
Analysis of Project-Intrinsic Context for
Automated Traceability Between

Documentation and Code

Bachelor’s Thesis of

Tobias Thirolf

At the KIT Department of Informatics

KASTEL – Institute of Information Security and Dependability

First examiner: Prof. Dr.-Ing. Eric Sax (ITIV)

Second examiner: Prof. Dr.-Ing. Anne Koziolek (KASTEL)

First advisor: Dominik Fuchß, M.Sc. (KASTEL)

Second advisor: Dr.-Ing. Tobias Hey (KASTEL)

May 26, 2025 – December 24, 2025

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

Analysis of Project-Intrinsic Context for Automated Traceability Between Documentation and
Code (Bachelor’s Thesis)

I declare that I have developed and written the enclosed thesis completely by myself. I

have used generative AI as a tool for grammatical and stylistic revision of text passages. I

have not used any other than the aids that I have mentioned. I have marked all parts of the

thesis that I have included from referenced literature, either in their original wording or

paraphrasing their contents. I have followed the by-laws to implement scientific integrity

at KIT.

Ludwigshafen am Rhein, December 24, 2025

. .

(Tobias Thirolf)

Abstract

Traceability Link Recovery (TLR) between Software Architecture Documentation (SAD)

and source code is essential for preserving architectural consistency and facilitating system

comprehension. However, established automated approaches—ranging from Information

Retrieval (IR) to modern Large Language Models (LLMs)—often fail to recover non-trivial

links that depend on project-specific context, runtime configurations, or polyglot imple-

mentations. This thesis addresses this limitation by challenging the static, code-centric

assumptions of existing benchmarks and retrieval strategies.

First, we conducted a rigorous manual analysis of four open-source projects (JabRef, Media-
Store, TEAMMATES, and TeaStore). This qualitative assessment suggested that a significant

portion of architectural links relies on implicit knowledge and non-Java artifacts often

ignored by standard analysis. Based on these findings, we systematically refined the ex-

isting gold standards, transitioning from a keyword-based to an intent-based baseline. A

comparison between this refined standard and the original benchmarks implies a substantial

divergence in traceability definitions.

Second, to address these structural mismatches, we propose a novel Component-Centric

Preprocessing approach integrated into the LiSSA framework. Unlike naive retrieval meth-

ods that blindly fetch code chunks, our approach utilizes LLM-based agents to first map

documentation sentences to architectural components and then resolve those components

to their physical directory locations using semantic reasoning and build configuration

heuristics.

We evaluated this approach against state-of-the-art baselines (ArDoCo) and standard RAG

configurations. The results demonstrate that our agentic, component-aware strategy

achieves a weighted average F1-score of .554 on the refined, diverse-artifact benchmark,

significantly outperforming naive retrieval (.125) and model-based baselines (.382). These

findings confirm that integrating architectural reasoning and handling project-intrinsic

context are prerequisites for recovering the complex, configuration-driven links found in

modern software systems.

i

Zusammenfassung

Die Wiederherstellung von Traceability-Links (Traceability Link Recovery, TLR) zwischen

Softwarearchitekturdokumentation (SAD) und Quellcode ist essenziell für die Wahrung

der architektonischen Konsistenz und das Systemverständnis. Etablierte automatisierte

Ansätze – von Information Retrieval (IR) bis hin zu modernen Large Language Models

(LLMs) – scheitern jedoch häufig daran, nicht-triviale Links wiederherzustellen, die von

projektspezifischem Kontext, Laufzeitkonfigurationen oder polyglotten Implementierungen

abhängen. Diese Arbeit adressiert diese Einschränkung, indem sie die statischen, code-

zentrierten Annahmen bestehender Benchmarks und Retrieval-Strategien hinterfragt.

Zunächst führten wir eine rigorose manuelle Analyse von vier Open-Source-Projekten

durch (JabRef, MediaStore, TEAMMATES und TeaStore). Diese qualitative Bewertung legte
nahe, dass ein signifikanter Teil der architektonischen Links auf implizitem Wissen und

Nicht-Java-Artefakten beruht, die von Standardanalysen oft ignoriert werden. Basierend auf

diesen Erkenntnissen verfeinerten wir systematisch die existierenden Goldstandards, wobei

wir von einer schlüsselwortbasierten zu einer absichtsbasierten (intent-based) Baseline

übergingen. Ein Vergleich zwischen diesem verfeinerten Standard und den ursprünglichen

Benchmarks impliziert eine erhebliche Divergenz in den Traceability-Definitionen.

Zweitens schlagen wir zur Adressierung dieser strukturellen Diskrepanzen einen neuar-

tigen Ansatz der komponenten-zentrierten Vorverarbeitung (Component-Centric Prepro-

cessing) vor, der in das LiSSA-Framework integriert ist. Im Gegensatz zu naiven Retrieval-

Methoden, die blind Code-Fragmente abrufen, nutzt unser Ansatz LLM-basierte Agenten,

um zunächst Sätze der Dokumentation auf Architekturkomponenten abzubilden und diese

Komponenten anschließend mithilfe von semantischem Reasoning und Heuristiken der

Build-Konfiguration auf ihre physischen Verzeichnisorte aufzulösen.

Wir evaluierten diesen Ansatz gegen State-of-the-Art-Baselines (ArDoCo) und Standard-

RAG-Konfigurationen. Die Ergebnisse zeigen, dass unsere agentenbasierte, komponen-

tenbewusste Strategie einen gewichteten durchschnittlichen F1-Score von .554 auf dem

verfeinerten Benchmark mit diversen Artefakten erzielt und damit das naive Retrieval (.125)

sowie modellbasierte Baselines (.382) signifikant übertrifft. Diese Erkenntnisse bestätigen,

dass die Integration von architektonischem Reasoning und die Berücksichtigung von pro-

jektinternem Kontext Voraussetzungen sind, um die komplexen, konfigurationsgetriebenen

Links in modernen Softwaresystemen wiederherzustellen.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Problem Statement . 1

1.2. Objective and Contribution . 1

1.3. Thesis Structure . 2

2. Foundations 5
2.1. Software Artifacts . 5

2.1.1. Software Architecture Documentation (SAD) 5

2.1.2. Architecture Recovery . 6

2.2. Traceability Link Recovery (TLR) . 6

2.3. Metrics . 7

2.3.1. Precision . 7

2.3.2. Recall . 8

2.3.3. F1-Score . 8

2.3.4. Sentence Normalized F1-Score . 8

2.4. The LiSSA Framework . 9

2.4.1. Pipeline Architecture . 9

2.4.2. Capabilities and Configuration . 10

3. Related Work 11
3.1. Artifact Types in TLR . 11

3.2. Techniques used in TLR . 11

3.3. Analysis of Datasets and Gold Standards 12

4. Analysis of Datasets and Refinement of Gold Standards 13
4.1. Dataset Overview and Provenance . 13

4.1.1. Origin of Resources . 13

4.1.2. Subject Projects . 14

4.2. Analysis of SAD Characteristics and Existing Benchmarks 14

4.2.1. Linguistic Characteristics of SADs 15

4.2.2. Analysis of Text Adaptations . 15

4.2.3. The Structural Mismatch of Existing Gold Standards 17

4.2.4. Conclusion: Justification for Refinement 18

v

Contents

4.3. Refinement of the Gold Standard . 19

4.3.1. Methodology and Guidelines . 19

4.3.2. Correction of Structural Benchmarking Inconsistencies 20

4.3.3. Quantitative Results . 20

4.4. Qualitative Findings: The Role of Context in Traceability 23

4.4.1. Configuration as Architectural Truth 23

4.4.2. Project-Specific Intrinsic Patterns 24

4.4.3. Implicit Communication and Constraints 26

4.4.4. Intent vs. Implementation Reality 27

5. Approach 29
5.1. Documentation Preprocessing . 30

5.1.1. Component Names Extraction . 30

5.1.2. Sentence-Level Component Mapping 31

5.1.3. Ambiguity Resolution (Double Check) 31

5.1.4. Component Information Extraction 33

5.2. Code Processing . 35

5.2.1. Agentic Based . 35

5.2.2. Project Based . 36

6. Evaluation 39
6.1. Experiment Setup . 39

6.1.1. Dataset Acquisition and Versioning 39

6.1.2. Large Language Models . 39

6.1.3. Evaluation Methodology and Metrics 39

6.2. Component Recovery Evaluation . 40

6.2.1. Methodology . 40

6.2.2. Results . 41

6.3. Feature Comparison and Ablation Study 42

6.3.1. Impact of Ambiguity Resolution (Double Check) 42

6.3.2. Agentic vs. Heuristic Code Preprocessing 42

6.4. Comparative Evaluation against Baselines 43

6.4.1. Comparison with Naive Retrieval 43

6.4.2. Comparison with State-of-the-Art (ArDoCo) 43

6.5. Threats to Validity . 44

6.5.1. Internal Validity . 45

6.5.2. External Validity . 45

6.5.3. Construct Validity . 46

6.5.4. Reliability . 46

7. Conclusion 49
7.1. Summary of Contributions . 49

7.1.1. 1. Identification of Contextual Dependency 49

7.1.2. 2. Refinement of Traceability Benchmarks 50

7.1.3. 3. Component-Centric Preprocessing Approach 50

vi

Contents

7.2. Key Findings . 50

7.3. Future Work . 51

7.4. Closing Remarks . 51

Bibliography 53

A. Appendix 57
A.1. MediaStore Gold Standard Comparison . 57

A.2. JabRef Gold Standard Comparison . 59

A.3. TeaStore Gold Standard Comparison . 61

A.4. TEAMMATES Gold Standard Comparison 63

A.5. Prompts . 67

vii

List of Figures

2.1. Overview of the LiSSA approach pipeline [17] 10

4.1. SAD Sentences of the TeaStore Project; Named Entities in green, specific

but unnamed Code in blue . 17

4.2. Traceability Example for the TeaStore Project; SAD on the left with their

[sentence ID], Code on the right, colored correspondingly 18

4.3. TeaStore: Difference between the Original and Refined Gold Standard . . . 22

5.1. Overview of the Preprocessing Stage; Documentation Preprocessing on the

left, Code Preprocessing on the right . 29

5.2. Overview of the Agentic Based Approach 35

A.1. MediaStore reworked and original gold standard linked code artifacts com-

parison . 57

A.2. MediaStore original gold standard linked code artifacts difference to reworked 58

A.3. JabRef reworked and original gold standard linked code artifacts comparison 59

A.4. JabRef original gold standard linked code artifacts difference to reworked . 60

A.5. TeaStore reworked and original gold standard linked code artifacts comparison 61

A.6. TeaStore original gold standard linked code artifacts difference to reworked 62

A.7. TEAMMATES reworked and original gold standard linked code artifacts

comparison . 63

A.8. TEAMMATES original gold standard linked code artifacts difference to

reworked . 64

A.9. TEAMMATES reworked and original gold standard linked code artifacts

comparison - part 2 . 65

A.10. TEAMMATES original gold standard linked code artifacts difference to

reworked - part 2 . 66

ix

List of Tables

4.1. Number of Sentences in each SAD adaptation with their Section Distribution 15

4.2. Refined Gold Standard Difference showing Number of Linked Artifacts by

their Type . 21

4.3. Number of Sentences in each Dataset containing at least one Noise or

Missing Link . 21

6.1. F1-Score Averages across all Datasets considering only the Results of the

Code Preprocessing of the expected Components 41

6.2. Comparison of Average F1-Scores across all Gold Standards 43

6.3. Comparison of Average F1-Scores across all Gold Standards 44

xi

1. Introduction

Software architecture serves as the blueprint of a software system, defining its high-level

structure, components, and the interactions between them. It is the primary vehicle for

stakeholder communication, guiding development, maintenance, and evolution. However, a

fundamental challenge in software engineering is the phenomenon of architectural drift:
as the source code evolves to meet new requirements, the corresponding documentation

frequently lags behind, eventually becoming obsolete or misleading.

To mitigate this disconnect, Traceability Link Recovery (TLR) aims to establish and maintain

explicit links between architectural documentation (SAD) and the implementation artifacts

(source code). Valid traceability links allow developers to verify compliance, perform impact

analysis, and navigate complex systems with confidence.

1.1. Problem Statement

While manual traceability is accurate, it is prohibitively expensive and labor-intensive to

maintain. Consequently, automated approaches have been a subject of extensive research.

Historically, these approaches have relied on Information Retrieval (IR) techniques (matching

keywords between text and code) or static analysis methods that reconstruct architecture

from explicit code structures like Java packages.

However, modern software systems have evolved beyond simple package hierarchies. In

contemporary architectures, a logical "component" is rarely just a single directory of Java

files. Instead, it is often a polyglot assembly of source code, configuration files (XML, YAML,

Gradle), and frontend artifacts (TypeScript, HTML). Our analysis reveals that state-of-the-art

approaches struggle in this landscape because they lack context. They treat the codebase

as a flat list of files, ignoring the hierarchical project structure and the implicit naming

conventions that developers use to organize these files into components. Furthermore,

existing benchmarks for this task often suffer from a "static bias," rewarding approaches

that find Java classes while penalizing those that correctly identify the configuration files

that actually define the system’s runtime behavior.

1.2. Objective and Contribution

The primary objective of this thesis is to improve the accuracy and semantic validity

of automated traceability between SADs and code by moving beyond simple similarity

1

1. Introduction

matching. We hypothesize that "finding the code" is a two-step reasoning process: first,

identifying what architectural component is described, and second, determining where that
component physically resides in the project structure.

To achieve this, we introduce a Component-Centric Preprocessing approach integrated

into the LiSSA (Linking Software System Artifacts) framework. This approach leverages

Large Language Models (LLMs) not just as text matchers, but as autonomous agents capable

of exploring the project’s file system and interpreting build configurations.

The specific contributions of this work are:

1. Empirical Analysis of Traceability Benchmarks: We provide a detailed manual

analysis of four open-source projects (JabRef, MediaStore, TEAMMATES, TeaStore),
exposing significant limitations in existing gold standards. We identify that up to

31% of links in established benchmarks may be semantically "unreasonable" given the

documentation’s intent.

2. Refinement of Gold Standards: We contribute a refined set of gold standards

that transition from a keyword-based to an intent-based definition of traceability,

systematically including non-code artifacts and configuration files that were previously

ignored.

3. A Component-Centric Retrieval Approach: We propose a novel preprocessing

pipeline that resolves architectural components to physical directories before retrieval.

This allows the system to dynamically adjust its search scope, filtering out irrelevant

artifacts and focusing on the specific sub-tree of the project where the component

resides.

4. Agentic Project Navigation: We demonstrate that treating the retrieval task as an

agentic exploration problem (where an LLM can ”browse” the file system) significantly

outperforms static heuristics in polyglot environments.

1.3. Thesis Structure

The remainder of this thesis is structured as follows:

• chapter 2 (Foundations): Introduces the core concepts of software architecture,

traceability link recovery, and the underlying technologies (LLMs, RAG) used in this

work, as well as the framework that was extended.

