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Abstract

Requirement traceability can meaningfully support practitioners in a wide range of software
engineering and maintenance tasks. However, manually maintaining traceability information
is laborious and error-prone. Automated traceability link recovery techniques can address this
issue. Existing approaches for requirement-to-code traceability link recovery (TLR), however,
either require project-specific training or fail to produce results of sufficient quality for real-
world use.

In this master’s thesis, we explore the use of context in automated requirement traceability
link recovery between requirements and source code artifacts. Building directly on the existing
Linking-Software-System-Artifacts (LiSSA) framework and recent work in related tasks, we
leverage both embeddings and large language modellarge language models (LLMs) to investi-
gate how contextual information can enhance traceability link retrieval. Our evaluation shows
that, while context can be beneficial and improve both the precision and recall of LiSSA’s
retrieval when applied appropriately, these improvements are modest and depend on the
careful selection of strategies and preprocessing techniques.

We also implement and evaluate an agentic approach to requirement-to-code TLR. Our find-
ings indicate that, while LLM-based agents can recover some of the trace linktrace links (TLs)
present in a project, the agent’s initial prompting and the tools available to it have a substantial
impact on the results. Nevertheless, both the precision and recall of our agentic approach
currently fall short of traditional Information Retrieval (IR)-based techniques.






Zusammenfassung

Requirement Traceability kann Anwender in vielen Software-Engineering- und Wartungsaufga-
ben wirksam unterstiitzen. Das manuelle Erstellen und Pflegen von Traceability-Informationen
ist jedoch aufwendig und fehleranfallig. Dieses Problem kann durch den Einsatz automatisier-
ter Traceability Link Recovery-Methoden adressiert werden. Bestehende Methoden erfordern
jedoch entweder projektspezifische Trainingsdaten oder liefern Ergebnisse, deren Qualitat
nicht ausreicht, um Anwender ausreichend zu unterstiitzen.

In dieser Masterarbeit untersuchen wir die automatisierte Wiederherstellung von Traceabi-
lity Links zwischen Anforderungen und dem Source Code eines Projekts. Dabei bauen wir
direkt auf dem LiSSA-Framework und auf Forschung in verwandten Gebieten auf, indem wir
Embedding-Modelle und LLMs nutzen, um zu untersuchen, wie diese es ermogichen Kon-
textinformationen einzusetzen, um die Qualitat der wiederhergestellten Links zu verbessern.
Unsere Evaluation zeigt, dass der Einsatz von Kontext zwar zu besseren Resultaten fithren
kann, diese Verbesserungen jedoch nur einen geringen Umfang haben und eine sorgfiltige
Auswahl von Vorverarbeitungsschritten und Retrieval-Strategien erfordern.

Dariiber hinaus implementieren wir eine agentische Herangehensweise fiir TLR. Unsere Eva-
luation zeigt, dass ein LLM-basierter Agent zwar TLs wiederherstellen kann, dass jedoch das
initiale Prompting sowie Art und Umfang der verfiigbaren Werkzeuge einen grof3en Einfluss
auf die resultierenden TLs haben. Zudem zeigt sich, dass der von uns vorgestellte agentische
Ansatz derzeit noch nicht die Qualitat traditioneller IR-basierter Methoden erreicht.
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1. Introduction

During the creation and evolution of software, a wide range of artifacts are produced. These
artifacts do not exist in isolation. Although all artifacts share the commonality of being part of
the same project, for each artifact there are other artifacts that are closely related to it.
Examples of such close relationships include: the “implements” relationship between a require-
ment and a piece of source code; the “tests” relationship between a function and a test case; or
a “refines” relationship between two requirements. Making these relationships between each
pair of related artifacts explicit yields a set of edges, referred to as trace linktrace links (TLs)
[12].

As software evolves and requirements change frequently over its lifetime, conceptually require-
ments form the origin of a software project. Consequently, in a completed software project,
paths consisting of TLs can be followed from requirements, across the different artifacts making
up the software, to the behavior of the realized software as verified in tests.

The ability to trace these paths and easily verify that all requirements have been implemented
and verified is referred to as requirement traceability. In safety-critical domains such as health-
care, automotive, or aviation, requirement traceability is mandated by law and standards.
Furthermore, the benefits of TLs are not limited to these domains. Beyond verifying whether
all requirements have been implemented in the source code, TLs can help developers in a
variety of software engineering tasks such as maintenance and impact analysis. Having access
to TLs can be highly beneficial for software maintenance tasks [7, 33, 16]

The type of TLs we focus on in this work—requirement-to-code trace links—have an additional
benefit that has only recently become relevant.

Large Language Models (LLMs) capable of generating code from natural language have enabled
users with little or no programming or software engineering expertise to create non-trivial
software. Users generally state the features they want implemented at a high level of abstrac-
tion, independent of language features or the elements making up the software. While they
may not be aware of the concept or term, they are effectively stating requirements.

Since they lack an understanding of the code the artificial intelligence (Al) is producing for
them, they cannot accurately assess whether these requirements have been implemented as
specified.

This is where links generated by an integrated automated TLR technique can be helpful. Run-
ning an automated TLR approach with the user’s requests and the AI’s generated source code as
its inputs will—assuming correct recovery—produce no TLs for unimplemented requirements
and may also indicate superfluous source code.

In essence, the TLR technique can act as a verifier of correct Al behavior.

Depending on the technologies used, many TLs are either explicit or can be extracted from the
project with minimal effort when needed. This is most often the case for artifacts of the same
type; for instance, to be a valid Java class file, it must contain references to all types used by
that class. Some links between artifacts that do not share a common type are also made explicit
without any additional effort from developers. A basic example of such links is found between
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UML class diagrams and the source code of the classes they visualize, where connections can
be extracted by matching class identifiers in the diagram to those in the source code.

For many other pairs of artifact types, particularly those that do not share a common level
of abstraction, no such straightforward TL recovery is possible. Instead, TLs need to be
either manually maintained by practitioners or recovered using automated TLRs. Maintaining
accurate TLs throughout the creation and evolution of software becomes increasingly laborious
and error-prone as the project grows in size and complexity. This makes automated TLR a
worthwhile and important research goal.

Gap One reason for insufficient performance is the inherent semantic gap between require-
ments and code, which has long been acknowledged as one of the key challenges in automated
requirement-to-code TLR.

A second challenge is acknowledged and addressed less frequently. While requirements—and
even their constituent sentences— can stand and be understood on their own to some degree,
this is not the case for source code elements like class source files.

Instead, what a class "does" can be distributed across it and its superclasses, and each method
may only capture a single step in a greater sequence of instructions implementing a behavior.
Clearly, there are instances of artifact pairs where viewing only their content, and not their
context and relationships to other artifacts, is not enough to understand their role. As a
consequence, for these artifacts, determining whether they are linked by a TL cannot be made
solely on this basis. Yet, this is exactly what many existing TLRs attempt to do.

Approach This begs the question of what the optimal subset is, i.e., which parts of and infor-
mation about the project improve the quality of the recovered TLs and in which ways parts of
the project can be aggregated into a more concise representation without losing their benefit.
Our overall aim with this work is to improve the accuracy of the recovered TLs. Beyond
exploring ways to narrow the semantic gap between requirements and code, we focus on
whether context—defined by the existing TLs between source code elements—is one such
beneficial form of additional contextual information.

We will first explore different techniques with the goal of increase the similarity of related
elements, without a corresponding increase in the pairwise similarity of unrelated elements.



2. Foundations

This chapter outlines the foundations underlying this work. It begins with a brief overview
of the historical roots of automated TLR techniques, followed by a discussion of how LLMs
can be employed for automated TLR—an overarching question of which several aspects are
explored in this thesis. In addition, we provide a general overview of how LLMs can and have
been used for software engineering tasks. Finally, since our techniques were developed and
implemented as part of the Linking-Software-Artifacts (LiSSA) framework, we conclude the
chapter with an introduction to how it approaches recovering TLs between different types of
artifacts.

2.1. Automated Traceability Link Recovery

Historically, TLR techniques have been primarily IR-based [2]. Techniques following this
paradigm rely on a similarity metric defined between artifacts. Their underlying rationale is
that artifacts linked by a TL exhibit a high degree of similarity, whereas unrelated artifacts
exhibit low similarity. Thus, determining the set of TLs between two artifact sets (e.g., re-
quirements and classes) can be formulated as computing the similarity between each pair of
elements and then selecting those pairs whose similarity scores exceed a given threshold to
constitute the recovered TLs.

In typical implementations, this involves computing, for each source element, a ranked list of
target elements sorted in descending order of similarity. The final set of recovered TLs is then
defined as the links obtained by pairing each source element with its top k most similar target
elements.

Since the underlying metric used to compute similarity has a substantial impact on the accuracy
of the recovered TLs, a wide range of similarity metrics has been explored for this purpose.
Among these, one of the most widely used approaches is based on Vector Space ModelVector
Space Models (VSMs). In such models, artifacts are embedded—represented as vectors in a
high-dimensional vector space—where their similarity can be efficiently computed using vector
distance measures.

Historically, these embeddings were sparse, with one dimension per term. Since both natural
language and source code contain many terms with low information content regarding a text’s
content, so called stopwords, they terms are removed. To furter reduce variation, the remaining
words are lemmatized before the artifacts are embedded. Which words are considered to be
stopwords To address vocabulary mismatches between different artifact types, Latent Semantic
Indexing (LSI) was introduced [22], building upon earlier VSM-based methods. LSI reduces the
dimensionality of embedding vectors through singular value decomposition (SVD).

This process maps artifacts containing semantically related terms (e.g., “automobile” and “car”)
to similar dimensions. As a result, the resulting vectors are denser, and artifacts containing
related terms exhibit higher similarity.
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A different way to model artifact similarity is by representing their content as a combination
of topics, which can then be compared using vector metrics. Latent Dirichlet Allocation (LDA)
provides such a topic-modeling-based approach [30, 4].

An alternative means of obtaining dense embeddings that more accurately capture semantic
similarity across artifacts—beyond matching individual terms—is the use of neural embedding
models [10]. TLR has also been framed as an Machine Learning (ML) problem [36]. In this
context, recovering TLs is most commonly viewed as a binary classification problem, where
the model is trained to classify pairs of artifacts as either connected by a TL or unconnected.
Different ML models, including random forests, support vector machines, and deep neural
networks, have been applied to TLR [26].

ML-based techniques can outperform IR-based ones and unlike them are capable to modeling
and interpreting the semantics of both requirements and source code artifacts [36], they are
limited by their need for training data. The size of the necessary training data set can be reduced
by fine-tuning pre-trained foundational models - e.g., LLMs — for the specific software project.
Lin et al. show that its possible to transfer model knowledge acquired by self-supervised
training on the code search task to TLR, avoiding the need for manually created TLs.
However, since ML models trained or fine-tuned on a specific project learn the project structure
and do not seem to generalize well to unseen projects, evidenced by a lack of published ML
TLR techniques that do not require additional training prior to being used for TLR on a new
project. Much of the research on ML-based TLR focuses on network architectures and training
schemes aimed at reducing the amount of training data required to effectively utilize these
models. As a result, ML-based TLR is significantly less relevant to this thesis than techniques
based on IR.

2.2. Large Language Models

In recent years, large language modellarge language models (LLMs) have had a tremendous
impact across a wide range of research domains and practical applications. LLMs represent
the state-of-the-art approach to general-purpose language understanding and generation [27].
With the proliferation of transformer-based architectures, state of the art (SOTA) LLMs now
almost exclusively operate as next-token predictors. During autoregressive inference—i.e., by
inputting the already generated prefix of the output back into the LLM—a complete textual
response is produced. The size of LLMs, measured by the number of trainable parameters,
has rapidly and substantially increased. While an increase in model size generally correlates
with improved performance under established scaling laws, it also necessitates access to
large amounts of high-quality training data. Consequently, training SOTA LLMs has become
prohibitively expensive for most individual practitioners and smaller organizations. This
challenge may be mitigated by fine-tuning a pretrained foundation model, i.e., continuing
a model’s training on a smaller, more relevant dataset. In many cases, however, extensive
fine-tuning is not required for reasonable performance, as LLMs have been shown to generalize
effectively across a broad range of natural language tasks.

Particularly relevant from a software engineering perspective is LLMs’ capability to write and
understand source code [29].



2.3. LiSSA

2.2.0.1. Retrieval-Augmented Generation

The capability of an LLM to output and reason about information is defined by its training
process and training data. Thus, an LLM cannot be expected to possess knowledge that was
not part of its training. However, in many applications of LLMs, access to specialized or
up-to-date information is necessary. There is a clear correlation between model size—i.e.,
the number of trainable parameters—and performance. Even training comparatively smaller
models is prohibitively expensive and time-consuming. The most lightweight way to provide
new information to an LLM is to make a representation of that information part of the input.
This approach is feasible when queries are specialized and the required amount of information
is small.

Retrieval-Augmented Generation (RAG) [21] aims to address this problem and has found
broad adoption. Instead of prepending fixed information to the input, relevant pieces of
information are retrieved based on the query. This necessitates the maintenance of a database
of knowledge items, most commonly consisting of snippets of preprocessed documents. In
addition to the information repository, RAG also requires a retrieval algorithm to determine
which elements in the database are most relevant to the query. One such approach uses
the textual similarity between the query and retrieval candidates, calculated as the distance
between their embeddings.

2.2.0.2. LLM Agents and Agentic Al

Creating software that emulates human-like reasoning and can handle a variety of situations
and tasks has long been a focus of research [37]. Agentic Al has emerged as a promising
approach to achieving this goal. Unlike in a Question-Answering (QA) setting—where the user
or application formulates a question or task and then receives a direct answer from the LLM—in
an agentic context, the outputs are largely hidden from the user. Instead of a simple exchange
of messages, in the most straightforward implementation of agentic Al, the LLM participates
in a message exchange with the application. This typically begins with a description of its
task, an initial state including a user-specified goal, and a set of functions available to it. The
agent is then expected to plan a solution to the task and begin executing it by calling functions
via specific output tokens. The application provides tool results and updates on state changes
resulting from their use or from the passage of time. The functions available to the agent
depend on the task and may also change as the agent progresses toward a solution.

A key advantage of this approach over traditional QA-based interaction is that it does not
require the user to explicitly provide contextual information for each query, nor do they need
to know how to solve the task themselves. There are various definitions of what constitutes an
Al agent or agentic Al [5]. In the context of this work, we consider any use of an LLM that is
able to call functions and determine when to output its final message or answer as an instance
of agentic AL

2.3. LiSSA

Fuchf et al. propose the Linking-Software-System-Artifact (LiSSA) [10] as a generic framework
solving the TLR task by leveraging a LLM as a zero-shot classifier for TLs. The framework (see
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Target Preprocessing Target Vector Store
Artifact (Target) Elements (Target Elements)
Embedding Retrieval
‘ Source Preprocessing Source ( Finding similar k [ Target Element
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4

Mapping [ Prompting J—{ Aggregation

Figure 2.1.: Overview of LiSSA by Fuchf et al. [10] from their paper, showing the different modular
components of the framework (white and blue), inputs, final as well as intermediate results

Figure 2.1) can be divided into two stages: The first is retrieval, designed to retrieve relevant
target artifacts and thereby decrease the number of source-target pairs passed on to the second
major component. This component is implemented using RAG. After initial preprocessing, an
embedding is generated for each of the project’s source and target elements and stored in a
vector store. For a given source element whose outgoing TLs are to be recovered, the cosine
similarity between its embedding and those of the target elements is evaluated. The target
elements with the top-k most similar embeddings are passed on to the next core component:
mapping. The mapping consists of prompting the LLM with each pair—consisting of the source
element and one of the candidate target elements—and tasking it with determining whether a
TL exists between them. Fuchfl et al. present different interchangeable preprocessing modules,
as well as two different LLM prompts: KISS and chain-of-thought. In the course of evaluating
the different variations of the framework on the requirement-to-code TLR task, the authors
determine that, when evaluated across the entire test dataset, LiSSA outperforms VSM-based
TLR techniques. Among the different preprocessing modules, providing the entire artifact to
the LLM yields the highest F, score for the combined classifier, indicating that unlike IR-based
methods for TL recovery, LLMs are capable of utilizing context of both requirements and
methods for a more accurate TL recovery.

