückschlüsse auf potenzielle Fehler in den Regeln aus ܵோ௘௚ gezogen werden. Es 
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wird von Regeln des LLKM in Form von booleschen Ausdrücken ausgegangen, deren 
Wahrheitswert den Wahrheitswert einer abhängigen booleschen Variablen bestimmt, 
d. h. von Regeln, wie sie für Auswahlbedingungen in LLKMs genutzt werden (siehe
Kapitel 2.2.2.4). Für das UL werden abhängigkeitsbasierte Ansätze der Anomalieerken-
nung (siehe Kapitel 2.3.3) verwendet, um Muster in den Features des Datensatzes zu 
erkennen und daraus auf Anomalien zu schließen. Abbildung 4.37 gibt einen Überblick 
über die fünf Schritte der Methode 6. In Schritt 1 werden die Regeln aus ܵோ௘௚ in eine 
tabellarische Form gebracht, die als Datensatz für UL geeignet ist. In Schritt 2 wird 
eines der Features des Datensatzes für die Überprüfung ausgewählt. In Schritt 3 wer-
den SL-Modelle trainiert, um einen Zusammenhang zwischen den anderen Features 
des Datensatzes dem ausgewählten Feature zu ermitteln56. In Schritt 4 werden auf Ba-
sis der Güte des ermittelten Zusammenhangs Anomalien im Datensatz bewertet und 
Alternativvorschläge berechnet. Die Schritte 2 bis 4 werden für jedes Feature des Da-
tensatzes wiederholt. In Schritt 5 werden die im Datensatz erkannten Anomalien auf 
die Regeln aus ܵ ோ௘௚ abgebildet und dem Anwender für eine systematische Überprüfung 
der Regeln zur Verfügung gestellt. Die Schritte der Methode werden im Folgenden er-
läutert.

4.6.1 Schritt 1: Regeln transformieren

Damit die Regeln aus ܵோ௘௚ mit Methoden des UL verarbeitet werden können, müssen 
sie in eine geeignete, tabellarische Form gebracht werden. Regeln in DNF lassen sich 

                                        
56 Das Problem wird – wie bei abhängigkeitsbasierten Ansätzen des UL üblich – auf Teilprobleme zurückgeführt, 
die dem SL zuzuordnen sind. Auch wenn hierfür Features temporär als Labels interpretiert werden, liegen im 
Trainingsdatensatz selbst keine Labels vor. Das Problem ist somit dem UL zuzuordnen (siehe Kapitel 2.3.1).

Abbildung 4.37: Überblick über die Schritte der Methode 6

Schritt 1: Regeln 
transformieren

Schritt 2: Feature 
auswählen

Schritt 3: Modelle 
trainieren

Schritt 4: 
Ausreißerwerte
und Alternativ-

vorschl. ermitteln

Schritt 5: 
Anomaliehinweise

erstellen und 
überprüfen

(¬࢞૚ ∧ ࢞૛∧ ࢞૜)∨ ¬࢞૚ ∧ ࢞૝⟹ ࢟૚(¬࢞૚ ∧ ࢞૛∧ ࢞૜)∨ ¬࢞૚ ∧ ࢞૝∨ ¬࢞૚ ∧ ࢞૜⇒ ࢟૛
…

࢞૚ ࢞૛ ࢞૜ ࢞૝(¬࢞૚ ∧ ࢞૛∧ ࢞૜) 0 1 1(¬࢞૚ ∧ ࢞૝) 0 1

… … … … …

࢞૚ ࢞૛ ࢞૜ ࢞૝(¬࢞૚ ∧ ࢞૛∧ ࢞૜) 0 1 1(¬࢞૚ ∧ ࢞૝) 0 1

… … … … …

࢞૛ = ૚?
૚n j

࢞૜ = ૚?
૚n j

…

࢞૚ ࢞૛ ࢞૜࢞૝(¬࢞૚ ∧ ࢞૛∧ ࢞૜) ?(¬࢞૚ ∧ ࢞૝)
… … … … …

(¬࢞૚ ∧ ࢞૛∧ ࢞૜)∨ ¬࢞૚ ∧ ࢞૝→ ࢟૚
…

(33,3%)
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in eine Literaltabelle und eine Monomtabelle überführen, wie in Abbildung 4.38
exemplarisch dargestellt.

Die Literaltabelle gibt für jedes Monom an, ob eine Variable als positives Literal (1), 
negatives Literal (0) oder überhaupt nicht (○) auftritt. Die Monomtabelle gibt an, ob 
ein Monom in einer Regel auftritt (1) oder nicht (0). Literal- und Monomtabelle enthalten 
alle Informationen über eine Menge ܵ ோ௘௚ von Regeln. Beide Tabellen lassen sich jeweils 
als Datensätze im Sinne des ML interpretieren. Die Zeilen der Tabellen, d. h. die Mo-
nome bzw. Regeln, entsprechen Datenpunkten und die Spalten, d. h. die Variablen 
bzw. Monomen, entsprechen Features im Sinne des ML57. Labels liegen im Datensatz 
zunächst nicht vor. Zum Teil nutzen Unternehmen solche oder ähnliche Tabellen, um 
Regeln manuell in KMs einzugeben. Diese können neben Regeln in DNF auch Regeln
in KNF oder in anderen Formen (siehe Anhang A12.1) repräsentieren. Ggf. können die 
bereits existierenden Tabellen unmittelbar verwendet werden. Die folgende Erklärung 
beschränkt sich auf Regeln in DNF. Die Anwendung auf andere Darstellungsformen
kann jedoch analog erfolgen.

UL-Verfahren zur Anomalieerkennung werden eingesetzt, um anomale Datenpunkte zu 
ermitteln (siehe Kapitel 2.3.3). Ein Datenpunkt besteht aus einem Eintrag je Feature. 

                                        
57 Datensätze die für die datenbasierte Überprüfung von Regeln verwendet werden sind nicht mit Datensätzen zu 
verwechseln, die für die datenbasierte Erstellung von Konfigurationsmodellen verwendet werden. Diese weisen 
einen anderen Aufbau und insbesondere andere Arten von Datenpunkten und Features auf (siehe Kapitel 4.1
und Kapitel 4.4).

Abbildung 4.38: Überführung von Regeln in eine tabellarische Form für einen Beispiel-
fall

0 1 1
0 1
0 1

0 1

1 1 0 0
1 1 1 0
1 1 0 1
0 1 1 0

Literaltabelle Monomtabelle

Regeln
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Anomalien bestimmten Einträgen von Datenpunkten zuzuordnen, ist in vielen Ansätzen 
in der Literatur nicht das Ziel. Ohne eine solche Zuordnung zu Einträgen entsteht für 
den vorliegenden Fall jedoch ein hoher Überprüfungsaufwand, weil Datenpunkte in den 
betrachteten Tabellen für komplexe KMs über viele Einträge verfügen können. Um den 
manuellen Überprüfungsaufwand gering zu halten, wird deshalb eine Methode der Ano-
malieerkennung benötigt, durch die Anomalien in Einträgen von Datenpunkten ermittelt 
werden können. Hierfür sind prinzipiell Ansätze der abhängigkeitsbasierten Anoma-
lieerkennung geeignet58. Dabei wird je Feature ein Modell trainiert, das den Zusam-
menhang zwischen den anderen Features und dem betrachteten Feature im Datensatz 
wiedergibt. Einträge des betrachteten Features werden jeweils mit einem sog. Ausrei-
ßerwert (engl. Outlier Score) versehen, der umso höher ist, je weniger sie dem ermit-
telten Zusammenhang entsprechen. Die Ausreißerwerte werden über alle Einträge ei-
nes Datenpunkts aggregiert. Auf diese Weise wird jedem Datenpunkt ein Ausreißerwert 
zugeordnet. Damit stellt die Ermittlung von anomalen Einträgen ein Zwischenergebnis 
dieser Ansätze dar. Bestehende Ansätze sind jedoch entweder für Regressionsprob-
leme entwickelt worden (siehe Li & van Leeuwen 2023, Xie et al. 2021, Lu et al. 2020, 
Paulheim & Meusel 2015, Wagstaff et al. 2013) oder setzen voraus, dass ein Teil des 
Datensatzes als fehlerfrei bekannt ist (siehe Noto et al. 2010). Ersteres entspricht nicht 
dem vorliegenden Fall, weil ein Klassifikationsproblem vorliegt. Zweiteres kann für An-
wendungsfälle in der Industrie im Allgemeinen nicht vorausgesetzt werden59. Im Fol-
genden wird deshalb eine im Rahmen der vorliegenden Arbeit entwickelte Methode des 
UL vorgestellt, die das Vorgehen der genannten Arbeiten mit einem Ansatz von Sluban 
et al. (2010) zur Ermittlung von Rauschen in Labels für annotierte Datensätze verbindet.  

4.6.2 Schritt 2: Feature auswählen 

Wie beschrieben, wird je Feature ein Modell trainiert. Deshalb sind die Features nach-
einander auszuwählen. Die Reihenfolge, in der die Features betrachtet werden, ist nicht 
relevant. Gewählt wird in jeder Iteration ein Feature der betrachteten Tabelle, das zuvor 

                                         
58 Die vom Autor der vorliegenden Arbeit angeleitete Bachelorarbeit A_Kahn (2023) baut auf Frey et al. (2023) 
auf und beschreibt erstmals die Verwendung abhängigkeitsbasierter Verfahren des UL für diesen Zweck. Die hier 
vorgestellte Methode unterscheidet sich jedoch von A_Kahn (2023). Es werden nicht Ausreißer absolut bestimmt, 
sondern es wird jedem Eintrag ein Ausreißerwert zugeordnet (siehe Kapitel 4.6.4). Dies bildet die Basis für eine 
skalierbare Überprüfung der Regeln (siehe Kapitel 4.6.5). Dieses abweichende Ziel begründet auch die Verwen-
dung eines anderen Verfahrens des SL (siehe Kapitel 4.6.3), das es ermöglicht Ausreißerwerte zu berechnen. 
59 Es kann Fälle geben, in denen ein Teil der Regeln als korrekt angenommen werden kann und ein anderer Teil 
überprüft werden soll, z. B. wenn das LLKM nach einiger Zeit erweitert wird. An dieser Stelle wird jedoch nur der 
allgemeine Anwendungsfall betrachtet. 
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noch nicht betrachtet worden ist. Wurden bereits alle Features betrachtet, wird die Me-
thode mit Schritt 5 fortgesetzt. Die Einträge des in 
einer Iteration gewählten Features werden in dieser 
Iteration als Labels des Datensatzes betrachtet.
Somit liegt ein annotierter Datensatz vor und es 
können SL-Modelle trainiert werden, um den Zu-
sammenhang zwischen den anderen Features und 
dem Label, d. h. dem ausgewählten Feature darzu-
stellen. Abbildung 4.39 zeigt die iterative Auswahl 
von Features für die Literaltabelle des Beispielfalls.

4.6.3 Schritt 3: Modelle trainieren

Nachdem ein Feature ausgewählt wurde liegt ein annotierter Datensatz vor, wobei die 
Ausprägungen des ausgewählten Feature die Labels der Datenpunkte darstellen. Der 
Ansatz von Sluban et al. (2010) kann nun eingesetzt werden um Rauschen in diesen 
Labels zu ermitteln. Dadurch können Anomalien in den Einträgen der initialen Tabelle 
ermittelt werden, die zu dem ausgewählten Feature gehören60. Um Rauschen in Labels 
zu ermitteln, trainieren Sluban et al. (2010) für das Label des Datensatzes ein Random-
Forest-Modell. Dabei handelt es sich um ein Ensemble von Entscheidungsbäumen,
wobei jeder Entscheidungsbaum von der Realisation einer oder mehrerer Zufallsvari-
ablen abhängt (Breiman 2001, S. 5). Sluban et al. (2010) nutzen die Random-Forest-

Implementierung der Orange Data Mi-
ning-Bibliothek61 (Sluban et al. 2014, 
S. 271). Diese erstellt Entscheidungs-
bäume nach der von Breiman (2001, 
S. 10–11) beschriebenen Methode,
wonach beim Training der Entschei-
dungsbäume zufällige Features zum 
Bestimmen eines Splits gleichmäßig 
verteilt ausgewählt werden. Rauschen 

                                        
60 Der Ansatz von Sluban et al. (2010) wurde zuvor in der vom Autor der vorliegenden Arbeit angeleiteten Ba-
chelorarbeit A_Zacateco Herrera (2023) zur Überprüfung von variantenbezogenen Stücklisten und Arbeitsplänen 
eingesetzt – ein Anwendungsfall, der in der vorliegenden Arbeit nicht betrachtet wird.
61 Siehe: https://orange3.readthedocs.io/projects/orange-visual-programming/en/latest/widgets/model/randomfo-
rest.html (zuletzt überprüft am 07.06.2025)
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Abbildung 4.40: Ensemble von Entscheidungs-
bäumen für Feature ݔସ des Beispielfalls

Abbildung 4.39 Iterative Aus-
wahl von Features
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im Label ist nach Sluban et al. (2010, S. 1105) für diejenigen Datenpunkte zu vermuten, 
für die die Vorhersagen der Entscheidungsbäume heterogen sind, d. h. für die eine 
hohe Vorhersageunsicherheit besteht und damit kein klares Muster erkennbar ist.
Sluban et al. (2010) zeigen, dass Random-Forest-Modelle für Klassifikationsprobleme 
besser geeignet sind, um Rauschen in Labels zu identifizieren als andere Ensemble-
Methoden. Deshalb werden sie auch in der vorliegenden Arbeit eingesetzt. Es wird ein 
Ensemble von Entscheidungsbäumen trainiert, die das ausgewählte Feature auf Basis 
der anderen Features vorhersagen. Abbildung 4.40 zeigt ein beispielhaftes Ensemble 
zur Vorhersage von Feature ݔସ und damit die vierte Iteration des Beispielfalls. Auf Basis 
des Ensembles können für die Einträge des ausgewählten Features Ausreißerwerte 
und Alternativvorschläge ermittelt werden.

4.6.4 Schritt 4: Ausreißerwerte und Alternativvorschläge ermitteln

Analog zu Sluban et al. (2010) wird je Label, d. h. Eintrag des betrachteten Features, 
ein Ausreißerwert bestimmt, der die Vorhersageunsicherheit des Random-Forests für 
jeden Datenpunkt des Datensatzes angibt. Die Vorhersageunsicherheit für einen Da-
tenpunkt ergibt sich als Anteil der Entscheidungsbäume, die das falsche Label vorher-
sagen. Die am häufigsten vorhergesagte Klasse, die nicht der tatsächlichen Ausprä-
gung des Labels entspricht, stellt den Alternativvorschlag zur Ausprägung des Labels 
dar. Die Unsicherheit von Datenpunkt (¬ݔଵ ∧ (ଷݔ in Abbildung 4.41 (1) beträgt z. B. 33,3
%, weil von drei Entscheidungsbäumen im Random-Forest eine Vorhersage nicht der 
tatsächlichen Ausprägung des Labels entspricht. Der Alternativvorschlag ist die am 
häufigsten vorhergesagte nichtzutreffende Klasse „1“ (2). Die Unsicherheiten je Eintrag 

Abbildung 4.41: Berechnung von Ausreißerwerten und Alternativvorschlägen für Fea-
ture ݔସ des Beispielfalls. Die Spalten DT (Decision Tree) entsprechen den Vorhersagen
der Entscheidungsbäume des Ensembles.

Berechnung Label DT1 DT2 DT3 Uns.
0 1 1 0%
0 1 1 1 1 0%
0 1 1 33,3%

0 1 1 1 1 0%

Ausreißerwerte
0% 33,3% 0% 0%
0% 0% 0% 0%
0% 0% 0% 33,3%

66,6% 0% 0% 0%

Alternativvorschläge

1
1

(1)

(2)
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sowie die Alternativvorschläge werden über alle Features hinweg in einer Tabelleܶ஺௨௦௥௘௜ß௘௥ bzw. einer Tabelle ܶ஺௟௧௘௥௡௔௧௜௩ gespeichert. Die beiden Tabellen werden ab-
schließend genutzt, um Anomaliehinweise zu erstellen.

4.6.5 Schritt 5: Anomaliehinweise erstellen und überprüfen

Auf Basis der Tabellen ܶ஺௨௦௥௘௜ß௘௥ und ܶ஺௟௧௘௥௡௔௧௜௩ werden sukzessive Anomaliehinweise 
generiert. Dafür wird derjenige noch nicht betrachtete Eintrag in ܶ஺௨௦௥௘௜ß௘௥ mit dem 
höchsten Wert ausgewählt. Diesem Eintrag steht ein Eintrag der Literaltabelle bzw. Mo-
nomtabelle gegenüber, der wiederum mit einem Literal in einem Monom bzw. einem 
Monom in den Regeln korrespondiert. Ein hoher Ausreißerwert ist ein Hinweis auf einen 
potenziellen Fehler in diesem Literal bzw. diesem Monom. Wird über die Literaltabelle 
ein Literal eines bestimmten Monoms als Anomalie identifiziert, sind davon alle Vor-
kommen dieses Monoms in den Regeln betroffen. Wird über die Monomtabelle ein Mo-
nom einer bestimmten Regel als Anomalie identifiziert, sind davon alle Literale des be-
stimmten Monoms in der bestimmten Regel betroffen. Durch ܶ஺௟௧௘௥௡௔௧௜௩ ist eine poten-
ziell korrekte Formulierung bekannt. Beides kann zusammen, wie in Abbildung 4.42
dargestellt, zur Überprüfung an einen Domänenexperten gegeben werden. 

Die Erstellung und Überprüfung von Hinweisen wird so lange fortgesetzt, bis ein Ab-
bruchkriterium erreicht ist. Wie in Kapitel 5.6.2 gezeigt wird, besteht zunächst ein un-
gefähr linearer Zusammenhang zwischen der Anzahl von Überprüfungen und der An-
zahl gefundener Fehler. Dieser lineare Zusammenhang geht ab einer gewissen Anzahl 
gefundener Fehler in einen exponentiellen Zusammenhang über. Sobald also der Nut-
zer bei der Durchführung von Schritt 5 eine Abweichung von einem linearen Zusam-
menhang erkennt, wird Schritt 5 abgebrochen. Bei Bedarf wird mit empirischem Testen

Abbildung 4.42: Darstellung von Anomaliehinweisen zur Überprüfung durch einen Do-
mänenexperten

2. (33,3%) 2. (33,3%) 2. (33,3%)

2. (33,3%)2. (33,3%) 1. (66,6%)



136 Methoden 
 

 

fortgefahren. Neben einer Einschätzung durch den Nutzer können hierfür auch statisti-
sche Verfahren eingesetzt werden.  
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5 Demonstration 
Im Folgenden werden die in Kapitel 4 entwickelten Methoden 1 bis 6 demonstriert. Dies 
entspricht dem vierten Schritt des Design Science Research Process (DSRP, siehe 
Kapitel 1.3). Es werden Metriken für die Demonstration eingeführt, um die Effektivität 
der Methoden zu quantifizieren. Die Ergebnisse hinsichtlich dieser Metriken dienen als 
Grundlage für eine abschließende Bewertung der entwickelten Methoden in Kapitel 6. 
Im Folgenden wird zunächst das Vorgehen der Demonstration im Allgemeinen sowie 
der hierfür verwendete Anwendungsfall beschrieben (Kapitel 5.1). In den darauffolgen-
den Unterkapiteln wird das Vorgehen zur Demonstration der Methoden 2 bis 6 genauer 
beschrieben und es werden die Ergebnisse der Demonstration präsentiert (Kapitel 5.2 
bis 5.6).  

Methode 1 integriert die Methoden 2 bis 5 und ist genau dann in der Lage Problem 1 
zu lösen, wenn die Methoden 2 bis 5 in der Lage sind, die jeweiligen Probleme 2 bis 5 
zu lösen. Die Effektivität der Methode 1 ergibt sich aus der Effektivität der Methoden 2 
bis 5. Deshalb wird im Folgenden auf ein separates Unterkapitel zur Demonstration von 
Methode 1 verzichtet. 

5.1 Anwendungsfall und Vorgehen der Demonstration 
Zur Demonstration der im Rahmen der vorliegenden Arbeit entwickelten Methoden 4, 
5 und 6 wurden Konfigurationsmodelle (KMs) eines Industriepartners verwendet. 
Der Industriepartner ist ein international tätiger Anbieter von Messgeräten für die Pro-
zessindustrie und setzt bereits seit langem Konfigurationssysteme (KSs) im Rahmen 
der Auftragsabwicklung ein. Insbesondere werden diese für die Erstellung von varian-
tenbezogenen Stücklisten (VSTLs) und variantenbezogenen Arbeitsplänen (VAPLs) 
genutzt. Verwendet werden beschränkungsbasierte High-Level-Konfigurationsmodelle 
(HLKMs) und regelbasierte Low-Level-Konfigurationsmodelle (LLKMs) im Rahmen von 
SAP LO-VC, wie in Kapitel 2.2.2.4 beschrieben. Das Unternehmen hat für die vorlie-
gende Arbeit HLKMs und LLKMs zu 7 verschiedenen konfigurierbaren Produkten, d. h. 
7 Produktfamilien, zur Verfügung gestellt. Um mit vertretbarem Rechenaufwand eine 
umfassende Demonstration durchführen zu können, wurden hieraus drei Produkte aus-
gewählt, welche im Folgenden als Produkte A, B und C bezeichnet werden. Dabei han-
delt es sich um Messgeräte zur Absolut- und Differenzdruckmessung. Diese unter-
scheiden sich in ihren physikalischen Messprinzipien und dadurch auch in ihren Stück-
listen (STLs) und Arbeitsplänen (APLs) maßgeblich, so dass sie ein breites Spektrum 



138 Demonstration 
 

 

an Varianten abbilden. Für die Demonstration im engeren Sinne wurden ausschließlich 
die Produkte A und B verwendet, wohingegen Produkt C für Voruntersuchungen, wie 
z. B. Parameterstudien genutzt wurde. Die KMs wurden für die Demonstration durch 
eigens entwickelte Programme emuliert, so dass sich daraus VSTLs und VAPLs konfi-
gurieren lassen. 

Die Produkte verfügen zum einen über kategorische Merkmale, wie z. B. Zulassung, 
Druckart oder elektrischer Anschluss. Für diese Merkmale ist genau eine Ausprägung 
zu wählen. Ein Spezialfall dieser Merkmale stellen Merkmale dar, für die darüber hinaus 
auch keiner der Werte gewählt werden kann, was letztlich als weitere mögliche Ausprä-
gung verstanden werden kann. Zum anderen verfügen die Produkte über mehrwertige 
Merkmale, für die mehrere Ausprägungen gewählt werden können, wie z. B. Zubehör 
oder Kennzeichnungen des Produkts. Diese Merkmale wurden als Menge von boole-
schen Merkmalen interpretiert, die jeweils gewählt oder nicht gewählt werden können. 
Für die Demonstration der Methoden 4 und 5 wurden die Produktmerkmale per One-
Hot-Codierung codiert. Für die Demonstration der Methode 6 wurde eine in Kapitel 5.6 
beschriebene Transformation der KMs durchgeführt.  

Es gibt in den KMs des Industriepartners keine Unterscheidung zwischen Produktmerk-
malen im HLKM und den Parametern des Endprodukts im LLKM. Das HLKM enthält 
ausschließlich paarweise Ausschlussbeziehungen zwischen Ausprägungen verschie-
dener Merkmale und keine Einschlussbeziehungen. Die Maximalstücklisten (MSTLs) 
aller betrachteten Produkte sind einstufig, d. h. alle Komponenten gehen unmittelbar 
in das Endprodukt ein. Entsprechend liegt auch nur ein Maximalarbeitsplan (MAPL) 
vor. Der MAPL ist linear, d. h. enthält keine Parallelitäten. Das LLKM enthält eine Regel 
für jede Komponente der MSTL und jeden Arbeitsvorgang (AVO) des MAPL, wobei 
jedes der Elemente ausschließlich von den Produktmerkmalen abhängig ist. Tabelle 
5.1 gibt eine Übersicht über die Kennzahlen der betrachteten KMs. Die Variantenan-
zahlen unter Berücksichtigung von Beschränkungen wurden im Rahmen der vorliegen-
den Arbeit erstmals fundiert approximiert, worauf Anhang A7.1 eingeht. Es zeigte sich, 
dass insbesondere Konfigurationsmodell B mit über 1022 Varianten einen Konfigurati-
onsraum aufweist, der nahe an die größten in der Literatur beschriebenen Konfigurati-
onsräume heranreicht (siehe Kapitel 1.1). Es weist darüber hinaus mehr Komponen-
tenklassen (KKs) in der MSTL und mehr Arbeitsvorgangsklassen (AVKs) im MAPL als 
die anderen betrachteten Produkte auf. In der MSTL und im MAPL des Industriepart-
ners liegen Standardkomponenten bzw. Standardarbeitsvorgänge vor, die in jeder 
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Variante auftreten. Diese sind immer aktiv, d. h. die Regel ihres Aktivitätszustands ent-
spricht trivial dem Wahrheitswert wahr. Tabelle 5.1 zeigt den Anteil trivialer Regeln für 
die MSTL und den MAPL. Darüber hinaus zeigt sie die Komplexität der Regeln je Kon-
figurationsmodell, gemessen an der mittleren Anzahl enthaltener Monome in disjunkti-
ver Normalform (DNF). Insbesondere für die Produkte B und C existieren einige wenige 
Regeln mit herausragender Komplexität. Zur besseren Einschätzung ist in Tabelle 5.1 
deshalb auch die mittlere Komplexität der Regeln ohne Berücksichtigung der komple-
xesten 5% der Regeln angegeben. Es kann festgehalten werden, dass die mittleren 
Komplexitäten der Regeln für Produkt B deutlich über denen von Produkt A liegen. Für 
alle drei Produkte ist außerdem die Komplexität der Regeln der MSTL höher als die der 
Regeln des MAPL. Dies lässt sich u. a. dadurch begründen, dass es Merkmale gibt, die 
keinen Einfluss auf die VSTL, jedoch auf den VAPL haben (siehe hierzu auch Kapitel 
2.2.2.3). 

Tabelle 5.1: Kennzahlen der betrachteten Konfigurationsmodelle des Industriepartners 

  Produkt 

Kategorie Kennzahl A B C 
HLKM Anzahl boolescher Merkmale 71 82 68 

Anzahl kategorischer Merkmale 20 25 16 
Anzahl der Varianten ohne Berücksichtigung von Be-
schränkungen 1,0 * 1035 4,8 * 1043 7,4 * 1033 

Approximierte Anzahl der Varianten unter Berücksichtigung 
von Beschränkungen 1,4 * 1018 5,8 * 1022 1,3 * 1018 

LLKM, 
MSTL 

Anzahl der KKs in der MSTL 690 1659 656 

Anteil trivialer Regeln 49,7% 30,6% 41,5% 

Mittlere Anzahl der Monome in den Regeln in DNF, ohne 
triviale Regeln 3,5 64,2 48,0 

Mittlere Anzahl der Monome in den Regeln in DNF, 
ohne triviale Regeln, ohne obere 5% 2,9 4,8 6,3 

LLKM, 
MAPL 

Anzahl der AVKs im MAPL 162 330 165 

Anteil trivialer Regeln 26,5% 23,3% 24,2% 

Mittlere Anzahl der Monome in den Regeln in DNF, 
ohne triviale Regeln 7,6 163,4 98,1 

Mittlere Anzahl der Monome in den Regeln in DNF, 
ohne triviale Regeln, ohne obere 5% 5,3 20,7 12,1 

 

Die Grenzen des Anwendungsfalls für die Demonstration der im Rahmen der vorliegen-
den Arbeit entwickelten Methoden liegen in den einfachen Strukturen der MSTL und 
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des MAPL. Dadurch lässt sich am Anwendungsfall nicht umfänglich demonstrieren, 
dass mit den entwickelten Methoden 2 und 3 auch allgemeine MSTLs und MAPLs da-
tenbasiert erstellt werden können. Um übertragbare Erkenntnisse zu ermöglichen, wer-
den deshalb zur Demonstration der Methoden 2 und 3 gleichmäßig zufällig erstellte 
synthetische MSTLs und MAPLs verwendet. Darauf wird in den entsprechenden Un-
terkapiteln eingegangen. 

Die beschriebenen Methoden 2 bis 6 wurden im Rahmen der vorliegenden Arbeit voll-
ständig in Programmcode implementiert, welcher die Grundlage der Demonstration 
bildet und online verfügbar ist62. Damit können alle Ergebnisse, soweit sie nicht auf 
vertraulichen Daten basieren, nachvollzogen werden. Alle Experimente für die im Fol-
genden Rechenzeiten oder Zeitbeschränkungen angegeben werden, wurden auf Re-
chensystemen mit 16 Prozessorkernen, mit einer jeweiligen Taktrate von 2,4 Gigahertz 
und mit 32 Gigabyte Arbeitsspeicher durchgeführt. 

5.2 Methode 2: Datenbasierte Erstellung von Maximalstücklisten 
Im Folgenden wird die Demonstration der Methode 2 beschrieben. In Anhang A8.4 fin-
den sich darüber hinaus Zeitstudien, die den Effekt der in Kapitel 4.2.1 vorgestellten 
Funktionen zur Erhöhung der Recheneffizienz von Schritt 1 der Methode 2 quantifizie-
ren. Sie zeigen, dass die im Rahmen der vorliegenden Arbeit entwickelten Funktionen 
maßgeblich zur Recheneffizienz von Methode 2 beitragen. 

5.2.1 Vorgehen 

Die grundlegende Idee der Demonstration besteht darin, eine synthetische MSTL als 
Referenz zu erstellen, aus dieser MSTL eine Menge ܵ௏ௌ்௅ von VSTLs zu konfigurieren 
und auf Basis von ܵ௏ௌ்௅ mittels Methode 2 die Referenz-MSTL zu rekonstruieren. Die 
Referenz-MSTL repräsentiert die für einen praktischen Anwendungsfall zu erstellende, 
korrekte MSTL. Die Menge ܵ௏ௌ்௅ repräsentiert die in einem Anwendungsfall vorliegen-
den VSTLs. Durch die Demonstration wird überprüft, ob Methode 2 grundsätzlich in der 
Lage ist, eine geeignete MSTL aus ܵ௏ௌ்௅ zu erstellen und wie effektiv dies in Abhängig-
keit der Kardinalität ݊௏ௌ்௅ von ܵ௏ௌ்௅ möglich ist. Um die Effektivität quantifizieren zu 
können, wird die relative Abweichung zwischen der durch Methode 2 erstellten Ergeb-
nis-MSTL und der Referenz-MSTL nach der in Kapitel A8.3 definierten, normierten 
                                         
62 https://github.com/alexmfrey/creation_and_validation_of_configuration_models.git (zuletzt überprüft am 
07.06.2025) 
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Metrik ݀ெௌ்௅ ∈ [0,1] ermittelt. Diese quantifiziert die Unterschiedlichkeit der Baugrup-
pen der Ergebnis- und der Referenz-MSTL. 

Es ist davon auszugehen, dass bestimmte Eigenschaften der Referenz-MSTL Auswir-
kungen auf die Effektivität der Methode 2 haben. Deshalb muss eine systematische 
Verzerrung bei der Erzeugung der Referenz-MSTL vermieden werden. Im Rahmen 
der vorliegenden Arbeit wurde deshalb eine Methode zur Erzeugung von MSTLs ent-
wickelt, die MSTLs aus dem Raum aller möglichen MSTLs mit bestimmten Eigenschaf-
ten gleichmäßig zufällig auswählt. Die Methode ist in Anhang A8.1 beschrieben. Es wird 
ferner davon ausgegangen, dass die Anzahl möglicher Zukaufkomponenten (ZKs) mit 
identischer Bezeichnung in einer VSTL unabhängig von der gültigen Struktur ist (siehe 
Kapitel 4.2.2.2), d. h. alle Strukturoptionen (STOs) der Referenz-MSTL enthalten die-
selbe Anzahl von Zukaufkomponentenklassen (ZKKs). Außerdem werden nur MSTLs 
betrachtet, deren ZKKs entweder genau einer STO oder allen STOs zugeordnet sind63.  

Die Parameter der Erstellung sind 

 ஻ீ௄, das Verhältnis der Anzahl von Baugruppenklassen (BGKs) zu ZKKs in derݎ -
Referenz-MSTL, 

- ݊ௌ்ை, die Anzahl der STOs in der Referenz-MSTL, 
- ݊௓௄௄, die Anzahl der ZKKs je STO, 
  ெ௨௟௧, der Anteil mehrfach auftretender ZKK-Bezeichnungen je STOݎ -
- und ݎ஺௕௛, der Anteil von ZKKs der Referenz-MSTL, die von der gültigen STO 

abhängen. 

Aus einer Referenz-MSTL können, wie im Folgenden beschrieben, VSTLs konfiguriert 
werden. Sind für die MSTL STOs hinterlegt, wird zunächst die gültige STO zufällig ge-
wählt. Es wird berücksichtigt, dass die STOs nicht dieselben Auftretenswahrscheinlich-
keiten haben müssen. Hierfür wird zunächst jeder STO gleichmäßig zufällig ein Wert 
aus dem Intervall 0,5 ± ோ௔ௗௌ்ைݎ ோ௔ௗௌ்ை mitݎ ∈ [0; 0,5) zugewiesen. Diese Werte werden 
anschließend normiert, so dass sich die Wahrscheinlichkeitsmasse zu 1 kumuliert. Je 
größer ݎோ௔ௗௌ்ை, desto höher ist somit die Varianz der Auftretenswahrscheinlichkeiten. 
Die gültige STO wird je konfigurierter VSTL entsprechend dieser Wahrscheinlichkeits-
verteilung gewählt. ݎோ௔ௗௌ்ை ist ein Parameter der Demonstrationsexperimente. 

                                         
63 Wie in Anhang AA8.1 erläutert, ist diese Einschränkung notwendig um eine gleichmäßig zufällige Auswahl zu 
gewährleisten. 
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Nachdem die STO feststeht, wird für jede ZKK, die unter dieser STO instanziiert werden 
kann, zufällig bestimmt, ob diese instanziiert wird. Auch hier werden unterschiedliche 
Auftretenswahrscheinlichkeiten der zugehörigen ZKKs berücksichtigt, indem den ZKKs 
gleichmäßig zufällig Wahrscheinlichkeiten aus dem Intervall 0,5 ± ோ௔ௗ௓௄௄ݎ ோ௔ௗ௓௄௄ mitݎ ∈[0; 0,5] zugeordnet und normiert werden. ݎோ௔ௗ௓௄௄ ist ebenfalls ein Parameter der De-
monstrationsexperimente. Die Parameter eines Experiments sind damit ݊௏ௌ்௅, ݎ஻ீ௄, ݊ௌ்ை, ݊௓௄௄, ݎெ௨௟௧, ݎ஺௕௛, ݎோ௔ௗௌ்ை und ݎோ௔ௗ௓௄௄.  

Das Vorhandensein von Multipositionen und STOs wirkt sich erheblich auf die Rechen-
zeit der Experimente aus und schränkt damit die Anzahl in vertretbarer Zeit durchführ-
barer Experimente ein. Es werden deshalb zum einen Experimente für Referenz-MSTL 
ohne Multipositionen und ohne STOs, d. h. mit ݊ௌ்ை = ெ௨௟௧ݎ ,1 = ஺௕௛ݎ ,0 = 0 und ݎோ௔ௗௌ்ை = 0 durchgeführt. Dabei wird ein Referenzfall mit einem definierten Anteil von 
BGKs von ݎ஻ீ௄ = 0,5 und einem definierten Radius der Auftretenswahrscheinlichkeiten 
der Komponenten von ݎோ௔ௗ௓௄௄ = 0,25 gewählt. Die beiden Parameter werden gegen-
über diesem Referenzfall variiert, um ihren Einfluss auf ݀ெௌ்௅ zu ermitteln. Zum ande-
ren werden für den ausgewählten Referenzfall MSTLs mit Multipositionen und STOs 
untersucht, um wiederum den Einfluss dieser Aspekte zu bestimmen. Jedes Experi-
ment wird in zehn Durchläufen wiederholt. Sowohl für Schritt 1 als auch für Schritt 2 
der Methode 2 wird eine Zeitbeschränkung von 1800 Sekunden definiert. 

5.2.2 Ergebnisse 

5.2.2.1 Experimente an Referenz-Maximalstücklisten ohne Multipositionen und 
Strukturoptionen 

Abbildung 5.1 zeigt die jeweils über 10 Durchläufe gemittelten Ergebnisse für ݀ெௌ்௅ 
sowie die Korrelationskoeffizienten ausgewählter Parameter der Experimente in Pro-
zent. Für den Referenzfall (Abbildung 5.1, 2) mit ݎெ௨௟௧ = 0,5 und ݎோ௔ௗ௓௄௄ = 0,25 erge-
ben sich zunächst für ݊௏ௌ்௅ = 10 Abweichungen zwischen Ergebnis- und Referenz-
MSTL von bis zu 19,2 %. Bei geringen Datenmengen hängt das Ergebnis in hohem 
Maße von den zufällig ausgewählten Datenpunkten ab, weshalb für die verschiedenen 
Ausprägungen von ݊௓௄௄ unsystematische Streuungen auftreten. Bereits ab ݊௏ௌ்௅ = 40 
sind die Abweichungen zwischen Ergebnis- und Referenz-MSTL weitgehend vernach-
lässigbar, d. h. die Referenz-MSTL kann robust rekonstruiert werden. Für ݊௏ௌ்௅ = 180 
und ݊௏ௌ்௅ = 200 in Verbindung mit ݊௓௄௄ = 100, d. h. eine große Menge an VSTLs aus 
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einer großen Referenz-MSTL, treten allerdings erneut Abweichungen auf. Das ist auf 
die vorgegebene Zeitbeschränkung für die Schritte 1 und 2 der Methode 2 zurückzu-
führen. Für ݊௏ௌ்௅ = 200 wurde in 6 der 10 Durchläufe mindestens einer der beiden Zeit-
beschränkungen erreicht. Eine genauere Analyse dieser Fälle zeigte, dass aufgrund 
des vorzeitigen Abbruchs jeweils eine MSTL mit höherer Komplexität als die Referenz-
MSTL erstellt wurde.

Die Ergebnisse für geringere (Abbildung 5.1, 1) und höhere (Abbildung 5.1, 3) Anzah-
len von BGKs sind mit denen für den Referenzfall vergleichbar. Der Effekt der Zeitbe-
schränkung wirkt sich jedoch aufgrund des weniger komplexen bzw. komplexeren 
Problems weniger stark bzw. stärker aus. Die Ergebnisse für die Fälle ohne und mit 
höheren Streuungen der Auftretenswahrscheinlichkeiten von ZKKs (Abbildung 
5.1, 4 bzw. 6) unterscheiden sich hingegen maßgeblich von denen für den Referenzfall. 
Für ݎோ௔ௗ௓௄௄ = 0 liegt die Abweichung ݀ெௌ்௅ bereits für ݊௏ௌ்௅ = 10 unabhängig von ݊௓௄௄

Abbildung 5.1: Ergebnisse der Demonstration der Methode 2 an Referenz-Maximal-
stücklisten ohne Multipositionen und Strukturoptionen; alle Angaben in Prozent

(1) (2) (3)

rBGK: 0,25 rBGK: 0,5 rBGK: 0,75
rRadZKK: 0,25 10 20 50 100 ∅ rRadZKK: 0,25 10 20 50 100 ∅ rRadZKK: 0,25 10 20 50 100 ∅

10 5,0 11,3 9,4 9,7 8,9 10 9,3 13,7 19,2 11,7 13,5 10 12,4 11,1 6,2 20,8 12,6

20 3,3 0,0 0,4 0,4 1,0 20 0,0 1,6 0,2 0,6 0,6 20 2,7 0,7 1,6 1,9 1,7

40 0,0 0,0 0,0 0,0 0,0 40 0,0 0,0 0,0 0,2 0,1 40 0,0 0,0 0,5 0,1 0,2

60 0,0 0,0 0,0 0,0 0,0 60 0,0 0,0 0,0 0,0 0,0 60 0,0 0,3 0,0 0,1 0,1

80 0,0 0,0 0,0 0,0 0,0 80 1,1 0,0 0,0 0,0 0,3 80 0,0 0,0 0,0 0,0 0,0

100 0,0 0,0 0,0 0,0 0,0 100 0,0 0,0 0,0 0,0 0,0 100 0,0 0,0 0,0 0,0 0,0

120 0,0 0,0 0,0 0,0 0,0 120 0,0 0,0 0,0 0,0 0,0 120 0,0 0,0 0,0 0,0 0,0

140 0,0 0,0 0,0 0,0 0,0 140 0,0 0,0 0,0 0,0 0,0 140 0,0 0,0 0,0 0,0 0,0

160 0,0 0,0 0,0 0,0 0,0 160 0,0 0,0 0,0 0,0 0,0 160 0,0 0,0 0,0 9,0 2,2

180 0,0 0,0 0,0 0,0 0,0 180 0,0 0,0 0,0 8,4 2,1 180 0,0 0,0 0,0 42,7 10,7

200 0,0 0,0 0,0 8,4 2,1 200 0,0 0,0 0,0 50,2 12,6 200 0,0 0,0 0,0 65,2 16,3∅ 0,8 1,0 0,9 1,7 ∅ 0,9 1,4 1,8 6,5 ∅ 1,4 1,1 0,8 12,7

(4) (5) (6)

rBGK: 0,5 rBGK: 0,5
rRadZKK: 0 10 20 50 100 ∅ rRadZKK: 0,45 10 20 50 100 ∅

10 1,1 6,2 2,6 4,9 3,7 10 42,4 35,9 50,4 46,4 43,8

20 1,1 0,0 0,2 0,0 0,3 20 12,0 12,3 28,0 21,9 18,6

40 0,0 0,0 0,0 0,0 0,0 40 0,0 5,3 1,9 11,9 4,7

60 0,0 0,0 0,0 0,0 0,0 60 0,0 0,5 0,6 0,9 0,5

80 0,0 0,0 0,0 0,0 0,0 80 2,0 2,1 0,0 0,4 1,1

100 0,0 0,0 0,0 0,0 0,0 100 0,0 1,5 0,8 0,5 0,7

120 0,0 0,0 0,0 0,0 0,0 120 0,0 0,0 0,2 0,2 0,1

140 0,0 0,0 0,0 0,0 0,0 140 0,0 1,1 0,0 0,0 0,3

160 0,0 0,0 0,0 0,0 0,0 160 0,0 0,0 0,4 0,3 0,2

180 0,0 0,0 0,0 0,0 0,0 180 0,0 0,0 0,0 17,7 4,4

200 0,0 0,0 0,0 52,7 13,2 200 0,0 0,0 0,4 34,8 8,8∅ 0,2 0,6 0,3 5,2 ∅ 5,1 5,3 7,5 12,3
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unterhalb von 10 %. Für ݎோ௔ௗ௓௄௄ = 0,45 treten hingegen bis zu ݊௏ௌ்௅ = 40 noch Abwei-
chungen von mehr als 10 % auf. Bei großen Streuungen der Auftretenswahrscheinlich-
keiten kann es Komponenten geben, die in den VSTLs aus ܵ௏ௌ்௅ nur gering repräsen-
tiert sind. Dies erschwert es diese Komponenten mittels Methode 2 korrekt in die MSTL 
einzuordnen. 