• chapter 3 (Related Work): Introduces other works that are related to Traceability

Link Recovery, including those acting as baselines.

• chapter 4 (Analysis of Datasets): Presents the manual audit of existing benchmarks,

detailing the "structural mismatches" found and defining the guidelines used for

refining the gold standards.

2

1.3. Thesis Structure

• chapter 5 (Approach): Details the proposed Component-Centric Preprocessing

pipeline, explaining the prompt engineering, agentic workflow, and ambiguity resolu-

tion mechanisms.

• chapter 6 (Evaluation): Empirically evaluates the approach against state-of-the-art

baselines (ArDoCo) and standard retrieval methods, analyzing the impact of reasoning

capabilities and diverse artifact types on performance.

• chapter 7 (Conclusion): Summarizes the findings, discusses threats to validity, and

outlines potential avenues for future research.

3

2. Foundations

2.1. Software Artifacts

In the context of software engineering, a software artifact is formally defined by the ISO/IEC

19506:2012 standard as “a tangible, machine-readable document created during software
development” [22]. While the term can broadly encompass any intentional product of

human activity [21], within this domain, it refers specifically to the diverse set of outputs

created to support the software lifecycle, from implementation and testing to maintenance

and comprehension [33].

These artifacts are generally categorized into two primary groups: code artifacts (e.g., source
code, build scripts, configuration files) and documentation artifacts (e.g., requirements

specifications, user manuals, architecture descriptions) [33, 34, 29]. Understanding the

relationship between these two categories is central to the problem of traceability.

2.1.1. Software Architecture Documentation (SAD)

A critical subset of documentation is the Software Architecture Documentation (SAD).
The ISO/IEC/IEEE 42010 standard defines an architecture description as an artifact “used to
express an architecture” [23].

Software architecture itself represents a high-level abstraction of a system, capturing its

fundamental structural elements, such as components, connectors, and their relationships.

This abstraction is pivotal for managing complexity, as it provides a condensed view that

transcends individual classes or packages. By emphasizing the grouping of elements into

cohesive units, architecture enables stakeholders to reason about the system’s functionality,

scalability, and evolution without getting lost in implementation details [12, 28].

To make this abstract information accessible, various documentation approaches exist,

ranging from ontology-based formalizations to interactive visual tools [18, 37]. However,

in industrial practice, unstructured text-based documentation remains the predominant

format. Unlike formal requirements, which often follow strict templates (e.g., "The system

shall..."), SADs typically consist of natural language prose. They frequently contain loosely

organized sections, implicit references to components, and meta-level commentary. This

lack of structural constraint presents significant challenges for automated analysis and

information extraction [10].

5

2. Foundations

2.1.2. Architecture Recovery

The reliance on manual documentation leads to a common problem: SADs often become

missing, outdated, or incomplete as the code evolves. In such cases, the system’s actual

architecture must be reclaimed through Software Architecture Recovery (SAR). This
process involves analyzing the source code, specifically its structural characteristics, package

hierarchies, and class interactions, to reconstruct the implemented architecture. Techniques

in this domain aim to reverse-engineer models that mirror component boundaries and

dependencies, thereby restoring the lost link between the code and its high-level design

[28].

2.2. Traceability Link Recovery (TLR)

In the domain of modern software engineering, the lifecycle of a system involves the creation

and evolution of a diverse set of artifacts, including functional requirements, architectural

documentation, source code, and test specifications. A comprehensive understanding of

the interdependencies between these artifacts is indispensable for critical activities such as

impact analysis, consistency checking, and compliance verification.

Traceability links serve as the connective tissue in this ecosystem, establishing explicit

relationships between heterogeneous artifacts. For instance, a trace link might map a

high-level architectural constraint described in natural language to the specific software

component that implements it. However, the manual creation andmaintenance of these links

are notoriously labor-intensive and error-prone. As systems evolve, manually maintained

links frequently suffer from traceability decay, rendering them unreliable. To address this,

Traceability Link Recovery provides automated mechanisms to identify and sustain these

links, thereby significantly reducing the cognitive load on developers and ensuring the

integrity of the development process.

Historically, the dominant paradigm for automated TLR has been Information Retrieval.
These approaches rely on the fundamental premise of textual coherence: they assume

that documentation is written in descriptive natural language and that developers utilize

meaningful identifiers (e.g., class and variable names) in the source code. Consequently,

artifacts that are semantically related are expected to share significant textual similarity. IR-

based techniques typically vectorize the textual content of artifacts and calculate similarity

scores (using metrics such as TF-IDF or Cosine Similarity) to rank candidate links, operating

on the hypothesis that high textual overlap correlates with a valid trace link [35].

6

2.3. Metrics

2.3. Metrics

Evaluation of the traceability performance happens through standard binary classification

metrics. These are calculated based on the confusion matrix, which defines all four possible

outcomes for a classification with respect to the comparing ground truth.

• True Positive (TP): A positive classification that truly is positive.

• False Positive (FP): A positive classification that falsely is positive (ground truth

expects negative classification).

• True Negative (TN): A negative classification that truly is negative.

• False Negative (FN): A negative classification that falsely is negative (ground truth

expects positive classification).

These results are accumulated over all classifications representing the fundamental set

to evaluate the result. In the task that my work focuses on, the results of all linked code

artifacts for each sentence is accumulated.

Depending on the classification task, only specific results might be relevant. As for different

datasets the number of the classifications results naturally is not the same, a normalization

is necessary. Furthermore, combinations of these outcomes provide information about the

total number of positive/negative classifications as well as what the ground truth expected.

The following metrics make use of this while additionally providing normalization.

2.3.1. Precision

The precision is a ratio defining how many of the positive classifications were actually
truly positive. Therefore, when more FPs are present then the value goes closer towards 0.

As example, a naive classification which always yields a positive result will naturally have

a relatively small precision. On the other hand, a value close to 1 is achieved by having

less FPs. The sum of TPs and FPs gives the total number of positive classifications that the
approach produced, providing the wanted normalization.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∈ [0, 1]

For traceability evaluation, this metric provides insight into the correctness of the linked

artifacts. Linking too many artifacts increases the required effort to manually validate the

results that the approach produced, which makes its usage impractical.

7

2. Foundations

2.3.2. Recall

The recall is a ratio defining how many of the expected positive results were actually

classified as positive. Therefore, having less FNs results in a value closer towards 1. While

the precision of the naive classification before is small, its recall will be relatively high. The

sum of TPs and FNs hereby gives the total number of results that the ground truth expected

to be positive, again, providing the normalization.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∈ [0, 1]

For traceability evaluation, this metric provides insight into the completeness of relevant

artifacts to be linked. Intuitively, it answers the question how well the approach links at

least those artifacts that are expected/relevant. Smaller values indicate that increasingly

manual effort is necessary to find those relevant artifacts that the approach did not link.

2.3.3. F1-Score

The F1-Score combines both precision and recall. It is defined as the harmonic mean of

these two metrics and hence normalized as well.

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

=
2 ∗𝑇𝑃

2 ∗𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
∈ [0, 1]

It is notable here, that the F1-score alone does not represent a sufficient comparison because

there are always multiple combinations of precision and recall resulting in the same value.

Therefore, it is more like a single-number summary of the overall performance.

2.3.4. Sentence Normalized F1-Score

The normalizations before are based on the total number of (expected) classifications which

do not take information about their subsets. The results of the traceability task here

however, is accumulated over all sentences in the documentation. This makes it hardly

indistinguishable whether the approach actually performed well on each sentence, or just

on those, possibly few, that contribute a lot to the total number. To take the performance by

sentence into account, the F1-score is additionally applied to each of them individually.

Unlike before, when only considering a single sentence, it is possible that there are no

positive classifications produced by the approach and expected by the ground truth. This

case describes an optimal classification because there are only TNs in the result. More

intuitively: When the ground truth expects no links for this sentence (𝑇𝑃 = 𝐹𝑁 = 0) then

the classification is optimal if and only if the approach linked no artifacts (𝑇𝑃 = 𝐹𝑃 = 0).

F1-Score =

{
1, if 𝑇𝑃 = 𝐹𝑃 = 𝐹𝑁 = 0

2∗𝑇𝑃
2∗𝑇𝑃+𝐹𝑃+𝐹𝑁 , otherwise

∈ [0, 1]

8

2.4. The LiSSA Framework

These scores are then averaged, which corresponds to the Macro-averaged F1 Score, yielding

the final sentence normalized (SN) score for the whole dataset.

SN-F1-Score =

∑𝑛
𝑖=1 F1-Score𝑖

𝑛
where 𝑛 is the number of sentences

SN-Recall =

∑
𝑖∈𝑅 Recall𝑖

|𝑅 | ∈ [0, 1] with 𝑅 = {𝑖 | 𝑇𝑃𝑖 + 𝐹𝑃𝑖 ≠ 0}

2.4. The LiSSA Framework

The Linking Software System Artifacts (LiSSA) framework, originally proposed by Fuchß

et al. [17], serves as the technical foundation for the traceability approaches discussed in this

work. Implemented in Java, LiSSA is designed as a versatile, task-agnostic framework for

Traceability Link Recovery (TLR). Unlike specialized tools tailored solely for requirements-

to-code or documentation-to-code tasks, LiSSA provides a generalized pipeline that leverages

Large Language Models (LLMs) in conjunction with Retrieval-Augmented Generation (RAG)

to recover links between arbitrary software artifacts.

2.4.1. Pipeline Architecture

The core of the framework is a multi-stage pipeline that transforms raw artifacts into verified

trace links. An overview of this workflow is illustrated in Figure 2.1. The process consists

of four distinct stages:

1. Preprocessing: The original software artifacts (e.g., requirement documents, source

code files) are ingested and segmented into smaller granular units referred to as

elements. The objective of this stage is to produce a discrete textual representation for

each element suitable for embedding and retrieval. The framework supports various

granularity strategies, such as splitting documentation by sentences or lines, and

chunking source code at the method or arbitrary block level.

2. Retrieval: Once preprocessed, the system identifies relevant target candidates for each

source element. This is achieved by computing vector embeddings for all elements

and selecting the top-𝑘 source-target pairs based on cosine similarity. This stage acts

as a filter to reduce the search space for the computationally expensive classification

step.

3. Classification: The candidate pairs identified in the retrieval stage are analyzed by an

LLM to determine the existence of a semantic link. The framework supports multiple

classification modes to tailor the model’s behavior:

• Simple Mode: The model is queried for a direct binary decision (link/no-link).

9

2. Foundations

• Reasoning Mode: The model is instructed to generate a textual justification for its

decision before providing the final classification, encouraging chain-of-thought

reasoning.

• Mock Mode: A pass-through mode that treats all retrieved candidates as valid

links, primarily used to evaluate the isolated performance of the retrieval stage.

4. Aggregation: Finally, the verified links between individual elements are aggregated

back to their parent artifacts to generate the final traceability matrix.

Figure 2.1.: Overview of the LiSSA approach pipeline [17]

2.4.2. Capabilities and Configuration

LiSSA is built to support a wide range of software artifact types, including natural language

requirements, architecture documentation, source code, and XML-based UMLmodels. These

artifacts can be combined in arbitrary pairs to define specific traceability tasks.

The execution of the pipeline is declarative, controlled via configuration files that specify

the input artifacts, the chosen preprocessing strategies, the embedding models for retrieval,

and the specific LLM to be used for classification. This architecture allows for extensive

experimentation with different model configurations and processing strategies without

altering the underlying codebase.

10

3. Related Work

Existing research on automated traceability has predominantly targeted requirements–code

and design–code traceability. However, software architecture documentation differs sub-

stantially from these artifact types in structure, abstraction level, and purpose. This thesis

addresses this underexplored gap by analyzing how project-intrinsic context can support

traceability between architecture documentation and source code.

3.1. Artifact Types in TLR

As Antoniol et al. [3] survey, IR-based approaches have been applied to a wide variety of

artifacts. However, this extensive list highlights a significant gap: the near-total absence of

Software Architecture Documentation (SAD) as a source artifact. Most foundational work,

including [2], uses the term ’documentation’ to refer to functional requirements. This is

the primary gap my thesis addresses. SAD presents different challenges than requirements;

it contains structural, design-pattern, and cross-cutting concern information that is not

present in typical requirement lists.

While the majority of traceability research focuses on requirements, a few recent and highly

relevant approaches have begun to tackle the specific challenges of Software Architecture

Documentation (SAD). The TransArC approach Keim et al. [27] is a primary example,

addressing the large semantic gap by using component-based architecture models as an

intermediate step. It chains two separate tools, ArDoCo [26] and ArCoTL, to create transitive

links. This method effectively bridges the gap, but its reliance on a multi-tool chain and

explicit intermediate Software Architecture Models (SAM), which are not always present,

makes it inapplicable. The work of Fuchß et al. [15] builds directly on this specific problem

extending the approach. They investigated whether the use of modern LLMs can bridge

this gap, reducing the need for architectural models to be present.

3.2. Techniques used in TLR

The foundation of automated traceability is dominated by classical Information Retrieval

(IR) techniques, which are semi-automatic methods that have served as the baseline for the

field for many years. This approach, which focuses primarily on Requirements Traceability

Recovery (RTR) [35], treats artifacts as text and follows a standard pipeline: (1) parsing and

pre-processing artifacts, (2) indexing the corpus into a term-by-document matrix, and (3)

11

3. Related Work

computing similarity (e.g., Cosine Similarity) to rank candidate links [3]. This family of

techniques includes the Vector Space Model (VSM), Latent Semantic Indexing (LSI), and

Probabilistic IR models. While these methods were widely studied, key comparative research

was essential in understanding their true impact. Studies have demonstrated that many

methods, such as VSM and LSI, are "almost equivalent" in their overall performance [32].

The paper of Rodriguez and Carver [35] further detailed their comparative effectiveness,

finding that VSM and IR Probabilistic models consistently achieve high precision but low

recall. LSI, despite attempting to solve the synonym problem, often performed worse than

VSM, highlighting the persistent challenge of relying on term-based similarity. The resulting

performance profile (high precision and low recall) defines the critical weakness of classical

IR: the inability to find a necessary balance between the two metrics [35, 3]. This trade-off

is directly caused by the "vocabulary mismatch" problem [3], the semantic gap between

high-level documentation and source code terminology. Consequently, these techniques

remain semi-automatic, as developers must still manually review the resulting ranked lists

to remove false positives and recover missing links [35].

To combat the vocabulary mismatch problem, numerous enhancement strategies have been

proposed, as cataloged by Antoniol et al. [3]. These include lexical improvements like

abbreviation expansion and splitting identifiers [20, 25, 7], using POS tagging [9], and

more advanced methods like machine learning [19, 31, 11]. Recent reviews of the field,

such as by Mohamed et al. [30], identify LLM-assisted traceability as a primary vector

for current (2024-2025) research. These models are being explored for suggesting links

and checking semantic consistency [17, 1]. While earlier ML approaches required specific

feature engineering [19, 31], LLMs offer a powerful, end-to-end method for understanding

deep semantic context, representing a significant evolution from the classical IR methods

discussed [1].