2.4. Metrics

Fundamentally any fully automated TLR technique is equivalent to a binary classifier, clas-
sifying potential TLs, i.e. tuples of artifacts either as positive if they are linked by a TL or
as negative if this is not the case. As any binary classifier, we can evaluate the performance
on a given dataset using the two main metrics of precision (P) and recall (R). As shown in
Equation 2.1, precision is defined as the number of true positives divided by the total number
of inputs classified as positives, while recall is the number of true positives divided by the the
sum of true positives and false negatives. In other words, precision is the fraction of correctly
classified positives and recall is the fraction of true positives in the gold standard or ground
truth the classifer has correctly classified.

TP TP

P=—" R=— (2.1)
TP+ FP TP+ FN

Generally, precision and recall represent a trade off. To be able to reduce classifier performance
to a single scalar and enable comparison with other classifers, the harmonic mean of recall
and precision is used. This metric, defined by Equation 2.2 is referred to as the F;-Score.
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P-R

"P+R 22)

F1:2

In many applications, its more important not to miss true positives, then it is to reduce the
number of false positives, i.e. recall is valued more highly than precision. In these cases the
F,-Score, a mean weighted to put a greater emphasis towards the recall value is used. This is
highly applicable to automated TLR, since a user is much more likely to notice a erroneous
TL in the output, than they are to manually recover TLs from the potentially very large set of
combinations of requirements and classes.
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3. Related Work

Closely related to the subject of this thesis is prior work in three categories. The first consists
of studies that share our goal of improving the recovery of TLs between requirements and code,
with particular focus on those that share some aspects of our approach. The second category
includes works dealing with similar tasks, most prominently those presenting automated
issue-to-commit TLR techniques.

Increasing Similarity A core challenge of any IR-based TLR aiming to recover TLs between
natural language and source code artifacts is the semantic gap. This gap becomes evident in
the low similarity between requirements and related classes [13]. How a core IR method and
the measures of textual similarity or relatedness it provides can best be employed in an overall
algorithm is a central question in much of the recent work on TLR [3].

Gao et al. [11] determine co-occurring terms in both requirements and source code, which
they call consensual biterms, and insert them into the artifact representations before passing
them into the core IR method, of which they explore several variants. The need to go beyond
pairwise textual similarity of the unprocessed artifacts has long been acknowledged and has
driven the development of different preprocessing strategies. Additionally, multiple metrics
and probabilities can be combined. Moran et al. [28] combine several textual similarity metrics,
known transitive TLs, and the similarity assessments of developers into a single probabilistic
model.

Structural Information  Structural information can be useful in recovering TLs between re-
quirements and code, but it may also risk the propagation of false links, leading to a greater
number of false positives TLs being recovered [31].

In addition to enriching artifacts with consensual biterms, Gao et al. extend Traceability
Recovery by bilterm-enhAnced Deduction of transitive links (TRIAD) and TraceAbility
Recovery by cOsensual biTerms (TAROT) by leveraging intermediate artifacts, i.e., artifacts
related to both potential source and target elements. Unlike TAROT, biterms are considered
consensual if they occur in intermediate artifacts and either the source or the target element.
They define their final similarity metric as a linear combination of the similarity between the
source and target artifacts and the similarity of the paths linking them across intermediate
artifacts.

Kuang et al. [18] use structural information by employing a precomputed graph modeling both
method-level data dependencies and call dependencies to expand an initial set of true TLs. A
different perspective on using structural information involves exploiting the structure of trace
artifacts to subdivide them into sets of elements over whose union TLs are then recovered.
While this further increases the search space of potential TLs, it can allow for more precise
TLR.

Hey et al. present this approach in Fine-grained Traceability Link Recovery (FTLR) [14]. After
recovering links between requirement sentences and class methods, their technique determines
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whether a requirement and class are related based on whether their sentences are among those
most “voted” for by the methods. Since not every method may be linked to a requirement,
two thresholds are used to filter the initially determined sentence-method links, avoiding
erroneous recovery of links between dissimilar artifacts.

While TLR is not the primary focus of Jin et al’s approach to generating user-level require-
ments for software project repositories, requirement-to-code trace links are recovered as a
byproduct of the hierarchical structure established during the execution of USERTRACE [17].
To achieve this, the authors employ a set of specialized Al agents with clearly defined roles
that collaboratively process and refine artifacts across multiple abstraction levels in a bottom
up order of execution.

LLMs Traceability Link Recovery (TLR) involving natural language artifacts inherently relies
on techniques capable of analyzing natural language. With large LLMs defining the current
state of the art, developments and trends surrounding LLMs are highly relevant to this field
[34]. In fact, LLMs may help bridge the gap between traditional, lightweight TLR approaches
and the accuracy achieved by less accessible, resource-intensive ML-based techniques. This is
one of the core concepts of LiSSA, as outlined in Section 2.3.

When recovering links between requirements, Fuchf et al. [9] also explore foregoing traditional
similarity-based retrieval entirely. Instead, they employ an ensemble of different LLMs to
filter the large search space of potential TLs, using increasingly larger and therefore more
capable—but also more computationally expensive—models.

Requirement-to-code TLRs are closely related to other TLR tasks that process both natural
language and source code artifacts. One of these closely related tasks is issue—commit linking,
i.e., recovering TLs between commits and issues in a software project. Of the two, we consider
requirement-to-code TLR to be the generally more difficult task. First, the natural language
in commits and issues is usually expressed at a similar level of abstraction and is aimed at
developers. Second, issues and commits have associated process information that automated
TLR techniques can exploit [32], such as creation dates, authors, and participants in associated
discussions [1].

Due to the advantages provided by issue—commit traceability and the greater availability of
training and evaluation data, this field has recently garnered substantial research interest,
including both ML- and non-ML-based techniques. Lin et al. present a family of fine-tuned
BERT models to classify pairs of issues and commits based on whether they are linked by
a TL. They address data scarcity by outlining a training regime in which their models are
first pre-trained on code search—i.e., recovering links between functions and their associated
comments—on unrelated datasets, then trained on smaller amounts of project-specific data,
and finally fine-tuned on both the target task and project using a small number of manually
created issue-commit TLs.

Huang et al’s approach to issue—commit TLR closely resembles that of LiSSA. The large search
space of potentially linked issues and commits is first filtered using a top-k selection based on
pairwise embedding similarity. Unlike LiSSA, in which each candidate pair is classified, they
task an LLM with reordering the list of candidates based on commit messages for each issue
represented by its title and description. Using a smaller k, the top elements of this re-ranked
list are then returned as the final output of the technique.

Akhavan et al. present a different approach to issue-commit TLR, also using an LLM, but in
an autonomous agent implementation [1]. Instead of presenting an LLM or classifier with
issue—commit pairs to classify, their agent receives an issue, a link to the project repository,
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and a set of 20 functions that it can use to explore the repository, including functions to
access source code and process information. It then autonomously performs the linking task
and, according to their evaluation, exceeds previous issue-commit TLR techniques in Hit@1
accuracy, i.e., the rate at which the correct commit is identified as the top candidate, by between
60% and 262%.
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4. Analysis

In this chapter we will go into more detail on the core challenges of automated requirement-to-
code TLR using some of the most commonly used evaluation datasets for TLR as an example.
Based on these observations we will present or approach to improvide the results produced by
the LiSSA framework, particularly with respect to its retrieval stage.

As mentioned in chapter 1, manually creating and maintaining requirement-to-code traceabil-
ity information, i.e., TLs, is a worthwhile but laborious task. In domains where this process
is mandated by law, projects are typically proprietary. Consequently, there is a shortage of
publicly available, large, and recently created datasets consisting of both requirements, source
code, and TLs.

For our analysis as well as the evaluation of our techniques, we use a subset of the Center
of Excellence for Software Traceability (CoEST) dataset, consisting of the ETour, iTrust, and
SMOS projects. We also use the Dronology dataset, which includes the project’s source code
as well as two sets of requirements at different levels of abstraction and their corresponding
TLs. These datasets have been widely adopted and used for the evaluation of various TLR
techniques, thus allowing us to compare our results with those achieved by prior approaches.
Table 4.1 shows the number of requirements, classes, and TLs between them for each of the
datasets.

Notably, while all of the listed datasets are written in Java and follow an Object-oriented
programming (OOP) paradigm, they contain substantially different numbers of requirements,
classes, and links.

It is, however, important to keep in mind that these datasets represent only a limited sample
and should not be considered representative of the breadth of real-world software projects.
Firstly, they are all relatively small, with between 99 (SMOS) and 432 (Dronology) classes. But
they may still make up a meaningful range of inputs. Despite their limited sizes, they cover a

Table 4.1.: Number and information regarding the of requirements, classes and gold-standard TLs
between them for a subsets of the CoEST dataset and Dronology

Dataset Links Requirements Classes with JavaDoc Methods with JavaDoc
Dronology-DD 722 211

432 41.4% 2428 12.1%
Dronology-RE 587 99
ETour_en 308 58 118 77.1% 1025 69.8%
iTrust 286 131 219 90.8% 1510 44.1%
SMOS 1044 67 99 63.6% 456 91.2%

Table 4.2.: Overview of the some of the datasets commonly used to evaluate requirement-to-code TLR
approaches.
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Table 4.3.: Evaluation results of previous IR-based TLR techniques presented by Fuchfl et al. [10] and
the ML-based TRAIL [26]

Approach SMOS ETour iTrust Dronology (RE) Dronology (DD)
p R p R P R P R p R
VSMopt 430 414 557 427 208 227 .844 .087 .846 .071
LSIopt 415 430 452 453 .251 .255 .333 .107 757 .074
COMETopt 195 572 410 468 361 231 - — — -
FTLR 444 331 379 .633 .165 339 .183 .161 129 .154
FTLRopT 314 588 505 597 234 241 184 .170 .140 147
LiSSA (etrieval  -325 418 216 .815 .058 .531 .128 420 .085 482
LiSSA 590 105 409 734 199 451 226 344 177 .380
TRAIL 871 .735 .572 .650 .568 .658 — — — -

variety of domains, including tourism (eTour), healthcare (iTrust), and cyber-physical systems
(Dronology). Their differences in how requirements are expressed and in how densely their
source code is annotated with JavaDoc comments may be more impactful for TLR.

In the two sets of requirements for Dronology, each requirement consists of a short title and a
single-sentence description of the desired software behavior.

In ETour, each requirement artifact is a full use case, containing a description, optional partici-
pating actors and entry conditions, the flow of events, exit conditions, and quality requirements.
In the iTrust dataset, the use cases have been decomposed into their individual steps and exit
conditions; however, these individual requirements are inconsistent in their length and level
of detail with which they describe aspects of the software.

Requirements for SMOS follow a similar format to ETour, containing full use cases with a title,
description, participating actors, individual steps, and a post condition. However, unlike the
other projects, SMOS requirements and comments are entirely written in Italian.

As shown in Table 4.1, the projects also differ in the amount and type of JavaDoc comments
they contain. Only 41.4% of Dronology’s methods have attached JavaDoc comments, while
this is the case for 90.8% of iTrust’s methods. The percentage of classes with attached JavaDoc
comments varies even more, with only 12.1% in Dronology compared to 91.2% in SMOS.

SOTA Results Due to their relatively small size, high number of comments, and creation in an
academic context, it seems unlikely that the chosen datasets represent a particularly difficult
input for TLR techniques. At the same time, based on the results achieved by previous TLR
techniques, they cannot be considered a particularly easy input either.

When comparing the precision and recall reported by different IR-based TLR techniques, as
curated by Fuchf et al., with those achieved by the ML-based TRAceability lInk cLassifier
(TRAIL) shown in Table 4.3, a substantial performance gap between SOTA IR- and ML-based
TLR techniques becomes apparent. This observation also holds true for other techniques
[36].

For SMOS, eTour, and iTrust, TRAIL substantially outperforms the respective optimal IR-based
technique. While Moran et al. do not evaluate HierarchiCal PrObabilistic Model for SoftwarE
Traceability (COMET)’s performance on the Dronology dataset, the reported precision and
recall for the remaining three projects make a substantially better performance of COMET on
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Dronology seem unlikely. Irrespective of TRAIL’s performance on Dronology, which has also
not been evaluated, the performance of all listed SOTA IR-based requirement-to-code TLR
techniques remains insufficient for beneficial use by real-world practitioners.

Nevertheless, despite TRAIL’s superior performance, even if we extrapolate from these results
on a limited set of Java datasets to the full breadth of software projects this does not imply
that IR-based methods have become obsolete.

A key barrier to the adoption of ML-based techniques is their reliance on training data—specifically,
existing TLs within the project to which the technique is to be applied. Creating these initial
TLs manually still requires the same labor-intensive TLR process described earlier and de-
mands that practitioners produce a high-quality set of training links. Such a set should capture
both “easy” and “hard” links and maintain a balanced distribution across different types of
traceability relations.

Existing ML-based TLR techniques have also been shown to generalize poorly to unseen
projects, requiring retraining on project-specific data as well as retraining to reflect project
evolution.

In contrast, IR-based TLR techniques present a substantially lower barrier to adoption, as they
require neither training nor preexisting data and typically involve only the selection of a few
hyperparameters. While many IR-based techniques use representation learning models that
have been previously trained on large text corpora [25, 36], this does not impact the use of
these TLR techniques by practitioners.

For these reasons, this thesis focuses on improving the performance of IR-based techniques
that do not require prior training. Specifically, we aim to improve the results produced by
LiSSA, targeting both the retrieval and classification stage of the framework.

Analysis At the core of IR-based TLR techniques lies a similarity metric. In LiSSA, this role
is fulfilled by the cosine similarity between the neural embeddings of the source and target
elements’ contents. As previously stated and shown in Table 4.3, the quality of LiSSA’s results
is not sufficient for real-world use. Before presenting our general approach to improving its
performance, it may be beneficial to analyze why this is the case.

As outlined in Section 2.3, LiSSA’s retrieval produces a set of k candidate target elements for
each source element. Figure 4.1 shows the distribution of pairwise similarities for both related
(solid) and unrelated (dotted) pairs of artifacts in each of the evaluation datasets.

While the distributions have been normalized in the figure, it is important to keep in mind that
the number of unrelated pairs of elements is substantially higher than that of related pairs
(see Table 4.1). The first obvious observation is that none of the pairs in any of the datasets
exhibit a similarity greater than 0.8, while the overall similarities for both related and unrelated
artifacts tend toward the lower end of the remaining range.

Secondly, while the core assumption of IR-based TLR holds true—namely, that artifacts linked
by a TL exhibit higher similarity on average than those not linked—there is substantial overlap
between the two distributions for each dataset. This directly implies both the strong trade-off
between precision and recall and the resulting low aggregated F; and F; scores.