In Abbildung 5.1 (5) sind die Korrelationskoeffizienten der Parameter des Experi-
ments sowie der Variablen ܾ௓஻ଵ, ܾ௓஻ଶ und ܾ௠௜௡ zu sehen. Die Variablen geben an, ob 
bei der Durchführung von Schritt 1 oder Schritt 2 der Methode 2 die Zeitbeschränkung 
erreicht wurde bzw. ob eine MSTL mit einer minimalen Komplexität gefunden wurde64. 
Das Auftreten komplexitätsminimaler MSTLs ist stark negativ mit ݀ெௌ்௅ korreliert, d. h. 
die Abweichung zur Referenz-MSTL ist tendenziell für komplexitätsminimale MSTLs 
geringer als für nichtkomplexitätsminimale. Dies spricht für die Wahl dieses Optimie-
rungskriteriums. Der vorzeitige Abbruch von Schritt 2 ist in allen Fällen eine Konse-
quenz des vorzeitigen Abbruchs von Schritt 1. Liegt keine komplexitätsminimale MSTL 
vor, kann das in Schritt 2 aufgestellte Optimierungsproblem sehr groß werden, was zu 
einem Abbruch nach Überschreitung der Zeitbeschränkung führt. Deshalb ist es plau-
sibel, dass nicht nur ܾ ௓஻ଵ und ݀ ெௌ்௅, sondern auch ܾ ௓஻ଶ und ݀ ெௌ்௅ stark positiv korreliert 
sind. Zuletzt bestätigen die Korrelationskoeffizienten den oben beschriebenen Einfluss 
von ݎோ௔ௗ௓௄௄ und implizieren, dass ݀ெௌ்௅ mit zunehmender Größe ݊௓௄௄ der MSTL zu- 
und mit zunehmender Anzahl ݊௏ௌ்௅ an vorliegenden VSTLs abnimmt. 

5.2.2.2 Experimente an Referenz-Maximalstücklisten mit Multipositionen oder 
Strukturoptionen 

Abbildung 5.2 zeigt die jeweils über 10 Durchläufe gemittelten Ergebnisse für ݀ெௌ்௅ in 
Prozent sowie die Korrelationskoeffizienten ausgewählter Parameter der Experimente 
in Prozent. Liegen ausschließlich Multipositionen und keine STOs vor (Abbildung 5.2, 
1), können kleine MSTLs mit ݊௓௄௄ = 20 bereits ab ݊௏ௌ்௅ = 20 genau reproduziert wer-
den. Ab ݊௏ௌ்௅ = 100 ergeben sich jedoch wieder schlechtere Ergebnisse, was auf den 
in Kapitel 5.2.2.1 beschriebenen Effekt der Zeitbeschränkung zurückzuführen ist. Mit 
zunehmender Größe der Datenmenge nimmt die Abweichung ݀ெௌ்௅ also zunächst auf-
grund abnehmender Varianz im Sinne des maschinellen Lernens (ML) ab. Ab einer 

                                         
64 Im Falle eines vorzeitigen Abbruchs wird angenommen, dass eine minimale Komplexität vorliegt, wenn diese 
nicht höher ist als die der Referenz-MSTL.  
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gewissen Größe der Datenmenge wird dieser Effekt jedoch durch den vorzeitigen Ab-
bruch der Schritte 1 und 2 der Methode 2 überkompensiert. Dadurch ergibt sich ein u-
förmiger Verlauf von ݀ெௌ்௅ in Abhängigkeit von ݊௏ௌ்௅. Dieser ist auch für ݊௓௄௄ = 100
und für die über alle ݊௓௄௄ gemittelten Randwerte deutlich zu erkennen. Experimente 
mit Multipositionen weisen tendenziell einen höheren Rechenaufwand als Experimente 
ohne Multipositionen auf. Dadurch kann erklärt werden, dass der Effekt der Zeitbe-
schränkung stärker ausgeprägt ist als für die in Kapitel 5.2.2.1 beschriebenen Experi-
mente.

Der beschriebene u-förmige Verlauf von ݀ெௌ்௅ prägt aus demselben Grund auch die 
Ergebnisse der Experimente ohne Multipositionen, aber mit STOs (Abbildung 5.2, 2 
und 5). Wie zu erwarten, ergeben sich für größere Streuungen der Auftretenswahr-
scheinlichkeiten der STOs größere Abweichungen, da in den Daten unterrepräsentierte 

Abbildung 5.2: Ergebnisse der Demonstration der Methode 2 an Referenz-Maximal-
stücklisten mit Multipositionen oder Strukturoptionen; alle Angaben in Prozent

(1) (2) (3)

rZKMult 0,1 rZKMult 0 rZKMult 0,1

rAbhZKK 0 rAbhZKK 0,1 rAbhZKK 0,1

nSTO 1 nSTO 2 nSTO 2

rRadSTO 0 rRadSTO 0 rRadSTO 0

10 8,1 23,2 32,2 21,2 10 14,7 15,2 24,0 33,3 21,8 10 28,2 30,8 41,1 33,4

20 0,0 11,3 18,6 10,0 20 7,0 8,1 9,9 11,5 9,1 20 4,9 20,2 28,4 17,8

50 0,0 6,3 5,4 3,9 50 0,0 6,9 2,5 5,8 3,8 50 10,3 13,4 15,4 13,0

100 1,0 3,6 8,7 4,4 100 6,1 4,0 24,2 20,3 13,7 100 15,4 23,0 33,3 23,9

200 8,0 3,7 61,7 24,5 200 4,0 24,1 38,7 72,9 34,9 200 13,7 44,7 80,8 46,4∅ 3,4 9,6 25,3 ∅ 6,4 11,7 19,9 28,8 ∅ 14,5 26,4 39,8

(4) (5) (6)

rZKMult 0 rZKMult 0,1

rAbhZKK 0,1 rAbhZKK 0,1

nSTO 2 nSTO 2

rRadSTO 0,25 rRadSTO 0,25

10 36,2 21,1 28,5 34,6 30,1 10 22,1 41,9 42,5 35,5

20 4,6 6,7 13,3 19,0 10,9 20 9,7 30,9 32,7 24,4

50 12,8 3,1 10,2 8,1 8,6 50 1,7 19,4 19,1 13,4

100 1,3 12,8 12,5 13,9 10,1 100 21,4 23,6 20,4 21,8

200 1,0 25,6 26,9 76,1 32,4 200 18,2 41,8 61,6 40,6∅ 11,2 13,9 18,3 30,4 ∅ 14,6 31,5 35,3
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STOs auftreten können. Auch in Fällen mit STOs existieren Fenster für ݊௏ௌ்௅ und ݊௓௄௄, 
für die eine datenbasierte Erstellung von MSTLs mit hoher Zuverlässigkeit möglich ist. 
Diese beschränken sich jedoch im Wesentlichen auf kleine MSTLs mit ݊௓௄௄ = 10. Die 
Experimente an Referenz-MSTLs mit Multipositionen und STOs (Abbildung 5.2, 3 und 
6) zeigen, dass solche MSTLs mit den gegebenen Zeitbeschränkungen im Allgemei-
nen nicht zuverlässig datenbasiert erstellt werden können. Da auch hier jedoch ein u-
förmiger Verlauf von ݀ெௌ்௅ erkennbar ist, ist zu vermuten, dass im Falle längerer Re-
chenzeiten oder höherer Rechenleistung mit ausreichender Datenmenge ebenfalls 
MSTLs mit geringen Abweichungen erstellt werden können. Dies war jedoch im Rah-
men der vorliegenden Arbeit nicht überprüfbar. 

Die Korrelationstabelle (Abbildung 5.2, 4) bestätigt den großen Einfluss der Zeitbe-
schränkung auf die Ergebnisse. ܾ௓஻ଵ ist stark negativ mit ܾ௠௜௡ korreliert65. ܾ௠௜௡ wiede-
rum ist stark positiv mit ݀ெௌ்௅ korreliert. Zu dem Zeitpunkt, an dem die Zeitbeschrän-
kung von Schritt 1 erreicht wird, liegt also in vielen Fällen noch keine minimale MSTL 
vor. Ist die Ergebnis-MSTL nicht minimal, ist ihre Abweichung von der Referenz-MSTL 
tendenziell groß. Die Auswirkung dessen auf die Ergebnisse ist groß, weil in ca. 52 % 
der Experimente die Zeitbeschränkung in Schritt 1 erreicht wurde.  

5.3 Methode 3: Datenbasierte Erstellung von Maximalarbeitsplä-
nen 

Im Folgenden wird die Demonstration der Methode 3 beschrieben. In Anhang A9.3 fin-
den sich darüber hinaus Zeitstudien, die den Effekt der in Kapitel 4.3.1 vorgestellten 
Funktionen zur Erhöhung der Recheneffizienz von Schritt 1 der Methode 3 quantifizie-
ren. Sie zeigen, dass die im Rahmen der vorliegenden Arbeit entwickelten Funktionen 
maßgeblich zur Recheneffizienz von Methode 3 beitragen. 

5.3.1 Vorgehen 

Der Demonstration der Methode 3 liegt dieselbe Idee zugrunde, wie der Demonstration 
der Methode 2. Mithilfe einer Methode, die im Rahmen der vorliegenden Arbeit entwi-
ckelt wurde (siehe Anhang A9.2), werden gleichmäßig zufällig Referenz-MAPL erstellt. 
Aus diesen wird eine Menge ܵ௏஺௉௅ von VAPLs konfiguriert, die als Eingabe für die 

                                         
65 ܾ௓஻ଶ = 1 ist i. d. R. eine Folge von ܾ௠௜௡ = 0, da im Falle nicht minimaler MSTL das in Schritt 2 zu lösende 
Optimierungsproblem sehr groß werden kann. Dies erklärt, warum auch ܾ௓஻ଶ und ܾ௠௜௡ stark negativ korreliert 
sind. 
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Methode 3 zur datenbasierten Erstellung eines Ergebnis-MAPL dient. Zur Bewertung 
der Effektivität von Methode 3 in Abhängigkeit der Kardinalität ݊௏஺௉௅ von ܵ௏஺௉௅ wird die 
relative Abweichung zwischen der Ergebnis- und der Referenz-MSTL nach der in An-
hang A9.1 definierten, normierten Metrik ݀ெ஺௉௅ ∈ [0,1] bestimmt. Diese quantifiziert die 
Unterschiedlichkeit der Vorrangbeziehungen des Ergebnis- und des Referenz-MAPL. 

Es wird analog zur Erstellung von Referenz-MSTLs davon ausgegangen, dass die An-
zahl möglicher AVOs mit identischer Bezeichnung in einem VAPL unabhängig von der 
gültigen Struktur ist, d. h. alle STOs des Referenz-MAPL enthalten dieselbe Anzahl von 
AVKs. Außerdem werden keine MAPLs mit AVKs, die mehreren, aber nicht allen STOs 
des MAPL zugeordnet sind, betrachtet. Die Parameter der Erstellung sind 

-௏஻௓, der Anteil der gültigen Vorrangbeziehungen an allen möglichen Vorrangݎ -
beziehungen zwischen den AVOs des Referenz-MAPL, 

- ݊ௌ்ை, die Anzahl der möglichen Strukturen der aus dem MAPL konfigurierbaren 
VAPL, 

- ݊஺௄, die Anzahl der AVKs je STO des Referenz-MAPL, 
 ெ௨௟௧, der Anteil mehrfach auftretender AVK-Bezeichnungen je STOݎ -
- und ݎ஺௕௛, der Anteil von AVKs eines Referenz-MAPL, die von der gültigen STO 

abhängen. 

Die zufällige Konfiguration von VAPLs aus dem Referenz-MAPL erfolgt analog zur zu-
fälligen Konfiguration von VSTLs aus MSTLs, wie in Kapitel 5.2.1 beschrieben. Dabei 
werden ebenfalls ungleiche Auftretenswahrscheinlichkeiten der STOs über den Para-
meter ݎோ௔ௗௌ்ை ∈ [0; 0,5] und ungleiche Auftretenswahrscheinlichkeiten der AVKs über 
den Parameter ݎோ௔ௗ஺௄ ∈ [0; 0,5] berücksichtigt. Es liegen im VAPL alle Vorrangbezie-
hungen des MAPL vor, die zwischen instanziierten AVKs bestehen. Die Parameter ei-
nes Experiments sind ݊௏஺௉௅, ݎ௏஻௓, ݊ௌ்ை, ݊஺௄, ݎெ௨௟௧, ݎ஺௕௛ ,  .ோ௔ௗ஺௄ݎ ோ௔ௗௌ்ை undݎ

Analog zur Demonstration der Methode 2 werden zum einen Experimente mit Referenz-
MAPL ohne Multipositionen und STOs durchgeführt und zum anderen Experimente für 
solche mit Multipositionen oder STOs für einen Referenzfall mit ݎ௏஻௓ = 0,5 und ݎோ௔ௗ௓௄௄ = 0,25. Jedes Experiment wird in zehn Durchläufen wiederholt. Sowohl für 
Schritt 1 als auch für Schritt 2 der Methode 3 wird eine Zeitbeschränkung von 1800 
Sekunden definiert. 
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5.3.2 Ergebnisse

5.3.2.1 Experimente an Referenz-Maximalarbeitsplänen ohne Multipositionen und 
Strukturoptionen

Abbildung 5.3 zeigt die jeweils über 10 Durchläufe gemittelten Ergebnisse für ݀ெ஺௉௅
sowie die Korrelationskoeffizienten ausgewählter Parameter der Experimente in Pro-
zent. Für den Referenzfall (Abbildung 5.3, 2) mit ݎ௏஻௓ = 0,5 und ݎோ௔ௗ஺௄ = 0,25 treten 
bereits ab ݊௏஺௉௅ = 40 unabhängig von der Größe ݊஺௄ des Referenz-MAPL keine we-
sentlichen Abweichungen zwischen Ergebnis- und Referenz-MAPL auf. Lediglich für ݊௏஺௉௅ = 200 und ݊஺௄ = 100 zeigt sich der in Kapitel 5.2.2.1 beschriebene Effekt der 
Zeitbeschränkung. Mit der Verringerung (Abbildung 5.3, 1) oder Erhöhung (Abbildung 
5.3, 3) der Anzahl von Vorrangbeziehungen fällt ݀ெ஺௉௅ ab bzw. steigt an, dieser Effekt 
ist jedoch gering.

Abbildung 5.3: Ergebnisse der Demonstration der Methode 3 an Referenz-Maximalar-
beitsplänen ohne Multipositionen und Strukturoptionen; alle Angaben in Prozent

(1) (2) (3)

rVBZ: 0,25 rVBZ: 0,5 rVBZ: 0,75
rRadAK: 0,25 10 20 50 100 ∅ rRadAK: 0,25 10 20 50 100 ∅ rRadAK: 0,25 10 20 50 100 ∅

10 6,5 17,8 6,4 10,7 10,4 10 1,4 3,9 20,4 7,0 8,2 10 4,9 7,1 5,8 8,7 6,6

20 0,0 0,5 0,6 0,5 0,4 20 2,1 2,8 1,5 1,1 1,9 20 1,8 1,2 1,1 1,7 1,5

40 0,0 0,0 0,0 0,0 0,0 40 0,5 0,0 0,0 0,0 0,1 40 0,7 0,0 0,0 0,1 0,2

60 0,0 0,0 0,0 0,0 0,0 60 0,0 0,0 0,0 0,0 0,0 60 0,0 0,0 0,0 0,0 0,0

80 0,0 0,0 0,0 0,0 0,0 80 0,0 0,0 0,0 0,0 0,0 80 0,0 0,0 0,0 0,0 0,0

100 0,0 0,0 0,0 0,0 0,0 100 0,0 0,0 0,0 0,0 0,0 100 0,0 0,0 0,0 0,0 0,0

120 0,0 0,0 0,0 0,0 0,0 120 0,0 0,0 0,0 0,0 0,0 120 0,0 0,0 0,1 0,0 0,0
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Analog zu den in Kapitel 5.2.2.1 beschriebenen Ergebnissen für die Demonstration der 
Methode 2 hat die Streuung der Auftretenswahrscheinlichkeiten der AVKs eine nen-
nenswerte Auswirkung auf ݀ெ஺௉௅ (Abbildung 5.3, 4 und 6), was durch die Korrelations-
koeffizienten (Abbildung 5.3, 5) bestätigt wird. Ebenfalls analog zeigt sich darüber hin-
aus eine hohe positive Korrelation zwischen ܾ௓஻ଵ und ݀ெ஺௉௅ sowie ܾ௓஻ଶ und ݀ெ஺௉௅ und 
eine hohe negative Korrelation zwischen ܾ௠௜௡ und ݀ெ஺௉௅. 
5.3.2.2 Experimente an Referenz-Maximalarbeitsplänen mit Multipositionen oder 

Strukturoptionen 

Abbildung 5.4 zeigt die jeweils über 10 Durchläufe gemittelten Ergebnisse für ݀ெ஺௉௅ 
sowie die Korrelationskoeffizienten ausgewählter Parameter der Experimente in Pro-
zent.  

Liegen ausschließlich Multipositionen und keine STOs vor (Abbildung 5.4, 1), können 
MSTLs unabhängig von ihrer Größe ab ݊௏ௌ்௅ = 50 mit Abweichungen von weniger als 
1 % reproduziert werden. Dasselbe gilt im Wesentlichen auch für den Fall, dass STOs 
aber keine Multipositionen vorliegen (Abbildung 5.4, 2 und 5). Hierbei hat die Streu-
ung der Auftretenswahrscheinlichkeit nur einen geringfügigen Einfluss.  

Insgesamt zeigt sich, dass unabhängig von Multipositionen und STOs gute Ergebnisse 
erzielt werden können. Dies steht im Gegensatz zu den entsprechenden in 5.2.2.2 dar-
gestellten Ergebnissen für Methode 2. Dieser Gegensatz lässt sich dadurch erklären, 
dass gegenüber Methode 2 die Zeitbeschränkungen für Methode 3 einen geringe-
ren Einfluss auf die Ergebnisse haben. Insgesamt wurde Schritt 1 in ca. 51 % der 
durchgeführten Experimente vorzeitig abgebrochen, was in etwa der entsprechenden 
Abbruchrate für die Demonstration der Methode 2 entspricht. Lediglich in ca. 0,6 % der 
durchgeführten Experimente wurde allerdings kein komplexitätsminimaler MAPL ermit-
telt. Dies zeigt sich auch in der geringen Korrelation zwischen ܾ௓஻ଵ und ܾ௠௜௡ (Abbildung 
5.4, 4)66. Wird Schritt 1 vorzeitig abgebrochen, liegt also i. d. R. bereits eine optimale 
Lösung vor. Dies steht in einem Gegensatz zu den in Kapitel 5.2.2.2 gezeigten Ergeb-
nissen für die Demonstration der Methode 2; für Methode 2 geht ein Abbruch tenden-
ziell mit suboptimalen MSTLs einher. Schritt 1 der Methode 3 ist also wesentlich 

                                         
66 Da vorzeitige Abbrüche von Schritt 2 i. d. R. das Resultat sehr komplexer MAPL aus Schritt 1 sind und hier 
i. d. R. komplexitätsminimale MAPL gefunden werden, traten auch nur in ca. 0,3 % der Experimente vorzeitige 
Abbrüche von Schritt 2 auf. Die zu ܾ௓஻ଶ gehörigen Korrelationskoeffizienten haben deshalb nur eine geringe Aus-
sagekraft, weshalb hierauf nicht eingegangen wird. 
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effizienter darin, komplexitätsminimale MAPLs zu finden als Schritt 1 der Methode 2
komplexitätsminimale MSTLs zu finden.

5.4 Methode 4: Datenbasierte Erstellung von Regeln
In diesem Kapitel wird die Demonstration der Methode 4 beschrieben. Über die De-
monstration hinaus wurden zwei Benchmarkstudien durchgeführt, auf die an dieser 
Stelle kurz eingegangen wird. In der ersten Benchmarkstudie, die in Anhang A10.3
ausführlich beschrieben wird, wurde Methode 4 mit der Methode Two Stage von Igna-
tiev et al. (2021, siehe Kapitel 3.4.2) hinsichtlich Recheneffizienz verglichen. Wie in 
Kapitel 3.4.2 erläutert, entspricht Two Stage dem Stand der Forschung für das Lernen 
komplexitätsminimaler boolescher Ausdrücke mit perfekter Trainingsgenauigkeit. Der 
Vergleich bestätigt, dass Two Stage im Gegensatz zu Methode 4 nicht ausreichend 

Abbildung 5.4: Ergebnisse der Demonstration der Methode 3 an Referenz-Maximalar-
beitsplänen mit Multipositionen oder Strukturoptionen; alle Angaben in Prozent.
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effizient ist um die in der vorliegenden Arbeit betrachteten Probleme zu lösen (siehe 
Kapitel 3.4.2). In der zweiten Benchmarkstudie wurde Methode 4 mit dem Algorithmus 
DK-XTSD von Costamagna & Micheli (2023, siehe Kapitel 3.4.2) hinsichtlich Generali-
sierungsfähigkeit verglichen. Wie in Kapitel 3.4.2 erläutert, entspricht DK-XTSD dem 
Stand der Forschung für das Lernen boolescher Ausdrücke mit perfekter Trainings-
genauigkeit, er garantiert jedoch keine minimale Komplexität. Der Vergleich zeigt, dass 
Methode 4 eine höhere Generalisierungsfähigkeit aufweist als DK-XTSD und damit für 
die in der vorliegenden Arbeit betrachteten Probleme besser geeignet ist. Die Bench-
markstudie ist in Anhang A10.4 ausführlich dargestellt. Im Folgenden wird die Demonst-
ration der Methode 4 an den vom Industriepartner bereitgestellten Daten beschrieben. 

5.4.1 Vorgehen 

Zunächst wird ein Trainingsdatensatz für die Anwendung der Methode 4 erstellt. Ein 
Datenpunkt entspricht dabei einer zulässigen Variante des HLKM. Die Features des 
Datenpunkts entsprechen den Produktmerkmalen, wobei kategorische Merkmale in 
One-Hot-Codierung überführt werden. Die Labels des Datenpunkts entsprechen je-
weils einem booleschen Wert, der angibt, ob eine bestimmte Position der MSTL oder 
des MAPL für diese Variante aktiv ist. Um zu vermeiden, dass die Ergebnisse der De-
monstration durch die Wahl der Varianten verzerrt werden, werden gleichmäßig zufällig 
Varianten aus dem HLKM des betrachteten Produkts ausgewählt. Der Anteil zulässiger 
Varianten unter Berücksichtigung von Beschränkungen an allen kombinatorisch mögli-
chen Varianten ist bei den betrachteten Produkten mit ca. 1 zu 1,43 * 1017 gering. Eine 
naheliegende Auswahl einer Variante durch gleichmäßig zufällige Festlegung der Merk-
malausprägungen ohne Berücksichtigung der Beschränkungen führt deshalb in fast al-
len Fällen zu einer unzulässigen Variante. Deshalb wird Uniform Model Sampling 
nach Soos et al. (2020) unter Verwendung der Python-Bibliothek pyunigen67 eingesetzt, 
um gleichmäßig zufällige Lösungen der High-Level-Formel (HLF) zu bestimmen68. Auf 
diese Weise werden je Durchlauf ො்݊௥௔௜௡௜௡௚ = 200 Varianten ausgewählt. Für die ausge-
wählten Varianten werden mithilfe der vorhandenen LLKMs Labels generiert, d. h. es 
wird ermittelt, welche Positionen der MSTL und des MAPL aktiv sind. Mit dem Binary-

                                         
67 Siehe https://pypi.org/project/pyunigen/ (zuletzt überprüft am 07.06.2025). Die Einstellparameter des Algorith-
mus werden mit ߜ = 0,5 und ߳ = 0,5 gewählt.  
68 Um vertretbare Rechenzeiten zu erreichen, müssen die Produktmerkmale für die Erstellung der HLF statt per 
One-Hot-Codierung per Dualcodierung codiert werden, da ansonsten zu viele Binärvariablen und Klauseln vor-
liegen. 



152 Demonstration 
 

 

Relevance-Ansatz wird daraus ein Trainingsdatensatz je Label erstellt69. Zunächst wer-
den je Trainingsdatensatz die ersten ்݊௥௔௜௡௜௡௚ = 10 Datenpunkte ausgewählt und Me-
thode 4 jeweils auf diese reduzierten Datensätze angewandt. Anschließend wird das 
Experiment sukzessive für ்݊௥௔௜௡௜௡௚ = 20, 50, 100 und 200 wiederholt, um den Einfluss 
der Anzahl von Datenpunkten zu ermitteln. Aus jedem Experiment ergibt sich eine Re-
gel, d. h. ein boolescher Ausdruck, je Label. Für die Bewertung der datenbasiert erstell-
ten Regeln werden zum einen die Metriken ீݎ௘௡ூ௡ und ீݎ௘௡ா௫ verwendet, welche der 
Genauigkeit der Regeln auf einem Testdatensatz mit oder ohne Berücksichtigung tri-
vialer Regeln (siehe Kapitel 5.1) entsprechen. Zum anderen werden die Metriken ݎெ௢ௗூ௡ 
und ݎெ௢ௗா௫ verwendet, die den Anteil vollständig korrekter Modelle mit bzw. ohne Be-
rücksichtigung trivialer Regeln angeben. Die Metriken werden in Anhang A10.1 aus-
führlich erläutert. 

Da die Methode 4 rechenintensiv ist und im Rahmen der Demonstration vielfach ange-
wandt wird, wird je zu erstellender Regel eine Zeitbeschränkung von 100 Sekunden 
festgelegt. Es werden 10 Durchläufe durchgeführt und die Ergebnisse über die Durch-
läufe gemittelt. 

5.4.2 Ergebnisse 

Im Folgenden werden die Ergebnisse für Produkt B vorgestellt, dessen KM eine höhere 
Komplexität als das von Produkt A aufweist. Die Ergebnisse für Produkt A finden sich 
in Anhang A10.2. Soweit die Betrachtung der Ergebnisse von Produkt A zusätzliche 
Erkenntnisse ermöglicht, wird darauf im Folgenden eingegangen. 

Abbildung 5.5 und Abbildung 5.6 zeigen ீݎ௘௡ூ௡ und ீݎ௘௡ா௫ bzw. ݎெ௢ௗூ௡ und ݎெ௢ௗா௫ in 
Abhängigkeit von ்݊௥௔௜௡௜௡௚ für das Produkt B. Alle Kurven verlaufen monoton steigend, 
d. h. mehr Trainingsdaten führen zu genaueren Modellen und zu höheren Wahrschein-
lichkeiten die tatsächlichen Regeln exakt abzubilden. Wie aufgrund der Definition der 
beiden Metriken zu erwarten, verläuft die Kurve von ீݎ௘௡ா௫ unterhalb der Kurven von ீݎ௘௡ூ௡ und die Kurve von ݎெ௢ௗா௫ unterhalb der Kurve von ݎெ௢ௗூ௡. Im Vergleich von ீݎ௘௡ா௫ 
mit ݎெ௢ௗா௫ zeigt sich, dass bereits für ்݊௥௔௜௡௜௡௚ = 10 Regeln mit einer Genauigkeit von 

                                         
69 Für Produkt A bzw. Produkt B liegen insgesamt 852 bzw. 1.982 Positionen in der MSTL und im MAPL vor. Da 
sich die Labels der Trainingsdatensätze darüber hinaus aus Regeln sehr unterschiedlicher Komplexität ergeben, 
decken die Trainingsdatensätze ein breites Spektrum an möglichen Anwendungsfällen ab. Deshalb ermöglichen 
die KM des Industriepartners eine umfassende Demonstration, so dass auf die Verwendung synthetischer Daten 
verzichtet wird. 
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über 94 % erstellt werden können, auch wenn nur weniger als 7 % der nicht trivialen 
Regeln korrekt abgebildet werden. Entsprechend des Vorgehens der Methode 4 wer-
den für ்݊௥௔௜௡௜௡௚ = 10 Regeln mit geringer Komplexität erstellt. Der niedrige Wert für ݎெ௢ௗா௫ zeigt, dass deren Komplexität zu gering ist, um die tatsächlichen Regeln der 
KMs korrekt wiederzugeben. Der hohe Wert für ீݎ௘௡ா௫ zeigt hingegen, dass tatsächliche 
Regeln des KM, auch wenn sie komplex sind, durch einfache Regeln gut angenähert
werden können. Dabei bleiben allerdings zwangsläufig seltene Fälle, die durch lange 
Monome in der Regel ausgedrückt werden, unberücksichtigt. Für eine zunehmende 
Datenmenge zeigen sowohl ீݎ௘௡ா௫ als auch ݎெ௢ௗா௫ ein asymptotisches Verhalten. Es 
sind somit immer größere Datenmengen erforderlich, um Testgenauigkeit und Modell-
übereinstimmung weiter zu steigern. Auch für ்݊௥௔௜௡௜௡௚ = 200 verbleiben zahlreiche Re-
geln, die nicht vollständig korrekt erkannt werden. Die Auswirkung dessen auf die 
Testgenauigkeit, d. h. die Genauigkeit der Vorhersage von VSTLs und VAPLs, die 
selbst für nichttriviale Regeln über 99 % beträgt, ist jedoch gering.

Abbildung 5.5: Ergebnisse der Demonstration der Methode 4 an Produkt B hinsichtlich 
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Abbildung 5.6: Ergebnisse der Demonstration der Methode 4 an Produkt B hinsichtlich 
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Der Verlauf der Kurven für Produkt A ist grundsätzlich mit denen von Produkt B ver-
gleichbar, wobei jedoch die Kurve für ݎெ௢ௗா௫ deutlich oberhalb der entsprechenden 
Kurve für Produkt B verläuft. Für ்݊௥௔௜௡௜௡௚ = 200 können für Produkt A ca. 53 % der 
Regeln korrekt abgebildet werden ggü. ca. 21 % für Produkt B. Dies ist zu erwarten, 
weil die Regeln für Produkt B komplexer sind und damit von Methode 4 erst später 
gefunden werden. Wie der Vergleich der Ergebnisse für Produkt A und B zeigt, gilt dies 
jedoch nicht zwangsläufig für die Generalisierungsfähigkeit, die für Produkt A geringer 
ist als für Produkt B. Die Komplexität einer Regel legt damit nicht zwingend fest, wie 
gut diese durch Regeln geringerer Komplexität angenähert werden kann. 

5.5 Methode 5: Auswahl von repräsentativen Varianten zur Erwei-
terung der Datenbasis 

In diesem Kapitel wird die Demonstration der Methode 5 beschrieben. 

5.5.1 Vorgehen 

Zunächst wird ein Trainingsdatensatz mit ݊ ்௥௔௜௡௜௡௚ = 10 Datenpunkten zu zufällig aus-
gewählten Varianten und einem Label je Position der MSTL und des MAPL erstellt, wie 
in Kapitel 5.4.1 beschrieben. Damit wird berücksichtigt, dass im Unternehmen i. d. R. 
bereits VSTLs und VAPLs für Varianten existieren, die nicht systematisch ausgewählt 
wurden. Dieser initiale Trainingsdatensatz wird zunächst nicht nach dem Binary-Rele-
vance-Ansatz geteilt. Ausgehend vom initialen Trainingsdatensatz erfolgt eine Simula-
tion des iterativen Prozesseses in den Methode 5 eingebettet ist (siehe Kapitel 4.1.3). 
In jeder Iteration wird Methode 5 angewandt, um eine Variante aus dem HLKM auszu-
wählen. Zu Beginn der Iteration wird, wie in Kapitel 4.5.1 beschrieben, ein Versionen-
raum (VR) pro Label erstellt. Das Komplexitätsminimale Modell je VR entspricht nach 
Annahme der genauesten, zu diesem Zeitpunkt bekannten Regel. Es wird mit den in 
Kapitel 5.4.1 genannten Metriken bewertet70.  

Für die ausgewählte Variante werden mit Hilfe des LLKM Labels erstellt, d. h. bestimmt, 
welche Positionen der MSTL und des MAPL aktiv sind. Dieser Schritt simuliert die Er-
stellung von VSTLs und VAPLs durch einen Experten. Zum Abschluss der Iteration liegt 
ein zusätzlicher annotierter Datenpunkt vor, der dem Trainingsdatensatz hinzugefügt 

                                         
70 Liegen mehrere komplexitätsminimale Modelle im VR vor, wird willkürlich dasjenige verwendet, das zuerst in 
den VR aufgenommen wurde. 
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wird. Anschließend wird Methode 5 erneut angewandt, indem die VRs aktualisiert wer-
den, wie in Kapitel 4.5.1 beschrieben, und eine weitere Variante ausgewählt wird. Der 
iterative Prozess wird fortgesetzt, bis ො்݊௥௔௜௡௜௡௚ Datenpunkte im Trainingsdatensatz vor-
liegen. Da Methode 5 rechenintensiv ist, wird für die Demonstration ො்݊௥௔௜௡௜௡௚ = 100 ge-
wählt, um die Experimente in vertretbarer Zeit durchführen zu können. Darüber hinaus 
wird zugunsten einer vertretbaren Rechenzeit der Parameter ݊௏ோ (siehe Kapitel 4.5.1) 
auf 3 gesetzt, d. h. es liegen immer 3 Modelle je VR vor. Der Parameter ݓெௌ (siehe
Kapitel 4.5.2.5) wird entsprechend der Ergebnisse der Parameterstudie in Anhang
A11.1 mit 0,5 gewählt. Für die Demonstration werden kategorische Merkmale in One-
Hot-Codierung codiert (siehe Anhang A6.2)71.

5.5.2 Ergebnisse

Im Folgenden werden die Ergebnisse für Produkt B vorgestellt, dessen KM eine höhere 
Komplexität als das von Produkt A aufweist. Die Ergebnisse für Produkt A finden sich 
in Anhang A12.3. Soweit die Betrachtung der Ergebnisse von Produkt A zusätzliche 
Erkenntnisse ermöglicht, wird darauf im Folgenden eingegangen.

Abbildung 5.7 und Abbildung 5.8 zeigen ீݎ௘௡ூ௡ und ீݎ௘௡ா௫ bzw. ݎெ௢ௗூ௡ und ݎெ௢ௗா௫ in 
Abhängigkeit von ்݊௥௔௜௡௜௡௚ für das Produkt B. Zum Vergleich sind die entsprechenden 
Ergebnisse aus der Demonstration der Methode 4 hinterlegt. Ebenso wie die Kurven 
für Methode 4 verlaufen die Kurven für Methode 5 monoton steigend, d. h. mehr 

                                        
71 Die gleichzeitige Auswahl verschiedener boolescher Variablen die zum selben kategorischen Merkmal gehören 
wird verhindert, indem Nebenbedingungen in das in Kapitel 4.5.2.5 beschriebene Optimierungsproblem einge-
führt werden, die die Summe der Variablen auf kleiner gleich 1 beschränken.

Abbildung 5.7: Ergebnisse der Demonstration der Methode 5 an Produkt B hinsichtlich
Testgenauigkeit
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Trainingsdaten führen zu höheren Testgenauigkeiten und höheren Modellübereinstim-
mungen. Die Kurven für Methode 5 verlaufen stets oberhalb der Referenzpunkte für 
Methode 4. 

Tabelle 5.2 zeigt den Vergleich im Detail sowie den p-Wert eines zweiseitigen Welch-
Tests für die Nullhypothese einer identischen Verteilung. 

Tabelle 5.2: Ergebnisse der Demonstrationen der Methode 4 und Methode 5 an Produkt 
B im Detailvergleich

Nur für ݊ ்௥௔௜௡௜௡௚ = 20 und ݊ ்௥௔௜௡௜௡௚ = 50 kann die Nullhypothese zum Signifikanzniveau 
5 % verworfen werden, d. h. nur für diese Fälle ist die Differenz der Ergebnisse für 
Methode 4 und Methode 5 statistisch signifikant. Dass die Differenz für ்݊௥௔௜௡௜௡௚ = 10
nicht statistisch signifikant ist, ist dadurch bedingt, dass die ersten 10 Datenpunkte so-
wohl für die Demonstration von Methode 4 als auch für die Demonstration von Methode 
5 zufällig gewählt wurden. Dass der Vorteil der Methode 5 gegenüber einer zufälligen 
Auswahl von Varianten mit größeren Datenmengen abnimmt, kann verschiedene Ur-
sachen haben. Erstens können für kleine Datenmengen stochastisch bedingte unsys-
tematische Verzerrungen auftreten, d. h. bestimmte Bereiche des Variantenraums kön-
nen überproportional repräsentiert sein. Für größere Datenmengen löst sich diese Ver-
zerrung nach dem Gesetz der großen Zahl auf. Zweitens profitiert Methode 5 mit zu-
nehmender Datenmenge immer weniger vom Diversitätskriterium bei der Auswahl von 

rGenEx
nTraining

rModEx
nTraining

10 20 50 100 10 20 50 100

Methode 4 94,66 % 96,46 % 98,70 % 99,21 % Methode 4 6,24 % 10,15 % 16,11 % 18,99 %

Methode 5 94,79 % 97,42 % 98,86 % 99,27 % Methode 5 6,40 % 11,99 % 16,90 % 19,13 %

p-Wert 38,36 % 0,00 % 0,15 % 5,25 % p-Wert 36,60 % 0,00 % 0,17 % 59,02 %

Abbildung 5.8: Ergebnisse der Demonstration der Methode 5 an Produkt B hinsichtlich
Modellübereinstimmung
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Varianten, da die möglichen Abstände zu bereits betrachteten Varianten immer gerin-
ger werden. Zuletzt ist davon auszugehen, dass es Regeln gibt, die grundsätzlich mit 
datenbasierten Methoden auf Basis praxisrelevanter Datenmengen nicht zuverlässig 
vorhergesagt werden können. Dies ist besonders vor dem Hintergrund der in Kapitel 
5.4.2 vorgestellten Ergebnisse naheliegend. Verbleiben nur noch diese Regeln, wird es 
u. U. irrelevant, welche Datenpunkte im Trainingsdatensatz vorliegen.  

Die Ergebnisse für Produkt A unterscheiden sich nicht prinzipiell von denen von Pro-
dukt B. Ebenso wie bei der Demonstration der Methode 4 können allerdings insbeson-
dere höhere Modellübereinstimmungen erreicht werden, wie z. B. ݎெ௢ௗா௫ = 54,92 % für ்݊௥௔௜௡௜௡௚ = 100. Der Vorteil von Methode 5 gegenüber einer zufälligen Auswahl von 
Varianten ist insbesondere hinsichtlich der Modellübereinstimmung für Produkt A deut-
lich stärker ausgeprägt als für Produkt B. Dieser Vorteil besteht auch für ்݊௥௔௜௡௜௡௚ =100. Der Vergleich der Ergebnisse von Produkt A und B legt nahe, dass vor allem kom-
plexe Regeln – wie sie in Produkt B vorliegen – den Nutzen von Methode 5 begrenzen. 

5.6 Methode 6: Datenbasierte Überprüfung von Regeln 
In diesem Kapitel wird die Demonstration der Methode 6 beschrieben. 

5.6.1 Vorgehen 

In den KMs des Industriepartners sind die Positionen der MSTL und des MAPL unmit-
telbar von den Produktmerkmalen abhängig. Diese Produktmerkmale können katego-
risch oder mehrwertig sein, wie in Kapitel 5.1 erläutert. Eine Regel besteht aus einem 
oder mehreren Termen, die disjunktiv verknüpft sind. Ist im Falle mehrerer Terme einer 
der Terme wahr, ist die Position aktiv. Jeder Term besteht aus einer Verknüpfung von 
Aussagen hinsichtlich eines Produktmerkmals. Wäre z. B. Merkmal 1 mehrwertig und 
wären z. B. Merkmale 2 und 3 kategorisch, könnte ein Term wie folgt aussehen: 

ଵ௜௡௜௧ݔ  = ൫ݒଵ,ଵ, ଵ,ଶ൯ݒ¬ ∧ ଶ௜௡௜௧ݔ ∉ ൛ݒଶ,ଵ, ଶ,ଶൟݒ ∧ ଷ௜௡௜௧ݔ ∈  5.1 ,{ଷ,ଶݒ ,ଷ,ଵݒ}

wobei ݔ௜௜௡௜௧ Produktmerkmale und ݒ௜,௝ Merkmalausprägungen des Merkmals ݅ darstel-
len. Werden kategorische Merkmale per One-Hot-Codierung codiert ergibt sich daraus 
z. B. der boolesche Ausdruck  

 ൫ݔଵଵ ∧ ଵ,ଶ൯ݔ¬ ∧ ൫¬ݔଶ,ଵ ∧ ଶ,ଶ൯ݔ¬ ∧ ൫ݔଷ,ଵ ∨  ଷ,ଶ൯. 5.2ݔ

Jede boolesche Variable des so transformierten Terms lässt sich somit entweder einem 
Merkmal oder einer Merkmalausprägung des eigentlichen Terms zuordnen. Im 
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Allgemeinen sind die Terme in den KMs des Industriepartners nach Transformation in 
boolesche Ausdrücke keine Monome – ebenso wie der Term in Formel 5.2. Deshalb 
ergibt sich durch die disjunktive Verknüpfung der Terme im Allgemeinen keine DNF. 
Anstatt der im Beispiel in Kapitel 4.6.1 verwendeten Literal- und Monomtabelle wurde 
deshalb zur tabellarischen Codierung der Regeln eine fallspezifische tabellarische 
Darstellung gewählt. Anhang A12.1 geht auf diese Darstellung und ihre Vorteile im 
Anwendungsfall ein. In dieser Darstellung sind die Ausdrücke durch ihre Terme in einer 
Termtabelle codiert und die Terme durch ihre Literale in einer Literaltabelle. Nachdem 
die Term- und die Literaltabelle vorliegen, werden in diese Tabellen wie in Anhang 
A12.1 beschrieben, Fehler eingebracht. 