3.3. Analysis of Datasets and Gold Standards

A persistent challenge in traceability, even with modern methods, is the presence of "noise

links", i. e., spurious or irrelevant connections that obscure correct traces [8]. Past research

has attempted to filter this noise using methods like decision trees or classifying code ele-

ments [8]. This highlights the critical importance of evaluating the quality of the underlying

datasets and gold standards. A core contribution of my thesis is an in-depth analysis of the

datasets used in [27, 15]. I analyze the prevalence and nature of this "noise" to establish

a more reliable baseline before applying advanced techniques, a step often overlooked in

prior work.

12

4. Analysis of Datasets and Refinement of
Gold Standards

One of the primary contributions of this thesis is the systematic analysis and refinement of

existing traceability benchmarks. The initial objective of this analysis was to investigate why

state-of-the-art Trace Link Recovery (TLR) approaches fail to classify certain links correctly.

Specifically, I sought to identify the project-intrinsic context, such as configuration files,

naming conventions, and implicit architectural patterns, that is required to recover these

links accurately.

This chapter presents the results of this analysis and the subsequent refinement of the gold

standards for four open-source projects: JabRef, MediaStore, TEAMMATES, and TeaStore.
Note that while the BigBlueButton dataset was initially considered, it was excluded from

the final refined benchmark due to time constraints preventing a complete re-evaluation of

its extensive documentation.

4.1. Dataset Overview and Provenance

This research builds upon established benchmarks that have been widely used in the

scientific community for traceability tasks.

4.1.1. Origin of Resources

The datasets originate from the benchmark suite established by Fuchß et al. [16], which is

publicly available on Zenodo [13]. These datasets were further extended by Keim et al. [27]

specifically for the SAD-to-Code traceability task. For this thesis, the artifacts were sourced

directly from the associated GitHub repository [14] (pre-release v1.1).

Each dataset consists of three primary components relevant to this work:

1. Text Adaptations (SADs): Plain text versions of the original Software Architecture

Documentation. These were originally adapted from project repositories or websites

to facilitate processing by Natural Language Processing (NLP) tools [16]. The quality

and fidelity of these adaptations are critically analyzed in subsection 4.2.2.

13

4. Analysis of Datasets and Refinement of Gold Standards

2. Code Models: Specifications of the exact source code revisions used for the bench-

mark. Based on these models, the source code was cloned from the respective public

repositories to serve as the target for trace link recovery.

3. Gold Standards: Ground truth files (provided as .csv) defining the correct trace links.

Specifically, I utilize the goldstandard_sad_to_code files, which map sentences from

the text adaptation to artifacts in the code model.

4.1.2. Subject Projects

The projects selected for this benchmark were originally chosen to ensure heterogeneity in

domain, size, and architecture [16].

• JabRef: An open-source, cross-platform citation and reference management tool. It

is a mature Java desktop application often used as a subject in software engineering

research [24].

• MediaStore: A reference implementation of aweb-based e-commerce store. Unlike the

other subjects, it is not a community-driven open-source project but a demonstration

artifact designed for educational and research purposes.

• TEAMMATES: A web-based peer evaluation and feedback system for students and

teachers. It features a complex, distributed architecture involving Google App En-

gine, making it a challenging subject for traceability due to its heavy reliance on

configuration and polyglot components (Java, TypeScript, HTML).

• TeaStore: Amicroservices-based reference application for benchmarking performance

and resource management. It is designed to demonstrate cloud-native architectural

patterns, where runtime behavior is often determined by deployment configurations

rather than static code structure.

• BigBlueButton: An open-source web conferencing system supporting real-time

sharing of audio, video, and screens [6]. (Excluded from refinement as noted above).

4.2. Analysis of SAD Characteristics and Existing Benchmarks

To justify the need for a refined gold standard, one must first analyze the linguistic nature

of the source artifacts (the SADs) and compare this with the linking logic employed by

existing benchmarks. This comparison reveals a structural mismatch between what the

documents actually contain and how the existing gold standards attempt to link them.

14

4.2. Analysis of SAD Characteristics and Existing Benchmarks

4.2.1. Linguistic Characteristics of SADs

SADs are the source artifacts from which trace links are to be recovered. By definition,

they represent the architecture of the software, implying a high-level view of the system.

Ideally, architectural documentation focuses on high-level relationships, hierarchies, and

interfaces.

However, an analysis of the original SADs (e.g., TEAMMATES, TeaStore) reveals a distinct
General-to-Specific structure that contradicts the assumption of a purely high-level docu-

ment. These documents typically define sections that first provide a brief overview of the

components, followed by detailed descriptions.

• General: Usually, the first paragraph. Act as an introduction. They explicitly name

the components and state their general purpose, often at a high level.

• Specific: Structurally corresponding to introduced components. These sentences

elaborate on specific code artifacts, or logic on diverse levels, often down to method

or statement level.

To quantify this observation, sentences were classified as General (general purpose) or
Specific (describing specific parts/logic). Table 4.1 presents the results.

Table 4.1.: Number of Sentences in each SAD adaptation with their Section Distribution

JabRef MediaStore TEAMMATES 2021 TEAMMATES 2023 TeaStore Average

Total Sentences 13 37 198 151 43

General 4 (31%) 10 (27%) 24 (12%) 30 (20%) 4 (9%) (20%)
Specific 9 (69%) 27 (73%) 174 (88%) 121 (80%) 39 (91%) (80%)

The data reveals that, on average, 80% of the sentences in a SAD are Specific. This is

unexpectedly high for documentation meant to represent a high-level view. Linguistically,

this shift is crucial:

• General sentences typically reference the explicit Named Entity.

• Specific sentences, having often already established the context, might rely on it

implicitly. For example, their context might be clear through being part of a section,

or being a follow up sentence.

4.2.2. Analysis of Text Adaptations

While most SADs are maintained as structured Markdown files, existing baseline approaches

rely on plain text adaptations. The primary motivation for this transformation is technical

applicability: plain text is easier to split into sentences for Natural Language Processing

(NLP) pipelines [16]. Consequently, the underlying assumption is that the text adaptation

acts as a faithful proxy, providing the same information as the original artifact.

15

4. Analysis of Datasets and Refinement of Gold Standards

However, an analysis of the datasets reveals significant inconsistencies that contradict this

assumption. These adaptations introduce noise, omit critical context, and in some cases,

actively distort the semantic meaning of the architectural documentation.

4.2.2.1. Structural Inconsistency

The process of creating text adaptations was not applied uniformly across projects.

• Headline Retention: Headlines were preserved in BigBlueButton but removed in

TeaStore and TEAMMATES.

• Layout Loss: All adaptations removed empty lines. In projects where headlines were

also removed, the original sectioned structure becomes virtually unidentifiable. This

flattening removes the scoping context that headers provide for the sentences beneath

them.

4.2.2.2. Inconsistent Content Omission

Significant portions of the original documentation were omitted without clear reasoning.

JabRef ’s adaptation contains only an arbitrary subset of the original text. While some

omissions were justified by claims that sections referenced external documentation, this

rule was inconsistent; BigBlueButton’s adaptation, for example, retains sentences that serve

solely as pointers (e.g., “See ‘Automatically apply configuration changes on restart‘”). Fur-
thermore, visual information was handled erratically. The architectural overview diagram

in BigBlueButton was ignored entirely, whereas in TEAMMATES, the diagram was replaced

by a synthetically inserted sentence listing every contained component (information that

did not exist textually in the original).

4.2.2.3. Semantic Distortion in TEAMMATES

The TEAMMATES adaptation exhibits the most severe deviations, where the adaptation

process altered the actual meaning of the documentation.

First, distinct components such as UI (Browser) and UI (Server) were arbitrarily grouped

into a single generic UI component, obscuring the client-server distinction. Second, the

hierarchy of lists was flattened. Nested sub-steps (originally unordered lists inside ordered

lists) were converted into top-level items, creating the false impression that they represent

independent procedural steps rather than detailed elaborations.

Technical notation was simplified to the point of inaccuracy. A prime example is the regular

expression *Db.

• Original: “Represented by the ‘*Db‘ classes.”

• Adaptation: “Represented by the Db classes.”

16

4.2. Analysis of SAD Characteristics and Existing Benchmarks

In the original context (the Storage API section), the asterisk implied a wildcard pattern

matching classes ending in Db. The adaptation removes the wildcard, leading to ambiguity.

This precise error has led to documented misinterpretations, where researchers incorrectly

linked this sentence to unrelated DataBundle classes rather than the intended storage logic

[36]. Since the section header “Storage API” was also removed, the context required to

resolve this ambiguity is non-restorable.

Finally, the adaptation destroys hierarchical package information through arbitrary ab-

straction. In the original SAD, sub-packages are displayed as nested listings [5]. The text

adaptation replaces the parent package structure with a generic placeholder, resulting in

x.util, x.e2e, and x.lnp [4]. Combined with the previously mentioned flattening of the

document structure, the adaptation fails to relate x.lnp as a sub-package of e2e.cases.

This loss of hierarchy is critical, as it obscures the parent-child relationship between the

architectural component and its sub-modules, a point that is central to the gold standard

inconsistencies discussed in subsection 4.2.3.

4.2.2.4. Summary of Adaptation Analysis

The text adaptations do not serve as a faithful representation of the original SADs. By

removing hierarchy, simplifying technical patterns, and inconsistently handling visual

data, they present a distorted view of the architecture. This distortion actively facilitates

misleading interpretations of the code, a problem that directly impacts the validity of the

gold standards discussed in the following section.

4.2.3. The Structural Mismatch of Existing Gold Standards

The existing gold standards for SAD-to-code TLR were derived by merging SAD-to-SAM

and SAM-to-code tasks [27]. Consequently, the resulting links are heavily influenced by

the named components defined in the intermediate SAM. The implicit linking strategy

governing these standards is Named Entity-Based Linking: A sentence is linked to all of

a component’s code if and only if the sentence explicitly mentions that component. When

we apply this rule to the observed reality of SADs, two significant theoretical problems

emerge.

[5] The WebUI provides the TeaStore front-end [...].

[6] It contains logic to save and retrieve values from cookies.

Figure 4.1.: SAD Sentences of the TeaStore Project; Named Entities in green, specific but unnamed

Code in blue

First, consider a sentence that falls into the Specific category but still references the Named

Entity. An example of such is shown in Figure 4.1. The Named Entity-based approach links

sentence 6 to the entire WebUI component. In the case of TeaStore, theWebUI component

consists of 77 distinct code artifacts. However, the sentence actually describes a logic located

in exactly one of those files. The stakeholder is presented with 77 files for a sentence that

17

4. Analysis of Datasets and Refinement of Gold Standards

describes one. Since 80% of the document is specific, this approach forces the gold standard

to systematically overestimate the scope of the majority of sentences, increasing the manual

effort required to make use of the suggested trace links.

Second, consider a sentence that falls into the Specific category but solely relies on implicit

context. Figure 4.2 illustrates this scenario. Sentences 12, 13, and 15 each describe detailed

cases of a specific logic. Whereas sentence 12 repeats the component name, 13 and 15 do

not; they are allowed to drop the name due to the context being set beforehand. A Named

Entity-based gold standard, looking for explicit references, will fail to link sentences 13 and

15 entirely.

[11] The Image Provider matches the
 provided product ID or UI name
 and the image size to a unique
 image iden�fier.

[12] - If the product ID or UI name is
 not available to the Image Provider,
 a standard "not found" image
 will be delivered in the correct size.
[13] - If the product ID or UI name is
 found but not in the requested size,
 the largest image will be loaded
 and scaled.

[15] - If the product ID or UI name
 and size is found, the image will
 be loaded and delivered.

// Try to retrieve image from disk or from cache

long imgID = db.getImageID(key, size);

if (imgID != 0) { storedImg = storage.loadData(imgID); }

// If we dont have the image in the right size, get the biggest one and scale it

if (storedImg == null) {

 storedImg = storage.loadData(db.getImageID(key, stdSize));

 if (storedImg != null) {

 storedImg = scaleAndRegisterImg(storedImg.getImage(), key, size);

 } else {

 storedImg = storage.loadData(db.getImageID(IMAGE_NOT_FOUND, size));

 if (storedImg == null) { storedImg = scaleAndRegisterImg(storage.loadData(

 db.getImageID(IMAGE_NOT_FOUND, stdSize)).getImage(),

 new ImageDBKey(IMAGE_NOT_FOUND), size); }

 }

}

return storedImg.toString();

Figure 4.2.: Traceability Example for the TeaStore Project; SAD on the left with their [sentence ID],

Code on the right, colored correspondingly

This leads to a problem: The more a SAD provides specific information about the code, the

more likely a Named-Entity approach is to either overlook it (missing link) or drown it in

irrelevant files (coarse-grained link).

4.2.4. Conclusion: Justification for Refinement

The classification results demonstrate that SADs are not merely lists of components, but

hierarchies of description where the vast majority of the content (80%) is dedicated to

specificities. However, the existing gold standards treat the SAD as a flat list of Named

Entities. The more sentences a SAD contains that describe specific parts, which, as demon-

strated, represents the dominant case, the more problematic Named-Entity-based linking

becomes. It fails to capture the intention of the specific sentences. Therefore, it is reasonable

to conclude that the existing gold standards do not accurately represent the task of tracing

the content of the SAD to the code. They merely track the mentions of Named-Entities.

This structural expectation of failure justifies the need for a refined gold standard: one that

abandons the reliance on explicit names and instead links based on the specific semantic

objective of the sentence.

18

4.3. Refinement of the Gold Standard

4.3. Refinement of the Gold Standard

Based on the structural mismatch identified in the previous section, I performed a systematic

refinement of the existing gold standards. The objective was to transition from a Named
Entity baseline, which links based on explicit keyword matches, to an Intent-Based baseline

that links based on the semantic reality of what the author intended to describe.

4.3.1. Methodology and Guidelines

The refinement was conducted through a manual re-evaluation of every trace link in

the dataset. Since the original documentation did not establish strict traceability rules

beforehand, I adopted a set of guidelines to govern the decision-making process. The

overarching principle was to identify the code artifacts that the author of the SAD intended
to point to, even when the terminology was ambiguous or subjective.

4.3.1.1. Guideline 1: Semantic Intent vs. Explicit Naming

The primary guideline was to assess the information presented in the sentence and resolve it

against the code that corresponds to that description. I assumed that if a sentence describes

a specific behavior or feature, code artifacts corresponding to that description must exist.

• Granularity: If a sentence describes a specific logic (e.g., “It contains logic to save
and retrieve values from cookies.”), I linked only the specific classes implementing that

logic, removing links to the generic component root or unrelated utility files.

• Implicit Context: I resolved implicit references where the subject of a sentence was

implied by the preceding context (e.g., a header or previous sentence).

• Scope: The analysis was not restricted to Java code. I systematically included config-

uration files, build scripts, and frontend artifacts (HTML, TypeScript) if they were the

true location of the described intent.