There is neither an appropriate threshold for filtering potential TLs based on their similarity,
nor a value of k that retrieves nearly all true positive links without also introducing a much
larger fraction of false positives. For low values of k, the retrieval stage will generally recover
those TLs whose source and target elements exhibit high similarity. This set will typically
consist largely of true positive TLs, yielding high precision. However, since many true positive
links connect source and target elements that are not highly similar, they will not be retrieved,
resulting in low recall.
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Figure 4.1.: Smoothed distribution of the cosine similarities of requirements and classes linked by a TL
(solid) and those not linked by a TL (dotted)

Conversely, for high k values, even true positive links with low similarity will be retrieved. But
because the number of unrelated target elements is much greater than that of related classes,
comparable similarity values lead to a substantially greater percentage of false positives than
true positives in the result.

Approach Conceptually, our approach is based on the assumption that textual similarity
between potential source and target elements provides a meaningful but, on its own, insufficient
heuristic to accurately capture traceability relationships between requirements and code [38].
Our hypothesis is that at least some of the reasons these techniques fail to produce sufficiently
accurate results is that textural similarity of artifact pairs viewed in isolation can not capture a
substantial amount of the existing TLs.

The core idea of our approach to improving these results is to leverage the context of source
code elements as enabled by the use of LLMs and SOTA embedding models.

In particular, we focus on two distinct forms of source code context. The first is defined by
the relationships between classes. In the OOP paradigm, both logic and state are distributed
among objects, which are defined by classes. Thus, there is rarely a one-to-one relationship
between requirements and code elements. Especially for requirements stated at a high level
of abstraction, a single requirement may be linked to a large set of classes, not all of which
exhibit high textual similarity to the requirement.

However, while some of these classes may be textually dissimilar, they are likely to use—or be
used by—other classes related to the same requirement. Consequently, by taking into account
closely related classes, the similarity score they receive during retrieval can be increased,
potentially leading to a higher number of true positives in the final set of TLs.

At the same time, this approach can also reduce the number of false positives. Figure 4.2 shows
a simple constructed example containing one requirement and four classes. In addition to two
related classes, both exhibiting high similarity to the requirement, there are two unrelated
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Figure 4.2.: A minimal example illustrating how the context of class artifacts can influence the determi-
nation of their relationship to a requirement. The connecting lines between the requirement and the
classes are annotated with their respective textual similarity scores.

classes, one of which may result in a false positive TL. While some unrelated classes may be
outliers and show high textual similarity with a given requirement due to matching terms in
their identifiers (e.g., PaperDisposalPlan), these classes are unlikely to be closely related to
other classes with comparably high similarity. Thus, incorporating contextual information
can help avoid such false positives. The specific mechanisms by which this is achieved will be
presented in the next chapter.

The second aspect we are going to explore is shrinking the amount of context included. Hey
et al. have shown that performing TLR on more fine-grained elements can be worthwhile and
that taking into account the removed context can further benefit the accuracy of the recovered
TLs.

However, they were substantially limited in the form and amount of context that can be included
using the Word Mover’s Distance (WMD) [19] as their underlying similarity metric. Both
neural embedding models and LLMs enable new and more extensive ways of leveraging context.
Specifically, embedding models like those used by LiSSA are more tolerant of stopwords, non-
lemmatized terms, and unlike the historical bag-of-words represenation can take into account
of the semantics of both natural language and source code.

Beyond these ways of leverage context to modify similarities, we also explore different avenues
to increase the similarity of related elements overall without also increasing the similarity of
unrelated pairs to the same degree. All three of these aspects of the thesis will be presented
and evaluated in the the following chapter.
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To leverage context as part of TLR approach, context needs to be made accessible to the
technique. As described in 2.3, LiSSA is designed to be as generic as possible to be able to
recover TLs between elements of any type. The downside of this approach is that the context
of and relationships between elements are not part of LiSSA’s element objects. This means we
need to create a context model separate from the elements being processed.

Since different modules may rely on different forms of context, this approach has the additional
benefit of allowing different forms of context models to be used depending on the modules
included in a given configuration. E.g. if the only context required by the pipeline is the
inheritance hierarchy of the class elements, collect a potentially very large set of method
relationships from the input project’s source code can be avoided.

4.0.0.1. The Code Context Model

Relationships i.e. trace links between source code elements can be derived directly from the
project’s source code. No additional documentation of these links is required.

We parse the entirety of the project’s source code into a graph containing three different types
of nodes: Packages, classes and methods. The model does not differentiate between concrete
classes, abstract classes, interfaces or enums. Each node is uniquely identified by the fully
qualified name of the code element it represents. Being able to unambiguously map elements
to nodes is necessary to be able to access their context inside LiSSA’s modules.

Each of the nodes is constructed on the basis of the code’s AST, but we limit their content to
aspects relevant for TLR. Both class and method nodes contain their raw source code, i.e. the
content of the class file and the code snippet consisting of the method signature and body,
respectively.

Our model also contains what we consider to be the two most important types of trace link
between source code elements: The edges of the inheritance hierarchy graph and the method’s
caller-callee relationships. The former connects each class node with the class nodes it extends
or implements, or is extended or implemented by. The latter connect each method node with
methods called in the method it represents and vice versa.
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5. Retrieval

At this stage, two types of objects are relevant. Artifacts are the input to the framework and
the entities between which trace links (TLs) are to be recovered. LiSSA supports a very wide
range of such artifacts. For automated requirement-to-code traceability link recovery (TLR), in
most cases (including in our evaluations), artifacts are the project’s individual requirements
on one side and its classes on the other. After they have been created, LiSSA’s first step is to
process the input artifacts into elements that will be used by the remaining modules.

5.1. Preprocessing

Automated TLR techniques usually aim to recover TLs between requirements and classes.

In LiSSA preprocessors are unrestricted in how many elements they can produce for each
artifact they receive as an input. While they can take advantage of this to produce more
than one representation per class, this ability is intended to subdivide the artifact into its
components. For classes, the most straightforward subcomponents a class can be subdivided
into are its methods. Since TLR on the method level has already been previously explored and
been shown to yield good results, we implement preprocessors targetting each of these levels
and dedicate the following two subsections to their introductions.

5.1.1. Classes

Viewing the retrieval stage as a black-box classifier whose results will be further processed
can be helpful for understanding its importance. Conceptually, requirement-code TLs can
exist between any pair of requirements and classes, leading to a large search space. For
efficient IR methods, this is not an unfeasibly large input size. LLM inference is much more
computationally expensive, thus if an LLM is to classify each candidate TL, a preselection step
is necessary. In LiSSA, determining this preselection is the role of the retrieval. Its approach is
equivalent to iterating over each potential TL and classifying it as positive if the target element
is among the k most similar elements to the source.

Forgoing the possibility of using a different embedding model, there are two ways to alter the
similarity score of two elements. The first is by modifying the preprocessing step to transform
the string before it is embedded. LiSSA already implements this to a limited extent through its
preprocessors. The second is by modifying the retrieval itself—specifically, how the similarity
between two elements is calculated. By default, LiSSA uses the cosine distance between the
query and candidate embeddings, but conceptually, any function that produces a score (and
thus a ranking of candidates) can be used. In both of these approaches, code context can be
leveraged.

19



5. Retrieval

Focusing on the preprocessing step first, before we discuss concrete preprocessor implementa-
tions, it is important to keep in mind the module’s purpose. Ideally, given a requirement and a
source code artifact (e.g., a Java class) linked by a TL, the code artifact should be transformed
into a string whose embedding is virtually identical to that of the requirement, maximizing
their similarity. Besides restating the content in a different way, this may also include selecting
the most relevant parts of the artifact and eliminating noisy or misleading parts. In practice,
achieving a perfect similarity score is not possible. Instead, we aim for the embedding of the
source code artifact to be as similar to the requirement’s embedding as possible. At the same
time, the transformation should not increase the similarity between the class and unrelated
requirements—or at least to a lesser degree. If this is not the case, unrelated requirements may
“overtake” related ones in the similarity ranking established during retrieval, and if the change
is sufficiently large, thereby decrease the number of true positives while increasing the number
of false positives the retrieval produces.

One approach to finding such a transformation is to examine what separates the two types
of artifacts. The most obvious difference is the semantic gap between them. Even if each
requirement of a software project were linked to exactly one class in its source code, the two
artifacts would still express the same information in very different ways, and thus there can be
no guarantee that their embeddings will be similar.

LLMClassSummaryPreprocessor Transforming either the requirement or the class to bridge
this gap could address the issue. Of the two options—transforming the requirement into a
valid Java class or transforming the class into a natural-language expression—we chose the
latter. We cannot assume that a given requirement is implemented in a single class, so deriving
a class from it when it spans multiple classes would likely yield a result dissimilar to the real
target class, leading to low similarity and poor retrieval accuracy. While we can make the same
argument for the common case of a class implementing multiple requirements, we assume
that the embedding model is more tolerant of additional information in a text than it would be
of a potentially unrelated Java class. Since LiSSA already provides a framework for utilizing
LLMs, and because LLMs have demonstrated strong capabilities in explaining and summarizing
code in various programming languages, we use an LLM for our first preprocessor, which
implements the transformation from source code to natural language. Given a source code
artifact, the LLMClassSummaryPreprocessor prompts an LLM to generate a natural-language
summary consisting of a configurable number of sentences. As described, this summary is

then embedded.
LLMClassSummaryPreprocessor Prompt

Summarize the following software artifact using up to number_of_sentences sentences:
artifact_content

JavaDocEnhancerPreprocessor For very fine-grained requirements—such as those prescribing
the use of specific hard-coded values—there is a risk that the LLM may omit references to
the corresponding parts of the source code. We could address this by increasing the level of
detail and length of the summary via the prompt. However, greatly increasing the summary
length may also introduce irrelevant information (i.e., noise) and result in a “watered-down”
embedding. Presumably, the developer writing the classes, methods, and associated Javadoc is
aware of the requirements the class is intended to implement and has written them accordingly.
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5.1. Preprocessing

Thus using the set Javadoc comments in a class as its representation may be more accurate than
including the source code instructions. A clear downside of this preprocessor is its reliance
on developers to write sufficiently detailed Javadoc and maintain it as the software evolves.
If there is no Javadoc associated with a class, or if the documentation is incongruous with
the code, this preprocessor will output a representation that might be semantically closer to
the related requirements but contain completely different information. This could lead to
performance falling below that of naive retrieval using the full source code.

Still, leveraging documentation may be a way to achieve accurate retrieval. We can task an
LLM with assessing existing Javadoc, improving it where it does not accurately describe the
class and its methods, or generating Javadoc where it is missing or incomplete. Besides cases
where Javadoc is missing, incomplete, or inaccurate, we can also expect this preprocessor to
handle input where source code is documented in languages the embedding model has not
been sufficiently trained on by enforcing English-language documentation.

JavaDocEnhancerPreprocessor Prompt

Add proper English-language Javadoc comments to the following Java class or interface.
Make sure to include:

Class-level Javadoc describing its purpose.

Method-level Javadoc describing parameters, return values, and exceptions (if any).
Field-level Javadoc where useful.

Do not restate your task. Only return the complete class with Javadoc comments added,
preserving formatting. If the class already has English-language Javadoc comments,
improve them where you see fit.

Class source: artifact_content

ClassSkeletonPreprocessor A second role preprocessors can fulfill in LiSSA is to remove noise
from the artifact contents. Unlike natural language, source code always contains words and
phrases unrelated to the purpose of the class. The most obvious example are programming
language-specific keywords. Variable names are only as descriptive as the developer has made
them to be. Particularly for local variables in methods, names are often chosen with little effort.
The use of unrelated terms in the type names of variables that are frequently repeated in one
class or method may also water down the specificity of the embedding.

For a given class, foregoing documentation, the most informative and usually most carefully
named elements are its methods—or, to be more precise, its method signatures. Consequently,
reducing methods to their signatures has been an established preprocessing step in previous IR-
based TLRs techniques, particularly in FTLR, where method signatures are the code element for
which TLs are recovered. Combining the set of signatures, excluding the parameter variables’
names, with the class name gives us a string summarizing key properties of the class:

its name, the operations that can be invoked on it and its instances, and what we consider
the most important types it interacts with in return and parameter types. We implement this
transformation in the ClassSkeletonPreprocessor.
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5.1.2. Methods

So far, we have only discussed preprocessors that generate exactly one element for each class
in the project’s source code. But this may not be the optimal level of granularity for TLR. In
Object-Oriented Programming (OOP), a class defines a template from which objects are created.
Each object represents and manages a part of the software’s state and the operations performed
on that state. A software system’s behavior—how it reacts to user inputs—is generally not
defined in a single class but emerges from the interaction of many objects. This interaction
consists of objects invoking methods on other objects, forming a tree of method calls. Each
node in this tree should do exactly one thing [23], i.e., each method can be described in natural
language. Since these methods collectively define the system’s behavior as specified in the
project’s requirements, this may be a better approach to recovering TLR between software
artifacts.

We can reuse some of the same transformations we have already defined for class artifacts:

MethodJavaDocPreprocessor The MethodJavaDocPreprocessor returns a set of Elements each
containing the method JavaDoc for one of the class artifact’s methds.

ToMethodContextPreprocessor The source code making up a method is by definition shorter
than a full class, generally significantly so. At the same time, by splitting a class into a set of
sub elements, each generated in isolation from the others, we strip away some of its context.
While this can be benefical in cases where a class declares multiple unrelated methods, e.g.
methods that are part of two entirely distinct use cases, this context can also be important,
most obviosuly in cases where one of the class’s methods calls the other.

To account for both of these cases, we implement a preprocessor that will append the signatures
- which we assume to be meaningful [15] - of all caller and callees methods to that of the target
method.

ToMethodsPreprocessor Finally, since we assume that a CodeContextModel instance is avail-
able during preprocessing, we also reimplement a more concise and efficient version of LiSSA’s
CodeMethodPreprocessor. This implementation limits its preprocessing to resolving the class
to a class node in the model and mapping the source code making up each of its methods to an
element.

5.1.3. Implementation

Each preprocessor is implemented as a class extending LiSSA’s abstract Preprocessor class,
allowing each to be instantiated and used in place of an existing preprocessor implementation.
As described above, all preprocessors expect artifacts corresponding to classes as their inputs.
They output either one element per input artifact (for class-level preprocessors) or one element
per method (for method-level preprocessors).

Preprocessors that take advantage of the source code structure and relationships between
elements rely on the CodeContextModel obtained from the context store.

Preprocessors using an LLM all share a common superclass, LLMBasedPreprocessor, which
encapsulates the logic required to instantiate the wrapper of the actual LLM API and cache
its responses. The subclasses—i.e., the concrete preprocessors—interact with the model only
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Preprocessor

preprocess(artifacts: List<Artifact>) : List<Element>

A

ToMethodsPreprocessor MethodJavaDocPreprocessor ToMethodContextPreprocessor LLMBasedPreprocessor

# getChatModel(): ChatCache

ClassSkeletonPreprocessor SingleArtifactPreprocessor AllJavaDocInClassPreprocessor JavaDocEnhancerPreprocessor LLMSummaryPreprocessor

Figure 5.1.: An overview of the preprocessors we added to LiSSA as part of this work, also including
the reimplemented ToMethodPreprocessor and the baseline SingleArtifactPreprocessor

through the interface provided by their parent’s protected getChatModel() method.

Any preprocessors that rely on the source code element they are expected to produce a repre-
sentation for having attached JavaDoc comments will default to returning the full underlying
source code to avoid them producing empty strings, whose embedding will be a strictly less
accurate representation than that of the source code. Preprocessors relying on classes having
methods they can be subdivided into follow the same pattern of behavior, returning a single
Element containing the full source for classes that do not declare methods.

5.2. Retrieval Strategies

So far, we have defined a set of preprocessors and how they transform the project’s classes
into representations that can be embedded, but we have not yet presented an approach for
improving the retrieval itself using context information. This section introduces that.