Fehler, die in die Literaltabelle eingebracht werden, betreffen einzelne boolesche Vari-
ablen des transformierten Terms und damit einzelne Merkmale oder Merkmalausprä-
gungen im eigentlichen Term. Betrachtet werden die folgenden Fehlerarten (siehe Bei-
spiel in Anhang A12.1):  

- Negationsfehler: Gegenüber der tatsächlichen Regel liegt eine boolesche Vari-
able im transformierten Term negiert anstatt positiv vor oder umgekehrt. 

- Zusätzliche Variable: Gegenüber der tatsächlichen Regel liegt eine zusätzliche 
boolesche Variable im transformierten Term vor. Berücksichtigt werden dabei nur 
solche Variablen, die an der entsprechenden Stelle tatsächlich auftreten können. 

- Fehlende Variable: Gegenüber der tatsächlichen Regel fehlt eine boolesche Va-
riable im transformierten Term. 

Alle booleschen Variablen im transformierten Term, die demselben kategorischen 
Merkmal zugeordnet sind, treten entweder alle negiert oder alle positiv auf. Deshalb ist 
davon auszugehen, dass Negationsfehler in einzelnen Variablen bereits durch eine 
syntaktische Prüfung der Regeln durch das KS gefunden würden. Daher wird auf Ne-
gationsfehler in solchen Variablen verzichtet, um die Ergebnisse der Demonstration 
nicht positiv zu verfälschen. Damit können Negationsfehler ausschließlich boolesche 
Variablen im transformierten Term betreffen, die aus mehrwertigen oder booleschen 
Merkmalen hervorgegangen sind. Dadurch sind diese Variablen beim Einbringen zufäl-
liger Fehler tendenziell öfter betroffen. Dies wird, wie unten beschrieben, bei der Be-
wertung berücksichtigt. Fehler, die in die Termtabelle eingebracht werden, entsprechen 
Fehlern, die einen gesamten Term einer Regel betreffen. Es werden die Fehler zusätz-
licher Term und fehlender Term betrachtet, die einem zusätzlichen bzw. fehlenden 
Term in einer Regel entsprechen. 
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In jedem Durchlauf der Demonstration werden entweder Fehler in die Literaltabelle oder 
in die Termtabelle eingebracht. Jede durch Methode 6 vorgeschlagene Überprüfung 
betrifft genau ein Feld der Literal- oder der Termtabelle. Die Hinweise lassen sich un-
mittelbar auf die Terme in ihrer initialen Form übertragen. Für die Überprüfung eines 
Hinweises in der Literaltabelle ist ein Produktmerkmal oder eine Produktmerkmalaus-
prägung für einen bestimmten Term in den Regeln zu überprüfen. Tritt dieser Term 
mehrfach in Regeln auf, ist jeweils eine Überprüfung durchzuführen. Für die Überprü-
fung eines Hinweises in der Termtabelle ist genau ein Term in den Regeln auf korrektes 
Vorhandensein oder Nichtvorhandensein zu überprüfen. Je Hinweis liegt ein Korrektur-
vorschlag vor (siehe Kapitel 4.6.5). Damit sind die Hinweise sehr spezifisch, weshalb 
davon auszugehen ist, dass diese von einem Experten schnell überprüft werden kön-
nen. 

Es werden je Durchlauf ݊ி௘௛௟௘௥ wie in Anhang A12.1 beschrieben gleichmäßig zufällig 
eingebracht. Variiert werden für die Experimente 

- das Konfigurationsmodell (݇௄ெ = oder ݇௄ெ ܣ = -um eine gewisse Gene ,(ܤ
ralisierbarkeit der Erkenntnisse zu gewährleisten,  

- die Verteilung ݇ி௘௛௟௘௥௔௥௧ der Fehlerarten – entweder ausschließlich eine Feh-
lerart oder gleichverteilt über alle Fehlerarten – um zu ermitteln, welche Art 
von Fehlern besonders gut oder besonders schlecht gefunden werden 

- und die Anzahl ݊ி௘௛௟௘௥, der eingebrachten Fehler, um zu untersuchen, inwie-
fern Fehler in Modellen mit vielen Fehlern effizienter oder weniger effizient 
gefunden werden können. 

Zunächst wird von ݊ி௘௛௟௘௥ = 100 ausgegangen. Um die Ergebnisse abzusichern, wer-
den jedoch auch Experimente mit deutlich weniger Fehlern (݊ி௘௛௟௘௥ = 10) und deutlich 
mehr Fehlern (݊ி௘௛௟௘௥ = 1000) durchgeführt. 

Die Einstellparameter der Methode 6 entsprechen den Einstellparametern des Ran-
dom-Forest-Algorithmus den sie nutzt. Bei der informationstechnischen Implementie-
rung der Methode 6 im Rahmen der vorliegenden Arbeit wird der Random-Forest-Algo-
rithmus der Software-Bibliothek scikit-learn72 verwendet. Grundsätzlich werden die 
Standardeinstellungen der Bibliothek genutzt. Für vier Parameter, bei denen von einer 

                                         
72 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html (zuletzt über-
prüft am 02.09.2024) 
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großen Auswirkung auf die Ergebnisse ausgegangen wird, wird jedoch eine Parame-
terstudie durchgeführt. Anhang A12.2 zeigt die Parameterstudie und die für die De-
monstration gewählten Parameterausprägungen, die sich daraus ergeben. 

Um zu überprüfen, ob Methode 6 grundsätzlich geeignet ist, um Problem 6 zu lösen, 
wird eine Benchmark-Methode betrachtet, die zufällige Einträge der Literal- bzw. 
Termtabelle auswählt und zur Überprüfung vorschlägt. Durch das zufällige Einbringen 
von Fehlern sind im Falle gleichverteilter Fehlerarten, wie oben beschrieben, nicht alle 
Produktmerkmale gleich oft von Fehlern betroffen. Damit könnte Methode 6 implizit zu 
einer Strategie führen, die schlicht diejenigen Einträge häufiger auswählt, die mit einer 
höheren Wahrscheinlichkeit Fehler enthalten. Deshalb wird eine weitere Benchmark-
Methode betrachtet, die zusätzliche Informationen darüber nutzt, wie viele Fehler 
jeweils pro Merkmaltyp vorliegen. Die Methode wählt zufällig Einträge der Literal- bzw. 
Termtabelle aus, die zu Merkmaltypen mit einem höherem Fehleranteil gehören. Sie 
nutzt damit mehr Informationen, als in der praktischen Anwendung verfügbar wären. 
Falls Methode 6 ausschließlich Hinweise auf Basis von Merkmaltypen treffen würde, 
könnte sie keine besseren Ergebnisse als diese Benchmark-Methode erzielen. Ent-
scheidend für den wirtschaftlichen Einsatz der Methode 6 ist die Anzahl generierter 
Hinweise, die überprüft werden müssen, um einen gewissen Anteil von Fehlern in den 
Regeln eines LLKM zu finden. Dies entspricht der Metrik der Demonstration. 

5.6.2 Ergebnisse 

Im Folgenden werden die Ergebnisse für Produkt B vorgestellt, dessen KM eine höhere 
Komplexität als das von Produkt A aufweist. Die Ergebnisse für Produkt A finden sich 
in Anhang A12.3. Soweit die Betrachtung der Ergebnisse von Produkt A zusätzliche 
Erkenntnisse ermöglicht, wird im Folgenden darauf eingegangen. 

Abbildung 5.9 zeigt die Ergebnisse der Experimente für den Referenzfall mit ݊ி௘௛௟௘௥ =100 in der Literaltabelle und einer Gleichverteilung der Fehler über alle drei Fehlerar-
ten73 in einer Gesamt- und einer Detailansicht für Produkt B. Für eine zufällige Auswahl 
werden Fehler immer mit in etwa gleicher Wahrscheinlichkeit gefunden. Deshalb ver-
läuft die entsprechende Kurve in etwa linear. Die Kurve für die zufällige Auswahl unter 
zusätzlicher Information (z. I.) verläuft in zwei Abschnitten linear. Zunächst werden alle 

                                         
73 Um exakt 100 Fehler zu betrachten existiert ein zusätzlicher Negationsfehler, d. h. es liegen 34 Negationsfehler, 
33 zusätzliche Variablen und 33 fehlende Variablen vor. 
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Felder der Literaltabelle mit hoher Fehlerwahrscheinlichkeit durchsucht und anschlie-
ßend alle Felder mit niedriger Fehlerwahrscheinlichkeit. Deshalb verläuft die Kurve im 
ersten Abschnitt flacher als im zweiten. Die Kurve der Methode 6 verläuft bis ca. 84 %
der gefundenen Fehler in etwa linear und zeigt anschließend ein überlineares Verhal-
ten74 (siehe Abbildung 5.9, rechts). Im Datensatz liegen also zum einen Fehler vor, die 
durch Anomalieerkennung schnell identifiziert werden können und zum anderen Fehler, 
deren Ausreißerwerte weniger stark ausgeprägt sind. Die Kurve für Methode 6 verläuft 
durchgehend unterhalb der beiden anderen Kurven. Damit zeigt sich, dass es mit Me-
thode 6 möglich ist, Negationsfehler, zusätzliche Variablen und fehlende Variablen 
durch Anomalieerkennung effizient zu ermitteln. Um z. B. 84 % der Fehler zu finden,
sind im Mittel selbst bei zusätzlicher Information über die Verteilung der Fehlerhäufig-
keiten ca. 220-mal so viele Überprüfungen75 notwendig, wenn eine zufällige Überprü-
fung der Regeln durchgeführt wird. Sobald die Kurve für Methode 6 nach der Ermittlung 
von 84 % der Fehler mit ca. 1.255 Überprüfungen den linearen Abschnitt verlässt,
nimmt die Effizienz der Methode ab. Wie in Kapitel 4.6.5 beschrieben, ist dies ein ge-
eignetes Abbruchkriterium. Anschließend kann bei Bedarf mit empirischem Testen
fortgefahren werden. Da die Hinweise zur Überprüfung wie zuvor beschrieben, sehr 
spezifisch sind und damit schnell überprüft werden können, erscheint die Durchführung 
von 1.255 Überprüfungen praxisrelevant. Damit können mit Methode 6 im betrachteten 
Fall mindestens 84 % der Fehler effizient gefunden werden. Der Abstand zu den 
Kurven der zufälligen Methoden vergrößert sich jedoch auch darüber hinaus noch 

                                        
74 Zur Ermittlung des Übergangspunkts wird die in Anhang AA12.3 beschriebene Methode verwendet.
75 276.532,1 Überprüfungen ggü. 1.254,8 Überprüfungen
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Abbildung 5.9: Ergebnisse der Demonstration der Methode 6 für die Literaltabelle von 
Produkt B mit ݊ ி௘௛௟௘௥ = 100 und ݇ ி௘௛௟௘௥௔௥௧ = ݐ݈݅݁ݐݎ݁ݒℎ݈ܿ݅݁ܩ in Gesamtansicht (links) und
Detailansicht (rechts)
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weiter. Somit können auch weitere Fehler systematisch gefunden werden, wenn auch 
weniger effizient. Wie die Ergebnisse für Produkt A (siehe Anhang A12.3) zeigen, re-
duziert sich für weniger komplexe KMs der Überprüfungsaufwand. So sind z. B. ledig-
lich 889,9 Überprüfungen notwendig, um 84 % der Fehler zu finden. Der prinzipielle 
Verlauf der Kurve ist für Produkt A jedoch identisch.

Wie Abbildung 5.10 (links) zeigt, ist der Aufwand zum Finden von Fehlern je nach Feh-
lerart unterschiedlich groß. Zusätzliche Variablen können mit weniger Überprüfungen
gefunden werden als fehlende Variablen und Negationsfehler. Dass es weniger auf-
wändig ist, zusätzliche Variablen zu finden als fehlende Variablen oder Negationsfehler,
ist naheliegend. Es gibt i. d. R. sehr viele Möglichkeiten, zusätzliche Variablen in einen 
Term einzufügen und dies führt in vielen Fällen zu Kombinationen von Variablen, die 
im Datensatz ansonsten nicht auftreten. Das Finden von fehlenden Variablen ist zu-
nächst in etwa ebenso effizient möglich wie das Finden von Negationsfehlern. Ab ca.
84 % der gefundenen Fehler steigt jedoch der Überprüfungsaufwand für das Finden 
weiterer Fehler für fehlende Variablen steiler an als für Negationsfehler. Im Allgemeinen 
können also fehlende Variablen und Negationsfehler mit identischer Effizienz gefunden 
werden, jedoch existieren bestimmte fehlende Variablen, die nur mit großem Aufwand 
gefunden werden können. Dies ist begründbar, da es Fälle geben kann in denen be-
stimmte Merkmale oder Merkmalausprägungen nur in bestimmten Fällen relevant sind. 
Es existieren somit ähnliche Terme mit und ohne ein bestimmtes Merkmal oder eine 
bestimmte Merkmalausprägung. Daraus ergeben sich Fehler, die schwer zu finden 
sind. Die Kurven für alle drei Fehlerarten weisen einen Übergang von einem linearen in 
einen überlinearen Abschnitt auf. Für alle drei Fehlerarten existieren also Fehler, die 
mit Methode 6 effizient erkannt werden können und Fehler, die mit Methode 6 nicht 

Abbildung 5.10: Ergebnisse der Demonstration der Methode 6 für die Literaltabelle von 
Produkt B mit variierten Fehlerarten (links) und variierten Fehleranzahlen (rechts)
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effizient erkannt werden können. Der Verlauf der Kurve aus Abbildung 5.9 lässt sich als 
Konsequenz daraus verstehen. Die Ergebnisse für Produkt A sind prinzipiell mit denen 
für Produkt B vergleichbar, nur dass die Differenzierung zwischen fehlenden Variablen 
und Negationsfehlern früher einsetzt.

Abbildung 5.10 (rechts) zeigt außerdem, dass die Anzahl benötigter Überprüfungen,
um einen bestimmten Anteil aller Fehler zu finden von der Anzahl bestehender Fehler
abhängt. Wie zu erwarten, sind mehr Überprüfungen notwendig, um z. B. 50 % der 
Fehler zu finden, wenn dieser Anteil 500 Fehlern entspricht, als wenn dieser Anteil 5 
Fehlern entspricht. Dies ist in der Abbildung erkennbar. Ebenso ist allerdings zu erwar-
ten, dass die Anzahl benötigter Überprüfungen nicht linear mit der Anzahl vorliegender 
Fehler steigt. Mit einer höheren Fehleranzahl nimmt auch die Fehlerwahrscheinlichkeit 
je Eintrag der Literaltabelle zu. Damit werden mit einer höheren Wahrscheinlichkeit 
Fehler gefunden. Die Kurve für ݊ி௘௛௟௘௥ = 10 weist Stufen auf, weil jeder Schritt von 10 
Prozentpunkten genau einem gefundenen Fehler entspricht. Abgesehen davon ist der 
grundsätzliche Verlauf der Kurven vergleichbar.

Abbildung 5.11 zeigt die Ergebnisse der Experimente für den Referenzfall für ݊ி௘௛௟௘௥ =100 in der Termtabelle und einer Gleichverteilung der Fehler über die beiden Fehler-
arten zusätzlicher Term und fehlender Term für Produkt B. Da die Fehlerhäufigkeit für 
alle Einträge der Termtabelle gleich ist, wird keine zufällige Auswahl mit zusätzlicher
Information betrachtet. Die Kurve der zufälligen Auswahl verläuft erneut linear. Die 
Kurve für Methode 6 weist vier Abschnitte auf. Zunächst steigt sie bis 2 % Anteil der
Fehler steil an, verläuft anschließend in etwa linear bis ca. 50 % der Fehler, steigt 
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Abbildung 5.11: Ergebnisse der Demonstration der Methode 6 für die Termtabelle von 
Produkt B mit ݊ ி௘௛௟௘௥ = 100 und ݇ ி௘௛௟௘௥௔௥௧ = ݐ݈݅݁ݐݎ݁ݒℎ݈ܿ݅݁ܩ in Gesamtansicht (links) und
Detailansicht (rechts)
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anschließend erneut steil an bis ca. 54 % der Fehler und verläuft abschließend in etwa 
linear oberhalb der Kurve der zufälligen Auswahl.

Dieser Kurvenverlauf lässt sich durch die Betrachtung der Kurven in Abhängigkeit der 
Fehlerart, wie in Abbildung 5.12 (links) dargestellt, erklären. Liegen ausschließlich zu-
sätzliche Terme vor, zeigt die Kurve zunächst den aus der Betrachtung der Literalta-
belle bekannten Verlauf. Liegen hingegen ausschließlich fehlende Terme vor, steigt die 
Anzahl notwendiger Überprüfungen bereits für das Finden von 3 Fehlern sprunghaft an. 
Mit Methode 6 können somit fehlende Terme grundsätzlich nicht effizient identifi-
ziert werden. Abbildung 5.12 legt nahe, dass in dem in Abbildung 5.11 betrachteten 
Fall zunächst Fehlerhinweise generiert werden, die auf fehlende Terme schließen las-
sen und nur eine geringe Spezifizität aufweisen. Anschließend werden effizient Fehler-
hinweise generiert, die auf zusätzliche Terme hinweisen. Sind nahezu alle zusätzlichen 
Terme gefunden, verbleiben lediglich fehlende Terme sowie einige wenige, schwer zu 
identifizierende zusätzliche Terme, womit keine effiziente Überprüfung mehr möglich 
ist. Alle weiteren korrekten Hinweise sind im Wesentlichen Zufall.

Abbildung 5.12 (rechts) zeigt außerdem, dass sich auch für die Termtabelle die Anzahl 
von Fehlern im Datensatz auf den Überprüfungsaufwand auswirkt. Im Falle von 10 
Fehlern in der Termtabelle sind allerdings mehr Überprüfungen notwendig, um einen
bestimmten Anteil von Fehlern zu finden, als im Falle von 100 Fehlern. Dies steht im 
Gegensatz zu den Ergebnissen für die Literaltabelle. Dies kann daran liegen, dass die 
Hälfte der Fehler fehlenden Termen entspricht und nicht systematisch gefunden wer-
den kann. Es verbleiben also für 10 Fehler nur 5 Fehler, die überhaupt systematisch 
gefunden werden können, womit die Wahrscheinlichkeit, einen Fehler zu finden zu Un-
gunsten der geringeren Fehleranzahl ausfällt. Je weniger Fehler im Fall ݊ி௘௛௟௘௥ = 100

Abbildung 5.12: Ergebnisse der Demonstration der Methode 6 für die Termtabelle von 
Produkt B mit variierten Fehlerarten (links) und variierten Fehleranzahlen (rechts)
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verbleiben, desto näher liegt deren Auffindwahrscheinlichkeit bei der des Falls ݊ி௘௛௟௘௥ =10. 

Die Ergebnisse für Produkt A sind auch hinsichtlich der Termtabelle mit denen von 
Produkt B vergleichbar. Auch hier sind jedoch tendenziell weniger Überprüfungen not-
wendig um einen gewissen Anteil von Fehlern zu finden, als für Produkt B. 
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6 Diskussion, Fazit und Ausblick 
Im Folgenden werden die entwickelten Methoden 1 bis 6 diskutiert und bewertet. Dies 
entspricht dem fünften Schritt des Design Science Research Process (DSRP, siehe 
Kapitel 1.3). Auf Basis dessen werden die Forschungsfragen 1 bis 6 beantwortet und 
ein Ausblick auf den zukünftigen Forschungsbedarf gegeben. Die folgenden Unterka-
pitel sind den Forschungsfragen und zugehörigen Methoden 1 bis 6 zugeordnet.  

6.1 Forschungsfrage 1: Datenbasierte Erstellung von Konfigurati-
onsmodellen 

6.1.1 Diskussion 

Die Demonstrationen der Methoden 2 bis 5 zeigen, dass diese insgesamt grundsätzlich 
in der Lage sind, Maximalstücklisten (MSTLs), Maximalarbeitspläne (MAPLs) und Re-
geln datenbasiert zu erstellen. Damit ist Methode 1 grundsätzlich in der Lage Low-Le-
vel-Konfigurationsmodelle (LLKMs) nach Stand der Technik datenbasiert zu erstellen. 
Aus den Einschränkungen der Methoden 2 bis 5 ergeben sich jedoch Einschränkungen 
für Methode 1. Bei der Erstellung von MSTLs besteht gegenwärtig noch ein Problem 
mit der Recheneffizienz für komplexe MSTLs, was in Kapitel 6.2.1 genauer beleuchtet 
wird. Methode 4 ist in der Lage für relevante Anwendungsfälle Regeln mit hoher Ge-
nauigkeit zu erstellen, was in Kapitel 6.4.1 ausgeführt wird. Jedoch können, auch unter 
Anwendung von Methode 5, i. d. R. keine vollständig korrekten Regeln erstellt werden. 
Damit kann Methode 1 für die in Kapitel 4.1.2 herausgegriffenen Szenarien DMM, DDD, 
D0M, D0D und 00D eingesetzt werden, sofern MSTLs mit geringer Komplexität vorlie-
gen. Für die Szenarien D00, 0D0 oder DD0, bei denen nach einer datenbasierten Er-
stellung der LLKMs auf eine Überwachung und Korrektur im Betrieb verzichtet wird, ist 
sie hingegen nicht geeignet. Regeln, die nicht vollständig korrekt sind, könnten sich in 
diesen Szenarien in vereinzelten falschen Positionen der variantenbezogenen Stück-
listen (VSTLs) und variantenbezogenen Arbeitsplänen (VAPLs) niederschlagen. 

6.1.2 Fazit 

Forschungsfrage 1 lässt sich auf Basis der vorliegenden Arbeit wie folgt beantworten. 
LLKMs lassen sich, mit der im Rahmen der vorliegenden Arbeit entwickelten Methode 
1, datenbasiert erstellen. Die Zuverlässigkeit, mit der diese erstellt werden, ist im Rah-
men des Betrachtungsumfangs hoch, sodass ein wirtschaftlicher Nutzen zu erwarten 
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ist. Sie ist jedoch nicht ausreichend hoch für einen unüberwachten Betrieb des Low-
Level-Konfigurationssystems (LLKS). 

6.1.3 Ausblick 

Methode 1 würde von der Weiterentwicklung ihrer untergeordneten Methoden, wie in 
den folgenden Kapiteln beschrieben, profitieren. Außerdem wäre eine weitergehende 
Erprobung sinnvoll. Im Rahmen der vorliegenden Arbeit wurde Methode 1 entwickelt 
und kann durch die Demonstration ihrer untergeordneten Methoden aus technischer 
Sicht beurteilt werden. Die Ergebnisse der Demonstration lassen darüber hinaus eine 
erste Einschätzung über den wirtschaftlichen Nutzen der Methode zu. Um die datenba-
sierte Erstellung von LLKMs abschließend beurteilen zu können, wäre jedoch darüber 
hinaus eine Studie der Wirtschaftlichkeit und der Akzeptanz in Industrieunternehmen 
auf Basis verschiedener Anwendungsszenarien notwendig. 

6.2 Forschungsfrage 2: Datenbasierte Erstellung von Maximal-
stücklisten 

6.2.1 Diskussion 

Die Demonstration der Methode 2 zeigt, dass MSTLs mit bis zu 100 Zukaufkomponen-
tenklassen (ZKKs) ohne Multipositionen und ohne Strukturoptionen (STOs) mit einer 
zweistelligen Anzahl von Datenpunkten zuverlässig datenbasiert erstellt werden kön-
nen. Ob dies auch für MSTLs mit Multipositionen oder mit STOs gilt, konnte auf Basis 
der durchgeführten Experimente nicht abschließend beurteilt werden, da in der durch-
geführten Experimentreihe der Rechenaufwand den begrenzenden Faktor darstellte. 
Dieser Rechenaufwand kann ein Hindernis für einen Einsatz der Methode 2 in der In-
dustrie darstellen. Dabei ist jedoch zu berücksichtigen, dass für die einmalige Erstellung 
einer MSTL längere Rechenzeiten akzeptabel sind als für eine umfassende Experi-
mentreihe. Der Rechenaufwand ist damit evtl. nur für sehr große MSTLs mit STOs oder 
Multipositionen tatsächlich kritisch.  

6.2.2 Fazit 

Forschungsfrage 2 lässt sich auf Basis der vorliegenden Arbeit wie folgt beantworten. 
MSTLs lassen sich, mit der im Rahmen der vorliegenden Arbeit entwickelten Methode 
2, datenbasiert erstellen. Die Zuverlässigkeit, mit der diese erstellt werden, ist im Rah-
men des Betrachtungsumfangs für MSTLs ohne STOs und Multipositionen hoch. Für 
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MSTLs mit Multipositionen oder STOs kann keine abschließende Aussage getroffen 
werden. 

6.2.3 Ausblick 

Die Demonstration der Methode 3, welche demselben Prinzip wie Methode 2 folgt, 
zeigt, dass die grundsätzliche Vorgehensweise der Methode nicht die Ursache für die 
geringe Recheneffizienz von Methode 2 ist. Die Gründe liegen viel mehr in den Unter-
schieden der beiden Methoden: AlgMSTL benötigt mehr Zeit zur Erstellung oder Über-
prüfung einer MSTL als AlgMAPL zur Erstellung oder Überprüfung eines MAPL. Darüber 
hinaus nutzen beide Methoden jeweils ein eigenes Distanzmaß für die Priorisierung der 
Verzweigung im Suchbaum. Inwieweit das für Methode 2 verwendete Maß weniger 
aussagekräftig ist als das für Methode 3 verwendete Maß wurde in der vorliegenden 
Arbeit nicht systematisch untersucht. Durch Optimierung von AlgMSTL sowie eine genau-
ere Betrachtung des Distanzmaßes kann u. U. die Recheneffizienz von Methode 2 er-
höht werden, wodurch u. U. Rechenzeit als kritischer Faktor eliminiert werden kann. 

6.3 Forschungsfrage 3: Datenbasierte Erstellung von Maximalar-
beitsplänen 

6.3.1 Diskussion 

Die Demonstration der Methode 3 zeigt, dass MAPLs mit bis zu 100 Arbeitsvorgangs-
klassen (AVKs) auch mit Multipositionen und STOs mit einer zweistelligen Anzahl von 
Datenpunkten zuverlässig datenbasiert erstellt werden können. Für industrielle Anwen-
dungsfälle, die die Prämisse erfüllen, dass identische Arbeitsvorgänge (AVOs) identifi-
zierbar sind (siehe Kapitel 4.3) ist die Methode damit nutzbringend anwendbar. Neben 
der Erstellung von MAPLs für LLKMs kann die Methode auch zur Ermittlung von Pro-
zessvorranggraphen unter Berücksichtigung von Multipositionen und STOs eingesetzt 
werden und kann damit z. B. auch einen Beitrag zur Austaktung und Steuerung varian-
tenreicher Montagesysteme leisten. 

6.3.2 Fazit 

Forschungsfrage 3 lässt sich auf Basis der vorliegenden Arbeit wie folgt beantworten. 
MAPLs lassen sich, mit der im Rahmen der vorliegenden Arbeit entwickelten Methode 
3, datenbasiert erstellen. Die Zuverlässigkeit, mit der diese erstellt werden, ist im 
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Rahmen des Betrachtungsumfangs sowohl für MAPLs mit STOs und Multipositionen 
als auch für MAPLs ohne STOs und Multipositionen hoch. 

6.3.3 Ausblick 

Aufgrund der hohen Reife von Methode 3 bestehen Weiterentwicklungsmöglichkeiten 
weniger in der Methode selbst als viel mehr in deren Schnittstellen. Zum einen könnten 
die Voraussetzungen für die Anwendbarkeit reduziert werden, indem geeignete Metho-
den zur Generalisierung von AVOs entwickelt würden. Diese müssten dergestalt mit 
Methode 3 integriert sein, dass bei der Generalisierung von AVOs die Anzahl von STOs 
im MAPL minimiert wird. Zum anderen könnte der Nutzen von Methode 3 für die Ar-
beitsplanung erhöht werden, indem erforscht würde, wie Multipositionen und STOs für 
die Austaktung und Steuerung von Montagesystemen verwendet werden können. 

6.4 Forschungsfrage 4: Datenbasierte Erstellung von Regeln 

6.4.1 Diskussion 

Die Demonstration der Methode 4 zeigt, dass sich bereits auf Basis von 10 Datenpunk-
ten, d. h. 10 Varianten mit zugehörigen VSTLs und VAPLs, Regeln mit einer Testgenau-
igkeit von über 90 % und für 100 Datenpunkte von über 99 % erstellen lassen. Die so 
erstellten Regeln sind somit geeignet, um Positionen der VSTL und der VAPLs mit ho-
her Genauigkeit korrekt zu bestimmen. Dabei werden tatsächlich gültige Regeln in vie-
len Fällen gut angenähert, jedoch nicht zwangsläufig vollständig korrekt erkannt. Me-
thode 4 ist somit geeignet um auf Basis von unsystematisch ausgewählten Varianten 
automatisch gute, wenn auch nicht vollständig korrekte, Regeln zu erstellen. Auch wenn 
diese manuell finalisiert werden müssen, um eine Genauigkeit von nahezu 100 % zu 
erreichen, ist somit eine Verringerung des manuellen Aufwands möglich. Darüber hin-
aus ist eine Reduktion von Fehlern in Regeln zu erwarten, da die vollständig korrekt 
ermittelten Regeln – bis zu ca. 53 % in den betrachteten Fällen – manuelle Fehler aus-
schließen.  

6.4.2 Fazit 

Forschungsfrage 4 lässt sich auf Basis der vorliegenden Arbeit wie folgt beantworten. 
Regeln in LLKMs lassen sich, mit der im Rahmen der vorliegenden Arbeit entwickelten 
Methode 4, datenbasiert erstellen. Die Zuverlässigkeit, mit der diese erstellt werden ist 
im Rahmen des Betrachtungsumfangs hoch, sodass ein wirtschaftlicher Nutzen zu 
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erwarten ist. Sie ist jedoch nicht ausreichend hoch, um das zugehörige LLKS unüber-
wacht zu betreiben. 

6.4.3 Ausblick 

Methode 4 verfolgt konsequent das Paradigma komplexitätsminimaler Modelle unter 
Gewährleistung einer perfekten Trainingsgenauigkeit. Dadurch erzielt sie im Anwen-
dungsfall bessere Ergebnisse als vergleichbare Methoden nach Stand der Forschung. 
Es ist deshalb nicht davon auszugehen, dass auf Basis derselben Datenmengen Mo-
delle mit höherer Genauigkeit erstellt werden können. Ein Nachteil der Methode ist je-
doch ihr hoher Rechenaufwand. Dieser könnte voraussichtlich reduziert werden, indem 
der Stand der Forschung hinsichtlich Spaltengenerierung ausgeschöpft würde, wie in 
Kapitel 4.4.2.2.1 erwähnt. Dadurch könnten Effizienzprobleme, die für große Konfigu-
rationsmodelle (KMs) auftreten können, gelöst werden. Auch für andere Anwendungs-
fälle des maschinellen Lernens (ML), die Modelle in Form boolescher Ausdrücke mit 
perfekter Trainingsgenauigkeit erfordern, wäre eine solche Weiterentwicklung u. U. ge-
winnbringend. 

6.5 Forschungsfrage 5: Auswahl von repräsentativen Varianten 
zur Erweiterung der Datenbasis 

6.5.1 Diskussion 

Die Demonstration der Methode 5 zeigt, dass eine datenbasierte Erstellung von Regeln 
auf Basis systematisch ausgewählter Datenpunkte einer datenbasierten Erstellung von 
Regeln auf Basis zufällig ausgewählter Datenpunkte überlegen ist. Damit ist die An-
wendung von Methode 5 zur Erweiterung der Datenbasis für eine datenbasierte Erstel-
lung von Regeln effizient. Die Effektivität der Methode 5 ist hingegen dadurch begrenzt, 
dass es Regeln geben kann, die grundsätzlich mit einer relevanten Menge an Daten 
nicht vollständig korrekt datenbasiert abgebildet werden können. Eine rein datenba-
sierte Erstellung von vollständig korrekten Regeln ist somit mit wirtschaftlich vertretba-
rem Aufwand nicht möglich. Dennoch kann Methode 5 genutzt werden, um Regeln mit 
einer hohen Genauigkeit zu erstellen und somit den Korrekturaufwand im Rahmen des 
Auftragsabwicklungsprozesses gering zu halten. Dies kann z. B. in Fällen, in denen die 
Lieferzeit kritisch und nur wenig Wissen über KMs im Unternehmen vorhanden ist, re-
levant sein. Ein grundsätzliches Problem der Methode 5 ist gegenwärtig noch ihr hoher 
Rechenaufwand. Die Rechenzeit steigt mit der Anzahl vorliegender Varianten und 
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betrug in den Experimenten z. B. für 100 Datenpunkte bereits weit über eine Stunde. 
Das schränkt den in Kapitel 4.1.3 beschriebenen iterativen Prozess insofern ein, als der 
Nutzer u. U. auf die Ausgabe des Programms warten muss. 

6.5.2 Fazit 

Forschungsfrage 5 lässt sich auf Basis der vorliegenden Arbeit wie folgt beantworten. 
Die Datenbasis für die datenbasierte Erstellung von LLKMs lässt sich durch die Aus-
wahl von repräsentativen Varianten mittels der im Rahmen der vorliegenden Arbeit ent-
wickelten Methode 5 effizient erweitern. Durch die systematische Auswahl wird die Zu-
verlässigkeit der datenbasiert erstellten Regeln in vielen Fällen signifikant erhöht. Auch 
wenn eine vollständig datenbasierte Erstellung von Regeln nicht wirtschaftlich ist, ist 
dennoch ein wirtschaftlicher Nutzen für die Erstellung ausreichend genauer Regeln in 
bestimmten Anwendungsfällen zu erwarten. 

6.5.3 Ausblick 

Zunächst würde die praktische Anwendung von Methode 5 durch eine Verringerung 
des Rechenaufwands profitieren, sodass eine Interaktion mit dem entsprechenden Pro-
gramm in Echtzeit möglich wird. Hierzu könnte z. B. der Einsatz von Metaheuristiken 
zur Lösung des in Kapitel 4.5.2.5 beschriebenen Optimierungsproblems untersucht 
werden. Des Weiteren könnten grundsätzliche Alternativen zur Erweiterung der Daten-
basis betrachtet werden, wie z. B. die Übertragung von VSTLs und VAPLs verwandter 
Produkte durch eine Zuordnung auf Basis von Syntaktik und Semantik von Produkt-
merkmalen und Positionen. Hierbei ist zwar ein manueller Korrekturaufwand zu erwar-
ten, u. U. könnte dies jedoch in Fällen, in denen geeignete Daten verfügbar sind eine 
sinnvolle Ergänzung zu Methode 5 darstellen. 

6.6 Forschungsfrage 6: Datenbasierte Überprüfung von Regeln 

6.6.1 Diskussion 

Der Vergleich der Ergebnisse für Methode 6 mit zufallsbasierten Benchmarks zeigt, 
dass Methode 6 in der Lage ist, systematisch Fehler in Regeln in LLKMs zu ermitteln, 
mit Ausnahme fehlender Terme. Ein Term entspricht hier einem Fall innerhalb einer 
Regel, der zur Aktivierung einer bestimmten Position der MSTL oder des MAPL führt. 
Ein fehlender Term entspricht somit einem nichtberücksichtigten Fall. Es ist davon aus-
zugehen, dass fehlende Fälle in Regeln großen Einfluss auf die resultierenden VSTLs 
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und VAPLs haben, sodass sie effizient mit empirischem Testen gefunden werden kön-
nen. Im Anwendungsfall konnten jeweils mehr als die Hälfte der in den Regeln vorhan-
denen Fehler bzgl. Variablen bzw. Monomen mit weniger als 400 zu überprüfenden 
Tabelleneinträgen gefunden werden. Damit besteht ein klarer Vorteil der Methode 6 
gegenüber einer unsystematischen Inspektion. 

6.6.2 Fazit 

Forschungsfrage 6 lässt sich auf Basis der vorliegenden Arbeit wie folgt beantworten. 
Regeln in LLKMs lassen sich, durch die im Rahmen der vorliegenden Arbeit entwickelte 
Methode 6, datenbasiert überprüfen. Die Methode ist nicht effektiv beim Finden fehlen-
der Terme in Regeln. Für alle anderen untersuchten Fehlerarten kann sie effektiv und 
effizient eingesetzt werden, um einen gewissen Anteil der Fehler zu identifizieren. Für 
eine wirtschaftliche Identifikation aller oder zumindest nahezu aller Fehler in den Re-
geln eines LLKM muss sie mit anderen Methoden zur Überprüfung von Regeln kombi-
niert werden. 

6.6.3 Ausblick 

Die Einbindung der Methode 6 in betriebliche Abläufe bringt Anforderungen mit sich, 
die im Rahmen der vorliegenden Arbeit nicht berücksichtigt wurden. I. d. R. erfolgt eine 
Überprüfung eines LLKM nicht einmalig, sondern regelmäßig oder anlässlich großer 
Änderungen. Bei jeder Überprüfung über die erste hinaus ist bekannt, welche Bestand-
teile der Regeln zuvor bereits überprüft, für korrekt befunden und seither nicht geändert 
wurden. Diese Information kann zum einen trivial in Methode 6 einfließen, indem die 
entsprechenden Bestandteile nicht mehr als Hinweise vorgeschlagen werden. Zum an-
deren kann sie jedoch auch für die Ermittlung der Ausreißerwerte genutzt werden, in-
dem korrekte Felder der Literal- und Monomtabelle höher gewichtet werden. Eine sol-
che Weiterentwicklung der Methode 6 kann auf lange Sicht zu ihrem wirtschaftlichen 
Einsatz im Unternehmen beitragen. 
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7 Zusammenfassung 
Konfigurationssysteme sind ein wichtiges Werkzeug für Industrieunternehmen zur Au-
tomatisierung und damit Rationalisierung der Arbeitsablaufplanung im Rahmen des 
Auftragsabwicklungsprozesses. Großes Potenzial besteht insbesondere in der automa-
tischen Konfiguration von variantenbezogenen Stücklisten und Arbeitsplänen, d. h. in 
der Produkt- und Prozesskonfiguration. Bisher werden Konfigurationssysteme in die-
sem Bereich dennoch nicht umfassend eingesetzt. Wesentliche Hinderungsgründe sind 
der Aufwand für die Erstellung sowie die hohe Fehleranfälligkeit der hinterlegten Konfi-
gurationsmodelle, welche die Rahmenbedingungen und Regeln der Konfiguration fest-
legen. Diese Herausforderungen können durch datenbasierte Methoden, wie z. B. Ver-
fahren des maschinellen Lernens, adressiert werden. Hierdurch können Modelle für die 
Produkt- und Prozesskonfiguration zum einen effizient erstellt und zum anderen effi-
zient überprüft werden. Nach Stand der Forschung sind jedoch datenbasierte Metho-
den im Zusammenhang mit Konfigurationsmodellen nur rudimentär erforscht. 

Ziel der vorliegenden Arbeit war es deshalb, die wissenschaftlichen Grundlagen für den 
Einsatz datenbasierter Methoden zur Erstellung und Überprüfung von Modellen für die 
Produkt- und Prozesskonfiguration zu erarbeiten. Hierfür wurden sechs Methoden ent-
wickelt. Methode 1 dient der datenbasierten Erstellung von Produkt- und Prozesskonfi-
gurationsmodellen. Es wurde ein Schema für derartige Konfigurationsmodelle entwi-
ckelt. Dieses ermöglicht über den Stand der Forschung hinaus alternative Strukturen 
für Stücklisten und Arbeitspläne, z. B. in Abhängigkeit der vom Kunden gewählten Va-
riante, zu berücksichtigen. Die Anwendungsfälle für eine datenbasierte Erstellung von 
Produkt- und Prozesskonfigurationsmodellen in der Industrie wurden in systematisch 
hergeleiteten Anwendungsszenarien zusammengefasst. Die herausgearbeiteten An-
wendungsszenarien werden durch Methode 1 adressiert, indem die untergeordneten 
Methoden 2 bis 5 integriert werden. 

Die Methoden 2 und 3 dienen der datenbasierten Erstellung von Maximalstücklisten 
bzw. Maximalarbeitsplänen. Kern der beiden Methoden ist jeweils die Ermittlung mini-
maler Maximalstücklisten bzw. Maximalarbeitsplänen sowie einer minimalen Anzahl 
von Strukturoptionen um die zugrundeliegenden variantenbezogenen Stücklisten bzw. 
Arbeitspläne korrekt daraus konfigurieren zu können. Hierfür werden jeweils eine heu-
ristische Tiefensuche und eine ganzzahlige lineare Optimierung eingesetzt. Die entwi-
ckelte Methode 4 dient der datenbasierten Erstellung von Regeln. Sie fokussiert Regeln 
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von binären Parametern. Entsprechend ist die Methode ein Verfahren des maschinellen 
Lernens für Datensätze mit binären Labels. Die Methode nutzt ganzzahlig lineare Opti-
mierung mittels Spaltengenerierung, um Modelle in Form minimaler boolescher Aus-
drücke zu lernen. Die entwickelte Methode 5 dient der Erweiterung der Datenbasis 
durch gezielte Auswahl von repräsentativen Varianten aus dem Konfigurationsraum. 
Varianten werden so ausgewählt, dass mit wenigen zusätzlichen Daten möglichst ge-
naue Konfigurationsmodelle erstellt werden können. Die Methode nutzt multikriterielle 
ganzzahlige Optimierung, um zulässige und optimale Varianten auszuwählen, wobei 
Diversität und die Verkleinerung des Versionenraums als Kriterien berücksichtigt wer-
den. Methode 6 komplementiert Methode 1 durch die datenbasierte Überprüfung von 
Regeln in Konfigurationsmodellen. Hierfür werden die Regeln zunächst in eine tabella-
rische Darstellung transformiert. Anschließend wird ein Verfahren des unüberwachten 
maschinellen Lernens mittels eines Random-Forest-Algorithmus angewandt, das im 
Rahmen der vorliegenden Arbeit entwickelt wurde. Hiermit können Hinweise auf Ano-
malien in den tabellarischen Daten und damit den Regeln generiert werden. 