4.3.1.2. Guideline 2: Handling Inconsistencies and Drift

A major challenge was dealing with the inconsistencies between the documentation and

the evolving codebase, particularly in TEAMMATES. To resolve this, I adopted the guideline

of considering the SAD as if it corresponded to the current state of the code:

• Semantic Validity: If a sentence described a valid feature that still exists (even if

implemented differently), I linked it to the current implementation.

19

4. Analysis of Datasets and Refinement of Gold Standards

• Dead References: Conversely, if the documentation explicitly named a package or

artifact that no longer exists (e.g., the moved client.remoteapi package in TEAM-
MATES), I did not attempt to link it to its new location. Linking to an artifact that

contradicts the explicit text was deemed an invalid interpretation of the document’s

pointers.

• Text Adaptation Correction: For TEAMMATES, I utilized a revised text adaptation

that aligns more closely with the code’s reality, allowing me to maintain the contex-

tual information of sentences that were previously distorted or lost in the baseline

adaptation.

4.3.2. Correction of Structural Benchmarking Inconsistencies

Beyond refining individual sentences, the analysis revealed systematic differences stemming

from the underlying SAD-to-SAM (Software Architecture Model) approach used in the

original benchmarks. The original gold standards typically linked code to SAM components

and then mapped those components to SAD sections. Our analysis identified inconsistencies

in this mapping process:

• Component Splitting (MediaStore): The MediaStore SAD describes a Web pre-

sentation layer. The code implements this as two projects: a presentation layer

(mediastore.web) and a delegation layer (mediastore.ejb.facade). The original gold

standard linked only to the Facade, effectively excluding the actual web artifacts

(XHTML, Beans) described in the text. Our refinement corrected this to include both.

• Component Merging (TeaStore): Conversely, the TeaStore SAD describes a single

Recommender component. The original benchmark treated the implementation as two

distinct components, often failing to link sentences that described the recommender

as a whole to all its constituent parts.

• Inconsistent Artifact Inclusion: I observed instances where a specific sentence was
linked to code artifacts (likely due to a Named Entity match) that were paradoxically

excluded when the component as a whole was linked elsewhere. This suggests an

inconsistency in how component boundaries were defined and enforced in the original

standard versus how other named entities were treated.

4.3.3. Quantitative Results

The refinement produced a fundamental shift in the composition of the gold standards, as

detailed in Table 4.2.

The data reveals a distinct difference in the density of Java links. In JabRef, the number

of Java links decreased from 8268 to 3851, and in TeaStore, from 701 to 314. This indicates

a difference in granularity: the refined standard tends to link specific classes rather than

entire packages or components. Conversely, TEAMMATES shows an increase in total links

20

4.3. Refinement of the Gold Standard

Table 4.2.: Refined Gold Standard Difference showing Number of Linked Artifacts by their Type

JabRef MediaStore TEAMMATES TeaStore

Old
Java 8268 50 8165 701

Shell — — — 6

Sum 8268 50 8165 707

JabRef MediaStore TEAMMATES TeaStore

New

Java 3851 64 5968 314

Other — .xhtml 9

.yaml 7 .sh 2

.spec.ts 3300 .jsp 52

.ts 4990 .png 22

.xml 30

Sum 3851 73 14265 420

due to the systematic inclusion of non-Java artifacts (TypeScript, HTML, XML), which were

previously outside the scope of the benchmark.

To characterize the divergence between the two standards, Table 4.3 classifies the links

based on the refined guidelines. On average, 31% of sentences in the original benchmarks

contained links that were excluded in the refined dataset (classified as Noise under the new
guidelines), while 48% of sentences lacked links that were identified as necessary context

during refinement (Missing).

Table 4.3.: Number of Sentences in each Dataset containing at least one Noise or Missing Link

Sentences JabRef MediaStore TEAMMATES TeaStore Average

Total 13 37 198 43

Containing Links 10 (77%) 25 (68%) 71 (36%) 23 (53%) (58%)

Noise (of Total) 7 (54%) 2 (5%) 48 (24%) 18 (42%) (31%)
(of Containing Links) (70%) (8%) (68%) (78%) (56%)

Missing (of Total) 6 (46%) 17 (46%) 69 (35%) 28 (65%) (48%)

21

4. Analysis of Datasets and Refinement of Gold Standards

This divergence is visualized in Figure 4.3. The plot contrasts the links present only in the

old standard (Noise / More) against the links present only in the new standard (Missing).
The comparison highlights that the two standards prioritize different aspects of traceability:

the original standard favors broad component-level linking, while the refined standard

prioritizes specific, semantic implementation artifacts. Plots for the other projects, as well

as the comparisons of the total number of linked code artifacts by sentences, can be found

in Appendix A.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

2

3

4

5

6

7

8

9

10

20

30

40

50

60

70

80

1

Sentence ID

#
l
i
n
k
e
d
c
o
d
e
a
r
t
i
f
a
c
t
s

Missing in Original Noise in Original

Figure 4.3.: TeaStore: Difference between the Original and Refined Gold Standard

22

4.4. Qualitative Findings: The Role of Context in Traceability

4.4. Qualitative Findings: The Role of Context in Traceability

The sentence-by-sentence analysis conducted to refine the gold standard yielded more than

just a corrected dataset. It revealed that accurate SAD-to-code traceability relies heavily on

context that lies outside the static Java source code. While the previous section quantified

the noise in existing benchmarks, this section categorizes the project-intrinsic knowledge
required to recover valid links.

The following findings highlight specific patterns where trace links are non-trivial, meaning

they cannot be recovered by matching keywords or traversing the Java AST alone. It is

important to note that the cases presented here represent only a fraction of the identified

patterns. The complete set of analysis notes for every sentence in the corpus is available in

the replication package attached to this thesis.

4.4.1. Configuration as Architectural Truth

A critical finding of the analysis is that the truth of an architectural description is often

established in configuration files rather than Java classes. In three of the four analyzed

projects, the SAD describes behaviors or constraints that are technically fulfilled only when

specific XML, JSON, or Gradle files are correctly set up. A code-only trace fails to capture

these links because the source code often provides only the potential for a behavior, while
the configuration provides the fact.

4.4.1.1. Runtime Implementation Selection

Modern architectures frequently use Dependency Injection (DI) or deployment parameters

to select specific algorithms at runtime. The SAD often describes the result of this selection

as a hard fact.

• TeaStore (Recommender Strategy): The documentation states: “If the user is known,
Slope One [...] is applied.” Static analysis of the Java code shows multiple available algo-

rithms (e.g., SlopeOneRecommender, PopularityBasedRecommender). The assertion that

Slope One is applied is valid only because of the deployment chain: baseContext.xml

wires the beans, and start.sh (invoked by Dockerfile) sets the environment variables

that force this specific selection.

• MediaStore (Feature Toggling): Features like watermarking and re-encoding are

described as mandatory steps in the processing pipeline. In the code, these are imple-

mented as EJB interceptors (TagWatermarkingImpl, ReEncoderImpl). Their execution

is not hard-coded in the business logic but orchestrated entirely by the ejbconfig.xml

descriptor. Without linking this configuration, the architectural promise that “all
downloaded files are watermarked” cannot be verified.

23

4. Analysis of Datasets and Refinement of Gold Standards

4.4.1.2. Implicit Control Flow and Security Boundaries

The documentation often describes a flow of control or a security boundary that is invisible

in the Java call graph because it is managed by the container or build tools.

• TEAMMATES (Request Filtering): The SAD describes a specific security chain:

“custom filters are applied according to the order specified in web.xml.” The application of
filters like OriginCheckFilter is not triggered by Java method calls but by the servlet

container reading web.xml.

• TEAMMATES (Static Assets): The statement “Requests for static asset files [...] are
served directly without going through web.xml” describes a negative architectural

constraint (bypassing the standard servlet flow). This behavior is implemented by the

Angular service worker configuration in ngsw-config.json. A code-only trace misses

the artifact that actually enables this direct serving capability.

• TEAMMATES (API Boundaries): The SAD mentions a “Web API” protected by

access control. In the source code, the boundary between the UI Browser (Angular)

and UI Server (Java) is bridged by build tasks. Specifically, build.gradle contains the

task execution logic that generates the TypeScript clients from the Java definitions.

Understanding theWeb API as a distinct architectural entity requires tracing this build
configuration, which acts as the glue between the two stacks.

4.4.1.3. Definition of Architectural Scopes

Finally, high-level terms used in the SAD often map to sets of artifacts defined by testing or

build configurations rather than package boundaries.

• TEAMMATES (Test Suites): The term “Component tests” is semantically ambigu-

ous in the folder structure, where unit and integration tests coexist. Its precise

definition, which tests are pure unit tests versus integration tests, is explicitly de-

fined in the test suite configuration testng-component.xml and the custom runner

TestNgXmlTest.java. Recovering the link to Component tests requires parsing this

configuration to identify the included classes.

4.4.2. Project-Specific Intrinsic Patterns

Beyond configuration, accurate traceability requires navigating the unique structural and

terminological realities that characterize each codebase. Our analysis reveals that standard

heuristics, such as mapping components to directories or assuming consistent naming, often

fail due to project-specific patterns.

24

4.4. Qualitative Findings: The Role of Context in Traceability

4.4.2.1. Terminological Ambiguity and Naming Collisions

A major source of confusion is the collision between general technical terms and specific

component names, as well as ambiguous naming conventions.

• TEAMMATES (Suffix Overloading): The project enforces a naming convention

where business logic classes end with the suffix *Logic (e.g., AccountsLogic). However,

the project also contains a distinct component explicitly named Logic. This creates a
linguistic trap for automated tools: references to Logic classes in the SAD are ambiguous,

they could refer to the component boundary or the class suffix.

• TeaStore (Overloaded Terms): The term PersistenceProvider is used in the SAD to

refer to the Persistence component (tools.descartes.teastore.persistence). However, in the

code context, Persistence Provider is also the technical term for the JPA implementation

(EclipseLink). A keyword-based approach fails to distinguish between the architectural

role and the library dependency.

4.4.2.2. Structural Divergence and Scattering

The assumption that architectural components map one-to-one to code directories is fre-

quently violated by project-specific organizational patterns.

• JabRef (Scattered Components): Unlike most components in the project, which are

directory-disjunct, the Preferences component is structurally scattered. Parts of it reside

in the Logic layer, while others reside in the GUI. They are identified solely by the

*Preferences naming suffix rather than a unified package, requiring a cross-cutting

search strategy.

• MediaStore (Component Splitting): The SAD describes a single architectural

entity (the Web component). The implementation, however, splits this into two

physically distinct projects to separate concerns: mediastore.web (Presentation) and

mediastore.ejb.facade (Delegation). Recovering links forWeb requires mapping a

single documentation concept to multiple, separated code roots.

• TEAMMATES (Non-Disjunct Test Scopes): The strict separation of components

breaks down in the testing layer. Test components explicitly contain and compile code

from other production components to facilitate integration testing. This implies that

components in this project are not mathematically disjunct sets; while production

code is separated, test code intentionally overlaps.

4.4.2.3. Domain Concept Fragmentation

Ideally, a domain concept described in the SAD maps to a single entity in the code. In reality,

projects often fragment these concepts into multiple, context-specific classes.

25

4. Analysis of Datasets and Refinement of Gold Standards

• MediaStore (The Audio Concept): The simple concept of an audio file is imple-

mented via three distinct classes, each serving a specific architectural scope:

– Audio: The persistable JPA entity, visible only to the DbManager.

– AudioFileInfo: A lightweight metadata wrapper used by unrelated components

to avoid coupling to the persistence layer (explicitly documented in Javadoc).

– AudioFile: A specific junction class combining metadata with physical storage

paths.

Correctly linking a general sentence about audio files requires deducing which of

these three specific implementations is meant based on the surrounding architectural

context (e.g., storage vs. metadata).

4.4.2.4. Intent vs. Implementation Reality

Finally, the architectural truth described in the SAD can be contradicted by the implementa-
tion reality dictated by the project’s specific purpose.

• TeaStore (Test-Oriented Design): The SAD describes the Auth component as re-

sponsible for secure user management (e.g., Passwords are hashed). However, because
TeaStore is designed as a performance test application, the actual user generation is

hardcoded and executed at startup within the Persistence component to ensure repro-

ducible test states. A naive trace would look for user creation logic in Auth, whereas
the true link, driven by the project’s nature as a testbed, lies in the Persistence data
generators.

4.4.3. Implicit Communication and Constraints

Finally, the analysis reveals that high-level interactions and architectural constraints de-

scribed in the SAD are frequently invisible to standard static analysis. In these cases, the

link is not a direct dependency but a pattern or a validation rule.

4.4.3.1. Decoupled Communication Patterns

When components interact via decoupled mechanisms rather than direct method calls,

standard Abstract Syntax Tree (AST) analysis fails to capture the connection.

• TeaStore (REST vs. AST): The high-level communication between TeaStore compo-

nents occurs almost exclusively via REST endpoints. A static analysis of the Java code

sees these components as isolated islands, as there are no direct method invocations

between them. Recovering these links requires recognizing a specific pattern: a URL

string in a client (e.g., in registryclient) matching a @Path annotation in a server com-

ponent. Approaches relying on standard call graphs will systematically miss these

26

4.4. Qualitative Findings: The Role of Context in Traceability

interactions, even though they constitute the primary architectural glue described in

the SAD.

4.4.3.2. Delegation and Encapsulation

SADs often describe components as monolithic entities that perform actions, whereas the

code implements them as thin wrappers delegating to internal helpers.

• MediaStore (TheManager Rule): The SAD claims the UserDBAdapter component

encapsulates database access and creates queries. In the code, the main entry point

(UserDBAdapterImpl) is effectively an empty shell that delegates all logic to an injected

DbManager bean. The architectural behavior (query creation) is located in the delegate,

not the primary implementation class. A keyword-based trace to the component

root often misses the DbManager, thereby missing the artifact that actually fulfills the

architectural description.

4.4.3.3. Constraint Enforcement via Tests

Architectural rules described in the SAD (e.g., Layer A cannot access Layer B or Package X is
hidden) are often enforced by the build system rather than the Java compiler.

• JabRef & TEAMMATES (Test-Based Constraints): Statements about visibility (e.g.,

“Classes in storage.entity are not visible outside”) are often effectively false in the

static source code, where the classes may be declared public for technical reasons.

However, they are true in the project context because specific architecture-related test

cases (e.g., MainArchitectureTest.java) fail the build if these rules are violated. In

these instances, the trace link for the enforcement of the constraint points to the test

case, which serves as the executable specification of the architecture.

4.4.4. Intent vs. Implementation Reality

A unique category of context involves the discrepancy between the Architectural Intent
described in the SAD and the Implementation Reality dictated by the project’s specific

purpose or history. In these cases, the code structure contradicts the documentation, not

because of drift, but because of specific non-functional requirements like testability.

4.4.4.1. Test-Oriented Design vs. Production Architecture

Projects designed as research testbeds often implement architectural shortcuts that contra-

dict their high-level design description.