In the LiSSA framework, a retrieval strategy defines how and which elements are retrieved. Its
default retrieval strategy computes the cosine similarity between each element in the element
store and the current query element, then retrieves those with the k highest similarities. Using
this strategy, the context of the source code elements influences retrieval only insofar as that
context has influenced the element’s string representation before embedding.

However, we can also leverage the context in which code elements exist in the source code as
part of the similarity calculation during retrieval.

Instead of using the pairwise similarity of a query and just a single given candidate element,
we could take into account the similarity of the candidate’s context and the query.

In our implementation, this means calculating the pairwise similarity between embeddings of
both the candidate element and the elements in its neighborhood.

In addition to the similarity of the query and target element (as with the preexisting retrieval
strategy), this yields two sets of similarity scores.

Since we need a single value to use as the overall similarity score of source and target, we
first aggregate the two lists, then take a convex combination of the three remaining values
as the total score. Conceptually, any function mapping a list of scalars to a single scalar and
any set of coeflicients is possible. In practice, we take the maximum and average of the sets as
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the aggregation function to arrive at a single scalar. We normalize the three coefficients used
to combine the aggregated weight of callers and callees with the main similarity to ensure a
convex combination of individual scores.

Because some methods may not have any callers (e.g., main methods, methods intended and
annotated as framework entry points) or callees (e.g., helper or very basic methods like getters),
if one of these sets is empty the main similarity is used as a default value. This avoids tying
the final similarity strongly to whether the method has both callers and callees.

Smain = COS(q, emain) (5-1)
agg({cos(q,e) | e € callers(emain)}), if callers(emain) # 0,
Scallers = . (5~2)
Smains if callers(emain) = 0
agg({COS(q, e) | ec Callees(emain)}) > if Cauees(emain) * 0:
Scallees = . (5-3)
Smains if callees(emain) = 0
Sfinal = WmainSmain T WcallersScallers T WcalleesScalleess
Wmain + Weallers + Weallees = 1, Wmain> Weallers> Weallees = 0 (5'4)

This leaves us with a strategy we can slot into a LiSSA configuration. The most obvious usage
is following the example of FTLR and choosing the weights heavily weighted towards the
main similarity. But it leaves us with many more options. In particular, using this outline, we
can replicate the default cosine-distance-based retrieval (Wpain = 1, Wealllers = Weallees = 0) OF
characterize an element’s similarity to a query with the maximum similarity of elements it is
related to by either a caller or callee relationship. We will explore these in our evaluation of
different retrieval strategies.

5.3. Evaluation

In this section, the previously introduced classifiers and retrieval strategies are evaluated. We
subdivide our evaluation into three steps, first evaluating the preprocessors with the default
retrieval strategy employed by LiSSA. Next we combine the preprocessors with context aware
retrieval strategies and evaluate a set of full rertrieval configurations. Finally we compare
the optimal configurations for each dataset as well as the one that produces the best results
averaged across all datasets to those achieved by LiSSA.

With the exception of MethodJavaDocEnhancerPreprocessor we first evaluate all preprocessor
that have been introduced in this chapter with the default cosine similarity retrieval strategy
and compare their performance to that of SingleArtifactPreprocessor using the same default
strategy. Evaluating the MethodJavaDocEnhancerPreprocessor has not been possible due to
time constraints and the large number of LLM inferences required to evaluate its performance
on the full test datasets.

In this first part of the evaluation, our goal is to show that, just like the preexisting preprocessors,
our new preprocessors can enable the recovery of TLs between requirements and code based
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on their outputs cosine similarity.
Condensing this using the GQM-Framework:

Goal 1: Increase the number of true positives TLs candidates recovered by LiSSA’s retrieval
stage.

Question How many of the TLs in each of the datasets are recovered using our prepro-
cessors?
Metric Recall achieved by configurations using the different preprocessors

Thus, for the first part of our evaluation we do not report the precision retrieval with our
preprocessors achieves. As part of the LiSSA framework, retrieval only constitutes the first
step of the TLR process, and the retrieved TLs are further filtered. Therefore, precision and
recall are not of equal importance. In particular, the recall of the retrieval acts as an upper
bound for the recall of the entire framework. For this reason we focus on the achieved recall
and compare different configurations based on the F,-Score they achieve.

Goal 2: Investigate if and how retrieval using our preprocessors and retrieval strategies alter
element similarities and the ordered retrieval lists produce during retrieval.

Question 2.1 How do our preprocessors effect the similarity of element linked by true
positive TLs?
Metric Difference in similarity scores of element’s linked by true positive TLs

Question 2.2 How do our preprocessors effect the retrieval ranking of element linked by
true positive TLs?
Metric Indices of true related element’s in the retrieval ranking 1 TLs

5.3.1. Parameters

The most important parameter of the retrieval is k, which defines how many target elements
are retrieved for each source element. Independent of the preprocessor used, k represents a
tradeoff between recall and precision: increasing k generally increases recall but decreases
precision, as more candidate TLs are retrieved.

A second parameter that is independent of a specific preprocessor is the model used to embed
the preprocessed elements.

For all evaluations, we use OpenAI’s text-embedding-3-large model.

Preprocessors that employ an LLM also take the model as a parameter. In accordance with
LiSSA’s LLM interaction interface, each model is defined by its name and a random seed.

We use the same model for all evaluations, specifically OpenAl’s GPT-40 mini with a random
seed value of 42.

5.3.2. Results

In this section we report the results achieved by using our each of our preprocessors in LiSSA’S
retrieval stage. The evaluated preprocessors are:

e LLMClassSumaryPreprocessor
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Figure 5.2.: Recall of retrieval using different preprocessors on the evaluation datasets. From

left to right and top to bottom: SingleArtifactPreprocessor, LLMClassSummaryPreprocessor,
JavaDocInClassPreprocessor, JavaDocEnhancerPreprocessor.

5.3.2.1. Preprocessors

We use the results obtained with the SingleArtifactPreprocessor and the default cosine
similarity—based retrieval as a baseline for comparison.

Each plot shows one specific configuration of preprocessor and retrieval strategy. Each set of
colored dots corresponds to one value of k and the resulting recall. However, they come with
a some caveats: The connecting curve is added solely for readability. As the behavior of these
curves shows, the fraction of gold-standard TLs does not necessarily grow linearly between
sampled k values.
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When interpreting these plots, it is important to keep in mind that a higher recall value for one
dataset at a given k does not necessarily imply that the classifier performs better on that dataset.
Each project has a different number of requirements, TLs, and classes (see Table 4.1), while the
number of candidate TLs that can be retrieved is always |Requirements| - k. In practice, this
means that, for iTrust, a value of k = 2 could already be sufficient, whereas for SM0S, k must
be greater than 16 for LiSSA to be able retrieve all gold-standard TLs, even assuming perfect
similarity between gold-standard TL source and target elements using the given preprocessor.
Nonetheless, these plots allow for an easy comparison between different configurations.
Since the space of potential configurations to evaluate is very large without accounting for
the different datasets, but at the same many of the results follow the same general pattern, we
mostly focus this section on the Dronology-DD dataset.

Starting with a baseline consisting of each preprocessor combined with the default retrieval
method (i.e., taking the cosine similarity of embedding to rank the stored elements in relation
to the query), the results show no major differences in performance among most of the new
preprocessors. For both LLMClassSummaryPreprocessor and JavaDocEnhancerPreprocessor,
the differences in recall values compared to the SingleArtifactPreprocessor are minor, and
the curves exhibit largely similar behavior and bounds. While there are small variations in
how many gold-standard TLs are retrieved for a given k across different preprocessors, these
differences are not substantial.

The one clear exception are the result of Al1JavaDocInClassPreprocessor on SMOS. Its recall
is consistently lower than that of the other preprocessors by roughly 0.1, and it plateaus at
0.45 for k values greater than 80, falling well short of the near-1.0 recall achieved by the other
preprocessors on this dataset. The most likely explanation for this is that both the requirements
and documentation of SMOS are written in Italian. As shown in Table Table 4.1, SMOS does
not have substantially fewer JavaDoc comments associated with its source code than the
other projects, so a lack of comments is unlikely to be the reason for this disparity. Since
the JavaDocEnhancerPreprocessor—which translates all non-English comments into English
while refining them—achieves results more consistent with the other datasets, we can assume
that the embedding model is less capable of accurately modeling the similarity between Italian
comments and requirements with its embeddings.

For Dronology-DD, Dronology-RE iTrust and SMOS using the default retrieval strategy, each
preprocessor falls short of achieving recall values that would make this configuration viable
for real-world use.

Similarity Changes Each of the preprocessors should substantially increase the pairwise simi-
larity between elements linked by gold-standard trace links, ideally up to a value of 1. Table 5.1
and the per-dataset and preprocessor mean changes in similarity show that this is not the case.
With the exception of JavaDocEnhancerPreprocessor and LLMClassSummaryPreprocessor on
SMOS, changes in mean similarity across each of the datasets are limited to less than 0.1. The
majority of mean changes is also negative, decreasing similarity between linked source and
target elements. Except for the LLMClassSummaryPreprocessor all class level preprocessors
reduce the similarity. On SMOS, all preprocessors are detrimental to the similarity of gold-
standard TLs. Using the most and least benefical preprocessor and dataset combinations as
examples Figure 5.3 shows the individual similarty values for gold-standard TLs wiithout any
preprocessing, i.e. their baseline similarity compared with their similarity after preprocessing.
The plot shows that similarities prior and after preprocessing correlate and that even in our best
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Table 5.1.: Baseline similarities and mean changes in the similarity of elements linked by a gold-standard
TL for each of the preprocessors and evaluation datasets. For method preprocessors that produce more
than one element per artifact, the maximum element similarity is used.

Dronology-DD Dronology-RE ETour iTrust SMOS

Baseline 0.349 0.358 0.400 0.328 0.412
AllJavaDocInClass —0.017 —0.017 —-0.025 -0.014 —-0.033
ClassSkeleton —0.023 —0.027 —-0.022 -0.012 -0.086
JavaDocEnhancer -0.020 -0.018 -0.032 -0.007 -0.108
LLMClassSummary —0.004 0.005 —-0.018 0.005 —0.140
MethodJavadoc 0.005 -0.014 —0.030 0.028 —0.059
ToMethodContext 0.020 0.008 0.002 0.025 -0.015
ToMethods 0.017 0.000 —0.010 0.021 -0.017
1.0 1.0

0.8 0.8

> >
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Figure 5.3.: Similarity of elements linked a gold-standard TL without preprocessing (blue) and after
being transformed by the preprocessor referenced in the respective subcaption (red).

evluated configuration, the preprocessor decreased the similarity of some TLs, even those with
relatively high unpreprocessed similarity. In the worst case, the decrease is close to uniform
across the entire set of TLs. These observations, also hold true for the other preprocessor
and dataset combinations. Notably, as Table 5.1 shows, the method preprocessors generally
produce a smaller decrease or even an overall increase in similarity in contrast to the class level
preprocessors. This is largely due to the use of using the most similar method to represent the
gold-standard TL. Using the mean or average method similarity yields comparable results to
the class level preprocessors.

Rank Changes The change in similarity between requirements and linked class due to applying
a preprocessor to the latter is not the only way to quantify the effect this preprocessor has on
the set of retrieved TLs. For each source element, whether the correct target element will be
retrieved depends on both its similarity to the source element as well as that of all other target
elements. Specifically, a decrease in the similarity of the elements forming a gold-standard
TL maybe be acceptable or even beneficial if there is a similar or stronger decrease in the
similarity of unrelated elements.

One way to assess this is to examine how the use of different preprocessors effects the rank i.e.
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Figure 5.4.: Rank of elements linked a gold-standard in the retrieval list using the default cosine retrieval
strategy TL without preprocessing (blue) and after being transformed by the preprocessor referenced in
the respective subcaption (red).

the index of correct target elements in the ordered list of candidate target elements created
during retrieval. For each preprocessor and each dataset, the mean difference in this index
along with its value when using no preprocessor are show in Table 5.2. For most combinations
of preprocessor and dataset, in the mean, the preprocessor is detrimental to the correct target
element’s rank. For method preprocessors this can be traced back to the substantially larger
number of elements making up the set of potential target elements, but class level method
preprocessors are also largely detrimental. While there are benefical preprocessors for all
datasets except Dronology-DD, the negative effect of th detrimental preprocessors is generally
greater than that of beneficial preprocessors on the same dataset.

Examining two examples in Figure 5.4, the effect of preprocessing in both the worse and best
case configuration is not strictly positive or negative across all TLs in the dataset. It again, also
seems to be correlated with its rank without preprocesing, with TLs with low ranks seeing
their rank altered very little.

Table 5.2.: Baseline ranks and mean changes in rank of gold-standard target elements when using their
source element during retrieval for each of the preprocessors and evaluation datasets. For method
preprocessors that produce more than one element per artifact, the maximum element similarity is
used.

Dronology-DD Dronology-RE ETour iTrust SMOS

Baseline 60.8 65.7 12.3 45.1 32.1
AllJavaDocInClass 16.7 16.7 5.1 1.2 2.6
ClassSkeleton 10.9 12.6 1.5 0.3 2.8
JavaDocEnhancer 0.8 -04 2.3 -1.5 4.6
LLMClassSummary 3.8 1.2 -0.6 -3.2 -1.5
MethodJavadoc 434.6 471.1 170.5 375.7 114.2
ToMethodContext 505.0 553.8 185.5 369.6 102.8
ToMethods 546.2 598.0 225.4 378.1 97.7
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Result Intersections While different preprocessors may retrieve a comparable number of
gold-standard TLs, the specific TLs they recover may differ. For instance, a full class source
file containing a hard-coded message string may exhibit greater similarity to a requirement
referencing that string than a summary omitting it. Conversely, removing method bodies and
thus most of a source file’s content can drastically alter its similarity to a given requirement.
Alternatively, an LLM-generated summary capable of inferring the class’s intent despite
inaccurately named methods may yield higher similarity to the corresponding requirement
than the raw source code itself.

To examine these hypotheses, we analyze the sets of TLs retrieved by each preprocessor under
the default cosine similarity retrieval with k = 20.

_|ANB|

J(A.B) = |A U B|

(5.5)

The overlap between two retrieved sets can be quantified using the Jaccard index, which
measures the ratio of the intersection to the union of two sets A and B, as shown in Equation 5.5.
A Jaccard index of 1 indicates identical sets, meaning that both preprocessors recover exactly
the same TLs. This observation motivates the following GQM-Plan for the next stage of
analysis:

Goal 3: Demonstrate that different preprocessors lead to distinct sets of TLs being recovered
during retrieval
Question: How distinct are the sets of TLs recovered by each pair of preprocessors?
Metric: Jaccard index of different preprocessor’s result sets

Table 5.3.: Pairwise Jaccard index of the sets of TLs retrieved using different preprocessors, all using the
default retrieval strategy and k = 20 on the iTrust dataset

) < < X
X Q\‘b% > & é‘é& 2 {\&*
'(S{b'e CI.J\Q X9 &‘} %0 & QO
& <P ¥ & 3 S
& N o © F & ol
S Q Q)
& . $ & & K

Preprocessor < P 9 Y % W S
AllJavaDocInClass 0.47
ClassSkeleton 0.48 0.45
JavaDocEnhancer 0.69 0.42 0.48
LLMClassSummary 0.60 0.41 0.47 0.61
MethodJavadoc 0.31 0.28 0.31 0.32 0.30
ToMethodContext 0.30 0.28 0.31 0.30 0.29 0.53
ToMethods 0.30 0.29 0.32 0.30 0.30 0.55 0.82

Using the iTrust dataset as an example, Table 5.3 presents the pairwise similarity of TL sets
retrieved by each preprocessor, represented by the Jaccard index.