Die Methoden 1 bis 6 stellen jeweils Fortschritte gegenüber dem Stand der Forschung 
dar und ermöglichen insgesamt eine ganzheitliche datenbasierte Erstellung und Über-
prüfung von Modellen zur Produkt- und Prozesskonfiguration. Um die Anwendbarkeit 
der Methoden zu überprüfen und deren Effektivität zu beurteilen, wurden diese jeweils 
als Computerprogramme implementiert und für reale oder synthetische Daten demons-
triert. Für die Demonstration an synthetischen Daten wurde im Rahmen der vorliegen-
den Arbeit je eine Methode zur Erzeugung gleichmäßig zufälliger Maximalstücklisten 
und Maximalarbeitsplänen entwickelt. Dadurch wurde eine Demonstration der Metho-
den 2 und 3 für allgemeine Fälle ermöglicht. Die Demonstrationen haben gezeigt, dass 
alle entwickelten Methoden grundsätzlich funktionsfähig sind und geeignet sind, die 
entsprechenden Probleme der datenbasierten Erstellung und Überprüfung von Konfi-
gurationsmodellen zu lösen. Mittels Methode 2 können Maximalstücklisten ohne mehr-
fach auftretende Zukaufkomponentenklassen und ohne Strukturoptionen mit einer 
Größe von bis zu 100 Zukaufkomponentenklassen bereits mit einer mittleren zweistel-
ligen Anzahl von Datenpunkten zuverlässig erstellt werden. Damit kann Methode 2 für 
entsprechende Anwendungsfälle in der Praxis eingesetzt werden. Für Methode 3 konn-
ten sogar für alle Ausprägungen von Maximalarbeitsplänen mit bis zu 100 Arbeitsvor-
gangsklassen gute Ergebnisse mit einer mittleren zweistelligen Anzahl von Datenpunk-
ten erzielt werden. Damit ist auch diese Methode für entsprechende Anwendungsfälle 
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in der Praxis geeignet. Es konnte gezeigt werden, dass Methode 4 für die datenbasierte 
Erstellung von Regeln den existierenden Methoden nach Stand der Forschung überle-
gen ist. Für die Produkte eines Industriepartners konnten Regeln auf Basis von ca. 100 
Datenpunkten mit einer Genauigkeit von über 99 % erstellt werden. Die Ergebnisse 
implizieren, dass die datenbasierte Erstellung vollständig korrekter Regeln nicht mit 
praxisrelevanten Datenmengen möglich ist. Dennoch kann diese Methode in einigen 
der herausgearbeiteten Anwendungsszenarien gewinnbringend eingesetzt werden. 
Werden keine Daten zufälliger Varianten betrachtet, sondern Varianten mit der hierfür 
entwickelten Methode 5 ausgewählt, bleibt diese Aussage gültig, es kann jedoch eine 
deutliche Effizienzsteigerung erreicht werden. Die Demonstrationen der Methoden 2 bis 
5 zeigen, dass Methode 1 zur datenbasierten Erstellung von Low-Level-Konfigurations-
modellen in vielen praktischen Anwendungsszenarien sinnvoll eingesetzt werden kann. 
Für die datenbasierte Überprüfung von Regeln mit Methode 6 hat sich ergeben, dass 
ein fallabhängiger Anteil von mehr als 50 % der eingebrachten Fehler effizient gefunden 
werden konnte. Damit stellt die Methode eine sinnvolle Ergänzung bestehender Metho-
den zur Überprüfung von Konfigurationsmodellen dar.  

Alles in allem kann festgehalten werden, dass die im Rahmen der vorliegenden Arbeit 
entwickelten Methoden die datenbasierte Erstellung und Überprüfung von Modellen zur 
Produkt- und Prozesskonfiguration ermöglichen. Zum einen leistet die Arbeit damit ei-
nen Beitrag zum weitergehenden Einsatz von Konfigurationssystemen in der Arbeits-
ablaufplanung und damit zur Effizienzsteigerung in Industrieunternehmen. Zum ande-
ren legt sie einen Grundstein für eine weitergehende Forschung an datenbasierten Me-
thoden für die Erstellung und Überprüfung von Modellen zur Produkt- und Prozesskon-
figuration. 
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Erklärung zum Einsatz von generativer künstlicher Intelli-
genz  
Nach den „Living guidelines on the responsible use of generative ai in research“ (März 
2024) der europäischen Kommission ist der Einsatz generativer künstlicher Intelligenz 
durch Wissenschaftler transparent darzustellen (European Commission 2024, S. 6). Im 
Folgenden werden deshalb Werkzeuge, die auf generativer künstlicher Intelligenz ba-
sieren und für die Erstellung der vorliegenden Arbeit verwendet wurden, vollständig 
aufgeführt. Dabei wird erklärt in welcher Weise und welchem Umfang sie eingesetzt 
wurden. Die mittels generativer künstlicher Intelligenz erstellten Inhalte wurden vom 
Autor der vorliegenden Arbeit stets überprüft und nur insoweit verwendet, als sie für 
korrekt befunden wurden. Die Verantwortung für die Inhalte der vorliegenden Arbeit 
liegt somit entsprechend European Commission (2024, S. 6) ausschließlich beim Autor. 
Die folgenden Werkzeuge wurden verwendet: 

DeepL Translator 
Link: https://www.deepl.com/de/translator (zuletzt überprüft am 07.06.2025) 
Funktion: Übersetzung 
Einsatz: Das Werkzeug wurde genutzt um die Kurzzusammenfassung der vorliegen-
den Arbeit ins Englische zu übersetzen. Die vorgeschlagene Übersetzung wurde an 
mehreren Stellen korrigiert. 

DeepL Write und LanguageTool Premium 
Link: https://www.deepl.com/de/write (zuletzt überprüft am 07.06.2025) 
Funktion: Lektorat 
Einsatz: Die Werkzeuge wurden genutzt um große Teile der vorliegenden Arbeit auf 
Rechtschreibung, Grammatik und Stil zu überprüfen und Korrekturvorschläge zu er-
halten. Hinweise zu Rechtschreibung und Grammatik wurden in vielen Fällen über-
nommen. Hinweise zu stilistischen Verbesserungen des Textes wurden in wenigen 
Fällen übernommen. 

Elicit, Scispace und scite Assistant 
Links: https://elicit.com/ (zuletzt überprüft am 07.06.2025), https://scispace.com/ (zu-
letzt überprüft am 07.06.2025) bzw. https://scite.ai/assistant (zuletzt überprüft am 
07.06.2025) 
Funktion: Zusammenfassende Beschreibung des Stands der Forschung  
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Einsatz: Die Werkzeuge wurden genutzt um auf Basis einer textlichen Eingabe (z. B. 
einer Frage) eine Beschreibung des entsprechenden Stands der Forschung zu erstel-
len. Auf Basis dessen wurde potenziell relevante Literatur ausgewählt. Die Werk-
zeuge wurden insbesondere nicht genutzt um Inhalte für die vorliegende Arbeit zu er-
stellen. Ein kleiner Teil der in der vorliegenden Arbeit verwendeten Literatur wurde auf 
diese Weise gefunden. 

GitHub Copilot und OpenAI ChatGPT 
Links: https://github.com/features/copilot (zuletzt überprüft am 07.06.2025) bzw. 
https://chatgpt.com/ (zuletzt überprüft am 07.06.2025) 
Funktion: Generierung, Korrektur und Dokumentation von Programmcode  
Einsatz: Die Werkzeuge wurden genutzt um die im Rahmen der vorliegenden Arbeit 
entwickelten Algorithmen effizient in Programmcode zu implementieren. Für einen 
kleinen Teil des Programmcodes, insbesondere einfache Teilfunktionen, wurde mit 
diesen Werkzeugen ein erster Entwurf auf Basis einer textlichen Beschreibung er-
stellt. Dieser wurde i. d. R. anschließend überarbeitet. Vereinzelt wurden mit diesen 
Werkzeugen Ursachen für Fehler im Programmcode ermittelt. Für einen großen Teil 
des Programmcodes wurden diese Werkzeuge genutzt um einen Entwurf für Doku-
mentationen (Beschreibung von Funktionen, Parametern und Ausgaben) zu erstellen. 
Dieser wurde i. d. R. anschließend überarbeitet. 
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Anhang 
A1 Anhang zu Kapitel 2.3 

A1.1 Spaltengenerierung 

Spaltengenerierung (CG) ist ein Prinzip, um Probleme der linearen Optimierung (LP) 
mit einer großen Anzahl von Variablen effizient zu lösen. Die konkrete Ausgestaltung 
entsprechender Ansätze ist vom Anwendungsfall abhängig. Im Folgenden wird auf ei-
nen Typ von CG näher eingegangen, der von Wilhelm (2001) als Typ II bezeichnet wird. 
Für die vorliegende Arbeit ist ausschließlich dieser Typ von CG relevant, weshalb in der 
vorliegenden Arbeit mit CG ausschließlich CG Typ II gemeint ist. Die Erklärung von CG 
im vorliegenden Kapitel basiert auf Wilhelm (2001). 

Ein allgemeines LP-Problem lässt sich wie folgt darstellen: 

 MP ݉݅݊ ܿଵ   ݑଵ + … + ܿே  ே   A1.1ݑ   

.ݏ   ଵݑ ଵ,ଵܽ :.ݐ + … + ܽே,ଵ ݑே ≥ ܾଵ   

   ⋮ ⋱ ⋮ ⋮   

   ܽெ,ଵݑଵ + … + ܽெ,ேݑே  ≥ ܾெ   

,ଵݑ      … ≤  ேݑ, 0    .  

Dabei bezeichnen ࢉ = (ܿଵ, … , ܿே) die Zielfunktionskoeffizienten, ࢛ = ,ଵݑ) … -ே) die Vaݑ,

riablen, ࡭ = ൥ܽଵ,ଵ ⋯ ܽଵ,ே⋮ ⋱ ⋮ܽெ,ଵ ⋯ ܽெ,ே൩ die Koeffizienten der Nebenbedingungen und ࢈ =(ܾଵ, … , ܾெ) die rechten Seiten der Nebenbedingungen. Im Kontext der CG wird dieses 
Problem als Master-Problem (MP) bezeichnet. Die Koeffizienten der Nebenbedingun-
gen bilden eine Matrix ࡭ mit ܯ Zeilen und ܰ Spalten, wobei jeder Zeile einer Nebenbe-
dingung und jeder Spalte einer Variablen zugeordnet werden kann. Das Problem kann 
kompakt wie folgt dargestellt werden:  

 MP ݉݅݊  ்࢛ࢉ   A1.2 

.ݏ   ≤ ்࢛࡭ :.ݐ    ்࢈

      ்࢛ ≥ ૣ  .  



II Anhang 
 

 

Die Berechnungsdauer für die Lösung des MP steigt mit der Anzahl von Variablen, 
weshalb LP-Probleme mit einer großen Anzahl von Variablen nicht in vertretbarer Zeit 
gelöst werden können. Es wird angenommen, dass eine zulässige, i. d. R. nicht opti-
male, Lösung des MP bekannt ist. Diese kann z. B. durch eine problemspezifische Heu-
ristik generiert werden. Seien ݑ௜௕ die Basisvariablen dieser Lösung, d. h. es gilt ݑ௜௕ ≠ 0 
und für alle anderen Variablen ݑ௜௡௕ = 0. Nun kann ein neues, reduziertes Master-Prob-
lem (RMP) aufgestellt werden, das nur die Basisvariablen enthält: 

 RMP ݉݅݊  ࢉ ࢛௕்   A1.3 

.ݏ   ≤ ௕࢛௕்࡭ :.ݐ    ்࢈

        ࢛௕் ≥ ૣ   .  

Im Folgenden wird zur einfachen Lesbarkeit auf das Superskript ܾ verzichtet, wenn er-
sichtlich ist, dass ein RMP vorliegt. Da für jede Lösung des RMP implizit angenommen 
wird, dass alle initialen Nicht-Basisvariablen 0 sind, ist der Lösungsraum gegenüber 
dem MP eingeschränkt. Eine optimale Lösung des RMP entspricht damit nicht zwin-
gend einer optimalen Lösung des MP. Die Idee hinter CG ist es, dem RMP schrittweise 
noch nicht berücksichtigte Variablen und damit der Matrix A Spalten hinzuzufügen. Mit 
jeder hinzugefügten Variablen wird der Lösungsraum erweitert und es können evtl. bes-
sere Lösungen gefunden werden. Um das Verfahren effizient zu gestalten, werden nur 
solche Spalten hinzugefügt, die bessere Lösungen ermöglichen. Die Methode termi-
niert, sobald keine solche Spalte mehr existiert. Um Spalten zu ermitteln, die eine bes-
sere Lösung des RMP ermöglichen, wird ein Subproblem (SP), oft als Pricing-Problem 
bezeichnet, aufgestellt. Hierfür wird zunächst das zum RMP gehörende Dualproblem 
(DP) aufgestellt. Es lautet: 

 DP ்݉ܽ࢜࢈   ݔ   A1.4 

.ݏ   ≤ ்்࢜࡭ :.ݐ    ்ࢉ

        ்࢜ ≥ ૣ   .  

Dabei bezeichnen ࢜ = ,ଵݒ) … , -ெ) die Variablen des DP. Entsprechend der Dualitätseiݒ
genschaft linearer Optimierungsprobleme ist jeder Variable im RMP eine Nebenbedin-
gung im DP zugeordnet und jeder Nebenbedingung im RMP eine Variable im DP. Für 
das DP wird eine optimale Lösung ࢜∗ berechnet. Die Ausprägungen der Dualvariablen ࢜∗ = ,∗ଵݒ) … , ∗ெݒ ) in der optimalen Lösung stellen Opportunitätskosten der 
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Nebenbedingungen im primalen Problem dar. Für eine Nebenbedingung ݅ im RMP gibt ݒ௜∗ an, um wie viel sich der optimale Zielfunktionswert des RMP verringern würde, wenn ܾ௜ um 1 verringert werden und damit der Lösungsraum von RMP vergrößert werden 
würde. Diese Verbesserung kann so weit ausgeschöpft werden, bis die Nebenbedin-
gung ݅ nicht mehr aktiv ist. Wird nun dem RMP eine neue Spalte ܰ + 1 hinzugefügt und 
hat diese für eine Nebenbedingung ݅ einen Koeffizienten ܽ௜,ேାଵ, ergibt sich die neue 
Nebenbedingung ݅ als 
  ܽ௜ଵݑଵ + ⋯+ ேܽ௜ேݑ + ேାଵܽ௜,ேାଵݑ ≥ ܾ௜,  A1.5 

was 
  ܽ௜ଵݑଵ + ⋯+ ேܽ௜ேݑ ≥ ܾ௜ −  ேାଵܽ௜,ேାଵ  A1.6ݑ

entspricht. Die neue Spalte entspricht für ܽ௜,ேାଵ ≥ 0 also einer Verringerung von ܾ௜ um ݑேାଵܽ௜,ேାଵ und ermöglicht damit eine Verbesserung des optimalen Zielfunktionswerts 
des RMP um ݑேାଵܽ௜,ேାଵݒ௜∗. Dieser Verbesserung des Zielfunktionswerts steht eine Ver-
schlechterung des Zielfunktionswerts durch die Wahl von ݑேାଵ > 0 aufgrund des Ziel-
funktionskoeffizienten ܿேାଵ von ݑேାଵ gegenüber. Um also dem RMP Spalten hinzuzu-
fügen, die eine möglichst große Verbesserung des optimalen Zielfunktionswerts des 
RMP ermöglichen, ist ein Subproblem mit der folgenden Zielfunktion zu lösen. 

 SP ݉ܽݔ min ܿேାଵ(ܽ௜,ேାଵ) − ෍ ܽ௜,ேାଵݒ௜∗௜∈{ଵ,…,ெ}   A1.7 

.ݏ   ≤ ௜,ேାଵܽ  :.ݐ 0 ∀݅ ∈ {1, …    {ܯ,

Ist das MP vollständig explizit formuliert, sind die Kosten ܿேାଵ für jede mögliche Spalte 
bekannt. Außerdem ist bekannt, welche Spalten, d. h. welche ࢇேାଵ = (ܽଵ,ேାଵ, … ,ܽெ,ேାଵ) 
gewählt werden können. Entsprechend sind die Nebenbedingungen des SP zu formu-
lieren. In vielen Fällen, in denen CG zum Einsatz kommt, ist jedoch die Anzahl von 
Variablen und damit Spalten des MP so groß, dass es zu aufwendig wäre, sie explizit 
zu formulieren. Wenn diese Spalten und deren Kosten jedoch gewissen Regeln folgen, 
können die Nebenbedingungen des SP und die Kosten in Abhängigkeit der gewählten 
Spalte entsprechend formuliert werden. Dadurch müssen nicht alle möglichen Spalten 
vorab bekannt sein – eine Stärke der CG. 

Zuletzt sei darauf hingewiesen, dass die hier vorgestellte Form der CG nur für stetige 
LP und nicht für ganzzahlige lineare Optimierung (ILP) gilt, weil für ILP-Probleme zum 
RMP kein DP aufgestellt werden kann. Um CG auf ILP-Probleme anwenden zu können, 
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müssen das MP und das RMP auf stetige LP-Probleme relaxiert werden. Über das re-
laxierte reduzierte Master-Problem (XRMP) kann eine optimale Lösung des relaxierten 
Master-Problems (XMP) berechnet werden. Diese ist jedoch nicht zwingend ganzzah-
lig. Ggf. müssen zusätzlich Metaverfahren zur Lösung von ILP-Problemen – wie z. B. 
Branch and Bound – angewandt werden. 

A2 Anhang zu Kapitel 3.2.2 

A2.1 Phylogenetik 

Die Phylogenetik ist ein Fachgebiet, das sich mit den evolutionären Beziehungen zwi-
schen Lebewesen befasst (Abaza 2020, S. 68). Abstammungsbeziehungen zwischen 
Lebewesen werden in der Phylogenetik u. a. als Bäume dargestellt. Es existieren zahl-
reiche Ansätze, um die Abstammungsbeziehungen aus mehreren phylogenetischen 
Bäumen zusammenzuführen. Diese Problemstellung ist mit der Erstellung einer Maxi-
malstückliste (MSTL) auf Basis variantenbezogener Stücklisten (VSTLs) vergleichbar. 
Deshalb sind zugehörige Ansätze der Phylogenetik auch für die vorliegende Arbeit re-
levant. Im Folgenden wird auf die relevanten Begriffe der Phylogenetik und die Über-
tragbarkeit bestehender Ansätze eingegangen.  

Die Blätter phylogenetischer Bäume stellen Taxa, d. h. Gruppen genetisch ähnlicher 
Organismen, dar, die jeweils durch ein Label76 annotiert sind (Abaza 2020, S. 68). In-
nere Knoten stellen Verzweigungspunkte in der Evolutionären Entwicklung dar (Abaza 
2020, S. 68). Wenn die Bäume als VSTLs interpretiert werden, stellen die Taxa Zukauf-
komponenten (ZKs) dar, welche z. B. mit ihrer Bezeichnung als Label versehen sind. 
Die inneren Knoten entsprechen Baugruppen. Abstammungsbeziehungen zwischen 
Lebewesen können sog. Retikulationen aufweisen, d. h. Fälle in den ein Organismus 
von mehr als einem anderen Organismus abstammt (Bastide et al. 2018, S. 800). Damit 
können verschiedene phylogenetische Bäume verschiedene Abstammungen für den-
selben Organismus enthalten. Werden somit Abstammungsbäume zusammengeführt 
resultiert deshalb u.U. kein Baum, sondern ein allgemeiner Graph. Dieser wird auch als 
Netzwerk bezeichnet (Huson & Linz 2018, S. 398). Moussa & ElMaraghy (2018), die 
einen Ansatz der Phylogenetik auf die industrielle Montage übertragen, interpretieren 

                                         
76 Der Begriff Label wird hier im Sinne der Phylogenetik verwendet und ist nicht zu verwechseln mit dem Begriff 
Label im Kontext des maschinellen Lernens (siehe Kapitel 2.3.1). 
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Retikulationen als alternative Fügereihenfolgen. Sie nutzen deshalb ebenfalls Netz-
werke um Fügereihenfolgen darzustellen. 

Abbildung A2.1 zeigt das von Moussa & ElMaraghy (2018) verwendete Beispiel für die
Synthese eines Master Assembly Networks aus sieben Assembly Sequence Trees (T1 
bis T7). In ihrer Funktion sind Master Assembly Networks mit MSTLs und Assembly 
Sequence Trees mit VSTLs vergleichbar. Aus dem Master Assembly Network können 
Assembly Sequence Trees konfiguriert werden indem ausgewählte Retikulationskanten 
(in der Abbildung farbig hervorgehoben) sowie ausgewählte Blätter entfernt werden. Es 
ist ersichtlich, dass z. B. der Baum T6 nicht aus dem Netzwerk konfiguriert werden 
kann, obwohl er verwendet wurde um das Netzwerk zu erstellen. Dabei handelt es sich 
um ein grundsätzliches Problem bei der Übertragung von Ansätzen der Phylogenetik 
auf die industrielle Montage. In der Phylogenetik existiert die Anforderung, dass ein 

3      2      1       7      5      8        6      4

4        3       2       1        4       3        5       1    4    8      6    2     1       4      6    3    7       1

4       8   3     7     1         5    4       3   2     1            5     4     3     2    1

T1 T2 T3 T4

T5 T6 T7

Assembly Sequence Trees

Master Assembly Network

Abbildung A2.1: Beispiel von Moussa & ElMaraghy (2018) für die Synthese eines Mas-
ter Assembly Networks aus Assembly Sequence Trees (eigene Darstellung auf Basis
von Moussa & ElMaraghy (2018, S. 795))
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synthetisierter Baum oder ein synthetisiertes Netzwerk in der Lage sein muss die zu 
seiner Synthese verwendeten Bäume darzustellen (engl. display). Im Folgenden wird 
gezeigt, dass dies nicht identisch mit der Anforderung, dass aus einer MSTL, alle zu 
ihrer Erstellung verwendeten VSTLs konfiguriert werden können, ist. Damit garantieren 
Verfahren der Phylogenetik nicht die in Kapitel 3.2.1 geforderte Informationserhaltung.

Sei ein Cluster ܮ(ܰ) eines Knotens ܰ definiert als Menge aller Labels, die dem Knoten 
direkt oder indirekt untergeordnet sind77. Beispielsweise entspricht die Wurzel von 
Baum 1 in Abbildung A2.2 dem Cluster .{ܥ,ܤ,ܣ}

Sei ܮ(ܶ) für einen Baum ܶ definiert als das Cluster seiner Wurzel, d. h. als alle Labels,
die in ihm auftreten. Sei ݈ܥ(ܶ) die Menge aller Cluster in einem Baum ܶ. Es gilt damit 
z. B. ݉ݑܽܤ)݈ܥ 1) = ,{ܥ,ܤ,ܣ}} ,{ܤ,ܣ} ,{ܣ} ,{ܤ} (ܮ|ܶ)݈ܥ Sei .{{ܥ} die Menge aller nichtlee-
ren Cluster in ݈ܥ(ܶ) jeweils projiziert auf eine Menge ܮ an Labels. Im Beispielfall gilt
damit ݉ݑܽܤ)ܮ|݉ݑܽܤ.ݐ݊ݕܵ)݈ܥ 1)) = =(({ܥ,ܤ,ܣ}|݉ݑܽܤ.ݐ݊ݕܵ)݈ܥ ,{ܥ,ܤ,ܣ}} ,{ܤ,ܣ} ,{ܣ} ,{ܤ} {{ܥ} A2.1

                                        
77 Die hier und im Folgenden verwendete Notation entspricht der von Deng & Fernández-Baca (2018).

ABC

A B C

AB

ABCD

A B C D

AB

ABCD

A B C D

Baum 1
(VSTL 1)

Baum 2
(VSTL 2)

Synthetisierter Baum (MSTL)

Baum 3
(VSTL 3)

A B

AB

MSTL = Maximalstückliste, VSTL = Variantenbezogene Stückliste

Abbildung A2.2: Darstellbarkeit im Sinne der Phylogenetik
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Damit gilt also im Beispielfall (1 ݉ݑܽܤ)݈ܥ =  ,Generell gilt .((1 ݉ݑܽܤ)ܮ|݉ݑܽܤ.ݐ݊ݕܵ)݈ܥ
dass ein Baum ܶ einen Baum ܶ′ darstellt, falls  
(′ܶ)݈ܥ  ⊆  A2.2 ((′ܶ)ܮ|ܶ)݈ܥ

gilt (Deng & Fernández-Baca 2018, S. 2455). Gemäß dieser Definition stellt also der 
synthetisierte Baum den Baum 1 dar. Für Baum 2 gilt 
(2 ݉ݑܽܤ)݈ܥ  = ൛{ܦ,ܥ,ܤ,ܣ}, ,{ܣ} ,{ܤ} ,{ܥ} ⊃ ൟ{ܦ} ൛{ܦ,ܥ,ܤ,ܣ}, ,{ܤ,ܣ} ,{ܣ} ,{ܤ} ,{ܥ} ൟ{ܦ} =   (2 ݉ݑܽܤ)ܮ|݉ݑܽܤ.ݐ݊ݕܵ)݈ܥ

A2.3 

 und für Baum 3 
(3 ݉ݑܽܤ)݈ܥ  = ൛{ܤ,ܣ}, ,{ܣ} ൟ{ܤ} ⊂ ൛{ܤ,ܣ}, ,{ܣ} = ൟ{ܤ}  .(3 ݉ݑܽܤ)ܮ|݉ݑܽܤ.ݐ݊ݕܵ)݈ܥ

A2.4 

D. h. der synthetisierte Baum stellt auch die Bäume 2 und 3 dar. Damit existiert ein 
Baum, der die Bäume 1, 2 und 3 darstellen kann. Damit gelten die Bäume 1, 2 und 3 
im Sinne der Phylogenetik als kompatibel. Werden die Bäume jedoch als VSTLs bzw. 
MSTLs aufgefasst, ist es nicht möglich, VSTL 2 aus der MSTL zu konfigurieren. Wird 
die Komponente AB der MSTL nicht instanziiert, können auch A und B nicht instanziiert 
werden. Wird Komponente AB hingegen instanziiert, ergibt sich eine VSTL, die eine 
Baugruppe AB enthält und somit nicht VSTL 2 entspricht. Die Darstellbarkeit im Sinne 
der Phylogenetik ist damit zwar eine notwendige, aber keine hinreichende Bedingung 
dafür, dass eine VSTL aus einer MSTL konfiguriert werden kann. Damit eine VSTL aus 
einer MSTL konfiguriert werden kann, muss stattdessen 
(′ܶ)݈ܥ  =  A2.5 ((′ܶ)ܮ|ܶ)݈ܥ

gelten. Deshalb sind Ansätze der Phylogenetik zur Synthese von Netzwerken aus Bäu-
men nicht unmittelbar geeignet um MSTLs aus VSTLs datenbasiert zu erstellen. 

Es sei angemerkt, dass die Definition der Konfigurierbarkeit nicht impliziert, dass die 
Anzahl der Komponenten in der MSTL identisch zur Anzahl der Komponenten in der 
VSTL sein muss. Zum einen gibt es Komponenten in der MSTL, deren Cluster durch 
die Projektion auf ܮ(ܶ′) zu leeren Mengen und damit nicht berücksichtigt werden, wie 
z. B. die Komponente C für ((3 ܮܸܶܵ)ܮ|ܮܶܵܯ)݈ܥ. Zum anderen gibt es Komponenten 
in der MSTL, deren Cluster auf dieselben Mengen projiziert und im Sinne der klassi-
schen Mengenlehre nicht mehrfach betrachtet werden, wie z. B. die Komponenten 
ABCD und AB für ((3 ܮܸܶܵ)ܮ|ܮܶܵܯ)݈ܥ. Da es in Baum 3 weder eine ZK C noch eine 
ZK D gibt, werden sowohl das Cluster von ABCD als auch das von AB auf das Cluster {ܤ,ܣ} projiziert. Zwei Komponenten der MSTL steht somit eine Komponente der VSTL 
3 gegenüber. Wenn VSTL 3 aus der MSTL konfiguriert wird, ist nicht eindeutig, aus 
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welcher Klasse der MSTL die Komponente AB in VSTL 3 instanziiert wird. Generell 
können Fälle auftreten, in denen einer Baugruppe einer VSTL mehrere Komponenten-
klassen (KKs) der MSTL zugeordnet werden können. Dieser Sachverhalt ist für den im 
Rahmen der vorliegenden Arbeit entwickelten Algorithmus AlgMSTL (siehe Kapitel A3.1) 
relevant. 

Zuletzt sei angemerkt, dass VSTL 1 und VSTL 2 unterschiedliche Angaben über die 
Fügereihenfolge der ZKs A, B und C machen. Nach VSTL 1 werden zunächst A und B 
gefügt und anschließend die resultierende Baugruppe AB mit C. In VSTL 2 werden A, 
B und C zugleich gefügt. Es liegen somit Strukturalternativen (STAs) in den VSTLs vor. 
Deshalb kann es keine MSTL mit Baumstruktur geben, die jeweils einmal die ZK A, B 
und C enthält und die Konfiguration von VSTL 1 und VSTL 2 zulässt. Kapitel 4.1.1 geht 
auf die Berücksichtigung von STAs in MSTLs ein. 

A3 Anhang zu Kapitel 4.2 

A3.1 Beschreibung und Pseudocode zu Algorithmus AlgMSTL 

AlgMSTL basiert auf dem Algorithmus BuildST von Deng & Fernández-Baca (2018). 
BuildST berücksichtigt die Darstellbarkeit der eingehenden Bäume bei der Synthese 
eines Netzwerks im Sinne der Phylogenetik. Demgegenüber berücksichtigt AlgMSTL die 
Konfigurierbarkeit von variantenbezogenen Stücklisten (VSTLs) aus einer Maximal-
stückliste (MSTL) (siehe Anhang A2). Der Algorithmus wird anhand des Beispiels in 
Abbildung A3.1 (1) erläutert und findet sich am Ende des Kapitels in Pseudocode. 

Zu Beginn liegt eine Menge ܵ௏ௌ்௅ an VSTLs ohne Multikomponenten vor. Der Produkt-
klasse der zu erstellenden MSTL muss direkt oder indirekt je eine Zukaufkomponen-
tenklasse (ZKK) je Zukaufkomponente (ZK) in allen VSTLs aus ܵ௏ௌ்௅ untergeordnet 
sein. Damit entspricht ihr Cluster immer der Vereinigung aller Cluster der Wurzeln aller 
VSTLs aus ܵ௏ௌ்௅. Aus einer solchen Produktklasse lassen sich immer alle Wurzeln der 
VSTLs instanziieren. Es wird deshalb zu Beginn eine entsprechende Produktklasse in 
die MSTL eingefügt und die Wurzeln der VSTLs dieser Produktklasse zugeordnet und 
markiert (1). Die Cluster der KKs der nächsten Ebene müssen eine Partition des Clus-
ters der Produktklasse darstellen, d. h. im Beispielfall paarweise disjunkte Teilmengen 
der Menge {ܧ,ܦ,ܥ,ܤ,ܣ}. Die Erstellung der MSTL folgt dem Prinzip, die Cluster der 
Komponentenklassen (KKs) sukzessive zu partitionieren, um so die MSTL von oben 
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nach unten aufzubauen. Partitionen können Cluster von Komponenten zerteilen. In die-
sem Fall kann diese Komponente weder durch eine aus der Partitionierung entstehende 
KK noch durch eine KK einer untergeordneten Ebene instanziiert werden. Das Cluster 
einer Komponente darf durch eine Partitionierung nur dann zerteilt werden, wenn diese 
Komponente bereits einer KK der MSTL zugeordnet ist und somit instanziiert werden 
kann. Es wäre also im Beispielfall nicht möglich, das Cluster {ܧ,ܦ,ܥ,ܤ,ܣ} der Klasse
ABCDE als ,{ܤ,ܣ}} {{ܧ,ܦ,ܥ} zu partitionieren, da in diesem Fall u. a. die Komponente 
ABC, welche noch keiner KK zugeordnet ist, nicht mehr instanziiert werden könnte. 

Um eine zulässige Partition unterhalb der zuletzt eingefügten Klasse zu bestimmen,
werden die Cluster der Komponenten der nächsten Ebene betrachtet. Es werden Inseln 
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Zwei Cluster aus einer VSTL
Substitution durch übergeordnete Komponente

MSTL = Maximalstückliste, VSTL = Variantenbezogene Stückliste

Abbildung A3.1: Beispielhafte Ausführung von AlgMSTL
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von überlappenden Clustern gebildet (Abbildung A3.1, 2). Jede Insel entspricht einer 
neu hinzuzufügenden KK der MSTL. Die Inseln bilden eine zulässige Partition, da bei 
der Inselbildung keine Cluster von nicht zugeordneten Komponenten geteilt werden 
können. Größere Partitionen, d. h. solche mit mehr Inseln, sind nicht möglich. Eine klei-
nere Partition, wie sie z. B. entstehen würde, wenn alle betrachteten Komponenten in 
einer Insel zusammengefasst würden, erscheint zunächst möglich. Allerdings würde 
eine solche Partition zu KKs in der MSTL führen, die keine Entsprechungen in den 
VSTLs aufweisen. Dies würde der Definition der Konfigurierbarkeit in Anhang A2 wider-
sprechen. Damit ist die so gebildete Partition – im Beispielfall {{ܧ,ܥ,ܤ,ܣ}, -zwin – {{ܦ}
gend. Es sei angemerkt, dass das Cluster der Komponente ABCD durch diese Partition 
geteilt wird. Damit kann die Komponente aus keiner der resultierenden KKs und keiner 
untergeordneten KK instanziiert werden. Dies ist jedoch kein Hindernis, da ABCD be-
reits der Produktklasse ABCDE zugeordnet ist und somit aus dieser instanziiert werden 
kann. 

Bevor je Insel eine KK in der MSTL erstellt wird, wird zunächst überprüft, welche Kom-
ponenten der Inseln den entsprechenden KKs zugeordnet, d. h. aus diesen instanziiert, 
werden können. Komponenten, die alleinige Repräsentanten ihrer VSTL in einer Insel 
sind, wie ABC und D im Beispielfall, können unmittelbar den entsprechenden KKs zu-
geordnet werden. Liegen in einer Insel jedoch mehrere Komponenten derselben VSTL 
vor, können diese nicht der entsprechenden KK zugeordnet werden, da nicht mehrere 
Komponenten einer VSTL aus derselben KK instanziiert werden können78. Im Beispiel-
fall liegen mit den Clustern ACE und B zwei Cluster aus VSTL 2 in der Insel ABCE vor. 
Damit können weder ACE noch B einer KK ABCE in der MSTL zugeordnet werden. 
Eine KK ABCE hätte somit zunächst keine ihr zugeordnete Komponente in VSTL 2. Ist 
lediglich eine Darstellbarkeit der VSTL durch die MSTL gefordert, ist dies nicht relevant. 
Ist jedoch eine Konfigurierbarkeit aller VSTLs aus der MSTL gefordert, darf nach Defi-
nition der Konfigurierbarkeit in Anhang A2 keine KK in der MSTL existieren, die für eine 
VSTL aus ܵ௏ௌ்௅ keine Instanziierung zulässt. Wie in Anhang A2 erläutert, ist es jedoch 
möglich, dass bestimmte Komponenten aus mehreren KKs der MSTL instanziiert wer-
den können. Es ist also u. U. möglich, der neu zu erstellenden KK die übergeordnete 
Komponente in der entsprechenden VSTL zuzuordnen. Deshalb wird statt der 

                                         
78 Lediglich eine dieser Komponenten zuzuordnen ist ebenfalls nicht möglich, da dadurch ihre Klasse in der MSTL 
der Klasse der anderen Komponenten übergeordnet wäre, wodurch sich die Struktur der VSTL nicht mehr aus 
der MSTL ergeben würde. 
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Komponenten der betroffenen VSTLs ihre übergeordnete Komponente betrachtet und 
die Inselbildung erneut durchgeführt. Dieser Vorgang wird so lange wiederholt, bis in 
jeder Insel jeweils höchstens eine Komponente je VSTL vorhanden ist (Abbildung A3.1, 
3). Nachdem im Beispielfall die Komponenten ACE und B durch ihre übergeordnete 
Komponente ABCE ersetzt wurden, ist eine vollständige Zuordnung von Komponenten 
zu den zu erstellenden KKs möglich. Die Komponenten ABC und ABCE können einer 
KK ABCE und die Komponente D einer KK D in der MSTL zugeordnet werden. Im Er-
setzen der Komponenten und dem erneuten Berechnen der Inseln besteht der wesent-
liche Unterschied zum Algorithmus BuildST von Deng & Fernández-Baca (2018).  

Nach dem erfolgreichen Bilden der Inseln verzweigt sich der Algorithmus und wird je-
weils für jede Insel mit den Teilbäumen je Komponente der Insel rekursiv fortgesetzt 
(Abbildung A3.1, 4). Zu Beginn einer Rekursion wird, wie oben beschrieben, eine KK in 
der MSTL erstellt und die Wurzeln der Teilbäume dieser KK zugeordnet. Aufgrund der 
oben vorgenommenen Betrachtung sind diese Zuordnungen immer zulässig. Ein Ast 
des Algorithmus wird nicht weiter betrachtet, sobald die Teilbäume des Astes insgesamt 
nur noch ein oder zwei verschiedene Labels aufweisen. In diesem Fall sind die resul-
tierenden KKs der MSTL trivial gegeben. Sobald alle Äste erfolgreich berechnet wur-
den, wird die erstellte MSTL zurückgegeben.  

Es kann jedoch der Fall auftreten, dass sich bei der Inselbildung nur eine Insel, d. h. 
eine triviale Partition, ergibt (Abbildung A3.1, 5). Durch das Ersetzen von Komponenten 
durch ihre übergeordneten Komponenten und erneute Inselbildung kann die Anzahl der 
Inseln in keinem Fall vergrößert werden. Damit lässt sich auf diese Weise keine nicht-
triviale Partition bilden. Die Umsetzung der trivialen Partition würde dazu führen, dass 
eine KK in der MSTL entsteht, die keine Entsprechung in den VSTLs besitzt. Die Um-
setzung einer anderen Partition würde dazu führen, dass mindestens eine der noch 
nicht zugeordneten Komponenten nicht aus einer KK der MSTL instanziiert werden 
könnte. Im Beispielfall würde z. B. die Partition {{ܤ,ܣ},  dazu führen, dass die {{ܧ,ܥ}
Komponente ACE nicht instanziiert werden könnte. Die zuletzt hinzugefügte KK kann 
somit nicht weiter partitioniert werden. Da wie oben beschrieben alle Partitionierungen 
zwingend sind, lässt sich dieser Zustand auch nicht durch die Vornahme anderer Par-
titionierungen in übergeordneten Ebenen vermeiden. Damit lässt sich insgesamt durch 
Partitionierung keine MSTL erstellen, aus der alle VSTL aus ܵ௏ௌ்௅ konfiguriert werden 
können. Der Algorithmus terminiert mit einer entsprechenden Ausgabe. Für den Bei-
spielfall liegt dies offensichtlich daran, dass VSTL 1 und VSTL 2 unterschiedliche 
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Angaben über die Fügereihenfolge der ZKs A, B und C machen, d. h. es liegen Struk-
turalternativen (STAs) vor. 

Im Folgenden ist der Pseudocode von AlgMSTL dargestellt. Aus jedem Aufruf des rekur-
siven Algorithmus ergibt sich eine weitere KK KK୬ୣ୳ der MSTL. Der rekursive Algorith-
mus wird mit der Menge ܵ௠௔௥௞௜௘௥௧ der Wurzeln der betrachteten VSTLs oder den Wur-
zeln der betrachteten Teilbäume aufgerufen. Für alle Aufrufe außer dem ersten wird 
darüber hinaus diejenige KK ܭܭü௕௘௥ übergeben, die der zu erstellenden KK übergeord-
net ist. In Abbildung A3.1 (4) würde also die KK ABCDE übergeben werden. Es wird 
davon ausgegangen, dass alle Komponenten über Referenzen auf ihre Vorgänger und 
Nachfolger in ihrer VSTL verfügen. Gibt der Algorithmus None zurück, existiert keine 
Lösung.  