27

4. Analysis of Datasets and Refinement of Gold Standards

• TeaStore (Hardcoded Logic): The SAD describes the Auth component as responsible

for secure usermanagement (e.g., Passwords are hashed). However, TeaStore is designed
specifically as a performance test application for benchmarking. To ensure reproducible

test states, the actual user generation is hardcoded and executed at startup within the

Persistence component. A naive trace would look for user creation logic in the Auth
component, whereas the true link, driven by the project’s nature as a deterministic

testbed, lies in the Persistence data generators (DataGenerator.java).

4.4.4.2. Evolutionary Vestiges

Codebases often contain vestigial structures, artifacts that remain from previous architectural

versions but are now used differently than their names suggest.

• MediaStore (The Facade Drift): The Book version of the architecture describes a

richWebGUI component that handles presentation logic. The actual code, however,

splits this into aWeb project and a Facade EJB. The Façade component in the code has

evolved into a thin wrapper that strictly delegates calls, stripping it of the presentation

logic described in the original architectural intent. Recovering the correct link requires

understanding this evolutionary split: the WebGUI concept in the SAD now maps

primarily to the mediastore.web project, not the facade package.

28

5. Approach

Traditional Information Retrieval (IR) approaches for traceability link recovery typically

retrieve a fixed number of code artifacts (𝑘) for each documentation element. However, our

analysis of the datasets reveals a fundamental structural mismatch: architectural components

vary significantly in size. If a component consists of hundreds of files (e.g., the Logic
component in TEAMMATES), retrieving a small 𝑘 misses relevant artifacts (low recall).

Conversely, if a component is small, a large 𝑘 introduces noise (low precision).

To address this, this thesis proposes a Component-Centric Preprocessing stage. Instead of

linking text directly to code, we use architectural components as intermediate entities. The

core idea is to first identify which component a sentence describes, and then retrieve the

specific code artifacts that constitute that component.

The preprocessing stage consists of two parallel pipelines: Documentation Preprocessing and

Code Preprocessing. As illustrated in Figure 5.1, both pipelines aim to map their respective

artifacts to a unified set of Component Names. The Documentation pipeline extracts

component references from the text, while the Code pipeline identifies the physical location

(directories) of components in the project structure. The intersection of these two processes

allows us to link a sentence to a specific directory scope, thereby filtering the search space

for the subsequent retrieval stage.

Extraction (LLM)

[Double Check (LLM)]

Extraction (LLM)

Extraction (LLM)

Agent Packages
Build

Configs
Agent Packages

Build
Configs

D
o

cu
m

en
ta

ti
o

n

Component Names (Documentation)

Component Names by Sentence

Component
Information

Directories

Component Names (Code)

C
o

m
p

o
n

en
ts

Project (Code)

Figure 5.1.: Overview of the Preprocessing Stage; Documentation Preprocessing on the left, Code
Preprocessing on the right

29

5. Approach

5.1. Documentation Preprocessing

The goal of documentation preprocessing is to transform unstructured natural language

sentences into structured metadata identifying the referenced architectural components.

5.1.1. Component Names Extraction

The component name serves as the primary key for alignment. Besides distinguishing

one component from another, the name itself often embodies technical information (e.g.,

Persistence Provider) that assists in locating the corresponding code.

To ensure the extracted names are usable for code mapping, the extraction process is

governed by strict constraints enforced via the prompt (see Prompt 2):

• Extraction of Simple Names: The Large Language Model (LLM) is instructed to

extract names exactly as they appear, without interpretation. It must prefer simple,

explicit names (e.g.,WebUI) over descriptive phrases. This mimics the naming con-

ventions found in codebases (e.g., package names) and ensures consistency when a

component is referenced by variable suffixes.

• Project Name Exclusion: Documentation often references the project itself (e.g.,

“TeaStore consists of...”). If the project name is not explicitly distinguished from its

components, it may be falsely identified as a component. To prevent this, the system

first retrieves the project name via an independent query (Prompt 1) and explicitly

instructs the extraction model to exclude this name from the results.

• AffixRemoval: Documentation frequently appends generic descriptors to component

names (e.g., "Web Service", "Logic Component"). While semantically useful, these

suffixes often do not exist in the file system. The extraction prompt instructs the LLM

to strip these non-essential prefixes or suffixes if they obscure the core component

name.

• Filtering Main Components: Due to the ambiguity of the term component, the
LLM is restricted to identifying only the main architectural components of the system,

filtering out transient objects or minor utility classes that do not represent architectural

boundaries.

The output is forced into a structured JSON schema to ensuring parsability. These extracted

results represent the ground truth for component identification and serve as the input for

the subsequent component information extraction.

30

5.1. Documentation Preprocessing

5.1.2. Sentence-Level Component Mapping

Following the extraction of high-level component metadata, the next step is the granular

mapping of individual sentences to these components. This step bridges the gap between

the document-level understanding and the specific code retrieval required later.

The objective is to produce a definitive assignment of component names for each sentence

in the SAD. This output serves as the primary input for the final Double Check phase, where

ambiguities are resolved before code retrieval begins.

5.1.2.1. Extraction Strategy

We employ an LLM to analyze the entire SAD sentence by sentence. To ensure traceability,

the documentation is provided with explicit sentence identifiers. The model is instructed to

function as an architectural analyst using the following system message:

“Your task is to analyse software architecture documentation. Each sentence

of the documentation is prefixed with its identifier. Extract for each sentence

in which components of the project one needs to look to find the code that it

describes.”

By framing the task as finding the code, the prompt encourages the model to look beyond

generic mentions and focus on the architectural intent of the specific sentence.

5.1.2.2. Result of Extraction

The critical outcome of this process is, for each sentence, a list of names of the components

described in the sentence.

Crucially, the model is constrained to select these names from the standardized list of
components generated in the initial extraction stage. This ensures strictly typed results

and prevents the generation of hallucinations or synonyms that do not match the identi-

fied architecture. In cases where a sentence does not describe any specific architectural

component (e.g., general project goals or meta-text), the model is instructed to map it to a

reserved dummy identifier. This distinction allows the subsequent retrieval stage to filter

out irrelevant sentences entirely, maintaining high precision.

5.1.3. Ambiguity Resolution (Double Check)

A significant challenge in text analysis is terminological ambiguity. Two components may

share similar names (e.g.,Web vs. WebUI in TeaStore), functionally overlapping responsi-

bilities, or inconsistent usage in the documentation. A single-pass extraction often fails to

distinguish these subtle differences, leading to lower precision.

31

5. Approach

To mitigate this, we employ a targeted Double Check mechanism. Unlike the previous steps

which operate linearly, this stage is designed as a Reflective Verification Loop. It does not
merely extract; it critiques the previous extraction using a generated knowledge base of

ambiguities.

5.1.3.1. Phase 1: Global Ambiguity Detection

Before verifying individual sentences, the system first analyzes the project’s component list

holistically to identify potential sources of confusion.

We provide an LLM with the complete list of extracted component names and the full

documentation. The model is instructed to identify pairs or groups of components that

share ambiguities arising from:

• Nominal Similarity: Names that are linguistically close (e.g., Auth vs. Authorization).

• Structural Overlap: Components that are part of a named structure that does not dis-

tinguish between them (e.g., distinct backend and frontend components both referred

to as the UI).

• Functional Overlap: Components that are responsible for similar tasks or contain

similar software artifacts.

Result: The output is a knowledge base of Ambiguity Cases. Each case contains the set of

confusing components and, crucially, explicit instructions on how to resolve the ambiguity

based on the text (e.g., “When the text mentions ’UI’, it refers to the ’WebUI’ component

only if specific frontend technologies like HTML are mentioned; otherwise, check for ’UI

Server’.”).

5.1.3.2. Phase 2: Contextual Verification

The second phase applies this knowledge to the results of the Sentence-Level Mapping. For

every component assigned to a sentence in the previous step, the system determines if it

belongs to a known Ambiguity Case.

If a component is flagged as ambiguous, it undergoes a rigorous verification process. An

LLM is presented with:

1. The specific sentence in question.

2. The candidate component extracted in the previous step.

3. The list of other components extracted for the same sentence (potential competitors).

4. The Additional Information from the Ambiguity Case (the resolution rules generated

in Phase 1).

32

5.1. Documentation Preprocessing

Themodel acts as a judge, asked to decide whether the extracted component is truly expected

to contain the code described in the sentence. It must justify its reasoning using the provided

ambiguity resolution rules.

Result: The output is a boolean finalDecision. If the model returns false, the component

is removed from the sentence’s mapping. This filtering step significantly reduces false

positives by enforcing strict semantic boundaries between architecturally similar entities.

5.1.4. Component Information Extraction

Mere names are often insufficient to locate a component in a complex codebase. A component

named Logic could be located in ‘src/main/java/logic‘, ‘src/core/business‘, or scattered across

multiple packages. To aid the Code Preprocessing agent in locating these components, we

extract detailed architectural metadata for each identified component.

5.1.4.1. Extraction Strategy

For every component name extracted in the previous step, we trigger a specific extraction

task. The LLM is provided with the full documentation and the target component name. It

is instructed to scan the text for specific hints that might indicate where this component

lives in the file system.

5.1.4.2. Extracted Metadata

The model is constrained to return a structured set of descriptive fields. Unlike the previous

steps which focused on normalization, this step focuses on gathering search heuristics :

• Packages: Explicit mentions of package names (e.g., “org.jabref.logic”) associated

with the component.

• Directories: Explicit file paths or root folders mentioned in the text (e.g., “The web

assets are located in src/web/”).

• File Types: The specific file extensions or technologies associated with the component

(e.g., “.jsp”, “.ts”, “.xml”). This allows the agent to verify if a candidate directory contains

the expected artifacts.

• Named Entities: Specific classes, configuration files, or unique identifiers mentioned

as part of the component (e.g., “Contains the UserEntity class” or “Configured via

web.xml”). These serve as anchors for verification.

• Purpose: A high-level description of the component’s responsibility (e.g., “Handles

database persistence”). This supports semantic similarity searches if exact name

matching fails.

33

5. Approach

• Production vs. Test: A classification of whether the component represents produc-

tion code or testing infrastructure. This helps the agent distinguish between ‘src/main‘

and ‘src/test‘ hierarchies, a common source of ambiguity.

This rich metadata profile provides the Agentic Code Processor with a set of specific criteria

to validate its search results, significantly increasing the probability of locating the correct

physical directory.

34

5.2. Code Processing

5.2. Code Processing

While Documentation Preprocessing identifies what needs to be found, Code Processing

identifies where it exists. The objective is to resolve the extracted component names into

concrete source code directories.

In well-engineered software, architectural boundaries often align with technical bound-

aries. Developers utilize grouping mechanisms, such as placing all Payment logic into a

com.project.payment package or a distinct microservice directory, to enforce modularity.

This explicit structural intent serves as a high-fidelity signal of component location. By

clustering these directories, we capture the physical architecture of the system.

As shown in Figure 5.1, the result of this stage is a mapping of Component Names to
Directories. Any source code artifact contained within these directories is considered part

of the component. We employ two complementary strategies to achieve this mapping: an

Agentic approach and a Project-Based approach.

5.2.1. Agentic Based

The fundamental challenge in this stage is the semantic gap between documentation and

code. A component described as The Payment Gateway in the SAD might be implemented

in a directory named acme-pay-lib. Static analysis cannot easily bridge this gap; it requires

human-like judgment to infer that the two entities are equivalent based on context.

Directive Promt
Component Name
(Documentation) C

o
m

p
o

n
en

t

Directories

Description

Component
Information

Project Information

Observe

Reason

Act

Finish

Agent

Tools

Figure 5.2.: Overview of the Agentic Based Approach

To automate this reasoning, we employ an LLM-based Agent designed to mimic a human

developer exploring a repository. The workflow is illustrated in Figure 5.2. The Agent

operates on the ReAct (Reasoning → Action → Observation) principle and is provided

with the Component Name and the Component Information extracted in the previous

stage.

The Agent is equipped with a set of file-system tools:

35

5. Approach

• List Directories: Allows the agent to traverse the project structure.

• Fuzzy Search: To overcome exact-match failures, the agent can search for directories

similar to a given string. This uses an embedding-based ranking to return the top-𝑘

most similar directory names in the project.

• File Type Analysis: The agent can request a summary of file extensions in a directory.

This allows it to verify, for example, that a WebUI component actually contains .html

or .ts files.

The Agent iteratively explores the codebase, hypothesizing locations based on the com-

ponent name (e.g., "I should look for a folder named ’ui’ or ’web’"), executing tools, and

refining its search based on observations. This allows it to locate components even when

naming conventions are inconsistent or when components are nested deeply within the

hierarchy.

5.2.2. Project Based

While the Agentic approach infers structure through exploration, the Project Based ap-

proach extracts structure explicitly defined by the project’s build configuration or language

semantics.

5.2.2.1. Build Configuration Extraction (Maven)

This strategy relies on the standard directory layout enforced by the Maven build system. It

scans the repository for the existence of pom.xml files. In multi-module Maven projects, the

location of these files often demarcates the root of a distinct architectural module.

Mechanism: The system traverses the file tree to locate all pom.xml files. The directories con-
taining these files are extracted as candidate component roots. Limitations: This approach

is strictly limited to Maven-based project structures. Consequently, for projects utilizing

other build systems, such as TEAMMATES and JabRef, which rely on Gradle, this heuristic

yields no results. It is therefore most effective when applied to projects like TeaStore or
BigBlueButton (Java modules).

5.2.2.2. Package Structure Analysis (Java AST)

To address the limitations of build-file dependence, the second strategy leverages the

semantic structure of the Java source code itself. Instead of looking at file system metadata,

this approach analyzes the package hierarchy defined in the Abstract Syntax Tree (AST).

Mechanism: The system parses the Java files to construct the full package hierarchy of

the project. It then traverses this hierarchy from the root package (e.g., com) downwards.

The First Split Heuristic: The traversal continues as long as a package has exactly one sub-

package (linear hierarchy). The traversal stops at the first split, the point in the hierarchy

36

5.2. Code Processing

where a package branches into two or more sub-packages (e.g., com.project splitting into
com.project.ui and com.project.logic). Resolution: The sub-packages resulting from this split

are identified as the Component Root Packages. These semantic packages are then resolved

back to their corresponding physical directories on the file system.

5.2.2.3. Mapping to SAD Components

The final step is to reconcile the Technical Names extracted from these heuristics (e.g., the

directory name of a pom.xml or the suffix of a split package) with the Documentation Names
extracted from the SAD. We employ an LLM to perform this matching based on string

similarity and semantic equivalence.

37

6. Evaluation

6.1. Experiment Setup

To ensure reproducibility and comparability, the experiments were conducted using a strictly

versioned environment for both the data and the underlying models.

6.1.1. Dataset Acquisition and Versioning

The source code for all subject projects was acquired by cloning the repositories at the

specific Git revision hashes defined in the benchmark suite [14]. This ensures that the code

structure analyzed in our experiments matches exactly with the artifacts referenced in the

gold standards, preventing drift due to project evolution.