The corresponding results for the other datasets exhibit comparable values and trends and are
provided in Appendix A. At first glance, the sets of potential TLs produced by the different
retrieval configurations appear relatively distinct. However, given that only a small proportion
of the retrieved TLs are true positives, this impression may be misleading. For example, two
preprocessors might recover nearly identical true TLs but differ substantially in their false
positives, resulting in low overall similarity.

To account for this, we also examine the Jaccard indices computed over the subsets of true pos-
itive TLs, as shown in Table 5.4. This analysis confirms the concern: removing false positives
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prior to computing the metric markedly increases the index values. With a Jaccard index of
approximately 0.7, the sets of true TLs differ most between the ToMethodContextPreprocessor
and the ClassSkeletonPreprocessor. For most other pairs, similarity is even higher, reaching
up to 0.85 for the SingleArtifactPreprocessor and JavaDocEnhancerPreprocessor.

These high similarity scores indicate that the sets of true TLs recovered across preprocessors
overlap substantially. In other words, no individual preprocessor appears to retrieve a funda-
mentally different subset of true TLs.

Taken together, these findings suggest that combining multiple preprocessors—by passing the
union of their retrieved TLs to the classifier—would provide limited benefit.

Although the merged set would increase in size, its proportion of true positives would likely
decrease, leading to additional classifier invocations for filtering false positives. Hence, this ap-
proach would incur additional computational cost without yielding a meaningful improvement
in recall.

Table 5.4.: Pairwise Jaccard index of the sets of true TLs retrieved using different preprocessors, all
using the default retrieval strategy and k = 20 on the iTrust dataset
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Preprocessor < P 9 A N4 W <L
AllJavaDocInClass 0.83
ClassSkeleton 0.83 0.85
JavaDocEnhancer 0.88 0.77 0.82
LLMClassSummary 0.81 0.76 0.75 0.78
MethodJavadoc 0.74 0.70 0.71 0.73 0.70
ToMethodContext 0.78 0.76 0.78 0.75 0.73 0.85
ToMethods 0.79 0.76 0.78 0.76 0.74 0.87 0.98

5.3.2.2. Retrieval Configurations

The ability to freely chose the preprocessor, number of elements to retrieve per source element
as well as the retrieval strategy and its parameters for each dataset induces a large space of
potential configuration that can be evaluated. To avoid overfitting or results to a specific
dataset, we evaluate the results of each of the preprocessors we have implemented on every
dataset described in chapter 4. We chose k = 20 both because it is a value that is both large
enough to capture a significant fraction of the gold-standard links of each project, but is not so
large to make the configuration unviable and because it enables a straightforward comparison
of our results with those of Fuchf} et al. For this section we also limit the discussion to the
configurations that yield the highest F, score for each dataset.

Examining these for the different datasets shows a clear trend: Dronology-RE and SMOS
benefit most from class level preprocessors, i.e. preprocessor that produce exactly one element
to represent each artifact.

Dronology-RE  For Dronology-RE, the top ten configurations all utilize either SingleArtifact-

Peprocessor, JavaDocEnhancerPreprocessor or LLMClassSummary. These configurations also
all use the context aware retrieval strategy, though they differ in the weights used. Barring
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Table 5.5.: Dronology-RE — Top 10 Configurations

Preprocessor Wmain  Wealllers  Weallees P R F1 F2
1 SingleArtifact 0.4 0.3 0.3 0.131 0.443 0.203 0.3
2 SingleArtifact 0.2 04 0.4 0.129 0.436 0.2 0.296
3 JavaDocEnhancer 0.2 0.4 0.4 0.129 0434 0.199 0.295
4 LLMClassSummary 0.6 0.2 0.2 0.128 0.433 0.198 0.293
5 SingleArtifact 0.6 0.2 0.2 0.128 0.433 0.198 0.293
6 LLMClassSummary 0.2 0.4 0.4 0.127 0.429 0.196 0.291
7 LLMClassSummary 0.4 0.3 0.3 0.127 0.429 0.196 0.291
8 SingleArtifact 0.8 0.1 0.1 0.127 0.429 0.196 0.291
9 JavaDocEnhancer 0.4 0.3 0.3 0.126 0.424 0.194 0.288
10 SingleArtifact 0.8 0 0.2 0.125 0.422 0.193 0.286

Table 5.6.: eTour — Top 10 Configurations

Preprocessor Wmain  Wealllers  Weallees P R F1 F2
1 MethodJavadoc 0.2 0.4 0.4 0.329 0.675 0.443 0.558
2 MethodJavadoc 04 0.3 0.3 0.325 0.675 0.438 0.555
3 ToMethodContext 0.6 0.2 0.2 0.329 0.662 0.439 0.55
4 ToMethodContext 0.2 04 04 0.331 0.659 0.441 0.55
5 ToMethodContext 0.4 0.3 0.3 0.33  0.659 0.439 0.549
6 ToMethodContext 0.8 0.1 0.1 0.323 0.662 0.434 0.547
7 ToMethodContext 1 0 0 032 0.659 0.43 0.544
8 MethodJavadoc 0.6 0.2 0.2 0.309 0.659 0.421 0.538
9 LLMClassSummary 0.6 0.2 0.2 0.222 0.834 0.35 0.537
10 SingleArtifact 0.4 0.3 0.3 0.222 0.834 0.35 0.537

the pure cosine similarity of the query and main candidate element, among the top ten con-
figurations, the weights do not seem to play a major role in the accuracy of the recovered
TLs.

SMOS For SMOS, the top ten are only made up by LLMSummaryPreprocesor and ClassSkele-
tonPreprocessor. Unlike Dronlogy-DD, there is clear trend of the former being superior to the
latter. Both precision and recall are unaffected by the the strategy configuration.

Dronology-DD  For the remaining three datasets, method level preprocessor are part of the ma-
jority of top performing configurations: For Dronology-DD, the MethodJavaDocPreprocessor
combined with each of of the evaluated retrieval strategies are part of the top ten preprocessor,
each producing very similar but distinct results. Five of these six take up the five topmost
spots, with configurations using SingleArtifactPreprocesor, ToMethodContextPreprocessor
and JavaDocEnhancerPreprocessor slightly underperforming them. Taking a coser look at the
MethoddJvaDocPrepreocessor configurations, the more equal weight retrieval strategies seem
to outperform those favoring either caller and calless or the main element, but with a different
of less than 4% in F, scores between the best and worst performaing configurations, it’s not
possible to draw any larger conclusion about the optimal weight choices.
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Table 5.7.: SMOS — Top 10 Retrieval Configurations

Preprocessor Wmain  Wealllers  Weallees P R F1 F2
1 LLMClassSummary 0.2 0.4 0.4 0.339 0.435 0.381 0.411
2 LLMClassSummary 0.4 0.3 0.3 0.339 0435 0.381 0.411
3 LLMClassSummary 0.6 0 0.4 0.339 0.435 0.381 0.411
4 LLMClassSummary 0.6 0.2 0.2 0.339 0.435 0.381 0.411
5 LLMClassSummary 0.8 0 0.2 0.339 0.435 0.381 0.411
6 LLMClassSummary 0.8 0.1 0.1 0.339 0.435 0.381 0.411
7 LLMClassSummary 1 0 0 0.339 0.435 0.381 0.411
8 ClassSkeleton 0.2 0.4 0.4 0.323 0.415 0.363 0.393
9 ClassSkeleton 0.4 0.3 0.3 0.323 0.415 0.363 0.393
10 ClassSkeleton 0.6 0 0.4 0.323 0.415 0.363 0.393
Table 5.8.: Dronology-DD - Top 10 Retrieval Configurations
Preprocessor Wmain  Wealllers  Weallees P R F1 F2
1  MethodJavadoc 0.4 0.3 0.3 0.108 0.415 0.171 0.265
2 MethodJavadoc 0.6 0.2 0.2 0.107 0.417 0.171 0.264
3 MethodJavadoc 0.8 0.1 0.1 0.105 0.417 0.168 0.262
4 MethodJavadoc 0.2 0.4 0.4 0.107 0.411 0.17 0.262
5 MethodJavadoc 1 0 0 0.104 0.413 0.167 0.259
6 SingleArtifact 0.2 0.4 0.4 0.087 0.508 0.148 0.258
7 ToMethodContext 0.2 0.4 0.4 0.104 0.402 0.165 0.256
8 MethodJavadoc 0.8 0 0.2 0.103 0.406 0.164 0.256
9 JavaDocEnhancer 0.2 0.4 0.4 0.086 0.503 0.147 0.255
10 SingleArtifact 0.4 0.3 0.3 0.086 0.503 0.147 0.255

eTour For eTour, the list of top preprocessor is slightly more mixed, though still heavily
weighted towards method level preprocessors. MethodJavaDocPreprocessor configurations
take up ranks one,two and eight with those containing ToMethodContextPeprocessor make up
ranks three to seven. Ranks nine and ten are LLMClassSummaryPreprocessor and SingleArti-
factPreprocessor configuratinons, both producing results with the exact same precision and
recall values.

5.3.3. Comparison with LiSSA

We compare our optimal configurations per dataset with the those Fuchf} et. al present using
the three original preprocessors and a mock classifier, i.e. one that will classify every TL
produces by the retrieval as a true TL.

As shown in 5.10 none of our configurations can strictly outperform the preexisting preproces-
sors with purely cosine similarity based retrieval. On Dronology-DD, our configurations are
even strictly worse than the ChunkingPreprocessor. For the other datasets, the comparison is
more mixed: For eTour, iTrust and Dronology-RE our respective best configurations yields a
higher F, score than any of the reference configurations. Unfortunately, for both eTour and
iTrust this increase is the result of significantly increased precision outweighing a decrease
in recall. For Dronlogy-DD the metrics precision and recall in between those produced by
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Table 5.9.: iTrust — Top 10 Retrieval Configurations

Preprocessor Wmain  Wealllers  Weallees P R F1 F2
1  ToMethods 0.4 0.3 0.3 0.096 0.535 0.163 0.279
2 ToMethodContext 0.6 0.2 0.2 0.097 0.528 0.164 0.279
3  ToMethods 0.2 0.4 04 0.096 0.531 0.163 0.279
4 ToMethodContext 0.8 0.1 0.1 0.097 0.528 0.163 0.279
5 ToMethodContext 0.8 0 0.2 0.096 0.528 0.163 0.279
6 ToMethodContext 1 0 0 0.096 0.528 0.163 0.278
7 ToMethodContext 0.4 0.3 0.3 0.097 0.524 0.163 0.278
8 ToMethods 0.6 0.2 0.2 0.096 0.531 0.162 0.278
9 ToMethodContext 0.6 0 0.4 0.096 0.524 0.162 0.277
10 ToMethods 1 0 0 0.095 0.531 0.161 0.277

Table 5.10.: Comparison of our best configuration retrieval setup against LiSSA’s default cosine similarity
retrieval and original preprocessors.

Dataset Configuration Precision Recall F;-Score F;-Score
NONE 0.325 0.418 0.366 0.395

SMOS CHUNK(200) 0.247 0.546  0.340 0.439
METHOD 0.327 0.541 0.408 0.479

Oursopr 0.339 0.435 0.381 0.411

NONE 0.216 0.815 0.342 0.525

Tour CHUNK(200) 0.091 0.815 0.164 0.315
METHOD 0.073 0.597 0.130 0.245

Oursppr 0.329 0.675 0.443 0.558

NONE 0.058 0.531 0.105 0.202

iTrust CHUNK(200) 0.066 0.563 0.119 0.225
METHOD 0.063 0.598 0.114 0.221

Oursppr 0.096 0.535 0.163 0.279

NONE 0.128 0.420 0.196 0.288

Dronolosv-RE CHUNK(ZOO) 0.150 0.331 0.206 0.266
&Y METHOD 0.132 0.282  0.180 0.230
Oursppr 0.131 0.443 0.203 0.300

NONE 0.085 0.482 0.144 0.249
Dronolosv-DD- CHUNK(200) 0.119 0.424 0.186 0.281
&Y METHOD 0.101 0.369  0.159 0.241
Oursppr 0.108 0.415 0.171 0.265

no preprocessing and chunking, leading to a slightly greater F, score. For SMOS, our best
configuration has the highest precision value, but with substantially lower recall value, has a
lower than F, score than the MethodPreprocessor.
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5.3.4. Conclusion

In this chapter, we have explored three different approaches to improving LiSSA’s retrieval
performance:

« Transforming artifacts into alternative representations
« Subdividing artifacts into components prior to transforming these components

« Combining the similarity between the query and both the candidate target and its
neighborhood into a single metric

As part of each of these approaches, we have either incorporated or deliberately excluded
aspects of the original artifacts’ context. Our evaluation shows that all of these approaches can
be beneficial to accurate traceability link recovery when used and combined appropriately.
There is no “silver bullet” preprocessor among those we have implemented—none can reliably
improve retrieval performance across all projects. Instead, the preprocessing strategy should
be tailored to the specific project and the level of abstraction at which its requirements describe
the software Similarly, none of the parameterizations of our context-aware retrieval strategy
evaluated strictly outperforms all others. The only consistent trend regarding synergies
between retrieval weights and the preprocessors used is that—unsurprisingly—strategies
placing greater emphasis on the main element’s similarity appear to be slightly better suited
for method-level preprocessors than for class-level ones. Considering our results in absolute
terms rather than relative to LiSSA, it is clear that our context-aware preprocessing and
retrieval approaches still fall short of the quality required for practical, real-world use. On
average across the datasets, our best configurations achieve, for k = 20, a precision of 0.223
and a recall of 0.522. In other words, they capture just over half of the traceability links present
in the gold standard for these projects, and only about one in five recovered links is correct.
Depending on the preprocessors used—and particularly for method-level preprocessors that
rely on LLMs to produce their outputs—the modest gains achieved by some of our evaluation
configurations may not justify the large number of LLM inferences required.
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6. Agentic Classification

In this chapter, we present agentic approaches to TL recovery, their implementation, and their
evaluation on the datasets described in chapter 4.

In the previous chapter, we have explored different ways to transform source code artifacts to
arrive at an embedding more similar to those of the respective requirement.

None of the combinations of preprocessors and retrieval strategies produced results suitable
for real-world use. Since the classifier is only presented with the elements that the retrieval
has identified as candidates, poor retrieval performance acts as a limit for the classifier’s
performance.

As described in Section 2.3, skipping the retrieval and simply prompting one of LiSSA’s LLM-
based classifiers with every pair of requirement and class in the Cartesian product of the two
sets would lead to a an unfeasibly large number of LLM classifications being necessary, making
the technique both slow and expensive.

A different approach is needed. As outlined in chapter 1 one of the central challenges of
leveraging source code context is the large, but still limited context window of even SOTA
LLMs.

The evaluation of the different retrieval configurations also affirms that, at least when using
textual similarity as a heuristic, it is not possible to find a fixed "radius" of context that is
relevant to assess whether e.g. a class is linked to a requirement by a TL. Instead, which
neighbor elements should be taken into account depends on the given input project, project as
well as on the specific requirement and candidates classes examined.

6.1. Agents

One of the central advantages of modern machine-learning approaches—particularly deep
learning—is their capacity to automatically learn task-relevant representations and strategies
for solving problems directly from data, rather than relying on developers to predefine these
features or decision rules [6]. Training a dedicated machine-learning model for TLR is beyond
the scope of this thesis and, as outlined in chapter 1, is further constrained in practice by the
need for retraining on project-specific TLs.