AlgMSTL: Algorithmus zur Erzeugung einer Maximalstückliste aus einer Menge von variantenbezogenen 
Stücklisten ohne Multikomponenten und Strukturalternativen 
Input: ܵ௠௔௥௞௜௘௥௧ ü௕௘௥ܭܭ ,

 

Output: ܭܭ୬ୣ୳ oder None 

1: # KK erstellen 
2: ܵ஼௟ே௘௨ := ⋃  ௞∈ௌ೘ೌೝೖ೔೐ೝ೟ get_cluster(݇) 

  ௡௘௨ := new KK(ܵ஼௟ே௘௨)ܭܭ :3
4: verbinde_mit_gerichteter_Kante(ܭܭü௕௘௥, ܭܭ௡௘௨) 
5:  
6: # Positive Abbruchkriterien prüfen 
7: if |ܵ஼௟ே௘௨| == 1 then 
8: return ܭܭ௡௘௨ 
9: if |ܵ஼௟ே௘௨| == 2 then  
 ௡௘௨,௦௨௕ଵ:= new KK(pop(ܵ஼௟ே௘௨))ܭܭ :10
11: verbinde_mit_gerichteter_Kante(ܭܭ௡௘௨ , ܭܭ௡௘௨,௦௨௕ଵ) 
 ௡௘௨,௦௨௕ଶ:= new KK(pop(ܵ஼௟ே௘௨))ܭܭ :12
13: verbinde_mit_gerichteter_Kante(ܭܭ௡௘௨ , ܭܭ௡௘௨,௦௨௕ଶ) 
14: return ܭܭ௡௘௨ 
15:  
16: # Partition bestimmen 
17: ܵ௕௘௧௥௔௖௛௧௘௧ := ⋃  ௞∈ௌ೘ೌೝೖ೔೐ೝ೟ get_nachfolger(݇) 
18: while True do 
19: ܵூ௡௦௘௟௡ := bestimme_überlappende_komponenten(ܵ௕௘௧௥௔௖௛௧௘௧) 
20: if |ܵூ௡௦௘௟௡| == 1 then 
21: return None 
22: ܵ௏ௌ்௅௓௨ா௥௦௘௧௭௘௡ := new Set() 
23: for ܵூ௡௦௘௟ in ܵூ௡௦௘௟௡ do 
24: ܵ௏ௌ்௅௓௨ா௥௦௘௧௭௘௡ := ܵ௏ௌ்௅௓௨ா௥௦௘௧௭௘௡ ∪ mehrfache_VSTL(ܵூ௡௦௘௟) 
25: if |ܵ௏ௌ்௅௓௨ா௥௦௘௧௭௘௡| == 0 then 
26: break 
27: ܵ௄௢௠௣௓௨ா௥௦௘௧௭௘௡ := new Set() 
28: for ݇ in ܵ௠௔௥௞௜௘௥௧ do 
29: if get_VSTL(݇) in ܵ௏ௌ்௅௓௨ா௥௦௘௧௭௘௡ then 
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30: ܵ௄௢௠௣௓௨ா௥௦௘௧௭௘௡ := ܵ௄௢௠௣௓௨ா௥௦௘௧௭௘௡ ∪ {݇} 
31: for ݇ in ܵ௄௢௠௣௓௨ா௥௦௘௧௭௘௡ do 
32: ܵ௕௘௧௥௔௖௛௧௘௧ := ܵ௕௘௧௥௔௖௛௧௘௧ \ {݇} 
33: ܵ௕௘௧௥௔௖௛௧௘௧ := ܵ௕௘௧௥௔௖௛௧௘௧ ∪ {get_vorgaenger(݇)} 
34:  
35: # Nächste Ebene aufrufen 
36: for ܵூ௡௦௘௟ in ܵூ௡௦௘௟௡ do 
37: if AlgMSTL(ܵூ௡௦௘௟, ܭܭ௡௘௨) == None then 
38: return None 
39:  
40: # KK zurückgeben 
41: return ܭܭ௡௘௨ 
 

Der Pseudocode geht von den folgenden Funktionen sowie von Standardfunktionen 
objektorientierter Programmiersprachen aus: 

- verbinde_mit_gerichteter_Kante: Verbindet zwei Knoten in einem Graph mit ei-
ner gerichteten Kante 

- bestimme_überlappende_komponenten: Gibt für eine Menge an Komponenten 
eine Menge von Listen von Komponenten zurück. Jede Liste entspricht einer In-
sel von Komponenten, deren Cluster sich überlappen.79 

- mehrfache_VSTL: Gibt für eine Menge von Komponenten diejenigen VSTLs zu-
rück, auf die mehr als eine der Komponenten referenziert 

Der Pseudocode geht darüber hinaus von der Klasse KK aus, die KKs der MSTL dar-
stellt (siehe Kapitel 4.1.1).  

A3.2 Beschreibung und Pseudocode zu Algorithmus AlgGemPfad 

Zwei Pfade sind als Liste von Knoten gegeben, wobei jeder Knoten ݅ einer Menge ௜ܵ௄௡ 

von Labels entspricht. Im Folgenden werden die Pfade ܮூ௉௙ = ,{2ܤ}) ௏௉௙ܮ und ({4ܤ,3ܤ} ,{3ܤ})=  .aus Abbildung 4.10 in Kapitel 4.2.1.1.2 als Beispiel verwendet ({4ܤ,3ܤ,2ܤ}

Seien im Allgemeinen ݊ଵ௉௙௅und ݊ଶ௉௙௅ die Längen der beiden Pfade. Wie in Kapitel 
4.2.1.1.2 erwähnt, ähnelt das Problem einem Longest-Common-Subsequence-Prob-
lem. Analog zu diesem müssen Knoten der beiden Pfade einander zugeordnet werden, 
um den gemeinsamen Pfad mit der größten Übereinstimmung zu erhalten. Aus dem 
Beispiel in Kapitel 4.2.1 ist bekannt, dass der gemeinsame Pfad mit der größten 

                                         
79 Diese Funktion kann z. B. effizient über Union-Find-Strukturen (siehe hierfür Knebl 2021, S. 256–264) realisiert 
werden. 
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Übereinstimmung ({4ܤ,3ܤ}) ist. Um diesen zu erhalten, müssen die Knoten {4ܤ,3ܤ,2ܤ} und {4ܤ,3ܤ} einander zugeordnet werden. Der gemeinsame Pfad ergibt 
sich, indem alle zugeordneten Knoten paarweise aufeinander projiziert und die resul-
tierenden Knoten in die Reihenfolge gebracht werden, in der sie in den Pfaden auftre-
ten. Eine Zuordnung von Knoten über Kreuz ist nicht zulässig, d. h. die Reihenfolge der 
resultierenden Knoten in den beiden Pfaden muss identisch sein, da ansonsten der 
gemeinsame Pfad nicht in beiden Pfaden enthalten sein kann. Z. B. wäre eine Zuord-

nung des ersten Knotens aus ܮூ௉௙ zum zweiten Knoten aus ܮ௏௉௙ und des zweiten Knotens 

aus ܮூ௉௙ zum ersten Knoten aus ܮ௏௉௙nicht zulässig. Das Problem lässt sich ebenso wie 

das Longest-Common-Subsequence-Problem in Teilprobleme zerlegen. Sei ௜ܲ,௝ீ௘௉௙ das-

jenige Teilproblem des betrachteten Problems ܲீ௘௉௙, bei dem nur die ersten ݅ Knoten 
des ersten Pfads und die ersten ݆ Knoten des zweiten Pfads betrachtet werden. Damit 

entspricht ௡ܲభ೛೑೗,௡మ೛೑೗ீ௘௉௙  gerade ܲீ௘௉௙. Sei ீݏ௘௉௙ die Länge des längsten gemeinsamen 

Pfads.  

Es werden nacheinander je ein Knoten ௜ܵ௄௡ aus dem ersten Pfad, ܮଵ௉௙, und ein Knoten 

௝ܵ௄௡ aus dem zweiten Pfad, ܮଶ௉௙, betrachtet. Sei ݊௜,௝ூௗ௅௔ die Anzahl übereinstimmender 

Labels in zwei Knoten ݅ und ݆. Die Betrachtung beginnt mit dem jeweils letzten Knoten ܵ௡భು೑ಽ௄௡  in Pfad 1 und ܵ௡మು೑ಽ௄௡  in Pfad 2. Im Beispielfall wären dies {4ܤ,3ܤ} und {4ܤ,3ܤ,2ܤ}. 
Für die Zuordnung der Knoten zu Knoten des jeweils anderen Pfads existieren folgende 
Möglichkeiten: 

1. Knoten ௜ܵ௄௡ wird Knoten ௝ܵ௄௡ zugeordnet. In diesem Fall gilt 

௘௉௙൫ீݏ  ௜ܲ,௝ீ௘௉௙൯ = ௘௉௙൫ீݏ ௜ܲିଵ,௝ିଵீ௘௉௙ ൯ + ݊௜,௝ூௗ௅௔  A3.1 

weil die Gesamtübereinstimmung gegenüber dem Problem ohne ௜ܵ௄௡ und ܵ ௝௄௡ um 

die Übereinstimmung von ௜ܵ௄௡ und ௝ܵ௄௡ erhöht wird. 

2. ௜ܵ௄௡ wird einem Knoten in Pfad 2 vor ௝ܵ௄௡ zugeordnet. In diesem Fall gilt, dass 

Knoten ௝ܵ௄௡ nicht zugeordnet werden kann, weil ansonsten eine Zuordnung über 

Kreuz vorliegen würde. Da also ௝ܵ௄௡ nicht zugeordnet wird, gilt 

௘௉௙൫ீݏ  ௜ܲ,௝ீ௘௉௙൯ = ௘௉௙൫ீݏ ௜ܲ,௝ିଵீ௘௉௙൯. A3.2 

3. ௝ܵ௄௡ wird einem Knoten in Pfad 1 vor ௜ܵ௄௡ zugeordnet. In diesem Fall gilt analog 
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௘௉௙൫ீݏ  ௜ܲ,௝ீ௘௉௙൯ = ௘௉௙൫ீݏ ௜ܲିଵ,௝ீ௘௉௙൯. A3.3 

4. Weder ݊ܭ௜ noch ܭ ௝݊ werden überhaupt zugeordnet. In diesem Fall gilt 
௘௉௙൫ீݏ  ௜ܲ,௝ீ௘௉௙൯ = ௘௉௙൫ீݏ ௜ܲ,௝ିଵீ௘௉௙൯ = ௘௉௙൫ீݏ ௜ܲିଵ,௝ீ௘௉௙൯. A3.4 

Da sich die optimale Lösung des Problems nach dem Bellmannschen Optimalitätsprin-
zip aus optimalen Teillösungen zusammensetzt, wird jeweils diejenige Möglichkeit ge-

wählt, die den Wert des Teilproblems ீݏ௘௉௙൫ ௜ܲ,௝ீ௘௉௙൯ maximiert. Damit gilt: 

௘௉௙൫ீݏ  ௜ܲ,௝ீ௘௉௙൯ = max (ீݏ௘௉௙൫ ௜ܲିଵ,௝ିଵீ௘௉௙ ൯ + ݊௜,௝ூௗ௅௔ , ௘௉௙൫ீݏ ௜ܲ,௝ିଵீ௘௉௙൯, ௘௉௙൫ீݏ ௜ܲିଵ,௝ீ௘௉௙൯). A3.5 

Seien ଴ܲ,௝ீ௘௉௙ und ௜ܲ,଴ீ௘௉௙ Teilprobleme bei denen einer der beiden Pfade leer ist, dann gilt 

௘௉௙൫ீݏ  ଴ܲ,௝ீ௘௉௙൯ = ௜ܲ,଴ீ௘௉௙ = 0. A3.6 

Davon ausgehend lässt sich die Lösung von ௡ܲభ೛೑೗,௡మ೛೑೗ீ௘௉௙  durch sukzessives Lösen der un-

tergeordneten Probleme lösen. Die Einträge ܣ௜,௝ீ௘௉௙  der null-basiert indizierten Matrix ீܣ௘௉௙ enthalten jeweils die optimalen Zielfunktionswerte der Probleme ௜ܲ,௝ீ௘௉௙. Im Fol-

genden ist der Algorithmus als Pseudocode dargestellt. 

AlgGemPfad: Algorithmus zur Berechnung der Übereinstimmung zweier Pfade 
Input: ܮଵ௉௙ , ଶ௉௙ܮ  

Output: ݈ீ௘௉௙  

1: ݊ଵ௉௙௅ := |ܮଵ௉௙| 
2: ݊ଶ௉௙௅ := |ܮଶ௉௙| 
௘௉௙:= ૙௡భು೑ಽீܣ :3 × ૙௡మು೑ಽ 
4: for i=1 to ݊ଵ௉௙௅ do 
5: for j=1 to ݊ଶ௉௙௅ do 
௜,௝ீ௘௉௙ܣ :6 = ௘௉௙൫ீݏ) ݔܽ݉ ௜ܲିଵ,௝ିଵீ௘௉௙ ൯ + ݊௜,௝ூௗ௅௔, ௘௉௙൫ீݏ ௜ܲ,௝ିଵீ௘௉௙൯, ௘௉௙൫ீݏ ௜ܲିଵ,௝ீ௘௉௙൯) 

7: return ܣ௡భ೛೑೗,௡మ೛೑೗ ீ௘௉௙  

A3.3 Pseudocode zu Algorithmus AlgMinMSTL 

Der Algorithmus geht von einer Menge S୚ୗ୘୐ von variantenbezogenen Stücklisten 
(VSTLs) aus, die Multikomponenten und Strukturalternativen (STAs) enthalten können. 
Er gibt ein Dictionary zurück, das einen Eintrag je Komponentenklasse (KK) der Maxi-
malstückliste (MSTL) enthält – identifiziert durch eine Bezeichnung und eine Klassen-
nummer (KN) – und diesem die zugehörigen Zukaufkomponenten (ZKs) der VSTLs aus ܵ௏ௌ்௅ zuordnet. Umgekehrt ordnet das Dictionary damit jeder ZK ihre Klasse zu. 
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AlgMinMSTL: Algorithmus zur Erzeugung einer Maximalstückliste aus einer Menge von variantenbezoge-
nen Stücklisten mit mehrfach auftretenden Zukaufkomponenten und Strukturalternativen 
Input: S୚ୗ୘୐ 

Output: D஻௘௦௧௘௓௨௢௥ௗ௡௨௡௚  
1: # 1. Initialisierung 
2: # Initialisiere Variablen 
 ௔௟௟௘௓௄ := bestimme_alle_ZK(ܵ௏ௌ்௅)ܮ :3
 (௔௟௟௘௓௄ܮ)௔௟௟௘஻௘௭ := bestimme_alle_bezeichnungenܮ :4
 (௔௟௟௘௓௄ܮ ,௔௟௟௘஻௘௭ܮ)௓௄௃௘஻௘௭ := bestimme_alle_ZK_je_bezeichnungܦ :5
௔௟௟௘஻௘௭ܮ)௠௔௫஺௡௭௓௄௝௘஻௘௭ := bestimme_max_anz_zk_je_bezܦ :6 , ܵ௏ௌ்௅) 
 ()஺௡௭௅௔௃௘஻௘௭ := new Dictܦ :7
8: for ݎݐݏ௕௘௭ in ܮ௔௟௟௘஻௘௭ do 
 0 =: [௕௘௭ݎݐݏ]஺௡௭௅௔௃௘஻௘௭ܦ :9
௄௢௠௣௃௘௅௔௕௘௟ܦ :10  := new Dict() 
௉௙௔ௗܮ :11  := new Zustand(None, None, None, new Set()) 
12: ܾ௎௡ := ∞ 
13:  
14: # Bestimme Betrachtungsreihenfolge 
15: for ݎݐݏ௕௘௭ in ܮ௔௟௟௘஻௘௭ do 
 [௕௘௭ݎݐݏ]௓௄௃௘஻௘௭ܦ =: ௓௄ெ௜௧஻௘௭ܮ :16
|஽௜௦௧ := ૙|௅ೋ಼ಾ೔೟ಳ೐೥ܣ :17 × ૙|௅ೋ಼ಾ೔೟ಳ೐೥| 
18: for ݅ = 0 to |ܮ௓௄ெ௜௧஻௘௭| do 
 [݅]௓௄ெ௜௧஻௘௭ܮ =: ଵ݌݉݋ܭ :19
20: for ݆ = ݅ + 1 to |ܮ௓௄ெ௜௧஻௘௭| do 
 [݅]௓௄ெ௜௧஻௘௭ܮ =: ଶ݌݉݋ܭ :21
௄௢௠௣భ,௄௢௠௣మ௓௄ݏ :22  := bestimme_relative_aehnlichkeit(݌݉݋ܭଵ, ݌݉݋ܭଶ) 
௜,௝஽௜௦௧:= 1ܣ :23 − ௄௢௠௣భ,௄௢௠௣మ௓௄ݏ  
24: ݊௉௥஼௟ ,݀ெூ஼஽ := kneedle(ܣ஽௜௦௧) 
25: for ݇ in ܦ௓௄௃௘஻௘௭[ݎݐݏ௕௘௭] do 
26: set_erw_anz_clusters(݇, ݊௉௥௢௚஼௟) 
27: set_mittl_intra_cluster_distanz(݇, ݀ெூ஼஽) 
28: set_VSTL_groesse(k, get_groesse(get_vstl(݇)) 
 (()௔௟௟௘௓௄, get_num_clusters(), get_clustering_bewertung(), -get_VSTL_groesseܮ)௔௟௟௘௓௄ := sortiere_nachܮ :29
௩௘௥௕௟௘௜௕௘௡ௗܮ :30  := copy(ܮ௔௟௟௘௓௄  ) 
31:  
32: # 2. Iteration 
33: while True do 
34: # Initialisiere temporäre Variablen 
35: Zustand௔௞௧௨௘௟௟ := get_letztes_element(ܮ௉௙௔ௗ) 
 (௩௘௥௕௟௘௜௕௘௡ௗܮ)௕௘௧௥ := get_erstes_element݌݉݋ܭ :36
 ( ௕௘௧௥݌݉݋ܭ)஻௘௭ := get_bezeichnungݎݐݏ :37
38:  
39: # Bestimme mögliche Aktionen 
40: ܵ௠௢௘௚௟஺௞௧ := {0, … ,  {|[஻௘௭ݎݐݏ]஺௡௭௅௔௃௘஻௘௭ܦ|
41: for ݅ in S୫୭ୣ୥୪୅୩୲ do 

42: if ݅ in get_verbotene_aktionen(Zustand௔௞௧௨௘௟௟) or komponente_aus_vstl_enthal-
ten(ܦ௄௢௠௣௃௘௅௔௕௘௟[(ݎݐݏ஻௘௭  , ݅)], get_vstl(݌݉݋ܭ௕௘௧௥)) then 

43: entferne_element(ܵ௠௢௘௚௟஺௞௧ , ݅) 
44:  
45: # Wähle eine Aktion aus und führe sie aus 
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46: if |ܵ௠௢௘௚௟஺௞௧| > 0 then 
47: if |ܵ௠௢௘௚௟஺௞௧| == 1 then 
48: ݊஺௞௧ := get_erstes_element(ܵ௠௢௘௚௟஺௞௧) 
 1 + [஻௘௭ݎݐݏ]஺௡௭௅௔௃௘஻௘௭ܦ =: [஻௘௭ݎݐݏ]஺௡௭௅௔௃௘஻௘௭ܦ :49
஻௘௭, ݊஺௞௧ݎݐݏ)]௄௢௠௣௃௘௅௔௕௘௟ܦ :50  {௕௘௧௥݌݉݋ܭ} =: [( 
ே௘௨௘௦௅௔௕௘௟݈݋݋ܾ :51  := True 
52: else 
53: ܵ௠௢௘௚௟஺௞௧ := ܵ௠௢௘௚௟஺௞௧\{|ܦ஺௡௭௅௔௃௘஻௘௭[ݎݐݏ஻௘௭]|} 
 ()஽௜௦௃௘஺௞௧ := new Dictܦ :54
55: for i in ܵ௠௢௘௚௟஺௞௧ do 
56: ܵ௄௢௠௣௓௨௅௔௕௘௟ := ܦ௄௢௠௣௃௘௅௔௕௘௟[(ݎݐݏ஻௘௭ , ݅)] 
 ௠௜௧௧௘௟ := 0ݏ :57
58: for ݌݉݋ܭଶ in ܵ௄௢௠௣௓௨௅௔௕௘௟  do 
௠௜௧௧௘௟ݏ =: ௠௜௧௧௘௟ݏ :59  + ଵି௦ೋ಼൫௄௢௠௣್೐೟ೝ,௄௢௠௣మ ൯|ௌ಼೚೘೛ೋೠಽೌ್೐೗|  
 ௠௜௧௧௘௟ݏ =: [݅]஽௜௦௃௘஺௞௧ܦ :60
61: ݊஺௞௧ := arg_min(ܦ஽௜௦௃௘஺௞௧) 
஻௘௭ݎݐݏ)]௄௢௠௣௃௘௅௔௕௘௟ܦ :62 , ݊஺௞௧)] := ܦ௄௢௠௣௃௘௅௔௕௘௟[(ݎݐݏ஻௘௭, ݊஺௞௧)] ∪  {௕௘௧௥݌݉݋ܭ}
ே௘௨௘௦௅௔௕௘௟݈݋݋ܾ :63  := False 
64: else #Falls keine zulässige Aktion existiert 
65: if |ܮ௩௘௥௕௟௘௜௕௘௡ௗ| == |ܮ௔௟௟௘௓௄| then 
66: break 
67: else 
68: backtracking(ܦ஺௡௭௅௔௃௘஻௘௭, ܦ௄௢௠௣௃௘௅௔௕௘௟ ௩௘௥௕௟௘௜௕௘௡ௗܮ ,  (௉௙௔ௗܮ ,
69: entferne_erstes_element(ܮ௩௘௥௕௟௘௜௕௘௡ௗ) 
70: fuege_element_hinzu(ܮ௉௙௔ௗ, new Zustand(݌݉݋ܭ௕௘௧௥, ݊஺௞௧, ܾ݈݋݋ே௘௨௘௦௅௔௕௘௟, new Set())) 
71:  
72: # Beurteile den neuen Zustand und entscheide über das weitere Vorgehen 
73: b୙୬ := bestimme_untere_schranke(ܦ௠௔௫஺௡௭௓௄௝௘஻௘௭  (஺௡௭௅௔௃௘஻௘௭ܦ ,
74: ܾை௕ := bestimme_obere_schranke(|ܮ௩௘௥௕௟௘௜௕௘௡ௗ|, ܦ஺௡௭௅௔௃௘஻௘௭) 
75: ܵ௏ௌ்௅ோ௘ௗ := reduziere_s_vstl(ܵ௏ௌ்௅, ܦ௄௢௠௣௃௘௅௔) 
76: ܵௐ௨௥௭௘௟௡ := bestimme_alle_wurzeln(ܵ௏ௌ்௅ோ௘ௗ) 
ே௘௨௘௦௅௔௕௘௟ or (AlgMSTL(ܵௐ௨௥௭௘௟௡݈݋݋ܾ =: ௭௨௦௧௔௡ௗூ௦௧௓௨௟௔௦௘௦௦௜௚݈݋݋ܾ :77  , None) != None) 
௭௨௦௧௔௡ௗூ௦௧௏௢௟௟௦௧௔௘௡ௗ௜௚݈݋݋ܾ :78  := size(ܮ௩௘௥௕௟௘௜௕௘௡ௗ) == 0 
௭௨௦௧௔௡ௗூ௦௧௎௘௕௘௥௟௘௚௘௡:= ܾை௕݈݋݋ܾ :79 < ܾெ௜௡  
௭௨௦௧௔௡ௗூ௦௧௎௡௧௘௥௟௘௚௘௡ := ܾ୙୬݈݋݋ܾ :80 ≥ ܾெ௜௡ 
81: if ܾ݈݋݋௭௨௦௧௔௡ௗூ௦௧௓௨௟௔௦௘௦௦௜௚ then 
82: if ܾ݈݋݋௭௨௦௧௔௡ௗூ௦௧௎௘௕௘௥௟௘௚௘௡  then 
83: ܾெ௜௡ := ܾ୓ୠ 
 (௄௢௠௣௃௘௅௔௕௘௟ܦ)஻௘௦௧௘௓௨௢௥ௗ௡௨௡௚ := kopierenܦ :84
85: if ܾ݈݋݋௭௨௦௧௔௡ௗூ௦௧௏௢௟௟௦௧௔௘௡ௗ௜௚  or ܾ݈݋݋௭௨௦௧௔௡ௗூ௦௧௎௡௧௘௥௟௘௚௘௡  then 
86: backtracking(ܦ஺௡௭௅௔௃௘஻௘௭, ܦ௄௢௠௣௃௘௅௔௕௘௟ ௩௘௥௕௟௘௜௕௘௡ௗܮ ,  (௉௙௔ௗܮ ,
87: else 
88: backtracking(ܦ஺௡௭௅௔௃௘஻௘௭, ܦ௄௢௠௣௃௘௅௔௕௘௟, ܮ௩௘௥௕௟௘௜௕௘௡ௗ  (௉௙௔ௗܮ ,
89: return ܦ஻௘௦௧௘௓௨௢௥ௗ௡௨௡௚  
 

Der Pseudocode geht von den folgenden Funktionen sowie von Standardfunktionen 
objektorientierter Programmiersprachen aus: 

- bestimme_alle_ZK: Gibt eine Liste mit Referenzen auf alle ZKs von ܵ௏ௌ்௅ zurück 
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- bestimme_alle_bezeichnungen: Gibt eine Liste mit allen Bezeichnungen von ZKs 
in ܵ௔௟௟௘௓௄  zurück 

- bestimme_alle_ZK_je_bezeichnung: Gibt ein Dictionary zurück, das jeder Be-
zeichnung aus ܮ௔௟௟௘஻௘௭ die Menge zugehöriger ZKs aus ܮ௔௟௟௘௓௄ zuordnet 

- bestimme_max_anz_zk_je_bez: Gibt ein Dictionary zurück, das jeder Bezeich-
nung aus ܮ௔௟௟௘஻௘௭ die maximale Anzahl von ZKs mit dieser Bezeichnung in einer 
VSTL aus ܵ௏ௌ்௅ zuordnet 

- kneedle: Gibt für eine Distanzmatrix die optimale Anzahl von Clustern nach dem 
Kneedle-Verfahren (siehe Kapitel 4.2.1.1.3) sowie die mittlere Intraclusterdistanz 
zurück 

- bestimme_relative_aehnlichkeit: Ermittelt die relative kontextuelle Ähnlichkeit 
zweier Komponenten, wie in Kapitel 4.2.1.1.2 beschrieben 

- sortiere_nach: Sortiert die Elemente einer Liste aufsteigend lexikographisch nach 
gegebenen Merkmalen 

- komponente_aus_vstl_enthalten: Gibt an ob eine Menge von Komponenten eine 
Komponente aus einer bestimmten VSTL enthält 

- backtracking: Führt ein Backtracking aus, wie in Kapitel 4.2.1.2 beschrieben, und 
aktualisiert dabei die als Argumente übergebenen Objekte  

- bestimme_untere_schranke: Bestimmt die untere Schranke für einen Zustand, 
wie in Kapitel 4.2.1.2.3 beschrieben 

- bestimme_obere_schranke: Bestimmt die obere Schranke für einen Zustand, wie 
in Kapitel 4.2.1.2.3 beschrieben 

- reduziere_s_vstl: Leitet aus einer Menge von VSTLs die zugehörige Menge der 
reduzierten VSTLs ab 

- bestimme_alle_wurzeln: Gibt die Wurzeln einer Menge von VSTLs zurück 

Der Pseudocode geht darüber hinaus von der Klasse Zustand aus, die einen Zustand 
der Baumsuche und damit einen Knoten im Entscheidungsbaum darstellt. Objekte die-
ser Klasse speichern alle Informationen, um die Aktion, durch die ein Zustand erreicht 
wurde, im Zuge des Backtrackings rückgängig zu machen: die zuletzt getroffene Ent-
scheidung, die Menge der in diesem Zustand verbotenen Aktionen sowie eine boole-
sche Variable, die angibt, ob zuletzt eine neue KK erstellt wurde. 
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A3.4 Heuristik zur Ermittlung der Anzahl von Platzhaltern für Schritt 2 der 
Methode 2 

Analog zum Graph-Coloring-Problem hat die Anzahl ݊௉௟ der Strukturoptionen-Platzhal-
ter (STO-Platzhalter) einen großen Einfluss auf die Lösbarkeit und die Recheneffizienz 
des Optimierungsproblems 4.6 in Kapitel 4.2.2.2. Wird ݊௉௟ zu klein gewählt, ist das 
Problem unlösbar. Wird ݊௉௟ zu groß gewählt, steigt die Rechenzeit der Optimierung, 
weil die Anzahl der Variablen des Problems von ݊௉௟ abhängt. ݊௉௟ kann mit ݊௉௟  = |ܵ௏ௌ்௅| 
trivial gewählt werden. Um die Effizienz der Optimierung zu steigern, kann jedoch, wie 
im Folgenden skizziert, heuristisch ein geringeres ݊௉௟ bestimmt werden, das die Lös-
barkeit des Problems garantiert. Um die Anzahl benötigter STO-Platzhalter zu bestim-
men, kann zunächst die Zuordnung von Komponenten zu STO-Platzhaltern vernach-
lässigt und nur die Zuordnung von variantenbezogenen Stücklisten (VSTLs) zu STO-
Platzhaltern berücksichtigt werden. Aus Schritt 1 der Methode 2 sind die KNs der ZKs 
der VSTLs bekannt. Die VSTLs aus ܵ௏ௌ்௅ werden in eine beliebige Reihenfolge ge-
bracht. Zunächst wird ein STO-Platzhalter aktiviert und die erste VSTL diesem zuge-
ordnet. Die zweite VSTL wird demselben Platzhalter zugeordnet, sofern dadurch in bei-
den VSTLs zusammen für keine Bezeichnung ݈ mehr als ݊௟ெ௔௫஻ verschiedene Klassen-
nummern (KNs) vorliegen würden. Andernfalls wird ein weiterer Platzhalter eröffnet und 
die zweite VSTL diesem zugeordnet. Jede weitere VSTL wird stets dem ersten Platz-
halter zugeordnet, für den ihre Zuordnung zu keiner Überschreitung von ݊௟ெ௔௫஻ führt. 
Falls es keinen solchen Platzhalter gibt, wird ein neuer Platzhalter eingeführt. Ordnet 
man nun alle Zukaufkomponenten (ZKs) je VSTL genau dem Platzhalter zu, dem die 
VSTL zugeordnet ist, ergibt sich eine zulässige Lösung des Optimierungsproblems 4.6 
in Kapitel 4.2.2.2. Diese ist nicht zwangsläufig optimal. Da jedoch eine Lösung mit der 
entsprechenden Anzahl von Platzhaltern existiert, können für die optimale Lösung nicht 
mehr Platzhalter benötigt werden. Aus der Anzahl der in der Heuristik verwendeten 
Platzhalter ergibt sich somit eine obere Abschätzung für die benötigte Anzahl von Platz-
haltern im Optimierungsproblem 4.6 und ݊௉௟ kann entsprechend gewählt werden. 

A4 Anhang zu Kapitel 4.3 

A4.1 Beschreibung und Pseudocode zu Algorithmus AlgMAPL 

AlgMAPL erstellt für eine Menge ܵ௏஺௉௅ von variantenbezogenen Arbeitsplänen (VAPLs) 
ohne Multivorgänge einen Maximalarbeitsplan (MAPL), aus dem alle VAPLs aus ܵ௏஺௉௅ 
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konfiguriert werden können, falls die VAPLs keine Strukturalternativen (STAs) enthal-
ten. Andernfalls gibt er einen Hinweis zurück, dass keine Lösung gefunden werden 
kann. Der Algorithmus wird im Folgenden zunächst hergeleitet. Es wird das Beispiel 
aus Abbildung 4.22 in Kapitel 4.3 zur Veranschaulichung verwendet. Dabei wird davon 
ausgegangen, dass die Arbeitsvorgänge (AVOs) mit Klassennummern (KNs) annotiert 
wurden, sodass sie eindeutig über ihre Labels identifiziert werden können (siehe Abbil-
dung A4.1 (1)).  

Ein VAPL ݅  ist als eine Menge ܵ ௜௏ von Knoten und eine Menge ܵ ௜ாଵ ⊆ ௜ܵ௏ × ௜ܵ௏ von Kanten 
definiert, die jeweils AVOs bzw. Vorrangbeziehungen darstellen. Existiert für zwei AVOs ݆ und ݇ eine Kante (AVO ݆, AVO ݇) in ௜ܵாଵ bedeutet das, dass AVO ݆ vor AVO ݇ ausge-
führt werden muss. Außerdem sei eine zu ௜ܵாଵ komplementäre Menge ௜ܵா଴ ⊆ ௜ܵ௏ × ௜ܵ௏ 
von gerichteten Kanten definiert, die angibt, welche Vorrangbeziehungen im Vorrang-
graphen nicht existieren. Existiert für AVO ݆ und AVO ݇ ein Element (AVO ݆, AVO ݇) in ௜ܵா଴ bedeutet dies, dass AVO ݆ nicht vor AVO ݇ durchgeführt werden muss. Für VAPL 
1 in Abbildung A4.1 (1) gilt z. B. 

 ଵܵ௏ = ,ܫ} ,ܫܫ ,ܫܫܫ  A4.1 ,{ܸܫ
 ଵܵாଵ = ,ܫ)} ,(ܫܫ ,ܫ) ,(ܫܫܫ ,ܫ) ,(ܸܫ ,ܫܫ) ,(ܫܫܫ ,ܫܫ) ,(ܸܫ ,ܫܫܫ)  A4.2 ,{(ܸܫ
 ଵܵா଴ = ,ܫܫ)} ,(ܫ ,ܫܫܫ) ,(ܫ ,ܫܫܫ) ,(ܫܫ ,ܸܫ) ,(ܫ ,ܸܫ) ,(ܫܫ ,ܸܫ)  A4.3 .{(ܫܫܫ

Für einen zulässigen Vorranggraphen gilt immer 

 ௜ܵா଴ ∩ ௜ܵாଵ = ∅. A4.4 
Außerdem ist ein zulässiger Vorranggraph immer zyklenfrei. 

I II

III IV

V

VII

VI VIII

X

IX

XI

VAPL 1 VAPL 2 VAPL 3

MAPL

(1)

(2)

MAPL = Maximalarbeitsplan, VAPL = Variantenbezogener Arbeitsplan

Abbildung A4.1: Variantenbezogene Arbeitspläne mit annotierten Arbeitsvorgängen 
und zugehörigem Maximalarbeitsplan für den Beispielfall 
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Aus dem resultierenden MAPL müssen alle VAPLs aus ܵ௏஺௉௅ in einem Konfigurations-
prozess wie in Kapitel 4.1.1 beschrieben konfiguriert werden können. Damit ein VAPL ݅ sich aus dem MAPL konfigurieren lässt muss Folgendes gelten: Es existiert eine in-
jektive Abbildung zwischen den AVOs aus VAPL ݅ und den Arbeitsvorgangsklassen 
(AVKs) des MAPL, sodass zwischen den AVOs in VAPL ݅ und ihren Bildern im MAPL 
die gleichen Vorrangbeziehungen bestehen. 
Sei ௜ܵ௏,௅ die Menge der Labels zu den in einem VAPL ݅ vorhandenen AVOs. Seien 

௜ܵா଴,௅ ⊆ ௜ܵ௏,௅ × ௜ܵ௏,௅ bzw. ௜ܵாଵ,௅ ⊆ ௜ܵ௏,௅ × ௜ܵ௏,௅ die Vorrangbeziehungen in VAPL ݅ bezogen 
auf dessen Labels. Für VAPL 1 gilt damit beispielsweise  ଵܵ௏,௅ =  A4.5 ,{4ଵܣ,3ଵܣ,2ଵܣ,1ଵܣ}

ଵܵாଵ,௅ = ,(2ଵܣ,1ଵܣ)} ,(3ଵܣ,1ଵܣ) ,(4ଵܣ,1ଵܣ) ,(3ଵܣ,2ଵܣ) ,(4ଵܣ,2ଵܣ)  A4.6 ,{(4ଵܣ,3ଵܣ)

ଵܵா଴,௅ = ,(1ଵܣ,2ଵܣ)} ,(1ଵܣ,3ଵܣ) ,(2ଵܣ,3ଵܣ) ,(1ଵܣ,4ଵܣ) ,(2ଵܣ,4ଵܣ)  A4.7 .{(3ଵܣ,4ଵܣ)

Sei ܵ௏,ெ஺௉௅,௅ die Menge der Labels der im MAPL vorhandenen AVKs. Seien ܵா଴,ெ஺௉௅,௅ ⊆ܵ௏,ெ஺௉௅,௅  × ܵ௏,ெ஺௉௅,௅ bzw. ܵாଵ,ெ஺௉௅,௅ ⊆ ܵ௏,ெ஺௉௅,௅  × ܵ௏,ெ஺௉௅,௅ die im MAPL geltenden Vor-
rangbeziehungen bezogen auf die Labels von dessen AVKs. Dann muss  
 ௜ܵா଴,௅ ⊆ ܵா଴,ெ஺௉௅,௅, ௜ܵாଵ,௅ ⊆ ܵாଵ,ெ஺௉௅,௅ A4.8 

gelten, damit ein VAPL ݅ aus einem MAPL konfiguriert werden kann. Das bedeutet, 
dass alle Vorrangbeziehungen, die im VAPL vorliegen, auch im MAPL vorliegen müs-
sen und alle Vorrangbeziehungen, die im VAPL nicht vorliegen, auch im MAPL nicht 
vorliegen dürfen. Es kann nachvollzogen werden, dass dies für den MAPL und die VA-
PLs in Abbildung A4.1 gilt. 

Für Probleme ohne Multivorgänge, wie z. B. das in Abbildung A4.1 (1) dargestellte 
Problem, lässt sich bestimmen, ob ein zulässiger MAPL existiert, indem die VAPLs aus ܵ௏஺௉௅ wie folgt zu einem MAPL aggregiert werden: 
 ܵ௏,ெ஺௉௅,௅  = ⋃ ௜ܵ௏,௅௜∈{ଵ,…,|ௌೇಲುಽ|} ,  A4.9 
 ܵா଴,ெ஺௉௅,௅ = ⋃ ௜ܵா଴,௅௜∈{ଵ,…,|ௌೇಲುಽ|} ,  A4.10 
 ܵாଵ,ெ஺௉௅,௅ = ⋃ ௜ܵாଵ,௅௜∈{ଵ,…,|ௌೇಲುಽ|} . A4.11 

Da es eine bijektive Beziehung zwischen Labels und AVKs des MAPL gibt, ergeben 
sich hieraus ܵ௏,ெ஺௉௅, ܵா଴,ெ஺௉௅ und ܵாଵ,ெ஺௉௅. Der resultierende MAPL ist nicht zulässig, 
wenn ܵா଴,ெ஺௉௅ ∩ ܵாଵ,ெ஺௉௅ ≠ ∅ gilt. In diesem Fall liegen in den VAPLs widersprüchliche 
Informationen darüber vor, ob bestimmte Vorrangbeziehungen gelten oder nicht. Der 
resultierende MAPL ist außerdem nicht zulässig, wenn er einen Zyklus enthält, da ggf. 
die VAPLs Informationen enthalten, die die Transitivität von Vorrangbeziehungen 



XXII Anhang 
 

 

verletzen. Ob in einem MAPL ein Zyklus vorliegt, kann z. B. mittels Tiefensuche80 über-
prüft werden. In beiden Fällen kann aufgrund der Inkonsistenz der Vorrangbeziehungen 
in den zugrundeliegenden VAPLs kein zulässiger MAPL existieren, aus dem die VAPLs 
aus ܵ௏஺௉௅ konfiguriert werden können.  

AlgMAPL bildet somit zunächst die Mengen ܵ௏,ெ஺௉௅,௅, ܵா଴,ெ஺௉௅,௅ und ܵாଵ,ெ஺௉௅,௅ und prüft 
dann, ob ܵா଴,ெ஺௉௅ ∩ ܵாଵ,ெ஺௉௅ ≠ ∅ gilt oder der resultierende Graph einen Zyklus enthält. 
Je nachdem gibt er den Graphen, der sich aus ܵ௏,ெ஺௉௅,௅, ܵா଴,ெ஺௉௅,௅ und ܵாଵ,ெ஺௉௅,௅ ergibt, 
oder den Hinweis, dass keine Lösung existiert, zurück. Ist letzteres der Fall kann daraus 
geschlossen werden, dass die VAPLs aus ܵ௏஺௉௅ STAs enthalten. Im Folgenden findet 
sich der Algorithmus in Pseudocode. 

AlgMSTL: Algorithmus zur Erzeugung eines Maximalarbeitsplans aus einer Menge von variantenbezoge-
nen Arbeitsplänen ohne Multivorgänge und ohne Strukturalternativen 
Input: ܵ௏஺௉௅  

Output: ܩெ஺௉௅ oder None 

1: ܵ௏,ெ஺௉௅,௅ ∶= ራ ௜ܵ௏,௅௜∈{ଵ,…,|ௌೇಲುಽ|}  

2: ܵா଴,ெ஺௉௅,௅: = ራ ௜ܵா଴,௅௜∈{ଵ,…,|ௌೇಲುಽ|}  

3: ܵாଵ,ெ஺௉௅,௅: = ራ ௜ܵாଵ,௅௜∈{ଵ,…,|ௌೇಲುಽ|}  

4: if ܵா଴,ெ஺௉௅ ∩ ܵாଵ,ெ஺௉௅ ≠ ∅ then 
5: return None 
 ெ஺௉௅ := new MAPL(ܵ௏,ெ஺௉௅,௅, ܵா଴,ெ஺௉௅,௅, ܵாଵ,ெ஺௉௅,௅)ܩ :6
7: if enthaelt_zyklus(ܩெ஺௉௅) then 
8: return None 
9: return ܩெ஺௉௅ 
 

Der Pseudocode geht von folgender Funktion sowie von Standardfunktionen objektori-
entierter Programmiersprachen aus: 

- enthaelt_zyklus: Gibt wahr zurück, falls der gerichtete Graph, der als Argument 
übergeben wird, einen Zyklus enthält 

Außerdem geht der Pseudocode davon aus, dass eine Klasse MAPL definiert ist, die 
einen MAPL in Form eines gerichteten Graphen darstellt, der durch die Mengen ܵ௏,ெ஺௉௅,௅, ܵா଴,ெ஺௉௅,௅ und ܵாଵ,ெ஺௉௅,௅ instanziiert wird. 

                                         
80 Für die Ermittlung von Zyklen in Graphen mittels Tiefensuche sei auf Tarjan (1973) verwiesen 
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A5 Anhang zu Kapitel 4.4 

A5.1 Pseudocode zu Algorithmus AlgInitRMP 

AlgInitRMP akzeptiert eine Tabelle von Datenpunkten. Deren Spalten, mit Ausnahme der 
letzten, entsprechen den Features der Datenpunkte. Die letzte Spalte entspricht den 
Labels der Datenpunkte. Die Rückgabe ist ein relaxiertes reduziertes Master-Problem 
(XRMP). 