6.1.2. Large Language Models

The experiments utilized two primary model configurations to evaluate the impact of

reasoning capabilities on traceability performance:

• GPT-4o (referred to as gpt-4.1): Used as the standard baseline for the Agentic

approach and double-check mechanisms.

• GPT-o1 (referred to as gpt-5): Deployed in specific ablation studies to assess the

performance gains from advanced reasoning capabilities in component recovery tasks.

All models were accessed via the OpenAI API with temperature settings fixed at 0.0 to

minimize non-deterministic variance in the outputs.

6.1.3. Evaluation Methodology and Metrics

While the LiSSA andArDoCo frameworks provide built-in calculators for standard Informa-

tion Retrieval metrics (Precision, Recall, F1), this study primarily utilizes Sentence-Normalized
Scores to prevent large components from skewing the results.

39

6. Evaluation

6.1.3.1. Calculation of Sentence-Normalized Scores

To compute these scores, we implemented a post-processing mapping strategy:

1. Aggregation: Both the retrieved trace links (from the framework output) and the

expected links (from the Gold Standard) are grouped by their corresponding Sentence

ID.

2. Scoring: For each sentence, we calculate the local Precision, Recall, and F1-Score

based on the set of links associated with that specific sentence ID (as defined in

subsection 2.3.4).

3. Averaging: The final system score is the macro-average of these local sentence scores.

6.1.3.2. Implementation and Validation

For the LiSSA framework, this logic was integrated directly into the analysis pipeline,

allowing it to run automatically at the conclusion of an evaluation cycle. For the ArDoCo
baselines, the scores were computed externally using a custom evaluation script processing

the framework’s raw output files. This script is available in the replication package attached

to this thesis.

To validate the correctness of this external calculation, we also computed the standard

global metrics (accumulated confusion matrix) using the script and compared them against

the native reports generated by ArDoCo. The results matched exactly, confirming that the

calculation logic for the sentence-normalized scores is consistent and representative of the

baselines’ performance.

6.2. Component Recovery Evaluation

To assess the efficacy of the Code Preprocessing stage, we conducted an isolated evaluation

of the component recovery mechanism. The objective was to determine how accurately the

system could map a Component Name (as defined in the SAD) to the correct set of source

code artifacts.

6.2.1. Methodology

For this evaluation, we manually identified the target components in the Gold Standards and

compared them against the components constructed by our Code Preprocessing approaches.

We calculated the F1-Score based on the retrieval of artifacts:

• True Positives: Artifacts correctly assigned to the component (present in both the

approach’s output and the Gold Standard).

40

6.2. Component Recovery Evaluation

Table 6.1.: F1-Score Averages across all Datasets considering only the Results of the Code Prepro-

cessing of the expected Components

Approach GS Reworked All Mentioned GS Reworked Java/Shell GS Old

Agent gpt-4.1 .830 .765 .870

Agent gpt-5 .968 .968 .890

Agent gpt-4.1 Packages Build Configs .939 .927 .910

Packages .795 .924 .915
Packages Build Configs .865 .924 .915

• False Positives: Artifacts incorrectly assigned to the component.

• False Negatives: Valid artifacts missed by the approach.

We evaluated multiple configurations, including the pure Agentic approach (using different

underlying models) and the Project-Based heuristics (Packages and Build Configurations).

These were tested against three baseline datasets: the original Gold Standard ("GS Old"),

and our refined standards (GS Reworked) filtered for all mentioned artifacts or restricted to

Java/Shell files.

6.2.2. Results

The results, summarized in Table 6.1, demonstrate the high fidelity of the proposed prepro-

cessing strategies.

6.2.2.1. Agentic vs. Heuristic Performance

The data reveals that the Agentic approach utilizing GPT-5 achieves the highest overall

performance, with a near-perfect F1-score of .968 on the refined gold standards. This

suggests that advanced reasoning capabilities are crucial for bridging the semantic gap

between documentation names and code directories, particularly when naming conventions

are inconsistent.

However, the Project-Based approach combining both Packages and Build Configs heuristics
also performs exceptionally well (.939), outperforming the GPT-4 based agent. This validates

the hybrid strategy: explicit structural signals (like ‘pom.xml‘ or package splits) provide a

robust baseline, while the Agent is necessary to handle edge cases or non-standard structures

that heuristics miss.

Notably, the heuristic approaches perform significantly better on the "Java/Shell Only"

subset (.924) than on the full artifact set (.795). This is expected, as the "Packages" heuristic

is inherently designed to traverse Java ASTs and may miss non-code resources (like HTML

or config files) that are part of the component but reside outside the package hierarchy. The

Agent, being file-system aware, does not suffer from this limitation.

41

6. Evaluation

6.3. Feature Comparison and Ablation Study

To understand the individual contributions of the proposed components, we performed a

comparative analysis of different pipeline configurations. Table 6.2 presents the average F1-

scores across the datasets, distinguishing between the impact of the Ambiguity Resolution

(Double Check) mechanism and the different Code Preprocessing strategies.

6.3.1. Impact of Ambiguity Resolution (Double Check)

The comparison reveals a distinct divergence in performance depending on the target Gold

Standard.

• Performance on Refined Standards: On the GS Reworked All Mentioned dataset, the

Double Check mechanism yields the highest overall performance. The Agentic ap-

proach with Double Check achieves a weighted average F1-score of .554, significantly
outperforming the configuration without Double Check (.412). This confirms that the

filtering step is crucial for high-precision scenarios where distinguishing between

semantically similar components (e.g., "Web" vs. "WebUI") is required.

• Inverse Trend on Legacy Standards: Conversely, on the GS Old dataset, the config-

uration without Double Check performs better (.535 vs. .513). This aligns with our

findings regarding "Component Flooding" in the original benchmarks. Since the old

standards often linked artifacts broadly without semantic precision, the aggressive

filtering of the Double Check mechanism is penalized as "False Negatives," while the

noisier, unfiltered approach is rewarded.

6.3.2. Agentic vs. Heuristic Code Preprocessing

The table also highlights the limitations of pure project-based heuristics when dealing with

diverse artifact types.

• Artifact Diversity: When considering all artifact types (GS Reworked All Mentioned),
the Agentic (GPT-4.1) approach dominates, achieving a weighted average of .554
compared to .285 for the combined Heuristic approach (Pack + Poms). This disparity

is driven by the heuristics’ inability to locate non-code artifacts (e.g., documentation,

HTML, configuration) that exist outside the package hierarchy.

• Code-Centric Parity: When the task is restricted to Java and Shell files (GS Reworked
Java/Shell), the heuristic approaches become competitive (.362 vs. .372). This suggests

that for purely code-focused traceability, standard project structure analysis (AST and

Build Configs) is a viable, lower-cost alternative to agentic exploration.

42

6.4. Comparative Evaluation against Baselines

Table 6.2.: Comparison of Average F1-Scores across all Gold Standards

GS Reworked All Mentioned GS Reworked Java/Shell GS Old
Approach Avg. (wo/ TM) w. Avg. (wo/ TM) Avg. w. Avg. Avg. w. Avg.

Double Check

Agent gpt-4.1 .436 (.389) .554 (.475) .399 .469 .513 .494

Agent gpt-5 .377 (.363) .404 (.353) .371 .372 ——

Agent gpt-4.1 + Pack + Poms .371 (.419) .285 (.473) .382 .363 .497 .487

Pack .370 (.416) .286 (.454) .396 .362 .561 .504

Pack + Poms .349 (.387) .286 (.454) .354 .361 .500 .490

wo/ Double Check Agent gpt-4.1 .409 (.408) .412 (.416) .404 .396 .535 .521

6.4. Comparative Evaluation against Baselines

To contextually validate the performance of the proposed Component-Centric approach, we
compared selected configurations (Agentic and Heuristic/Pack) against two distinct classes

of baselines:

1. Naive LiSSA Baselines: Standard RAG configurations (‘Sentence/None/k‘) that

retrieve a fixed number of code chunks (𝑘 = 20, 40) directly for each sentence without

intermediate component resolution.

2. State-of-the-Art Approaches (ArDoCo): The Trace Link Recovery (TLR) strategies

provided by the ArDoCo framework, specifically ExArch (Extended Architecture) and

TransArC (Transformer-based Architecture Recovery). These represent the current

gold standard for model-based traceability.

The comparative results are summarized in Table 6.3.

6.4.1. Comparison with Naive Retrieval

The most immediate finding is the stark performance gap between the proposed approach

and the naive baselines. On the GS Reworked All Mentioned dataset, the naive LiSSA

configuration (𝑘 = 40) achieves a weighted average F1-score of only .125. in contrast, the

proposed Agentic approach achieves .554.

This discrepancy empirically validates the core hypothesis of this thesis: architectural

components vary too widely in size for fixed-𝑘 retrieval to be effective. A naive retrieval

either misses the majority of a large component (low recall) or floods the results for a small

component (low precision). The Component-Centric approach, by resolving the scope of the
component first, dynamically adjusts the retrieval window, resulting in a 4x improvement

in F1-score.

6.4.2. Comparison with State-of-the-Art (ArDoCo)

The comparison with ArDoCo reveals a nuanced trade-off betweenModel-Based and Agentic
strategies, particularly regarding artifact diversity.

43

6. Evaluation

Table 6.3.: Comparison of Average F1-Scores across all Gold Standards

GS Reworked All Mentioned GS Reworked Java/Shell GS Old
Approach Avg. (wo/ TM) w. Avg. (wo/ TM) Avg. w. Avg. Avg. w. Avg.

LiSSA Agent gpt-4.1 .436 (.389) .554 (.475) .399 .469 .513 .494

Pack .370 (.416) .286 (.454) .396 .362 .561 .504

Baselines Avg. (wo/ TM) w. Avg. (wo/ TM) Avg. w. Avg. Avg. w. Avg.

LiSSA Sentence/None/20 .137 (.152) .086 (.070) .160 .128 .130 .054

Sentence/None/40 .135 (.136) .125 (.099) .154 .167 .133 .077

ArDoCo
ExArch .389 (.434) .320 (.536) .432 .441 .733 .866
ExArch 5 .406 (.457) .320 (.537) .450 .441 ——

TransArC .431 (.463) .382 (.545) .498 .526 .797 .882

6.4.2.1. Polyglot vs. Monolingual Performance

On the GS Reworked All Mentioned dataset, the Agentic LiSSA approach outperforms the

best ArDoCo configuration (TransArC) in weighted average F1-score (.554 vs. .382). This
advantage is primarily driven by the TEAMMATES project.

• With TEAMMATES: The Agentic approach excels because it can navigate the file

system to locate TypeScript, HTML, and configuration files, which ArDoCo’s Java-

centric model extraction typically overlooks.

• Without TEAMMATES:When looking at the parenthesized values (excluding TEAM-

MATES), TransArC regains the lead (.545 vs. .475).

This indicates that while ArDoCo remains superior for pure Java architectures (JabRef,

TeaStore), the Agentic approach provides critical robustness for modern, polyglot web

architectures.

6.4.2.2. Performance on Legacy Standards

On the GS Old dataset, ArDoCo demonstrates dominant performance (.882 vs. .494). This
aligns with our qualitative analysis of the benchmarks: the original gold standard heavily

favors static Java structures (packages/classes) and often excludes the runtime configurations

and non-code artifacts that the Agentic approach is designed to find. Essentially, ArDoCo

is optimized for the Static Structure view of architecture, while the Agentic approach is

optimized for the Semantic Intent view captured in the refined gold standard.

6.5. Threats to Validity

To ensure a balanced interpretation of the findings, we discuss the potential threats to the

validity of this study, categorized into internal, external, construct, and reliability threats.

44

6.5. Threats to Validity

6.5.1. Internal Validity

Internal validity concerns factors that might have influenced the results within the experi-

mental setting.

6.5.1.1. Subjectivity in Gold Standard Refinement

The most significant threat to the internal validity of this thesis is the potential bias in

the refinement of the gold standards. The re-evaluation of the datasets—shifting from

named-entity matching to intent-based matching—was conducted by a single author. While

strict guidelines were established to standardize the decision-making process (e.g., regarding

dead references and semantic intent), the lack of inter-rater agreement checking means the

refined standards inevitably reflect the subjective architectural interpretation of the author.

Consequently, the reported performance improvements on the refined datasets must be

interpreted as improvements relative to this specific interpretation of traceability, rather

than an objective, proven truth.

6.5.1.2. Implementation Correctness

The calculation of Sentence-Normalized Scores required a custom implementation to post-

process the output of both the LiSSA and ArDoCo frameworks. Errors in this aggregation

logic could skew the comparison. To mitigate this, we validated the implementation by

computing standard global metrics (Precision/Recall) using the same script and confirming

they matched the native reports generated by the ArDoCo framework.

6.5.2. External Validity

External validity concerns the generalizability of the results to other software projects.

6.5.2.1. Sample Size and Selection Bias

The evaluation was limited to four open-source projects (JabRef, MediaStore, TEAMMATES,
and TeaStore). While these projects were selected to represent a degree of heterogeneity

(monolithic desktop, distributed web, microservices), they share a common ecosystem:

they are all primarily Java-based or heavily rooted in Java architecture. The heuristics

developed for the "Project-Based" preprocessing (e.g., Maven/Gradle analysis, Java AST

traversal) are language-specific. Therefore, the results may not generalize to ecosystems

with fundamentally different structural paradigms (e.g., Python, C++, or Go projects).

45

6. Evaluation

6.5.2.2. Quality of Documentation

The SADs used in this study, while varying in style, are relatively structured and complete.

The proposed Component-Centric approach relies on the assumption that the documenta-

tion contains extractable "Component Names" and descriptive "Component Information."

The approach may degrade significantly when applied to sparse, outdated, or low-quality

documentation where architectural intent is not explicitly stated.

6.5.3. Construct Validity

Construct validity questions whether the experiment actually measures what it claims to

measure.

6.5.3.1. The Directory-Based Component Assumption

A core construct of our approach is the assumption that architectural components map to

physical directories in the file system. While this holds true for many modular architectures

(e.g., Microservices or clean Package-by-Feature layouts), it fails to capture cross-cutting

concerns (e.g., aspect-oriented implementations) or "scattered" components where a logical

entity is spread across multiple disjoint packages. In such cases, the Component-Centric

preprocessing would likely fail to locate the correct scope, leading to lower recall compared

to naive retrieval methods.

6.5.3.2. Metric Selection

We utilized Sentence-Normalized F1-Scores as the primary metric. While we argue this

is more representative for architectural traceability (preventing large components from

dominating the score), it makes direct comparison with other literature—which often reports

global metrics—more difficult. A system could theoretically perform well on sentence-

normalization but poorly on global recall if it consistently misses the largest, most complex

components.

6.5.4. Reliability

Reliability refers to the reproducibility of the results.