However, we can leverage the capabilities of large language models (LLMs)—and the represen-
tations and general knowledge they have acquired during pretraining—to approach the TLR
task in a zero-shot manner.

This forms the foundation of the classification module in LiSSA, but we aim to expand the
responsibilities of the LLM to also include the retrieval of candidate classes. Since prompting
an LLM with the full project source is infeasible, the most straightforward way to involve an
LLM in retrieval would be to prompt it with a requirement and the full list of class names,
asking it to return those it considers linked to the requirement through a TL. Without any
additional information, we can assume that the LLM will primarily rely on term matching
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6. Agentic Classification

between requirement and class names, making broad assumptions about their content and
potentially hallucinating aspects of the software to satisfy the request.

One way to improve the accuracy of TLs recovered by the LLM, is to provide it with richer
information about the project and the classes it operates on. In this, we can resolve the conflict
between the need to supply more context and the practical limitations imposed by the number
of classes and the LLM’s restricted input size by adopt lazy information access. Instead of
making all available information part of the initial prompt, we limit the prompt to only the
most basic entry point consisting of task, requirement and class names.

Any additional details are only provided only when the LLM explicitly requests them—that is,
when they become relevant during its reasoning. The decision whether a detail has becomes
relevant or not is left to the LLM, as is the exact approach it takes to recovering the TLs.

The framework only controls the LLM insofar as it defines the initial prompt, including the set
of available tools and provides the requested information on demand to the LLM. To avoid
the LLM exploring substantial parts of the project’s source code or getting stuck in a loop, the
framework will stop the process after a fixed number of iterations.

This use of an LLM, granting it access to functions it can call and letting it plan and execute
a plan on its own across multiple iterations, but limiting interaction with a user to a single
exchange of messages is usually described as agentic AL

6.1.1. Agentic Al

In this subsection, we outline the details of how our agentic approach can recover TLs. The full
process is shown in Figure 6.1 in the form of a UML activity diagram. The different required
actions and decisions are divided between the application and the LLM. We begin by sending
an initial message to the LLM to establish the context in which the agent is going to act
autonomously. Most importantly, this includes its task, the project’s package structure, and
the requirement for which it is expected to find related classes. It is also provided with a list of
tools, their descriptions, and examples of how to invoke them. We then expect the LLM to
determine whether it can already identify the related classes. If this is the case, it is expected
to output this list and trigger the end of the execution. Generally, the LLM will not determine
related classes solely based on the requirement and the class names. Instead, it is expected
to invoke one or more of the tools it has been provided with. In both cases, the decision
whether to end the execution or call tools is communicated to the application via the LLM’s
response. The application will then either extract the related classes from the LLM’s messages
and return the induced TLs if a maximum number of iterations has been reached or the agent
has triggered its exit, or it will execute the desired tools. The results of each tool invocation
are then concatenated and, together with the full set of previous messages exchanged between
the application and the LLM, sent back to the LLM.

As shown in Prompt 1, in the initial message sent to the LLM, the agent is presented with a
short explanation of what constitutes a TL is and is informed that its task is to recover TLs
for a specific requirement. It is also provided with a list of the available tools. As an entry
point, the class and package hierarchy of the project is printed as an indented list of class
and package names. Figure 6.2 shows an abridged version of the agent’s execution from its
"view" based on this prompt, including tool use and the output of the final classes the agent
has identified as related to the requirement.
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Send Final Message

List new related classes

Trigger exit }—>

All related
classes
found?

Reason

List new related classes }—>

Send Response

List tool invocations

Send Extract Extract
conversation related classes related classes

Send Append results Save
L . Execute tools .
initial message to conversation conversation

Convert to
. ®<7 Return TLs TLs

ax. iterations
reached?

Figure 6.1.: Activity diagram showing the actions taken by the application (green) and the conceptual
steps the LLM is prompted to perform
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The most likely candidate...
.first | need to verify that...

<getSourceCode(PaperHandler)>
<getCallers(Paper)>

\ 4

18

LLM

PaperHandler is unrelated, but
FavoritesManager might be related. |
will verify that it manages a collection
5, of papers

<answer(A, Does this class act as
repository of Paper objects?)>

— —

Because of ...

[FavoriteManager, User,
PersistenceUtil ] are closely related
to requirement R-12.

<EXIT>

Y

Figure 6.2.: Overview diagram of the iterative exchange of messages between the application and the
LLM forming the execution of the agent.

Messages sent by the LLM are shown with a light gray background, and messages sent by the application
with a light green background.
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Prompt 1: Initial Agent Prompt

A traceability link (TL) is an implicit connection between a requirement and - in an
object oriented programming paradigm - the classes in the project source code which
implement the behavior specified in the requirement.

While there are exceptions, a single requirement is typically implemented by multiple
classes and thus multiple TLs exist for each requirement.

However, this depends on the granularity of the requirement: Overarching descriptions
of the system may be linked to many classes, while requirements proscribing specific
values or algorithms are commonly linked to only a single or very few classes.

Your task is to recover the traceability links for this software project written in java.

The requirement you are supposed to find TLs for is:

getSourceCode: Retrieves the source code of a class. e.g. "getSourceCode(MyClass)"

To help you accomplish the task you have access to the following tools you
can use to examine the project source code:

{.}

To use a tool justify its use and end your answer with its invocation like this:
<someToolsName(Example.java)>

You can also use multiple tools in a single answer like this: <someTool-
sName(Example.java)>, <someToolsName(SomeOtherClass.java)>

To start with, here is the projects package structure

£

A good first step is usually to determine classes that are likely related to the requirement,
use tools to take a closer look then verify the assumptions you made. Don’t be afraid
to use additional tools if you find you have made the wrong initial guesses or want
to investigate something about the project. If you are convinced you have found the
correct TLs, justify the choices you made and output the classes connected to the
requirement like this: [<ClassA>, <ClassF>, <ClassC>] and - if there is no more tool
you want to use - finish your answer with <EXIT>

Let’s think step by step.

6.1.1.1. Tools

Prompt 2: Source Code Tool )
getSourceCode: Retrieves the source code of a class. e.g. "getSourceCode(MyClass)"

Internally each tool is implemented as a stateless class implementing the AgentTool interface.
Facing the LLM, each provides a name, which is used to invoke it, a short description including
its expected paramters and output and an example invocation. For an example of how this is
commmunicated to the agent see Prompt 1 The agent can trigger tool executions by including
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the tool’s name and the desired parameters in its response. The framework then determines
which AgentTool implementation to invoke and executes it accordingly. In accordance with
its interface, each tool produces a string as output, which is concatenated with the invocation
string that generated it and subsequently returned to the LLM. The agent is explicitly informed
that multiple tool invocations can be issued within a single response. If a response contains
several invocations, their individual outputs are concatenated and sent back to the agent as a
single message.

Because an LLM may hallucinate and attempt to call imagined tools or invoke tools on elements
that do not exist or are outside their designed scope, the framework must also handle invalid
tool invocations. Each tool implementation is responsible for generating a descriptive error
message, which is communicated to the LLM in the same manner as a valid output.

Tools generally access the code context model. Since TLR is a static analysis task, and the
classification stage does not require modification of the model, tools only read values from the
code context model rather than altering them. To enable the agent to effectively explore the
code base, it can be equipped with the following tools:

Source Code The most direct way to determine whether a given class implements a require-
ment is to inspect its source code. Accordingly, the first tool provided to the agent returns the
source code of a class corresponding to the supplied identifier.

Callers and Callees Beyond direct access to source code, it is beneficial to provide tools that
aggregate information derivable from multiple source code accesses. This allows the agent to
focus on solving the TLR task rather than manually analyzing potentially large quantities of
source code.

Following the assumptions established in chapter 4 and chapter 5, the most relevant rela-
tionships between classes are those defined by inheritance and method-level caller—callee
connections. Both relationships are therefore made accessible to the agent through dedicated
tools.

Finder Because the agent cannot rely on a prior retrieval stage to supply candidate elements,
it must independently identify relevant entry points for investigating relationships between
source code artifacts. One possible starting point is the project’s package structure, which the
agent is initially provided with. However, this approach may bias the agent toward selecting
classes whose names share lexical similarities with requirement phrases.

While the agent could, in principle, examine classes manually to locate relevant identifiers,
this is impractical given the size of typical code bases and the limited number of iterations
available. To address this, the agent is equipped with a Finder tool, which allows it to search
for a string across the entire code base in a single operation, replacing numerous exploratory
iterations with one efficient query. Given a search string, the tool returns the fully qualified
names of all classes whose source code contains the input string. To improve robustness and
mitigate inconsistent capitalization, both the search string and source code are lowercased
before matching.
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Retriever While the Finder enables efficient keyword-based searches, it still requires the
agent to provide an exact search term—apart from case normalization—and to anticipate which
terms may be relevant. If the exact string is absent, no results will be produced and the
invocation becomes uninformative.

To avoid forcing the agent to “guess” relevant terms, the framework reuses the textual similar-
ity—-based retrieval mechanism from LiSSA’s retrieval stage. The Retriever tool implements a
top-k similarity search interface: given a query string and a value of k, it returns the k most
similar project elements. Unlike the Finder, the Retriever also searches across both source
code and requirements. Presenting the agent with similar requirements can aid in identifying
or rejecting false positives. For requirements, the tool returns their full text; for classes, only
fully qualified names are provided to prevent adding lengthy or potentially misleading code
fragments to the dialogue.

Answerer If the LLM is regarded as an analogue to a human analyst performing traceability
link recovery, each tool invocation can be interpreted as an attempt to answer a specific
question about the code base. For example, the agent may access a class’s source code to verify
whether a particular algorithm is implemented within it. While a single line of code might
suffice to answer such a question, retrieving the entire class introduces a substantial amount
of irrelevant content, including unrelated instructions and potentially misleading comments.
More targeted tools, such as the Callers and Callees, already help mitigate this issue by providing
concise, relationship-focused information. Nevertheless, the diversity of possible questions
makes it infeasible to predefine a specialized tool for each. To address this limitation, the
Answerer tool enables the agent to query any class in the project using natural language.
Given a class identifier and a natural language question, the tool resolves the identifier to its
corresponding source code and then prompts an LLM to generate an answer based on that
code. This design allows the agent to perform fine-grained reasoning about specific aspects of
the code without directly processing large code fragments in context.

6.1.2. Alternative Classifiers

The agentic TLR approach, as described so far, has two main drawbacks compared to the
existing LLM-based LiSSA classifiers. The first is the rapidly growing size of the input provided
to the LLM at each step.

In LiSSA, the LLM used as a zero-shot classifier is prompted only with a short description of
its task and, at most, a full requirement and the complete source code of a single class.

In our implementation of a TLR agent, the input is generally much larger. Theoretically, it
might contain the full source code of all classes, interspersed with the text expressing the
LLM’s reasoning and tool invocations.

In practice, the agent does not access—i.e., add to its context window—a substantial fraction of
the project’s classes. However, since it is prompted to find all TLs for a given input requirement,
it will typically access multiple classes, some of which it will reject as candidates but must still
retain in the input.

Large inputs—especially those consisting largely of text irrelevant to the task—degrade the
quality of the LLM’s reasoning [8, 20]. Large amounts of irrelevant text are, however, unavoid-
able unless the agent consistently selects both the correct and minimal combination of tools
and arguments necessary to verify the existence of TLs.

We implemented a classifier that prompts an LLM with an explanation of its task, a requirement,
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and the project’s package structure. But instead of providing it with a set of tools and asking it
to autonomously determine the related classes, the model is instructed to generate a set of
questions about the project’s classes. It is told that these questions will be answered in the
subsequent response and that it must make its final decision based solely on those answers,
without performing any additional function calls.

Essentially, this implementation is almost equivalent to providing only the Answerer compo-
nent and enforcing a two-message maximum exchange length.

In our main agentic implementation outlined in this chapter, all agents were free to make the
final determination of which classes were linked to a requirement once all invoked tools had
been executed and their results received.

Unfortunately, since LLMs are trained to be helpful—which in practice often means agree-
able—the LiSSA classifiers tend to produce a large number of false positives. One way to
mitigate this is by enforcing that a classification logically follows from statements or assump-
tions the model has explicitly expressed.

A key challenge with this approach, however, is that LLMs struggle with evaluating logical
expressions or even simple formal proofs, whereas evaluating a boolean formula is trivial in
most programming languages. For agent-based TL classification, this means that an agent may
generate correct reasoning to justify a classification but still deduce the wrong verdict, thereby
misclassifying the TL.

To address both of these issues, we implemented a final, more constrained agent. Instead
of being tasked with solving the TLR task directly, this agent is prompted only to produce
a boolean formula describing different potential sets of TLs. Each variable in the formula
corresponds to a statement about a class in the project’s source code that can be evaluated as
either true or false. These individual assumptions are connected by logical AND operators, so
each clause of the formula represents a potential constellation of TLs, each linking the input
requirement to one or more classes, given that all component statements hold true.

After the LLM produces the formula, it is no longer involved in the TLR process. The frame-
work parses the logical expression and uses the aforementioned Answerer to evaluate the truth
value of each clause. If the formula evaluates to true, the corresponding TLs are returned; if it
evaluates to false, no links are produced.

As with the other agents, we cannot assume that the LLM will correctly infer the complete
set of candidate classes from the project structure—and because it cannot revise the candidate
set after its initial response—the LLM is prompted not to produce a single conjunction of
statements but rather a list of such terms, each representing a distinct potential set of TLs.

However, initial evaluation showed that in both implementations the LLM generally failed to
accurately predict related classes and frequently asked questions that were too broad to be
conclusively answered, resulting in very few recovered TLs. For this reason, we do not evaluate
them in the following section and focus on our less constrained, autonomous implementation
of agentic TLR.

6.2. Evaluation

Goal 4 Improve the accuracy of TLR by using an agentic framework.
Question 4.1 How many of the TLs in each of the datasets are recovered by our agents?
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Metric Recall

Question 4.2 How many of the TLs recovered by our agents are true TLs?
Metric Precision

The central question guiding our evaluation is how effectively the agents fulfill their goal—namely,
how well the different agents recover TLs.

As with the evaluation of preprocessors and retrieval strategies, the most important metrics
for assessing the agentic classifier’s performance are precision and recall. Since the agentic
classifier directly outputs its results without any subsequent filtering stage, recall is not inher-
ently more important than precision. However, recall should still be prioritized over precision,
as it is generally easier for a human user to filter out false positives than to manually recover
TLs that our technique has missed.

Goal 5 Investigate how iterative agents arrive at their results.
Question 5.1 Which tools are used the agents?
Metric Number of invocations per tool.

Question 5.2 How many iterations do agents take to arrive at their results
Metric Number of iterations

Question 5.3 What is the relationship between the set of output related classes and the
set of classes having been used as tool arguments?
Metric Number of output classes in the set of tool argument classes, number of
output classes not included

While LLMs can generalize well to unseen tasks, most are fine-tuned for specific use cases,
differ in their capabilities and carry biases towards specific outputs. Consequently, not all LLMs
will produce the same reasoning processes or recover the same TLs. We do not investigate
how an individual LLM’s architecture or training data influence whether the correct TLs are
recovered by our agents. However, we can move beyond viewing the agents as black-box
classifiers by analyzing the dialogue between the LLM and the surrounding framework.

For false negatives, we investigate whether the correct classes are never considered as candi-
dates, or whether the LLM erroneously rejects them after evaluation.

For the iterative agents, we examine the set of classes the agent engages with—i.e., those on
which it uses tools—and compare this set to both the gold standard classes and the final classes
returned at the end of execution.