AlgInitRMP: Algorithmus zur Initialisierung eines RMP 

Input: ்ܶ௥௔௜௡௜௡௚  

Output: ܲ௑ோெ௉  

1: #Initialisiere Variablen und den Stapel 
 ()ெ௢௡௢௠௘ := new Listܮ :2
஺௞௭௉௢௦ூ௡௦௧ܮ :3  := new List() 
 ()ௌ௧௔௣௘௟ := new Listܮ :4
5: ܰி:= ݃݁݊݁ݐ݈ܽ݌ݏ_ݖ݊ܽ_ݐ(்ܶ௥௔௜௡௜௡௚) -1 
஻௘௧௥்௘௥௠ := {0}ଶ∗ேಷܮ :6  # Dual-Rail-Darstellung 
7: anfuegen(ܮௌ௧௔௣௘௟,( ்ܶ௥௔௜௡௜௡௚, ܮ஻௘௧௥்௘௥௠)) 
8:  
9: #Bearbeite den Stapel 
10: while |ܮௌ௧௔௣௘௟ | > 0 do 
11: ்ܶ௥௔௜௡௜௡௚்௘௠௣, ܮ஻௘௧௥ெ௢௡௢௠  := pop(ܮௌ௧௔௣௘௟) 
12: if alle_labels_gleich_eins(்ܶ௥௔௜௡௜௡௚்௘௠௣) then 
13: #Das betrachtete Monom schließt alle negativen Datenpunkte aus 
 (஻௘௧௥ெ௢௡௢௠ܮ ,ெ௢௡௢௠௘ܮ)ெ௢௡௢௠௘ := anfuegenܮ :14
 (஺௞௭௉௢௦ூ௡௦௧, get_alle_datenpunkte(்ܶ௥௔௜௡௜௡௚்௘௠௣)ܮ)஺௞௭௉௢௦ூ௡௦௧ := anfuegenܮ :15
16: else 
17: #Ermittle den besten Split 
௚௜௡௜ூ௡ௗ௜௖௘௦ܮ :18  := berechne_gini_index_fuer_jeden_split(்ܶ௥௔௜௡௜௡௚்௘௠௣) 
19: ݊௕௘௦௧௘௦ி௘௔௧௨௥௘ := argmin(ܮ௚௜௡௜ூ௡ௗ௜௖௘௦) 
20: #Führe den Split aus 
21: ்ܶ௥௔௜௡௜௡௚்௘௠௣,଴ := reduziere_datensatz(்ܶ௥௔௜௡௜௡௚்௘௠௣, ݊௕௘௦௧௘௦ி௘௔௧௨௥௘, 0) 
22: ்ܶ௥௔௜௡௜௡௚்௘௠௣,ଵ := reduziere_datensatz(்ܶ௥௔௜௡௜௡௚்௘௠௣, ݊௕௘௦௧௘௦ி௘௔௧௨௥௘, 1) 
 (஻௘௧௥ெ௢௡௢௠ܮ)஻௘௧௥ெ௢௡௢௠,଴ := copyܮ :23
 ஻௘௧௥ெ௢௡௢௠,଴[݊௕௘௦௧௘௦ி௘௔௧௨௥௘] := 0ܮ :24
 (஻௘௧௥ெ௢௡௢௠ܮ)஻௘௧௥ெ௢௡௢௠,ଵ := copyܮ :25
 ஻௘௧௥ெ௢௡௢௠,ଵ[݊௕௘௦௧௘௦ி௘௔௧௨௥௘] := 1ܮ :26
 ((஻௘௧௥ெ௢௡௢௠,଴ܮ ,௥௔௜௡௜௡௚்௘௠௣,଴்ܶ ),ௌ௧௔௣௘௟ܮ)ௌ௧௔௣௘௟ := anfuegenܮ :27
 ((஻௘௧௥ெ௢௡௢௠,ଵܮ ,௥௔௜௡௜௡௚்௘௠௣,ଵ்ܶ ),ௌ௧௔௣௘௟ܮ)ௌ௧௔௣௘௟ := anfuegenܮ :28
29: end if 
30: end while 
31:  
32: #Erstelle das XRMP 
33: ܲோெ௉ := erstelle_RMP(ܮெ௢௡௢௠௘  (஺௞௭௉௢௦ூ௡௦௧ܮ ,
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34: ܲ௑ோெ௉ := relaxiere_RMP(ܲோெ௉) 
35: return ܲ௑ோெ௉, ܮெ௢௡௢௠௘ 

 

Der Pseudocode geht von den folgenden Funktionen sowie von Standardfunktionen 
objektorientierter Programmiersprachen aus: 

- alle_labels_gleich_eins: Gibt wahr zurück, falls alle Labels einer Tabelle gleich 1 
sind, ansonsten falsch 

- berechne_gini_index_fuer_jeden_split: Gibt eine Liste zurück, die für jedes der 
Features den Gini-Index bei Split in diesem Feature enthält 

- reduziere_datensatz: Reduziert eine Tabelle, indem alle Zeilen gelöscht werden, 
für die das angegebene Feature nicht den angegebenen Wert aufweist 

- erstelle_RMP: Gibt ein reduziertes Master-Problem (RMP) zurück. Dessen Ziel-
funktionskoeffizienten entsprechen der Anzahl der Literale in den gegebenen 
Monomen und dessen Spalten geben wieder, welche der positiven Datenpunkte 
ein Monom akzeptiert. 

- relaxiere_RMP: Relaxiert ein RMP, indem es die Ganzzahligkeitsbedingungen 
des RMP aufhebt 

A5.2 Pseudocode zu Algorithmus AlgCG 

Der Algorithmus geht von einem bereits existierenden relaxierten reduzierten Master-
Problem (XRMP), einer Liste der darin berücksichtigten Monome, einer Liste der hierfür 
ausgeschlossenen Monome und einem Trainingsdatensatz aus. Außerdem geht er von 
vier Matrizen aus, die angeben, welche Literale welche positiven bzw. negativen Da-
tenpunkte ausschließen bzw. einschließen. 

AlgCG: Algorithmus zur Optimierung eines reduzierten Master-Problems mittels Spaltengenerierung 
Input: ܲ௑ோெ௉, ܮெ௢௡௢௠௘, ܮா௫௞௟்௘௥௠௘ , ்ܶ௥௔௜௡௜௡௚, ܣா௫௞௟௉௢௦, ܣூ௡௞௟௉௢௦, ܣா௫௞௟ே௘௚, ܣூ௡௞௟ே௘௚ 
Output: ܲ௑ோெ௉, ܮெ௢௡௢௠௘ ∗௑ோெ௉ݑ ,∗௑ோெ௉ݖ ,∗ோெ௉ݑ ,∗ோெ௉ݖ ,

 

1: # Löse das Pricing-Problem 

 ௏௘௥௕௘௦௦௘௥௨௡௚ெ௢௘௚௟௜௖௛ := True݈݋݋ܾ :2
3: while ܾ݈݋݋௏௘௥௕௘௦௦௘௥௨௡௚ெ௢௘௚௟௜௖௛ == True do 
4: ܲ஽௉ := dualisiere(ܲ௑ோெ௉) 
 optimiere(ܲ஽௉) =:∗ݒ :5
ெ௢௡௢௠ܮ :6  (ூ௡௞௟ே௘௚ܣ ,ா௫௞௟ே௘௚ܣ ,ூ௡௞௟௉௢௦ܣ ,ா௫௞௟௉௢௦ܣ ,∗ݒ ,ா௫௞௟ெ௢௡௢௠௘ܮ)ௌ௉∗ := AlgPricingHeuristikݖ ,
7: if ݖௌ௉∗ ≥ 0 then 
8: ܲௌ௉ := erstelle_pricing_problem(࢜∗, ்ܶ௥௔௜௡௜௡௚, ܮா௫௞௟ெ௢௡௢௠௘) 
ெ௢௡௢௠௘ܮ :9  ௌ௉∗ := optimiere (ܲௌ௉)ݖ ,
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10: if ݖௌ௉∗ ≥ 0 then 
 ௏௘௥௕௘௦௦௘௥௨௡௚ெ௢௘௚௟௜௖௛:= False݈݋݋ܾ :11
12: end if 
13: end if 

14: # Aktualisiere das relaxierte reduzierte Master-Problem 
15: if ܾ݈݋݋௏௘௥௕௘௦௦௘௥௨௡௚ெ௢௘௚௟௜௖௛ then 
 (ெ௢௡௢௠ܮ ,ெ௢௡௢௠௘ܮ)ெ௢௡௢௠௘ := anfuegenܮ :16

17: ܲ௑ோெ௉ := spalte_einfuegen(ܲ௑ோெ௉, ܮெ௢௡௢௠) 
18: end if 
19: end while 

20: # Löse das reduzierte Master-Problem 
 ௑ோெ௉∗ := optimiere(ܲ௑ோெ௉)ݑ ,∗௑ோெ௉ݖ :21
22: if ist_ganzzahlig (ݑ௑ோெ௉∗) then 
 ∗௑ோெ௉ݖ =:∗ோெ௉ݖ :23
 ∗௑ோெ௉ݑ =: ∗ோெ௉ݑ :24
25: else 
26: ܲோெ௉ := derelaxiere(ܲ௑ோெ௉) 
 ோெ௉∗:= optimiere(ܲோெ௉)ݑ ,∗ோெ௉ݖ :27
28: end if 
29: return ܲ௑ோெ௉, ்ܮ௘௥௠௘  ∗௑ோெ௉ݑ ,∗௑ோெ௉ݖ ,∗ோெ௉ݑ ,∗ோெ௉ݖ ,

Der Pseudocode geht von den folgenden Funktionen sowie von Standardfunktionen 
objektorientierter Programmiersprachen aus: 

- dualisiere: Gibt ein zu einem eingegebenen XRMP duales Problem zurück 
- optimiere: Ermittelt den optimalen Zielfunktionswert und die optimale Lösung ei-

nes Optimierungsproblems 
- erstelle_pricing_problem: Gibt ein Subproblem (SP) zurück 
- spalte_einfuegen: Fügt eine Spalte in ein XRMP ein 
- ist_ganzzahlig: Gibt wahr zurück, falls jeder Eintrag eines Vektors ganzzahlig ist, 

ansonsten falsch 
- derelaxiere: Derelaxiert ein Optimierungsproblem, indem alle Entscheidungsva-

riablen ganzzahlig beschränkt werden 

A5.3 Beschreibung und Pseudocode zu Algorithmus AlgPricingHeuristik 

Zur Lösung des Subproblems (SP) wird in der vorliegenden Arbeit die folgende Heuris-
tik verwendet. Diese lässt sich zu großen Teilen auf Matrix-Vektor-Multiplikation und 
das Berechnen von Skalarprodukten zurückführen; Operationen, die nach Stand der 
Technik effizient ausgeführt werden können.  
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Die optimale Lösung ࢜∗ des DP gibt an, in welchem Maße ein Monom, das bestimmte 
positive Datenpunkte akzeptiert, zur Verbesserung des optimalen Zielfunktionswerts ݖ௑ோெ௉∗ des relaxierten reduzierten Master-Problems (XRMP) beiträgt. Sie gewichtet da-
mit die positiven Datenpunkte des Trainingsdatensatzes. Jedes zulässige Monom 
schließt alle negativen Datenpunkte aus, d. h. enthält für jeden negativen Datenpunkt 
mindestens ein Literal, das diesen ausschließt. Die Eigenschaft eines Monoms, Daten-
punkte ein oder auszuschließen, kann auf seine Literale heruntergebrochen werden. 
Enthält das Monom ein bestimmtes Feature als positives Literal, schließt es alle Daten-
punkte des Datensatzes, die für dieses Feature einen Eintrag falsch aufweisen, aus. 
Das gleiche gilt für negative Literale und Einträge wahr. Umgekehrt betrachtet schließt 
ein positives Literal ohne Berücksichtigung weiterer Literale des Monoms einen ent-
sprechenden Eintrag wahr ein und ein negatives Literal einen Eintrag falsch. Ein Mo-
nom, das für das Beispiel in Abbildung 4.28 (1) in Kapitel 4.4.2.1.1 das Literal ݔଵ enthält, 
schließt z. B. die negativen Datenpunkte 1, 2 und 3 sowie den positiven Datenpunkt 2 
aus. Demgegenüber schließt ein Monom, das das Literal ݔଵ enthält ohne Berücksichti-
gung weiterer Literale des Monoms den positiven Datenpunkt 1 ein.  

Die Heuristik folgt der folgenden Überlegung. Ein gutes zulässiges Monom schließt alle 
negativen Datenpunkte aus, akzeptiert positive Datenpunkte mit einem möglichst ho-
hen kumulierten Gewicht und verfügt über möglichst wenige Literale, da diese sich 
nachteilig auf ݖ௑ோெ௉∗ auswirken. Das Monom als Lösung des Pricing-Problems wird 
Literal für Literal aufgebaut. Die Heuristik folgt einer Greedy-Strategie. In jeder Iteration 
wird dasjenige Literal hinzugefügt, das möglichst viele der verbleibenden negativen Da-
tenpunkte ausschließt (Gewinn) und dabei möglichst wenige verbleibende positive Da-
tenpunkte nach Gewicht ausschließt (Verlust). Für jedes infrage kommende Literal wird 
der Quotient aus Gewinn und Verlust berechnet. Es wird dasjenige Literal hinzugefügt, 
dass den höchsten Quotienten aufweist. Um eine Division durch 0 zu vermeiden und 
der Tatsache Rechnung zu tragen, dass jedes hinzugefügte Literal ݖ௑ோெ௉∗ um 1 ver-
schlechtert, wird zuvor der Verlust jeweils um 1 erhöht. Es werden so lange Literale 
hinzugefügt, bis alle negativen Datenpunkte ausgeschlossen sind und das Monom da-
mit zulässig ist. Die Heuristik lässt sich recheneffizient umsetzen, indem für einen Trai-
ningsdatensatz nur einmalig die Matrizen ܣா௫௞௟௉௢௦, ܣூ௡௞௟௉௢௦, ܣா௫௞௟ே௘௚ und ܣூ௡௞௟ே௘௚ be-
rechnet werden, die angeben, ob ein Literal einen bestimmten positiven bzw. negativen 
Datenpunkt ausschließt bzw. akzeptiert. Jede der Matrizen verfügt über 2݊ி Spalten, 
wobei jede Spalte einem möglichen Literal entspricht und über ݊஽௣ bzw. ݊஽௡ Zeilen, 
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wobei jede Zeile einem positiven bzw. negativen Datenpunkt entspricht. Die Gewinne 
und Verluste je Literal lassen sich damit durch Matrix-Vektor-Multiplikation berechnen. 
Der Pseudocode des Algorithmus AlgPricingHeuristik, der im Folgenden gezeigt wird, gibt 
die Vorgehensweise der Berechnung wieder. 

AlgCG: Algorithmus zur heuristischen Lösung des Pricing-Problems 
Input: ܮா௫௞௟ெ௢௡௢௠, ܣ ,∗ݒா௫௞௟௉௢௦, ܣூ௡௞௟௉௢௦, ܣா௫௞௟ே௘௚, ܣூ௡௞௟ே௘௚, ݊ூ௡, ݊ி 
Output: ܮ௕௘௦௧௘௦ெ௢௡௢௠, ݖௌ௉∗  

1:  
 ௕௘௦௧௘௦ெ௢௡௢௠ := ૙ଶ௡ಷ #Dual Rail-Darstellungܮ :2
ே௘௚ூ௡௦௧௏௘௥௕௟௘௜௕௘௡ௗܮ :3  := ૚௡಺೙  
௉௢௦ூ௡௦௧௏௘௥௕௟௘௜௕௘௡ௗீ௘௪ܮ :4  := ࢜∗ 
5:  

6: 
# Vermeide, dass ausgeschlossene Terme eingefügt werden, indem sie wie negative Datenpunkte be-
handelt werden 

7: while |ܮா௫௞௟ெ௢௡௢௠௘| > 0 do  

 (ா௫௞௟ெ௢௡௢௠௘ܮ)஻௘௧௥ெ௢௡௢௠ := popܮ :8

 (஻௘௧௥ெ௢௡௢௠ܮ ,ா௫௞௟ே௘௚ܣ)ா௫௞௟ே௘௚ := zeile_einfuegenܣ :9

 ((஻௘௧௥ெ௢௡௢௠ܮ)ூ௡௞௟ே௘௚, invertiere_eintraegeܣ)ூ௡௞௟ே௘௚ := zeile_einfuegenܣ :10

11: end while 

12:  
13: #Iteration 

14: while summe(ܮே௘௚ூ௡௦௧௏௘௥௕௟௘௜௕௘௡ௗ) > 0 do 

15: #Berechne bestes Literal 
ே௘௚ூ௡௦௧௏௘௥௕௟௘௜௕௘௡ௗܮ ∙ ா௫௞௟ே௘௚ܣ =: ௘௪௜௡௡ீܮ :16   

௉௢௦ூ௡௦௧௏௘௥௕௟௘௜௕௘௡ௗீ௘௪ܮ ∙ ா௫௞௟௉௢௦ܣ =: ௏௘௥௟௨௦௧ܮ :17  + ૚ଶ௡ಷ 
18: ࢘ொ௨௢௧௜௘௡௧ := elementweise_division(ீܮ௘௪௜௡௡, ܮ௏௘௥௟௨௦௧) 
19: ࢘ொ௨௢௧௜௘௡௧ := elementweise_multiplikation(࢘ொ௨௢௧௜௘௡௧ , invertiere_eintraege(ܮ௕௘௦௧௘௦ெ௢௡௢௠  )) 

20: ݊஻௘௦௧௘௥ூ௡ௗ௘௫ := argmax(࢘ொ௨௢௧௜௘௡௧) 
 ௕௘௦௧௘௦ெ௢௡௢௠[݊஻௘௦௧௘௥ூ௡ௗ௘௫] := 1ܮ :21

22: #Aktualisiere verbleibende Datenpunkte 
ூ௡௞௟ே௘௚[:, ݊஻௘௦௧௘௥ூ௡ௗ௘௫ܣ , ே௘௚ூ௡௦௧௏௘௥௕௟௘௜௕௘௡ௗܮ)ே௘௚ூ௡௦௧௏௘௥௕௟௘௜௕௘௡ௗ := elementweise_multiplikationܮ :23 ]) 

௉௢௦ூ௡௦௧௏௘௥௕௟௘௜௕௘௡ௗீ௘௪ܮ :24 := elementweise_multiplikation(ܮ௉௢௦ூ௡௦௧௏௘௥௕௟௘௜௕௘௡ௗீ௘௪  (ூ௡௞௟௉௢௦[:, ݊஻௘௦௧௘௥ூ௡ௗ௘௫]ܣ ,

25: end while 

 (௉௢௦ூ௡௦௧௏௘௥௕௟௘௜௕௘௡ௗீ௘௪ܮ)summe – (௕௘௦௧௘௦ெ௢௡௢௠ܮ)ௌ௉∗ := summeݖ :26

27: return ܮ௕௘௦௧௘௦ெ௢௡௢௠, ݖௌ௉∗ 
 

Der Pseudocode geht von den folgenden Funktionen sowie von Standardfunktionen 
objektorientierter Programmiersprachen aus: 

- invertiere_eintraege: Ersetzt jeden Eintrag 0 in einer Liste mit 1 und umgekehrt 
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A5.4 Ergänzung von nichtlösbaren relaxierten reduzierten Master-Proble-
men 

Relaxierte reduzierte Master-Probleme (XRMP), für die mindestens eine Variable auf 0 
fixiert wurde, besitzen u. U. keine Lösung, da mit den verbleibenden wählbaren Mono-
men u. U. nicht mehr alle positiven Datenpunkte eingeschlossen werden können. Es ist 
ein Monom zu ermitteln, dass dem XRMP hinzugefügt werden kann um eine zulässige 
Lösung zu ermöglichen. Hierfür kann ein modifiziertes Subproblem (SP) verwendet 
werden. Grundsätzlich ist das SP in der Lage, dem XRMP Spalten für zulässige Mo-
nome hinzuzufügen und bevorzugt dabei solche Monome, die positive Datenpunkte mit 
großen absoluten ݒ௜∗ einschließen. Es wird deshalb ein ࢜∗ definiert, das jeweils einen 
hohen Wert für positive Datenpunkte aufweist, die im XRMP nicht eingeschlossen wer-
den können und ansonsten 0 ist. Damit kann ein adaptiertes SP aufgestellt werden. 
Dieses SP führt zu einem Monom, das möglichst viele positive Datenpunkte akzeptiert, 
die zuvor von keinem Monom akzeptiert wurden. Auf diese Weise kann das XRMP 
schnell in ein lösbares XRMP überführt werden. Es ist dafür notwendig, zu ermitteln, 
welche positiven Datenpunkte im XRMP nicht eingeschlossen werden können, d. h. 
welche Nebenbedingungen unerfüllbar sind. Solver nach Stand der Technik verfügen 
über Funktionen, um die minimale Menge an unerfüllbaren Nebenbedingungen (Irredu-
cible Inconsistent Subsystem) zu berechnen. Damit können die entsprechenden Da-
tenpunkte ermittelt werden. 

A5.5 Pseudocode zu Algorithmus AlgB&P 

Der Algorithmus geht von einem Trainingsdatensatz aus. Optional können ein relaxier-
tes reduziertes Master-Problem (XRMP) sowie dessen berücksichtigte und ausge-
schlossene Monome übergeben werden. Er gibt einen komplexitätsminimalen boole-
schen Ausdruck zurück, der auf dem Trainingsdatensatz eine perfekte Trainingsgenau-
igkeit aufweist. 

AlgB&P: Algorithmus zum Lernen eines komplexitätsminimalen booleschen Ausdrucks mit perfekter 
Trainingsgenauigkeit mittels Branch and Price 
Input: ்ܶ௥௔௜௡௜௡௚, optional: ܲ௑ோெ௉, ܮெ௢௡௢௠௘, ܮா௫௞௟ெ௢௡௢௠௘ 
Output: ܤ௢௣௧  

1: #Initialisiere Variablen 
2: if not existiert(ܲ௑ோெ௉) or not existiert(ܮெ௢௡௢௠௘) then 
3: ܲ௑ோெ௉, ܮெ௢௡௢௠௘  := AlgInitRMP(்ܶ௥௔௜௡௜௡௚) 
4: end if 
5: if not existiert(ܮா௫௞௟ெ௢௡௢௠௘) then 
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 ()ா௫௞௟ெ௢௡௢௠௘ := new Listܮ :6
7: end if 
 ௢௣௧ := Noneܤ :8
9: ෠ܾ௨ := None  
 ()ௌ௧௔௣௘௟ := new Listܮ :10
 ((ா௫௞௟ெ௢௡௢௠௘ܮ ,ெ௢௡௢௠௘ܮ ,௑ோெ௉ܲ) ,ௌ௧௔௣௘௟ܮ)ௌ௧௔௣௘௟ := anfuegenܮ :11
 ூ௡௞௟ே௘௚ := berechne_inkl_exkl_matrizen(்ܶ௥௔௜௡௜௡௚)ܣ ,ா௫௞௟ே௘௚ܣ ,ூ௡௞௟௉௢௦ܣ ,ா௫௞௟௉௢௦ܣ :12
  
13: #Iterationen 
14: while |ܮௌ௧௔௣௘௟| > 0 do 
15: #Löse nächstes Problem auf dem Stapel 
16: ܲ௑ோெ௉,௄௡௢௧௘௡, ܮெ௢௡௢௠௘,௄௡௢௧௘௡, ܮா௫௞௟ெ௢௡௢௠௘,௄௡௢௧௘௡ := pop(ܮௌ௧௔௣௘௟) 
17: 

ܲ௑ோெ௉,௄௡௢௧௘௡, ்ܮ௘௥௠௘ ,௄௡௢௧௘௡  (ூ௡௞௟ே௘௚ܣ ,ா௫௞௟ே௘௚ܣ ,ூ௡௞௟௉௢௦ܣ ,ா௫௞௟௉௢௦ܣ ,ா௫௞௟ெ௢௡௢௠௘,௄௡௢௧௘௡, ்ܶ௥௔௜௡௜௡௚ܮ ,ெ௢௡௢௠௘,௄௡௢௧௘௡ܮ ,௑ோெ௉ܲ)௑ோெ௉∗ := AlgCGݑ ,∗௑ோெ௉ݖ ,∗ோெ௉ݑ ,∗ோெ௉ݖ ,
18: #Prüfe ob neue beste Lösung gefunden wurde 
19: if ܤ௢௣௧ == None or ݖோெ௉∗ < ෠ܾ௨ then 

 (∗ோெ௉ݑ ,௘௥௠௘,௄௡௢௧௘௡்ܮ)௢௣௧ := erstelle_booleschen_ausdruckܤ :20
21: ෠ܾ௨ := ݖோெ௉∗  
22: end if 
  
23: #Verzweige 
24: if ⌈ݖ௑ோெ௉∗⌉ < ෠ܾ௨ then 
25: ݊௏௭ := niedrigster_index_nicht_ganzzahlig(ݑ௑ோெ௉∗) 
26: ܲ௑ோெ௉,௄௡௢௧௘௡,଴ := fixiere_variable(ܲ௑ோெ௉,௄௡௢௧௘௡, ݊௏௭, 0) 
ா௫௞௟ெ௢௡௢௠௘ܮ :27 ,௄௡௢௧௘௡,଴ := anfuegen(ܮா௫௞௟ெ௢௡௢௠௘ ,௄௡௢௧௘௡,଴, ܮெ௢௡௢௠௘,௄௡௢௧௘௡[݊௏௭ ] 
28: ܲ௑ோெ௉,௄௡௢௧௘௡,ଵ := fixiere_variable_auf_wert(ܲ௑ோெ௉,௄௡௢௧௘௡, ݊௏௭, 1) 
ௌ௧௔௣௘௟ܮ)ௌ௧௔௣௘௟ := anfuegenܮ :29  , (ܲ௑ோெ௉,௄௡௢௧௘௡,଴, ܮெ௢௡௢௠௘ ,௄௡௢௧௘௡, ܮா௫௞௟ெ௢௡௢௠௘ ,௄௡௢௧௘௡,଴)) 
ௌ௧௔௣௘௟ܮ)ௌ௧௔௣௘௟ := anfuegenܮ :30  , (ܲ௑ோெ௉,௄௡௢௧௘௡,ଵ, ܮெ௢௡௢௠௘ ,௄௡௢௧௘௡, ܮா௫௞௟ெ௢௡௢௠௘ ,௄௡௢௧௘௡)) 
31: end if 
32: end while 
32: return ܤ௢௣௧ 

 

Der Pseudocode geht von den folgenden Funktionen sowie von Standardfunktionen 
objektorientierter Programmiersprachen aus: 

- berechne_inkl_exkl_matrizen: Gibt für einen Trainingsdatensatz vier Matrizen, 
zurück, die angeben, welche Literale welche positiven bzw. negativen Daten-
punkte ein- bzw. ausschließen 

- erstelle_booleschen_ausdruck: Erzeugt einen booleschen Ausdruck, der aus ei-
ner Liste von Monomen alle Monome enthält, deren zugehöriger Eintrag in einem 
beigefügten Vektor 1 ist 

- niedrigster_index_nicht_ganzzahlig: Gibt für einen Vektor den Index des ersten 
nichtganzzahligen Eintrags zurück 
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- fixiere_variable_auf_wert: Fixiert in einem Optimierungsproblem eine Variable 
mit einem bestimmten Index auf einen bestimmten Wert 

A6 Anhang zu Kapitel 4.5 
Im Folgenden wird näher auf zwei Aspekte der in Kapitel 4.5.2.5 beschriebenen Model-
lierung eingegangen. 

A6.1 Verzicht auf dynamische Gewichtung der Auswahlkriterien bei der 
Variantenauswahl 

Das Kriterium der Diversität steht in keiner unmittelbaren Beziehung zum Ausschließen 
von Modellen aus den Versionenräumen (VRs). Gerade für wenige Daten können je-
doch Fälle auftreten, in denen bestimmte Labels durchgehend denselben Wahrheits-
wert annehmen. In diesen Fällen kann keine bessere Vorhersage als dieser Wahrheits-
wert getroffen werden, d. h. alle Modelle des entsprechenden VR sind identisch und 
können nicht separiert werden. Damit kann das Separationskriterium nicht angewandt 
werden. Um mindestens eine Variante mit einem anderen Wahrheitswert im Konfigura-
tionsraum zu finden, eignet sich die Diversität. Die Diversität ist somit insbesondere 
beim Vorliegen weniger annotierter Datenpunkte relevant. Damit erscheint es zunächst 
sinnvoll, ݓெௌ mit zunehmender Datenmenge zu erhöhen und damit die Gewichtung der 
Diversität zu reduzieren. Ein solcher Effekt ist jedoch in dem in Kapitel 4.5.2.5 beschrie-
benen Modell implizit angelegt. Für wenige Daten existieren zum einen viele triviale 
VRs, die nicht geteilt werden können. Zum anderen ist es möglich, Varianten weit weg 
von zuvor gewählten Varianten zu wählen, d. h. das Separationskriterium nimmt ten-
denziell geringe Werte an und das Diversitätskriterium tendenziell hohe Werte. Mit zu-
nehmender Datenmenge verändert sich dieser Umstand zugunsten des Separations-
kriteriums. Um diesen Effekt zu nutzen, ist es sinnvoll, die beiden Kriterien über alle 
Iterationen hinweg mit demselben Maximalwert zu normieren und nicht mit dem für die 
jeweilige Iteration gültigen Maximalwert. Aufgrund dieses Effekts wird in der vorliegen-
den Arbeit auf eine dynamische Anpassung von ݓெௌ in Abhängigkeit der Datenmenge 
verzichtet. 

A6.2 Codierung kategorischer Merkmale für die Variantenauswahl 

Liegen im High-Level-Konfigurationsmodell (HLKM) kategorische Produktmerkmale 
vor, können diese für das Optimierungsproblem zum einen mittels One-Hot-Codierung 
in binäre Features überführt werden. Zum anderen können den Merkmalausprägungen 
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zunächst fortlaufende natürliche Zahlen zugeordnet und diese in das Dualsystem über-
führt werden81. Letzteres wird im Folgenden als Dualcodierung bezeichnet. Da die Mo-
delle in den Versionenräumen (VR) in One-Hot-Codierung erstellt werden, muss beim 
Aufstellen des Optimierungsproblems in Dualcodierung eine Transformation vorgenom-
men werden. Je nachdem, in welcher Form die Trainingsdaten vorliegen, müssen diese 
ebenfalls transformiert werden. Der Vorteil der Dualcodierung ist, dass sie weniger Va-
riablen benötigt und weniger Kombinationen von Featureausprägungen ausgeschlos-
sen werden müssen. Das ermöglich die Verwendung von weniger Nebenbedingungen 
3 in dem in Kapitel 4.5.2.5 beschriebenen Optimierungsproblem 4.23. Es ist dabei je-
doch zu beachten, dass sich je nach Darstellungsform das Kriterium der Diversität ver-
ändert. Stimmen zwei Varianten in einem kategorischen Merkmal nicht überein, bedeu-
tet dies immer einen Abstand von 2 in One-Hot-Codierung. In einer Dualcodierung kann 
der Abstand zwischen 1 und ⌈logଶ ݊ெௐ⌉ betragen, wobei ݊ெௐ die Anzahl der möglichen 
Ausprägungen des Merkmals darstellt. Es liegt somit eine unbekannte Gewichtung von 
Abständen vor, die das Ergebnis auf nicht triviale Weise beeinflussen kann. Für Prob-
lemstellungen einer bestimmten Größe kann der Einsatz einer Dualcodierung aufgrund 
der Rechenzeit jedoch notwendig sein. 

A7 Anhang zu Kapitel 5.1 

A7.1 Approximation der wählbaren Varianten in den Konfigurationsmodel-
len des Industriepartners 

Die Anzahl der wählbaren Varianten ohne Berücksichtigung der Beschränkungen des 
High-Level-Konfigurationsmodells (HLKM) ergibt sich durch Multiplikation der Anzahlen 
von zulässigen Ausprägungen je Merkmal. Die Anzahl der wählbaren Varianten unter 
Berücksichtigung der Beschränkungen wurde im Rahmen der vorliegenden Arbeit erst-
mals fundiert approximiert. Die paarweisen Ausschlussbeziehungen des HLKM lassen 
sich als High-Level-Formel (HLF), d. h. als ein boolescher Ausdruck formulieren, wie in 
Kapitel 4.5.2.4 beschrieben. Die Anzahl zulässiger Varianten entspricht damit der An-
zahl der Variablenbelegungen, für die dieser Ausdruck den Wert wahr annimmt, d. h. 
der Anzahl der Modelle im Sinne der Aussagenlogik. Diese Anzahl zu bestimmen ent-
spricht dem #SAT-Problem, das #P-vollständig82 ist (Creignou & Hermann 1996, S. 1) 

                                         
81 Eine solche Darstellung kategorischer Merkmale wird z.B. von Potdar et al. (2017, S. 7–8) beschrieben. 
82 #P⊃NP 
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und deshalb für große Probleme nicht in relevanter Zeit gelöst werden kann. Es wurde 
deshalb Approximate Model Counting nach Soos et al. (2020) unter Verwendung der 
Python-Bibliothek pyapproxmc83 eingesetzt, um die Anzahl der Varianten approximativ 
zu bestimmen. Es gilt 

1|(ܨ)݈݋ݏ|)ܲ  + ߝ ) ≤  ܿ ≤  (1 + (|(ܨ)݈݋ݏ|(ߝ  ≥  1 −  ߜ
A7.1 

mit ߝ =  0,05 und ߜ =  0,05 wobei (ܨ)݈݋ݏ die Menge der Modelle des zuvor erwähnten 
booleschen Ausdrucks darstellt (Soos et al. 2020, S. 465). Das bedeutet, dass mit einer 
Wahrscheinlichkeit von größer gleich 95 % die tatsächliche Anzahl zulässiger Varianten 

zwischen ( ଵଵ,଴ହ)  ∗  ܿ und 1,05 ∗  ܿ liegt, wobei ܿ dem in Tabelle 5.1 in Kapitel 5.1 ange-

gebenen Wert entspricht.  

A8 Anhang zu Kapitel 5.2 

A8.1 Gleichmäßig zufällige Generierung von synthetischen Maximalstück-
listen 

Im Folgenden wird erläutert, wie unter Berücksichtigung der in Kapitel 5.2.1 eingeführ-
ten Parameter gleichmäßig zufällig Maximalstücklisten (MSTLs) erstellt werden. Es 
werden die folgenden von den Parametern abgeleiteten Größen benötigt: 

- ݊ெ௨௟௧ = ௓௄௄݊)݊݁݀݊ݑݎ ∗  ெ௨௟௧), die Anzahl von Multipositionen je Strukturoptionݎ 
(STO), 

- ݊ௌ௜௡௚ = ݊௓௄௄ − ݊ெ௨௟௧, die Anzahl von singulären Positionen je STO, 
- ݊௓௄௄,ெௌ்௅ = ݊௓௄௄ + ݊௓௄௄ ∗ (݊ௌ்ை − 1), die Anzahl von Zukaufkomponentenklas-

sen (ZKKs) in der MSTL, 
- ݊஻ீ௄ = ௓௄௄,ெௌ்௅݊)݊݁݀݊ݑݎ ∗  ஻ீ௄), die Anzahl von Baugruppenklassen (BGKs) inݎ

der MSTL 
- und ݊஺௕௛ = ஺௕௛ݎ ∗ ݊௓௄௄, die Anzahl von ZKKs einer STO, die von der gültigen 

STO abhängen. 

Die Erzeugung der Struktur der MSTL lässt sich auf die gleichmäßig zufällige Erzeu-
gung von Wurzelbäumen mit ݊௓௄௄,ெௌ்௅ Blättern und ݊஻ீ௄ inneren Knoten zurückführen. 
Es existiert ein generisches Verfahren von Alonso et al. (1997) zur gleichmäßig 

                                         
83 https://github.com/meelgroup/approxmc (zuletzt überprüft am 07.06.2025) 
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zufälligen Erzeugung von Wurzelbäumen, die bestimmte Muster von Knoten und Kan-
ten enthalten. Wird dieses Verfahren genutzt, um Bäume zu erstellen, die ݊௓௄௄,ெௌ்௅-
mal das Muster Knoten ohne Kanten zu untergeordneten Knoten und ݊஻ீ௄-mal das 
Muster Knoten mit einer oder mehreren Kanten zu untergeordneten Knoten enthalten, 
entstehen gleichmäßig zufällige Bäume mit ݊ ௓௄௄,ெௌ்௅ Blättern und ݊ ஻ீ௄ inneren Knoten, 
wobei die Wurzel selbst in ݊஻ீ௄ enthalten ist. Das Verfahren wurde auf Basis der Arbeit 
von Alonso et al. (1997) im Rahmen der vorliegenden Arbeit in Python implementiert.  

Liegt die Struktur vor werden den Blättern des Baums Bezeichnungen und Positions-
nummern zugeordnet. Es werden zunächst ݊ௌ௜௡௚ Blätter gleichmäßig zufällig ausge-
wählt und jeweils mit einer eindeutigen Bezeichnung versehen. Es verbleiben ݊ெ௨௟௧ zu 
bezeichnende Blätter, denen dergestalt Bezeichnungen zuzuordnen sind, dass jede 
Bezeichnung mindestens zweimal auftritt. Dieses Problem kann in ein erweitertes Ran-
dom-Integer-Partitioning-Problem überführt werden: Es ist eine Zerlegung von ݊ெ௨௟௧ in 
Summanden größer gleich zwei zufällig auszuwählen, sodass jede Zerlegung die glei-
che Wahrscheinlichkeit besitzt ausgewählt zu werden. Ist diese Zerlegung bekannt, 
kann je Summand ݊ௌ௨௠ eine einzigartige Bezeichnung ausgewählt und gleichmäßig 
zufällig ݊ௌ௨௠ Blättern ohne Bezeichnung zugeordnet werden. Bereits für kleine ݊ெ௨௟௧ 
kann das erweiterte Random-Integer-Partitioning-Problem nicht mehr durch vollstän-
dige Enumeration aller möglichen Zerlegungen gelöst werden. Im Rahmen der vorlie-
genden Arbeit wurde deshalb ein Algorithmus entwickelt, um dieses Problem mittels 
dynamischer Programmierung effizient zu lösen. Dieser ist in Anhang A8.2 beschrie-
ben. 

Es sind nun ݊ெ௨௟௧ ZKKs mit Bezeichnungen versehen. Hiervon werden gleichmäßig 
zufällig ݊஺௕௛ ausgewählt und deren Bezeichnungen ݊ௌ்ை − 1 mal kopiert und zufälligen 
ZKKs ohne Bezeichnungen zugeordnet. Die daraus resultierenden ݊ௌ்ை bezeichneten 
ZKKs werden jeweils einer STO zugeordnet. Damit ist jede ZKK der MSTL entweder 
genau einer oder allen STOs zugeordnet. ZKKs, die mehreren, aber nicht allen STOs 
zugeordnet sind, werden nicht betrachtet. Würden MSTLs zugelassen, für die be-
stimmte ZKKs mehreren, aber nicht allen STOs zugeordnet sind, erscheint es zunächst 
möglich, die von STOs betroffenen ZKKs zufällig ausgewählten STOs zuzuordnen. 
Dadurch könnten jedoch STOs mit einer geringeren Anzahl von ZKKs einer Bezeich-
nung entstehen, was der in Kapitel 4.2.2.2 getroffenen Annahme widersprechen würde. 
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Die vorgestellte Methode ließe sich somit in diesem Fall nicht anwenden um gleichmä-
ßig zufällig MSTLs aus der Gesamtheit aller möglichen MSTLs auszuwählen. 

In der vorgestellten Methode zur Erzeugung synthetischer MSTLs beeinflusst jede der 
vorgenommenen zufälligen Auswahlen die Anzahl der Möglichkeiten für die darauffol-
gende zufällige Auswahl nicht. Damit besitzt jede mögliche MSTL die gleiche Auswahl-
wahrscheinlichkeit. Nach Durchführung der beschriebenen Methode liegt somit eine 
gleichmäßig zufällig ausgewählte synthetische MSTL vor, die zur Konfiguration von va-
riantenbezogenen Stücklisten (VSTLs) genutzt werden kann. 

A8.2 Gleichmäßig zufällige Generierung von Ganzzahlpartitionen mit 
Summanden größer gleich 2 

Die gleichmäßig zufällige Auswahl von Partitionen einer natürlichen Zahl, d. h. einer 
Menge von Summanden, die in Summe diese Zahl ergeben, ist ein in der Literatur be-
kanntes Problem, das rekursiv mittels dynamischer Programmierung gelöst werden 
kann. Zunächst wird berechnet, wie viele Ganzzahlpartitionen der natürlichen Zahl ݊௓௨்௘௜௟௘௡ existieren, deren größter Summand genau einem bestimmten ݊ௌ௨௠ெ௔௫ ≤݊௓௨்௘௜௟௘௡ entspricht. Anschließend wird der größte Summand der Partition mit einer 
Wahrscheinlichkeit ausgewählt, die dieser Anzahl entspricht. Die Berechnung der An-
zahl von Partitionen von ݊௓௨்௘௜௟௘௡ und einem bestimmten größten Summanden ݊ௌ௨௠ெ௔௫ 
lässt sich auf untergeordnete Probleme desselben Typs zurückführen und somit rekur-
siv durchführen. (Nijenhuis & Wilf 1975, S. 70) 

Der im Rahmen der vorliegenden Arbeit entwickelte und im Folgenden vorgestellte Al-
gorithmus stellt eine Adaption des zuvor erläuterten Algorithmus von Nijenhuis & Wilf 
(1975, S. 70) dar und ist in der Lage, gleichmäßig zufällig Partitionen einer natürlichen 
Zahl auszuwählen, deren Summanden größer gleich 2 sind. Auch hier ist die effiziente 
Berechnung der Anzahl bestimmter Partitionen von natürlichen Zahlen wesentlich. Sei ݊௜,௝஺௡௭௉௔௥௧ die Anzahl von Partitionen von ݅, deren kleinster Summand größer gleich ݆ ist. 

