KIT | KIT-Bibliothek | Impressum | Datenschutz

An Inkjet‐Printed Platinum‐Based Temperature Sensing Element on Polyimide Substrates

Alam, Shawon 1; Kister, Thomas; Scholz, Alexander ORCID iD icon 1; Sauva, Sophie 1; Lay, Makara; Kraus, Tobias; Aghassi-Hagmann, Jasmin 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

In this work, we present a proof-of-concept demonstration of inkjet-printed resistive temperature sensors based on nanoparticle platinum ink on flexible polyimide substrates. The resistive temperature sensors are designed as meander structures with a target nominal resistance of 100 and 1000 Ω to be compared to conventional bulk Pt100 and Pt1000 resistors. Thermogravimetric analysis and in situ resistance measurements identified 250°C as the optimal sintering temperature, enabling sufficient solvent removal for conductive structure formation while avoiding Pt surface oxidation and polyimide substrate degradation. Electrical characterization in the 20°C–80°C range revealed a linear relationship between resistance and temperature with effective temperature coefficients of resistance (~48%/57%) and sensitivities (~72%/87%) compared to Pt100/Pt1000 standards, respectively. Mechanical testing over 400 bending cycles showed less than 1% change in electrical resistance, confirming robust flexibility. This study demonstrates the feasibility of translating nanoparticle Pt-based resistive temperature sensors into flexible and automotive sensing applications, offering low-temperature processability, stable temperature coefficients of resistance, linear sensitivity, mechanical robustness, and chemical stability across 20°C–80°C range.


Verlagsausgabe §
DOI: 10.5445/IR/1000190429
Veröffentlicht am 11.02.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2026
Sprache Englisch
Identifikator ISSN: 1438-1656, 1527-2648
KITopen-ID: 1000190429
Erschienen in Advanced Engineering Materials
Verlag Deutsche Gesellschaft für Materialkunde e.V. (DGM)
Seiten Art.-Nr.: e202501740
Vorab online veröffentlicht am 28.01.2026
Nachgewiesen in Scopus
Web of Science
OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page