Finally, we compare the sets of recovered TLs between the different agent configurations,
as well as with those recovered by our retrieval configurations. This latter comparison is
particularly interesting, since agents represent a superficially distinct approach from traditional
IR-based methods, yet LLM-based assessments of relatedness and embedding similarity may
still be correlated [24].

Goal Compare the output of agentic TLR with that of context aware IR-based retrieval.

Question How does the quality of the recovered TLs by agents differ from those recovered
using LiSSA’s retrieval stage.

Metric Precision, Recall,F;- and F»-Scores
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Question How similar are the sets of TLs recovered by agents to those produced by the
retrieval stage?
Metric Jaccard index

6.2.1. Parameters

At the core of each agent is an LLM responsible for guiding both the retrieval and the assessment
of classes that may form a TL with the input requirement. For our evaluation, the LLM used in
this role is OpenAI’s GPT-40 mini.

As in Section 5.3, we also use GPT-40 mini to answer questions about the source code of classes
the Answerer tool is used on and calculate embeddings for the Retriever tool using OpenAI’s
text-embedding-3-large embedding model.

The agent is stopped after a maximum of 31 iterations, allowing for 30 sets of tool invocations
and responses.

Since locating classes related to a requirement based on the project’s structure requires a more
project-wide perspective—extrapolating from retrieved information and reasoning about which
classes are most relevant—we consider it more cognitively demanding than the bottom-up
summarization and documentation enhancement tasks described in the previous chapter.

To account for this increased complexity and investigate whether a more capable LLM will
produce substantially better results, we also evaluate our agents using GPT-5 mini as the the
agent’s main LLM and compare the performance of the two configurations directly.

Configurations Besides the number of iterations it is allowed to take which is equivalent to
the number of times it can invoke tools and receive the results, the main way the agent can be
configured is via the set of tools available to it.

On each of the datasets we executed the agent with different tool sets, specifically:

« The full set of tools
« All tools except the SourceCode tool

The SourceCode tool, Finder and Retriever

Only the SourceCode tool

« No tools

6.2.2. Results

As prescribed by our first GQOM plan, we begin by reporting the results of executing our agent
on each of the evaluation datasets, using the standard metrics of precision, recall and the
combined F;- and F,-Scores to assess the quality of our agent’s results.

Across all datasets, the agent fails to determine the classes related to the input requirement
and thus does not recover a majority of the TLs existing in these projects, resulting in low
recall values between 0.287 on iTrust and 0.099 on Dronology-RE. The difference between the
maximum precision of 0.726 for SMOS and the minium precision of 0.152 for Dronology-DD
is greater than that between the maximum and minimum recall values.

This can be traced back to the much greater number of TLs in relation to its number of
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Figure 6.3.: Number of tool uses per dataset and tool, divided by the number of requirements (equivalent
to the number of agents executions) of each project.
Datasets: Dronology-DD (blue), Dronology-RE (orange), eTour (green), iTrust (black), SMOS (purple)
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Figure 6.4.: Histogram of the length of the message exchanges between LLM and application for agent
execution of all of Dronology-DD’s requirements. For each length three values are shown: Total number
of exchanges (blue), number of exchanges returning no correct TLs and number of exchanges returning
no related classes.

requirements and classes in SMOS compared to the other projects (see Table 4.2. Taking the
next highest precision value of 0.387 on eTour in SMOS’S stead leads to an interval of precision
values of similar size as that of recall values.

ToolUse Moving on to investigating how the agent arrives these results we first examine the
number and type of tools used. Figure 6.3 shows this as the average number of uses per agent
execution of each tool for each of the datasets.

Among the six tools available to it, the agent heavily favors the Finder and SourceCode tool,
i.e. the tools allowing it to find classes containing a substring and the one returning the full
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Table 6.1.: The number of uses of the Finder tool per dataset including the number of successful uses
(uses where at least one class containing the query string was found), failures and number of source
code accesses targeting classes that have been part of a Finder results list.

Dataset Total Finds Failures Successes Subsequent Accesses
Dronology-DD 1255 921 334 203
Dronology-RE 574 449 125 84
ETour 307 248 59 65
iTrust 491 383 108 49
SMOS 100 68 32 42

source code of the referenced class. On all datasets, with the exception of SMOS, on average
the Summarizer tool is only used once per agent execution. Answerer, Caller and Callees and
Retriever are only used an even lower, negligable number of times.

Focusing on the two most frequently tools, we can see only two minor differences in the
number of per requirement tool uses between datasets. On Dronology-DD, Dronlogy-RE and
eTour, the Finder tool is used more frequently than the SourceCode tool, while the inverse is
true for SMOS and iTrust.

Adding up uses of the different tools, the agent largely uses a similar number of tools per
requirement when executed on each of the projects. The one exception from this is SMOS
executed on which the agent uses substantially fewer tools.

It seems likely that the average number of tool uses is correlated with the average number of
messages sent by the LLMs. Figure 6.5 shows the distribution of the exchange length for the
executions on each dataset. While the average exchange lengths across datasets are similar,
they differ in distribution. The box plot also shows a likely cause for SMOS low number of
tool uses, not only is it’s distribution the one with the lowest spread overall and lowest third
quartile, it also lacks an strong outlier reaching the maximum message count.

Different tools differ not only in their results and implementation, but also in the arguments
they expect and how they handle them. Tools that access a class’s source code, its callers
and callees, summaries, or that answer a question, all require a valid class identifier as their
argument. The Retriever tool, in contrast, will return a valid, although potentially irrelevant,
result for any input string. Barring substantial errors such as an LLM hallucinating classes
that do not exist in the project, we can expect the LLM to invoke these tools only with valid
arguments.

This is not the case for the Finder tool. We expect this tool to be used with query strings
that frequently return no classes as the agent explores the project’s source. When combined
with the SourceCode tool, such uses likely constitute the majority of its invocations. Table 6.1
summarizes the number of Finder calls aggregated from a full execution of the agent on each
dataset. It confirms this assumption, showing that between 68 % and 80 % of Finder uses yield
no results. However, this does not mean that the tool is not valuable to the agent or central to
the way it approaches the task. As indicated by the large number of subsequent source code
accesses targeting classes that previously appeared in a Finder result, the agent seems to use
this tool to first locate potentially relevant classes before retrieving their full source code.
Analogous to the similarity between the average number of tool uses and the number of
messages per exchange, the number of classes returned by the agent is also highly consistent
across datasets.

Despite differences in the total number of classes per project and the varying levels of abstrac-
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Figure 6.5.: Box plot of the number of messages the LLM sends to the application when execution the
agent with all implemented tools on each of the datasets

tion in their requirements, the agent tends to return on average about three related classes
per requirement. This may be a consequence of the example provided in the prompt, which
illustrates an expected output consisting of three example classes.

To discuss the number of messages and their relation to accurate TLR, we again use our results
on Dronology-DD as an example. Figure 6.4 shows a histogram of the number of messages
exchanged during the executions of our agent on Dronology-DD, distinguishing between
executions that produced at least one correct TL, no correct TLs, and those that did not return
any TLs. Notably, 23 out of 211 executions end after only two messages have been exchanged,
meaning the agent receives its task and directly outputs a list of related classes, triggering the
exit condition in its response. In many of these cases, the agent lists only classes that are not
linked to the requirement by a TL, and in some instances, the LLM appears to misunderstand
its task and immediately terminates. However, a substantially larger portion of such short
exchanges still produce at least one accurate TL. The majority of related classes, however, are
returned only after a longer exchange of messages. There is no clear connection between the
number of exchanged messages and whether the execution returns at least one accurate TL.

Finally, we compare the agent’s performance on each dataset when provided with the different
sets of tools described in Paragraph 6.2.1. The resulting precision, recall, and combined F;-
and F,-scores shown in Table 6.3 suggest that the ability to use tools to search or query the
project’s source code, beyond directly accessing it through the SourceCode tool, is not beneficial.
Providing the agent with no tools, or only the SourceCode tool, yields the highest precision and
recall values. The one exception is again SMOS, likely due to the large number of TLs present
in that dataset. In general, the availability of additional tools appears to decrease recall while
not reliably increasing precision. Across all datasets, the differences between the maximum
and minimum precision and recall values are small, not exceeding 0.075 (SMOS) and 0.064
(Dronology-RE).
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Table 6.2.: Results across datasets for the agent with the full tool set

Dataset Exec. Rel. Classes Precision Recall F;-Score F,-Score
Dronology—DD 211 665 0.152 0.140 0.146 0.142
Dronology-RE 99 344 0.169 0.099 0.125 0.108
ETour 58 155 0.387 0.195 0.259 0.216
iTrust 131 381 0.215 0.287 0.246 0.269
SMOS 67 197 0.726 0.139 0.234 0.166

The detrimental influence of tools on the quality of recovered TLs does not stem from the
agent failing to use them.

As shown in Figure 6.3, this is not the case for the full tool set, and we provide analogous plots
and the underlying data in Section C.1. Rather, the issue may lie in how the agent uses the
available tools. As discussed earlier, when tools are available, the agent tends to use them to
efficiently scan the project, then employs the SourceCode tool to examine the identified classes.
For configurations where the SourceCode tool is not available, the Summarizer tool fulfills this
role. This usage pattern by itself does not seem problematic.

However, as shown in Table 6.4, for each configuration aggregated across all datasets, the
majority of the classes whose source code is accessed—whether to be summarized, queried,
or directly returned to the LLM—are not related to the input requirement, yet they are often
returned as related by the agent. Conversely, the classes that are genuinely related to the
requirement form only a minority of those accessed by these tools.This is partly due to the
smaller overall number of related classes compared to unrelated ones, but also because a
substantial number of accessed related classes are ultimately rejected, i.e., not returned as
related by the agent. It is notable that, for all configurations except the one providing only the
SourceCode tool, the percentage of classes that are accessed but neither related nor returned is
greater than that of accurately classified related classes.

This indicates that the agent is very likely to consider accessed classes as related, regardless of
whether this is true. In essence, the agent follows a similar two-stage approach to LiSSA: first
retrieving candidate classes, then classifying them.

However, it performs this process with far less accurate and sophisticated retrieval tech-
niques—searching only for classes that exactly match a query string—and using zero-shot
classification without an explicit prompt, often over extensive unrelated text that diminishes
its reasoning ability.

In conclusion, the agent appears overly willing to accept classes it has examined as related.
Combined with the Finder tool’s tendency to present potentially unrelated classes and the
agent’s bias toward returning only a small number of classes per execution, this leads to both
low precision and low recall. Thus, the availability of Finder tools is not beneficial but instead
actively detrimental to the agent’s performance.

When the Finder tool is unavailable, this problematic usage pattern cannot occur; however,
the agent then lacks an effective means to locate classes whose names or packages do not
indicate relatedness. The high number of previously accessed false positives further indicates
that the agent cannot reliably assess whether a class is related, and tends to consider it as such

by default.
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Table 6.3.: Evaluation results across datasets and tool sets.

Dataset Toolset Precision Recall F;-Score F,-Score
All Tools 0.152 0.140 0.146 0.142
- except SourceCode 0.120 0.112 0.116 0.114
Dronology-DD  SourceCode, Finder, Retriever 0.151 0.149 0.150 0.149
SourceCodee 0.174 0.188 0.180 0.185
None 0.163 0.196 0.178 0.188
All Tools 0.169 0.099 0.125 0.108
- except SourceCode 0.141 0.163 0.151 0.158
Dronology-RE  SourceCode, Finder, Retriever 0.165 0.107 0.130 0.115
SourceCode 0.218 0.154 0.181 0.164
None 0.220 0.163 0.188 0.172
All Tools 0.387 0.195 0.259 0.216
- except SourceCode 0.379 0.224 0.282 0.244
ETour SourceCode, Finder, Retriever 0.406 0.231 0.294 0.252
SourceCode 0.382 0.256 0.307 0.274
None 0.366 0.240 0.290 0.258
All Tools 0.215 0.287 0.246 0.269
- except SourceCode 0.174 0.257 0.207 0.234
iTrust SourceCode, Finder, Retriever 0.196 0.287 0.233 0.262
SourceCode 0.225 0.357 0.276 0.319
None 0.186 0.364 0.246 0.305
All Tools 0.726 0.139 0.234 0.166
- except SourceCode 0.683 0.126 0.212 0.150
SMOS SourceCode, Finder, Retriever 0.688 0.125 0.211 0.149
SourceCode 0.645 0.132 0.220 0.157
None 0.648 0.145 0.237 0.172

Table 6.4.: The number of classes used as tool arguments across the evaluation datasets and the number
of these classes related and returned but unrelated to the execution’s input requirement, i.e. linked by
TL and not linked by a TL

Toolset Total True Positives(%) Rejected (%) False Positives (%)
All 2866 17.7 5.3 51.4
-Except SourceCode 2599 16.3 4.8 51.8
SourceCode, Finder, Retriever 2653 15.7 55 53.4
SourceCode 2755 21.6 7.1 63.1

6.3. Conclusion

In this chapter, we have presented an approach to TLR that employs an LLM-based agent. We
have introduced a set of tools that the agent can use to lazily access a project’s code base and
requirements.

Our evaluation shows that, while this agentic approach is capable of locating some of the
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classes related to an input requirement and thus recovering TLs, its performance falls short
of that achieved by traditional IR-based TLR techniques, as well as the retrieval strategies
presented in chapter 5.

We have identified two likely reasons for this performance gap:

First, the LLM controlling the agent’s exploration of the code base tends to accept classes it is
presented with as being related to the requirement without conducting deeper analysis.
Second, the agent lacks a clear "entry point" into the project. Instead, whenever available, it
begins its investigation of the code base by using the finder tool, which essentially acts as an
unsophisticated retrieval mechanism that often returns unrelated classes.

Beyond these two patterns leading to poor performance, they also prevent the agent from
fully and evenly utilizing all of the available tools. Restricting the agent to tool sets that
exclude those enabling this usage pattern does not substantially improve its performance
either. This suggests that the sparse, high-level view of the projects—i.e., their class and
package structure—is not sufficient to recover more than a small minority of the existing
TLs.
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In this chapter, we address the potential threats to the validity of our results and describe how
we have mitigated them. We then provide an overview of the techniques and results presented
in this thesis before concluding with a discussion of possible directions for future research on
the use of context in automated requirement-to-code TLR.

7.1. Threats to validity

Following the guidelines of Runeson et al. [35], we discuss potential threats to the validity of
our results, starting with construct validity.

The central goal of this thesis was to use context to improve the results achieved by LiSSA.
For this reason we implemented our techniques as modules that can be used as part of the
LiSSA framework. The quality of the produced results can be objectively quantified using the
standard metrics of precision, recall, and their harmonic means in the form of F; and F, scores.
Fuchf et al. report these metrics, and we use the same measures to compare our results with
those achieved by LiSSA’s existing modules. Thus, threats to construct validity are mitigated.
Regarding internal validity, there is the threat that the non-deterministic manner in which
LLMs arrive at their outputs may influence our results. To mitigate this threat, outputs from
LLMs are cached and reused across different executions of the framework.

We also configured the LLMs with a fixed random seed and low temperature.

As acknowledged in chapter 4, the datasets used in our evaluation may not be representative
of all software projects.

We mitigate this risk by employing established and widely used datasets for requirement-to-
code TLR and evaluating our techniques on each one.

Finally, to ensure reliability and enable replication, we document and publish the implementa-
tions of our techniques.

We also provide a replication package containing both the evaluation datasets used throughout
this thesis and the intermediate output data used to produce the reported results.