Beispielsweise entspricht ݊௜,௝஺௡௭௉௔௥௧ für ݅ = 8 und ݆ = 2 der Anzahl von Partitionen von 8 

mit einem kleinsten Summanden von größer gleich 2. Für solche Partitionen können 
die folgenden Fälle unterschieden werden. Erstens kann der kleinste Summand der 
Partition genau ݆ sein. Dann verbleibt neben dem kleinsten Summanden ein Rest von ݅ − ݆, der auf die anderen Summanden aufzuteilen ist. Im Beispielfall würde die Partition 
somit den Wert 2 enthalten und es verbliebe ein Rest von 6, der auf die anderen 
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Summanden zu verteilen ist. Die Anzahl von Partitionen von 8 mit einem kleinsten Sum-
manden von genau 2 entspricht ݊଺,ଶ஺௡௭௉௔௥௧. Zweitens kann der kleinste Summand ݆ + 1 
sein. Dann verbleibt neben dem kleinsten Summanden ein Rest von ݅ − (݆ + 1), der auf 
die anderen Summanden aufzuteilen ist. Die Anzahl von Partitionen für den Beispielfall 
mit Summand 3 entspricht ݊ହ,ଷ஺௡௭௉௔௥௧ usw. Allgemein gilt 

 ݊௜,௝஺௡௭௉௔௥௧ = ∑ ݊௜ି௞,௞஺௡௭௉௔௥௧௜௞ୀ௝ , A8.1 

sowie ݊଴,௝஺௡௭௉௔௥௧ = 1 und ݊௜,௝஺௡௭௉௔௥௧ = 0 ∀ (݆ > ݅), womit eine rekursive Berechnung mittels 

dynamischer Programmierung möglich ist. Damit kann insbesondere die Anzahl von 
Partitionen einer natürlichen Zahl berechnet werden, deren kleinster Summand größer 
gleich 2 ist. Für den Beispielfall gilt ଼݊,ଶ஺௡௭௉௔௥௧ = 7. Dies entspricht den 7 Partitionen 
(2,2,2,2), (3,3,2), (4,2,2), (4,4), (5,3), (6,2) und (8). Die Anzahl von Partitionen, für die 
der kleinste Summand genau ݆ ist, kann durch  

 ݊௜,௝஺௡௭௉௔௥௧,௚௘௡ = ݊௜,௝஺௡௭௉௔௥௧ − ݊௜,௝ାଵ஺௡௭௉௔௥௧ A8.2 

Berechnet werden. Für 8 existieren z. B. 4 Partitionen, deren kleinster Summand genau 
2 ist. Um eine gleichmäßig zufällige Partition von 8 zu bestimmen ist somit der kleinste 

Summand mit einer Wahrscheinlichkeit von ସ଻ als 2 zu wählen und mit je einer Wahr-

scheinlichkeit von ଵ଻ als 3, 4 oder 8. Allgemein beträgt die Wahrscheinlichkeit, dass ein 

bestimmter kleinster Summand ݆ gewählt wird  

 ௝ܲ = ௡೔,ೕಲ೙೥ುೌೝ೟,೒೐೙௡೔,ೕಲ೙೥ುೌೝ೟ . 
A8.3 

Wurde ein kleinster Summand ausgewählt, wird die Partitionierung für den verbleiben-
den Rest fortgesetzt. Dabei darf kein Summand mehr gewählt werden, der kleiner als 
ein bereits gewählter Summand ist. Im Folgenden finden sich der Algorithmus AlgZufael-

ligePartition zur Auswahl einer gleichmäßig zufälligen Partition einer natürlichen Zahl mit 
Summanden größer gleich 2 sowie der untergeordnete Algorithmus AlgZaehlePartitionen zur 
Bestimmung von ݊௜,௝஺௡௭௉௔௥௧ als Pseudocode. Der Algorithmus nutzt Caching, um die 

mehrfache Berechnung identischer Probleminstanzen zu vermeiden. 

AlgZufaelligePartition: Algorithmus zur gleichmäßig zufälligen Auswahl einer Partition einer natürlichen Zahl 
mit Summanden größer gleich 2 
Input: ݊௓௨்௘௜௟௘௡ 
Output: ܮ௓௨௙௉௔௥௧௜௧௜௢௡  

 ()஼௔௖௛௘ := new Dictionaryܦ :1
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 ()௓௨௙௉௔௥௧௜௧௜௢௡ := new Listܮ :2
3: ݊ோ௘௦௧:= ݊௓௨்௘௜௟௘௡ 
4: ݊௅௘௧௭௧௘௥ீ௘௪௔௘௛௟௧௘௥ௌ௨௠௠௔௡ௗ:= 2 
5: while ݊ோ௘௦௧ > 0 do 
6: ݊௉௔௥௧ீ௘௦:= AlgZaehlePartitionen(݊ோ௘௦௧, ݊௅௘௧௭௧௘௥ீ௘௪௔௘௛௟௧௘௥ௌ௨௠௠௔௡ௗ, ܦ஼௔௖௛௘) 
 ()ௐ௞௘௜௧௃௘ௌ௨௠௠௔௡ௗ:= new Dictionaryܦ :7
8: for ݇ ∈ {݊௅௘௧௭௧௘௥ீ௘௪௔௘௛௟௧௘௥ௌ௨௠௠௔௡ௗ , …, ݊ோ௘௦௧} do 

9: 
 ଵ௡ುೌೝ೟ಸ೐ೞ * ((஼௔௖௛௘ܦ ,ோ௘௦௧, ݇+1݊)AlgZaehlePartitionen - (஼௔௖௛௘ܦ ,݇ ,ோ௘௦௧݊)AlgZaehlePartitionen) =: ௐ௞௘௜௧௃௘ௌ௨௠௠௔௡ௗ[k]ܦ

10: end for 
11: ݊ே௘௨௘௥ௌ௨௠௠௔௡ௗ := zufalllsauswahl_mit_wkeiten(ܦௐ௞௘௜௧௃௘ௌ௨௠௠௔௡ௗ) 
 (௓௨௙௉௔௥௧௜௧௜௢௡, ݊ே௘௨௘௥ௌ௨௠௠௔௡ௗܮ)௓௨௙௉௔௥௧௜௧௜௢௡ := anfuegenܮ :12
13: ݊ோ௘௦௧:= ݊ோ௘௦௧ - ݊ே௘௨௘௥ௌ௨௠௠௔௡ௗ 
14: ݊௅௘௧௭௧௘௥ீ௘௪௔௘௛௟௧௘௥ௌ௨௠௠௔௡ௗ := ݊ே௘௨௘௥ௌ௨௠௠௔௡ௗ  
15: end while 
16: return ܮ௓௨௙௉௔௥௧௜௧௜௢௡ 

 

Der Pseudocode geht von den folgenden Funktionen sowie von Standardfunktionen 
objektorientierter Programmiersprachen aus: 

- zufallsauswahl_mit_wkeiten: Die Funktion akzeptiert ein Dictionary, das auszu-
wählende Objekte und zugehörige Wahrscheinlichkeiten enthält und wählt zufäl-
lig eines der Objekte entsprechend den Wahrscheinlichkeiten aus. 

AlgZaehlePartitionen: Algorithmus zur Bestimmung der Anzahl von Partitionen für eine Zahl ࢏, deren Summan-
den mindestens die Größe ࢐ aufweisen 
Input: ݅, ݆, ܦ஼௔௖௛௘  
Output: ݊௜,௝஺௡௭௉௔௥௧  

1: if ݅ == 0 then 
2: return 1 
3: end if 
4: if ݆ > ݅ then 
5: return 0 
6: end if 
7: if (݅, ݆) in ܦ஼௔௖௛௘  then 
8: return ܦ஼௔௖௛௘[(݅,݆)] 
9: end if 

10: ݊௜,௝஺௡௭௉௔௥௧ := ∑ (௜௞ୀ௝ AlgZaehlePartitionen (݅ - ݇,݇, ܦ஼௔௖௛௘)) 

 ஼௔௖௛௘[(݅,݆)] := ݊௜,௝஺௡௭௉௔௥௧ܦ :11
12: return ݊௜,௝஺௡௭௉௔௥௧ 
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A8.3 Metrik für die Demonstration der Methode 2 

Um bewerten zu können, wie effektiv Methode 2 für die Lösung von Problem 2 ist, wird 
im Folgenden eine Metrik definiert. Diese quantifiziert die Abweichung einer Ergebnis-
Maximalstückliste (Ergebnis-MSTL), die mittels Methode 2 erstellt wurde, von einer Re-
ferenz-Maximalstückliste (Referenz-MSTL). Die Herausforderung beim Vergleich einer 
Ergebnis-MSTL mit Strukturoptionen (STOs) und einer Referenz-MSTL mit STOs be-
steht darin, dass die Bezeichnungen der STOs willkürlich sind. Beispielsweise könnte 
im Falle zweier STOs je MSTL davon ausgegangen werden, dass die erste bzw. zweite 
STO der einen MSTL der ersten bzw. zweiten STO der anderen MSTL entspricht. 
Dadurch könnte eine große Differenz der beiden MSTLs schlicht daraus folgen, dass 
diese Zuordnung nicht korrekt ist. Es ist deshalb eine paarweise Zuordnung von STOs 
der beiden MSTLs zu ermitteln, die dafür sorgt, dass die Abweichung zwischen den 
MSTLs minimal wird. Eine STO einer MSTL kann als Subgraph der MSTL dargestellt 
werden, der nur diejenigen Komponentenklassen (KKs) enthält, die der STO zugeord-
net sind (siehe Kapitel 4.2.2.1). Damit entsprechen STOs in ihrer Datenstruktur varian-
tenbezogenen Stücklisten (VSTLs), d. h. Bäumen mit identifizierbaren Blattknoten. Für 
binäre blattannotierte Bäume (engl. Leave Labeled Trees) existieren in der Literatur 
Abstandsmaße, allerdings sind die betrachteten STOs nicht zwingend binäre Bäume. 
Die Berechnung von Tree-Edit-Distanzen für allgemeine ungeordnete, annotierte 
Bäume gehört zur Klasse der maximal streng NP-schweren Probleme (sog. MaxSNP-
Probleme; Akutsu et al. 2011). Es hat sich im Rahmen der Arbeit bestätigt, dass keine 
ausreichend effiziente Umsetzung für die in Kapitel 5.2.1 beschriebene, umfassende 
Experimentreihe möglich ist. Es wird deshalb ein eigenes Maß entwickelt, um die Dif-
ferenz zweier STOs zu quantifizieren. 

Dem Maß liegt die Idee zugrunde, die Unähnlichkeit zweier Stücklisten danach zu be-
urteilen, wie viele nichtübereinstimmende Baugruppen sie aufweisen. Zwei Baugrup-
pen stimmen nicht überein, wenn sie nicht dieselben Zukaufkomponenten enthalten. 
Da STOs keine instanziierten Baugruppen, sondern Baugruppenklassen enthalten, 
wird diese Idee auf Baugruppenklassen (BGKs) übertragen. Sei eine BGK beschrieben 
durch die Menge ihrer untergeordneten Zukaufkomponentenklassen (ZKKs), identifi-
ziert durch deren Bezeichnung. Dies entspricht dem Cluster der BGK nach der Begriffs-
verwendung in Anhang A2.1. Da mehrere ZKKs mit derselben Bezeichnung in einer 
STO existieren können, sind die Cluster im Allgemeinen Multimengen. Liegen in beiden 
STOs dieselben Cluster vor, sind sie identisch. Um den Abstand ݀௞,௟ௌ்ை zweier STOs ݇ 
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und ݈ zu bestimmen, werden deren identische Cluster einander zugeordnet und die 
Anzahl der nichtzuordenbaren Cluster bestimmt. Sei ܵ௞஼௟ bzw. ௟ܵ஼௟ die Menge aller Clus-
ter in STO ݇ bzw. ݈, dann gilt  

 ݀௞,௟ௌ்ை = หܵ௞஼௟ห + ห ௟ܵ஼௟ห − 2|ܵ௞஼௟ ∩ ௟ܵ஼௟|, A8.4 

wobei das Symbol ∩ in diesem Fall den Schnittmengenoperator für Multimengen be-
zeichnet. Damit können die Abstände aller STOs der Ergebnis-MSTL zu allen STOs 
der Referenz-MSTL berechnet werden. Anschließend werden die STOs der Ergebnis-
MSTL den STOs der Referenz-MSTL zugeordnet, so dass die Summe der Abstände 
einander zugeordneter STOs minimal wird. Dabei muss jede STO der Ergebnis-MSTL 
mindestens einer STO der Referenz-MSTL zugeordnet werden und umgekehrt. Dies 
entspricht einem Zuordnungsproblem des Operations Research (engl. Matching Prob-
lem, siehe hierzu Ren et al. 2021, S. 332–335), das mittels mathematischer Optimie-
rung gelöst werden kann.  

Sei ݀ெௌ்௅,௔௕௦ der optimale Zielfunktionswert dieses Zuordnungsproblems. Um die Er-
gebnisse verschiedener Experimente vergleichbar zu machen, muss dieser Wert nor-
miert werden, indem er durch einen Maximalwert መ݀ெௌ்௅ dividiert wird. Grundsätzlich 
lässt sich መ݀୑ୗ୘୐ als Summe über alle Kardinalitäten |ܵ௞஼௟| aller STOs beider MSTLs 
(ܵௌ்ை) berechnen, da im schlechtesten Fall alle Cluster aller STOs keine Entsprechung 
finden. Es ist jedoch zu berücksichtigen, dass die Anzahl der STOs in der Ergebnis-
MSTL und der Referenz-MSTL nicht übereinstimmen muss. Ggf. muss eine STO einer 
MSTL mehreren STOs der anderen MSTL zugeordnet werden, wodurch መ݀୑ୗ୘୐ größer 
werden kann. Da von einer Minimierung der Distanz ausgegangen wird, wird im Falle, 
dass überhaupt keine Übereinstimmung zwischen STOs vorliegt, die STO mit der ge-
ringsten Anzahl von Clustern mehrfach zugeordnet. Sei ݀ ௌ்ை die Differenz der Anzahlen 
von STOs in den beiden MSTLs. In der MSTL mit weniger STOs existiert eine STO, die 
mehrfach zugeordnet wird, weil sie die geringste Anzahl von Clustern besitzt. Sei ݊஼௟ெ௜௡ 
deren Clusteranzahl. Dann gilt: 

 መ݀ெௌ்௅ = ∑ หܵ௞஼௟ห + ݀ௌ்ை ∗ ݊஼௟ெ௜௡௞∈ௌೄ೅ೀ , A8.5 

Damit ergibt sich abschließend die normierte Distanz einer Ergebnis- und einer Refe-
renz-MSTL als  

 ݀ெௌ்௅ = ௗಾೄ೅ಽ,ೌ್ೞௗ෠ಾೄ೅ಽ , A8.6 
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Da die Baugruppen einer MSTL die Struktur der MSTL definieren, ist diese Metrik ge-
eignet, um die strukturellen Unterschiede der Ergebnis- und der Referenz-MSTL zu 
quantifizieren. Außerdem wird die Übereinstimmung der jeweils enthaltenen ZKKs indi-
rekt berücksichtigt: Stimmen bestimmte ZKKs nicht überein, stimmen auch zwangsläu-
fig deren übergeordnete BGKs nicht überein.  ݀ெௌ்௅ ist eine konservative Metrik für die Abweichung zweier MSTLs, da zwei BGKs als 
nichtübereinstimmend angesehen werden, auch wenn sie sich z. B. lediglich in genau 
einer untergeordneten ZKK unterscheiden. Sie hat jedoch den Vorteil, dass sie effizient 
berechnet werden kann und damit für die im Rahmen der Demonstration durchgeführte 
Experimentreihe auf synthetischen MSTLs geeignet ist. 

A8.4 Zeitstudien zu Schritt 1 der Methode 2 

Schritt 1 der Methode 2 basiert auf einer Baumsuche, die für große Problemstellungen 
sehr umfangreich und damit rechenintensiv sein kann (siehe auch Kapitel 5.2.2.2). Im 
Rahmen der vorliegenden Arbeit wurden verschiedene Funktionen entwickelt um die 
Recheneffizienz der Baumsuche zu steigern. Dadurch soll der Einsatz von Methode 2 
für möglichst viele Anwendungsfälle ermöglicht werden. Durch die im Folgenden vor-
gestellten Zeitstudie wird quantifiziert, in welchem Umfang diese Funktionen zu einer 
Verringerung der Rechenzeit für Schritt 1 der Methode 2 beitragen. Die entwickelten 
Funktionen sind: 

- die Festlegung einer Betrachtungsreihenfolge der Zukaufkomponenten (ZK, 
siehe Kapitel 4.2.1.1.4), 

- die systematische Auswahl von Aktionen in den Entscheidungsknoten (siehe Ka-
pitel 4.2.1.2.2), 

- Pruning auf Basis einer unteren Schranke (siehe Kapitel 4.2.1.2.3), 
- und Pruning auf Basis der Zulässigkeit von Teillösungen (siehe Kapitel 4.2.1.2.3). 

Alle vier Funktionen folgen dem Prinzip, möglichst nur wenige Lösungen des Lösungs-
raums betrachten zu müssen.  

Um den Einfluss dieser Funktionen auf die Rechenzeit zu quantifizieren, wird Schritt 1 
der Methode 2 mehrfach für eine der in Kapitel 5.2.1 beschriebenen Experimentreihen 
angewandt und dabei jeweils eine der Funktionen deaktiviert. Die Funktion der syste-
matischen Betrachtungsreihenfolge wird deaktiviert indem eine gleichmäßig zufällige 
Betrachtungsreihenfolge gewählt wird. Die Funktion der systematischen Auswahl von 
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Aktionen wird deaktiviert indem gleichmäßig zufällig zulässige Aktionen ausgewählt
werden. Eine neue Klassennummer wird jedoch weiterhin nur dann hinzugefügt, wenn 
keine Zuordnung zu einer bestehenden Klassennummer möglich ist. Funktionen des 
Prunings werden deaktiviert, indem das entsprechende Pruning schlicht nicht durchge-
führt wird, d. h. die entsprechenden Teilbäume werden nicht von der Betrachtung aus-
geschlossen.

Die beispielhafte Experimentreihe besteht aus 10 Wiederholungen mit den Parameter-
ausprägungen ݎ௓௄ெ௨௟௧ = ஺௕௛௓௄௄ݎ ,0 = 0,1, ݊ௌ்ை = 2 und ݎோ௔ௗௌ்ை = 0. ݊௓௄௄ wird inner-
halb von {10, 20, 50, 100} und ݊௏ௌ்௅ innerhalb von {10, 20, 50, 100, 200} variiert (zu den 
Parametern siehe Kapitel 5.2.1). Wie die Ergebnisse in Kapitel 5.2.2.2 bestätigen, wei-
sen Fälle mit Strukturoptionen (STO) einen hohen Rechenaufwand auf. Deshalb wurde 
eine Experimentreihe mit STO gewählt. Im Gegensatz zu der in Kapitel 5.2.1 beschrie-
benen Experimentreihe wird die Rechenzeit auf 600 Sekunden je Experiment be-
schränkt. Außerdem werden die Berechnungen in Schritt 1 abgebrochen, sobald eine 
Maximalstückliste (MSTL) gefunden wurde, die nicht mehr Zukaufkomponentenklassen 
(ZKK) enthält, als die Referenz-MSTL. Damit ergibt sich, wie viel Rechenzeit jeweils 
benötigt wurde um eine solche MSTL zu ermitteln. 

Abbildung A8.1 zeigt die Rechenzeiten für Schritt 1, jeweils gemittelt über alle Experi-
mente und alle Wiederholungen der Experimentreihe. Es zeigt sich, dass die systema-
tische Betrachtungsreihenfolge und das Pruning auf Basis von Zulässigkeitsprüfungen 
mit Abstand den größten Einfluss auf die Rechenzeit haben. Wenn eine der beiden 

Abbildung A8.1: Ergebnisse der Zeitstudien zu Schritt 1 der Methode 2



Anhang XLI 
 

 

Funktionen deaktiviert wird, wird ein Großteil der Experimente durch die Zeitbeschrän-
kung von 600 Sekunden beendet. Die systematische Auswahl von Aktionen verringert 
die Rechenzeit ebenfalls, dieser Einfluss ist jedoch gering. Pruning auf Basis einer un-
teren Schranke hat keinen statistisch signifikanten Einfluss auf die Rechenzeit. Mög-
licherweise ist dies auch darauf zurückzuführen, dass die systematische Auswahl von 
Aktionen nur einen geringen Effekt hat. Somit ist es nicht möglich schnell gute Lösun-
gen zu finden. Ein Pruning auf Basis einer unteren Schranke ist damit nur begrenzt 
möglich.  

Insgesamt zeigt sich, dass es möglich ist, durch die im Rahmen der vorliegenden Arbeit 
entwickelten Funktionen, die Rechenzeit für die datenbasierte Erstellung von Maximal-
stücklisten zu reduzieren. Eine genauere Analyse der Effekte könnte zukünftig dazu 
beitragen, die Recheneffizienz von Methode 2 weiter zu erhöhen und damit ihren Ein-
satz für weitere Anwendungsfälle zu ermöglichen (siehe auch Ausblick in Kapitel 6.2.3). 

A9 Anhang zu Kapitel 5.3 

A9.1 Metrik für die Demonstration von Methode 3 

Um bewerten zu können, wie effektiv Methode 3 für die Lösung von Problem 3 ist, wird 
im Folgenden eine Metrik definiert. Diese quantifiziert die Abweichung eines Ergebnis-
Maximalarbeitsplans (Ergebnis-MAPL), der mittels Methode 3 erstellt wurde, von einem 
Referenz-Maximalarbeitsplan (Referenz-MAPL). Für den Vergleich von MAPLs besteht 
hinsichtlich Strukturoptionen (STOs) dieselbe Herausforderung wie für den Vergleich 
von MSTLs: Sowohl der Ergebnis-MAPL als auch der Referenz-MAPL können STOs 
aufweisen, deren Bezeichnungen beliebig sind (siehe Anhang A8.3). Ebenso wie in 
Anhang A8.3 beschrieben, werden die beiden MAPLs in ihre STOs zerlegt. Diese wer-
den einander dergestalt paarweise zugeordnet, dass die Summe der Abweichungen 
zwischen einander zugeordneten STOs minimal wird. Es verbleibt die Definition eines 
Maßes für die Distanz zweier STOs in MAPLs. Dies entspricht einem Maß für die Dis-
tanz zweier gerichteter Graphen, wobei die Arbeitsvorgangsklassen (AVKs) jeweils 
durch ihre Bezeichnung identifiziert werden. Hierfür wird in Anlehnung an Malmi et al. 
(2015) das folgende Maß verwendet, das dem Anteil übereinstimmender Vorrangbe-
ziehungen der beiden STOs entspricht84. Sei ܵ௞ாଵ,஻௘௭ die Menge der 

                                         
84 Die Bestimmung der Graph-Edit-Distanz auf allgemeinen annotierten Graphen ist ein NP-vollständiges Problem 
Bougleux et al. (2017, S. 38). Im Rahmen der vorliegenden Arbeit hat sich gezeigt, dass es nicht ausreichend 
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Vorrangbeziehungen (ܸܣ ௜ܱ஻௘௭,ܸܣ ௝ܱ஻௘௭) jeweils bezogen auf die Bezeichnungen zweier 

AVOs in einer STO ݇. Da in einer STO aufgrund von Multipositionen mehrere AVOs mit 
derselben Bezeichnung vorliegen können, sind ܵ௞ாଵ,஻௘௭ im Allgemeinen Multimengen. 
Für die Distanz zweier STOs gilt 

 ݀௞,௟ௌ்ை = หܵ௞ாଵ,஻௘௭ห +  ห ௟ܵாଵ,஻௘௭ห − 2หܵ௞ாଵ,஻௘௭ ∩ ௟ܵாଵ,஻௘௭ห, A9.1 

wobei das Symbol ∩ in diesem Fall den Schnittmengenoperator für Multimengen be-
zeichnet.  

Sei ܵௌ்ை die Menge aller STOs über beide MAPLs, ݀ௌ்ை die absolute Differenz der An-
zahl von STOs in den beiden MAPLs und ݊ ஺௄ெ௜௡ die minimale Anzahl von AVKs in einer 
STO derjenigen Seite mit der geringeren Anzahl von STOs (siehe Anhang A8.3). Dann 
gilt für die maximal mögliche kumulierte Distanz zwischen den paarweise zugeordneten 
STOs analog 

 መ݀ெ஺௉௅ = ∑ หܵ௞ாଵ,஻௘௭ห + ݀ௌ்ை ∗ ݊஺௄ெ௜௡௞∈ௌೄ೅ೀ . A9.2 

Sei analog ݀ெ஺௉௅,௔௕௦ die Summe über die Distanzen der einander zugeordneten STOs, 
dann gilt für die relative Distanz der beiden MAPLs 

 ݀ெ஺௉௅ = ݀ெ஺௉௅,௔௕௦መ݀ெ஺௉௅ . A9.3 

Die Distanz ݀ெ஺௉௅ berücksichtigt unmittelbar nur die Abweichungen in den Strukturen 
der beiden MAPLs. Abweichungen in den AVKs werden jedoch mittelbar berücksichtigt, 
da Vorrangbeziehungen nur zwischen existierenden AVKs bestehen können. 

A9.2 Gleichmäßig zufällige Generierung von synthetischen Maximalar-
beitsplänen 

Im Folgenden wird erläutert, wie unter Berücksichtigung der in Kapitel 5.3.1 eingeführ-
ten Parameter gleichmäßig zufällige Maximalarbeitspläne (MAPLs) erstellt werden. Es 
werden die folgenden von den Parametern abgeleiteten Größen benötigt: 

- ݊ெ௨௟௧ = ஺௄݊)݊݁݀݊ݑݎ ∗  ெ௨௟௧), die Anzahl von Multipositionen je Strukturoptionݎ 
(STO) 

- ݊ௌ௜௡௚ = ݊஺௄ − ݊ெ௨௟௧, die Anzahl von singulären Positionen je STO 

                                         

effizient gelöst werden kann um die Graph-Edit-Distanz für die in Kapitel 5.2.1 beschriebene Experimentreihe 
anzuwenden. Approximationen der Graph-Edit-Distanzen wie z. B. diejenige von Bougleux et al. (2017) lassen 
die Genauigkeit der Approximation nicht erkennen.  
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- ݊஺௄,ெ஺௉௅ = ݊஺௄ + ݊஺௄ ∗ (݊ௌ்ை − 1), die Anzahl von Arbeitsvorgangsklassen 
(AVKs) im MAPL 

- ݊௏஻௓ = ஺௄,ெ஺௉௅݊)݊݁݀݊ݑݎ ∗  ௏஻௓), die Anzahl von Vorrangbeziehungen im MAPLݎ
- und ݊஺௕௛ = ஺௄݊)݊݁݀݊ݑݎ ∗  ஺௕௛), die Anzahl von AVKs einer STO, die von derݎ 

gültigen STO abhängen. 

MAPLs sind gerichtete azyklische Graphen. Die Knoten gerichteter azyklischer Gra-
phen können topologisch sortiert werden (Jungnickel 2013, S. 49–50) weshalb sich ihre 
Adjazenzmatrix als obere Dreiecksmatrix darstellen lässt. Die Struktur eines MAPL 
kann somit bestimmt werden, indem eine obere Dreiecksmatrix der Größe ݊஺௄,ெ஺௉௅ 
festgelegt wird. Dabei kommen nur solche Matrizen infrage, die für genau ݊௏஻௓ Einträge 
den Wert 1 aufweisen. Um die Struktur des MAPL gleichmäßig zufällig zu erstellen, 
können somit aus allen ݊஺௄,ெ஺௉௅ ∗ (݊஺௄,ெ஺௉௅ − 1) Einträgen der oberen Dreiecksmatrix, 
die den Wert 1 aufweisen können, ݊௏஻௓ gleichmäßig zufällig ausgewählt und auf 1 ge-
setzt werden. Alle anderen Einträge werden auf 0 gesetzt. Damit liegt ein gleichmäßig 
zufällig ausgewählter gerichteter azyklischer Graph vor. Die Zuordnung von Bezeich-
nungen und STOs zu Knoten erfolgt analog zu Anhang A8.1. Zunächst werden ݊ௌ௜௡௚ 
der Knoten zufällige Bezeichnungen zugeordnet. Anschließend wird ݊ெ௨௟௧ zufällig par-
titioniert und es werden den verbleibenden unbezeichneten Knoten mehrfach auftre-
tende Bezeichnungen entsprechend der Summanden der Partition zugeordnet. Zuletzt 
werden ݊஺௕௛ AVKs zufällig ausgewählt, kopiert und jede Kopie einer STO zugeordnet. 
Auch hier werden MAPLs, für die einzelne AVKs mehr als einer, aber nicht allen STOs 
zugeordnet sind, von der Betrachtung ausgeschlossen. 

A9.3 Zeitstudien zu Schritt 1 der Methode 3 

Die Zeitstudien für Schritt 1 der Methode 3 verfolgen denselben Zweck und folgen dem-
selben Vorgehen wie die Zeitstudien für Schritt 1 der Methode 2 (siehe Anhang A8.4). 
Es werden dieselben vier Funktionen zur Verringerung des Rechenaufwands betrach-
tet. Die gewählte Experimentreihe weist die Parametrierung ݎ஺௄ெ௨௟௧  = ஺௕௛஺௄ݎ ,0   = 0,1, ݊ௌ்ை  =  2 und ݎோ௔ௗௌ்ை = 0 auf. ݊௓௄௄ wird innerhalb von {10, 20, 50, 100} und ݊௏ௌ்௅ 
innerhalb von {10, 20, 50, 100, 200} variiert (zu den Parametern siehe Kapitel 5.3.2). 

Abbildung A9.1 zeigt die Rechenzeiten für Schritt 1, jeweils gemittelt über alle Experi-
mente und alle Wiederholungen der Experimentreihe. Es zeigt sich, dass auch für Me-
thode 3 die systematische Betrachtungsreihenfolge und das Pruning auf Basis von Zu-
lässigkeitsprüfungen den größten Einfluss auf die Rechenzeit haben. Die Effekte der 
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systematischen Auswahl von Aktionen und des Prunings durch eine untere Schranke 
sind deutlich geringer. Sie sind dennoch jeweils stärker ausgeprägt als für Methode 2.

Evtl. lassen sich die zu beobachtbaren Effekte zum Teil dadurch erklären, dass die 
Durchsuchung des Suchbaums für Methode 3 tendenziell zielgerichteter erfolgt als für 
Methode 2. Dadurch treten zum einen evtl. unzulässige Teillösungen tendenziell erst 
auf tiefen Ebenen des Suchbaums auf. Dadurch schließt das Pruning durch Zulässig-
keitsprüfungen evtl. weniger folgende Entscheidungsknoten aus als für Methode 2. 
Zum anderen sind dadurch tendenziell nach weniger Iterationen bereits gute untere 
Schranken bekannt, so dass ein Pruning auf Basis einer unteren Schranke effektiver 
eingesetzt werden kann. Wenn jedoch das Durchsuchen des Suchbaums zielgerichte-
ter erfolgt als für Methode 2 ist das nicht alleine auf eine bessere Auswahl von Aktionen 
zurückzuführen. Ansonsten müsste der Effekt der systematischen Auswahl von Aktio-
nen stärker ausgeprägt sein.

Auch wenn Methode 3 für viele Anwendungsfälle bereits ausreichend recheneffizient 
ist (siehe Kapitel 5.3.2.2), können evtl. durch eine zukünftige genauere Analyse der 
Effekte Hinweise auf eine Erhöhung der Recheneffizienz für Methode 2 gewonnen wer-
den.

Abbildung A9.1: Ergebnisse der Zeitstudien zu Schritt 1 der Methode 3
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A10 Anhang zu Kapitel 5.4 

A10.1 Metriken für die Demonstration von Methode 4 

Problem 4 entspricht einem Problem des überwachten Lernens (SL), weshalb einer-
seits die Genauigkeit auf einem Testdatensatz, als gängige Metrik des SL, zur Bewer-
tung verwendet wird. Dafür wird zu Beginn jedes Durchlaufs ein Testdatensatz mit 
Größe ்݊௘௦௧ = 100 in gleicher Weise wie der Trainingsdatensatz erstellt und mittels des 
Binary-Relevance-Ansatzes in einen Testdatensatz je Label aufgeteilt. Die Genauigkeit 
einer durch Methode 4 erstellten Regel entspricht dem Anteil der Datenpunkte des zu-
gehörigen Testdatensatzes, deren Label durch das erstellte Modell korrekt wiederge-
geben wird. Gemittelt über alle Labels ergibt sich die Metrik ீݎ௘௡ூ௡ mit 

௘௡ூ௡ீݎ  = ∑ ∑ ܾ௜,௝௞௢௥௥௅௝∈{ଵ,…,௡೅೐ೞ೟}௜∈{ଵ,…,௡ಽ} ݊௅்݊௘௦௧  
A10.1 

wobei ܾ௜,௝௞௢௥௥௅ angibt, ob das ݅-te Label des ݆-ten Datenpunkts des Testdatensatzes kor-

rekt wiedergegeben wird und ݊௅ der Anzahl von Labels im Testdatensatz entspricht. 

Für Standardpositionen mit trivialen Regeln (siehe Kapitel 5.1) nehmen die Labels aller 
Datenpunkte immer den Wert wahr an. Auf Basis dessen wird sich durch Anwendung 
von Methode 4 immer ein Modell ergeben, das dem Wahrheitswert wahr entspricht und 
damit diese Positionen mit einer Genauigkeit von 100% korrekt vorhersagt. Je mehr 
Standardpositionen vorliegen, desto genauer sind die mit Methode 4 erstellten Regeln 
im Durchschnitt. Um dies zu berücksichtigen, wird eine weitere Metrik, ீݎ௘௡ா௫, einge-
führt, die sich ebenso wie ீݎ௘௡ூ௡ berechnet, jedoch Genauigkeiten für triviale Regeln 
nicht berücksichtigt. ீݎ௘௡ா௫ ermöglicht damit die Betrachtung eines Worst-Case-Szena-
rios, in dem keine Standardpositionen in der Maximalstückliste und den Maximalarbeits-
plänen des betrachteten Produkts vorliegen. 

Da im Gegensatz zu typischen Problemen des SL die tatsächlichen Regeln, d. h. Mo-
delle, je Position bekannt sind, besteht zum anderen die Möglichkeit, vorhergesagte 
Modelle mit den tatsächlichen Modellen zu vergleichen. ݎெ௢ௗூ௡ gibt den Anteil der durch 
Methode 4 erstellten Modelle über alle Labels und alle Durchläufe hinweg an, die mit 
den tatsächlichen Modellen logisch übereinstimmen, d. h. derselben booleschen Funk-
tion entsprechen.  

Es gilt 
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ெ௢ௗூ௡ݎ = ∑ ܾ௜௞௢௥௥ெ௜∈{ଵ,…,௡ಽ}݊௅ A10.2

wobei ܾ௜௞௢௥௥ெ angibt, ob das zum ݅-ten Label gehörige Modell korrekt erkannt wurde und ݊௅ der Anzahl von Labels im Testdatensatz entspricht. Für ݎெ௢ௗா௫ werden im Gegensatz 
zu ݎெ௢ௗூ௡ die oben genannten Standardpositionen nicht berücksichtigt. Die Maße ݎெ௢ௗூ௡
und ݎெ௢ௗா௫ unterschätzen die Generalisierungsfähigkeiten der mittels Methode 4 er-
stellten Modelle tendenziell, da Unterschiede zu den tatsächlichen Modellen nicht 
zwangsläufig Fehlern im Konfigurationsmodell entsprechen. Die Modelle werden mit 
Datenpunkten trainiert, die zulässigen Varianten entsprechen. Ihre Vorhersagen für un-
zulässige Varianten sind somit nicht Gegenstand ihrer Optimierung. Ebenso berück-
sichtigen die tatsächlichen Regeln keine unzulässigen Varianten. Es ist somit möglich, 
dass eine Nichtübereinstimmung zwischen datenbasiert erstellter und tatsächlicher Re-
gel nur unzulässige Varianten betrifft. Die Maße ݎெ௢ௗூ௡ und ݎெ௢ௗா௫ dienen deshalb zur 
unteren Abschätzung der Effektivität der Methode 4.

A10.2 Ergebnisse der Demonstration der Methode 4 an Produkt A

Abbildung A10.1: Ergebnisse der Demonstration an Produkt A hinsichtlich Testgenau-
igkeit
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Abbildung A10.2: Ergebnisse der Demonstration an Produkt A hinsichtlich Modellüber-
einstimmung
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A10.3 Benchmarking: Vergleich von Methode 4 mit Algorithmus Two 
Stage nach Ignatiev et al. (2021) hinsichtlich Recheneffizienz 

Wie in Kapitel 3.4.2 beschrieben, verfolgt der Ansatz von Ignatiev et al. (2021) dasselbe 
Ziel wie Methode 4 der vorliegenden Arbeit: die Erstellung eines komplexitätsminimalen 
booleschen Ausdrucks, der eine perfekte Trainingsgenauigkeit für einen binären Trai-
ningsdatensatz mit einem Label gewährleistet. Der Ansatz von Ignatiev et al. (2021) 
sieht ebenfalls eine mathematische Optimierung zur Auswahl der Monome des Aus-
drucks vor. Im Gegensatz zur Methode 4 werden jedoch alle infrage kommenden Mo-
nome vorab berechnet, d. h. das Optimierungsproblem wird vollständig explizit aufge-
stellt. Dies lässt gegenüber der Methode 4, die die Monome nach Bedarf auf Basis von 
Spaltengenerierung (CG) erstellt, einen Nachteil hinsichtlich der Recheneffizienz erwar-
ten. Dieser Nachteil wird im Folgenden quantifiziert, indem die als Two Stage bezeich-
nete Methode von Ignatiev et al. (2021) mit der Methode 4 hinsichtlich Recheneffizienz 
verglichen wird. 

Metrik 

Als Metrik für das Benchmarking wird die Rechenzeit verwendet, die für die Erstellung 
von booleschen Ausdrücken für gegebene Trainingsdatensätze benötigt wird. Um die 
Dauer des Benchmarkings in einem vertretbaren Rahmen zu halten, wird die Berech-
nung nach 300 Sekunden abgebrochen und die Rechenzeit auf 300 Sekunden festge-
legt. Da die Verfahren beide eine minimale Komplexität und eine perfekte Trainings-
genauigkeit der erstellten booleschen Ausdrücke garantieren, werden Metriken hin-
sichtlich ihrer Generalisierungsfähigkeit nicht betrachtet; Unterschiede diesbezüglich 
wären zwangsläufig zufällig. 

Experimentbeschreibung 

Je Durchlauf werden Trainingsdatensätze aus dem Konfigurationsmodell des Produkts 
C generiert. Dafür werden gleichmäßig zufällig Varianten und somit Datenpunkte aus 
dem Konfigurationsraum ausgewählt. Diese werden über das Low-Level-Konfigurati-
onsmodell (LLKM) mit Labels versehen. Der daraus resultierende annotierte Datensatz 
wird nach dem Binary-Relevance-Ansatz in Single-Lable-Datensätze aufgeteilt. Da die 
Methode Two Stage sehr lange Rechenzeiten aufweist werden je Durchlauf lediglich 
10 gleichmäßig zufällig ausgewählte Labels betrachtet, wobei Labels von Standardpo-
sitionen nicht berücksichtigt werden. Der Algorithmus Two Stage wurde durch die von 
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Ignatiev et al. (2021) verwendete Bibliothek minds85 implementiert um einen unver-
fälschten Vergleich der Rechenzeiten zu ermöglichen. 

Ergebnisse

Abbildung A10.3 zeigt die Rechenzeiten für 10 zufällig ausgewählte Labels gemittelt 
über jeweils 10 Durchläufe für unterschiedliche Größen von ்݊௥௔௜௡௜௡௚. Sowohl für die 
Methode 4 als auch für Two Stage nehmen die Rechenzeiten mit zunehmender Größe 
des Trainingsdatensatzes zu. Die Zunahme ist jedoch für Two Stage deutlich stärker 
ausgeprägt als für Methode 4. Ab einer Größe des Trainingsdatensatzes von 50 äußert 
sich dies merklich. Die Rechenzeit beträgt hier ca. 76 Sekunden für Two Stage und ca. 
3 Sekunden für Methode 4. Für ்݊௥௔௜௡௜௡௚ = 150 liegt mit ca. 866 Sekunden gegenüber 
ca. 66 Sekunden ein Faktor von ca. 13 vor. Dabei müssen 28 % der Berechnungen für 
Two Stage vorzeitig abgebrochen werden, hingegen nur 1 % der Berechnungen für 
Methode 4. Auf Grund dieser deutlichen Diskrepanz werden keine weiteren Ausprägun-
gen für ்݊௥௔௜௡௜௡௚ betrachtet. Es kann somit festgehalten werden, dass sich der in Kapitel 
3.4.2 beschriebene Nachteil von Two Stage hinsichtlich der Recheneffizienz im Expe-
riment bestätigt hat. Da sich dieser Nachteil bereits für praxisrelevante Problemstellun-
gen mit ்݊௥௔௜௡௜௡௚ = 50 auswirkt, ist Two Stage für die datenbasierte Erstellung von 
LLKMs nicht geeignet. Die im Rahmen der vorliegenden Arbeit entwickelte Methode 4
zeigt hingegen keinen vergleichbaren Nachteil hinsichtlich der Rechenzeit und kann 
deshalb für die datenbasierte Erstellung von LLKMs verwendet werden.

                                        
85 https://github.com/alexeyignatiev/minds (zuletzt überprüft am 04.09.2024)
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Abbildung A10.3: Benötigte Rechenzeit für die Erzeugung von 10 Modellen für die Me-
thoden Two Stage und Methode 4 in Abhängigkeit der Größe des Trainingsdatensat-
zes, gemittelt über jeweils 10 Durchläufe
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A10.4 Benchmarking: Vergleich von Methode 4 mit Algorithmus DK-
XTSD nach Costamagna & Micheli (2023) hinsichtlich Generalisierungsfä-
higkeit 

DK-XTSD ist ein Algorithmus von Costamagna & Micheli (2023) zur Bestimmung von 
booleschen Ausdrücken auf Basis eines annotierten Trainingsdatensatzes. Der Algo-
rithmus erstellt gegenüber Algorithmen nach Stand der Forschung Ausdrücke mit über-
legener Generalisierungsfähigkeit (Costamagna & Micheli 2023, S. 257–258). Er ga-
rantiert eine perfekte Trainingsgenauigkeit der Ausdrücke, jedoch im Gegensatz zur 
Methode 4 keine minimale Komplexität. Es wird untersucht, wie sich die Generalisie-
rungsfähigkeit der durch Methode 4 erstellten Ausdrücke zu den durch DK-XTSD er-
stellten Ausdrücken verhält. Damit wird auch untersucht, ob komplexitätsminimale boo-
lesche Ausdrücke über ihre gute Interpretierbarkeit hinaus auch Vorteile hinsichtlich 
Generalisierungsfähigkeit bieten. Dies ist für das Erzeugen von variantenbezogenen 
Stücklisten (VSTLs) und variantenbezogenen Arbeitsplänen (VAPLs) zu Varianten, die 
nicht Teil des Trainingsdatensatzes sind, relevant. 