46

6.5. Threats to Validity

6.5.4.1. LLM Stochasticity

The experiments relied on proprietary Large Language Models (GPT-4o, GPT-o1). Despite

setting the temperature parameter to 0.0 to maximize determinism, these models are inher-

ently non-deterministic and subject to backend updates by the provider. Therefore, exact

replication of the generated component names and trace links cannot be guaranteed over

time, even with identical prompts.

47

7. Conclusion

Traceability Link Recovery (TLR) between Software Architecture Documentation (SAD)

and source code is a critical enabler for software comprehension, compliance verification,

and architectural consistency checking. However, established approaches have historically

relied on a "static" view of traceability—assuming that architectural concepts map cleanly to

explicit code structures like packages or classes. This thesis challenged that assumption by

demonstrating that valid traceability links are often context-dependent, relying on runtime

configurations, project-specific conventions, and implicit architectural knowledge that static

analysis alone cannot capture.

7.1. Summary of Contributions

This work makes three primary contributions to the field of automated traceability:

7.1.1. 1. Identification of Contextual Dependency

Through a rigorous manual analysis of four open-source projects (JabRef, MediaStore,
TEAMMATES, and TeaStore), I revealed that the "truth" of an architectural link often lies

outside the Java source code. I identified that valid links are frequently established by:

• Configuration files (e.g., XML, JSON, Gradle) that define runtime injection and

component boundaries.

• Implicit conventions (e.g., suffix-based naming) that bridge the gap between docu-

mentation terms and code artifacts.

• Polyglot artifacts (e.g., TypeScript, HTML) that constitute the actual implementation

of "UI" or "Web" components in modern architectures.

This analysis exposed a fundamental "structural mismatch" in existing benchmarks, where

gold standards either flooded results with entire components (low precision) or ignored

non-Java artifacts entirely (low recall).

49

7. Conclusion

7.1.2. 2. Refinement of Traceability Benchmarks

Based on these findings, I systematically refined the gold standards for the analyzed projects.

I transitioned from a "Named Entity" baseline to an "Intent-Based" baseline, filtering out 31%

of unreasonable links and adding 48% of missing context. The refined benchmarks provide

a more realistic target for modern TLR approaches, rewarding precision and penalizing the

"component flooding" common in previous standards.

7.1.3. 3. Component-Centric Preprocessing Approach

To address the identified challenges, I proposed a novel Component-Centric Preprocessing

stage for the LiSSA framework. Instead of retrieving a fixed number of code chunks (𝑘) for

every sentence, our approach introduces an intermediate reasoning step:

1. Documentation Preprocessing: Extracts architectural intent to identify which
components a sentence describes.

2. Code Preprocessing: Uses an Agentic or Project-Based strategy to resolve where
those components physically reside (directories).

3. Ambiguity Resolution: A Double Check mechanism that actively filters out false

positives caused by similar naming conventions.

This allows the subsequent retrieval stage to dynamically adjust its scope, targeting the

specific directory sub-tree relevant to the architectural concept.

7.2. Key Findings

The evaluation of the proposed approach against state-of-the-art baselines (ArDoCo) and

naive retrieval methods yielded several key insights:

• Superiority in Diverse Architectures: On the refined, diverse benchmark (GS
Reworked All Mentioned), the Agentic approach achieved a weighted average F1-score

of .554, significantly outperforming the best naive baseline (.125) and the state-of-the-

art ArDoCo TransArC (.382). This performance gap is largely driven by the agent’s

ability to navigate polyglot file systems (e.g., in TEAMMATES), whereas traditional
model-based approaches are often confined to Java ASTs.

• The Necessity of Reasoning: The ablation study confirmed that "reasoning matters."

The Agentic approach utilizing GPT-5 for component recovery achieved a near-perfect

F1-score of .968, compared to .830 for GPT-4. Furthermore, the "Double Check"

mechanism proved essential for high-precision tasks, improving the F1-score on the

refined benchmark from .412 to .554 by effectively filtering ambiguity.

50

7.3. Future Work

• Bias in Legacy Benchmarks: Interestingly, the heuristic and model-based baselines

(ArDoCo) continued to dominate on the old gold standards (GS Old). This inverse
correlation confirms our hypothesis that legacy benchmarks are biased toward static

code structures, punishing approaches that attempt to recover the more semantic,

configuration-driven links identified in our refinement.

7.3. Future Work

While the Component-Centric approach demonstrates significant improvements, several

avenues for future research remain:

• Expansion of Artifact Types: The current code preprocessing focuses heavily on

directory-based components. Future work could extend this to support "scattered"

components (like the cross-cutting Preferences in JabRef) that are defined by tagging

interfaces or annotations rather than folder structure.

• Dynamic Configuration Analysis: Currently, configuration files are treated as text

or simple existence signals. Integrating a deeper, semantic understanding of build

definitions (e.g., parsing the actual dependency graph in Gradle) could further improve

the accuracy of the Project-Based heuristics.

• Broader Project Scope: Validating the approach on a larger set of industrial projects

would help generalize the findings beyond the four open-source subjects analyzed

here.

7.4. Closing Remarks

This thesis illustrates that "finding the code" is no longer just a search problem—it is a

translation problem. By treating architectural documentation not as a bag of keywords

but as a set of semantic intents that must be mapped to physical project structures, I can

recover traceability links that reflect the true complexity of modern software systems. The

proposed Component-Centric approach provides a robust, extensible foundation for this

new generation of context-aware traceability.

51

Bibliography

[1] Ebube Alor, SayedHassan Khatoonabadi, and Emad Shihab. Evaluating the Use of LLMs
for Documentation to Code Traceability. June 2025. doi: 10.48550/arXiv.2506.16440.
arXiv: 2506.16440 [cs]. (Visited on 06/23/2025).

[2] G. Antoniol et al. “Recovering Traceability Links between Code and Documentation”.

In: IEEE Transactions on Software Engineering 28.10 (Oct. 2002), pp. 970–983. issn:

1939-3520. doi: 10.1109/TSE.2002.1041053.

[3] Giulio Antoniol et al. “Recovering Traceability Links Between Code and Documenta-

tion: A Retrospective”. In: IEEE Transactions on Software Engineering 51.3 (Mar. 2025),

pp. 825–832. issn: 1939-3520. doi: 10.1109/TSE.2025.3534027.

[4] ArDoCo Benchmark - TEAMMATES - Text Adaptation. url: https://github.com/
ardoco/benchmark/blob/308dd2a96dac68e3399d948193a4c1386289809d/teammates/

text_2021/teammates.txt (visited on 12/21/2025).

[5] ArDoCo Benchmark - TEAMMATES Documentation - E2E. url: https://github.
com/ardoco/teammates/blob/658280d58f799e9330d427e4ed81ac0e8145408c/docs/

design.md#e2e-component (visited on 12/21/2025).

[6] BigBlueButton. url: https://github.com/bigbluebutton/bigbluebutton (visited on
10/18/2025).

[7] Dave Binkley and Dawn Lawrie. “The Impact of Vocabulary Normalization”. In:

Journal of Software: Evolution and Process 27.4 (2015), pp. 255–273. issn: 2047-7481.
doi: 10.1002/smr.1710.

[8] Yingkui Cao et al. “Toward Accurate Link between Code and Software Documen-

tation”. In: Science China Information Sciences 61.5 (Apr. 20, 2018), p. 050105. issn:
1869-1919. doi: 10.1007/s11432-017-9402-3.

[9] Giovanni Capobianco et al. “Improving IR-based Traceability Recovery via Noun-

Based Indexing of Software Artifacts”. In: Journal of Software: Evolution and Process
25.7 (2013), pp. 743–762. issn: 2047-7481. doi: 10.1002/smr.1564.

[10] Xiaofan Chen and John Grundy. “Improving automated documentation to code trace-

ability by combining retrieval techniques”. In: Proceedings of the 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering. ASE ’11. USA: IEEE Computer

Society, 2011, pp. 223–232. isbn: 9781457716386. doi: 10.1109/ASE.2011.6100057.

url: https://doi.org/10.1109/ASE.2011.6100057.

[11] Xiaofan Chen et al. “DCTracVis: A System Retrieving and Visualizing Traceability

Links between Source Code and Documentation”. In: Automated Software Engineering
25.4 (Dec. 1, 2018), pp. 703–741. issn: 1573-7535. doi: 10.1007/s10515-018-0243-8.

53

https://doi.org/10.48550/arXiv.2506.16440
https://arxiv.org/abs/2506.16440
https://doi.org/10.1109/TSE.2002.1041053
https://doi.org/10.1109/TSE.2025.3534027
https://github.com/ardoco/benchmark/blob/308dd2a96dac68e3399d948193a4c1386289809d/teammates/text_2021/teammates.txt
https://github.com/ardoco/benchmark/blob/308dd2a96dac68e3399d948193a4c1386289809d/teammates/text_2021/teammates.txt
https://github.com/ardoco/benchmark/blob/308dd2a96dac68e3399d948193a4c1386289809d/teammates/text_2021/teammates.txt
https://github.com/ardoco/teammates/blob/658280d58f799e9330d427e4ed81ac0e8145408c/docs/design.md#e2e-component
https://github.com/ardoco/teammates/blob/658280d58f799e9330d427e4ed81ac0e8145408c/docs/design.md#e2e-component
https://github.com/ardoco/teammates/blob/658280d58f799e9330d427e4ed81ac0e8145408c/docs/design.md#e2e-component
https://github.com/bigbluebutton/bigbluebutton
https://doi.org/10.1002/smr.1710
https://doi.org/10.1007/s11432-017-9402-3
https://doi.org/10.1002/smr.1564
https://doi.org/10.1109/ASE.2011.6100057
https://doi.org/10.1109/ASE.2011.6100057
https://doi.org/10.1007/s10515-018-0243-8

Bibliography

[12] Stephane Ducasse and Damien Pollet. “Software Architecture Reconstruction: A

Process-Oriented Taxonomy”. In: IEEE Transactions on Software Engineering 35.4

(July 2009), pp. 573–591. issn: 1939-3520. doi: 10.1109/TSE.2009.19. (Visited on

06/21/2025).

[13] Dominik Fuchß et al. Ardoco/Benchmark. Aug. 2022. doi: 10.5281/ZENODO.6966832.

[14] Dominik Fuchß et al. Ardoco/Benchmark. url: https : / / github . com / ardoco /
benchmark/tree/9444c8100421d7a6f49435b9af44e7b7c6940620 (visited on 10/18/2025).

[15] Dominik Fuchß et al. “Enabling Architecture Traceability by LLM-based Architecture

Component Name Extraction”. In: 22nd IEEE International Conference on Software Ar-
chitecture (ICSA 2025). 22nd IEEE International Conference on Software Architecture.

ICSA 2025 (Ottensee, Dänemark, Mar. 31–Apr. 4, 2025). 46.23.01; LK 01. 2025.

[16] Dominik Fuchß et al. “Establishing a Benchmark Dataset for Traceability Link Re-

covery Between Software Architecture Documentation and Models”. In: Software
Architecture. ECSA 2022 Tracks and Workshops. Ed. by Thais Batista et al. Cham:

Springer International Publishing, 2023, pp. 455–464. isbn: 978-3-031-36889-9. doi:

10.1007/978-3-031-36889-9_30.

[17] Dominik Fuchß et al. “LiSSA: Toward Generic Traceability Link Recovery Through

Retrieval- Augmented Generation”. In: 2025 IEEE/ACM 47th International Conference
on Software Engineering (ICSE). 2025, pp. 1396–1408. doi: 10.1109/ICSE55347.2025.
00186.

[18] Klaas Andries de Graaf et al. “Ontology-based Software Architecture Documentation”.

In: 2012 Joint Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture. 2012, pp. 121–130. doi: 10.1109/WICSA-ECSA.
212.20.

[19] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. “Semantically Enhanced Software

Traceability Using Deep Learning Techniques”. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). 2017 IEEE/ACM 39th International Confer-

ence on Software Engineering (ICSE). May 2017, pp. 3–14. doi: 10.1109/ICSE.2017.9.

[20] Emily Hill et al. “AMAP: Automatically Mining Abbreviation Expansions in Programs

to Enhance Software Maintenance Tools”. In: Proceedings of the 2008 International
Working Conference on Mining Software Repositories. MSR ’08. New York, NY, USA:

Association for Computing Machinery, May 10, 2008, pp. 79–88. isbn: 978-1-60558-

024-1. doi: 10.1145/1370750.1370771.

[21] Nurbay Irmak. “Software Is an Abstract Artifact”. In: Grazer Philosophische Studien
86.1 (2012), pp. 55–72. doi: 10.1163/9789401209182_005.

[22] ISO/IEC 19506:2012(En), Information Technology—ObjectManagement GroupArchitecture-
Driven Modernization (ADM) — Knowledge Discovery Meta-Model (KDM). url: https:
//www.iso.org/obp/ui/en/#iso:std:iso-iec:19506:ed-1:v1:en (visited on

11/05/2025).

54

https://doi.org/10.1109/TSE.2009.19
https://doi.org/10.5281/ZENODO.6966832
https://github.com/ardoco/benchmark/tree/9444c8100421d7a6f49435b9af44e7b7c6940620
https://github.com/ardoco/benchmark/tree/9444c8100421d7a6f49435b9af44e7b7c6940620
https://doi.org/10.1007/978-3-031-36889-9_30
https://doi.org/10.1109/ICSE55347.2025.00186
https://doi.org/10.1109/ICSE55347.2025.00186
https://doi.org/10.1109/WICSA-ECSA.212.20
https://doi.org/10.1109/WICSA-ECSA.212.20
https://doi.org/10.1109/ICSE.2017.9
https://doi.org/10.1145/1370750.1370771
https://doi.org/10.1163/9789401209182_005
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:19506:ed-1:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:19506:ed-1:v1:en

[23] ISO/IEC/IEEE 42010:2022(En), Software, Systems and Enterprise — Architecture Descrip-
tion. url: https://www.iso.org/obp/ui/en/#iso:std:iso-iec-ieee:42010:ed-2:
v1:en (visited on 11/05/2025).

[24] JabRef in the Media. url: https://github.com/JabRef/jabref/wiki/JabRef-in-
the-Media (visited on 10/18/2025).

[25] Yanjie Jiang et al. “Automated Expansion of Abbreviations Based on Semantic Relation

and Transfer Expansion”. In: IEEE Transactions on Software Engineering 48.2 (Feb.

2022), pp. 519–537. issn: 1939-3520. doi: 10.1109/TSE.2020.2995736.

[26] Jan Keim et al. “Detecting Inconsistencies in Software Architecture Documentation

Using Traceability Link Recovery”. In: 20th IEEE International Conference on Software
Architecture (ICSA). 2023, p. 141. isbn: 979-8-3503-9749-9. doi: 10.1109/ICSA56044.
2023.00021. (Visited on 05/16/2025).

[27] Jan Keim et al. “Recovering Trace Links Between Software Documentation And Code”.

In: Proceedings of the IEEE/ACM 46th International Conference on Software Engineering.
ICSE ’24. New York, NY, USA: Association for Computing Machinery, Apr. 12, 2024,

pp. 1–13. isbn: 979-8-4007-0217-4. doi: 10.1145/3597503.3639130.