7.2. Conclusion

In this thesis, we have explored different avenues to improve the quality of the TLs recovered
using the LiSSA framework. We have investigated how both LiSSA’s retrieval stage and the
classification of the retrieved TLs can be enhanced by incorporating the context of source code
elements. Regarding retrieval, in Section 5.1 we introduced new preprocessors designed to
narrow the similarity gap between natural language requirements and source code elements.
We also proposed a retrieval strategy that considers the neighborhood of code elements. Our
evaluation of these new LiSSA modules has shown that, while contextual information can
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be beneficial, its effect is relatively minor in our implementation and depends heavily on the
appropriate choice of preprocessor and retrieval strategy parameters.

Overall, we did not succeed in substantially improving LiSSA’s retrieval performance. Since
retrieval recall serves as an upper bound on the recall achievable by the complete execution of
the framework, we decided to forgo our planned improvements to LiSSA’s classifier modules.
Instead, based on this finding, we proposed an agentic approach to determining classes related
to an input requirement and thus indirectly recovering requirement-to-class TLs. To enable
the use of contextual information in this approach, we implemented tools that allow the agent
to access the project’s code base and requirements.

However, our evaluation has shown that, in its current implementation, this approach performs
worse than both traditional IR-based TLR techniques and SOTA methods employing LLMs
such as LiSSA.

7.3. Future Work

Due to time constraints, we were not able to explore additional retrieval strategies. Differ-
ent types of source code element relationships may prove to be more beneficial than the
caller—callee relationships we investigated. We also did not explore combining different trans-
formations into a single preprocessor module, i.e., generating both class-level elements and
elements representing a class’s methods. For all of these approaches, however, the overall low
textual similarity between related requirements and source code—resulting from the semantic
gap—remains a fundamental issue.

Using an approach similar to USERTRACE [17], which aggregates source code elements into
representations at a higher level of abstraction, may bridge this gap more effectively than our
preprocessors did. However, given the inherent limitations of textual similarity, we consider
our agentic approach to be the most promising direction for further research.

A key issue in our implementation, uncovered during evaluation, can be attributed to the
agreeable nature of conversational LLMs. Even when tools are available to the agent, it often
errs on the side of considering a requirement-class pair as related, even when the relationship
is weak—for example, when they merely share a domain context—which is insufficient to
consider them linked by a TL. Different or more focused prompting may alleviate this issue
by shifting from the broad concept of “relatedness” toward establishing a more precise and
explicit relationship—for instance, determining whether a class represents an entity mentioned
in the requirement or whether one of its functions contributes to a described action flow.

In our evaluation, using GPT-5-mini as the LLM controlling the agent did not meaningfully
improve the results. Nevertheless, models capable of higher-level reasoning or specifically
fine-tuned for factual accuracy or software engineering tasks may be able to more accurately
assess which classes are likely candidates or which tools should be used. Combining the two
individual approaches to improving TLR—by tasking an LLM-based agent to recover related
classes partially based on the results of previous retrieval—may also be worthwhile.
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A. Appendix

A.1. Gold-Standard Link Element Similarities and Ranks
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B. Preprocessors

B.1. Gold-Standard Artifact Similarity and Retrieval Rank
Modifications by Preprocessors
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Figure B.1.: Pairwise similarity of elements linked by gold-standard TLs using class-level preprocessors.
Blue markers indicate baseline similarity between unprocessed source and target elements, while red
markers indicate similarity after preprocessing. Gold-standard TLs are ordered by baseline similarity
for comparability across preprocessors. on Dronology-DD dataset

61



B. Preprocessors

1.0 1.0
0.8 0.8
> >
= 0.61 = 0.61
— —_
o o
€44l Eoal
& 0.4 5 0.4
0.2 0.2
0.01— : : : : 0 0.0 : : : : :
0 100 200 300 400 500 0 100 200 300 400 500
TL Index TL Index
(a) AllJavaDocInClassPreprocessor (b) ClassSkeletonPreprocessor
1.0 1.0
0.8 0.8
Fy oy
= 0.61 E 0.61
o o
€44l €94l
5 04 7 04
0.2 0.2
0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500
TL Index TL Index
(c) JavaDocEnhancerPreprocessor (d) LLMClassSummaryPreprocessor

Figure B.2.: Pairwise similarity of elements linked by gold-standard TLs using class-level preprocessors.
Blue markers indicate baseline similarity between unprocessed source and target elements, while red
markers indicate similarity after preprocessing. Gold-standard TLs are ordered by baseline similarity

for comparability across preprocessors. on Dronology-RE dataset
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Figure B.3.: Pairwise similarity of elements linked by gold-standard TLs using class-level preprocessors.
Blue markers indicate baseline similarity between unprocessed source and target elements, while red
markers indicate similarity after preprocessing. Gold-standard TLs are ordered by baseline similarity

for comparability across preprocessors. on ETour dataset
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Figure B.4.: Pairwise similarity of elements linked by gold-standard TLs using class-level preprocessors.
Blue markers indicate baseline similarity between unprocessed source and target elements, while red
markers indicate similarity after preprocessing. Gold-standard TLs are ordered by baseline similarity

for comparability across preprocessors. on iTrust dataset
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Figure B.5.: Pairwise similarity of elements linked by gold-standard TLs using class-level preprocessors.
Blue markers indicate baseline similarity between unprocessed source and target elements, while red
markers indicate similarity after preprocessing. Gold-standard TLs are ordered by baseline similarity
for comparability across preprocessors. on SMOS dataset
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Figure B.6.: Ranking, i.e. index of the correct target element when using the sorce element for retrieval
for each pair of elements linked by gold-standard TLs using class-level preprocessors. Blue markers
indicate baseline rank of unprocessed source and target elements, while red markers indicate ranks
after preprocessing all target elements. Lower rank values implicate higher retrieval performance, with
all pairs of rank smaller than k being retrieved by configurations using a configuration with this value
of k, the respective preprocessor and LiSSA’s default retrieval strategy. on Dronology-DD dataset
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Figure B.7.: Ranking, i.e. index of the correct target element when using the sorce element for retrieval
for each pair of elements linked by gold-standard TLs using class-level preprocessors. Blue markers
indicate baseline rank of unprocessed source and target elements, while red markers indicate ranks
after preprocessing all target elements. Lower rank values implicate higher retrieval performance, with
all pairs of rank smaller than k being retrieved by configurations using a configuration with this value
of k, the respective preprocessor and LiSSA’s default retrieval strategy. on Dronology-RE dataset
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Figure B.8.: Ranking, i.e. index of the correct target element when using the sorce element for retrieval
for each pair of elements linked by gold-standard TLs using class-level preprocessors. Blue markers
indicate baseline rank of unprocessed source and target elements, while red markers indicate ranks
after preprocessing all target elements. Lower rank values implicate higher retrieval performance, with
all pairs of rank smaller than k being retrieved by configurations using a configuration with this value
of k, the respective preprocessor and LiSSA’s default retrieval strategy. on ETour dataset
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Figure B.9.: Ranking, i.e. index of the correct target element when using the sorce element for retrieval
for each pair of elements linked by gold-standard TLs using class-level preprocessors. Blue markers
indicate baseline rank of unprocessed source and target elements, while red markers indicate ranks
after preprocessing all target elements. Lower rank values implicate higher retrieval performance, with
all pairs of rank smaller than k being retrieved by configurations using a configuration with this value
of k, the respective preprocessor and LiSSA’s default retrieval strategy. on iTrust dataset
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Figure B.10.: Ranking, i.e. index of the correct target element when using the sorce element for retrieval
for each pair of elements linked by gold-standard TLs using class-level preprocessors. Blue markers
indicate baseline rank of unprocessed source and target elements, while red markers indicate ranks
after preprocessing all target elements. Lower rank values implicate higher retrieval performance, with
all pairs of rank smaller than k being retrieved by configurations using a configuration with this value
of k, the respective preprocessor and LiSSA’s default retrieval strategy. on SMOS dataset
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C. Agentic Classification

C.1. Agent Configuration Tool Uses

C.2. Jaccard Indices of Retrieved TLs by preprocessor and dataset

Table C.1.: Aggregated Jaccard similarity intervals between true-positive sets for SMOS (k20, matching

strategies only).
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Preprocessor P W 9 < S O S &
MethodJavadoc [0.39, 0.40]
ClassSkeleton [0.47, 0.47] [0.37, 0.37]
ToMethods [0.42, 0.42] [0.54,0.55]  [0.49, 0.50]
ToMethodContext [0.41, 0.41] [0.50,0.50]  [0.49, 0.49] [0.89, 0.90]
LLMClassSummary  [0.42, 0.42] [0.59,0.60] [0.49,0.49] [0.51,0.51]  [0.48, 0.48]
SingleArtifact [0.49,049]  [0.62,0.63] [0.50,0.50] [0.56,0.57]  [0.53,0.53] [0.70, 0.70]
JavaDocEnhancer [0.47,047]  [056,0.57] [0.42,0.42] [0.44,045]  [0.41,0.41] [0.57,0.57]  [0.67,0.67]
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Table C.2.: Aggregated Jaccard similarity intervals between true-positive sets for iTrust (k20, matching

strategies only).
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b S
Preprocessor N %&% &y\ od < @ \"’4 \}ﬁ\
SingleArtifact [0.73, 0.75]
ToMethods [0.85,0.87]  [0.77,0.79]
ClassSkeleton [0.70,0.72]  [0.83,0.83] [0.77,0.78]
ToMethodContext ~ [0.84,0.87]  [0.78,0.79] [0.98,0.99] [0.77, 0.78]
AllJavaDocInClass ~ [0.70,0.72]  [0.83,0.83] [0.75,0.77] [0.85,0.85]  [0.75,0.76]
JavaDocEnhancer ~ [0.72,0.74]  [0.88,0.88] [0.74,0.76] [0.82,0.82]  [0.75, 0.76] [0.77, 0.77]
LLMClassSummary ~ [0.69,0.71]  [0.81,0.81] [0.72,0.74] [0.75,0.75]  [0.72, 0.73] [0.76, 0.76] [0.78, 0.78]

Table C.3.: Aggregated Jaccard similarity intervals between true-positive sets for dronology-dd (k20,
matching strategies only).
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Preprocessor S S < » < & P C
SingleArtifact [0.84, 0.88]
ToMethods [0.58, 0.64] [0.62, 0.66]
MethodJavadoc [0.61,0.66]  [0.64,0.67] [0.73,0.81]
ToMethodContext  [0.60, 0.64]  [0.64,0.65] [0.77,0.83]  [0.73,0.78]
JavaDocEnhancer [0.83, 0.88] [0.88,0.93] [0.62,0.68] [0.62,0.68] [0.63, 0.67]
AllJavaDocInClass [0.56, 0.65] [0.59,0.68] [0.45,0.55] [0.46, 0.53] [0.46, 0.53] [0.58, 0.65]
ClassSkeleton [0.74,0.79]  [0.73,0.81] [0.62,0.68] [0.64,0.68]  [0.62, 0.67] [0.74, 0.83] [0.52, 0.62]

Table C.4.: Aggregated Jaccard similarity intervals between true-positive sets for dronology-re (k20,
matching strategies only).

2 X
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Preprocessor %&% Q\\ > <L Q\fb é@ < \'1’4
AllJavaDocInClass  [0.54, 0.62]
LLMClassSummary [0.78, 0.84] [0.52, 0.61]
ToMethods [0.53,0.59]  [0.41, 0.48] [0.50, 0.56]
ClassSkeleton [0.62,0.74]  [0.42, 0.53] [0.62,0.74]  [0.58, 0.63]
MethodJavadoc [0.55,0.60]  [0.41, 0.45] [0.55,0.60]  [0.70,0.76] [0.59, 0.64]
ToMethodContext  [0.56,0.64]  [0.45, 0.51] [0.55,0.60]  [0.69,0.77] [0.53,0.62] [0.64, 0.68]
JavaDocEnhancer ~ [0.82,0.91]  [0.49, 0.59] [0.77,0.84]  [0.55,0.60] [0.66,0.76] [0.56,0.61]  [0.56,0.65]

Table C.5.: Aggregated Jaccard similarity intervals between all retrieved links for SMOS (k20, all

strategies).
5 & & &
o4 & o & S < <
& qfq’b 5 S & &0& & < :
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Preprocessor P N o <L < N & 3
MethodJavadoc [0.35, 0.35]
ClassSkeleton [0.27, 0.27] [0.28, 0.28]
ToMethods [0.24,0.25]  [0.42,0.43] [0.28,0.28]
ToMethodContext  [0.23,0.23]  [0.39,0.40] [0.28,0.28] [0.85,0.86]
LLMClassSummary ~ [0.34,0.34]  [0.47,048] [0.34,0.34] [033,033] [031,031]
SingleArtifact [0.46,046]  [0.51,0.52] [0.35,035] [0.36,0.36]  [0.33,0.33] [0.56, 0.56]
JavaDocEnhancer ~ [0.44,0.44]  [0.42,042] [0.28,0.28] [0.27,027]  [0.24,0.24] [0.44,044]  [0.59, 0.59]
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C.2. Jaccard Indices of Retrieved TLs by preprocessor and dataset

Table C.6.: Aggregated Jaccard similarity intervals between all retrieved links for iTrust (k20, all strate-
gies).
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Preprocessor W S < o < ¢ & WV
SingleArtifact [0.30, 0.31]
ToMethods [0.53,0.55]  [0.30, 0.30]
ClassSkeleton [0.31,031] [0.48,0.48] [0.31,0.32]

ToMethodContext  [0.53,0.54]  [0.30,0.30] [0.82,0.85] [0.31,0.31]

AllJavaDocInClass ~ [0.28,0.28]  [0.47,0.47] [0.28,0.29] [0.45,0.45]  [0.28, 0.28]

JavaDocEnhancer ~ [0.31,0.32]  [0.69,0.69] [0.30,0.30] [0.48,0.48]  [0.30, 0.30] [0.42, 0.42]
LLMClassSummary ~ [0.30, 0.30] ~ [0.60,0.60] [0.30,0.30] [0.47,0.47]  [0.29,0.29] [0.41, 0.41] [0.61, 0.61]

Table C.7.: Aggregated Jaccard similarity intervals between all retrieved links for Dronology-DD (k20,
all strategies).
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MethodJavadoc [0.26,0.30]  [0.29,032] [0.44,0.57]

ToMethodContext ~ [0.26,029]  [0.28,0.32] [0.56,0.68] [0.44,0.52]

JavaDocEnhancer  [0.47,0.66]  [0.50,0.72] [0.27,0.31] [0.29,0.32]  [0.28,0.31]

AllJavaDocInClass ~ [0.18,0.28]  [0.19,0.31] [0.16,0.19] [0.17,0.19]  [0.16,0.18]  [0.18,0.29]

ClassSkeleton [0.32,045]  [033,047] [0.26,033] [027,033]  [027,032]  [0.34, 0.47] [0.13, 0.22]

Table C.8.: Aggregated Jaccard similarity intervals between all retrieved links for Dronology-RE (k20,
all strategies).
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AllJavaDocInClass ~ [0.19, 0.32]
LLMClassSummary [0.47, 0.67] [0.19, 0.31]
ToMethods [0.26,032]  [0.16, 0.20] [0.25, 0.29]
ClassSkeleton [0.33,048]  [0.14,0.23] [0.32,047]  [0.28,0.33]
MethodJavadoc [0.28,035]  [0.16, 0.20] [027,033]  [0.40,055] [0.28,0.34]
ToMethodContext  [0.28,0.33]  [0.16, 0.19] [0.26,0.30]  [0.52,0.65] [0.26,0.33] [0.41, 0.52]
JavaDocEnhancer  [0.49,0.73]  [0.18, 0.30] [0.45,0.66]  [0.27,0.32] [0.35,0.49] [0.29,0.35]  [0.27,0.32]
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