Metrik 

Sowohl DK-XTSD als auch Methode 4 sind Methoden des überwachten Lernens (SL) 
auf Datensätzen mit einem Label. Die Generalisierungsfähigkeit dieser Methoden wird 
mit der in Kapitel 5.4.1 vorgestellten Metrik ீݎ௘௡ா௫ bewertet. Es wird ebenso wie für die 
Demonstration der Methode 4 ein Testdatensatz der Größe ்݊௘௦௧ = 100 verwendet. 

Experimentbeschreibung 

Das Experiment entspricht der in Kapitel 5.4.1 beschriebenen Demonstration. Es wer-
den Trainings- und Testdaten generiert wie in Kapitel 5.4.1 beschrieben und die Ge-
nauigkeit der beiden zu vergleichenden Methoden auf den Testdaten ermittelt. Der Al-
gorithmus DK-XTSD erstellt boolesche Ausdrücke, indem er den Trainingsdatensatz 
schrittweise in ausgewählten Features teilt86. Die durch die Teilung entstehenden un-
tergeordneten Trainingsdatensätze enthalten weniger Features als ihre übergeordne-
ten Trainingsdatensätze. Unterschreitet die Anzahl von Features einen gewissen 
Grenzwert ݊ெ௜௡ி௘௔௧௨௥௘௦ wird der Datensatz nicht weiter geteilt, sondern mit dem von 
Chatterjee (2018) vorgestellten Algorithmus in einen booleschen Ausdruck überführt. 

                                         
86 Siehe Vorgehen zur Erstellung eines Entscheidungsbaums in Kapitel 4.4.1. Für eine vollständige Beschreibung 
des Algorithmus sei auf Costamagna & Micheli (2023) verwiesen. 



L Anhang

Der finale boolesche Ausdruck ergibt sich als Komposition der booleschen Ausdrücke 
der Teiltrainingsdatensätze. Der Algorithmus von Chatterjee (2018) bildet den Trai-
ningsdatensatz durch Wahrheitstabellen ab, wobei nur zufällig ausgewählte Features 
betrachtet werden. Die so erstellten Wahrheitstabellen werden Verknüpft und erneut 
durch Wahrheitstabellen abgebildet, sodass sich mehrere Ebenen von Wahrheitstabel-
len ergeben. Die Einstellparameter des Algorithmus sind die Anzahl der Wahrheitsta-
bellen je Ebene und die Anzahl der Ebenen. Diese Parameter werden auf Basis der 
Ergebnisse von Chatterjee (2018) mit 1024 bzw. 6 gewählt. Der Parameter ݊ெ௜௡ி௘௔௧௨௥௘௦
wird durch die im Folgenden vorgestellte Parameterstudie ermittelt.

Für die Algorithmen von und Chatterjee (2018) und Costamagna & Micheli (2023) exis-
tiert kein öffentlich zugänglicher bzw. kein ausreichend dokumentierter, öffentlich zu-
gänglicher Quelltext. Deshalb wurden beide Algorithmen im Rahmen der vorliegenden 
Arbeit auf Basis ihrer Darstellung in den Arbeiten der Autoren implementiert. Für die 
Parameterstudie und das Benchmarking wird die Rechenzeit für die Erstellung einer 
Regel auf ݐோ௘௚ = 100 Sekunden begrenzt. Diese Zeit wurde jedoch von DK-XTSD in 
keinem Experiment erreicht, weshalb sie keinen Einfluss auf die Ergebnisse von DK-
XTSD hat.

Parameterstudie

Die Parameterstudie folgt dem in Kapitel 5.4.1 beschriebenen Vorgehen, wobei jedoch 
ausschließlich der Algorithmus DK-XTSD mit unterschiedlichen Ausprägungen für ݊ெ௜௡ி௘௔௧௨௥௘௦ entsprechend einer Rastersuche eingesetzt wird. ்݊௥௔௜௡௜௡௚ wird mit 10, 20, 
50, 100 und 200 gewählt und es werden jeweils 10 Durchläufe durchgeführt. Um eine 
Verzerrung der Ergebnisse des folgenden Benchmarkings zu vermeiden, wird die Pa-
rameterstudie nicht für die Konfigurationsmodelle (KMs) der Produkte A oder B, 

Abbildung A10.4: Ergebnisse für die Parameterstudie zu ݊ெ௜௡ி௘௔௧௨௥௘௦ des Algorithmus
DK-XTSD
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sondern für das KM des Produkts C durchgeführt. Abbildung A10.4 zeigt die Ergebnisse 
als ீݎ௘௡ா௫ gemittelt über alle Werte für ்݊௥௔௜௡௜௡௚ und alle Durchläufe. Auf Basis der Pa-
rameterstudie wird für das Benchmarking ݊ெ௜௡ி௘௔௧௨௥௘௦ = 8 gewählt. 

Ergebnisse des Benchmarkings 

Tabelle A10.1 zeigt die Ergebnisse des Benchmarkings von Methode 4 und DK-XTSD 
nach der Metrik ீݎ௘௡ா௫ jeweils gemittelt über 10 Durchläufe. Für alle ்݊௥௔௜௡௜௡௚ ≥ 20 
ergab sich aus den Experimenten ein höheres ீݎ௘௡ா௫ für Methode 4 gegenüber DK-
XTSD. Wie der angegebene p-Wert eines zweiseitigen Welch-Tests zeigt, kann jedoch 
nur für Produkt A und ݊ ்௥௔௜௡௜௡௚ ≥ 50 die Nullhypothese einer identischen Verteilung zum 
Signifikanzniveau 5 % verworfen werden. Nur in diesem Fällen kann mit ausreichender 
statistischer Signifikanz davon ausgegangen werden, dass die durch Methode 4 erstell-
ten Modelle eine höhere Generalisierungsfähigkeit aufweisen als die durch DK-XTSD 
erstellten. Für alle anderen Fälle kann keine verlässliche Aussage darüber getroffen 
werden, welche der beiden Methoden Modelle mit einer höheren Generalisierungsfä-
higkeit erstellt. Insgesamt kann somit geschlossen werden, dass die Methode 4 hin-
sichtlich der Generalisierungsfähigkeit ihrer erstellten Modelle mit Algorithmen nach 
Stand der Technik vergleichbar ist und in einigen Fällen sogar zu besseren Ergebnissen 
führt. Darüber hinaus garantiert Methode 4 im Gegensatz zu DK-XTSD minimale boo-
lesche Ausdrücke und stellt damit eine gute Interpretierbarkeit sicher. Damit kann die 
Methode als überlegene Methode für die datenbasierte Erstellung von Regeln für Low-
Level-Konfigurationsmodelle (LLKMs) angesehen werden. 

Tabelle A10.1: Ergebnisse des Benchmarkings von Methode 4 und DK-XTSD nach der 
Metrik ீݎ௘௡ா௫.  

  

rGenEx 
nTraining 

10 20 50 100 200 

Produkt A 
Methode 4 88,84 % 93,29 % 97,00 % 98,40 % 99,09 % 
DK-XTSD 88,95 % 93,18 % 96,79 % 98,15 % 98,92 % 
p-Wert 47,51 % 33,10 % 1,97 % 0,00 % 1,89 % 

Produkt B 
Methode 4 94,66 % 96,46 % 98,70 % 99,21 % 99,45 % 
DK-XTSD 94,69 % 96,44 % 98,47 % 99,02 % 99,18 % 
p-Wert 92,01 % 94,37 % 19,33 % 11,87 % 6,27 % 
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A11 Anhang zu Kapitel 5.5

A11.1 Parameterstudie zu Parameter ࢝ࡿࡹ der Methode 5

Parameter ݓெௌ gibt die Gewichtung des Separationskriteriums bei der Auswahl einer 
Variante durch Methode 5 an. Die Gewichtung des Diversitätskriteriums ergibt sich da-
raus als 1 − ெௌ. Für die Parameterstudie wird eine Rastersuche mit Schrittweite 0,1ݓ
verwendet. Je Parameterausprägung wird dasselbe Vorgehen gewählt wie für die in 
Kapitel 5.5.1 beschriebene Demonstration mit ො்݊௥௔௜௡௜௡௚ = 30 und jeweils 10 Durchläu-
fen. Die Rechenzeit je zu erstellender Regel wird auf ݐோ௘௚ = 10 Sekunden begrenzt. Für 
die Auswahl der besten Parameterausprägung wird die in Kapitel 5.4.1 beschriebene 
Metrik ீݎ௘௡ூ௡ verwendet. Um die Ergebnisse der Demonstration nicht zu verfälschen,
wird die Parameterstudie auf dem Konfigurationsmodell (KM) des Produkts C durchge-
führt.

Abbildung A11.1 zeigt die Ergebnisse der Parameterstudie unter Verwendung von 30 
Datenpunkten, wobei ீݎ௘௡ூ௡ je Parameterausprägung über 10 Durchläufe gemittelt 
wurde. Es zeigt sich, dass mit der Gewichtung des Separationskriteriums die Generali-
sierungsfähigkeit der gelernten Modelle zunächst zunimmt und für Werte größer als 0,5 
abnimmt. Aus dem Vergleich der beiden Extrempunkte ݓெௌ = 0 und ݓெௌ = 1 zeigt sich, 
dass für den unikriteriellen Fall das Separationskriterium dem Diversitätskriterium ge-
ringfügig überlegen ist. Der Verlauf über alle Parameterausprägungen hinweg und das 
Optimum für ݓெௌ = 0,5 zeigen jedoch, dass eine Komposition der beiden Kriterien einer 
unikriteriellen Bewertung vorzuziehen ist. Für die in Kapitel 5.5.1 beschriebene De-
monstration wird ݓெௌ = 0,5 gewählt.

97,41%

97,67%
97,81% 97,82% 97,88% 97,95%

97,82% 97,83%
97,71% 97,71%

97,48%

97,00%
97,20%
97,40%

97,60%
97,80%
98,00%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

rG
en

In

wMS

Abbildung A11.1: Ergebnisse der Parameterstudie für Parameter ݓெௌ der Methode 5
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A11.2 Ergebnisse der Demonstration der Methode 5 an Produkt A 

Im Folgenden sind die Ergebnisse der Demonstration der Methode 5 an Produkt A dar-
gestellt. Diese werden in Kapitel 5.5.2 referenziert.

Tabelle A11.1: Ergebnisse der Demonstration der Methode 4 und Methode 5 an Pro-
dukt A im Detailvergleich

rGenEx
nTraining

rModEx
nTraining

10 20 50 100 10 20 50 100

Methode 4 88,84 % 93,29 % 97,00 % 98,40 % Methode 4 17,96 % 26,27 % 38,02 % 45,58 %

Methode 5 88,73 % 94,17 % 97,38 % 98,63 % Methode 5 16,94 % 29,38 % 40,91 % 54,92 %

p-Wert 80,89 % 3,96 % 0,03 % 0,11 % p-Wert 9,42 % 0,00 % 0,00 % 0,00 %

Abbildung A11.2: Ergebnisse der Demonstration der Methode 5 an Produkt A hinsicht-
lich Testgenauigkeit
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Abbildung A11.3: Ergebnisse der Demonstration der Methode 5 an Produkt A hinsicht-
lich Modellübereinstimmung

15,00%
25,00%
35,00%
45,00%
55,00%
65,00%
75,00%

10 20 30 40 50 60 70 80 90 100
nTraining

M4, rModIn

M4, rModEx

M5, rModIn

M5, rModEx

M4, rGenIn

M4, rGenEx

M5, rGenIn

M5, rGenEx



LIV Anhang

A12 Anhang zu Kapitel 5.6

A12.1 Erzeugung der Literal- und Termtabelle sowie Einbringung von 
Fehlern in diese Tabellen für die Demonstration der Methode 6

Im Folgenden wird erläutert, wie die Tabellen, die der Industriepartner verwendet um 
Regeln in seinen Konfigurationsmodellen (KMs) zu pflegen – im Folgenden als Regel-
tabellen bezeichnet – in Literal- und Termtabellen überführt werden. Darüber hinaus 
wird gezeigt, wie zum Zweck der Demonstration Fehler in diese Tabellen eingebracht 
werden.

Wie in Kapitel 5.1 beschrieben, sind die abhängigen Parameter die Aktivitätsparameter 
der Zukaufkomponentenklassen (ZKKs) und Arbeitsvorgangsklassen (AVKs) in der Ma-
ximalstückliste (MSTL) bzw. im Maximalarbeitsplan (MAPL). Diese hängen jeweils di-
rekt von den Produktmerkmalen ab. Abbildung A12.1 zeigt schematisch den Aufbau 
einer Regeltabelle. Je abhängigem Parameter ݕ liegen eine oder mehrere Zeilen in der 
Regeltabelle vor. Jede Zeile beschreibt einen Term. Ein abhängiger Parameter ergibt 
sich als disjunktive Verknüpfung seiner Terme. Jeder Term stellt eine konjunktive Ver-
knüpfung von Aussagen bzgl. der Produktmerkmale dar, wie in Abbildung A12.1 unten 
beispielhaft dargestellt. Einige der kategorischen Merkmale sind positiv definiert, d. h.,
damit der zugehörige Term wahr ist, muss eine der angegebenen Ausprägungen an-
genommen werden. Einige der kategorischen Merkmale sind hingegen negativ defi-
niert, d. h., damit der zugehörige Term wahr ist, darf keine der angegebenen Ausprä-
gungen angenommen werden. 

Abhängige 
Parameter Term #

Initiale Produktmerkmale
Merkmal 1 

( )
Merkmal 2 

( )
Merkmal 3 

( )
…

Mehrwertig Kategorisch Kategorisch …
1.1 , , , …
1.2 , , …
2.1 … … … …

… … … … … …

Bedeutung von Term 1.1: 

Abbildung A12.1: Schematische Abbildung einer Regeltabelle des Industriepartners
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Um diese Tabelle mit Methode 6 verarbeiten zu können, wird sie in eine Literal- und 
eine Termtabelle überführt, wie in Abbildung A12.2 zu sehen. Jede Zeile der Literalta-
belle – d. h. jeder Datenpunkt – entspricht einem Term der Regeltabelle, wobei identi-
sche Terme nur einmal auftreten und die Terme über alle Terme hinweg fortlaufend 
nummeriert werden. Die Spalten – d. h. Features – der Literaltabelle entsprechen boo-
leschen Variablen, die die Produktmerkmale in One-Hot-Codierung darstellen. Die Ein-
träge der Tabelle geben an, ob die entsprechende Variable in dem entsprechenden 
Term positiv (1), negiert (0) oder überhaupt nicht (○) auftritt. Boolesche Variablen, die 
demselben kategorischen Merkmal zugeordnet sind, treten entweder alle positiv oder 
alle negiert auf. Jeder Datenpunkt der Termtabelle entspricht einem abhängigen Para-
meter, d. h. einer Position der MSTL oder des MAPL. Die Features der Termtabelle 
geben an, welche Terme der Literaltabelle in der Regel des zugehörigen abhängigen 
Parameters auftreten. Grundsätzlich ist es möglich, dass verschiedene abhängige Pa-
rameter von denselben Termen abhängen und damit dieselben Ausprägungen der Fea-
tures aufweisen. Diese werden in einer Zeile zusammengefasst.

Durch Einsetzen des booleschen Ausdrucks aus der Literaltabelle für die Terme der 
Termtabelle ergibt sich ein boolescher Ausdruck je abhängigem Parameter. Dieser 
stellt dieselbe Information wie die Beschreibung der Regel in der Regeltabelle dar. Im 

Term 
#

Transformierte Produktmerkmale (Features)
…

Mehrwertig Kategorisch Kategorisch …
1 1 0 0 0 1 1 …
2 1 1 0 0 …
3 … … … … … … … …
4 … … … … … … … …
… … … … … … … … …

Abhängige 
Parameter

Term #
4 …

1 1 …
… … … … …

… … … … … …

Literaltabelle

Termtabelle

Bedeutung von Term 1: …

Bedeutung der Abhängigkeit von : 

Abbildung A12.2: Schematische Darstellung der Literal- und Termtabelle
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Gegensatz zu dem in Kapitel 4.6 verwendeten Beispiel, entspricht der boolesche Aus-
druck keiner Normalform. Dies stellt jedoch kein Hindernis für die Anwendung der Me-
thode 6 dar. Grundsätzlich ist es möglich, die Literal- und die Termtabelle dergestalt zu 
transformieren, dass sich Ausdrücke in Normalformen ergeben. Dabei würde jedoch 
die Beziehung zwischen den Einträgen der Tabellen und der Regeltabelle verloren ge-
hen. Damit könnten Fehlerhinweise aus der Literal- oder der Termtabelle nicht unmit-
telbar Einträgen der Regeltabelle zugeordnet werden. Das würde die Auswertung für 
einen Experten erschweren. Um somit die Praxisrelevanz der Demonstration zu ge-
währleisten werden die Literal- und Termtabellen verwendet, die sich unmittelbar aus 
der Regeltabelle ergeben. Außerdem können auf diese Weise Fehler in die Literal- und 
die Termtabelle eingebracht werden, die unmittelbar Fehlern in der Regeltabelle ent-
sprechen.

Für die Demonstration werden Fehler in die Literal- und die Termtabelle eingebracht. 
Für die Literaltabelle werden die Fehlerarten Negationsfehler, zusätzliche Variablen 
und fehlende Variablen betrachtet, wie in Kapitel 5.6.1 beschrieben (siehe Abbildung 
A12.6). Zum Einfügen von Negationsfehlern in die Literaltabelle wird ein gleichmäßig 
zufällig ausgewählter Eintrag 0 oder 1 für ein mehrwertiges oder boolesches Merkmal 
in 1 bzw. 0 geändert. Dies entspricht einem falschen Vorzeichen für ein Merkmal oder 
eine Merkmalausprägung in der Regeltabelle. Negationsfehler für kategorische Merk-
male werden nicht betrachtet. Zusätzliche Variablen werden generiert, indem ein zufäl-
liger Eintrag ○ zufällig auf 0 oder 1 gesetzt wird. Dies entspricht einem unzutreffenden
Merkmal oder einer unzutreffenden Merkmalausprägung in der Regeltabelle. Fehlende 
Variablen werden generiert, indem ein zufälliger Eintrag 0 oder 1 in der Literaltabelle 
auf ○ gesetzt wird. Dies entspricht einem fehlenden Merkmal oder einer fehlenden

Fehlende VariableZusätzliche VariableNegationsfehler

Term 
#

Transformierte Produktmerkmale (Features)
…

Mehrwertig Kategorisch Kategorisch …
1 1 0 1 0 0 1 1 …
2 1 1 0 0 …
3 … … … … … … … …
4 … … … … … … … …
… … … … … … … … …

Abbildung A12.3: Einfügen von Fehlern in die Literaltabelle
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Merkmalausprägung in der Regeltabelle. In der Termtabelle können fehlende und zu-
sätzliche Monome auftreten. Diese werden analog zu fehlenden und zusätzlichen Va-
riablen in der Literaltabelle generiert. Sie entsprechen fehlenden bzw. fälschlicherweise 
eingefügten Termen in der Regeltabelle.  

A12.2 Parameterstudie zu dem in Methode 6 verwendeten Random-
Forest-Algorithmus 

In Methode 6 wird ein Random-Forest-Algorithmus eingesetzt, um Anomalien in der 
Literal- und der Termtabelle zu ermitteln. Ziel der Parameterstudie ist es, die Ausprä-
gungen der Parameter des Random-Forest-Algorithmus zu ermitteln, die zu den besten 
Ergebnissen führen. Dabei wird die in Kapitel 5.6.1 eingeführte Metrik zugrunde gelegt. 
Die Studie erfolgt für die Literaltabelle und die Termtabelle separat. 

Für die folgenden vier Parameter wird von einer großen Auswirkung auf die Ergebnisse 
ausgegangen. Sie werden deshalb für die Parameterstudie berücksichtigt. 

- Anzahl ݊஽் der Entscheidungsbäume: Dieser Parameter hat einen Einfluss da-
rauf, wie genau der Random-Forest die Daten des gegebenen Datensatzes ab-
bildet. Bildet er die Daten zu genau ab, sind die Abweichungen gegenüber dem 
Modell, aus denen auf Anomalien geschlossen werden kann, gering und damit 
u. U. nicht ausreichend differenziert. Bildet er die Daten zu ungenau ab, lässt sich 
aus Abweichungen vom Modell nicht auf relevante Anomalien schließen. Ent-
sprechend Sluban et al. (2014) wird ݊஽் = 100 betrachtet. Außerdem wird für die 
Parameterstudie eine deutlich größere Anzahl ݊஽் = 200 und eine deutlich klei-
nere Anzahl ݊஽் = 50 betrachtet. 

- Auswahlstrategie ݇ி௘௔௧௨௥௘௦ für Feature: Um Heterogenität bei der Erstellung von 
Entscheidungsbäumen zu gewährleisten, werden zur Erstellung eines Entschei-
dungsbaums nur eine gewisse Anzahl zufällig ausgewählter Features berück-
sichtigt. Diese Anzahl ist typischerweise die Wurzel (݇ி௘௔௧௨௥௘ =  oder der (ݐݎݍݏ
duale Logarithmus (݇ி௘௔௧௨௥௘௦ = der Anzahl aller Features. ݇ி௘௔௧௨௥௘௦ (2݃݋݈ =  2݃݋݈
wählt i. d. R. weniger Features aus als ݇ி௘௔௧௨௥௘௦ =  und sorgt damit für eine ݐݎݍݏ
höhere Heterogenität der Entscheidungsbäume. Das kann analog zur Anzahl ݊஽் 
für den vorliegenden Zweck vor- oder nachteilhaft sein. 

- Auswahlstrategie ݇஽௔௧௘௡௣௨௡௞௧௘ für Datenpunkte: Um Heterogenität bei der Erstel-
lung von Entscheidungsbäumen zu gewährleisten, werden zur Erstellung eines 
Entscheidungsbaums u. U. nur eine gewisse Anzahl zufällig ausgewählter 
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Datenpunkte berücksichtigt. Dies kann jedoch den Nachteil haben, dass Muster 
im Datensatz verloren gehen. Es wird deshalb der Fall untersucht, dass die An-
zahl verwendeter Datenpunkte der Anzahl aller Datenpunkte (݇஽௔௧௘௡௣௨௡௞௧௘ = 1)87 
oder der Hälfte dieser Anzahl (݇஽௔௧௘௡௣௨௡௞௧௘ = 0,5) entspricht. 

- Strategie ݇ீ௘௪௜௖௛௧௨௡௚ für die Gewichtung der Klassen: Die Einträge 0, 1 und ○, 
entsprechen in Schritt 3 der Methode 6 Klassen im Sinne des überwachten Ler-
nens (SL). Sie treten nicht mit derselben Häufigkeit auf. Im Sinne des SL liegen 
somit unausgewogene Klassen vor. Um auch Minderheitsklassen beim Erstellen 
der Entscheidungsbäume ausreichend zu berücksichtigen, können Datenpunkte 
dieser Klassen mit höherer Wahrscheinlichkeit gewählt werden. Inwieweit dies 
für den vorliegenden Zweck sinnvoll ist, ist zu untersuchen. Es wird einerseits die 
Strategie ݇ீ௘௪௜௖௛௧௨௡௚ = ܰ݅ܿℎݐݖݐ݁ݏ݁݃ ݐ betrachtet, bei der keine Gewichtung vor-
genommen wird, d. h. Mehrheitsklassen bei der Erstellung der Entscheidungs-
bäume auch stärker repräsentiert sind. Andererseits wird die Strategie ݇ீ௘௪௜௖௛௧௨௡௚ = -ℎ݁݊ betrachtet, bei der Datenpunkte aus Minderheits݈ܿ݅݃݁݃ݏݑܣ
klassen höheres Gewicht erhalten und damit ebenso stark repräsentiert sind wie 
Datenpunkte der Mehrheitsklasse. 

Für die Parameterstudie wird eine Rastersuche mit den oben beschriebenen Ausprä-
gungen der Einstellparameter verwendet. Je Kombination der Parameterausprägungen 
werden 10 Experimente durchgeführt, d. h. 10 manipulierte Tabellen erstellt und Fehler 
ermittelt. Um eine Verzerrung der Ergebnisse der späteren Demonstration zu vermei-
den, wird die Parameterstudie nicht auf den Konfigurationsmodellen der Produkte A 
und B, sondern auf dem Konfigurationsmodell des Produkts C durchgeführt. Um einen 
vertretbaren Rechenaufwand zu gewährleisten, wird ausschließlich ein repräsentativer 
Fehlerfall mit ݊ி௘௛௟௘௥ = 100 und ݇ி௘௛௟௘௥௔௥௧ =  d. h. eine Gleichverteilung ,ݐ݈݅݁ݐݎ݁ݒℎ݈ܿ݅݁ܩ
über alle möglichen Fehlerarten, betrachtet. Tabelle A12.1 und Tabelle A12.2 zeigen 
die Anzahlen der benötigten Überprüfungen zum Finden eines gewissen Anteils an 
Fehlern, gemittelt über 10 Durchläufe für die Literal- bzw. die Termtabelle. Für die Lite-
raltabelle zeigt sich eine große Spannweite der Ergebnisse in Abhängigkeit der Para-
meterausprägungen. Für die Anteile 10 % bis einschließlich 90 % ist ein Muster in den 
Ergebnissen erkennbar. Beim Finden von 100 % der eingebrachten Fehler wird dieses 

                                         
87 Einzelne Datenpunkte können zufallsbedingt mehrfach ausgewählt werden, so dass nicht notwendigerweise 
alle Datenpunkte verwendet werden. Damit bleibt die Stochastik zur Erzeugung von heterogenen Entscheidungs-
bäumen erhalten. 
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Muster jedoch unterbrochen und es ist eine unverhältnismäßig große Anzahl von Über-
prüfungen notwendig88. Damit sind die Ergebnisse für den Anteil 100 % ohne praktische 
Relevanz und werden für den Vergleich der Parameterausprägungen nicht berücksich-
tigt. Je Anteil gefundener Fehler wird der Rang jeder Kombination an Parameteraus-
prägungen berechnet, wobei Rang 1 der geringsten Anzahl von benötigten Überprü-
fungen entspricht. Die Ränge der Parameterausprägungen werden über alle Anteile 
gefundener Fehler gemittelt. Es zeigt sich, dass die Strategie ݇஽௔௧௘௡௣௨௡௞௧௘ = 0,5 eine  

Tabelle A12.1: Ergebnisse der Parameterstudie für den in Methode 6 eingesetzten Ran-
dom-Forest-Algorithmus für das Finden von Fehlern in der Literaltabelle 

                                         
88 Dieses Phänomen wird in Kapitel 5.6.2 näher betrachtet. 

Parameterausprägungen Benötigte Überprüfungen für Anteil gefundener Fehler Mittlerer 
Rang 100 % 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 ࢍ࢔࢛࢚ࢎࢉ࢏࢝ࢋࡳ࢑ .࢖࢔ࢋ࢚ࢇࡰ࢑ ࢙ࢋ࢛࢚࢘ࢇࢋࡲ࢑ ࢀࡰ࢔ % 

100 sqrt 0,5 Ausgeglichen 82 149 211 262 330 398 474 586 1.091 69.644 2,7 

200 sqrt 0,5 Ausgeglichen 99 155 228 270 327 401 475 603 1.061 79.131 3,4 

200 sqrt 0,5 Nicht gesetzt 191 234 272 313 354 409 464 563 828 65.809 5,3 

100 sqrt 0,5 Nicht gesetzt 167 220 267 312 363 427 479 583 803 72.181 5,3 

200 log2 0,5 Ausgeglichen 104 169 235 286 336 413 504 789 1.750 85.513 6,3 

100 log2 0,5 Ausgeglichen 81 167 238 297 362 435 502 691 1.251 78.669 6,4 

50 sqrt 0,5 Ausgeglichen 72 143 221 281 362 458 591 850 2.014 76.837 7,0 

50 sqrt 0,5 Nicht gesetzt 157 221 275 321 370 444 513 628 873 82.079 7,7 

50 log2 0,5 Ausgeglichen 76 139 219 286 373 478 559 825 2.070 71.156 7,8 

200 log2 0,5 Nicht gesetzt 200 244 287 324 368 428 496 620 906 73.465 8,0 

100 log2 0,5 Nicht gesetzt 178 234 288 327 374 436 511 629 927 73.437 9,0 

50 log2 0,5 Nicht gesetzt 177 235 287 337 399 475 546 672 1.099 80.364 10,2 

200 sqrt 1 Nicht gesetzt 369 413 448 485 536 608 699 811 1.239 83.179 13,2 

50 sqrt 1 Nicht gesetzt 314 382 436 483 548 649 763 978 1.926 100.146 14,1 

100 log2 1 Nicht gesetzt 343 411 475 521 570 649 753 962 2.275 76.424 15,3 

100 sqrt 1 Nicht gesetzt 398 469 519 562 612 673 730 880 1.665 58.350 16,0 

200 log2 1 Nicht gesetzt 403 445 488 522 575 650 741 911 2.708 85.897 16,3 

50 log2 1 Nicht gesetzt 326 401 479 541 620 709 869 1.215 3.296 62.086 16,8 

200 log2 1 Ausgeglichen 458 525 583 637 706 799 1.035 4.801 16.517 79.443 20,0 

200 sqrt 1 Ausgeglichen 497 552 610 665 720 790 900 2.682 17.943 72.410 20,7 

100 log2 1 Ausgeglichen 439 519 592 652 771 1.107 1.928 5.759 18.445 61.725 21,2 

100 sqrt 1 Ausgeglichen 513 583 650 713 810 1.007 1.315 3.839 14.083 70.326 21,7 

50 sqrt 1 Ausgeglichen 431 513 628 809 1.107 1.906 2.989 6.442 17.789 59.926 21,8 

50 log2 1 Ausgeglichen 469 587 740 870 1.274 1.995 3.375 7.746 18.198 76.046 23,7 
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Tabelle A12.2: Ergebnisse der Parameterstudie für den in Methode 6 eingesetzten Ran-
dom-Forest-Algorithmus für das Finden von Fehlern in der Termtabelle 

überlegene Strategie ist und einen großen Einfluss auf die Ergebnisse hat. Das lässt 
darauf schließen, dass für den Random-Forest, angewandt auf die Literaltabelle, eine 
Gefahr von Überanpassung besteht. Es scheint also Muster zu geben, die im Falle zu 
vieler berücksichtigter Datenpunkte von allen Entscheidungsbäumen abgebildet wer-
den. Aufgrund der im Produkt vorliegenden technisch bedingten Gesetzmäßigkeiten 
erscheint das plausibel. Außerdem ist ݇ி௘௔௧௨௥௘௦ = und ݇ீ௘௪௜௖௛௧௨௡௚ ݐݎݍݏ =  ℎ݈݁݊ܿ݅݃݁݃ݏݑܣ
zu bevorzugen. Dass mit ݇ி௘௔௧௨௥௘௦ =  eher mehr Features verwendet werden, kann ݐݎݍݏ
darauf zurückzuführen sein, dass die Muster im Datensatz sich über mehrere Features 
erstrecken. Das ist ebenfalls naheliegend, da z. T. bestimmte abhängige Parameter 

Parameterausprägungen Benötigte Überprüfungen für Anteil gefundener Fehler Mittlerer 
Rang 100 % 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 ࢍ࢔࢛࢚ࢎࢉ࢏࢝ࢋࡳ࢑ .࢖࢔ࢋ࢚ࢇࡰ࢑ ࢙ࢋ࢛࢚࢘ࢇࢋࡲ࢑ ࢀࡰ࢔ % 

50 log2 0,5 Nicht gesetzt 295 341 382 416 453 107.166 118.657 131.561 145.216 160.279 3 

100 sqrt 0,5 Nicht gesetzt 299 345 390 420 449 109.725 122.507 134.018 147.162 159.668 3,8 

100 log2 0,5 Nicht gesetzt 307 344 383 419 450 109.326 121.172 132.341 144.719 159.831 4 

200 log2 0,5 Nicht gesetzt 311 355 395 420 448 106.627 122.080 133.901 145.244 159.844 5,2 

50 sqrt 0,5 Nicht gesetzt 301 349 391 420 455 110.373 122.062 132.260 146.354 160.037 5,6 

200 sqrt 0,5 Nicht gesetzt 312 358 399 426 450 109.113 122.655 135.280 146.246 160.414 6,6 

200 log2 1 Nicht gesetzt 323 373 413 442 476 109.399 121.686 133.618 148.300 159.654 9 

50 sqrt 1 Nicht gesetzt 322 368 412 446 502 109.840 122.119 133.838 147.661 160.688 9,4 

100 log2 1 Nicht gesetzt 328 376 414 452 490 107.298 121.672 132.863 145.911 159.673 11,2 

100 sqrt 1 Nicht gesetzt 337 377 417 448 487 109.144 120.344 132.265 144.407 160.130 11,2 

50 log2 1 Nicht gesetzt 323 375 418 452 499 106.215 119.377 131.269 146.903 160.283 11,4 

200 sqrt 0,5 Ausgeglichen 262 434 1.133 3.714 8.960 110.880 122.036 133.624 146.305 159.623 11,6 

200 log2 0,5 Ausgeglichen 248 505 1.479 3.907 8.716 108.893 119.017 132.179 146.382 159.888 11,8 

200 sqrt 1 Nicht gesetzt 345 387 421 451 485 108.393 121.189 134.734 147.156 160.079 12 

100 log2 0,5 Ausgeglichen 256 493 1.528 3.993 15.040 107.885 122.246 136.038 148.518 159.775 12,8 

100 sqrt 0,5 Ausgeglichen 277 494 1.903 4.475 13.251 107.163 120.015 133.842 145.829 159.976 13,6 

50 log2 0,5 Ausgeglichen 249 599 2.356 5.453 21.408 109.182 121.370 132.902 145.759 158.805 14,4 

50 sqrt 0,5 Ausgeglichen 235 671 2.381 5.344 22.799 109.557 120.939 133.838 146.017 160.095 14,4 

200 log2 1 Ausgeglichen 8.671 9.517 45.763 73.163 81.220 107.907 121.286 132.381 144.049 159.746 20,8 

200 sqrt 1 Ausgeglichen 8.045 9.022 58.188 71.636 82.966 107.329 118.761 131.172 144.974 159.238 21 

100 log2 1 Ausgeglichen 8.536 11.111 48.217 71.610 83.313 108.420 118.680 132.087 145.682 159.525 21 

100 sqrt 1 Ausgeglichen 8.104 12.941 53.883 71.600 83.527 112.064 122.622 133.029 146.947 160.154 21,6 

50 sqrt 1 Ausgeglichen 8.703 17.276 48.417 67.506 84.815 106.127 119.461 131.978 144.913 160.140 21,8 

50 log2 1 Ausgeglichen 8.760 22.027 52.505 68.725 84.909 108.367 121.726 133.336 144.495 160.155 22,8 
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von vielen Ausprägungen bestimmter kategorischer Produktmerkmale abhängen. Der 
Unterschied zwischen 100 und 200 Entscheidungsbäumen ist gering. Lediglich weniger 
Entscheidungsbäume scheinen zu schlechteren Ergebnissen zu führen. Für die De-
monstration werden die Parameterausprägungen ݊஽் = 100, ݇ி௘௔௧௨௥௘௦ ஽௔௧௘௡௣௨௡௞௧௘݇ ,ݐݎݍݏ= = 0,5 und ݇ீ௘௪௜௖௛௧௨௡௚ =  .ℎ݁݊ gewählt݈ܿ݅݃݁݃ݏݑܣ

Für die Termtabelle zeigt sich bereits für das Finden von 60 % der Fehler gegenüber 
50 % der Fehler ein sprunghafter Anstieg89. Deshalb sind nur die Fehleranteile bis ein-
schließlich 50 % von praktischer Bedeutung und werden für die Rangbildung berück-
sichtigt. Für die Termtabelle ergeben sich andere überlegene Parameterausprägungen 
als für die Literaltabelle. Insbesondere ist die Strategie ݇ீ௘௪௜௖௛௧௨௡௚ = ܰ݅ܿℎݐݖݐ݁ݏ݁݃ ݐ der 
Strategie ݇ீ௘௪௜௖௛௧௨௡௚ =  ℎ݁݊ überlegen. Da in vielen Fällen eine weitgehend݈ܿ݅݃݁݃ݏݑܣ
exklusive Beziehung zwischen abhängigen Parametern und Monomen in der Regelta-
belle besteht, enthält die Termtabelle überwiegen die Einträge 0. Die Unausgeglichen-
heit der Klassen im Datensatz ist deutlich stärker ausgeprägt als für die Literaltabelle. 
Diese Unausgeglichenheit der Daten durch eine ausgeglichene Gewichtung auszuglei-
chen sorgt u. U. für eine zu starke Verzerrung der im Datensatz vorliegenden Muster, 
so dass relevante Abweichungen schlechter erkannt werden können. Auffällig ist au-
ßerdem, dass für die höchstrangige Kombination an Parameterausprägungen nur we-
nige Features und Datenpunkte genutzt werden und nur wenige Entscheidungsbäume 
trainiert werden. Sie weist somit einen großen Einfluss von Stochastik auf und neigt 
damit eher zu Unter- als zu Überanpassung. Das deutet darauf hin, dass die Heraus-
forderung für die Termtabelle darin besteht, heterogene Entscheidungsbäume zu er-
stellen und damit überhaupt ausgeprägte Anomaliehinweise zu erhalten. Dass jedoch 
die Kombinationen der folgenden Ränge sich in ihren Ergebnissen nur unwesentlich 
von der Kombination mit dem höchsten Rang unterscheiden und mehr Entscheidungs-
bäume und z. T. auch mehr Features nutzen, relativiert die Bedeutung dieses Phäno-
mens jedoch. Für die Demonstration werden die Parameterausprägungen ݊஽் = 50, ݇ி௘௔௧௨௥௘௦ = ஽௔௧௘௡௣௨௡௞௧௘݇ ,2݃݋݈ = 0,5 und ݇ீ௘௪௜௖௛௧௨௡௚ = ܰ݅ܿℎݐݖݐ݁ݏ݁݃ ݐ gewählt. 

  

                                         
89 Dieses Phänomen wird in Kapitel 5.6.2 näher betrachtet. 



LXII Anhang

A12.3 Ergebnisse der Demonstration der Methode 6 an Produkt A

0
10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

An
za

hl
 Ü

be
rp

rü
fu

ng
en

Anteil gefundener Fehler

Zufall

Zufall, z. I.

M6

Abbildung A12.4: Demonstration der Methode 6 für die Literaltabelle von Produkt A mit ݊ி௘௛௟௘௥ = 100 und ݇ி௘௛௟௘௥௔௥௧ = Gesamtansicht ;ݐ݈݅݁ݐݎ݁ݒℎ݈ܿ݅݁ܩ
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Abbildung A12.5: Demonstration der Methode 6 für die Literaltabelle von Produkt A mit ݊ி௘௛௟௘௥ = 100 und ݇ி௘௛௟௘௥௔௥௧ = Detailansicht ;ݐ݈݅݁ݐݎ݁ݒℎ݈ܿ݅݁ܩ
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Abbildung A12.6: Demonstration der Methode 6 für die Literaltabelle von Produkt A mit ݊ி௘௛௟௘௥ = 100 und variierten Fehlerarten
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Abbildung A12.7: Demonstration der Methode 6 für die Literaltabelle von Produkt A mit݇ி௘௛௟௘௥௔௥௧ = ݐ݈݅݁ݐݎ݁ݒℎ݈ܿ݅݁ܩ und variierten Fehleranzahlen
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Abbildung A12.8: Demonstration der Methode 6 für die Termtabelle von Produkt A mit ݊ி௘௛௟௘௥ = 100 und ݇ி௘௛௟௘௥௔௥௧ = Gesamtansicht ;ݐ݈݅݁ݐݎ݁ݒℎ݈ܿ݅݁ܩ
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Abbildung A12.9: Demonstration der Methode 6 für die Termtabelle von Produkt A mit ݊ி௘௛௟௘௥ = 100 und ݇ி௘௛௟௘௥௔௥௧ = Detailansicht ;ݐ݈݅݁ݐݎ݁ݒℎ݈ܿ݅݁ܩ
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1000 Fehler werden in Abbildung A12.11 nicht betrachtet, da nicht ausreichend viele 
Terme in der Termtabelle vorliegen um 500 Fehler der Art fehlender Term einzubringen.

A12.4 Methode zur Ermittlung des Übergangs von einem linearen in 
einen nicht-linearen Abschnitt einer Kurve

Der Wert für den eine Kurve von einem linearen in einen nicht-linearen Verlauf übergeht 
wird in der vorliegenden Arbeit wie folgt ermittelt. Es wird die Nullhypothese aufgestellt, 
dass die Steigung zwischen zwei aufeinanderfolgenden Punkten derselben Normalver-
teilung entstammt wie vorangegangene Steigungen. Dabei werden die Mittelwerte vo-
rangegangener Steigungen und deren Stichprobenstandardabweichungen als Schät-
zer verwendet. Beträgt die Konfidenz der Nullhypothese für zwei aufeinanderfolgende 
Steigungen weniger als 1 % wird davon ausgegangen, dass kein lineares Verhalten 
mehr vorliegt. Dieses Verfahren kann auch als Abbruchkriterium für den Einsatz von 
Methode 6 in der Praxis genutzt werden.
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Abbildung A12.10: Demonstration der Methode 6 für die Termtabelle von Produkt A mit ݊ி௘௛௟௘௥ = 100 und variierten Fehlerarten
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Abbildung A12.11: Demonstration der Methode 6 für die Termtabelle von Produkt A mit ݇ி௘௛௟௘௥௔௥௧ = ݐ݈݅݁ݐݎ݁ݒℎ݈ܿ݅݁ܩ und variierten Fehleranzahlen
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