[28] Yves R. Kirschner et al. “Retriever: A view-based approach to reverse engineering

software architecturemodels”. In: Journal of Systems and Software 220 (2025), p. 112277.
issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.2024.112277. url: https:

//www.sciencedirect.com/science/article/pii/S0164121224003212.

[29] Yuzhan Ma et al. “Automatic Classification of Software Artifacts in Open-Source

Applications”. In: Proceedings of the 15th International Conference on Mining Software
Repositories. MSR ’18. New York, NY, USA: Association for Computing Machinery,

May 28, 2018, pp. 414–425. isbn: 978-1-4503-5716-6. doi: 10.1145/3196398.3196446.

[30] Abdelrahman Mohamed et al. “A Review on Detecting and Managing Documen-

tation Drift in Software Development”. In: 2025 International Mobile, Intelligent,
and Ubiquitous Computing Conference (MIUCC). 2025 International Mobile, Intel-

ligent, and Ubiquitous Computing Conference (MIUCC). Sept. 2025, pp. 546–552. doi:

10.1109/MIUCC66482.2025.11196773.

[31] Kevin Moran et al. “Improving the Effectiveness of Traceability Link Recovery Using

Hierarchical Bayesian Networks”. In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. ICSE ’20. New York, NY, USA: Association for

Computing Machinery, Oct. 1, 2020, pp. 873–885. isbn: 978-1-4503-7121-6. doi: 10.

1145/3377811.3380418.

[32] Rocco Oliveto et al. “On the Equivalence of Information Retrieval Methods for Auto-

mated Traceability Link Recovery: A Ten-Year Retrospective”. In: Proceedings of the
28th International Conference on Program Comprehension. ICPC ’20. New York, NY,

USA: Association for Computing Machinery, Sept. 12, 2020, p. 1. isbn: 978-1-4503-

7958-8. doi: 10.1145/3387904.3394491.

55

https://www.iso.org/obp/ui/en/#iso:std:iso-iec-ieee:42010:ed-2:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso-iec-ieee:42010:ed-2:v1:en
https://github.com/JabRef/jabref/wiki/JabRef-in-the-Media
https://github.com/JabRef/jabref/wiki/JabRef-in-the-Media
https://doi.org/10.1109/TSE.2020.2995736
https://doi.org/10.1109/ICSA56044.2023.00021
https://doi.org/10.1109/ICSA56044.2023.00021
https://doi.org/10.1145/3597503.3639130
https://doi.org/https://doi.org/10.1016/j.jss.2024.112277
https://www.sciencedirect.com/science/article/pii/S0164121224003212
https://www.sciencedirect.com/science/article/pii/S0164121224003212
https://doi.org/10.1145/3196398.3196446
https://doi.org/10.1109/MIUCC66482.2025.11196773
https://doi.org/10.1145/3377811.3380418
https://doi.org/10.1145/3377811.3380418
https://doi.org/10.1145/3387904.3394491

Bibliography

[33] Rolf-Helge Pfeiffer. “What Constitutes Software? An Empirical, Descriptive Study

of Artifacts”. In: Proceedings of the 17th International Conference on Mining Software
Repositories. MSR ’20. New York, NY, USA: Association for Computing Machinery,

Sept. 18, 2020, pp. 481–491. isbn: 978-1-4503-7517-7. doi: 10.1145/3379597.3387442.

[34] Gregorio Robles, JesusM. Gonzalez-Barahona, and Juan JulianMerelo. “Beyond Source

Code: The Importance of Other Artifacts in Software Development (a Case Study)”.

In: Journal of Systems and Software. Selected Papers from the Fourth Source Code

Analysis and Manipulation (SCAM 2004) Workshop 79.9 (Sept. 1, 2006), pp. 1233–1248.

issn: 0164-1212. doi: 10.1016/j.jss.2006.02.048.

[35] Danissa V. Rodriguez and Doris L. Carver. “Comparison of Information Retrieval

Techniques for Traceability Link Recovery”. In: 2019 IEEE 2nd International Conference
on Information and Computer Technologies (ICICT). 2019 IEEE 2nd International Con-

ference on Information and Computer Technologies (ICICT). Mar. 2019, pp. 186–193.

doi: 10.1109/INFOCT.2019.8710919.

[36] Dennis Steinbuch. “Ein Ansatz zur Traceability Link Recovery für natürlichsprachliche

Software-Dokumentation und Quelltext”. In: (Jan. 25, 2024), p. 35. doi: 10.5445/IR/

1000167654. (Visited on 10/29/2025).

[37] Moon Ting Su, Christian Hirsch, and John Hosking. “KaitoroBase: Visual Exploration

of Software Architecture Documents”. In: Proceedings of the 24th IEEE/ACM Interna-
tional Conference on Automated Software Engineering. ASE ’09. USA: IEEE Computer

Society, Nov. 2009, pp. 657–659. isbn: 978-0-7695-3891-4. doi: 10.1109/ASE.2009.26.

(Visited on 06/21/2025).

56

https://doi.org/10.1145/3379597.3387442
https://doi.org/10.1016/j.jss.2006.02.048
https://doi.org/10.1109/INFOCT.2019.8710919
https://doi.org/10.5445/IR/1000167654
https://doi.org/10.5445/IR/1000167654
https://doi.org/10.1109/ASE.2009.26

A. Appendix

A.1. MediaStore Gold Standard Comparison

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

0

2

4

6

8

10

12

14

16

Sentence ID

#
l
i
n
k
e
d
c
o
d
e
a
r
t
i
f
a
c
t
s

reworked original

Figure A.1.: MediaStore reworked and original gold standard linked code artifacts comparison

57

A. Appendix

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

0

2

4

6

8

10

12

14

Sentence ID

#
l
i
n
k
e
d
c
o
d
e
a
r
t
i
f
a
c
t
s

Missing in Original Noise in Original

Figure A.2.: MediaStore original gold standard linked code artifacts difference to reworked

58

A.2. JabRef Gold Standard Comparison

A.2. JabRef Gold Standard Comparison

1 2 3 4 5 6 7 8 9 10 11 12 13

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000
1,929

100

0

1
21

1,009

642

0

1 5

116

15 12

1,929

26

0

1,929

250

1,929

707

0

1,222

8 18

250

0

Sentence ID

#
l
i
n
k
e
d
c
o
d
e
a
r
t
i
f
a
c
t
s

reworked original

Figure A.3.: JabRef reworked and original gold standard linked code artifacts comparison

59

A. Appendix

1 2 3 4 5 6 7 8 9 10 11 12 13

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

0

74

0

1
0 0 0 0

1
0

98

0

12
0 0 0

1,929

229

920

65

0

1,222

3
0

235

0

Sentence ID

#
l
i
n
k
e
d
c
o
d
e
a
r
t
i
f
a
c
t
s

Missing in Original Noise in Original

Figure A.4.: JabRef original gold standard linked code artifacts difference to reworked

60

A.3. TeaStore Gold Standard Comparison

A.3. TeaStore Gold Standard Comparison

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

2

3

4

5

6

7

8

9

10

20

30

40

50

60

70

80

90

100

1

Sentence ID

#
l
i
n
k
e
d
c
o
d
e
a
r
t
i
f
a
c
t
s

reworked original

Figure A.5.: TeaStore reworked and original gold standard linked code artifacts comparison

61

A. Appendix

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

2

3

4

5

6

7

8

9

10

20

30

40

50

60

70

80

1

Sentence ID

#
l
i
n
k
e
d
c
o
d
e
a
r
t
i
f
a
c
t
s

Missing in Original Noise in Original

Figure A.6.: TeaStore original gold standard linked code artifacts difference to reworked

62

A.4. TEAMMATES Gold Standard Comparison

A.4. TEAMMATES Gold Standard Comparison

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 74 77

10

100

1,000

1

2

3

4

5

6

8

20

30

40

50

60

80

200

300

400

500

600

800

2,000

Sentence ID in reworked

#
l
i
n
k
e
d
c
o
d
e
a
r
t
i
f
a
c
t
s

reworked reworked (Java only) original

Figure A.7.: TEAMMATES reworked and original gold standard linked code artifacts comparison

63

A. Appendix

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 74 77

10

100

1,000

1

2

3

4

5

6

8

20

30

40

50

60

80

200

300

400

500

600

800

Sentence ID in reworked

#
l
i
n
k
e
d
c
o
d
e
a
r
t
i
f
a
c
t
s

Missing in Original Missing in Original (Java only) Noise in Original

Figure A.8.: TEAMMATES original gold standard linked code artifacts difference to reworked

64

A.4. TEAMMATES Gold Standard Comparison

78 82 86 90 95 100 105 110 115 120 125 130 135 140 145 151

10

100

1,000

1

2

3

4

5

6

8

20

30

40

50

60

80

200

300

400

500

600

800

Sentence ID in reworked

#
l
i
n
k
e
d
c
o
d
e
a
r
t
i
f
a
c
t
s

reworked reworked (Java only) original

Figure A.9.: TEAMMATES reworked and original gold standard linked code artifacts comparison -

part 2

65

A. Appendix

78 82 86 90 95 100 105 110 115 120 125 130 135 140 145 151

10

100

1

2

3

4

5

6

8

20

30

40

50

60

80

200

300

400

500

Sentence ID in reworked

#
l
i
n
k
e
d
c
o
d
e
a
r
t
i
f
a
c
t
s

Missing in Original Missing in Original (Java only) Noise in Original

Figure A.10.: TEAMMATES original gold standard linked code artifacts difference to reworked - part

2

66

A.5. Prompts

A.5. Prompts

prompt 1 Prompt that extracts the name of the project

� Prompt

1 systemMessage = "You are to interpret a software architecture
documentation. Identify the name of the project.

2 Answer by returning this name and nothing else.";
3 userMessage = """
4 Here is the full documentation containing all sentences:
5 ```
6 <<<documentation>>>
7 ```
8 """;

prompt 2 Prompt that extracts the names of relevant components

� Prompt

1 systemMessage = """
2 You are to interpret a software architecture documentation.

Identify main components that are explicitly mentioned in
the documentation.

3 Ensure hereby the following:
4 − They are simple names excluding the name of the project

(`<<<project_name>>>`)
5 − They exclude prefixes and suffixes that are not essential
6 − They represent main components of the project
7 """;
8 userMessage = """
9 Here is the full documentation containing all sentences:
10 ```
11 <<<documentation>>>
12 ```
13 """;

67

A. Appendix

prompt 3 Prompt that extracts ambiguities between component names

� Prompt

1 systemMessage = """
2 You'll be given a list of components in a software project

that are described in the documentation.
3 Your task is to identify pairs of components that share

ambiguities.
4 These might arise through:
5 − similar names
6 − inconsistent use in the documentation
7 − being part of a named structure that does not distinguish

between them
8 − being responsible for similar things or containing similar

software artifacts
9 Other reasons for ambiguities are also possible.
10

11 ## Output
12 Return a list of ambiguity cases and provide information about

how these ambiguities can be resolved when reading a
sentence of the documentation.

13 """;
14 userMessage = """
15 List of components:
16 <<<component_names>>>
17

18 Full documentation:
19 ```
20 <<<documentation>>>
21 ```
22 """;

68

A.5. Prompts

prompt 4 Prompt that double checks an ambiguous component name

� Prompt

1 systemMessage = """
2 You'll be given a sentence from a documentation that describes

the components of a software project.
3 Your task is to make sure whether the extracted component

∗∗truly∗∗ is expected to contain the code that is described
by the sentence.

4 Use information about ambiguities, that is provided as well,
to justify your reasoning.

5

6 1. Explain whether the extracted component actually is
expected to contain what is described by the sentence.

7 2. Then give your final decision.
8 """;
9 userMessage = """
10 The full documentation containing all sentences:
11 ```
12 <<<documentation>>>
13 ```
14

15 The sentence: `<<<sentence>>>`
16

17 The extracted component: `<<<component_name>>>`
18

19 Other extracted components for this sentence:
<<<other_component_names>>>

20

21 Additional information about ambiguities regarding this and
other components:

22 ```
23 <<<ambiguity_information>>>
24 ```
25 """;

69

A. Appendix

prompt 5 Prompt that extracts information about a component

� Prompt

1 systemMessage = """
2 Your task is to analyse software architecture documentation

and collect information about components in the project.
3 Each sentence of the documentation is prefixed with its

identifier.
4 """;
5 userMessage = """
6 Full documentation:
7 ```
8 %s
9 ```
10

11 The component to analyze: `%s`
12 """;

70

	Abstract
	Zusammenfassung
	Introduction
	Problem Statement
	Objective and Contribution
	Thesis Structure

	Foundations
	Software Artifacts
	Software Architecture Documentation (SAD)
	Architecture Recovery

	Traceability Link Recovery (TLR)
	Metrics
	Precision
	Recall
	F1-Score
	Sentence Normalized F1-Score

	The LiSSA Framework
	Pipeline Architecture
	Capabilities and Configuration

	Related Work
	Artifact Types in TLR
	Techniques used in TLR
	Analysis of Datasets and Gold Standards

	Analysis of Datasets and Refinement of Gold Standards
	Dataset Overview and Provenance
	Origin of Resources
	Subject Projects

	Analysis of SAD Characteristics and Existing Benchmarks
	Linguistic Characteristics of SADs
	Analysis of Text Adaptations
	The Structural Mismatch of Existing Gold Standards
	Conclusion: Justification for Refinement

	Refinement of the Gold Standard
	Methodology and Guidelines
	Correction of Structural Benchmarking Inconsistencies
	Quantitative Results

	Qualitative Findings: The Role of Context in Traceability
	Configuration as Architectural Truth
	Project-Specific Intrinsic Patterns
	Implicit Communication and Constraints
	Intent vs. Implementation Reality

	Approach
	Documentation Preprocessing
	Component Names Extraction
	Sentence-Level Component Mapping
	Ambiguity Resolution (Double Check)
	Component Information Extraction

	Code Processing
	Agentic Based
	Project Based

	Evaluation
	Experiment Setup
	Dataset Acquisition and Versioning
	Large Language Models
	Evaluation Methodology and Metrics

	Component Recovery Evaluation
	Methodology
	Results

	Feature Comparison and Ablation Study
	Impact of Ambiguity Resolution (Double Check)
	Agentic vs. Heuristic Code Preprocessing

	Comparative Evaluation against Baselines
	Comparison with Naive Retrieval
	Comparison with State-of-the-Art (ArDoCo)

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Reliability

	Conclusion
	Summary of Contributions
	1. Identification of Contextual Dependency
	2. Refinement of Traceability Benchmarks
	3. Component-Centric Preprocessing Approach

	Key Findings
	Future Work
	Closing Remarks

	Bibliography
	Appendix
	MediaStore Gold Standard Comparison
	JabRef Gold Standard Comparison
	TeaStore Gold Standard Comparison
	TEAMMATES Gold Standard Comparison
	Prompts

